WorldWideScience

Sample records for magnetic testing

  1. Testing of the MFTF magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Chang, Y.; Dalder, E.N.C.

    1982-01-01

    This paper describes the cooldown and testing of the first yin-yang magnet for the Mirror Fusion Test Facility. The introduction describes the superconducting magnet; the rest of the paper explains the tests prior to and including magnet cooldown and final acceptance testing. The MFTF (originally MX) was proposed in 1976 and the project was funded for construction start in October 1977. Construction of the first large superconducting magnet set was completed in May 1981 and testing started shortly thereafter. The acceptance test procedures were reviewed in May 1981 and the cooldown and final acceptance test were done by the end of February 1982. During this acceptance testing the magnet achieved its full design current and field

  2. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  3. Construction and testing of the Mirror Fusion Test Facility magnets

    International Nuclear Information System (INIS)

    Kozman, T.; Shimer, D.; VanSant, J.; Zbasnik, J.

    1986-08-01

    This paper describes the construction and testing of the Mirror Fusion Test Facility superconducting magnet set. Construction of the first Yin Yang magnet was started in 1978. And although this particular magnet was later modified, the final construction of these magnets was not completed until 1985. When completed these 42 magnets weighed over 1200 tonnes and had a maximum stored energy of approximately 1200 MJ at full field. Together with power supplies, controls and liquid nitrogen radiation shields the cost of the fabrication of this system was over $100M. General Dynamics/Convair Division was responsible for the system design and the fabrication of 20 of the magnets. This contract was the largest single procurement action at the Lawrence Livermore National Laboratory. During the PACE acceptance tests, the 26 major magnets were operated at full field for more than 24 hours while other MFTF subsystems were tested. From all of the data, the magnets operated to the performance specifications. For physics operation in the future, additional helium and nitrogen leak checking and repair will be necessary. In this report we will discuss the operation and testing of the MFTF Magnet System, the world's largest superconducting magnet set built to date. The topics covered include a schedule of the major events, summary of the fabrication work, summary of the installation work, summary of testing and test results, and lessons learned

  4. Superconducting solenoid model magnet test results

    International Nuclear Information System (INIS)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; Wokas, T.; Fermilab

    2006-01-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests

  5. Superconducting solenoid model magnet test results

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  6. Prototype HL-LHC magnet undergoes testing

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A preliminary short prototype of the quadrupole magnets for the High-Luminosity LHC has passed its first tests.   The first short prototype of the quadrupole magnet for the High Luminosity LHC. (Photo: G. Ambrosio (US-LARP and Fermilab), P. Ferracin and E. Todesco (CERN TE-MSC)) Momentum is gathering behind the High-Luminosity LHC (HL-LHC) project. In laboratories on either side of the Atlantic, a host of tests are being carried out on the various magnet models. In mid-March, a short prototype of the quadrupole magnet underwent its first testing phase at the Fermilab laboratory in the United States. This magnet is a pre-prototype of the quadrupole magnets that will be installed near to the ATLAS and CMS detectors to squeeze the beams before collisions. Six quadrupole magnets will be installed on each side of each experiment, giving a total of 24 magnets, and will replace the LHC's triplet magnets. Made of superconducting niobium-tin, the magnets will be more powerful than their p...

  7. Temperature dependence of magnetic descriptors of Magnetic Adaptive Testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 46, č. 2 (2010), s. 509-512 ISSN 0018-9464 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.052, year: 2010

  8. 21 CFR 870.3690 - Pacemaker test magnet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...

  9. Training manuals for nondestructive testing using magnetic particles

    Science.gov (United States)

    1968-01-01

    Training manuals containing the fundamentals of nondestructive testing using magnetic particle as detection media are used by metal parts inspectors and quality assurance specialists. Magnetic particle testing involves magnetization of the test specimen, application of the magnetic particle and interpretation of the patterns formed.

  10. A Cryogenic Test Stand for LHC Quadrupole Magnets

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Huang, Y.; Orris, D.F.; Peterson, T.J.; Rabehl, R.J.

    2004-01-01

    A new test stand for testing LHC interaction region (IR) quadrupole magnets at the Fermilab Magnet Test Facility has been designed and operated. The test stand uses a double bath system with a lambda plate to provide the magnet with a stagnant bath of pressurized He II at 1.9 K and 0.13 MPa. A cryostated magnet 0.91 m in diameter and up to 13 m in length can be accommodated. This paper describes the system design and operation. Issues related to both 4.5 K and 1.9 K operations and magnet quenching are highlighted. An overview of the data acquisition and cryogenics controls systems is also included

  11. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  12. Magnetic Launch Assist Demonstration Test

    Science.gov (United States)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  13. LHC Magnet test failure

    CERN Multimedia

    2007-01-01

    "On Tueday, March 22, a Fermilab-built quadrupole magnet, one of an "inner triplet" of three focusing magnets, failed a high-pressure test at Point 5 in the tunnel of the LHC accelerator at CERN. Since Tuesday, teams at CERN and Fermilab have worked closely together to address the problem and have identified the cause of the failure. Now they are at work on a solution.:" (1 page)

  14. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    Science.gov (United States)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  15. Experimental test of magnetic photons

    International Nuclear Information System (INIS)

    Lakes, R.S.

    2004-01-01

    A 'magnetic' photon hypothesis associated with magnetic monopoles is tested experimentally. These photons are predicted to easily penetrate metal. Experimentally the optical transmittance T of a metal foil was less than 2x10-17. The hypothesis is not supported since it predicts T=2x10-12

  16. Studies on laws of stress-magnetization based on magnetic memory testing technique

    Science.gov (United States)

    Ren, Shangkun; Ren, Xianzhi

    2018-03-01

    Metal magnetic memory (MMM) testing technique is a novel testing method which can early test stress concentration status of ferromagnetic components. Under the different maximum tensile stress, the relationship between the leakage magnetic field of at certain point of cold rolled steel specimen and the tensile stress was measured during the process of loading and unloading by repeated. It shows that when the maximum tensile stress is less than 610 MPa, the relationship between the magnetic induction intensity and the stress is linear; When the maximum tensile stress increase from 610 MPa to 653 MPa of yield point, the relationship between the magnetic induction intensity and the tensile becomes bending line. The location of the extreme point of the bending line will move rapidly from the position of smaller stress to the larger stress position, and the variation of magnetic induction intensity increases rapidly. When the maximum tensile stress is greater than the 653 MPa of yield point, the variation of the magnetic induction intensity remains large, and the position of the extreme point moves very little. In theoretical aspects, tensile stress is to be divided into ordered stress and disordered stress. In the stage of elastic stress, a microscopic model of the order stress magnetization is established, and the conclusions are in good agreement with the experimental data. In the plastic deformation stage, a microscopic model of disordered stress magnetization is established, and the conclusions are in good agreement with the experimental data, too. The research results can provide reference for the accurate quantitative detection and evaluation of metal magnetic memory testing technology.

  17. Collider Dipole Magnet test program from development through production

    International Nuclear Information System (INIS)

    Bailey, R.E.

    1991-01-01

    Verification of CDM performance, reliability, and magnet production processes will be accomplished during the development phase of the program. Key features of this program include thorough in process testing of magnet subassemblies, verification of the magnetic field quality, and demonstration of the CDM performance during the formal qualification program. Reliability demonstration of the CDM design includes component tests and an accelerated life test program. Prototype magnet phase will address achievement of magnet performance goals through a program of fabrications, test, analysis, redesign as required and procurement of modified parts for a second fabrication run. This process would be repeated again if necessary, and would conclude with a final design for the production magnets. Production process validation will address the effects that key production processes have upon magnet performance, using the magnets produced during the Preproduction phase

  18. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  19. Magnetic Particle Testing, RQA/M1-5330.16.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on magnetic particle testing. The subject is divided under the following headings: Introduction, Principles of Magnetic Particle Testing, Magnetic Particle Test…

  20. Magnets for the Mirror Fusion Test Facility: testing of the first Yin-Yang and the design and development of other magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Wang, S.T.; Chang, Y.

    1983-01-01

    Completed in May 1981, the first Yin-Yang magnet for the tandem Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) was successfully tested in February 1982 to its full design field (7.68 T) and current (5775 A). Since that time, the entire magnet array has been reconfigured - from the original A-cell to an axicell design. The MFTF-B magnet array now contains a total of 26 large superconducting coils: 2 sets of yin-yang pairs, 2 sets of transition magnets (each containing two coils), 2 sets of axicell magnets (each containing three coils), and 12 central-cell solenoids. This paper chronicles recent magnet history - from te testing of the initial yin-yang set, through the design of the axicell configuration, to the planned development of the system

  1. Introduction to magnetic resonance and its application to dipole magnet testing

    International Nuclear Information System (INIS)

    Clark, W.G.

    1992-01-01

    An introduction to the features of magnetic resonance that are essential for understanding its application to testing accelerator dipole magnets is presented, including the accuracy that can be expected in field measurements and the factors that limit it. The use of an array of coils to measure the multipole moments of dipole magnets is discussed

  2. Magnetic Nondestructive Testing Techniques of Constructional Steel

    Directory of Open Access Journals (Sweden)

    Xiong Er-gang

    2016-01-01

    Full Text Available Steel is a kind of ferromagnetic material, which is extensively applied in such fields as buildings, bridges, railways, machines and lifeline engineering etc. Those engineering structures built of constructional steel will unavoidably experience some damages during their service lifetime, thus which will influence the distribution regularity of internal forces in structures, result in over-stresses, cause the local failure of structures, and even lead to collapse of the whole structure. Therefore, it is a pressing topic to study how to directly evaluate the real-time stressed states of structural members, damages and steel characteristics in present structural health monitoring and diagnosing fields. And the achievements of this research will be of theoretical significance and of application value of engineering. This paper summarizes varieties of new magnetic nondestructive testing techniques used in constructional steel, respectively investigates the testing principles, characteristics and application for the magnetic Barkhausen noise technique, magnetic acoustic emission technique, magnetic flux leakage technique, magnetic memory technique and magnetic absorption technique, and points out the problems present in the application of these new techniques to actual testing and the further research objective.

  3. Magnetic shielding tests for MFTF-B neutral beamlines

    International Nuclear Information System (INIS)

    Kerns, J.; Fabyan, J.; Wood, R.; Koger, P.

    1983-01-01

    A test program to determine the effectiveness of various magnetic shielding designs for MFTF-B beamlines was established at Lawrence Livermore National Laboratory (LLNL). The proposed one-tenth-scale shielding-design models were tested in a uniform field produced by a Helmholtz coil pair. A similar technique was used for the MFTF source-injector assemblies, and the model test results were confirmed during the Technology Demonstration in 1982. The results of these tests on shielding designs for MFTF-B had an impact on the beamline design for MFTF-B. The iron-core magnet and finger assembly originally proposed were replaced by a simple, air-core, race-track-coil, bending magnet. Only the source injector needs to be magnetically shielded from the fields of approximately 400 gauss

  4. Fermilab R and D test facility for SSC magnets

    International Nuclear Information System (INIS)

    Strait, J.; Bleadon, M.; Hanft, R.; Lamm, M.; McGuire, K.; Mantsch, P.; Mazur, P.O.; Orris, D.; Pachnik, J.

    1989-01-01

    The test facility used for R and D testing of full scale development dipole magnets for the SSC is described. The Fermilab Magnet Test Facility, originally built for production testing of Tevatron magnets, has been substantially modified to allow testing also of SSC magnets. Two of the original six test stands have been rebuilt to accommodate testing of SSC magnets at pressures between 1.3 Atm and 4 Atm and at temperatures between 1.8 K and 4.8 K and the power system has been modified to allow operation to at least 8 kA. Recent magnets have been heavily instrumented with voltage taps to allow detailed study of quench location and propagation and with strain gage based stress, force and motion transducers. A data acquisition system has been built with a capacity to read from each SSC test stand up to 220 electrical quench signals, 32 dynamic pressure, temperature and mechanical transducer signals during quench and up to 200 high precision, low time resolution, pressure, temperature and mechanical transducer signals. The quench detection and protection systems is also described. 23 refs., 4 figs. 2 tabs

  5. Superconductor shields test chamber from ambient magnetic fields

    Science.gov (United States)

    Hildebrandt, A. F.

    1965-01-01

    Shielding a test chamber for magnetic components enables it to maintain a constant, low magnetic field. The chamber is shielded from ambient magnetic fields by a lead foil cylinder maintained in a superconducting state by liquid helium.

  6. Quench tests of Nb3Al small racetrack magnets

    International Nuclear Information System (INIS)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; Fermilab; NIMC, Tsukuba; KEK, Tsukuba

    2007-01-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed

  7. Quench tests of Nb3Al small racetrack magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2007-08-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed.

  8. TEST RESULTS FOR LHC INSERTION REGION DEPOLE MAGNETS

    International Nuclear Information System (INIS)

    MURATORE, J.; JAIN, A.; ANERELLA, M.; COSSOLINO, J.

    2005-01-01

    The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has made 20 insertion region dipoles for the Large Hadron Collider (LHC) at CERN. These 9.45 m-long, 8 cm aperture magnets have the same coil design as the arc dipoles now operating in the Relativistic Heavy Ion Collider (RHIC) at BNL and are of single aperture, twin aperture, and double cold mass configurations. They are required to produce fields up to 4.14 T for operation at 7.56 TeV. Eighteen of these magnets have been tested at 4.5 K using either forced flow supercritical helium or liquid helium. The testing was especially important for the twin aperture models, whose construction was very different from the RHIC dipoles, except for the coil design. This paper reports on the results of these tests, including spontaneous quench performance, verification of quench protection heater operation, and magnetic field quality

  9. Subcooler assembly for SSC single magnet test program

    International Nuclear Information System (INIS)

    Wu, K.C.; Brown, D.P.; Sondericker, J.H.; Farah, Y.; Zantopp, D.; Nicoletti, A.

    1991-01-01

    A subcooler assembly has been designed, constructed and installed in the MAGCOOL magnet test area at Brookhaven National Laboratory. Since July 1989, it has been used for testing SSC magnets. This subcooler assembly and cryogenic system are the first of its kind ever built. Today, with more than 5000 hours of operating time, the subcooler has proved to be a reliable unit with individual components meeting design expectations. The lowest temperatures achieved with one SSC dipole are 3.0 K at the suction of the cold vacuum pump and 3.2 K at the return of the magnet. The system performs well in both steady state operation and during magnet quench, subcooling, cooldown and warmup. 4 refs., 7 figs

  10. Testing of Prototype Magnetic Suspension Cryogenic Transfer Line

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.

    2006-04-01

    A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.

  11. Quench detection electronics testing protocol for SST-1 magnets

    International Nuclear Information System (INIS)

    Banaudha, Moni; Varmora, Pankaj; Parghi, Bhadresh; Prasad, Upendra

    2017-01-01

    Quench Detection (QD) system consisting 204 signal channels has been successfully installed and working well during plasma experiment of SST-1 Tokamak. QD system requires testing, validation and maintenance in every SST-1 campaign for better reliability and maintainability of the system. Standalone test of each channel of the system is essential for hard-ware validation. The standard Testing Protocol follow in every campaign which validate each section of QD electronics as well as voltage tap signal cables which are routed inside the cryostat and then extended outside of the SST-1 machine up-to the magnet control room. Fiber link for Quench signal transmission to the SST-1 magnet power supply is also test and validate before every plasma campaign. Precise instrument used as a dummy source of quench signal and for manual quench generation to test the each channel and Master Quench Logic. Each signal Integrated with the magnet DAQ system, signal observed at 1Hz and 50Hz configuration to validate the logging data, compare with actual and previous test data. This paper describes the testing protocol follow in every campaign to validate functionality of QD electronics, limitation of testing, test results and overall integration of the quench detection system for SST-1 magnet. (author)

  12. LHC Magnet Tests Operational Techniques and Empowerment for Successful Completion

    CERN Document Server

    Chohan, V; Priestnall, K; Pirotte, F; Veyrunes, E; Ali, N; Awale, P; Bahuguna, S; Bhunia, U; Chauhan, V; Dixit, M; Gore, J; John, J; Kandaswamy, E; Kasbekar, A; Kashyap, P; Kasliwal, A; Kulkarni, C; Laddha, A; Malhotra, S; Mascarenhas, M; Mishra, J; Motiwala, P; Nair, K; Narayanan, R; Padmakumar, S; Pagare, A; Peruppayikkad, D; Raghunathan, S; Rao, S; Roy, D; Sharma, S; Shimjith, S; Singh, S; Sonnis, S; Sridhar, S; Surendran, P; Tikaria, A

    2007-01-01

    The LHC magnet tests operation team developed various innovative techniques, particularly since early 2004, to complete the superconductor magnet tests by Feb. 2007. Overall and cryogenic priority handling, rapid on-bench thermal cycling, rule-based goodness evaluation on round-the-clock basis, multiple, mashed web systems are some of these techniques applied with rigour for successful tests completion in time. This paper highlights these operation empowerment tools which had a pivotal role for success. A priority handling method was put in place to enable maximum throughput from twelve test benches, having many different constraints. For the cryogenics infrastructure, it implied judicious allocation of limited resources to the benches. Rapid On-Bench Thermal Cycle was a key strategy to accelerate magnets tests throughput, saving time and simplifying logistics. First level magnet appraisal was developed for 24 hr decision making so as to prepare a magnet further for LHC or keep it on standby. Web based system...

  13. Magnetic Launch Assist System Demonstration Test

    Science.gov (United States)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  14. Cryogenic Infrastructure for Testing of LHC Series Superconducting Magnets

    CERN Document Server

    Axensalva, J; Herblin, L; Lamboy, J P; Tovar-Gonzalez, A; Vuillerme, B

    2005-01-01

    The ~1800 superconducting magnets for the LHC machine shall be entirely tested at reception before their installation in the tunnel. For this purpose and in order to reach the reliability and efficiency at the nominal load required for an industrial operation for several years, we have gradually upgraded and retrofitted the cryogenic facilities installed in the early nineties for the testing at CERN of prototypes and preseries magnets. The final infrastructure of the test station, dedicated to check industrially the quality of the series magnets, is now nearly complete. We present the general layout and describe the overall performance of the system.

  15. Magnetoviscosity in magnetic fluids: Testing different models of the magnetization equation

    Directory of Open Access Journals (Sweden)

    Huei Chu Weng

    2013-09-01

    Full Text Available Despite a long research history, theoretical predictions for the material properties as well as the flow fields and characteristics of magnetic fluids were not well consistent with the experimental data. The lack of a universally accepted magnetization equation for accurately modeling hydrodynamics of magnetic fluids/nanofluids is particularly a major issue. In this paper, we give an overview on the continuum theory and test the six well-known models via comparisons with magnetoviscosity measurements to make clear the magnetization relaxation due to the rotation of magnetic particles and see how well they make predictions on the basis of numerical calculations. Results reveal that the ML model leads to unexplainable behavior. Moreover, the WC model with a ‘relaxation rate’ modification is found to reproduce the predictions of the MRSh model, which agree well with experimental data. The revised WC model (WCC should therefore be preferred.

  16. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Barger, R.K.; Bianchi, A.J.; Cooper, W.E.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-01-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and nonhigh current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  17. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-03-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and non-high current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  18. Manufacturing and Testing of Accelerator Superconducting Magnets

    CERN Document Server

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb$_{3}$Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  19. Manufacturing and Testing of Accelerator Superconducting Magnets

    International Nuclear Information System (INIS)

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process

  20. Manufacturing and Testing of Accelerator Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  1. Successful magnet quench test for CAST.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    The CERN Axion Solar Telescope (CAST) consists of a prototype LHC dipole magnet with photon detectors at each end. It searches for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The telescope, located at Point 8, can move vertically within its wheeled platform, which travels horizontally along tracks in the floor. In this way, the telescope can view the Sun at sunrise through one end and at sunset through the other end. It has been cooled down to below 1.8 K and reached ~95% of its final magnetic field of 9 tesla before a quench was induced to test the whole cryogenic system under such conditions. The cryogenic system responded as expected to the magnet quench and CAST is now ready to start its three-year search for solar axions. Photos 01 & 02 : Members of the LHC cryogenics team pose in front of the axion telescope on the day of the first quench test, together with some of the CAST collaboration.

  2. Qualifying tests for TRIAM-1M superconducting toroidal magnetic field coil

    Energy Technology Data Exchange (ETDEWEB)

    Nakanura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Tanaka, Masayoshi; Nagao, Akihiro; Kawasaki, Shoji; Itoh, Satoshi

    1984-09-01

    In the strong toroidal magnetic field experimental facility ''TRIAM-1M'' currently under construction, construction of the superconducting toroidal magnetic field coil and the following qualifying tests conducted on the full-scale superconducting toroidal magnetic field coil actually fabricated are described: (1) coil excitation test, (2) superconducting stability test, (3) external magnetic field application test, and (4) high-speed excitation test. On the basis of these test results, stability was evaluated of the superconducting coil being operated in the tokamak device. In normal tokamak operation, there occurs no normal conduction transition. At the time of plasma disruption, though this transition takes place in part of the coil, the superconducting state is immediately restored. By its electromagnetic force analysis, the superconducting coil is also stable in structure.

  3. First Cryogenic Testing of the ATLAS Superconducting Prototype Magnets

    CERN Document Server

    Delruelle, N; Haug, F; Mayri, C; Orlic, J P; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroids and the barrel toroid made of eight coils (BT) symmetrically placed around the central axis of the detector. All these magnets will be individually tested in an experimental area prior to their final installation in the underground cavern of the LHC collider. A dedicated cryogenic test facility has been designed and built for this purpose. It mainly consists of a 1'200 W at 4.5 K refrigerator, a 10 kW liquid nitrogen pre-cooling unit, a cryostat housing liquid helium centrifugal pumps, a distribution valve box and transfer lines. Prior to the start of the series tests of the BT magnets, two model coils are used at this facility. The first one, the so-called B00 of comparatively small size, contains the three different types of superconductors used for the ATLAS magnets which are wound on a cylindrical mandrel. The second magnet, the B0, is a reduced model of basically identical design concept as the...

  4. Lightweight superconducting magnet for a test facility of magnetic suspension for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, S; Fujino, H; Onodera, K; Hirai, K

    1973-01-01

    Light weight superconducting magnets are required in the magnetic suspension of high speed trains. A ring shaped magnet consisting of two C-shaped superconducting coils was manufactured and tested. Twisted multifilament Nb-TI wires were used for the superconducting coils and the concept of the pipe structure for a cryostat was adopted. These improved the reliability and reduced the weight. In order to minimize the amount of heat leak into the cryostat, and FRP support with a hinge structure was used against the lift force. The superconducting coil generates a magnetomotive force of 200 kAT at a rated current of 855 A and the dimensions and weight of the whole unit are 1540 mm (outer diameter) and 560 mm (height), and 650 kG, respectively. The suspension test was done in the persistent current mode. The suspension height of 80 mm was observed at an exciting current of 800 A.

  5. Pressurized helium II-cooled magnet test facility

    International Nuclear Information System (INIS)

    Warren, R.P.; Lambertson, G.R.; Gilbert, W.S.; Meuser, R.B.; Caspi, S.; Schafer, R.V.

    1980-06-01

    A facility for testing superconducting magnets in a pressurized bath of helium II has been constructed and operated. The cryostat accepts magnets up to 0.32 m diameter and 1.32 m length with current to 3000 A. In initial tests, the volume of helium II surrounding the superconducting magnet was 90 liters. Minimum temperature reached was 1.7 K at which point the pumping system was throttled to maintain steady temperature. Helium II reservoir temperatures were easily controlled as long as the temperature upstream of the JT valve remained above T lambda; at lower temperatures control became difficult. Positive control of the temperature difference between the liquid and cold sink by means of an internal heat source appears necessary to avoid this problem. The epoxy-sealed vessel closures, with which we have had considerable experience with normal helium vacuum, also worked well in the helium II/vacuum environment

  6. Superconducting magnet package for the TESLA test facility

    International Nuclear Information System (INIS)

    Koski, A.; Bandelmann, R.; Wolff, S.

    1996-01-01

    The magnetic lattice of the TeV electron superconducting linear accelerator (TESLA) will consist of superconducting quadrupoles for beam focusing and superconducting correction dipoles for beam steering, incorporated in the cryostats containing the superconducting cavities. This report describes the design of these magnets, presenting details of the magnetic as well as the mechanical design. The measured characteristics of the TESLA Test Facility (TTF) quadrupoles and dipoles are compared to the results obtained from numerical computations

  7. DESIGN AND TESTING OF A DIGITAL REGULATOR FOR FERMILAB MAGNET POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Li Vigni, Vincenzo [Palermo U.

    2012-01-01

    In this thesis, the design of a digitally controlled DC power system for testing conventional and superconducting magnets is proposed. The designed PID controller performances have been tested by the 30kA test stand for superconducting magnets, Vertical Magnet Test Facility (VMTF), which is hosted at the Fermilab Magnet Test Facility (MTF). The system is implemented on a National Instruments CompactRIO and both real-time and FPGA targets are programmed. A full 24-bit PID algorithm is coded and successfully tested by a manual tuning approach. An automated tuning algorithm is then introduced. As it will be shown by simulation and experimental results, the proposed system meets all design specifications. The current loop stability is up to 14 times better than the existing regulator and a control accuracy less than 4 ppm is achieved. Shorted-bus tests of the PID regulator have been successfully performed on the VMTF power system. In order to test the generalization capability of the designed system towards different types of magnets, the system has been easily adapted to and tested on the 10kA conventional magnet test stand (Stand C at Fermilab). As shown by experimental results, the designed PID controller features really high performancesin terms of steady-state accuracy and effectiveness of the tuning algorithm.

  8. Fermilab R and D test facility for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Strait, J.; Bleadon, M.; Hanft, R.; Lamm, M.; McGuire, K.; Mantsch, P.; Mazur, P.O.; Orris, D.; Pachnik, J.

    1989-02-01

    The test facility used for R and D testing of full scale development dipole magnets for the SSC is described. The Fermilab Magnet Test Facility, originally built for production testing of Tevatron magnets, has been substantially modified to allow testing also of SSC magnets. Two of the original six test stands have been rebuilt to accommodate testing of SSC magnets at pressures between 1.3 Atm and 4 Atm and at temperatures between 1.8 K and 4.8 K and the power system has been modified to allow operation to at least 8 kA. Recent magnets have been heavily instrumented with voltage taps to allow detailed study of quench location and propagation and with strain gage based stress, force and motion transducers. A data acquisition system has been built with a capacity to read from each SSC test stand up to 220 electrical quench signals, 32 dynamic pressure, temperature and mechanical transducer signals during quench and up to 200 high precision, low time resolution, pressure, temperature and mechanical transducer signals. The quench detection and protection systems is also described. 23 refs., 4 figs., 2 tabs

  9. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  10. The Livermore Free-Electron Laser Program Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Burns, M.J.; Kulke, B.; Deis, G.A.; Frye, R.W.; Kallman, J.S.; Ollis, C.W.; Tyler, G.C.; Van Maren, R.D.; Weiss, W.C.

    1987-01-01

    The Lawrence Livermore National Laboratory (LLNL) Free-Electron Laser Program Magnet Test Laboratory supports the ongoing development of the Induction Linac Free Electron Laser (IFEL) and uses magnetic field measurement systems that are useful in the testing of long periodic magnetic structures, electron-beam transport magnets, and spectrometer magnets. The major systems described include two computer-controlled, three-axis Hall probe-and-search coil transports with computer-controlled data acquisition; a unique, automated-search coil system used to detect very small inaccuracies in wiggler fields; a nuclear magnetic resonance (NMR)-based Hall probe-calibration facility; and a high-current DC ion source using heavy ions of variable momentum to model the transport of high-energy electrons. Additionally, a high-precision electron-beam-position monitor for use within long wigglers that has a positional resolution of less than 100 μm is under development in the laboratory and will be discussed briefly. Data transfer to LLNL's central computing facility and on-line graphics enable us to analyze large data sets quickly. 3 refs

  11. Test performance of the QSE series of 5 cm aperture quadrupole model magnets

    International Nuclear Information System (INIS)

    Archer, B.; Bein, D.; Cunningham, G.; DiMarco, J.; Gathright, T.; Jayakumar, J.; LaBarge, A.; Li, W.; Lambert, D.; Scott, M.

    1994-01-01

    A 5 cm aperture quadrupole design, the QSE series of magnets were the first to be tested in the Short Magnet and Cable Test Laboratory (SMCTL) at the SSCL. Test performance of the first two magnets of the series are presented, including quench performance, quench localization, strain gage readings, and magnetic measurements. Both magnets behaved reasonably well with no quenches below the collider operating current, four training quenches to plateau, and good training memory between thermal cycles. Future magnets in the QSE series will be used to reduce the initial training and to tune out unwanted magnetic harmonics

  12. Test performance of the QSE series of 5 cm aperture quadrupole model magnets

    International Nuclear Information System (INIS)

    Archer, B.; Bein, D.; Cunningham, G.; DiMarco, J.; Gathright, T.; Jayakumar, J.; Labarge, A.; Li, W.; Lambert, D.; Scott, M.; Snitchler, G.; Zeigler, R.

    1993-04-01

    A 5 cm aperture quadrupole design, the QSE series of magnets were the first to be tested in the Short Magnet and Cable Test Laboratory (SMCTL) at the SSCL. Test performance of the first two magnets of the series are presented, including quench performance, quench localization, strain gage readings, and magnetic measurements.Both magnets behaved reasonably well with no quenches below the collider operating current, four training quenches to plateau, and good training memory between thermal cycles. Future magnets in the QSE series will be used to reduce the initial training and to tune out unwanted magnetic harmonics

  13. Nondestructive evaluation of low carbon steel by magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Tomáš, Ivan; Kobayashi, S.

    2010-01-01

    Roč. 25, č. 2 (2010), s. 125-132 ISSN 1058-9759 R&D Projects: GA ČR GA102/06/0866; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * steel * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.771, year: 2010

  14. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Crawford, Anthony [Fermilab; Harms, Elvin [Fermilab; Leibfritz, Jerry [Fermilab; Wu, Genfa [Fermilab

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and to keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.

  15. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  16. Beam testing of the lab model 2700 head magnet

    International Nuclear Information System (INIS)

    Hutcheon, R.M.; Gillies, B.A.

    1981-07-01

    A modern cancer therapy electron accelerator unit must satisfy many design constraints, one of which is the isocentric height above floor level. Usually 130 cm is considered the maximum height at which a nurse can work with a patient. The advent of higher energy machines has increasingly made this more difficult to achieve, as higher magnetic fields are required in the magnet that directs the beam onto the patient. A new 270 0 doubly achromatic magnet configuration has been developed which minimizes the isocentre height for a given maximum energy and maximum magnetic field. The system is an asymmetric two magnet configuration, with zero field index, equal fields and a bend of greater than 180 0 in the first magnet. It is compact, easy to manufacture and relatively insensitive to assembly tolerances. Energy defining slits are easily incorporated in the design and can readily be radiation shielded. Input and output beam matching and steering is easily accomplished with a compact input quadrupole doublet and small steering windings. The design and bench testing of such a head magnet for a 25 MeV electron accelerator is described in report AECL-7057. The present report details the testing of the magnet at both 10 and 21 MeV using the variable energy electron beam from the Therac 25 cancer therapy accelerator

  17. Long-term ETR/INTOR magnet testing in support of the demonstration fusion reactor

    International Nuclear Information System (INIS)

    Herring, J.S.; Shah, V.N.; Rouhani, S.Z.

    1983-01-01

    This study considers ways that the proposed Engineering Test Reactor (ETR), or the proposed International Tokamak Reactor (INTOR), can be used for magnet performance tests that would be useful for the design and operation of the Demonstration Tokamak Power Plant (DEMO). Such testing must not interfere with the main function of the ETR/INTOR as an integrated fusion reactor. A performance test plan for the ETR/INTOR magnets is proposed and appropriate tests on the magnets is proposed and appropriate tests on the magnets for each phase of the ETR/INTOR operation are described. The suggested tests would verify design requirements and monitor long-term changes due to radiation. This paper also summarizes the design and operational performance of existing superconducting magnets and identifies the known failures and their predominant causes

  18. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  19. Nondestructive characterization of ductile cast iron by magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 322, č. 20 (2010), s. 3117-3121 ISSN 0304-8853 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis * cast iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.689, year: 2010

  20. Design and construction of the SSCL magnet test laboratory cryogenic systems

    International Nuclear Information System (INIS)

    Freeman, M.A.; Kobel, T.A.

    1992-01-01

    The intent of this document is to provide a brief summary of the execution, by Process Systems International, Inc. (PSI), of the Design and Construction of the SSCL Magnet Test Laboratory Cryogenic Systems. This $30 million project requires the expenditure of over 200,000 manhours and the procurement of $17 million in materials within a two year period. SSC magnets will be performance tested at the Magnet Test Laboratory (MTL) and the Accelerator System String Test (ASST) facility under conditions simulating the environment of the SSC main ring. The cryogenic system consists of test stands (five for MTL, one for ASST) and the associated equipment including cryogenic storage, purification, thermal conditioning, and helium refrigeration necessary to support the test program

  1. Testing of Photomultiplier Tubes in a Magnetic Field

    Science.gov (United States)

    Waldron, Zachary; A1 Collaboration

    2016-09-01

    The A1 collaboration at MAMI in Mainz, Germany has designed a neutron detector that can be used in experiments to measure the electric form factor of the neutron. They will measure elastic scattering from the neutron, using the polarized electron beam from MAMI at A1's experimental hall. The detector will be composed of two walls of staggered scintillator bars which will be read out by photomultiplier tubes (PMT), connected to both ends of each scintillator via light guides. The experiment requires a magnetic field with strength of 1 Tesla, 2m away from the first scintillator wall. The resulting fringe field is sufficient to disrupt the PMTs, despite the addition of Mu Metal shielding. The effects of the fringe field on these PMTs was tested to optimize the amplification of the PMTs. A Helmholtz Coil was designed to generate a controlled magnetic field with equivalent strength to the field that the PMTs will encounter. The PMTs were read out using a multi-channel analyzer, were tested at various angles relative to the magnetic field in order to determine the optimal orientation to minimize signal disruption. Tests were also performed to determine: the neutron detector response to cosmic radiation; and the best method for measuring a magnetic field's strength in two dimensions. National Science Foundation Grant No. IIA-1358175.

  2. A test of a 2 Tesla superconducting transmission line magnet system

    International Nuclear Information System (INIS)

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring, Roger; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; Wake, Masayoshi

    2005-01-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized

  3. A test of a 2 Tesla superconducting transmission line magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring,; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; /Fermilab; Wake, Masayoshi; /KEK, Tsukuba

    2005-09-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized.

  4. The test facility for the short prototypes of the LHC superconducting magnets

    International Nuclear Information System (INIS)

    Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.

    2002-01-01

    The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come

  5. The test facility for the short prototypes of the LHC superconducting magnets

    Science.gov (United States)

    Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.

    2002-05-01

    The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come.

  6. Cable testing for Fermilab's high field magnets using small racetrack coils

    International Nuclear Information System (INIS)

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.I.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Yamada, R.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb 3 Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable

  7. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  8. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    International Nuclear Information System (INIS)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented

  9. Development and test of LARP technological quadrupole (TQC) magnet

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab /LBL, Berkeley

    2006-08-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented.

  10. Development and test of LARP technological quadrupole (TQC) magnet

    International Nuclear Information System (INIS)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.

    2006-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented

  11. A look at magnetic crack testing at an international level

    International Nuclear Information System (INIS)

    Deutsch, V.; Cost, H.; Schug, W.

    1984-01-01

    On an international level, there are several different magnetization processes in use for magnetic particle crack testing. Anglo-Saxon countries implement two separate working cycles with a DC current or field respectively. France has introduced combined sequential magnetization using a DC field. For German speaking countries, a combination of out-of-phase AC fields represents the state of the art. Comparisons present the advantages and disadvantages involved. Consequences arising from the equipment used are indicated by way of an example of a new generation of crack testing equipment. (orig.) [de

  12. Quench propagation tests on the LHC superconducting magnet string

    CERN Document Server

    Coull, L; Krainz, G; Rodríguez-Mateos, F; Schmidt, R

    1996-01-01

    The installation and testing of a series connection of superconducting magnets (three 10 m long dipoles and one 3 m long quadrupole) has been a necessary step in the verification of the viability of the Large Hadron Collider at CERN. In the LHC machine, if one of the lattice dipoles or quadrupoles quenches, the current will be by-passed through cold diodes and the whole magnet chain will be de-excited by opening dump switches. In such a scenario it is very important to know whether the quench propagates from the initially quenching magnet to adjacent ones. A series of experiments have been performed with the LHC Test String powered at different current levels and at different de-excitation rates in order to understand possible mechanisms for such a propagation, and the time delays involved. Results of the tests and implications regarding the LHC machine operation are described in this paper.

  13. Magnet design and test of positron emission tomography cyclotron

    International Nuclear Information System (INIS)

    Wei Tao; Yang Guojun; He Xiaozhong; Pang Jian; Zhao Liangchao; Zhang Kaizhi

    2012-01-01

    An 11 MeV H - compact cyclotron used for medical radioactive isotope production is under construction in Institute of Fluid Physics, CAEP. The cyclotron magnet adopts the design of small valley gaps and coulee structure which can provide high average magnetic field and strong focus ability. To achieve 5 × 10 -4 measuring accuracy, a magnetic field mapping system has been developed. After iterative correction using field measurement data, the total phase excursion of the cyclotron is within ± 9° and the first harmonic is less than 10 -3 T, which are all acceptable. Furthermore, the beam testing declares the successful construction of the cyclotron magnet. Besides, some magnetic field influence factors were discussed, including the magnetic field distortion and measurement error. (authors)

  14. Measurement of flat samples with rough surfaces by Magnetic Adaptive Testing

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Kadlecová, Jana; Vértesy, G.

    2012-01-01

    Roč. 48, č. 4 (2012), s. 1441-1444 ISSN 0018-9464. [Conference on Soft Magnetic Materials (SMM20) /20./. Kos Island, 18.09.2011-22.09.2011] R&D Projects: GA ČR GA101/09/1323 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic contact * magnetic adaptive testing * magnetically open samples * magnetic NDE Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.422, year: 2012

  15. A facility to test short superconducting accelerator magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J.; Butteris, J.; McInturff, A.D.; Coulter, K.J.

    1992-10-01

    During the past four years the Superconducting Magnet R ampersand D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-β Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented

  16. The potential around a test charge in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.; Salimullah, M.

    1996-01-01

    The potential of a test dust particle in a magnetized dusty plasma is calculated, taking into account the dielectric constant associated with electrostatic ion-cyclotron waves. Besides the well-known Debye-Hueckel screening potential, an oscillatory potential distribution around a test dust particle is found, which strongly depends on the strength of the external magnetic field. copyright 1996 American Institute of Physics

  17. Fabrication and test of prototype ring magnets for the ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Tanabe, J.; Avery, R.; Caylor, R.; Green, M.I.; Hoyer, E.; Halbach, K.; Hernandez, S.; Humphries, D.; Kajiyama, Y.; Keller, R.; Low, W.; Marks, S.; Milburn, J.; Yee, D.

    1989-03-01

    Prototype Models for the Advanced Light Source (ALS) Booster Dipole, Quadrupole and Sextupole and the Storage Ring Gradient Magnet, Quadrupole and Sextupole have been constructed. The Booster Magnet Prototypes have been tested. The Storage Ring Magnets are presently undergoing tests and magnetic measurements. This paper reviews the designs and parameters for these magnets, briefly describes features of the magnet designs which respond to the special constraints imposed by the requirements for both accelerator rings, and reviews some of the results of magnet measurements for the prototype. 13 refs., 7 figs., 1 tab

  18. A multi-functional testing instrument for heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.; Yin, M. J.

    2014-01-01

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (μ-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and μ-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties

  19. Cold test facility for 1.8 m superconducting model magnets at the SSC

    International Nuclear Information System (INIS)

    LaBarge, A.

    1993-07-01

    A new facility has been constructed to measure the characteristic features of superconducting model magnets and cable at cryogenic temperatures -- a function which supports the design and development process for building full-scale accelerator magnets. There are multiple systems operating in concert to test the model magnets, namely: cryogenic, magnet power, data acquisition and system control. A typical model magnet test includes the following items: (1) warm measurements of magnet coils, strain gauges and voltage taps; (2) hipot testing of insulation integrity; (3) cooling with liquid nitrogen and then liquid helium; (4) measuring quench current and magnetic field; (5) magnet warm-up. While the magnet is being cooled to 4.22 K, the mechanical stress is monitored through strain gauges. Current is then ramped into the magnet until it reaches some maximum value and the magnet transitions from the superconducting state to the normal state. Normal-zone propagation is monitored using voltage taps on the magnet coils during this process, thus indicating where the transition began. The current ramp is usually repeated until a plateau current is reached, where the magnet has mechanically settled

  20. Tests of a 3 meter curved superconducting beam transport dipole magnet

    International Nuclear Information System (INIS)

    Allinger, J.E.; Carroll, A.S.; Danby, G.T.; DeVito, B.; Jackson, J.W.; Leonhardt, W.J.; Prodell, A.G.; Weisenbloom, J.

    1981-01-01

    Initial tests of one of the curved 3 m long superconducting dipole magnets intended to generate 6.0 T and produce a 20.4 0 bend in the primary proton beam to a new D-target station at the Brookhaven National Laboratory AGS have been completed. Although this magnet, whose window frame design generally follows that of the successful 8 0 and Model T superconducting dipoles, demonstrates many of the desirable characteristics of these earlier magnets such as excellent quench propagation and good ramping properties, it has only reached a disappointingly low magnetic field of 3.5 to 4.0 T. Because of the great interest in superconducting magnet technology, this report will describe the diagnostic tests performed and plans for future modifications

  1. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  2. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  3. Bony vibration stimulation test combined with magnetic resonance imaging. Can discography be replaced?

    Science.gov (United States)

    Yrjämä, M; Tervonen, O; Kurunlahti, M; Vanharanta, H

    1997-04-01

    The results of two noninvasive methods, magnetic resonance imaging and a bony vibration test, were compared with discographic pain provocation findings. To evaluate whether the combination of magnetic resonance imaging and vibration pain provocation tests could be used to replace discography in low back pain diagnostics. Magnetic resonance imaging gives a wealth of visual information on anatomic changes of the spine with often unknown clinical significance. Discographic examination of the spine is still the only widely accepted diagnostic method that can relate the pathoanatomic changes to the patient's clinical pain. Internal anular rupture has been shown to be one of the sources of back pain. The bony vibration test of the spinal processes has been shown correlate well with discographic pain provocation tests in cases of internal anular rupture. The three lowest lumbar discs of 33 patients with back pain were examined by means of magnetic resonance imaging and a bony vibration stimulation test, and the results were compared with those from computed tomography-discography. In cases of intradiscal magnetic resonance imaging findings, the vibration provocation test showed a sensitivity of 0.88 and a specificity of 0.50 compared with the discographic pain provocation test. If the patients with previous back surgery were excluded, the specificity was 0.75. In the cases of total anular rupture, the sensitivity was 0.50, and the specificity was 0.33. The combination of the two noninvasive methods, vibration stimulation and magnetic resonance imaging, gives more information on the origin of the back pain than magnetic resonance imaging alone. The pathoanatomic changes seen in magnetic resonance imaging can be correlated with the patient's disorder more reliably using the vibration provocation test in the cases of partial anular ruptures. The use of discography can be limited mostly to cases with total anular ruptures detected by magnetic resonance imaging.

  4. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Rabehl, R. [Fermilab; Sylvester, C. [Fermilab; Tartaglia, M. [Fermilab

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls with data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.

  5. Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)

  6. CONSTRUCTION AND POWER TEST OF THE EXTRACTION KICKER MAGNET FOR SNS ACCUMULATOR RING

    International Nuclear Information System (INIS)

    PAI, C.; HAHN, H.; HSEUH, H.; LEE, Y.; MENG, W.; MI, J.; SANDBERG, J.; TODD, R.

    2005-01-01

    Two extraction kicker magnet assemblies that contain seven individual pulsed magnet modules each will kick the proton beam vertically out of the SNS accumulator ring into the aperture of the extraction Lambertson septum magnet. The proton beam then travels to the 1.4 MW SNS target assembly. The 14 kicker magnets and major components of the kicker assembly have been fabricated in BNL. The inner surfaces of the kicker magnets were coated with TiN to reduce the secondary electron yield. All 14 PFN power supplies have been built, tested and delivered to OWL. Before final installation, a partial assembly of the kicker system with three kicker magnets was assembled to test the functions of each critical component in the system. In this paper we report the progress of the construction of the kicker components, the TIN coating of the magnets, the installation procedure of the magnets and the full power test of the kicker with the PFN power supply

  7. Electromyography tests in patients with implanted cardiac devices are safe regardless of magnet placement.

    Science.gov (United States)

    Ohira, Masayuki; Silcox, Jade; Haygood, Deavin; Harper-King, Valerie; Alsharabati, Mohammad; Lu, Liang; Morgan, Marla B; Young, Angela M; Claussen, Gwen C; King, Peter H; Oh, Shin J

    2013-01-01

    We compared the problems or complications associated with electrodiagnostic testing in 77 patients with implanted cardiac devices. Thirty tests were performed after magnet placement, and 47 were performed without magnet application. All electrodiagnostic tests were performed safely in all patients without any serious effect on the implanted cardiac devices with or without magnet placement. A significantly higher number of patient symptoms and procedure changes were reported in the magnet group (P magnet group patients had an approximately 11-fold greater risk of symptoms than those in the control group. Our data do not support a recommendation that magnet placement is necessary for routine electrodiagnostic testing in patients with implanted cardiac devices, as long as our general and specific guidelines are followed. Copyright © 2012 Wiley Periodicals, Inc.

  8. Test results of the UNK superconducting dipole magnets

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Gridasov, V.I.

    1993-01-01

    Results of studied, training, temperature and velocity dependence of 25 critical current of superconducting magnets (SC), as well as, of dynamic losses of dipole and statical inflows in UNK operating cycle at currents that are higher than critical ones (5250 A), are presented. Service life tests of SC-dipole demonstrated that their design may ensure durable operation of magnets under UNK conditions. Conclusions are made that temperature margin of magnets equal to 0.8 K will enable to ensure their reliable operation under dynamic and radiation heat releases at acceleration and extraction of beam, as well as, under emergency extraction of stored energy. 4 refs.; 5 figs

  9. A versatile magnetic refrigeration test device

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Petersen, Thomas Frank; Pryds, Nini

    2008-01-01

    of the applied magnetic field. An advanced two-dimensional numerical model has previously been implemented in order to help in the optimization of the design of a refrigeration test device. Qualitative agreement between the results from model and the experimental results is demonstrated for each of the four...... different parameter variations mentioned above. (C) 2008 American Institute of Physics....

  10. ESCAR, tests of superconducting bending magnets at the accelerator site

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Lambertson, G.R.; Meuser, R.B.; Rechen, J.B.

    1979-03-01

    ESCAR (Experimental Superconducting Accelerator Ring) was conceived as a project in accelerator technology development which would provide data and experience to insure that planning for larger superconducting synchrotrons would proceed in a knowledgeable and responsible manner. It was to consist of the fabrication and operation of a relatively small proton synchrotron and storage ring with superconducting magnet elements for all of the main ring. The project was funded and design work began in July 1974. During the next two years it became increasingly apparent that the funding rate was directly limiting the rate of completion of ESCAR and that an intermediate goal, a test of the unconventional aspects of the project, was desirable. To that end, twelve dipole bending magnets, one-half of those required for the total ring, were installed at the site along with the 1500 watt helium refrigerator, cryogenic distribution system, electrical power supplies, vacuum systems, and necessary instrumentation. This truncated system was put through an extended series of tests which were completed in June 1978 at which time the ESCAR Project was terminated. ESCAR, and the dipole magnets have been described previously. The results of the systems tests have also been reported. The tests involving the dipole magnets are described

  11. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high......-vacuumed cryostat. A two-stage GM cryocooler with a cooling power of 1.5 W at 4.2 K in the second stage is used to cool the system from room temperature to 4.2 K. In this paper, the detailed design, fabrication, thermal analysis and tests of the system are presented....

  12. Ripple filter for the 10,000A superconducting magnet test stand at the magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Drennan, E.

    1991-11-01

    The new 10,000A dumpswitch (1) and dumpresistor (2) system at MTF required a 720Hz filter to eliminate power supply ripple from the load. The new filter, shown in Figure 1, had two requirements: (1) Less then 1/2 Ap-p ripple current with a load current of 10,000A; (2) No or minimal overshoot when the current reaches flattop after it is ramped to 10,000A. MFT magnets are ramped to their final current values at different ramp rates depending on the inductance and type of the magnet under test. The filter design was done with the help of PSPICE simulations. Most of the simulations that will be shown in this write-up were done using a 50mH magnet and a ramprate of 200A/s. In order to study this filter with SPICE, two different simulations had to be done. Due to the relatively high frequency of the ripple when compared with the ramping times, if the ripple current was studied together with the overshoot, the simulations would have taken a very long time to run. Therefore the voltage ripple and the current overshoot were studied separately.

  13. Test results from Fermilab 1.5 m model SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Koska, W.; Bossert, R.; Carson, J.; Coulter, K.J.; Delchamps, S.; Gourlay, S.; Jaffery, T.S.; Kinney, W.; Lamm, M.J.; Ozelis, J.P.; Strait, J.; Wake, M.

    1991-09-01

    We will present results from tests of 1.5 m model SSC collider dipole magnets. These R ampersand D magnets are identical to the 15 m full length dipoles currently being assembled at Fermilab in all important aspects except length. Because of their small size they can be built faster and tested more extensively than the long magnets. The model magnets are used to optimize design parameters for, and to indicate the performance which can be expected from, the 15 m magnets. The are instrumented with voltage taps over the first two current blocks for quench localization and with several arrays of strain gauge transducers for the study of mechanical behavior. The stress at the poles of the inner and outer coils is monitored during construction and, along with end force and shell strain, during excitation. Magnetic measurements are made several times during each magnet's lifetime, including at operating temperature and field. We will report on studies of the quench performance, mechanical behavior and magnetic field of these magnets

  14. Tests of high gradient superconducting quadrupole magnets for the Tevatron

    International Nuclear Information System (INIS)

    Lamm, M.J.; Carson, J.; Gourlay, S.; Hanft, R.; Koepke, K.; Mantsch, P.; McInturff, A.D.; Riddiford, A.; Strait, J.

    1989-09-01

    Tests have been completed on three prototype magnets and two production magnets to be used for the Tevatron Dφ/Bφ low- β insertion. These cold iron, two shell quadrupoles are made of 36 strand Rutherford type NbTi superconducting cable. Magnet field gradients well in excess of the design 1.41 T/cm have been achieved at a transfer function of 0.291 T/cm/kA. Quench performance at 4.2 K and 3.7 K and magnetic multipole measurement data are presented and discussed. 9 refs., 4 figs., 4 tabs

  15. A cryogenic test stand for full length SSC magnets with superfluid capability

    International Nuclear Information System (INIS)

    Peterson, T.J.; Mazur, P.O.

    1989-02-01

    The Fermilab Magnet Test Facility performs testing of the full scale SSC magnets on test stands capable of simulating the cryogenic environment of the SSC main ring. One of these test stands, Stand 5, also has the ability to operate the magnet under test at temperatures from 1.8K to 4.5K with either supercritical helium or subcooled liquid, providing at least 25 Watts of refrigeration. At least 50 g/s flow is available from 2.3K to 4.5K, whereas superfluid operation occurs with zero flow. Cooldown time from 4.5K to 1.8K is 1.5 hours. A maximum current capability of 10,000 amps is provided, as is instrumentation to monitor and control the cryogenic conditions. This paper describes the cryogenic design of this test stand. 8 refs., 6 figs

  16. TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES

    Directory of Open Access Journals (Sweden)

    Alberto Gallina

    2018-03-01

    Full Text Available The paper presents a test bed designed to simulate magnetic environment experienced by a spacecraft on low Earth orbit. It consists of a spherical air bearing located inside a Helmholtz cage. The spherical air bearing is used for simulating microgravity conditions of orbiting bodies while the Helmholtz cage generates a controllable magnetic field resembling the one surrounding a satellite during its motion. Dedicated computer software is used to initially calculate the magnetic field on an established orbit. The magnetic field data is then translated into current values and transmitted to programmable power supplies energizing the cage. The magnetic field within the cage is finally measured by a test article mounted on the air bearing. The paper provides a description of the test bed and the test article design. An experimental test proves the good performance of the entire system.

  17. Test particle calculations for the Texas experimental tokamak with resonant magnetic fields

    International Nuclear Information System (INIS)

    Wootton, A.J.; McCool, S.C.; Zheng, S.

    1991-01-01

    This paper presents a simple test particle model that attempts to describe particle motion in the presence of intrinsic electrostatic fluctuations in a prescribed tokamak magnetic field. In particular, magnetic field configurations that include externally produced magnetic islands and stochastic regions are considered. The resulting test particle transport is compared with the predictions of analytic models and with the experimentally measured electron heat and particle transport on the Texas Experimental Tokamak (TEXT). Agreement between the test particle results and applicable analytic theories is found. However, there is only partial agreement with the experimental results, and possible reasons for the discrepancies are explored. Good agreement is found between predicted and measured spatially asymmetric particle distributions. The particle collection efficiency of an apertured limiter inside a magnetic island (an intra-island pump limiter) is discussed

  18. SMTMS - SM18 Magnet Tests Management System: a Brief User Guide for Operation

    CERN Document Server

    Chohan, N; CERN. Geneva. AB Department

    2004-01-01

    As the number of magnets to be tested under cryogenic conditions increased during the course of 2003, it was clear that a versatile computer-based tool was urgently required for keeping track of all the necessary tests that were carried out for each magnet as well as the outcome of the tests. It was also essential to keep track of the times taken during different phases in magnet preparation for the tests, including Cryogenic connections, cool-downs, warm ups and so forth. SMTMS uses the CERN provided backbone in Web based services and Access database to fulfil these urgent needs and was successfully made operational within a very short time. It has considerably eased & simplified the work in operation for cold testing the magnets with a few permanent core operational staff and a considerably large number of rotational personnel of short duration. This is because SMTMS is now the exclusive & unique Web-based tool to manage the tests and collate the essential electrical characterisation and quench resu...

  19. Superconducting magnet tests and measurements for the LHC

    International Nuclear Information System (INIS)

    Chohan, V.; )

    2011-01-01

    By end of 2007, the LHC construction, installation and interconnection phases had come to a close with the cooling down of the 8 sectors progressively in 2007-8; the first beams were successfully circulated at injection energies in Sept. 2008 in both rings. For the testing of the 1706 LHC lattice magnets in cryogenic conditions and its successful completion by end 2006, considerable challenges had to be overcome since 2002 to assure certain semi-routine operation at the purpose built tests facility at CERN. In particular, the majority of staff for tests and measurement purposes was provided by India on a rotating, one-year-stay basis, as part of the CERN-India Collaboration for LHC. This was complemented by some CERN accelerator operation staff. From only 95 dipoles tested in year 2003, the completion of tests of all 1706 magnets by early 2007 was made possible by the efforts and innovative ideas in improving and managing the work flow as well as the test rates which came from the Operation team; amongst these, certain novel ideas to stream-line the test procedures as proposed and implemented successfully by the Indian Associates deserve a special mention. This presentation will give an insight to this as well an overall view of the operation related issues in light of different tests and, measurements, constraints and limits. Finally, an indication of how the tests and measurements have contributed to the LHC running will be given. (author)

  20. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    Science.gov (United States)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  1. Super Conducting and Conventional Magnets Test & Mapping Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Vertical Magnet Test Facility: Accommodate a device up to 3.85 m long, 0.61 m diameter, and 14,400 lbs. Configured for 5 psig sub-cooled liquid helium bath cooling...

  2. Design and Demonstration of a Test-Rig for Static Performance-Studies of Permanent Magnet Couplings

    DEFF Research Database (Denmark)

    Högberg, Stig; Jensen, Bogi Bech; Bendixen, Flemming Buus

    2013-01-01

    The design and construction of an easy-to-use test-rig for permanent magnet couplings is presented. Static torque of permanent magnet couplings as a function of angular displacement is measured of permanent magnet couplings through an semi-automated test system. The test-rig is capable of measuring...

  3. Stopping power for arbitrary angle between test particle velocity and magnetic field

    International Nuclear Information System (INIS)

    Cereceda, Carlo; Peretti, Michel de; Deutsch, Claude

    2005-01-01

    Using the longitudinal dielectric function derived previously for charged test particles in helical movement around magnetic field lines, the numerical convergence of the series involved is found and the double numerical integrations on wave vector components are performed yielding the stopping power for arbitrary angle between the test particle velocity and magnetic field. Calculations are performed for particle Larmor radius larger and shorter than Debye length, i.e., for protons in a cold magnetized plasma and for thermonuclear α particles in a dense, hot, and strongly magnetized plasma. A strong decrease is found for the energy loss as the angle varies from 0 to π/2. The range of thermonuclear α particles as a function of the velocity angle with respect to the magnetic field is also given

  4. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    Science.gov (United States)

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  5. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion

  6. Construction and tests of a model of the LHC superconducting corrector magnet MDSBV

    International Nuclear Information System (INIS)

    Ijspeert, A.; Perin, R.; Baynham, E.; Clee, P.; Coombs, R.; Evans, D.; Begg, M.; Landgrebe, D.

    1992-01-01

    A full-scale model of the 1.25 m long MDSBV (Magnet Decapole Sextupole Bending Vertical) correction magnet for the Large Hadron Collider (LHC) has been constructed and is currently being tested. The model contains the desired dipole and sextupole but not the decapole which was decided upon later. The magnet was built in a very compact way by placing the dipole coil around the sextupole coil. The two coils were vacuum impregnated and prestressed by shrink-fitted aluminum rings. The design took into account the high positional accuracy requirements for the coils and incorporated manufacturing techniques which are compatible with mass production methods, as approximately 800 of these magnets will be required for the LHC. The model is being tested in liquid helium at the temperature of 4.2 K and will be tested later at 2.0 K. The paper describes the construction, the experience gained during assembly, the test conditions and gives the first test-results

  7. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  8. Performance Evaluation and Quality Assurance Management during the Series Power Tests of LHC Main Lattice Magnets

    CERN Document Server

    Siemko, A

    2008-01-01

    Within the LHC magnet program a series production of superconducting dipoles and quadrupoles has recently been completed in industry and all magnets were cold tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, two layer coils wound from 15.1 mm wide Nb-Ti cables, and all-polyimide insulation. This paper reviews the process of the power test quality assurance and performance evaluation, which was applied during the LHC magnet series tests. The main test results of magnets tested in both supercritical and superfluid helium, including the quench training, the conductor performance, the magnet protection efficiency and the electrical integrity are presented and discussed in terms of the design parameters and the requirements of the LHC project.

  9. Interpolation of the magnetic field at the test masses in eLISA

    International Nuclear Information System (INIS)

    Mateos, I; Díaz-Aguiló, M; Ramos-Castro, J; García-Berro, E; Lobo, A

    2015-01-01

    A feasible design for a magnetic diagnostics subsystem for eLISA will be based on that of its precursor mission, LISA Pathfinder. Previous experience indicates that magnetic field estimation at the positions of the test masses has certain complications. This is due to two reasons. The first is that magnetometers usually back-act due to their measurement principles (i.e., they also create their own magnetic fields), while the second is that the sensors selected for LISA Pathfinder have a large size, which conflicts with space resolution and with the possibility of having a sufficient number of them to properly map the magnetic field around the test masses. However, high-sensitivity and small-sized sensors that significantly mitigate the two aforementioned limitations exist, and have been proposed to overcome these problems. Thus, these sensors will be likely selected for the magnetic diagnostics subsystem of eLISA. Here we perform a quantitative analysis of the new magnetic subsystem, as it is currently conceived, and assess the feasibility of selecting these sensors in the final configuration of the magnetic diagnostic subsystem. (paper)

  10. Theoretical investigation of metal magnetic memory testing technique for detection of magnetic flux leakage signals from buried defect

    Science.gov (United States)

    Xu, Kunshan; Qiu, Xingqi; Tian, Xiaoshuai

    2018-01-01

    The metal magnetic memory testing (MMMT) technique has been extensively applied in various fields because of its unique advantages of easy operation, low cost and high efficiency. However, very limited theoretical research has been conducted on application of MMMT to buried defects. To promote study in this area, the equivalent magnetic charge method is employed to establish a self-magnetic flux leakage (SMFL) model of a buried defect. Theoretical results based on the established model successfully capture basic characteristics of the SMFL signals of buried defects, as confirmed via experiment. In particular, the newly developed model can calculate the buried depth of a defect based on the SMFL signals obtained via testing. The results show that the new model can successfully assess the characteristics of buried defects, which is valuable in the application of MMMT in non-destructive testing.

  11. Test of piezo-ceramic motor technology in ITER relevant high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Chiara, E-mail: chiara.monti@enea.it [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Besi Vetrella, Ugo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Viola, Rosario [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    In the framework of a Fusion for Energy (F4E) grant, a test campaign started in 2012 in order to assess the performance of the in-vessel viewing system (IVVS) probe concept and to verify its compatibility when exposed to ITER typical working conditions. ENEA laboratories went through with several tests simulating high magnetic fields, high temperature, high vacuum, gamma radiation and neutron radiation. A customized motor has been adopted to study the performances of ultrasonic piezo motors technology in high magnetic field conditions. This paper reports on the testing activity performed on the motor in a multi Tesla magnetic field. The job was carried out in a test facility of ENEA laboratories able to achieve 14 T. A maximum field of 10 T, fully compliant with ITER requirements (8 T), was applied. A specific mechanical assembly has been designed and manufactured to hold the motor in the region with high homogeneity of the field. Results obtained so far indicate that the motor is compatible with high magnetic fields, and are presented in the paper.

  12. Cryogenic Design of the New High Field Magnet Test Facility at CERN

    Science.gov (United States)

    Benda, V.; Pirotte, O.; De Rijk, G.; Bajko, M.; Craen, A. Vande; Perret, Ph.; Hanzelka, P.

    In the framework of the R&D program related to the Large Hadron Collider (LHC) upgrades, a new High Field Magnet (HFM) vertical test bench is required. This facility located in the SM18 cryogenic test hall shall allow testing of up to 15 tons superconducting magnets with energy up to 10 MJ in a temperature range between 1.9 K and 4.5 K. The article describes the cryogenic architecture to be inserted in the general infrastructure of SM18 including the process and instrumentation diagram, the different operating phases including strategy for magnet cool down and warm up at controlled speed and quench management as well as the design of the main components.

  13. Coupling method of magnetic memory and eddy current nondestructive testing for retired crankshafts

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Chen; Hua, Lin; Wang, Xiaokai; Wang, Zhou; Qin, Xunpeng; Fang, Zhou [Wuhan University of Technology, Wuhan (Korea, Republic of)

    2016-07-15

    To verify the validity of the Coupling method of magnetic memory and eddy current (CMMEC) testing for crankshafts, we use this technique to test a 12-cylinder V-design diesel crankshaft. First, the stress distribution in the crankshaft was obtained under 12 working conditions using a Finite element (FE) model that complied with the commercial FE code ABAQUS. Second, Magnetic memory testing (MMT) and Eddy current testing (ECT) were adopted to detect the regions of stress concentration in the crankshaft and the specific location of cracks based on simulation results. Lastly, magnetic particle testing was conducted to detect and display the corresponding crack to verify the CMMEC testing results. The MMT and ECT results can provide basis and guidance for the remanufacture and life evaluation of retired crankshafts.

  14. Coupling method of magnetic memory and eddy current nondestructive testing for retired crankshafts

    International Nuclear Information System (INIS)

    Ni, Chen; Hua, Lin; Wang, Xiaokai; Wang, Zhou; Qin, Xunpeng; Fang, Zhou

    2016-01-01

    To verify the validity of the Coupling method of magnetic memory and eddy current (CMMEC) testing for crankshafts, we use this technique to test a 12-cylinder V-design diesel crankshaft. First, the stress distribution in the crankshaft was obtained under 12 working conditions using a Finite element (FE) model that complied with the commercial FE code ABAQUS. Second, Magnetic memory testing (MMT) and Eddy current testing (ECT) were adopted to detect the regions of stress concentration in the crankshaft and the specific location of cracks based on simulation results. Lastly, magnetic particle testing was conducted to detect and display the corresponding crack to verify the CMMEC testing results. The MMT and ECT results can provide basis and guidance for the remanufacture and life evaluation of retired crankshafts.

  15. Test Station for Magnetization Measurements on Large Quantities of Superconducting Strands

    CERN Document Server

    Le Naour, S; Billan, J; Genest, J

    2001-01-01

    In the superconducting main magnets of the Large Hadron Collider (LHC), persistent currents in the superconductor determine the field quality at injection field. For this reason it is necessary to check the magnetization of the cable strands during their production. During four years, this requires measurements of the width of the strand magnetization hysteresis loop at 0.5 T, 1.9 K, at a rate of up to eight samples per day. This paper describes the design, construction and the first results of a magnetization test station built for this purpose. The samples are cooled in a cryostat, with a 2-m long elliptic tail. This tail is inserted in a normal conducting dipole magnet with a field between ± 1.5 T. Racetrack pick-up coils, integrated in the cryostat, detect the voltage due to flux change, which is then integrated numerically. The sample holder can contain eight strand samples, each 20 cm long. The test station operates in two modes: either the sample is fixed while the external field is changed, or the sa...

  16. A Cryogenic Test Stand for Large Superconducting Solenoid Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Orris, D. [Fermilab; Soyars, W. [Fermilab; Sylvester, C. [Fermilab

    2013-01-01

    A new test stand for testing large superconducting solenoid magnets at the Fermilab Central Helium Liquifier (CHL) has been designed, and operated. This test stand has been used to test a coupling coil for the Muon Ionization Cooling Experiment (MICE), and future uses include solenoids for the Fermilab mu2e experiment. This paper describes the test stand design and operation including controlled cool-down and warm-up. Overviews of the process controls system and the quench management system are also included.

  17. Test-electron analysis of the magnetic reconnection topology

    Science.gov (United States)

    Borgogno, D.; Perona, A.; Grasso, D.

    2017-12-01

    Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.

  18. A modular and extensible data acquisition and control system for testing superconducting magnets

    International Nuclear Information System (INIS)

    Darryl F. Orris and Ruben H. Carcagno

    2001-01-01

    The Magnet Test Facility at Fermilab tests a variety of full-scale and model superconducting magnets for both R and D and production. As the design characteristics and test requirements of these magnets vary widely, the magnet test stand must accommodate a wide range of Data Acquisition (DAQ) and Control requirements. Such a system must provide several functions, which includes: quench detection, quench protection, power supply control, quench characterization, and slow DAQ of temperature, mechanical strain gauge, liquid helium level, etc. The system must also provide cryogenic valve control, process instrumentation monitoring, and process interlock logic associated with the test stand. A DAQ and Control system architecture that provides the functionality described above has been designed, fabricated, and put into operation. This system utilizes a modular approach that provides both extensibility and flexibility. As a result, the complexity of the hardware is minimized while remaining optimized for future expansion. The architecture of this new system is presented along with a description of the different technologies applied to each module. Commissioning and operating experience as well as plans for future expansion are discussed

  19. Test-bench for characterization of steady state magnetic sensors parameters in wide temperature range

    International Nuclear Information System (INIS)

    Kovařík, Karel; Ďuran, Ivan; Sentkerestiová, Jana; Šesták, David

    2013-01-01

    Highlights: •Prepared test bench for calibration of steady state magnetic sensors. •Test-bench design optimized for calibration up to 300 °C. •Test-bench is remotely controllable and allows long term measurements. •Construction allows easy manipulation with even irradiated samples. -- Abstract: Magnetic sensors in ITER tokamak and in other future fusion devices will face an environment with temperature often elevated well above 200 °C. Dedicated test benches are needed to allow characterization of performance of magnetic sensors at such elevated temperatures. This contribution describes realization of test bench for calibration of steady state magnetic sensors based on Hall effect. The core of the set-up is the coil providing DC calibration magnetic field. Optimization of coils design to ensure its compatibility with elevated temperature up to 300 °C is described. Optimized coil was manufactured, and calibrated both at room temperature and at temperature of 250 °C. Measured calibration magnetic field of the coil biased by a 30 A commercial laboratory power supplies is 224 mT. The coil is supplemented by PID regulated air cooling system for fine control of sensors temperature during measurements. Data acquisition system is composed from PC A/D converter boards with resolution below 1 μV. The key parameters of the test bench are remotely controllable and the system allows long term continuous measurements including tests of irradiated samples. The performance of the test bench is demonstrated on recent measurements with metal Hall sensors based on thin copper sensing layers

  20. Assembly and Tests of SQ02, a Nb3Sn Racetrack Quadrupole Magnet for LARP

    International Nuclear Information System (INIS)

    Ferracin, Paolo; Ambrosio, G.; Barzi, E.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Lizarazo, J.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.L.; Zlobin, A.V.

    2007-01-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb 3 Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented

  1. Assembly and Tests of SQ02, a Nb3Sn Racetrack Quadrupole Magnet for LARP

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, Paolo; Ambrosio, G.; Barzi, E.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Lizarazo, J.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.L.; Zlobin, A.V.

    2007-06-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb{sub 3}Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented.

  2. Test results of BM109 magnet field stability during ramping

    International Nuclear Information System (INIS)

    Kristalinski, A.

    1992-12-01

    This report presents results of the measured lag between the current ramp and the following magnetic field rise in BM109 magnets. The purpose of these tests is to choose identical ramping programs for PC4AN1, PC4AN2 and PC4AN3 magnets. The lag occurs due to the large eddy currents in the magnets' solid iron cores. The experiment requires a magnetic field stability of 0.1% during beam presence. Using existing equipment and a program slope of 100 Amp/sec starting at Tl yields fields within the 0.05% of set value. Add to this 0.05% for P.S. regulation to meet the required field stability of 0.1%. This program yields annual savings of $200,000 (assuming 100% usage) . Additional savings can be made by using faster slopes, but this requires additional controls

  3. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    OpenAIRE

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-01

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatabilit...

  4. Full length SSC R and D dipole magnet test results

    International Nuclear Information System (INIS)

    Strait, J.; Bleadon, M.; Brown, B.C.

    1989-03-01

    Four full scale SSC development dipole magnets have been tested for mechanical and quench behavior. Two are of a design similar to previous magnets but contain a number of improvements, including more uniform coil size, higher pre-stress and a redesigned inner-outer coil splice. One exceeds the SSC operating current on the second quench but the other appears to be limited by damaged superconductor to a lower current. The other two magnets are of alternate designs. One trains erratically and fails to reach a plateau and the other reaches plateau after four quenches. 12 refs., 4 figs

  5. Magnetic test of chiral dynamics in QCD

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    2014-01-01

    Strong magnetic fields in the range eB≫m π 2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f π . We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉| u,d grows quadratically with eB for eB<0.2 GeV 2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions

  6. A Novel 100 kW Power Hardware-in-the-Loop Emulation Test Bench for Permanent Magnet Synchronous Machines with Nonlinear Magnetics

    OpenAIRE

    Schmitt, Alexander; Richter, Jan; Gommeringer, Mario; Wersal, Thomas; Braun, Michael

    2016-01-01

    This paper presents a high dynamic power hardware-inthe-loop (PHIL) emulation test bench to mimic arbitrary permanent magnet synchronous machines with nonlinear magnetics. The proposed PHIL test bench is composed of a high performance real-time simulation system to calculate the machine behaviour and a seven level modular multiphase multilevel converter to emulate the power flow of the virtual machine. The PHIL test bench is parametrized for an automotive synchronous machine and controlled by...

  7. A design for a high voltage magnet coil ringer test set

    International Nuclear Information System (INIS)

    Koska, W.; Sims, R.E.

    1992-04-01

    By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ''ring'' the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed

  8. Non-destructive testing: magnetizing equipment for magnetic particle inspection

    International Nuclear Information System (INIS)

    1975-07-01

    Magnetizing equipment for magnetic particle inspection serves to produce a magnetic field of suitable size and direction in a workpiece under examination. The characteristic parameters of this equipment are given in this standard along with their method of determination if this is necessary. (orig./AK) [de

  9. Superconducting magnet development capability of the LLNL [Lawrence Livermore National Laboratory] High Field Test Facility

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.; Summers, L.T.

    1990-02-01

    This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility

  10. Electromagnetic nondestructive testing at high lift-off using a magnetic image conduit

    International Nuclear Information System (INIS)

    Lee, Jin Yi; Jun, Jong Woo; Kim, Jung Min; Le, Min Hhuy

    2013-01-01

    To protect sensors from the extreme environments, such as, heat, moisture, pollution and radiation, cracks must be inspected for; this can be done by measuring the distribution of magnetic fields at high lift-off through nondestructive electro-magnetic testing. However, as the intensity of an electro-magnetic field is inversely proportional to the square of the lift-off, it becomes increasingly difficult to effective inspect a crack as the lift-off increases. In this paper, a magnetic image conduit to minimize the intensity loss of an electro-magnetic field at high lift-off is proposed, and the effectiveness of a conduit for magnetic imaging is verified by means of both theoretical and experimental approaches.

  11. Status of design, development and test of the dipole magnets for the high energy booster

    International Nuclear Information System (INIS)

    Butler, J.M.; Boulios, G.; Finger, K.; Kaylor, L.; McConnon, A.; McConnon, S.; Osborne, S.; Sinnott, Z.; Pisz, F.; Swenson, C.

    1994-01-01

    Westinghouse Magnet Systems Division has a contract to design, develop, build and test the superconducting dipole magnets for the High Energy Booster. This paper covers the key requirements of the magnet and the design features to meet these requirements. Although similar to the Collider dipole magnets, there are some key differences in the functional requirements and design constraints which lead to design differences. Most significant is the requirement to prevent quench during bipolar operation at a ramp rate of 62 A/s compared to unipolar operation at 4 A/s for the Collider. Testing of 50 mm magnets made for the SSCL string test show that the design is sensitive to interstrand eddy currents and resultant heating at the higher ramp rate. The cryostat diameter is not constrained by the fixed distance between top and bottom rings as in the Collider. The authors are taking advantage of the additional space allowed. Emphasis in this paper is placed on the design differences and the reasons for them in both the cold mass and the cryostat. The cold testing requirements and plans for test facilities to carry out the tests are summarized

  12. Towards magnetic liquefaction of hydrogen: experiments with an active magnetic regenerator test apparatus

    International Nuclear Information System (INIS)

    Richard, M.-A.; Rowe, A.M.; Chahine, R.; Bose, T.; Barclay, J.A.

    2003-01-01

    Refrigeration based on an Active Magnetic Regenerative (AMR) cycle has the potential to be a more efficient way of liquefying hydrogen than conventional gas cycles. Because the magnetocaloric effect decreases quickly for most materials as the temperature moves away from the phase transition region, the combination of many magnetic refrigerants in a multi-layers active magnetic regenerator is needed as a way to produce larger temperature spans for each stage of a liquefier. An investigation of a multi layer regenerator has been performed using an AMR test apparatus (AMRTA). Gadolinium and a gadolinium-terbium alloy were used as the two layers in the fabrication of two reciprocating multi-layer regenerators working near room temperature. The performances of the multi-material regenerator is compared to a Gd regenerator in terms of temperature span (respectively 20 K and 16 K at 2 Tesla respectively) and cooling power. For the first time, a multi-material AMR has been shown to produce a larger temperature span and cooling power than a single material of equivalent mass and geometry. (author)

  13. A flexible and configurable system to test accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  14. Cryogenic magnet tests for the LHC process operation using web-based tools and facilities

    CERN Document Server

    Hemelsoet, G H; Chohan, V; Veyrunes, E

    2005-01-01

    For the Large Hadron Collider under construction at CERN, an essential requirement is the acceptance test of its 1706 Cryo-magnets in cryogenic conditions in a purpose-built facility at CERN. Several teams ensure the proper operation of the infrastructure on a round the clock basis. The cold test part is one of the key elements amongst many other essential activities requiring magnet transport and connections/disconnections, cryogenic preparation and pumping, cooling down to 1.9 K as well warm up before disconnection & removal. All these operations involve multi-tasking and usage of 12 test benches with nominal turn-round time per dipole magnet of 120 hours. It also involves multiple teams of industrial contractors, a support contract for cryogenics operation, CERN staff in magnet testing Operation, aided by a large external collaboration of visiting staff for round the clock operation. This paper gives a flavour of the operation and exposes the software tools that were necessary, designed and developed t...

  15. Thermo-magneto-elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials

    Science.gov (United States)

    Shi, Pengpeng; Zhang, Pengcheng; Jin, Ke; Chen, Zhenmao; Zheng, Xiaojing

    2018-04-01

    Metal magnetic memory (MMM) testing (also known as micro-magnetic testing) is a new non-destructive electromagnetic testing method that can diagnose ferromagnetic materials at an early stage by measuring the MMM signal directly on the material surface. Previous experiments have shown that many factors affect MMM signals, in particular, the temperature, the elastoplastic state, and the complex environmental magnetic field. However, the fact that there have been only a few studies of either how these factors affect the signals or the physical coupling mechanisms among them seriously limits the industrial applications of MMM testing. In this paper, a nonlinear constitutive relation for a ferromagnetic material considering the influences of temperature and elastoplastic state is established under a weak magnetic field and is used to establish a nonlinear thermo-magneto-elastoplastic coupling model of MMM testing. Comparing with experimental data verifies that the proposed theoretical model can accurately describe the thermo-magneto-elastoplastic coupling influence on MMM signals. The proposed theoretical model can predict the MMM signals in a complex environment and so is expected to provide a theoretical basis for improving the degree of quantification in MMM testing.

  16. Penerapan Three Tier-Test untuk Identifikasi Kuantitas Siswa Yang Miskonsepsi Pada Materi Magnet

    Directory of Open Access Journals (Sweden)

    Reny Silviani

    2017-10-01

    Full Text Available Proses pembelajaran yang bersifat informative dan hanya ditekankan pada konsep teoritik saja dapat menyebabkan siswa kurang menguasai konsep ilmiah.Faktor yang menyebabkan rendahnya penguasaan konsep siswa adalah miskonsepsi. Miskonsepsi merupakan kekeliruan dalam memahami suatu konsep materi pembelajaran yang tidak akurat, yang dapat menyebabkan ketidaksesuaian antara konsep yang dimiliki pribadi dengan konsep ilmiah. Dengan adanya miskonsepsi yang terjadi, hal ini dapat menghambat siswa untuk menerima informasi yang baru, sehingga siswa menolak untuk mengubah miskonsepsinya menjadi konsep ilmiah. Penelitian ini bertujuan untuk mengidentifikasi mengenai kuantitas siswa yang miskonsepsi pada materi magnet. Penelitian ini merupakan penelitian deskriptif kuantitatif dengan teknik pengambilan sampel adalah purposive sampling.Instrumen penelitian yang digunakan adalah three tier-test. Penggunaan three tier-test yaitu untuk mengidentifikasi kuantita ssiswa yang miskonsepsi. Jawaban yang telah dianalisis, selanjutnya akan dihitung dalam bentuk persentase. Hasil dari penelitian menunjukkan bahwa terdapat 3 konsep distribusi atau sebaran miskonsepsi pada materi magnet, yaitu; 1. Semua benda berwarna perak ditarik magnet; 2. Tarikan magnet yang lebih besar pasti lebih kuat dari tarikan magnet yang kecil; 3. Semua logam dapat ditarik magnet.Miskonsepsi tertinggi terdapat pada konsep tarikan magnet yang lebih besar pasti lebih kuat dari tarikan magnet yang kecil. Diharapkan hasil dari penelitian ini dapat dijadikan referensi untuk mencari solusi dalam menurunkan kuantitas siswa yang miskonsepsik hususnya pada materi magnet.

  17. Ten years of cryo-magnetic W7-X test facility construction and operation

    International Nuclear Information System (INIS)

    Renard, B.; Dispau, G.; Donati, A.; Genini, L.; Gournay, J.F.; Kuster, O.; Molinie, F.; Schild, T.; Touzery, R.; Vieillard, L.; Walter, C.

    2011-01-01

    The construction, commissioning, and operation phases of the W7-X cryo-magnetic test facility in CEA Saclay lasted ten years. The large diversity of equipments called, specialties involved and problems solved attest the expertise that was required to operate the test facility and test the coils. Nearly one hundred cryogenic tests were performed on the seventy W7-X coils, at a rate always increasing, using two cryostats each holding two coils. This paper presents the test facility and its operation first, the cryogenic difficulties that were confronted with their solutions, the electro-magnetic difficulties encountered along with corrective actions, and finally the instrumentation and data acquisition aspects. (authors)

  18. Helium leak testing of superconducting magnets, thermal shields and cryogenic lines of SST -1

    International Nuclear Information System (INIS)

    Thankey, P.L.; Joshi, K.S.; Semwal, P.; Pathan, F.S.; Raval, D.C.; Khan, Z.; Patel, R.J.; Pathak, H.A.

    2005-01-01

    Tokamak SST - 1 is under commissioning at Institute for Plasma Research. It comprises of a toroidal doughnut shaped plasma chamber, surrounded by liquid helium cooled superconducting magnets, housed in a cryostat chamber. The cryostat has two cooling circuits, (1) liquid nitrogen cooling circuit operating at 80 K to minimize the radiation heat load on the magnets, and (2) liquid helium cooling circuit to cool magnets and cold mass support structure to 4.5 K. In this paper we describe (a) the leak testing of copper - SS joints, brazing joints, interconnecting joints of the superconducting magnets, and (b) the leak testing of the liquid nitrogen cooling circuit, comprising of the main supply header, the thermal shields, interconnecting pipes, main return header and electrical isolators. All these tests were carried out using both vacuum and sniffer methods. (author)

  19. Tests on irradiated magnet-insulator materials

    International Nuclear Information System (INIS)

    Schmunk, R.E.; Miller, L.G.; Becker, H.

    1983-01-01

    Fusion-reactor coils, located in areas where they will be only partially shielded, must be fabricated from materials which are as resistant to radiation as possible. They will probably incorporate resistive conductors with either water or cryogenic cooling. Inorganic insulators have been recommended for these situations, but the possibility exists that some organic insulators may be usuable as well. Results were previously reported for irradiation and testing of three glass reinforced epoxies: G-7, G-10, and G-11. Thin disks of these materials, nominally 0.5 mm thick by 11.1 mm diameter, were tested in compressive fatigue, a configuration and loading which represents reasonably well the magnet environment. In that work G-10 was shown to withstand repeated loading to moderately high stress levels without failure, and the material survived better at liquid nitrogen temperature than at room temperature

  20. Design and Test of a Nb3Sn Subscale Dipole Magnet for Training Studies

    International Nuclear Information System (INIS)

    Felice, Helene; Caspi, Shlomo; Dietderich, Daniel R.; Felice, Helene; Ferracin, Paolo; Gourlay, Steve A.; Hafalia, Aurelo R.; Lietzke, Alan F.; Mailfert, Alain; Sabbi, GainLuca; Vedrine, Pierre

    2007-01-01

    As part of a collaboration between CEA/Saclay and the Superconducting Magnet Group at LBNL, a subscale dipole structure has been developed to study training in Nb3Sn coils under variable pre-stress conditions. This design is derived from the LBNL Subscale Magnet and relies on the use of identical Nb 3 Sn racetrack coils. Whereas the original LBNL subscale magnet was in a dual bore 'common-coil' configuration, the new subscale dipole magnet (SD) is assembled as a single bore dipole made of two superposed racetrack coils. The dipole is supported by a new mechanical structure developed to withstand the horizontal and axial Lorentz forces and capable of applying variable vertical, horizontal and axial preload. The magnet was tested at LBNL as part of a series of training studies aiming at understanding of the relation between pre-stress and magnet performance. Particular attention is given to the coil ends where the magnetic field peaks and stress conditions are the least understood. After a description of SD design, assembly, cool-down and tests results are reported and compared with the computations of the OPERA3D and ANSYS magnetic and mechanical models

  1. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-01-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications

  2. Magnetic monopole search with the MoEDAL test trapping detector

    Directory of Open Access Journals (Sweden)

    Katre Akshay

    2016-01-01

    Full Text Available IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  3. Magnetic monopole search with the MoEDAL test trapping detector

    Science.gov (United States)

    Katre, Akshay

    2016-11-01

    IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  4. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    International Nuclear Information System (INIS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-01-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects

  5. The tests at Saclay of the stellarator W7X superconducting magnets

    International Nuclear Information System (INIS)

    Jacquemet, M.

    2000-05-01

    The tests on the superconducting magnets should allow to check at ambient or cryogenic temperature, the mechanical behaviour and the lack of leak from the conductor, the correct configuration of the cable in the pipe, the electric insulation, the magnet behaviour during a transition, the buckling and mechanical constraints on the whole. (N.C.)

  6. Test Results for HD1, a 16 Tesla Nb3Sn Dipole Magnet

    International Nuclear Information System (INIS)

    Lietzke, A.F.; Bartlett, S.; Bish, P.; Caspi, S.; Chiesa, L.; Dietderich, D.; Ferracin, P.; Gourlay, S.A.; Goli, M.; Hafalia, R.R.; Higley, H.; Hannaford, R.; Lau, W.; Liggens, N.; Mattafirri, S.; McInturff, A.; Nyman, M.; Sabbi, G.; Scanlan, R.; Swanson, J.

    2003-01-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing the technology for using brittle superconductor in high-field accelerator magnets. HD1, the latest in a series of magnets, contains two, double-layer Nb 3 Sn flat racetrack coils. This single-bore dipole configuration, using the highest performance conductor available, was designed and assembled for a 16 tesla conductor/structure/pre-stress proof-of-principle. With the combination of brittle conductor and high Lorentz stress, considerable care was taken to predict the magnet's mechanical responses to pre-stress, cool-down, and excitation. Subsequent cold testing satisfied expectations: Training started at 13.6 T, 83% of 'short-sample', achieved 90% in 10 quenches, and reached its peak bore field (16 T) after 19 quenches. The average plateau, ∼92% of 'short-sample', appeared to be limited by 'stick-slip' conductor motions, consistent with the 16.2 T conductor 'lift-off' pre-stress that was chosen for this first test. Some lessons learned and some implications for future conductor and magnet technology development are presented and discussed.

  7. Results on testing pilot industrial batch of SC magnets for the UNK

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.; Chirkov, P.N.; Dolzhenkov, V.I.; Gertsev, K.F.; Gridasov, V.I.; Myznikov, K.P.; Smirnov, N.L.; Sychev, V.A.

    1992-01-01

    IHEP has developed and studied the superconducting dipoles and quadrupoles of the regular part of the UNK main ring which satisfy the requirements imposed on them. The pilot-industrial batch of the UNK SC magnets has been produced now. The reproducibility of the magnet characteristics is studied and the mass production technology is optimized with this batch. The results of the cryogenic tests and the magnetic field measurements for the UNK SC dipoles of the pilot-industrial batch are presented. (author) 5 refs.; 6 figs.; 1 tab

  8. Experience with High Voltage Tests of the W7-X Magnets in Paschen-Minimum Conditions

    International Nuclear Information System (INIS)

    Petersen-Zarling, B.M.; Risse, K.; Viebke, H.; Gustke, D.; Ehmler, H.; Baldzuhn, J.; Sborchia, C.; Scheller, H.

    2006-01-01

    The W7-X machine is a low-shear stellarator of the Wendelstein line, which is being assembled at the IPP Branch Institute of Greifswald, Germany. The machine features a superconducting magnet system with 50 non-planar and 20 planar magnets operated at about 6 T and discharged with peak voltage levels up to 6 kV. Following the factory tests, the magnets are delivered to CEA Saclay, France, for the final acceptance tests at cryogenic condition. A series of high voltage tests in air and vacuum are part of the final acceptance test. During these tests the quality of the insulation, especially the hand-wrapped ground insulation in the termination area, has proven not to be adequate. In order to improve the reliability of the insulation system and detect defects for early repair, high voltage tests in reduced pressure of air (Paschen-minimum conditions) have been added as part of the factory acceptance procedure. This has been implemented in the vacuum chambers of BNN/Ansaldo for the test of the 50 non-planar coils, while other tests have been carried out at CEA/Saclay after cold testing. IPP has also installed a vacuum tank to perform Paschen tests during the preparation of all the coils for assembly, including also the 20 planar coils which cannot be tested at the manufacturer Tesla. These tests have proven to be a powerful tool to detect hidden insulation defects and void/cavities in the primary impregnation system, which could not be detected otherwise with the standard high voltage tests. This paper will summarize the background and experience accumulated in about 2 years of Paschen tests on the W7-X coils, including a description of the equipment, main results and statistics, weak points detected and repaired on the coils, and possibilities of improvements in the development and production of the W7-X magnets. The importance and the need of Paschen tests as part of the acceptance procedure for superconducting magnets to be used in future projects will also be

  9. Vent rate of superconducting magnets during quench in the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.

    1979-01-01

    When a superconducting magnet goes normal, resistive heating in the conductor evaporates surrounding LHe, which must be vented. The nature and speed at which the magnet goes normal and He is vented are not subject to rigorous analysis. This paper presents vent data from an existing magnet. An approximate mathematical model is derived and fitted to the data to permit scaling of vent requirements to larger size magnets. The worst case models of the vent employed in Mirror Fusion Test Facility (MFTF) cryogenic system design are also presented

  10. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-09-01

    Full Text Available This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  11. Commissioning Test of ATLAS End-Cap Toroidal Magnets

    CERN Document Server

    Dudarev, A; Foussat, A; Benoit, P; Jeckel, M; Olyunin, A; Kopeykin, N; Stepanov, V; Deront, L; Olesen, G; Ponts, X; Ravat, S; Sbrissa, K; Barth, J; Bremer, J; Delruelle, J; Metselaar, J; Pengo, R; Pirotte, O; Buskop, J; Baynham, D E; Carr, F S; Holtom, E

    2009-01-01

    The system of superconducting toroids in the ATLAS experiment at CERN consists of three magnets. The Barrel Toroid was assembled and successfully tested in 2006. Next, two End-Cap Toroids have been tested on surface at 77 K and installed in the cavern, 100-m underground. The End Cap Toroids are based on Al stabilized Nb-Ti/Cu Rutherford cables, arranged in double pancake coils and conduction cooled at 4.6 K. The nominal current is 20.5 kA at 4.1 T peak field in the windings and the stored energy is 250 MJ per toroid. Prior to final testing of the entire ATLAS Toroidal system, each End Cap Toroid passed a commissioning test up to 21 kA to guarantee a reliable performance in the final assembly. In this paper the test results are described. It includes the stages of test preparation, isolation vacuum pumping and leak testing, cooling down, step-by-step charging to full current, training quenches and quench recovery. By fast discharges the quench detection and protection system was checked to demonstrate a safe e...

  12. Surface magnetic field strengths: New tests of magnetoconvective models of M dwarfs

    International Nuclear Information System (INIS)

    MacDonald, James; Mullan, D. J.

    2014-01-01

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough and Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.

  13. Surface Magnetic Field Strengths: New Tests of Magnetoconvective Models of M Dwarfs

    Science.gov (United States)

    MacDonald, James; Mullan, D. J.

    2014-05-01

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.

  14. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.

    Science.gov (United States)

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-21

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  15. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    2017-01-01

    Full Text Available To meet the great needs for MFL (magnetic flux leakage inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  16. Magnetic powder crack tests as a means of quality assurance in forged parts

    International Nuclear Information System (INIS)

    Deutsch, V.

    1979-01-01

    The magnetic powder process has been used for years for crack detection in forged parts, which are used as safety parts in car construction. The representation of the present state of technology appears useful, as terms and units have been redefined in DIN draft standards and guidelines, and because alternating field magnetisation has increasingly displaced earlier techniques. The correct choice of equipment, test materials and UV lamps, and the configuration of the working positions are discussed. As the complete automation of this test method is not possible at present, the organisation of the viewing process is of great importance. The comparison with other processes of non-destructive material testing proves the irreplaceability of the magnetic power crack testing at present. (orig.) [de

  17. Test-particle motion in Einstein's unified field theory. III. Magnetic monopoles and charged particles

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1986-01-01

    In a previous paper (paper I), we developed a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. In that paper we also applied the method and found in Einstein's unified field theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In a second paper (paper II), we applied the method and found in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing no magnetic monopole moments. In the present paper (paper III), we apply the method and find in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing magnetic monopole moments. It follows from the form of these equations of structure and motion that in general in Einstein's unified field theory a test particle possessing a magnetic monopole moment in a background electromagnetic field must also possess spin

  18. Fabrication and tests of prototype quadrupole magnets for the storage ring of the Advanced Photon Source

    International Nuclear Information System (INIS)

    Kim, S.H.; Thompson, K.M.; Black, E.L.; Jagger, J.M.

    1991-01-01

    Prototype quadrupole magnets for the APS storage ring have been fabricated and tested. Mechanical stability of the magnet poles and acceptable field quality have been achieved. Geometries of the pole-end bevels have been studied in order to simplify the design of the magnet end-plate. The field saturation at different segments of the magnet has been measured to evaluate the magnet efficiency

  19. Program for tests on magnetic bearing suspended rotor dynamics for gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Kunitomi, Kazuhiko; Kosugiyama, Shinichi; Yan, Xing

    2003-01-01

    A program for test on rotor dynamics was planned for the turbo-machine of the Gas Turbine High Temperature Reactor (GTHTR300). The rotor system of the turbo-machine consists of a turbo-compressor rotor and a generator rotor connected with a flexible coupling, each suspended with two radial magnetic bearings. The rotors, which are flexible rotors, pass over the critical speeds of bending mode. The magnetic bearing is required to have a high load capacity, about 10 times larger than any built thus far to support a flexible rotor. In the rotor design, the standard limit of the vibration amplitude of 75 μm at the rated rotational speed of 3,600 rpm was fulfilled by optimizing the stiffness of the magnetic bearings. A test apparatus was designed to verify the design of the magnetic bearing suspended turbo-machine rotor of the GTHTR300. The test apparatus is composed of 1/3-scale test rotors, which are connected with a flexible coupling and driven by a variable speed motor. The test magnetic bearing was designed within the state-of-the-art technology to have a load capacity about 1/10 of that of the actual one. The test rotors were designed to closely simulate the critical speeds and vibration modes of the actual ones. This paper shows the test apparatus and the test plan for the magnetic bearing suspended rotor system. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  20. Experimental test of nuclear magnetization distribution and nuclear structure models

    International Nuclear Information System (INIS)

    Beirsdorfer, P; Crespo-Lopez-Urrutia, J R; Utter, S B.

    1999-01-01

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place

  1. Potential of the test particle in the magnetic field. I

    International Nuclear Information System (INIS)

    Sestak, B.

    1980-01-01

    The problem of the test particle potential in an external homogeneous magnetic field is solved in an unmagnetized plasma. It is shown that for the case when the parallel velocity component of the test particle is greater than the thermal velocity of the background particles, the potential is of a Coulomb character while for the case where the parallel velocity component is less than the thermal velocity the potential is of a Debye character. The Larmor radius of the test particle appears as an additional parameter in these potentials. (author)

  2. Testing beam-induced quench levels of LHC superconducting magnets

    CERN Document Server

    Auchmann, B.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P.P.; Hofle, W.; Holzer, E.B.; Lechner, A.; Del Busto, E. Nebot; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-25

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy depositio...

  3. Development and test of a Nb3Sn racetrack magnet using the react and wind technology

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.; Carcagno, R.; Chichili, D.; Ewald, K.; Feher, S.; Imbasciati, L.; Kashikhin, V. V.; Limon, P.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; Yadav, S.; Zlobin, A.V.

    2002-01-01

    Fermilab is involved in the development of a high field accelerator magnet for future hadron colliders using Nb 3 Sn superconductor and the react-and-wind technology. The magnet design is based on single-layer common coils wound simultaneously into a laminated mechanical structure and impregnated with epoxy. In order to develop and optimize the fabrication techniques and to study the conductor performance, a magnet with flat racetrack type coils in a common coil configuration was assembled and tested. The coils were wound in the mechanical structure and in situ impregnated following a procedure that will be used in the single-layer common coil. The magnetic and mechanical design of the racetrack magnet, the fabrication techniques and the test results are presented and discussed in this paper

  4. Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…

  5. The B00 model coil in the ATLAS Magnet Test Facility

    CERN Document Server

    Dudarev, A; ten Kate, H H J; Anashkin, O P; Keilin, V E; Lysenko, V V

    2001-01-01

    A 1-m size model coil has been developed to investigate the transport properties of the three aluminum-stabilized superconductors used in the ATLAS magnets. The coil, named B00, is also used for debugging the cryogenic, power and control systems of the ATLAS Magnet Test Facility. The coil comprises two double pancakes made of the barrel toroid and end-cap toroid conductors and a single pancake made of the central solenoid conductor. The pancakes are placed inside an aluminum coil casing. The coil construction and cooling conditions are quite similar to the final design of the ATLAS magnets. The B00 coil is well equipped with various sensors to measure thermal and electrodynamic properties of the conductor inside the coils. Special attention has been paid to the study of the current diffusion process and the normal zone propagation in the ATLAS conductors and windings. Special pick-up coils have been made to measure the diffusion at different currents and magnetic field values. (6 refs).

  6. Assessment of magnetic fluid stability in non-homogeneous magnetic field of a single-tooth magnetic fluid sealer

    Energy Technology Data Exchange (ETDEWEB)

    Arefyev, I.M.; Demidenko, O.V.; Saikin, M.S.

    2017-06-01

    A special experimental stand has been developed and made to test magnetic fluid. It represents a single-tooth magnetic fluid sealer. The type of dependence of the pressure differential on magnetic fluid sealer operation time is used as a criterion to determine magnetic fluid stability and magnetic fluid sealer service life under such conditions. The siloxane-based magnetic fluid was used as the test sample. The colloidal stability as well as stability of the synthesized magnetic fluid in magnetic fields in static mode were determined. It has been found that the obtained magnetic fluid is stable in static mode and, consequently, can be used to conduct necessary tests on stand. Short-term and life tests on stand have shown that MF remains stable and efficient for at least 360 days of continuous utilization. - Highlights: • An experimental single-tooth magnetic fluid sealer has been developed and made. • The magnetic fluid based on siloxane liquid was used as the test sample. • Short-term and life tests of the magnetic fluid were conducted. • The magnetic fluid stability was determined by necessary tests on stand.

  7. Development and test of Nb3Sn cos-theta magnets based on RRp and PIT strands

    International Nuclear Information System (INIS)

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Fermilab

    2005-01-01

    As part of the High Field Magnet program at Fermilab three cos(Θ) magnets--two mirror dipole magnets utilizing RRP cable and one dipole magnet utilizing PIT cable--have been designed, fabricated and tested recently. Both mirror magnets with RRP strands only reached ∼50-60% of their estimated critical current limit. The PIT conductor based dipole however reached its critical current limit producing over 10 T magnetic field in the bore of the magnet. This paper describes the parameters of superconducting strands and cable, the details of magnet design and fabrication procedure, and reports the results

  8. Development and test of Nb3Sn cos-theta magnets based on RRP and PIT strands

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2005-09-01

    As part of the High Field Magnet program at Fermilab three cos({theta}) magnets--two mirror dipole magnets utilizing RRP cable and one dipole magnet utilizing PIT cable--have been designed, fabricated and tested recently. Both mirror magnets with RRP strands only reached {approx}50-60% of their estimated critical current limit. The PIT conductor based dipole however reached its critical current limit producing over 10 T magnetic field in the bore of the magnet. This paper describes the parameters of superconducting strands and cable, the details of magnet design and fabrication procedure, and reports the results.

  9. The CMS tracker operation and performance at the Magnet Test and Cosmic Challenge

    International Nuclear Information System (INIS)

    Adam, W; Bergauer, T; Dragicevic, M; Friedl, M; Fruehwirth, R; Haensel, S; Hrubec, J; Krammer, M; Pernicka, M; Waltenberger, W; Widl, E; Mechelen, P Van; Cardaci, M; Beaumont, W; Langhe, E de; Wolf, E A de; Delmeire, E; Bouhali, O; Charaf, O; Clerbaux, B

    2008-01-01

    During summer 2006 a fraction of the CMS silicon strip tracker was operated in a comprehensive slice test called the Magnet Test and Cosmic Challenge (MTCC). At the MTCC, cosmic rays detected in the muon chambers were used to trigger the readout of all CMS sub-detectors in the general data acquisition system and in the presence of the 4 T magnetic field produced by the CMS superconducting solenoid. This document describes the operation of the Tracker hardware and software prior, during and after data taking. The performance of the detector as resulting from the MTCC data analysis is also presented

  10. Testing the structure of magnetic paints with and without superimposed shear

    NARCIS (Netherlands)

    Potanin, A.; Potanin, Andrei A.; Shrauti, Suresh M.; Arnold, David W.; Lane, Alan M.; Mellema, J.

    1997-01-01

    The structure development in dispersions of magnetic barium ferrite particles in cyclohexanone with polyvinylchloride wetting resin was tested by oscillatory rheological measurements and orthogonal superposition of steady and oscillatory shear. The optimum dispersion is achieved at the resin

  11. Test Results of the LARP HQ02b Magnet at 1.9 K

    CERN Document Server

    Bajas, H; Bottura, L; Chiuchiolo, A; Dunkel, O; Ferracin, P; Feuvrier, J; Giloux, Chr; Todesco, E; Ravaioli, E; Caspi, S; Dietderich, D; Felice, H; Hafalia, A R; Marchevsky, M; Sabbi, G L; Wang, X; Salmi, T; Ghosh, A; Schmalzle, J; Wanderer, P; Anerella, M; Ambrosio, G; Bossert, R; Chlachidze, G; Yu, M

    2015-01-01

    The HQ magnet is a 120 mm aperture, 1-meter-long Nb$_{3}$Sn quadrupole developed by the LARP collaboration in the framework of the High-Luminosity LHC project. A first series of coils was assembled and tested in 5 assemblies of the HQ01 series. The HQ01e model achieved a maximum gradient of 170 T/m at 4.5 K at LBNL in 2010-2011 and reached 184 T/m at 1.9 K at CERN in 2012. A new series of coils incorporating major design changes was fabricated for the HQ02 series. The first model, HQ02a, was tested at Fermilab where it reached 98% of the short sample limit at 4.5 K with a gradient of 182 T/m in 2013. However, the full training of the coils at 1.9 K could not be performed due to a current limit of 15 kA. Following this test, the azimuthal coil pre-load was increased by about 30 MPa and an additional current lead was installed at the electrical center of the magnet for quench protection studies. The test name of this magnet changed to HQ02b. In 2014, HQ02b was then shipped to CERN as the first opportunity for f...

  12. Suspension tests on a larger scale. Report from the status seminar on magnetic suspension techniques. Testing of the electrodynamic system started

    Energy Technology Data Exchange (ETDEWEB)

    Rogg, D; Muckli, W

    1976-07-01

    A world record speed for electromagnetically suspended vehicles as well as successful suspension tests with forced-circulation cooled superconducting magnets were the outstanding success reports at the fifth status seminar 'Magnetic suspension techniques' on 31st March and 1st April in Bad Kissingen. The research work on magnetic suspension techniques in the railborne long-distance travel is supported by the Federal Ministry of Research and Technology (BMFT) within the frameworke of the programme 'Railway engineering - New technologies'.

  13. Assembly and Test of SQ01b, a Nb3Sn Quadrupole Magnet for the LHC Accelerator Research Program

    International Nuclear Information System (INIS)

    Ferracin, P.; Ambrosio, G.; Bartlett, S. E.; Bordini, B.; Carcagno, R.H.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Lamm, M.J.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Orris, D.F.; Pischalnikov, Y.M.; Sabbi, G.L.; Sylvester, C.D.; Tartaglia, M.A.; Velev, G.V.; Zlobin, A.V.; Kashikhin, V.V.

    2006-01-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb 3 Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented

  14. Assembly and Test of SQ01b, a Nb3Sn Quadrupole Magnet for the LHC Accelerator Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Ambrosio, G.; Bartlett, S. E.; Bordini, B.; Carcagno, R.H.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Lamm, M.J.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Orris, D.F.; Pischalnikov, Y.M.; Sabbi, G.L.; Sylvester, C.D.; Tartaglia, M.A.; Velev, G.V.; Zlobin, A.V.; Kashikhin, V.V.

    2006-06-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb{sub 3}Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented

  15. Test and evaluation of conductors for superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schermer, R.I.; Hassenzahl, W.V.

    1976-01-01

    Pancake coils of a monolithic conductor and several different types of braid and cable, using a variety of insulating tapes and bonding resins were constructed. The coils were tested to quench in self-field at currents up to 2700 A. Results are presented for the training behavior of the various coils as compared to short-sample tests. A conductor composed of several braids or cables in parallel, which will be suitable for the in situ fabrication of large magnets is described

  16. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1993-05-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures -- detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot -- protection. The temperature rise is diluted by firing heaters along the length of the magnet to insure that the dissipated energy is spread. To develop a reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, we followed an iterative top-down approach. First we defined the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then we further optimize the system through iterative upgrading based on our signal and noise character findings

  17. A remote monitoring system of environmental electromagnetic field in magnetic confinement fusion test facilities

    International Nuclear Information System (INIS)

    Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu

    2010-01-01

    A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)

  18. Magnetic strength and corrosion of rare earth magnets.

    Science.gov (United States)

    Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen

    2006-09-01

    Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.

  19. Magnetic Measurement System for the NSLS Superconducting Undulator Vertical Test Facility

    CERN Document Server

    Harder, David; Skaritka, John

    2005-01-01

    One of the challenges of small-gap superconducting undulators is measurement of magnetic fields within the cold bore to characterize the device performance and to determine magnetic field errors for correction or shimming, as is done for room-temperature undulators. Both detailed field maps and integrated field measurements are required. This paper describes a 6-element, cryogenic Hall probe field mapper for the NSLS Superconducting Undulator Vertical Test Facility (VTF). The probe is designed to work in an aperture only 3 mm high. A pulsed-wire insert is also being developed, for visualization of the trajectory, for locating steering errors and for determining integrated multi-pole errors. The pulsed-wire insert will be interchangeable with the Hall probe mapper. The VTF and the magnetic measurement systems can accommodate undulators up to 0.4 m in length.

  20. Tests of a 3D Self Magnetic Field Solver in the Finite Element Gun Code MICHELLE

    CERN Document Server

    Nelson, Eric M

    2005-01-01

    We have recently implemented a prototype 3d self magnetic field solver in the finite-element gun code MICHELLE. The new solver computes the magnetic vector potential on unstructured grids. The solver employs edge basis functions in the curl-curl formulation of the finite-element method. A novel current accumulation algorithm takes advantage of the unstructured grid particle tracker to produce a compatible source vector, for which the singular matrix equation is easily solved by the conjugate gradient method. We will present some test cases demonstrating the capabilities of the prototype 3d self magnetic field solver. One test case is self magnetic field in a square drift tube. Another is a relativistic axisymmetric beam freely expanding in a round pipe.

  1. Testing the intrinsic noise of a coil-magnet actuator for cryogenic gravitational wave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Falferi, Paolo, E-mail: falferi@science.unitn.it [Istituto di Fotonica e Nanotecnologie, CNR-Fondazione Bruno Kessler, 38123 Povo, Trento (Italy); INFN, Gruppo Collegato di Trento, Sezione di Padova, 38123 Povo, Trento (Italy)

    2011-07-21

    The third generation gravitational wave interferometers that will operate underground and at cryogenic temperatures will need a complex and sophisticated control system to satisfy the requirements on the alignment and position of its optics and keep the detector at its working point. The force actuators of the control systems of the present interferometers are for the most part coil-magnet actuators. To check the possibility of using these actuators also at low temperature we have tested the magnetization and the magnetization noise of an SmCo magnet at 4.2 K. The magnetization loss, measured with a fluxgate magnetometer, is 7%. The magnetization noise has been measured with a superconducting quantum interference device magnetometer. The application of dc and ac (0.1 Hz) magnetic fields of an amplitude comparable to that needed to produce on the magnet a force large enough for the control system does not change the measured noise. The equivalent maximum force noise produced by the actuator as a result of the magnetization noise of the magnet has been evaluated. Its effect on the sensitivity of a third generation interferometer (Einstein Telescope) is negligible with respect to the most relevant fundamental noise contributions.

  2. Testing the intrinsic noise of a coil-magnet actuator for cryogenic gravitational wave interferometers

    International Nuclear Information System (INIS)

    Falferi, Paolo

    2011-01-01

    The third generation gravitational wave interferometers that will operate underground and at cryogenic temperatures will need a complex and sophisticated control system to satisfy the requirements on the alignment and position of its optics and keep the detector at its working point. The force actuators of the control systems of the present interferometers are for the most part coil-magnet actuators. To check the possibility of using these actuators also at low temperature we have tested the magnetization and the magnetization noise of an SmCo magnet at 4.2 K. The magnetization loss, measured with a fluxgate magnetometer, is 7%. The magnetization noise has been measured with a superconducting quantum interference device magnetometer. The application of dc and ac (0.1 Hz) magnetic fields of an amplitude comparable to that needed to produce on the magnet a force large enough for the control system does not change the measured noise. The equivalent maximum force noise produced by the actuator as a result of the magnetization noise of the magnet has been evaluated. Its effect on the sensitivity of a third generation interferometer (Einstein Telescope) is negligible with respect to the most relevant fundamental noise contributions.

  3. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1994-01-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures - Detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot - Protection. The temperature rise is diluted by firing heaters along the length of the magnet to ensure that the dissipated energy is spread. It is interesting that there is not a significant amount of published research on detection. To afford a more reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, the authors followed an iterative top-down approach. First they defend the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then they further optimize the system through iterative upgrading based on their signal and noise character findings

  4. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, Joshua T. [Jefferson Lab, Newport News, VA; Biallas, George H. [Jefferson Lab, Newport News, VA; Brown, G.; Butler, David E. [Jefferson Lab, Newport News, VA; Carstens, Thomas J. [Jefferson Lab, Newport News, VA; Chudakov, Eugene A. [Jefferson Lab, Newport News, VA; Creel, Jonathan D. [Jefferson Lab, Newport News, VA; Egiyan, Hovanes [Jefferson Lab, Newport News, VA; Martin, F.; Qiang, Yi [Jefferson Lab, Newport News, VA; Smith, Elton S. [Jefferson Lab, Newport News, VA; Stevens, Mark A. [Jefferson Lab, Newport News, VA; Spiegel, Scot L. [Jefferson Lab, Newport News, VA; Whitlatch, Timothy E. [Jefferson Lab, Newport News, VA; Wolin, Elliott J. [Carnegie Mellon University , Pittsburgh, PA; Ghoshal, Probir K. [Jefferson Lab, Newport News, VA

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete the system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.

  5. Testing beam-induced quench levels of LHC superconducting magnets

    Directory of Open Access Journals (Sweden)

    B. Auchmann

    2015-06-01

    Full Text Available In the years 2009–2013 the Large Hadron Collider (LHC has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012 instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  6. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  7. Test Results of the Third LHC Main Quadrupole Magnet Prototype at CEA/Saclay

    CERN Document Server

    Derégel, J; Gourdin, C; Hervieu, M; Ogitsu, T; Peyrot, M; Rifflet, J M; Schild, T; Simon, F; Tortschanoff, Theodor; Tsuchiya, K

    2002-01-01

    The construction of the third second-generation main quadrupole magnet prototype for LHC has been completed at CEA/Saclay in November 2000. The magnet was tested at 1.9 K. Similarly to the two first ones, this prototype has exceeded the operating current in one training step and exhibited excellent training memory after a thermal cycle. This paper describes the quench performance and quench start localization determined by means of voltage-taps and a quench antenna system developed in collaboration with KEK. As this magnet was equipped with capacitive gauges, the stresses during cool-down and powering have been recorded and are in agreement with FE computations. The newly designed quench heaters have improved efficiency and reproducibility compared to those of the first generation. Magnetic measurements have been performed at various stages. The cold measurements show minor differences with those at room temperature and are similar to those of the two first magnets of this design. These results prove that the...

  8. Test results of BNL built 40-mm aperture, 17-m-long SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Kuzminski, J.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.C.; Wolf, Z.; Yu, Y.; Zheng, H.; Ogitsu, T.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Gosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.

    1991-06-01

    Eleven 17 m long, 40 mm aperture SSC R ampersand D superconducting collider dipole magnets, built at BNL, have been extensively tested at BNL and Fermilab during 1990--91. Quench performance of these magnets and details of their mechanical behavior are presented. 7 refs., 5 figs

  9. Designing, fabricating, and testing cost effective structural composite for the SSCL magnets

    International Nuclear Information System (INIS)

    Nobrega, F.

    1994-01-01

    Particle accelerators like the Superconducting Super Collider (SSC) use superconducting dipole magnets to bend the particle bunches around the 54-mile ring and superconducting quadrupole magnets to focus the particles. The heart of these magnets is the superconducting niobium-titanium copper cable which carries extremely high current because the internal resistance is zero at liquid helium temperatures. With these high currents, the magnets generate large magnetic fields on the order of 6.7 Tesla. The superconducting cable is insulated with a wrap of polyimide film on the first layer and a second layer wrap of either a polyimide film with adhesive or a fiberglass epoxy prepreg. The insulated cable is wound into long coils and cured. All coil materials must withstand temperature extremes from 220C to -269C at loads as high as 104 MPa (15ksi). In addition, all magnet components must survive for 25 years with a total radiation dose of 1000 MRad. The parts at the end of a coil are used to support and restrain the conductors during magnet energization. The most common end part materials used to date have been G-10 and G-11 fiberglass and epoxy tubes and laminates in NEMA grades and CR type. Developments in polyimides like bismaleimides, copolymers like the newly developed PT resins and advanced epoxy blends like CTD101 and CTE102 are materials of choice for magnet components because of their radiation resistance. An extensive testing program is currently underway by the SSCL to measure the radiation degradation of these and many other materials

  10. Bending Test of Conductor for ALICE and LHCb Dipole Magnets

    CERN Document Server

    Giudici, P A; CERN. Geneva; Flegel, W

    2000-01-01

    Abstract It is foreseen that the coils for the two magnets will be manufactured by winding flat pancakes, which are subsequently shaped to a semi-cylindrical form (ALICE) or bent by 45 degrees (LHCb). We propose here several methods and describe tests that were performed to estimate tolerances and forces which will have to be expected during the manufacturing process. To this end, short Aluminium conductor lengths of adequate cross-section were bent around a shaper piece to an angle of 90 degrees. The tests were repeated for conductors both wrapped with prepreg insulation tape and without this tape. The different test set-ups and the obtained results are described in this note.

  11. Geodesics of electrically and magnetically charged test particles in the Reissner-Nordstroem space-time: Analytical solutions

    International Nuclear Information System (INIS)

    Grunau, Saskia; Kagramanova, Valeria

    2011-01-01

    We present the full set of analytical solutions of the geodesic equations of charged test particles in the Reissner-Nordstroem space-time in terms of the Weierstrass weierp, σ, and ζ elliptic functions. Based on the study of the polynomials in the θ and r equations, we characterize the motion of test particles and discuss their properties. The motion of charged test particles in the Reissner-Nordstroem space-time is compared with the motion of neutral test particles in the field of a gravitomagnetic monopole. Electrically or magnetically charged particles in the Reissner-Nordstroem space-time with magnetic or electric charges, respectively, move on cones similar to neutral test particles in the Taub-NUT space-times.

  12. Comparing flowmeter, aquifer test, and surface nuclear magnetic resonance data in Central Nebraska

    Science.gov (United States)

    Irons, T.; Abraham, J. D.; Cannia, J. C.; Steele, G.; Hobza, C. M.; Li, Y.; McKenna, J. R.

    2011-12-01

    Traditionally the only means of estimating the hydraulic properties of aquifers has involved drilling boreholes. The logistical and economic requirements of aquifer tests has limited the ability of hydrologists to construct the detailed groundwater models needed for resource management. As such, water policy decisions are often based on sparse aquifer tests combined with geologic interpretation and extrapolation. When dealing with complicated groundwater systems these extrapolations are often not accurate at the scale required to characterize the groundwater system, and additional information is needed to make better informed resource decisions. Surface nuclear magnetic resonance (SNMR) is a geophysical technique which allows for non-invasive estimates of hydraulic permeability and transmissivity. Protons in a volume of liquid water form a weak bulk magnetic moment as they align and precess about the earth's magnetic field. This moment is too small to be measured directly but may be observed by tipping it away from equilibrium using radio-frequency pulses oscillating at the same frequency as its precession (the Larmor frequency). After a short tipping pulse, the moment continues to precess around the static field, although at a tipped angle, slowly returning to its equilibrium state. The decay of these spinning magnetic moments can be observed inductively using loops of wire on the surface of the earth. In the simplest experiment a time series is recorded after a single tipping pulse. By varying the strength of the tipping pulse, different regions of the subsurface can be probed. The amplitude of the signal is directly proportional to the amount of water in the investigated volume. The decay rate of the signal is related to pore geometry and interconnectivity and can be used to estimate hydraulic conductivity. However, this relationship cannot be universally defined as it is affected by additional factors including the mineralogy of the host rock and homogeneity of

  13. FENIX [Fusion ENgineering International eXperimental]: A test facility for ITER [International Thermonuclear Experimental Reactor] and other new superconducting magnets

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Miller, J.R.

    1990-01-01

    The Fusion ENgineering International eXperimental (FENIX) Test Facility which is nearing completion at Lawrence Livermore National Laboratory, is a 76-t set of superconducting magnets housed in a 4-m-diameter cryostat. It represents a significant step toward meeting the testing needs for the development of superconductors appropriate for large-scale magnet applications such as the International Thermonuclear Experimental Reactor (ITER). The magnet set is configured to allow radial access to the 0.4-m-diameter high-field region where maximum fields up to 14 T will be provided. The facility is fitted with a thermally isolated test well with a port to the high-field region that allows insertion and removal of test conductors without disturbing the cryogenic environment of the magnets. It is expected that the facility will be made available to magnet developers internationally, and this paper discusses its general design features, its construction, and its capabilities

  14. Superconducting magnet

    Science.gov (United States)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  15. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 05: Not all geometries are equivalent for magnetic field Fano cavity tests

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, Victor N.; Rogers, David W.O. [Carleton University (Canada)

    2016-08-15

    The coupling of MRI and radiation treatment systems for the application of magnetic resonance guided radiation therapy necessitates a reliable magnetic field capable Monte Carlo (MC) code. In addition to the influence of the magnetic field on dose distributions, the question of proper calibration has arisen due to the several percent variation of ion chamber and solid state detector responses in magnetic fields when compared to the 0 T case (Reynolds et al., Med Phys, 2013). In the absence of a magnetic field, EGSnrc has been shown to pass the Fano cavity test (a rigorous benchmarking tool of MC codes) at the 0.1 % level (Kawrakow, Med.Phys, 2000), and similar results should be required of magnetic field capable MC algorithms. To properly test such developing MC codes, the Fano cavity theorem has been adapted to function in a magnetic field (Bouchard et al., PMB, 2015). In this work, the Fano cavity test is applied in a slab and ion-chamber-like geometries to test the transport options of an implemented magnetic field algorithm in EGSnrc. Results show that the deviation of the MC dose from the expected Fano cavity theory value is highly sensitive to the choice of geometry, and the ion chamber geometry appears to pass the test more easily than larger slab geometries. As magnetic field MC codes begin to be used for dose simulations and correction factor calculations, care must be taken to apply the most rigorous Fano test geometries to ensure reliability of such algorithms.

  16. Designing, fabricating, and testing cost effective structural composite for the SSCL magnets

    International Nuclear Information System (INIS)

    Nobrega, F.

    1993-05-01

    Particle accelerators like the Superconducting Super Collider (SSC) use superconducting dipole magnets to bend the particle bunches around the 54-mile ring and superconducting quadrupole magnets to focus the particles. The heart of these magnets is the superconducting niobium-titanium copper cable which carries extremely high current because the internal resistance is zero at liquid helium temperatures. With these high currents,the magnets generate large magnetic fields on the order of 6.7 Tesla. The superconducting cable is insulated with a wrap of polyimide film on the first layer and a second layer wrap of either a polyimide film with adhesive or a fiberglass epoxy prepreg. The insulated cable is wound into long coils and cured. All coil materials must withstand temperature extremes from 220 degree C (428 degree F) to -269 degree C (-452 degree F) at loads as high as 104 MPa (15 ksi). In addition, all magnet components must survive for 25 years with a total radiation dose of 1000 MRad. The parts at the end of a coil are used to support and restrain the conductors during magnet energization. The most common end part materials used to date have been G-10 and G-11 fiberglass and epoxy tubes and laminates in NEMA grades and CR type. Developments in polyimides like bismaleimides, copolymers like the newly developed PT resins and advanced epoxy blends like CTD101 and CTD102 are materials of choice for magnet components because of their radiation resistance. An extensive testing program is currently underway by the SSCL to measure the radiation degradation of these and many other materials

  17. Prospects for the use of high-Tc superconductors in fusion magnets and options for their test in SULTAN

    International Nuclear Information System (INIS)

    Wesche, Rainer; Bruzzone, Pierluigi; March, Stephen; Marinucci, Claudio; Stepanov, Boris; Uglietti, Davide

    2013-01-01

    Highlights: ► RE-123 tapes j c ≥ 500 A/cm (77 K) would enable fusion magnets operating above 20 K. ► Quench studies indicate that the protection of RE-123 fusion magnets is a challenge. ► Possibilities to test 50 kA class HTS conductors in SULTAN have been identified. ► HTS bus bar of large thermal resistance needed to connect sample and NbTi flux pump. ► Tests in the 20–50 K range require additional changes in the SULTAN cryogenics. -- Abstract: In the last few years, the critical current densities of long commercially available REBa 2 Cu 3 O 7−x (RE-123, where RE represents Y or a rare earth element) coated conductors have reached values of 250 A/cm-width at 77 K and zero applied field. Even higher values of 600 A/cm-w (77 K, B = 0) have been demonstrated in shorter lengths. The attractive features of the use of these high-T c superconductors (HTS) are operation temperatures above 20 K and/or magnetic fields higher than those envisaged for the ITER TF coils. Possible operation conditions for HTS fusion magnets have been studied taking into consideration the possible further improvements of RE-123 coated conductors. Investigations of stability and quench behavior indicate that stability is not a problem, whereas quench detection and protection need attention. Because of the high currents necessary for fusion magnets, many tapes need to be assembled into a transposed conductor. The qualification of HTS conductors for fusion magnets would require their test at magnetic fields of 11 T and currents well above 10 kA. The possibilities to test straight HTS conductor samples in SULTAN have been considered. For a test at 4.5 K, only the development of a low resistance joint between the HTS conductor under test and the NbTi transformer of SULTAN would be necessary. Tests up to 20 K would require that the HTS sample is connected with the NbTi transformer by a conduction-cooled HTS bus bar of large thermal resistance similar to the HTS module of a current

  18. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility

    International Nuclear Information System (INIS)

    Tanaka, M.; Uda, T.; Wang, J.; Fujiwara, O.

    2012-01-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. (authors)

  19. Diffusion of test particles in stochastic magnetic fields in the percolative regime

    International Nuclear Information System (INIS)

    Neuer, Marcus; Spatschek, Karl H.

    2006-01-01

    For stochastic magnetic flux functions with percolative contours the test particle transport is investigated. The calculations make use of the stochastic Liouville approach. They start from the so-called A-Langevin equations, including stochastic magnetic field components and binary collisions. Using the decorrelation trajectory method, a relation between the Lagrangian velocity correlation function and the Eulerian magnetic field correlation is derived and introduced into the Green-Kubo formalism. Finite Larmor radius effects are included. Interesting results are presented in the percolation regime corresponding to high Kubo numbers. Previous results are found to be limiting cases for small Kubo numbers. For different percolative scenarios the diffusion is analyzed and strong influences of the percolative structures on the transport scaling are found. The finite Larmor radius effects are discussed in detail. Numerical simulations of the A-Langevin equation confirm the semianalytical predictions

  20. Bipolar and unipolar tests of 1.5m model SSC collider dipole magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Ozelis, J.P.; Coulter, K.J.; Delchamps, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Strait, J.; Wake, M.; Fortunato, D.; Johnson, D.E.

    1991-05-01

    Tests have been performed at Fermilab on 1.5 m magnetic length model SSC collider dipoles using both bipolar and unipolar ramp cycles. Hysteresis energy loss due to superconductor and iron magnetization and eddy currents is measured and compared as a function of various ramp parameters. Additionally, magnetic field measurements have been performed for both unipolar and bipolar ramp cycles. Measurements such as these will be used to estimate the heat load during collider injection for the SSC High Energy Booster dipoles. 9 refs., 4 figs

  1. A report of airbone radiometric and magnetic test survey

    International Nuclear Information System (INIS)

    Koo, J.H.; Park, Y.S.; Woo, S.M.

    1982-01-01

    By the end of Oct. 1981, a complete set of GeoMetrics' air-borne radiometric and magnetic survey system was purchased by KIER using the ADB loan, and it took one week from Nov. 11 1981 to install the system on a Bell 206 B helicopter (HL 9102) owned by Asia Aeroservice Company. The test survey was flown over an area including Hongseong, Daecheon, Seosan and Manripo Sheets, from Nov. 19 to Dec. 14 1981. A Hongseong air-strip was used as the base. (Author)

  2. Spanish Minister of Science and Technology visits the LHC magnet test facility

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister for Science and Technology, Spain, toured the test facility for LHC magnets in building SM18 during his visit to CERN in November. Photo 01: The Minister (left) with M. Cerrada and G. Babé.

  3. The inverse microconglomerate test: Definition and application to the preservation of Paleoarchean to Hadean magnetizations in metasediments of the Jack Hills, Western Australia

    Science.gov (United States)

    Cottrell, Rory; Tarduno, John; Bono, Richard; Dare, Matthew

    2016-04-01

    We introduce a new paleomagnetic field test, the inverse microconglomerate test. In contrast with traditional conglomerate tests, which target specimens that might preserve primary magnetizations, the inverse microconglomerate test focuses on magnetic carriers having unblocking temperatures less than peak metamorphic temperatures. These mineral carriers are expected to carry a consistent direction of remagnetization. Hence, the inverse microconglomerate test evaluates whether coherent magnetizations are retained on a grain/mineral scale in a given sedimentary rock sample. By defining the remagnetization direction, it also serves as a benchmark for comparison of magnetizations from other grains/minerals having unblocking temperatures higher than peak metamorphic conditions (i.e., potential primary magnetizations). We apply this new test to sediments of the Jack Hills (JH), Yilgarn craton, Western Australia. For the JH sediments we focus on fuchsite, a secondary Cr-mica that contains relict Cr-Fe spinels capable of recording remanent magnetizations. We find that JH fuchsite grains retain consistent magnetic directions at unblocking temperatures between ˜270 and 340 oC, which defines a positive test. This direction does not reproduce a nominal 1078-1070 Ma remagnetization reported by Weiss et al. (EPSL, 2015) that we interpret as an artifact of inappropriate use of averaging and statistics. The thermochemical remanent magnetization recorded by the fuchsite was most likely imparted during peak JH metamorphic conditions at ˜2650 Ma. Our inverse microconglomerate test complements a positive microconglomerate test and large scale positive conglomerate test conducted on JH cobbles (Tarduno and Cottrell, EPSL, 2013), further supporting evidence that JH zircons record Paleoarchean to Hadean primary magnetizations at high (greater than 550 oC) unblocking temperatures (Tarduno et al., Science, 2015). More generally, the new inverse microconglomerate test may aid in

  4. Prototype test of Energy Doubler/Saver bending magnet

    International Nuclear Information System (INIS)

    Yamada, R.; Ishimoto, H.; Price, M.E.

    1977-01-01

    An improved full scale bending magnet for the Energy Doubler was cooled down with a prototype satellite refrigerator and its characteristics were measured. Quenches were intentionally induced on this magnet below 40 kG using a heater, and the quench behavior was investigated from the viewpoint of system safety. The first self-induced quench of this horizontal magnet system occurred at about 41.7 kG. Due to high single phase pressure, the magnet was not trained to any higher field. The measurement of ac loss was done, and the data showed some wire movement at about 20 kG. Transfer function was measured to be 9.81 (G/A). The magnetic field was measured using a harmonic coil. The field quality was found to be improved over the first full scale magnet

  5. Gravity and magnetic data of Fortymile Wash, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Kohrn, S.B.; Waddell, S.

    1992-01-01

    Gravity and ground magnetic data collected along six traverses across Fortymile Wash, in the southwest quadrant of the Nevada Test Site suggest that there are no significant vertical offsets below Fortymile Wash. The largest gravity and magnetic anomaly, in the vicinity of Fortymile Wash, is produced by the Paintbrush fault, on the west flank of Fran Ridge. Inferred vertical offset is about 250 ± 60 m (800 ± 200 ft). Geophysical data indicate that the fault is about 300 m (1,000 ft) east of its mapped, but concealed location. North of Busted Butte, near Fran Ridge, geophysical data do not preclude the existence of small vertical offsets bounding Fortymile Wash. However, gravity and magnetic profiles south of Busted Butte show little correlation to those to the north and suggest that vertical offsets, comparable in size to the Paintbrush fault, are not present. Density profiling, a technique used to determine the average density of small topographic features, suggests that the density of near-surface material in the vicinity of Fortymile Wash is 1.80 to 2.00 g/cm 3

  6. In-situ magnetization of NdFeB magnets for permanent magnet machines

    International Nuclear Information System (INIS)

    Chang, L.; Eastham, T.R.; Dawson, G.E.

    1991-01-01

    In-situ magnetizers are needed to facilitate the assembly of permanent magnet machines and to remagnetize the magnets after weakening due to a fault condition. The air-core magnetizer in association with the silicon steel lamination structure of the rotor has advantages over its iron-core counterpart. This novel method has been used to magnetize the NdFeB magnets in a 30-hp permanent magnet synchronous motor. The magnetizing capability for different magnetizer geometries was investigated for the magnetization of NdFeB material. The design, testing, and operation of this magnetizer are reported in this paper

  7. Test of Magnetic Rotation near the band head in ^197,198Pb

    Science.gov (United States)

    Krücken, R.; Clark, R. M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Macchiavelli, A. O.; Lee, I. Y.; Schmid, G. J.; Stephens, F. S.; Vetter, K.; Dewald, A.; Peusquens, R.; von Brentano, P.; Baldsiefen, G.; Chmel, S.; Hübel, H.; Becker, J. A.; Bernstein, L. A.; Hauschild, K.

    1998-04-01

    The concept of magnetic rotation is tested near the band head of shears-bands in ^197,198Pb by means of a lifetime experiment with the recoil distance method (RDM). The experiment was performed using the Gammasphere array in conjunction with the Cologne Plunger. The B(M1) values extracted from the measured lifetimes can prove the applicability of the concept of magnetic rotation for the states near the band head of these shears bands. The RDM results are compared with tilted axis cranking and shell model calculations. Furthermore the results will be used to test earlier DSAM lifetime measurements for states at higher spins. Preliminary results of this topic will be presented. This work is supported by DOE grant numbers DE-AC03-76SF00098 (LBNL), DE-FG02-91ER40609 (Yale), W-7405-ENG-48 (LLNL) and by the German BMBF for Cologne (No. 06 OK 668) and Bonn.

  8. Process and device for magnetic crack testing

    International Nuclear Information System (INIS)

    Seiler, D.; Meili, E.; Fuchs, E.

    1983-01-01

    There is a problem of sufficient crack depth discrimination to suppress fault signals or pictures due to unevenness not caused by cracks. To solve this, when magnetising in the preferred direction of adhesion, the effect depending on the direction of the crack, before magnetic powder detection, magnetic powder is blown on, showing the fault and for the comparison of the adhesion effect crack direction characteristics it is blown on parallel to the preferred direction, or if one wants to stress the directional characteristic, it is blown on transversely to the preferred direction. In both cases one blows with the same force, without removing the magnetic powder remnants relevant to faults in the intended crack areas. This strong blowing removes the magnetic powder remnants relevant to interference and not relevant to faults. (orig./HP) [de

  9. Development of a vacuum leak test method for large-scale superconducting magnet test facilities

    International Nuclear Information System (INIS)

    Kawano, Katsumi; Hamada, Kazuya; Okuno, Kiyoshi; Kato, Takashi

    2006-01-01

    Japan Atomic Energy Agency (JAEA) has developed leak detection technology for liquid helium temperature experiments in large-scale superconducting magnet test facilities. In JAEA, a cryosorption pump that uses an absorbent cooled by liquid nitrogen with a conventional helium leak detector, is used to detect helium gas that is leaking from pressurized welded joints of pipes and valves in a vacuum chamber. The cryosorption pump plays the role of decreasing aerial components, such as water, nitrogen and oxygen, to increase the sensitivity of helium leak detection. The established detection sensitivity for helium leak testing is 10 -10 to 10 -9 Pam 3 /s. A total of 850 welded and mechanical joints inside the cryogenic test facility for the ITER Central Solenoid Model Coil (CSMC) experiments have been tested. In the test facility, 73 units of glass fiber-reinforced plastic (GFRP) insulation break are used. The amount of helium permeation through the GFRP was recorded during helium leak testing. To distinguish helium leaks from insulation-break permeation, the helium permeation characteristic of the GFRP part was measured as a function of the time of helium charging. Helium permeation was absorbed at 6 h after helium charging, and the detected permeation is around 10 -7 Pam 3 /s. Using the helium leak test method developed, CSMC experiments have been successfully completed. (author)

  10. Spanish Minister of Science and Technology visits the LHC magnet test facility

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister for Science and Technology, Spain, toured the test facility for LHC magnets in building SM18 during his visit to CERN in November. Photos 01, 02: Felix Rodriguez Mateos (right) explains some of a cryomagnet's myriad connections to the Minister.

  11. Signal processing of data from short sample tests for the projection of conductor performance in ITER magnets

    International Nuclear Information System (INIS)

    Martovetsky, Nicolai

    2008-01-01

    Qualification of the ITER conductor is absolutely necessary. Testing large scale conductors is expensive and time-consuming. To test 3-4 m long straight samples in a bore of a split solenoid is a relatively economical way in comparison with the fabrication of a coil to be tested in a bore of a background field solenoid. However, testing short samples may give ambiguous results due to different constraints in current redistribution in the cable or other end effects which are not present in the large magnet. This paper discusses the processes taking place in the ITER conductor, conditions when conductor performance could be distorted and possible signal processing to deduce the behaviour of ITER conductors in ITER magnets from the test data

  12. Coil winder for the magnet of the mirror fusion test facility

    International Nuclear Information System (INIS)

    Ling, R.C.

    1977-01-01

    A coil winder was designed for the purpose of fabricating the superconducting magnets of the Mirror Fusion Test Facility. The superconducting magnets are a displaced ying-yang pair, each having major and minor radii of 2.5 and 0.75 m, respectively, and cross section of 0.42 m by about 1.03 m. The superconductor cross section is a square, 13 mm on a side, and consists of a core of niobium-titanium embedded copper and a solid copper stabilizer. Conceptual studies made at Lawrence Livermore Laboratory of the coil winder resulted in concept drawings and a procurement specification. Final design was made by the contractor, and the coil winder is now in fabrication. This paper describes the performance requirements of the winder, and the evolution of its design from conceptual stage to completion

  13. Novel epoxy-free construction method for fabricating dipole magnets and test results

    International Nuclear Information System (INIS)

    Taylor, C.; Althaus, R.; Caspi, S.; Gilbert, W.S.; Hassenzahl, W.; Meuser, R.; Rechen, J.; Warren, R.

    1981-01-01

    Three model superconducting dipole magnets, lm length and having a bore diameter of 76mm, fabricated without epoxy resins or other adhesives, have been built and the first two have been tested in He I and He II. The conductor is the 23-strand Rutherford-type cable used in the Fermilab Doubler/Saver magnets, and is insulated with Mylar and Kapton. The two-layer winding is highly compessed by a system of structural support rings and tapered collets. Little training was required. Quench currents greater than 95% of short sample were obtained in He I with rise-times of 15 to 20 seconds to a central field of 4.6 T; 6.0 T in Helium II

  14. Nondestructive Testing Magnetic Particle RQA/M1-5330.11.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of programmed instruction handbooks, prepared by the U. S. space program, home study material is presented in this volume concerning familiarization and orientation on magnetic particle properties. The subject is presented under the following headings: Magnetism, Producing a Magnetic Field, Magnetizing Currents, Materials and…

  15. Test Results of HD1b, an upgraded 16 Tesla Nb3Sn Dipole Magnet

    International Nuclear Information System (INIS)

    Lietzke, A.F.; Bartlett, S.E.; Bish, P.; Caspi, S.; Dietderich, D.; Ferracin, P.; Gourlay, S.; Hafalia, A.R.; Hannaford, C.R.; Higley, H.; Lau, W.; Liggins, N.; Mattafirri, S.; Nyman, M.; Sabbi, G.; Scanlan, R.; Swanson, J.

    2005-01-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing high-field, brittle-superconductor, accelerator magnet technology, in which the conductor's support system can significantly impact conductor performance (as well as magnet training). A recent H-dipole coil test (HD1) achieved a peak bore-field of 16 Tesla, using two, flat-racetrack, double-layer Nb 3 Sn coils. However, its 4.5 K training was slow, with an erratic plateau at ∼92% of its un-degraded ''short-sample'' expectation (∼16.6 T). Quench-origins correlated with regions where low conductor pre-stress had been expected (3-D FEM predictions and variations in 300 K coil-size). The coils were re-assembled with minor coil-support changes and re-tested as ''HD1b'', with a 185 MPa average pre-stress (30 MPa higher than HD1, with a 15-20 MPa pole-turn margin expected at 17 T). Training started higher (15.1 T), and quickly reached a stable, negligibly higher plateau at 16 T. After a thermal cycle, training started at 15.4 T, but peaked at 15.8 T, on the third attempt, before degrading to a 15.7 T plateau. The temperature dependence of this plateau was explored in a sub-atmospheric LHe bath to 3.0 K. Magnet performance data for both thermal cycles is presented and discussed, along with issues for future high-field accelerator magnet development

  16. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... of the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision characterization...... of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing...

  17. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.

    Science.gov (United States)

    Wang, Chao; Sun, Guanghong; Wang, Ye; Kong, Nana; Chi, Yafei; Yang, Leilei; Xin, Qiliang; Teng, Zhen; Wang, Xu; Wen, Yujun; Li, Ying; Xia, Guoliang

    2017-11-01

    Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p mice from BPD group were significantly improved, as compared with the control (p mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p mice in vivo.

  18. Quench tests and FEM analysis of Nb3Al Rutherford cables and small racetrack magnets

    International Nuclear Information System (INIS)

    Yamada, R.; Kikuchi, A.; Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikin, V.V.; Kotelnikov, S.; Lamm, M.; Novitski, I.

    2008-01-01

    In collaboration between NIMS and Fermilab, we have made copper stabilized Nb 3 Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb 3 Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb 3 Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb 3 Al Rutherford cable is compared with that of the Nb 3 Sn Rutherford cable and the advantages of Nb 3 Al Rutherford cable are discussed

  19. Spanish Minister of Science and Technology visits the LHC magnet test facility

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister for Science and Technology, Spain, toured the test facility for LHC magnets in building SM18 during his visit to CERN in November. Photos 01, 02: (left to right) M. Cerrada, CERN; Francisco Giménez-Reyna, Spanish delegate to the CERN Finance Committee; G. Léon; Juan Antonio Rubio, leader of the Education and Technology Transfer division at CERN; M. Aguilar-Benitez, Spanish delegate to CERN Council; (behind) H.E. Mr Joaquin Pérez-Villanueva y Tovar, Ambassador and Permanent Representative of Spain to the United Nations in Geneva; the Minister; Manuel Delfino, leader of the Information Technology division at CERN; bodyguard; Matteo Cavalli-Sforza, ATLAS national contact physicist for Spain; Felix Rodriguez Mateos, CERN; G. Babé. Visible in the left background is one of the test benches where magnets are prepared for installation in String 2: the full-scale model of an LHC cell of the regular part of the arc. The extremity of String 2, which measures 120 m and runs the ...

  20. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    Science.gov (United States)

    Abdelnour, Z.; Mildrun, H.; Strant, K.

    1981-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.

  1. Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility

    Science.gov (United States)

    Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.

    2015-03-01

    The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.

  2. Design and test of a short mockup magnet for the superconducting undulator at the SSRF

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jieping, E-mail: jpxu@sinap.ac.cn; Ding, Yi; Cui, Jian; Zhang, Wei; Wang, Hongfei; Yin, Lixin [Department of Mechanical Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2016-07-27

    A superconducting planar undulator is under development at the Shanghai Synchrotron Radiation Facility (SSRF) to provide the SSRF users with higher photon fluxes at higher photon energies. A 5-period magnet was designed and built for feasibility study. The short mockup magnet is composed of NbTi/Cu winding and low carbon steel former and was tested in a vertical cryocooler-cooled cryostat. The nominal current of 387 A was reached after 2 quenches and the maximum current of 433.2 A was achieved. The magnetic field profile was measured and a peak field of 0.93 T was obtained when stably operating at 400 A.

  3. Restrictions on the Ratio of Normal to Tangential Field Components in Magnetic Rubber Testing

    National Research Council Canada - National Science Library

    Burke, S. K; Ibrahim, M. E

    2007-01-01

    Magnetic Rubber Testing (MRT) is an extremely sensitive method for deteckng surface-breaking cracks in ferromagnetic materials, and is used extensively in critical inspections for D6ac steel components of the F-111 aircraft...

  4. Operational history of Fermilab's 1500 W refrigerator used for energy saver magnet production testing

    International Nuclear Information System (INIS)

    Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.W.; Cooper, W.E.

    1985-09-01

    The 1500 W helium refrigerator system utilizes two oil-injected screw compressors staged to feed a liquid nitrogen pre-cooled cold box. Refrigeration is provided by two Sulzer TGL-22 magnetic/gas bearing turbines. The refrigerator feeds six magnet test stands via a 10,000 L dewar and subcooler equipped distribution box. The design of the controls has permitted the system to be routinely operated 24 hours/day, seven days/week with only five operators. It has operated approximately 90% of the 4-1/2 years prior to shutting down in 1984 for a period of one year to move the compressor skid. Scheduled maintenance, failures, repairs and holidays are about equal to the 10% off time. The equipment described was used to test approximately 1200 superconducting magnets for the Fermilab accelerator ring. The seven year operating experience is presented as an equipment and technique review. Compressor hours currently exceed 42,000 and turbine hours exceed 39,000 each. Failure rates, causes, preventive maintenance, monitoring practices and equipment, and modifications are examined along with notes on some of the more successful applications of technique and equipment. 4 refs

  5. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  6. Specifications, quality control, manufacturing, and testing of accelerator magnets

    CERN Document Server

    Einfeld, D

    2010-01-01

    The performance of the magnets plays an important role in the functioning of an accelerator. Most of the magnets are designed at the accelerator laboratory and built by industry. The link between the laboratory and the manufacturer is the contract containing the Technical Specifications of the magnets. For an overview of the contents of the Technical Specifications, the specifications for the magnets of ALBA (bending, quadrupole, and sextupole) are described in this paper. The basic rules of magnet design are reviewed in Appendix A.

  7. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    Science.gov (United States)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  8. Design Modifications, Fabrication and Test of HFDB-03 Racetrack Magnet Wound with Pre-Reacted Nb3Sn Rutherford Cable

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bhashyam, S.; Carcagno, R.; Feher, S.; Imbasciati, L.; Lamm, M.; Pischalnikov, Y.; Tartaglia, M.; Tompkins, J.; Zlobin, A.V.

    2004-01-01

    A 10 T racetrack magnet (HFDB-03) wound with pre-reacted Nb3Sn Rutherford cable has been fabricated and tested at Fermilab. This magnet is the third one in a proof-of-principle series for the use of the React-and-Wind technology in common-coil dipole magnets for future accelerators. It consists of two flat racetrack coils (28 turns each) separated by 5 mm. The maximum field on the coil, at the short sample limit of 16530 A, is 10 tesla. The cable has 41 strands with 0.7 mm diameter and the minimum bend radius in the magnet ends is 90 mm. The predecessor of this magnet (HFDB-02) reached 78 % of the short sample limit at 7.7 T. The mechanical design was improved and the fabrication procedure was slightly modified in order to address possible causes of limitation. In this paper we present the mechanical design and analysis of HFDB-03, the modifications to the fabrication procedure and the test results

  9. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    International Nuclear Information System (INIS)

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production

  10. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  11. Testing Quality and Metrics for the LHC Magnet Powering System throughout Past and Future Commissioning

    OpenAIRE

    Anderson, D; Audrain, M; Charifoulline, Z; Dragu, M; Fuchsberger, K; Garnier, JC; Gorzawski, AA; Koza, M; Krol, K; Rowan, S; Stamos, K; Zerlauth, M

    2014-01-01

    The LHC magnet powering system is composed of thousands of individual components to assure a safe operation when operating with stored energies as high as 10GJ in the superconducting LHC magnets. Each of these components has to be thoroughly commissioned following interventions and machine shutdown periods to assure their protection function in case of powering failures. As well as having dependable tracking of test executions it is vital that the executed commissioning steps and applied anal...

  12. Passive characterization and active testing of epoxy bonded regenerators for room temperature magnetic refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Navickaité, Kristina; Engelbrecht, Kurt

    2017-01-01

    -layer AMR based on spherical particles is tested actively in a small reciprocating magnetic refrigerator, achieving a no-load temperature span of 16.8 °C using about 143 g of epoxy-bonded La(Fe,Mn,Si)13Hy materials. Simulations based on a one-dimensional (1D) AMR model are also implemented to validate......Epoxy bonded regenerators of both spherical and irregular La(Fe,Mn,Si)13Hy particles have been developed aiming at increasing the mechanical strength of active magnetic regenerators (AMR) loaded with brittle magnetocaloric materials and improving the flexibility of shaping the regenerator geometry....... Although the magnetocaloric properties of these materials are well studied, the flow and heat transfer characteristics of the epoxy bonded regenerators have seldom been investigated. This paper presents a test apparatus that passively characterizes regenerators using a liquid heat transfer fluid...

  13. TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

    International Nuclear Information System (INIS)

    Davidson, J. A.; Li, Z.-Y.; Hull, C. L. H.; Plambeck, R. L.; Kwon, W.; Crutcher, R. M.; Looney, L. W.; Novak, G.; Chapman, N. L.; Matthews, B. C.; Stephens, I. W.; Tobin, J. J.; Jones, T. J.

    2014-01-01

    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse

  14. TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J. A. [University of Western Australia, School of Physics, 35 Stirling Highway, Crawley, WA 6009 (Australia); Li, Z.-Y. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Hull, C. L. H.; Plambeck, R. L. [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD, Groningen (Netherlands); Crutcher, R. M.; Looney, L. W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Novak, G.; Chapman, N. L. [Northwestern University, Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Matthews, B. C. [Herzberg Astronomy and Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Stephens, I. W. [Boston University, Institute for Astrophysical Research, Boston, MA 02215 (United States); Tobin, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Jones, T. J., E-mail: jackie.davidson@uwa.edu.au [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2014-12-20

    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.

  15. Review of the acceptance tests of the W7-X superconducting magnets

    International Nuclear Information System (INIS)

    Ehmler, H.; Baldzuhn, J.; Genini, L.; Heyn, K.; Sborchia, C.; Schild, T.

    2007-01-01

    The W7-X magnet system consists of 50 non-planar coils of five different types and 20 planar coils of two different types. Factory tests of the non-planar coils are carried out at the manufacturer site of Babcock-Noell, Germany, and for the planar coils at Tesla Engineering, UK. They consist of electrical insulation checks, mass flow measurements, leak tests and sensor checks. In the test facility of CEA Saclay, France, each coil is cooled down to ∼5 K and operated at nominal current. At least one coil of each type is quenched by increasing the inlet temperature. Results of the mass flow measurements and the quench tests are presented. The manufacturing and testing progress is reviewed and the impact of technical failures is discussed. In conclusion, the scope of the tests allows a very strict quality control. This experience is highly beneficial for the construction and testing of similar components for future superconducting fusion experiments

  16. New parameters in adaptive testing of ferromagnetic materials utilizing magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Pal’a, Jozef; Ušák, Elemír

    2016-01-01

    A new method of magnetic Barkhausen noise (MBN) measurement and optimization of the measured data processing with respect to non-destructive evaluation of ferromagnetic materials was tested. Using this method we tried to found, if it is possible to enhance sensitivity and stability of measurement results by replacing the traditional MBN parameter (root mean square) with some new parameter. In the tested method, a complex set of the MBN from minor hysteresis loops is measured. Afterward, the MBN data are collected into suitably designed matrices and optimal parameters of MBN with respect to maximum sensitivity to the evaluated variable are searched. The method was verified on plastically deformed steel samples. It was shown that the proposed measuring method and measured data processing bring an improvement of the sensitivity to the evaluated variable when comparing with measuring traditional MBN parameter. Moreover, we found a parameter of MBN, which is highly resistant to the changes of applied field amplitude and at the same time it is noticeably more sensitive to the evaluated variable. - Highlights: • We test an adaptive magnetic Barkhausen noise method. • The method utilizes measuring a complex set of Barkhausen noise signals. • We define new matrices of parameters for this method. • The pulse density is highly resistant to changes in applied field amplitude.

  17. Aspects of the statistical theory of stochastic magnetic fields: test particle transport and turbulent collisionless tearing mode

    International Nuclear Information System (INIS)

    Kleva, R.G.

    1980-01-01

    The first part of this work is concerned with test particle transport in a stochastic magnetic field. In the absence of collisions, the test particle self-diffusion coefficient is given by D = D/sub m/ V (in the zero gyroradius limit), where D/sub m/ is the magnetic diffusion coefficient due to a given spectrum of magnetic fluctuations and V is the particle velocity along a field line. The effect of collisions, either classical or turbulent, on this result is considered. The second part of this work is concerned with the evolution of the collisionless tearing mode in the presence of a stochastic magnetic field. A statistical closure approximation, obtained from the DIA by neglecting a mode-coupling term, is used to derive a nonlinear dispersion relation. For L 0 < L/sub K/ the dominant nonlinear effect is shown to be a turbulent broadening of the perturbed current layer. Saturation occurs when the perturbed current layer broadens to the point where Δ' = 0, where Δ' is the jump in the logarithmic derivative of the vector potential across the perturbed current layer

  18. Test of the transverse magneticity of the ξ(2.23)

    International Nuclear Information System (INIS)

    Ward, B.F.L.

    1986-08-01

    We propose the Jacob-Wick helicity amplitude ratios x-bar=A 1 /A 0 and y-bar=A 2 /A 0 for Ψ/J → γξ, ξ → K + K - , as tests of the transverse magneticity of the two gluon constituents of the ξ(2.23) under the assumption that the latter state is in fact a spin 2 bound state of two constituents gluons. Here A j is the respective amplitude for ξ helicity j, j=0,1,2. We therefore encourage experimentalists to measure these ratios. (author)

  19. Quench tests and FEM analysis of Nb3Al Rutherford cables and small racetrack magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikin, V.V.; Kotelnikov, S.; Lamm, M.; Novitski, I.; /Fermilab /Tsukuba Magnet Lab. /KEK, Tsukuba

    2008-12-01

    In collaboration between NIMS and Fermilab, we have made copper stabilized Nb{sub 3}Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb{sub 3}Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb{sub 3}Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb{sub 3}Al Rutherford cable is compared with that of the Nb{sub 3}Sn Rutherford cable and the advantages of Nb{sub 3}Al Rutherford cable are discussed.

  20. Design And Tests Of A Superconducting Magnet With A Cryocooler For The Ion Source Decris-sc

    CERN Document Server

    Datskov, V I; Bekhterev, V V; Bogomolov, S L; Bondarenko, P G; Dmitriev, S N; Drobin, V M; Efremov, A A; Iakovlev, B I; Leporis, M; Malinowski, H; Nikiforov, S A; Paschenko, S V; Seleznev, V V; Shishov, Yu A; Tsvineva, G P; Yazvitsky, N Yu

    2004-01-01

    A superconducting magnet system (SMS) for the multicharged ion source DECRIS-SC was designed and manufactured at the Joint Institute for Nuclear Research. Successful tests of the SMS were conducted in late 2003 - early 2004. The peculiarities of this system are stipulated by using of a cryocooler 1 W in power for the cryostabilization of the magnet, and also by a special configuration of the magnetic field demanded for the source of ions. Four coils ensure induction of a magnetic field on the axes of the source of up to 3T (the mirror ratio of ~6) which considerably extends possibilities of the ion source from the point of view of producing intense highly charged ion beams. The problem of compensating large forces of interaction between the coils and surrounding iron yoke in this magnet has been successfully solved, and a reliable suspension of the magnet in a cryostat realized. For compounding of the windings working in vacuum at indirect cryostabilization prepreg is used. There has been applied a new techno...

  1. Testing Quality and Metrics for the LHC Magnet Powering System throughout Past and Future Commissioning

    CERN Document Server

    Anderson, D; Charifoulline, Z; Dragu, M; Fuchsberger, K; Garnier, JC; Gorzawski, AA; Koza, M; Krol, K; Rowan, S; Stamos, K; Zerlauth, M

    2014-01-01

    The LHC magnet powering system is composed of thousands of individual components to assure a safe operation when operating with stored energies as high as 10GJ in the superconducting LHC magnets. Each of these components has to be thoroughly commissioned following interventions and machine shutdown periods to assure their protection function in case of powering failures. As well as having dependable tracking of test executions it is vital that the executed commissioning steps and applied analysis criteria adequately represent the operational state of each component. The Accelerator Testing (AccTesting) framework in combination with a domain specific analysis language provides the means to quantify and improve the quality of analysis for future campaigns. Dedicated tools were developed to analyse in detail the reasons for failures and success of commissioning steps in past campaigns and to compare the results with newly developed quality metrics. Observed shortcomings and discrepancies are used to propose addi...

  2. Round and Extracted Nb3Sn Strand Tests for LARP Magnet R and D

    International Nuclear Information System (INIS)

    Barzi, Emanuela; Bossert, Rodger; Caspi, Shlomo; Dietderich, Dan; Ferracin, Paolo; Ghosh, Arup; Turrioni, Daniele; Yamada, Ryuji; Zlobin, Alexander V.

    2006-01-01

    The first step in the magnet R and D of the U.S. LHC Accelerator Research Program (LARP) is fabrication of technology quadrupoles TQS01 and TQC01. These are two-layer magnets which use cables of same geometry made of 0.7 mm MJR Nb 3 Sn. Through strand billet qualification and tests of strands extracted from the cables, predictions of magnet performance are made. Measurements included the critical current, I c , using the voltage-current (VI) method at constant field, the stability current, I S , as the minimal quench current obtained with the voltage-field (VH) method at constant current in the sample, and RRR. Magnetization was measured at low and high fields to determine the effective filament size and to detect flux jumps. Effects of heat treatment duration and temperature on I c and I S were also studied. The Nb 3 Sn strand and cable samples, the equipment, measurement procedures, and results are described. Based on these results, strand specifications were formulated for next LARP quadrupole models

  3. Collaborative Simulation and Testing of the Superconducting Dipole Prototype Magnet for the FAIR Project

    International Nuclear Information System (INIS)

    Zhu Yinfeng; Zhu Zhe; Wu Weiyue; Xu Houchang

    2012-01-01

    The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios. (fusion engineering)

  4. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  5. Motions of CMS detector structures due to the magnetic field forces as observed by the Link alignment system during the test of the 4 T magnet solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Martinez, P.; Scodellaro, L.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander (Spain)], E-mail: sobron@ifca.unican.es; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)] (and others)

    2009-07-21

    This document describes results obtained from the Link alignment system data recorded during the Compact Muon Solenoid (CMS) Magnet Test. A brief description of the system is followed by a discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  6. Motions of CMS Detector structures due to the magnetic field forces as observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    CERN Document Server

    Calderón, Alicia; González-Sánchez, F J; Martínez-Rivero, C; Matorras, Francisco; Rodrigo, Teresa; Martínez, P; Scodellaro, Luca; Sobrón, M; Vila, Ivan; Virto, A L; Alberdi, Javier; Arce, Pedro; Barcala, Jose Miguel; Calvo, Enrique; Ferrando, Antonio; Josa-Mutuberria, I; Molinero, Antonio; Navarrete, Jose Javier; Oller, Juan Carlos; Yuste, Ceferino

    2008-01-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  7. Motions of CMS detector structures due to the magnetic field forces as observed by the Link alignment system during the test of the 4 T magnet solenoid

    International Nuclear Information System (INIS)

    Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Martinez, P.; Scodellaro, L.; Vila, I.; Virto, A.L.; Sobron, M.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.

    2009-01-01

    This document describes results obtained from the Link alignment system data recorded during the Compact Muon Solenoid (CMS) Magnet Test. A brief description of the system is followed by a discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  8. Parameters and definitions in applied technique quality test for nuclear magnetic resonance imaging system (NMRI)

    International Nuclear Information System (INIS)

    Lin Zhikai; Zhao Lancai

    1999-08-01

    During the past two decades, medical diagnostic imaging technique has achieved dramatic development such as CT, MRI, PET, DSA and so on. The most striking examples of them are the application of X ray computerized tomography (CT) and magnetic resonance imaging in the field of medical diagnosis. It can be predicted that magnetic resonance imaging (MRI) will definitely have more widespread prospects of applications and play more and more important role in clinical diagnosis looking forward to the development of image diagnostic technique for 21 st century. The authors also present the measuring methods for some parameters. The parameters described can be used for reference by clinical diagnosticians, operators on MRI and medical physicists who engages in image quality assurance (QA) and control (QC) in performing MRI acceptance test and routine test

  9. Association between preoperative magnetic resonance imaging, pain intensity and quantitative sensory testing in patients awaiting lumbar diskectomy.

    LENUS (Irish Health Repository)

    Hegarty, Dominic

    2011-02-01

    Magnetic resonance imaging (MRI) offers important information regarding the morphology, location and size of a herniated disc, which influences the decision to offer lumbar diskectomy (LD). This study aims to examine the association between clinical neurophysiologic indices including pain intensity and quantitative sensory testing (QST), and the degree of lumbar nerve root compromise depicted on magnetic resonance (MR) in patients awaiting LD.

  10. Reconstructing solar magnetic fields from historical observations: Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, Iiro; Virtanen, Ilpo; Pevtsov, Alexei; Yeates, Anthony; Mursula, Kalevi

    2017-04-01

    We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. We test the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and study how the flux distribution inside active regions and the initial magnetic field affect the simulation. We compare the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion and input data. We also compare the simulated magnetic field with observations. We find that there is generally good agreement between simulations and observations. While the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, that often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are rather minor or temporary, lasting typically one solar cycle.

  11. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magnetic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  12. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Doose, C.; Dejus, R.; Jaski, M.; Jansma, W.; Collins, J.; Donnelly, A.; Liu, J.; Cease, H.; Decker, G.; Jain, A.; DiMarco, J.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces to gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.

  13. Cryogenic Testing of High Current By-Pass Diode Stacks for the Protection of the Superconducting Magnets in the LHC

    Science.gov (United States)

    Gharib, A.; Hagedorn, D.; Della Corte, A.; Fiamozzi Zignani, C.; Turtu, S.; Brown, D.; Rout, C.

    2004-06-01

    For the protection of the LHC superconducting magnets, about 2100 specially developed by-pass diodes were manufactured by DYNEX SEMICONDUCTOR LTD (Lincoln, GB) and about 1300 of these diodes were mounted into diode stacks and submitted to tests at cryogenic temperatures. To date about 800 dipole diode stacks and about 250 quadrupole diode stacks for the protection of the superconducting lattice dipole and lattice quadrupole magnets have been assembled at OCEM (Bologna,Italy) and successfully tested in liquid helium at ENEA (Frascati, Italy). This report gives an overview of the test results obtained so far. After a short description of the test installations and test procedures, a statistical analysis is presented for test data during diode production as well as for the performance of the diode stacks during testing in liquid helium, including failure rates and degradation of the diodes.

  14. The design, manufacture and testing of the hydrostatic bearing for the NSF 900 analysing magnet

    International Nuclear Information System (INIS)

    Acton, W.J.; Myers, D.B.

    1978-10-01

    This report describes the design, manufacture and testing of the hydrostatic bearing which will be used to support the 90 0 analysing magnet of the 30 MV tandem electrostatic accelerator now being constructed at Daresbury Lboratory. (author)

  15. Mapping of Ambient Magnetic Fields within Liquid Helium Dewar for Testing of a DC SQUID Magnetometer

    International Nuclear Information System (INIS)

    Newhouse, Randal

    2003-01-01

    In an effort to explore the cavity lights phenomenon, Experimental Facilities Department at SLAC is testing a DC SQUID magnetometer. Due to the nature of the SQUID magnetometer and the intended tests, the earth's magnetic field must be negated. It is proposed to reduce ambient fields using bucking coils. First, however, an accurate map of the magnetic field inside the liquid helium Dewar where the experiment is going to take place needed to be made. This map was made using a three-axis fluxgate magnetometer mounted on a 3D positioning device made for this purpose. A ten inch tall volume within the Dewar was measured at data points approximately an inch from each other in all three axes. A LabVEIW program took readings from the magnetometer at 2 ms intervals for 1000 readings in such a way as to eliminate any ambient 60 Hz signals that may be present in the data. This data was stored in spreadsheet format and was analyzed to determine how the magnetic field within the Dewar was changing as a function of position

  16. Experience gained during Manufacture and Testing of the W7-X Superconducting Magnets

    International Nuclear Information System (INIS)

    Wanner, M.; Sborchia, C.; Risse, K.; Viebke, H.; Baldzuhn, J.

    2006-01-01

    The W7-X basic device is presently being assembled at the Greifswald branch of IPP. The specific field configurations of this helical advanced stellarator are realised by a symmetric arrangement of 50 non-planar and 20 planar superconducting coils. In order to sustain the large electromagnetic forces and moments, all coils are bolted to a massive coil support structure and supported against each other by inter-coil support elements. Cooling of superconductor and the casing is provided by supercritical helium. For all coils the same cable-in-conduit conductor is used. This conductor is formed by a NbTi cable which is co-extruded in an aluminium jacket. Low-resistive electrical joints connect the conductor layers within a winding package and potential break provide electrical insulation of the helium pipes. After insulation and vacuum pressure impregnation, the winding packages are embedded in stainless steel casings, which are then finish-machined and equipped with cooling pipes. During a rapid shut-down of the magnet system the windings may experience voltages up to several kilovolts. High voltage tests under degraded vacuum conditions (Paschen tests) provide a sensitive method to detect weak points in the electrical insulation. Manufacture of the magnets is in a well advanced stage. All winding packages are completed, many of them are integrated in the casings and several coils have already been delivered for cold testing. These tests are performed in a cryogenic test facility at CEA Saclay. Tests at nominal operating conditions and quench tests confirmed the electric layout and the specified margin. Design changes have been implemented during fabrication due to more detailed structural analyses. Some manufacturing processes had to be modified and re-qualified to allow repair of weaknesses defects found during tests. The presentation will give an overview of the production status of the superconducting coils, the experiences gained during fabrication of the

  17. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magntic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  18. Test results from two 5m two-in-one superconducting magnets for the SSC

    International Nuclear Information System (INIS)

    Cottingham, J.G.; Dahl, P.F.; Fernow, R.C.

    1984-01-01

    Two 5m long superconducting dipole magnets with specifications similar to the reference design for the proposed Superconducting Super Collider have been successfully tested. The cos theta coils of the magnets were made from two layers of standard CBA/Tevatron NbTi superconductor, keystoned to an angle of 2.8 degrees. The inner diameter of the inner layer was 3.2 cm. The ends of the coils were flared to increase the minimum bending radius so that future magnets can be wound from prereacted Nb 3 Sn. The windings of the two-aperture magnets were clamped in a two-in-one iron yoke with a tensioned stainless steel shell. The fields of the two apertures were closely coupled, since the flux in one aperture returned through the other. The inner and outer layers of the coil were powered separately so that their short-sample limits would be reached simultaneously. With minimal training the magnets reached a central field of 6 T, the short sample limit of the conductor at the 4.5 K temperature of the liquid helium bath. At 2.6 K, a central field in excess of 7 T was reached, again with minimal training. The measured values of the allowed sextupole and decapole harmonics are within 10% of the calculated values and the non-allowed harmonics are all small or zero, as predicted. 3 references, 6 figures

  19. Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility

    International Nuclear Information System (INIS)

    Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

    1987-09-01

    The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb 3 Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil is instrumented to permit measurement of helium temperature, pressure, and flow rate; structure temperature and strain; field; and normal zone voltage. A resistive heater has been installed to simulate nuclear heating, and inductive heaters have been installed to facilitate stability testing. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition (resistive transition index = 4). The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1 J/cm 3 of strands. In another, nonresistive location, the stability margin was between 1.7 and 1.9 J/cm 3 of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes

  20. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-06-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence.

  1. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    International Nuclear Information System (INIS)

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-01-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence

  2. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    International Nuclear Information System (INIS)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data

  3. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data.

  4. Development of superconducting magnets for magnetically levitated trains

    International Nuclear Information System (INIS)

    Ohno, E.; Iwamoto, M.; Ogino, O.; Kawamura, T.

    1974-01-01

    Superconducting magnets will play a vital role in magnetically levitated trains, producing lift, guidance and propulsion forces. The main problems in the design are the current density of coils and the cryogenic thermal insulation. This paper describes the development of full-scale levitation magnets with length of 1.55m and width of 0.3 or 0.5m. Dynamic levitation tests using small model magnets are also presented. (author)

  5. Laced permanent magnet quadrupole drift tube magnets

    International Nuclear Information System (INIS)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs

  6. Novel electro-magnetic test facility for the calibration of a propulsor fluctuating force module

    International Nuclear Information System (INIS)

    Schofield, N.; Lonsdale, A.; Hodges, A.Y.

    2004-01-01

    The testing of scale model propulsors is an essential part of any marine propulsion design process. The fluctuating force module (FFM) is a self-contained, instrumented propulsor drive system designed to be an integral part of a scaled propulsor test facility. This paper describes a novel electro-magnetic test facility which provides a static axial thrust of 0-1 kN and triaxial dynamic forces of 0.3-3 Nrms, at frequencies of 80-800 Hz, to an equivalent propulsor mass rotating at speeds of 0-900 rpm, in order to calibrate the FFM force measurement systems

  7. The permanent NdFeB magnets in the circuits for magnetic filters and the first technological tests

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel; Mucha, Pavel

    2005-01-01

    Roč. 78, - (2005), s. 31-39 ISSN 0301-7516 R&D Projects: GA AV ČR IBS3046004 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic circuit * magnetic filter * rare earth magnets ( NdFeB ) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.965, year: 2005

  8. Upgrade of the cryogenic infrastructure of SM18, CERN main test facility for superconducting magnets and RF cavities

    Science.gov (United States)

    Perin, A.; Dhalla, F.; Gayet, P.; Serio, L.

    2017-12-01

    SM18 is CERN main facility for testing superconducting accelerator magnets and superconducting RF cavities. Its cryogenic infrastructure will have to be significantly upgraded in the coming years, starting in 2019, to meet the testing requirements for the LHC High Luminosity project and for the R&D program for superconducting magnets and RF equipment until 2023 and beyond. This article presents the assessment of the cryogenic needs based on the foreseen test program and on past testing experience. The current configuration of the cryogenic infrastructure is presented and several possible upgrade scenarios are discussed. The chosen upgrade configuration is then described and the characteristics of the main newly required cryogenic equipment, in particular a new 35 g/s helium liquefier, are presented. The upgrade implementation strategy and plan to meet the required schedule are then described.

  9. Superconducting Magnet Performance in LCLS-II Cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V. [Fermilab; Cheban, S. [Fermilab; DiMarco, J. [Fermilab; Harms, E. [Fermilab; Makarov, A. [Fermilab; Strauss, T. [Fermilab; Tartaglia, M. [Fermilab

    2018-04-01

    New LCLS-II Linear Superconducting Accelerator Cry-omodules are under construction at Fermilab. Installed in-side each SCRF Cryomodule is a superconducting magnet package to focus and steer an electron beam. The magnet package is an iron dominated configuration with conduc-tively cooled racetrack-type quadrupole and dipole coils. For easier installation the magnet can be split in the vertical plane. Initially the magnet was tested in a liquid helium bath, and high precision magnetic field measurements were performed. The first (prototype) Cryomodule with the magnet inside was built and successfully tested at Fermilab test facility. In this paper the magnet package is discussed, the Cryomodule magnet test results and current leads con-duction cooling performance are presented. So far magnets in nine Cryomodules were successfully tested at Fermilab.

  10. Computer-assisted acoustic emission analysis in alternating current magnetization and hardness testing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Blochwitz, M.; Kretzschmar, F.; Rattke, R.

    1985-01-01

    Non-destructive determination of material characteristics such as nilductility transition temperature is of high importance in component monitoring during long-term operation. An attempt has been made to obtain characteristics correlating with mechanico-technological material characteristics by both acoustic resonance through magnetization (ARDM) and acoustic emission analysis in Vickers hardness tests. Taking into account the excitation mechanism of acoustic emission generation, which has a quasistationary stochastic character in a.c. magnetization and a transient nature in hardness testing, a microcomputerized device has been constructed for frequency analysis of the body sound level in ARDM evaluation and for measuring the pulse sum and/or pulse rate during indentation of the test specimen in hardness evaluation. Prerequisite for evaluating the measured values is the knowledge of the frequency dependence of the sensors and the instrument system. The results obtained are presented. (author)

  11. [Magnetic resonance compatibility research for coronary mental stents].

    Science.gov (United States)

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  12. Testing of high current by-pass diodes for the LHC magnet quench protection

    International Nuclear Information System (INIS)

    Berland, V.; Hagedorn, D.; Rodriguez-Mateos, F.

    1996-01-01

    Within the framework of the Large Hadron Collider (LHC) R and D program, CERN is performing experiments to establish the current carrying capability of irradiated diodes at liquid Helium temperatures for the superconducting magnet protection. Even if the diodes are degraded by radiation dose and neutron fluence, they must be able to support the by-pass current during a magnet quench and the de-excitation of the superconducting magnet ring. During this discharge, the current in the diode reaches a maximum value up to 13 kA and decreased with an exponential time constant of 100 s. Two sets of 75 mm wafer diameter epitaxial diodes, one irradiated and one non-irradiated, were submitted to this experiment. The irradiated diodes have been exposed to radiation in the accelerator environment up to 20 kGy and then annealed at room temperature. After the radiation exposure the diodes had shown a degradation of forward voltage of 50% which reduced to about 14% after the thermal annealing. During the long duration high current tests, one of the diodes was destroyed and the other two irradiated diodes showed a different behavior compared with non-irradiated diodes

  13. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests

  14. In vitro toxicity test and searching the possibility of cancer cell line extermination by magnetic heating with using Fe3O4 magnetic fluid

    International Nuclear Information System (INIS)

    Pham Hoai Linh; Nguyen Chi Thuan; Nguyen Anh Tuan; Pham Van Thach; Nguyen Xuan Phuc; Le Van Hong; Tran Cong Yen; Nguyen Thi Quy; Hoang Thi My Nhung; Phi Thi Xuyen

    2009-01-01

    A Fe 3 O 4 based magnetic fluid with different concentrations ranged between 0.15 ng/cell to 10 ng/cell (nano gram/cell) was used in the in vitro toxicity test on several cancer cell lines, Sarcoma 180, HeLa and H358. It shows that the fluid with a concentration of Fe 3 O 4 below 1.2 ng/cell is completely non-toxic for these cell lines. Even through in the presence of the highest concentration of 10 ng/cell, the cell viability still reaches more than 60%. The magnetic fluid with Fe 3 O 4 concentration of about 0.1 ng/cell was also used to search ex-vivo the possibility of Sarcoma 180 extermination by magnetic heating with an AC field of 120Oe and 184 KHz. The result shows that after a heat treatment for 30 min., 40% of Sarcoma 180 cells was killed.

  15. Generation of static magnetic fields by a test charge in a plasma with anisotropic electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Yu.M.; Bychenkov, V.Yu.; Frolov, A.A. (AN SSSR, Moscow. Fizicheskij Inst.)

    Structure of electomagnetic field generated with a charge in a plasma with anisotropic electron temperature has been studied. Unlike a hydrodynamical approach to study on the magnetic field qeneration with a test charge a kinetic theory describing spatial distribution of both magnetic and electrostatic components of charge field was constructed. Such theory results permit to investigate the charge field structure both at distances larger than length of free electron path and not exceeding it. The developed theory can serve as the basis for development of new methods for anisotropic plasma diagnostics.

  16. Test Results of a 1.2 kg/s Centrifugal Liquid Helium Pump for the ATLAS Superconducting Toroid Magnet System

    CERN Document Server

    Pengo, R; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The toroid superconducting magnet of ATLAS-LHC experiment at CERN will be indirectly cooled by means of forced flow of liquid helium at about 4.5 K. A centrifugal pump will be used, providing a mass flow of 1.2 kg/s and a differential pressure of 40 kPa (ca. 400 mbar) at about 4300 rpm. Two pumps are foreseen, one for redundancy, in order to feed in parallel the cooling circuits of the Barrel and the two End-Caps toroid magnets. The paper describes the tests carried out at CERN to measure the characteristic curves, i.e. the head versus the mass flow at different rotational speeds, as well as the pump total efficiency. The pump is of the "fullemission" type, i.e. with curved blades and it is equipped with an exchangeable inducer. A dedicated pump test facility has been constructed at CERN, which includes a Coriolis-type liquid helium mass flow meter. This facility is connected to the helium refrigerator used for the tests at CERN of the racetrack magnets of the Barrel and of the End-Cap toroids.

  17. Magnetic measurement of soft magnetic composites material under 3D SVPWM excitation

    Science.gov (United States)

    Zhang, Changgeng; Jiang, Baolin; Li, Yongjian; Yang, Qingxin

    2018-05-01

    The magnetic properties measurement and analysis of soft magnetic material under the rotational space-vector pulse width modulation (SVPWM) excitation are key factors in design and optimization of the adjustable speed motor. In this paper, a three-dimensional (3D) magnetic properties testing system fit for SVPWM excitation is built, which includes symmetrical orthogonal excitation magnetic circuit and cubic field-metric sensor. Base on the testing system, the vector B and H loci of soft magnetic composite (SMC) material under SVPWM excitation are measured and analyzed by proposed 3D SVPWM control method. Alternating and rotating core losses under various complex excitation with different magnitude modulation ratio are calculated and compared.

  18. A new building for testing magnets

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A ceremony to mark the laying of the foundation stone of Building 311, which will house a magnetic measurement laboratory, took place on 22 September.   Olaf Dunkel, head of the Building 311 project, José Miguel Jiménez, head of the Technology Department, and Lluis Miralles, head of the Site Management and Buildings Department, during the ceremony for the laying of the foundation stone of Building 311. Lluis Miralles, head of the Site Management and Buildings Department, José Miguel Jiménez, head of the Technology Department, Roberto Losito, head of the Engineering Department, and Simon Baird, head of the Occupational Health and Safety and Environmental Protection Unit, officially laid the foundation stone of Building 311 during a ceremony on Thursday, 22 September. Situated beside the water tower, the building will house a magnetic measurement laboratory for the Technology Department. With a floor space of around 1400 square metres, it will comprise a...

  19. Monitoring of aquifer pump tests with Magnetic Resonance Sounding (MRS): a synthetic case study

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Auken, E.; Bauer-Gottwein, Peter

    2011-01-01

    Magnetic Resonance Sounding (MRS) can provide valuable data to constrain and calibrate groundwater flow and transport models. With this non-invasive geophysical technique, measurements of water content and hydraulic conductivity can be obtained. We developed a hydrogeophyiscal forward method, which...... calculates the MRS-signal generated by an aquifer pump test. A synthetic MRS-dataset was subsequently used to determine the hydrogeological parameters in an inverse parameter estimation approach. This was done for a virtual pump test with a partially and a fully penetrating well. With the MRS data we were...

  20. Magnet Test Setup of the CMS Tracker ready for installation

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The pieces of the Tracker that will be operated in the forthcoming Magnet Test and Cosmic Challenge (MTCC) have been transported inside the dummy tracker support tube to the CMS experimental hall (Point 5, Cessy). The operation took place during the night of 12th May, covering the ~15km distance in about three hours. The transport was monitored for shocks, temperature and humidity with the help of the CERN TS-IC section. The Tracker setup comprises segments of the Tracker Inner Barrel (TIB), the Tracker Outer Barrel (TOB) and Tracker EndCaps (TEC) detectors. It represents roughly 1% of the final CMS Tracker. Installation into the solenoid is foreseen to take place on Wednesday 17th May.

  1. Load test with the mobile telescopic crane (160 T) for handling LHC magnets

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    CERN has taken delivery of a new telescopic mobile crane. The new crane will be required to load LHC dipole magnets made in Building SM18 onto a trailer that will take them to the Prévessin site, where they will be put in storage until they can be lowered into the tunnel. It has passed its first operating tests, which consisted of lifting a 37-tonne concrete block.

  2. Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A., E-mail: anipatel2009@gmail.com [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Bhattacharyay, R. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Swain, P.K.; Satyamurthy, P. [Bhabha Atomic Research Center, Mumbai 400085, Maharashtra (India); Sahu, S.; Rajendrakumar, E. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Ivanov, S.; Shishko, A.; Platacis, E.; Ziks, A. [Institute of Physics, University of Latvia, Salaspils 2169 (Latvia)

    2014-10-15

    Highlights: • Effect of structural material on liquid metal MHD phenomena is studied. • Two identical test sections, one made of SS316L (non-magnetic) and other made of SS430 (ferromagnetic) structural material, are considered. • Wall electric potential and liquid metal pressure drop are compared under various experimental conditions. • Experimental results suggest screening of external magnetic field for SS430 material below the saturation magnetic field. - Abstract: In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4 T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25 mm × 25 mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. Pb–Li enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ∼0.28 m length in plane perpendicular to the magnetic field and faces two 90° bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2 T)

  3. Design and results of testing the SHF-generator magnetic system of the T-15 device

    International Nuclear Information System (INIS)

    Borisov, V.D.; Koretskij, A.Yu.; Kostenko, A.I.; Monoszon, N.A.; Ostroumov, Yu.N.; Suvorov, M.M.; Trokhachev, G.V.; Churakov, G.F.; Shmal'ko, G.I.; Yakubovskij, V.G.

    1984-01-01

    Design and engineering solutions accepted in the development of the 5T superconducting solenoid of the auxillary heating SHF-generator for the T-15 tokamak are presented. A superconducting coil generates an axially symmetric field with a definite distribution along the SHF-generator gyrocon axis. Limited sizes, high accuracy of coincidence of geometric and magnetic axes, and possibility of operation with different gyrocons are the main peculiarities of the developed cryostat. The required magnetic field of 5T was attained after some training. Heat input at 4.5 K corresponds to the rated value of 2.5 W. Test results for solenoid functional models are presented

  4. Progress towards extreme attitude testing with Magnetic Suspension and Balance Systems

    Science.gov (United States)

    Britcher, Colin P.; Parker, David H.

    1988-01-01

    Progress is reported in a research effort aimed towards demonstration of the feasibility of suspension and aerodynamic testing of models at high angles of attack in wind tunnel Magnetic Suspension and Balance Systems. Extensive modifications, described in this paper, have been made to the Southampton University suspension system in order to facilitate this work. They include revision of electromagnet configuration, installation of all-new position sensors and expansion of control system programs. An angle of attack range of 0 to 90 deg is expected for axisymmetric models. To date, suspension up to 80 deg angle of attack has been achieved.

  5. Use of the magnetic test-filter for magnetic control of ferroimpurities of fuels, oils, and other liquids (phenomenological and physical models)

    Energy Technology Data Exchange (ETDEWEB)

    Anna, Sandulyak, E-mail: anna.sandulyak@mail.ru; Alexander, Sandulyak; Vera, Ershova; Maria, Polismakova; Darya, Sandulyak

    2017-03-15

    It is noted that in most cases, mechanical impurities of technological liquides are ferroimpurities, possessing ferromagnetic properties; therefore for their control (as well as for the decision taking on the possible use of magnetophoresis devices for their removal) the preference should be given to magnetic methods. In the development of the existing options of magnetic control, used in metrology of ferroimpurities control (including ferrography), the main provisions of the relatively new, tested on a number of process liquids (including fuels and lubricants) poly-operational experimental calculation method is set out. Unlike already practiced experimental methods, it allows the implementation of more objective control. Operational data of magnetic control of ferroimpurities in motor oils, gasoline, diesel fuel and others are given. Based on the phenomenological approach (using the method of functional legalization of mass-operational charachteristics in semi-logarithmic coordinates) the expressions for calculating the operating masses (including the forecasted ones outside of the experiment), and, most importantly, for the calculation of the total mass for unlimited and limited number of operations are obtained. Along that expressions (with the relevant data) for determination of the error control during the limitation of the number of operations and inverse expression for the required number of operations subject to the margin of error are receieved. Based on the physical approach (assuming concepts of absorption screen of exponential type) the design formulas correlated with the phenomenological ones for calculating operating mass and the total mass of ferroimpurities (including the residual) in the analyzed sample probe are obtained. The physical meaning of the number of parameters, which were previously considered exclusively empirical, is figured out. - Highlights: • The method of magnetic sedimentation of wear particle has been examined • The main

  6. Use of the magnetic test-filter for magnetic control of ferroimpurities of fuels, oils, and other liquids (phenomenological and physical models)

    International Nuclear Information System (INIS)

    Anna, Sandulyak; Alexander, Sandulyak; Vera, Ershova; Maria, Polismakova; Darya, Sandulyak

    2017-01-01

    It is noted that in most cases, mechanical impurities of technological liquides are ferroimpurities, possessing ferromagnetic properties; therefore for their control (as well as for the decision taking on the possible use of magnetophoresis devices for their removal) the preference should be given to magnetic methods. In the development of the existing options of magnetic control, used in metrology of ferroimpurities control (including ferrography), the main provisions of the relatively new, tested on a number of process liquids (including fuels and lubricants) poly-operational experimental calculation method is set out. Unlike already practiced experimental methods, it allows the implementation of more objective control. Operational data of magnetic control of ferroimpurities in motor oils, gasoline, diesel fuel and others are given. Based on the phenomenological approach (using the method of functional legalization of mass-operational charachteristics in semi-logarithmic coordinates) the expressions for calculating the operating masses (including the forecasted ones outside of the experiment), and, most importantly, for the calculation of the total mass for unlimited and limited number of operations are obtained. Along that expressions (with the relevant data) for determination of the error control during the limitation of the number of operations and inverse expression for the required number of operations subject to the margin of error are receieved. Based on the physical approach (assuming concepts of absorption screen of exponential type) the design formulas correlated with the phenomenological ones for calculating operating mass and the total mass of ferroimpurities (including the residual) in the analyzed sample probe are obtained. The physical meaning of the number of parameters, which were previously considered exclusively empirical, is figured out. - Highlights: • The method of magnetic sedimentation of wear particle has been examined • The main

  7. Assembly and Test of HD2, a 36 mm bore high field Nb3Sn Dipole Magnet

    International Nuclear Information System (INIS)

    Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D.W.; Dietderich, D.R.; Felice, H.; Godeke, A.; Hafalia, A.R.; Hannaford, C.R.; Joseph, J.; Lietzke, A.F.; Lizarazo, J.; Sabbi, G.; Trillaud, F.; Wang, X.

    2008-01-01

    We report on the fabrication, assembly, and test of the Nb 3 Sn dipole magnet HD2. The magnet, aimed at demonstrating the application of Nb 3 Sn superconductor in high field accelerator-type dipoles, features a 36 mm clear bore surrounded by block-type coils with tilted ends. The coil design is optimized to minimize geometric harmonics in the aperture and the magnetic peak field on the conductor in the coil ends. The target bore field of 15 T at 4.3 K is consistent with critical current measurements of extracted strands. The coils are horizontally pre-stressed during assembly using an external aluminum shell pre-tensioned with water-pressurized bladders. Axial pre-loading of the coil ends is accomplished through two end plates and four aluminum tension rods. The strain in coil, shell, and rods is monitored with strain gauges during assembly, cool-down and magnet excitation, and compared with 3D finite element computations. Magnet's training performance, quench locations, and ramp-rate dependence are then analyzed and discussed.

  8. Tests results of Nb$_{3}$Sn quadrupole magnets using a shell-based support structure

    CERN Document Server

    Caspi, S

    2009-01-01

    In support of the development of a 90 mm aperture Nb$_{3}$Sn superconducting quadrupole for the US LHC Accelerator Research Program (LARP), test results of five quadrupole magnets are compared. All five assemblies used key and bladder technology to compress and support the coils within an iron yoke and an aluminium shell. The first three models (TQS01a, b, c) used Nb$_{3}$Sn MJR conductor and segmented bronze poles. The last two models (TQS02a, b) used Nb$_{3}$Sn RRP conductor, and segmented titanium alloy (TiAl6V4) poles, with no axial gaps during reaction. This presentation summarizes the magnets performance during assembly, cool-down and excitation and compares measurements with design expectations.

  9. Test Results of the LARP HQ02b Magnet at 1.9 K

    OpenAIRE

    Bajas, H; Bajko, M; Bottura, L; Chiuchiolo, A; Dunkel, O; Ferracin, P; Feuvrier, J; Giloux, Chr; Todesco, E; Ravaioli, E; Caspi, S; Dietderich, D; Felice, H; Hafalia, A R; Marchevsky, M

    2015-01-01

    The HQ magnet is a 120 mm aperture, 1-meter-long Nb3Sn quadrupole developed by the LARP collaboration in the framework of the High-Luminosity LHC project. A first series of coils was assembled and tested in 5 assemblies of the HQ01 series. The HQ01e model achieved a maximum gradient of 170 T/m at 4.5 K at LBNL in 2010-2011 and reached 184 T/m at 1.9 K at CERN in 2012. A new series of coils incorporating major design changes was fabricated for the HQ02 series. The first model, HQ02a, was teste...

  10. Bias magnetic field and test period dependences of direct and converse magnetoelectric hysteresis of tri-layered magnetoelectric composite

    Science.gov (United States)

    Zhou, Yun; Li, Xiao-Hong; Wang, Jian-Feng; Zhou, Hao-Miao; Cao, Dan; Jiao, Zhi-Wei; Xu, Long; Li, Qi-Hao

    2018-04-01

    The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.

  11. The magnet database system

    International Nuclear Information System (INIS)

    Ball, M.J.; Delagi, N.; Horton, B.; Ivey, J.C.; Leedy, R.; Li, X.; Marshall, B.; Robinson, S.L.; Tompkins, J.C.

    1992-01-01

    The Test Department of the Magnet Systems Division of the Superconducting Super Collider Laboratory (SSCL) is developing a central database of SSC magnet information that will be available to all magnet scientists at the SSCL or elsewhere, via network connections. The database contains information on the magnets' major components, configuration information (specifying which individual items were used in each cable, coil, and magnet), measurements made at major fabrication stages, and the test results on completed magnets. These data will facilitate the correlation of magnet performance with the properties of its constituents. Recent efforts have focused on the development of procedures for user-friendly access to the data, including displays in the format of the production open-quotes travelerclose quotes data sheets, standard summary reports, and a graphical interface for ad hoc queues and plots

  12. Magnetic Behavior of Sintered NdFeB Magnets on a Long-Term Timescale

    Directory of Open Access Journals (Sweden)

    Minna Haavisto

    2014-01-01

    Full Text Available Stable polarization of permanent magnets over the lifetime of the application is an important aspect in electrical machine design. Specification of the long-term stability of magnet material is difficult, since knowledge of the phenomenon is incomplete. To be able to optimize magnet material selection, the long-term magnetic behavior of the material must also be understood. This study shows that material with a very square JH curve is stable until a certain critical operating temperature is reached. Major losses are detected as the critical temperature is exceeded. Material with a rounder JH curve does not show a well-defined critical temperature, but increasing losses over a large temperature range. The critical temperature of a material is also dependent on the field conditions. Results differ whether the tests are performed in an open or closed magnetic circuit. In open-circuit tests, the opposing field is not homogeneously distributed throughout the volume of the magnet and thus the long-term behavior is different than that in closed-circuit conditions. Open-circuit tests seem to give bigger losses than closed-circuit tests in cases where the permeance coefficient of the open-circuit sample is considered to be the average permeance coefficient, calculated according to the dimensions of the magnet.

  13. Comparison of different cryogenic control strategies via simulation applied to a superconducting magnet test bench at CERN

    Science.gov (United States)

    Arpaia, P.; Coppier, H.; De Paola, D.; di Bernardo, M.; Guarino, A.; Pedemonte, B. Luz; Pezzetti, M.

    2017-12-01

    Industrial process controllers for cryogenic systems used in test facilities for superconducting magnets are typically PIDs, tuned by operational expertise according to users’ requirements (covering cryogenic transients and associated thermo-mechanical constraints). In this paper, an alternative fully-automatic solution, equally based on PID controllers, is proposed. Following the comparison of the operational expertise and alternative fully-automatic approaches, a new process control configuration, based on an estimated multiple-input/multiple-output (MIMO) model is proposed. The new MIMO model-based approach fulfils the required operational constraints while improving performance compared to existing solutions. The analysis and design work is carried out using both theoretical and numerical tools and is validated on the case study of the High Field Magnet (HFM) cryogenic test bench running at the SM18 test facility located at CERN. The proposed solution have been validated by simulation using the CERN ECOSIMPRO software tools using the cryogenic library (CRYOLIB [1]) developed at CERN.

  14. The suspended magnetic separator with large blocks from NdFeB magnets and its long term technological tests

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2011-01-01

    Roč. 8, č. 1 (2011), s. 89-97 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic separation * magnetic separators * magnetic circuits Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/01_11/8_Zezulka.pdf

  15. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  16. Design, construction and test of a corrector coil set for magnetic field homogenization of a dipolar magnet

    International Nuclear Information System (INIS)

    Pires, L.R.

    1987-01-01

    A method to improve the homogeneity of the distribution of the magnetic flux density in the gap of a dipole magnet. It is based on correcting the magnetic field by means of a system of coils, which employs etching thin copper foils, similarly as those for electronic circuits, is presented. The advantage of this method lies on its simplicity, its small space use, and its low price. The method was applied to correct the field of a dipole magnet, and it worked properly. (author) [pt

  17. Magnetic Resonance Cholangiopancreatographv: A Meta-Analysis of Test Performance in Suspected Biliary Disease

    International Nuclear Information System (INIS)

    Romagnuolo J; Bardou M; Rahme, E and others

    2004-01-01

    Magnetic resonance cholangiopancreatography (MRCP) is one of many newer noninvasive tests that can image the biliary tree. To precisely estimate the overall sensitivity and specificity of MRCP in suspected biliary obstruction and to evaluate clinically important subgroups. MEDLINE search (January 1987 to March 2003) for studies in English or French, bibliographies, and subject matter experts. Studies were included if they allowed construction of 2x2 contingency tables of MRCP compared with a reasonable gold standard for at least 1 of the following: the presence, level, or cause of biliary obstruction. Two independent observers graded study quality, which included consecutive enrollment, blinding, use of a single (versus composite) gold standard, and nonselective use of the gold standard. Logistic regression was used to examine the influence of publication year, quality score, proportion of patients having a direct gold standard, and clinical context on diagnostic performance. Of 498 studies identified, 67 were included (4711 patients). Mixed-effect models were used to estimate the sensitivity and specificity, and quantitative receiver-operating characteristic analysis was performed. Magnetic resonance cholangiopancreatography had a high overall pooled sensitivity (95% (+/-1.96 SD: spread of SD, 75% to 99%) and specificity (97% (spread of SD, 86% to 99 %)) The procedure was less sensitive for stones (92%; odds ratio, 0.51 (CI, 0.35 to 0.75) and malignant conditions (88%; odds ratio, 0.28 (CI, 0.18 to 0.44f) than for the presence of obstruction, In addition, diagnostic performance was higher in studies that were larger, did not use consecutive enrollment, and did not use gold standard assessment for some patients. Magnetic resonance cholangiopancreatography is a noninvasive imaging test with excellent overall sensitivity and specificity for demonstrating the level and presence of biliary obstruction; however, it seems less sensitive for detecting stones or

  18. Design and application of permanent magnet flux sources for mechanical testing of magnetoactive elastomers at variable field directions.

    Science.gov (United States)

    Hiptmair, F; Major, Z; Haßlacher, R; Hild, S

    2015-08-01

    Magnetoactive elastomers (MAEs) are a class of smart materials whose mechanical properties can be rapidly and reversibly changed by an external magnetic field. Due to this tunability, they are useable for actuators or in active vibration control applications. An extensive magnetomechanical characterization is necessary for MAE material development and requires experiments under cyclic loading in uniform but variable magnetic fields. MAE testing apparatus typically rely on fields of adjustable strength, but fixed (transverse) direction, often provided by electromagnets. In this work, two permanent magnet flux sources were developed as an add-on for a modular test stand, to allow for mechanical testing in uniform fields of variable direction. MAE specimens, based on a silicone matrix with isotropic and anisotropic carbonyl iron particle distributions, were subjected to dynamic mechanical analysis under different field and loading configurations. The magneto-induced increase of stiffness and energy dissipation was determined by the change of the hysteresis loop area and dynamic modulus values. A distinct influence of the composite microstructure and the loading state was observed. Due to the very soft and flexible matrix used for preparing the MAE samples, the material stiffness and damping behavior could be varied over a wide range via the applied field direction and intensity.

  19. The influence of the magnetic field on the crystallisation form of calcium carbonate and the testing of a magnetic water-treatment device

    Energy Technology Data Exchange (ETDEWEB)

    Kobe, S. E-mail: spomenka.kobe@ijs.si; Drazic, G.; McGuiness, P.J.; Strazisar, J

    2001-10-01

    By using X-ray analysis and a TEM equipped with a link AN-10000 EDXS analysing system and an ultra-thin-window Si(Li) detector, different crystal forms of CaCO{sub 3} crystals were characterised. These crystals were grown from tap water and model water both with and without a magnetic field. Separate aragonite crystals were formed in the treated water and clusters of calcite in the untreated water. We observed that under the influence of a magnetic field higher than 500 mT, the nucleation and subsequent growth of aragonite could be successfully used as a way of preventing scale. The prototype of a magnetic water-treatment device (MWTD) was constructed for testing in a pilot plant that treats tap water. It has been in use for more than 2 years and the results look very promising for reducing the need for chemically treated water. The weight gains of the heat exchangers, which were used in the three parallel pipelines equipped with three different devices against scaling, were followed. The MWTD designed and built in the IJS laboratory, showed only a slightly higher weight gain than that achieved with the use of chemicals.

  20. The influence of the magnetic field on the crystallisation form of calcium carbonate and the testing of a magnetic water-treatment device

    International Nuclear Information System (INIS)

    Kobe, S.; Drazic, G.; McGuiness, P.J.; Strazisar, J.

    2001-01-01

    By using X-ray analysis and a TEM equipped with a link AN-10000 EDXS analysing system and an ultra-thin-window Si(Li) detector, different crystal forms of CaCO 3 crystals were characterised. These crystals were grown from tap water and model water both with and without a magnetic field. Separate aragonite crystals were formed in the treated water and clusters of calcite in the untreated water. We observed that under the influence of a magnetic field higher than 500 mT, the nucleation and subsequent growth of aragonite could be successfully used as a way of preventing scale. The prototype of a magnetic water-treatment device (MWTD) was constructed for testing in a pilot plant that treats tap water. It has been in use for more than 2 years and the results look very promising for reducing the need for chemically treated water. The weight gains of the heat exchangers, which were used in the three parallel pipelines equipped with three different devices against scaling, were followed. The MWTD designed and built in the IJS laboratory, showed only a slightly higher weight gain than that achieved with the use of chemicals

  1. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  2. Magnetic nanofluids and magnetic composite fluids in rotating seal systems

    International Nuclear Information System (INIS)

    Borbath, T; Borbath, I; Boros, T; Bica, D; Vekas, L; Potencz, I

    2010-01-01

    Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. The behavior of different types of magnetizable fluids in the rotating sealing systems is analyzed. Design concepts, some constructive details and testing procedures of magnetofluidic rotating seals are presented such as the testing equipment. The main characteristics of several magnetofluidic sealing systems and their applications will be presented: vacuum deposition systems and liquefied gas pumps applications, mechanical and magnetic nanofluid combined seals, gas valves up to 40 bar equipped by rotating seal with magnetic nanofluids and magnetic composite fluids.

  3. Magnetic leakage shield of septum magnet for SPring-8 synchrotron

    International Nuclear Information System (INIS)

    Abe, Hiroshi; Aoki, Tsuyoshi; Fukami, Kenji

    1997-01-01

    This paper describes magnetic field measurements of the prototype septum magnet and countermeasure for reducing the leakage magnetic fields in the incidence and the extraction parts of the SPring-8 synchrotron. We studied and developed 'leakage magnetic shield' on the basis of the tests data got in these measurements. Consequentially, it succeeded in reducing effects of the leakage field to about 50% by installing the shield board in the magnet main body. Then, it was possible to manufacture the magnet which sufficiently held the effect of the leakage field for the electron and positron beam. In this examination, we confirmed the reproduction with the magnetic field distribution of the magnet measured in the manufacturer. We developed and produced of the septum magnets which were carried out determination of the shapes of the magnetic shielding. (author)

  4. Design of a signal conditioner for the Fermilab Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Giannelli, Pietro [Turin Polytechnic

    2012-01-01

    This thesis describes the design of a remotely-programmable signal conditioner for the harmonic measurement of accelerator magnets. A 10-channel signal conditioning circuit featuring bucking capabilities was designed from scratch and implemented to the level of the printed circuit board layout. Other system components were chosen from those available on the market. Software design was started with the definition of routine procedures. This thesis is part of an upgrade project for replacing obsolescent automated test equipment belonging to the Fermilab Magnet Test Facility. The design started with a given set of requirements. Using a top-down approach, all the circuits were designed and their expected performances were theoretically predicted and simulated. A limited prototyping phase followed. The printed circuit boards were laid out and routed using a CAD software and focusing the design on maximum electromagnetic interference immunity. An embedded board was selected for controlling and interfacing the signal conditioning circuitry with the instrumentation network. Basic low level routines for hardware access were defined. This work covered the entire design process of the signal conditioner, resulting in a project ready for manufacturing. The expected performances are in line with the requirements and, in the cases where this was not possible, approval of trade-offs was sought and received from the end users. Part I deals with the global structure of the signal conditioner and the subdivision in functional macro-blocks. Part II treats the hardware design phase in detail, covering the analog and digital circuits, the printed circuit layouts, the embedded controller and the power supply selection. Part III deals with the basic hardware-related routines to be implemented in the final software.

  5. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    Science.gov (United States)

    Rista, P. E. C.; Shull, J.; Sargent, S.

    2015-12-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.

  6. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    International Nuclear Information System (INIS)

    C Rista, P E; Shull, J; Sargent, S

    2015-01-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen and helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper. (paper)

  7. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  8. The stability test of natural remanent magnetization (NRM) vulcanic rock of merapi mountain in central Java

    International Nuclear Information System (INIS)

    Husna; Rauf, Nurlela; Bijaksana, Satria

    2002-01-01

    An assessment has been done on magnetic properties of the rock from the area around the top of Merapi Mountain. The research conducted In form of stability test of Natural Remanent Magnetization (NRM), Which 16 specimens that used in that test were taken from Pasar Bubar, Kali Gendol and Kali Gendong Alternating Field Demagnetization Methods applied on measurement of intensity and direction of NRM and demagnetization process. The result shown that the rock from Pasar Bubar had mean intensity of 2255486 mA/meter with a range of declination 32.80 -650 and inclination -37.40 -3.90, Kali Gendol had mean intensity of 2469.387 mA/meter with range of declination of 356.10-110 and inclination of -490 --0.10, and Kali Gendong had mean Intensity of 4139.062 mA/meter with range of declination of 62.10 -12540 and inclination of -0.80 -3520. The stability test is determined from intensity curve, stereo net Plot. Zijderveld diagram and Maximum Angular Deviation (MAD) According the result, the specimen from kali gendol were the most stable and qualifield for further used on paleomagnetic study

  9. Sudden venting test of an emergency bearing for the magnet bearing type compound molecular pump

    International Nuclear Information System (INIS)

    Hiroki, Seiji; Abe, Tetsuya; Murakami, Yoshio; Okamoto, Masatomo; Iguchi, Masashi; Nakamura, Jyunichi; Nakazeki, Tsugito.

    1995-01-01

    The vacuum evacuation system for nuclear fusion reactors bears the role of exhausting hydrogen isotopes in large quantity together with helium continuously for long hours, and as the high vacuum pumps for this purpose, the mechanical pumps which can do continuous evacuation and decrease the quantity of staying radioactive tritium, such as turbo molecular pumps and compound molecular pumps, are promising. Because of the compatibility with tritium, oil lubrication is not desirable, accordingly, the pumps with ceramic rotating vanes and magnetic bearings are demanded. As a part of the development of a magnetic bearing type mechanical pump which can be used for nuclear fusion reactors, the compound molecular pump, in which emergency bearings were incorporated, was made for trial, and the test of sudden air intrusion was carried out, as the results, various knowledges were obtained. The constitution of the testing setup, and the test results are reported. When air was injected at the pressure rise of 3.3x10 4 Pa/s from exhaust port side, after about 2.5 s, the maximum lift of 4.2x10 3 N arose. When air was injected at the pressure rise of 2.7x10 5 Pa/s from the suction part side, after about 0.4s, the maximum lift of 6.9x10 3 N arose. In the air injection alternately from the suction port and exhaust port sides, the emergency bearings functioned normally in 10 times of the test. (K.I.)

  10. Detection of the Magnetic Easy Direction in Steels Using Induced Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Edgard M. Silva

    2016-12-01

    Full Text Available Conventional manufacturing processes cause plastic deformation that leads to magnetic anisotropy in processed materials. A deeper understanding of materials characterization under rotational magnetization enables engineers to optimize the overall volume, mass, and performance of devices such as electrical machines in industry. Therefore, it is important to find the magnetic easy direction of the magnetic domains in a simple and straightforward manner. The Magnetic easy direction can be obtained through destructive tests such as the Epstein frame method and the Single Sheet Tester by taking measurements in regions of irreversible magnetization usually called domains. In the present work, samples of rolled SAE 1045 steel (formed by perlite and ferrite microstructures were submitted to induced magnetic fields in the reversibility region of magnetic domains to detect the magnetic easy direction. The magnetic fields were applied to circular samples with different thicknesses and angles varying from 0° to 360° with steps of 45°. A square sample with a fixed thickness was also tested. The results showed that the proposed non-destructive approach is promising to evaluate the magnetic anisotropy in steels independently of the geometry of the sample. The region studied presented low induction losses and was affected by magnetic anisotropy, which did not occur in other works that only took into account regions of high induction losses.

  11. Toroidal simulation magnet tests

    International Nuclear Information System (INIS)

    Walstrom, P.L.; Domm, T.C.

    1975-01-01

    A number of different schemes for testing superconducting coils in a simulated tokamak environment are analyzed for their merits relative to a set of test criteria. Two of the concepts are examined in more detail: the so-called cluster test scheme, which employs two large background field coils, one on either side of the test coil, and the compact torus, a low-aspect ratio toroidal array of a small number of coils in which all of the coils are essentially test coils. Simulation of the pulsed fields of the tokamak is discussed briefly

  12. Supervision software for string 2 magnet test facility of large hadron collider project

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sanadhya, Vivek; Lal, Pradeep; Goel, Vijay; Mukhopadhyay, S.; Saha, Shilpi

    2001-01-01

    The Supervisory Control and Data Acquisition (SCADA) software for the String 2 test facility at CERN, Geneva is developed by BARC under the framework of CERN-DAE collaboration for LHC. The supervision application is developed using PCVue32 SCADA/MMI software. The String 2 test facility prototypes one full cell of LHC and is aimed at studying and validating the individual and collective behaviour of the superconducting magnets, before installing in the tunnel. The software integrates monitoring and supervisory control of all the main subsystems of String 2 such as Cryogenics, Vacuum, Power converters, Magnet protection, Energy extraction and interlock systems. It incorporates animated process synoptics, loop and equipment control panels, configurable trend windows for real-time and historical trending of process parameters, user settability for interlock and alarm thresholds, logging of process events, equipment faults and operator activity. The plant equipment are controlled by a variety of field located Programmable Logic Controllers and VME crates which communicate process IO to the central IO server using both vendor specific and custom protocols. The system leverages OPC (OLE for Process Controls) technology for realising a generic IO server. A large number of geographically distributed client stations are arranged to provide the process specific operator interface and these are connected to the Main IO server over CERN wide intranet and internet. (author)

  13. Magnetic design consideration of a Magnetic Lead Screw with Halbach Array

    DEFF Research Database (Denmark)

    Holm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand

    This paper presents the novel design of a Magnetic Lead Screw (MLS) with magnetic thread of Halbach Arrays. The MLS where designed and build, tests indicated a stall force which where 12 % lower than calculated in 3D FE. This is explained by demagnetization of the magnet during stall, the behavio...

  14. Synthesis and toxicity test of magnetic nanoparticle via biocompatible microemulsion system as template for application in targeted drug delivery

    Science.gov (United States)

    Kader, Razinah Abdul; Rose, Laili Che; Suhaimi, Hamdan; Manickam, Mariessa Soosai

    2017-09-01

    This work reports the preparation of magnetic nanoparticles (FeNPs) using biocompatible W/O microemulsion for biomedical applications. W/O microemulsion was formed using decane as oil phase, water, tween 80 as non-ionic surfactant and hexanol as organic solvent. The synthesized FeNPs were characterised by using Fourier Transform Infrared Resonance Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The FTIR showed that Fe-O bond exist on 581cm-1 having strong magnetic strength whereas SEM showed the morphology surface of magnetic nanoparticles (FeNPs). Furthermore, analysis of XRD pattern magnetic nanoparticles (FeNPs) reveals a cubic iron oxide phase with good crystallize structure. Furthermore, toxicity test on human liver cells proved that it is 70% safe on human and proved to be a safety nanomedicine.

  15. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  16. Design, fabrication and testing of a 56 mm bore twin-aperture 1 m long dipole magnet made with SSC type cable

    Energy Technology Data Exchange (ETDEWEB)

    Ostler, J.; Perini, D.; Russenschuck, S.; Siegel, N.; Siemko, A.; Trinquart, G.; Walckiers, L.; Weterings, W. [CERN, Geneva (Switzerland)

    1996-07-01

    In the framework of the LHC superconducting dipole magnet model program, a 56 mm bore, twin-aperture dipole model 1 m long, using existing cables of the standard SSC type, was launched to initiate studies of lower field magnets with smaller strand size cables for a 7 TeV collider. This model was designed, built, assembled and tested at CERN and reached a peak field of 9.7 T at 1.8 K. The paper reviews the main design principles, presents the fabrication and assembly procedures and finally discusses the overall test results.

  17. Design, fabrication and testing of a 56 mm bore twin-aperture 1 m long dipole magnet made with SSC type cable

    International Nuclear Information System (INIS)

    Ostler, J.; Perini, D.; Russenschuck, S.; Siegel, N.; Siemko, A.; Trinquart, G.; Walckiers, L.; Weterings, W.

    1996-01-01

    In the framework of the LHC superconducting dipole magnet model program, a 56 mm bore, twin-aperture dipole model 1 m long, using existing cables of the standard SSC type, was launched to initiate studies of lower field magnets with smaller strand size cables for a 7 TeV collider. This model was designed, built, assembled and tested at CERN and reached a peak field of 9.7 T at 1.8 K. The paper reviews the main design principles, presents the fabrication and assembly procedures and finally discusses the overall test results

  18. Tests of planar permanent magnet multipole focusing elements

    International Nuclear Information System (INIS)

    Cobb, J.; Tatchyn, R.

    1993-08-01

    In recent work, planar configurations of permanent magnets were proposed as substitutes for conventional current-driven iron quadrupoles in applications limited by small aperture sizes and featuring small beam occupation diameters. Important examples include the configuring of focusing lattices in small-gap insertion devices, and the implementation of compact mini-beta sections on linear or circular machines. In subsequent analysis, this approach was extended to sextupoles and higher-order multipoles. In this paper we report on initial measurements conducted at the Stanford Linear Accelerator Center on recently fabricated planar permanent magnet quadrupoles and sextupoles configured out of SmCo and NdFe/B

  19. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  20. Opportunities for the Reduction of Substances and Equipment Impact on Personnel in Penetrant and Magnetic Particles Testing

    OpenAIRE

    Yaremenko, Yuriy

    2015-01-01

    Penetrant testing (PT) and magnetic particles inspection (MPI) are widespread methods of non-destructive testing which are not required a lot of investments for manual application and are simple in terms of discontinuous interpretation. On the other hand, work with chemicals requires special precautions, safety instructions and disposal limitations. Growing demand among customers to decrease impact of consumables and equipment on personnel and environment, shift producers’ priorities to devel...

  1. The diagnostic value of three sacroiliac joint pain provocation tests for sacroiliitis identified by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Arnbak, B; Jurik, A G; Jensen, R K

    2017-01-01

    OBJECTIVES: The aim of the current study was to investigate the diagnostic value of three sacroiliac (SI) joint pain provocation tests for sacroiliitis identified by magnetic resonance imaging (MRI) and stratified by gender. METHOD: Patients without clinical signs of nerve root compression were...

  2. Fabrication and component testing results for a Nb3Sn dipole magnet

    International Nuclear Information System (INIS)

    Dell'Orco, D.; Scanlan, R.M.; Taylor, C.E.; Lietzke, A.; Caspi, S.; van Oort, J.M.; McInturff, A.D.

    1994-10-01

    At present, the maximum field achieved in accelerator R ampersand D dipoles is slightly over 10T, with NbTi conductor at 1.8 K. Although Nb 3 Sn has the potential to achieve much higher fields, none of the previous dipoles constructed from Nb 3 Sn have broken the 10T barrier. We report here on the construction of a dipole with high current density Nb 3 Sn with a predicted short sample limit of 13T. A wind and react technique, followed by epoxy impregnation of the fiberglass insulated coils, was used. The problems identified with the use of Nb 3 SD in earlier dipole magnets were investigated in a series of supplemental tests. This includes measurement of the degradation of J c with transverse strain, cabling degradation, joint resistance measurements, and epoxy strength tests. In addition, coff assembly techniques were developed to ensure that adequate prestress could be applied without damaging the reacted Nb 3 Sn cable. We report here the results of these tests and the construction status of this 50 mm bore dipole

  3. Beam-dump kicker magnets

    International Nuclear Information System (INIS)

    Bulos, F.; Odian, A.; Tomlin, B.

    1983-01-01

    The beam-dump kicker magnets are located in the final focus region and, in conjunction with septum magnets, extract the beams after they have passed the interaction point (IP) and direct them to their respective dumps. Two schemes for these kickers have been under consideration; ferrite transmission line magnets utilizing technology common with damping rings and positron target kickers, and current loop magnets which are possible only for the dump kickers, where the rise time of the magnetic pulse can be comparatively longer; approximately 400 nanoseconds as compared with 50 nanoseconds for the others. A prototype ferrite kicker has been built and is undergoing tests. Since the current loop requires lower voltage and power plus some additional savings in cost, we decided to build and test a prototype. This note describes in detail an optimized design for the current loop magnets and their associated pulse circuitry

  4. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer

    2015-01-01

    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...

  5. An experimental study on magnet for electro-magnetic suspension MagLev vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Seop; Chung, Hyun Kap [Korea Institute of Machinery and Metals (Korea, Republic of)

    1995-07-01

    This paper deals with characteristics of magnet that the levitation and guidance forces at static state and we tested and evaluated its. Also we compared to effect of levitation force with material and shape of guide way, focus on evaluation and method of test for the magnet of Urban Transit Maglev vehicle. (author). 3 refs., 9 figs., 2 tabs.

  6. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  7. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  8. Analysis and comparison of magnetic sheet insulation tests

    Science.gov (United States)

    Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.

    1994-05-01

    Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.

  9. Test of an Hypothesis of Magnetization, Tilt and Flow in an Hypabyssal Intrusion, Colombian Andes

    Science.gov (United States)

    Muggleton, S.; MacDonald, W. D.; Estrada, J. J.; Sierra, G. M.

    2002-05-01

    Magnetic remanence in the Miocene Clavijo intrusion in the Cauca Valley, adjacent to the Cordillera Central, plunges steeply northward (MacDonald et al., 1996). Assuming magnetization in a normal magnetic field, the expected remanence direction is approximately I= 10o, D= 000o; the observed remanence is I=84o, D=003o. The discrepancy could be explained by a 74o rotation about a horizontal E-W axis, i.e., about an axis normal to the nearby N-S trending Romeral fault zone. If the intrusion is the shallow feeder of a now-eroded andesitic volcano, then perhaps the paleovertical direction is preserved in flow lineations and provides a test of the tilt/rotation of the remanence. In combination, the steep remanence direction, vertical flow, and the inferred rotation of the volcanic neck lead to the hypothesis of a shallow-plunging southward lineation for this body. Using anisotropy of magnetic susceptibility (AMS) as a proxy for the flow lineation, it is predicted that the K1 (maximum susceptibility) axis in this body plunges gently south. This hypothesis was tested using approximately 50 oriented cores from 5 sites near the west margin of the Clavijo intrusion. The results suggest a NW plunging lineation, inconsistent with the initial hypothesis. However, a relatively consistent flow lineation is suggested by the K1 axes. If this flow axis represents paleovertical, it suggests moderate tilting of the Clavijo body towards the southeast. The results are encouraging enough to suggest that AMS may be useful for determining paleo-vertical in shallow volcanic necks and hypabyssal intrusions, and might ultimately be useful in a tilt-correction for such bodies. Other implications of the results will be discussed. MacDonald, WD, Estrada, JJ, Sierra, GM, Gonzalez, H, 1996, Late Cenozoic tectonics and paleomagnetism of North Cauca Basin intrusions, Colombian Andes: Dual rotation modes: Tectonophysics, v 261, p. 277-289.

  10. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    Science.gov (United States)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  11. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    Science.gov (United States)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  12. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms

    International Nuclear Information System (INIS)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-01-01

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards. (paper)

  13. Forced flow cooling of ISABELLE dipole magnets

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Aggus, J.; Brown, D.P.; Kassner, D.A.; Sondericker, J.H.; Strobridge, T.R.

    1976-01-01

    The superconducting magnets for ISABELLE will use a forced flow supercritical helium cooling system. In order to evaluate this cooling scheme, two individual dipole magnets were first tested in conventional dewars using pool boiling helium. These magnets were then modified for forced flow cooling and retested with the identical magnet coils. The first evaluation test used a l m-long ISA model dipole magnet whose pool boiling performance had been established. The same magnet was then retested with forced flow cooling, energizing it at various operating temperatures until quench occurred. The magnet performance with forced flow cooling was consistent with data from the previous pool boiling tests. The next step in the program was a full-scale ISABELLE dipole ring magnet, 4.25 m long, whose performance was first evaluated with pool boiling. For the forced flow test the magnet was shrunk-fit into an unsplit laminated core encased in a stainless steel cylinder. The high pressure gas is cooled below 4 K by a helium bath which is pumped below atmospheric pressure with an ejector nozzle. The performance of the full-scale dipole magnet in the new configuration with forced flow cooling, showed a 10 percent increase in the attainable maximum current as compared to the pool boiling data

  14. Design and test of a MR-imager with superconducting magnet

    International Nuclear Information System (INIS)

    Hentschel, D.; Vetter, J.

    1988-02-01

    Today magnets with small bores of some centimeters in diameter and flux densities of up to 12 T are used for Magnetic Resonance (MR) examinations of small animals and samples of tissue. To investigate the possibilities of MR imaging and spectrosocpy of humans at high flux densities, two superconducting whole-body magnets have been built by the Siemens AG and completed to research-type MR systems. First a 2 T magnet with a 1 m bore and second a 4 T magnet with a 1.25 m bore and a total weight of 10.6 t have been built. With the 2 T system methods for fast imaging (FISP) and precise determination of the longitudenal relaxation time T 1 were developed. For sepctroscopic applications several volume selection techniques were investigated. Phosphorus spectroscopy at the 4 T system demonstrated the gain in signal-to-noise ratio and spectral resolution. Hydrogen imaging of the head at 170 MHz is still possible without image degradation of the RF-field by penetration effects. Sodium imaging at 4 T offers the ability to reduce the measurement time or improve the spatial resolution. The clinical relevance of a 4 T MR-system has still to be investigated. (orig.) With 28 refs., 5 tabs., 60 figs [de

  15. Last PS magnet refurbished

    CERN Multimedia

    2009-01-01

    PS Magnet Refurbishment Programme Completed. The 51st and final refurbished magnet was transported to the PS on Tuesday 3 February. The repair and consolidation work on the PS started back in 2003 when two magnets and a busbar connection were found to be faulty during routine high-voltage tests. The cause of the fault was a combination of age and radiation on electrical insulation. After further investigation the decision was taken to overhaul half of the PS’s 100 magnets to reduce the risk of a similar fault. As from 20 February the PS ring will start a five-week test programme to be ready for operation at the end of March.

  16. Installation with magnetic suspension of test bodies for measurement of small forces. Verification of equivalence of inertial and gravitational mass

    International Nuclear Information System (INIS)

    Kalebin, S.M.

    1988-01-01

    Torsion installation with magnetic suspension of test bodies for detection of small forces is considered. Installation application for verification of equivalence of inertial and gravitational mass in the case of test body incidence on the Earth (Etvesh experiment) and in the case of their incidene on the Sun (Dicke experiment) is discussed. The total mass of test bodies, produced in the form of cylinders with 3 cm radius, equals 50 kg (one lead body and one copper body); beam radius of test bodies equals 3 cm (the cylinders are tight against one another); ferrite cylinder with 3 cm radius and 10 cm height is used for their suspension in magnetic field. Effect of thermal noise and electromagnetic force disturbances on measurement results is considered. Conducted calculations show that suggested installation enables to improve the accuracy of verifying mentioned equivalence at least by one order and upwards. This suggests that such installation is a matter of interest for experiments on small force detection

  17. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Spiridon V. Spirou

    2018-05-01

    Full Text Available Magnetic nanoparticle (MNP-mediated hyperthermia (MH coupled with radiation therapy (RT is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (“Radiomag”. The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a in vitro evaluation of MNPs; (b in vitro evaluation of MNP-cell interactions; (c in vivo evaluation of the MNPs; (d MH combined with RT; and (e pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.

  18. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  19. Investigations on the magnetization behavior of magnetic composite particles

    Energy Technology Data Exchange (ETDEWEB)

    Eichholz, Christian [Process Research and Chemical Engineering, BASF SE, Ludwigshafen (Germany); Knoll, Johannes, E-mail: johannes.knoll@kit.edu [Institute of Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Lerche, Dietmar [L.U.M. GmbH, Berlin (Germany); Nirschl, Hermann [Institute of Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2014-11-15

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments. - Highlights: • New model for magnetizability calculation of magnetic composite particles. • New method for particle bulk characterization relating to their magnetizability. • Model verification due to experimental data.

  20. Investigations on the magnetization behavior of magnetic composite particles

    International Nuclear Information System (INIS)

    Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann

    2014-01-01

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments. - Highlights: • New model for magnetizability calculation of magnetic composite particles. • New method for particle bulk characterization relating to their magnetizability. • Model verification due to experimental data

  1. ATLAS Magnet System Nearing Completion

    CERN Document Server

    ten Kate, H H J

    2008-01-01

    The ATLAS Detector at the Large Hadron Collider at CERN is equipped with a superconducting magnet system that consists of a Barrel Toroid, two End-Cap Toroids and a Central Solenoid. The four magnets generate the magnetic field for the muon- and inner tracking detectors, respectively. After 10 years of construction in industry, integration and on-surface tests at CERN, the magnets are now in the underground cavern where they undergo the ultimate test before data taking in the detector can start during the course of next year. The system with outer dimensions of 25 m length and 22 m diameter is based on using conduction cooled aluminum stabilized NbTi conductors operating at 4.6 K and 20.5 kA maximum coil current with peak magnetic fields in the windings of 4.1 T and a system stored magnetic energy of 1.6 GJ. The Barrel Toroid and Central Solenoid were already successfully charged after installation to full current in autumn 2006. This year the system is completed with two End Cap Toroids. The ultimate test of...

  2. Cryogenic system for the HERA magnet measurement facility

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Clausen, M.; Kebler, G.

    1986-01-01

    This paper describes the design for a helium, cryogenic distribution system that allows independent operation and testing of superconducting magnets of the HERA project before they are installed in the 6-km ring tunnel. The 820-GeV proton storage ring of HERA will contain approximately 650 magnets having superconducting coils which are clamped by aluminum/stainless-steel collars and surrounded by a yoke of magnetic iron at liquid helium temperature. When the magnets arive at DESY from the manufacture, each magnet will be individually tested at helium operating conditions in the magnet measurement facility to insure the quality of the magnetic characteristics and the cryogenic performance. The capabilities of the cryogenic system and the schedule for magnet testing are discussed

  3. Performance improvement of magnetized coaxial plasma gun by magnetic circuit on a bias coil

    Science.gov (United States)

    Edo, Takahiro; Matsumoto, Tadafumi; Asai, Tomohiko; Kamino, Yasuhiro; Inomoto, Michiaki; Gota, Hiroshi

    2016-10-01

    A magnetized coaxial plasmoid accelerator has been utilized for compact torus (CT) injection to refuel into fusion reactor core plasma. Recently, CT injection experiments have been conducted on the C-2/C-2U facility at Tri Alpha Energy. In the series of experiments successful refueling, i.e. increased particle inventory of field-reversed configuration (FRC) plasma, has been observed. In order to improve the performance of CT injector and to refuel in the upgraded FRC device, called C-2W, with higher confinement magnetic field, magnetic circuit consisting of magnetic material onto a bias magnetic coil is currently being tested at Nihon University. Numerical work suggests that the optimized bias magnetic field distribution realizes the increased injection velocity because of higher conversion efficiency of Lorenz self force to kinetic energy. Details of the magnetic circuit design as well as results of the test experiment and field calculations will be presented and discussed.

  4. Review of the Factory Acceptance Tests and Cold Tests of the W7-X Superconducting Magnets

    International Nuclear Information System (INIS)

    Ehmler, H.; Baldzuhn, J.; Genini, L.

    2006-01-01

    The W7-X magnet system consists of 50 non-planar coils of five different types and 20 planar coils of two different types. Factory acceptance tests of the non-planar coils are carried out at the manufacturer site of Babcock-Noell, Germany, and for the planar coils at Tesla Engineering, UK. They consist of electrical insulation checks, mass flow measurements and leak tests. In the test facility of CEA Saclay, France, each coil is cooled down to ∼ 6 K and operated at nominal current. At least one coil of each type is quenched by increasing the inlet temperature. The characteristic parameters of the quench tests (temperature, pressure, speed of normal-conducting zone, etc.) will be presented. Coils of the same type show a uniform behavior. The occurrences of leaks during cool-down on planar coils revealed quality problems with aluminum welds and stress corrosion of stainless steel tubes at the soldered connections with copper heat sinks. AC tests (impulse and impedance tests) were applied to detect short circuits during the fabrication of the winding packs. High voltage DC tests under vacuum and low gas pressure (Paschen-minimum conditions) revealed electrical insulation defects, which had not been found using standard high-voltage tests. These were mainly due to voids and cavities present in the winding pack after vacuum impregnation, insufficient glass-epoxy wrapped insulation and inappropriate design of the Kapton insulated quench detection cables. The mass flow measurements of the superconductor showed that the deviation between individual double layers of the coils is within acceptable limits. Two winding packs were given up by the supplier because of a superconductor blockage with resin and a short circuited winding, respectively. All other quality issues could be resolved by repair or changes in the components. The coil instrumentation with temperature sensors seems to be adequate. The strain gauges need improvements in temperature compensation and gluing

  5. Testing the isotropic boundary algorithms method to evaluate the magnetic field configuration in the tail

    International Nuclear Information System (INIS)

    Sergeev, V.A.; Malkov, M.; Mursula, K.

    1993-01-01

    This paper describes tests done on one model system for studying the magnetic field in the magneotail, called the isotropic boundary algorithm method. The tail field lines map into the ionosphere, and there have been two direct methods applied to study tail fields, one a global model, and the other a local model. The global models are so broad in scope that they have a hard time dealing with specific field configurations at some time and some location. Local models rely upon field measurements being simultaneously available over a large region of space to study simultaneously the field configurations. In general this is either very fortuitous or very expensive. The isotropic boundary algorithm method relys upon measuring energetic particles, here protons with energies greater than 30 keV, in the isotropic boundary at low altitudes and interpreting them as representing the boundary between stochastic and adiabatic particle motion regions in the equatorial tail current sheet. The authors have correlated particle measurements by NOAA spacecraft to study the isotropic boundary, with magnetic measurements of tail magnetic fields by the geostationary GOES 2 spacecraft. Positive correlations are observed

  6. Studies for a silicon telescope to extend the magnet facility at the DESY test beam

    Energy Technology Data Exchange (ETDEWEB)

    Tsionou, Dimitra [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany)

    2016-07-01

    The International Large Detector is a detector concept for the International Linear Collider (ILC) which uses a Time Projection Chamber (TPC) as its main tracking detector. Within the framework of the LCTPC collaboration, a large prototype (LP) TPC has been built as a demonstrator. The LP has been equipped with Micro-Pattern Gas Detector modules and studied with an electron beam (1-6 GeV) in a 1 Tesla magnetic field at DESY. To extend the capabilities of the test beam setup, an external silicon tracker to be installed inside the magnet will be discussed. The silicon detector will provide high precision space points in front and behind the TPC inside the magnet. It will provide reference tracks that will allow to determine the momentum of the tracks passing the TPC, and which will help in correcting for field distortion effects in the LPTPC volume. In order to meet these requirements, simulation studies have been performed to determine the layout of the system and have placed stringent requirements on the sensor spatial resolution of better than 10 μ m. These studies will be presented along with the hardware options under evaluation.

  7. The magnet database system

    International Nuclear Information System (INIS)

    Baggett, P.; Delagi, N.; Leedy, R.; Marshall, W.; Robinson, S.L.; Tompkins, J.C.

    1991-01-01

    This paper describes the current status of MagCom, a central database of SSC magnet information that is available to all magnet scientists via network connections. The database has been designed to contain the specifications and measured values of important properties for major materials, plus configuration information (specifying which individual items were used in each cable, coil, and magnet) and the test results on completed magnets. These data will help magnet scientists to track and control the production process and to correlate the performance of magnets with the properties of their constituents

  8. X-ray magnetic microscopy for correlations between magnetic domains and crystal structure

    International Nuclear Information System (INIS)

    Denbeaux, G.; Anderson, E.; Bates, B.; Chao, W.; Liddle, J.A.; Harteneck, B.; Pearson, A.; Salmassi, F.; Schneider, G.; Fischer, P.; Eimuller, T.; Taylor, S.; Chang, H.; Kusinski, G.J.

    2002-01-01

    Accurately determining the resolution of x-ray microscopes has been a challenge because good test patterns for x-ray microscopy have been hard to make. We report on a sputter-deposited multilayer imaged in cross section as a test pattern with small features and high aspect ratios. One application of high-resolution imaging is magnetic materials. Off-axis bend magnet radiation is known to have a component of circular polarization which can be used for x-ray magnetic circular dichroism. We calculate the integrated circular polarization collected by the illumination optics in the XM-1 full-field x-ray microscope. (authors)

  9. CERN: LHC magnets

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-08-15

    With test magnets for CERN's LHC proton-proton collider regularly attaining field strengths which show that 10 Tesla is not forbidden territory, attention turns to why and where quenches happen. If 'training' can be reduced, superconducting magnets become easier to commission.

  10. Tests of prototype magnets and study on a MCP based proton detector for the neutron lifetime experiment PENeLOPE

    International Nuclear Information System (INIS)

    Materne, Stefan

    2013-01-01

    The precision experiment PENeLOPE will store ultra-cold neutrons in a magnetic trap and determine the neutron lifetime via the time-resolved counting of the decay-protons. The thesis reports on training and performance tests of prototypes of the superconducting coils. Additionally, a magnetic field mapper for PENeLOPE was characterized. In the second part of the thesis, microchannel plates (MCPs) were studied with alpha particles and protons as a possible candidate for the decay particle detector in PENeLOPE.

  11. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    Science.gov (United States)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  12. R and D of low activated Fe-Mn-Cr high strength non-magnetic steel, (I). Screening test for constituent optimization and fundamental characterization test

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, Shintaro; Fukaya, Kiyoshi; Eto, Motokuni; Kikuchi, Mituru [Japan Atomic Energy Research Inst., Tokyo (Japan); Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Tuyoshi [Japan Steel Works Ltd., Tokyo (Japan); Takahashi, Heishitiro [Center for Advanced Research of Energy Technology, Hokkaido Univ., Sapporo (Japan)

    2000-02-01

    It is very important to develop low activated/non-magnetic materials as large scale structural materials for fusion reactors. In the structural design of JT-60SU, low activated/non-magnetic materials with high specific strength and low decay heat characterizations are required. In the present paper, a new low activated/non-magnetic material (15.5 Mn-16Cr-0.2N-0.3Si-0.2C (wt%)) based on the conventional high manganese steel with lower Ni, CO, C, N and Mn contents for the purpose of lower activation and decay heat was developed and the mass production conditions of the material were optimized. Fundamental material characterization tests of the new material developed in present study were carried out, and the following conclusions are derived ; (1) Lower activation characterizations with the new materials in the order of 1/10 of that of SUS316L steel, (2) Higher strength of the material in the order of 2{approx}3 of SUS316L steel and (3) Lower decay heat with higher thermal conductivity with comparison of SUS316L steel. (author)

  13. The design, fabrication and testing of an iron-core current compensated magnetic channel for cyclotron extraction

    International Nuclear Information System (INIS)

    Laxdale, R.E.; Fong, K.; Houtman, H.

    1994-06-01

    An iron-core current compensated magnetic channel has been built ss part of the TRIUMF 450 MeV H - extraction feasibility project. The channel would operate in the 0.5 T cyclotron field and was designed using the two-dimensional code POISSON. Recent beam tests with the channel installed in the TRIUMF cyclotron confirmed that the electro-mechanical design is reliable and that the effect on the circulating beam is in agreement with calculation. The design and hardware details will be described and the beam test results reported. (author)

  14. Thermal performance of the MFTF magnets

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1983-01-01

    A yin-yang pair of liquid-helium (LHe) cooled, superconducting magnets were tested last year at the Lawrence Livermore National Laboratory (LLNL) as part of a series of tests with the Mirror Fusion Test Facility (MFTF). These tests were performed to determine the success of engineering design used in major systems of the MFTF and to provide a technical base for rescoping from a single-mirror facility to the large tandem-mirror configuration (MFTF-B) now under construction. The magnets were cooled, operated at their design current and magnetic field, and warmed to atmospheric temperature. In this report, we describe their thermal behavior during these tests

  15. Testing the stability of magnetic iron oxides/kaolinite nanocomposite under various pH conditions

    Science.gov (United States)

    Tokarčíková, Michaela; Tokarský, Jonáš; Kutláková, Kateřina Mamulová; Seidlerová, Jana

    2017-09-01

    Magnetically modified clays containing iron oxides nanoparticles (FexOy NPs) are low-cost and environmentally harmless materials suitable for sorption of pollutants from wastewaters. Stability of this smart material was evaluated both experimentally and theoretically using molecular modelling. Original kaolinite and prepared FexOy/kaolinite nanocomposite were characterized using X-ray fluorescence spectroscopy, X-ray powder diffraction, infrared spectroscopy, and transmission electron microscopy, and the stability was studied using leaching tests performed according to the European technical standard EN 12457-2 in deionized water and extraction agents with varying pH (2, 4, 9, and 11). The influence of pH on amount of FexOy NPs released from the composite and amount of the basic elements released from the kaolinite structure was studied using inductively coupled plasma atomic emission spectroscopy. All experiments proved that the magnetic properties of the nanocomposite will not change even after leaching in extraction agents with various pH.

  16. Magnetic Damping For Maglev

    Directory of Open Access Journals (Sweden)

    S. Zhu

    1998-01-01

    Full Text Available Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  17. Exact Green's function method of solar force-free magnetic-field computations with constant alpha. I - Theory and basic test cases

    Science.gov (United States)

    Chiu, Y. T.; Hilton, H. H.

    1977-01-01

    Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.

  18. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

    Directory of Open Access Journals (Sweden)

    Wiltschko Wolfgang

    2009-10-01

    Full Text Available Abstract Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results

  19. The APS thin pulsed septum magnets

    International Nuclear Information System (INIS)

    Lopez, F.; Mills, F.; Milton, S.; Reeves, S.; Sheynin, S.; Thompson, K.; Turner, L.

    1994-01-01

    A thin (2-mm) eddy-current pulsed septum magnet was developed for use in the Advanced Photon Source (APS) machines. A number of different configurations of the magnet were assembled and tested in an effort to minimize the undesired leakage field in the stored-beam region. However, because of measured excessive leakage fields, an alternative direct-drive septum magnet was also constructed and tested. We present here the design specifications and acceptable performance criteria along with results of magnetic field measurements

  20. Mechanical and thermal measurements on a 11 m long beam screen in the LHC Magnet Test String during RUN 3A

    CERN Document Server

    Artoos, K; Kos, N

    1999-01-01

    Two eleven meter long beam screens were installed in the third dipole of the LHC Magnet Test String. Instrumentation was used to measure the mechanical and thermal behaviour of the screens during thermal transients and quenches. The horizontal deformation, angular displacement, heating of the screen as a result of the quench induced eddy currents and relative longitudinal displacement between beam screen and magnet end were measured.

  1. A Solar Axion Search Using a Decommissioned LHC Test Magnet

    CERN Multimedia

    Lozza, V; Christensen, F E; Jakobsen, A C; Neff, S H; Carmona martinez, J M; Giomataris, I; Krcmar, M; Vafeiadis, T; Luzon marco, G M; Gracia garza, J; Lakic, B; Cantatore, G; Solanki, S K; Ozbey, A; Davenport, M; Funk, W; Desch, K K; Villar, J A; Jakovcic, K; Eleftheriadis, C; Diago ortega, A; Zioutas, K; Gardikiotis, A; Cetin, S A; Hasinoff, M D; Hoffmann, D; Laurent, J; Castel pablo, J F; Gninenko, S; Ferrer ribas, E; Liolios, A; Anastasopoulos, V; Kaminski, J; Dafni, T; Garcia irastorza, I; Ruiz choliz, E; Pivovaroff, M J; Krieger, C; Lutz, G; Fanourakis, G; Ruz armendariz, J; Vogel, J K

    2002-01-01

    Previous solar axion searches have been carried out in Brookhaven (1990) and in Tokyo (2000- ), tracking the Sun with a dipole magnet. QCD inspired axions should be produced after the Big Bang, being thus candidates for the dark matter. The Sun is a very useful source of weakly interacting particles for fundamental research. Axions can be produced also in the Sun's core through the scattering of thermal photons in the Coulomb field of electric charges (Primakoff effect). In a transverse magnetic field the Primakoff effect can work in reverse, coherently converting the solar axions or other axion-like particles (ALPS) back into X-ray photons in the keV range. The conversion efficiency increases with $(B⋅L)^2$. In the CAST experiment an LHC prototype dipole magnet (B = 9 T and L = 10 m) with straight beam pipes provides a conversion efficiency exceeding that of the two earlier solar axion telescopes by almost a factor of 100. This magnet is mounted on a moving platform and coupled to both gas filled and soli...

  2. Motions of CMS Detector Structures as Observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martin-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.

    2008-01-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micro metres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed displacements are studied as functions of the magnetic fi eld intensity. In addition, a comparison of the reconstructed position of active element sensors with respect to their position as measured by photogrammetry is made and the reconstructed motions due to the magnetic field strength are described. (Author) 19 refs

  3. Motions of CMS Detector Structures as Observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferramdp, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martin-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.

    2008-07-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micro metres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed displacements are studied as functions of the magnetic fi eld intensity. In addition, a comparison of the reconstructed position of active element sensors with respect to their position as measured by photogrammetry is made and the reconstructed motions due to the magnetic field strength are described. (Author) 19 refs.

  4. Manufacture and test of prototype water pipe chase barrier in ITER Magnet Feeder system

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Kun, E-mail: lukun@ipp.ac.cn [Institute of Plasma Physics, Shushan Hu Road 350, Hefei, Anhui (China); Wen, Xinjie; Liu, Chen; Song, Yuntao [Institute of Plasma Physics, Shushan Hu Road 350, Hefei, Anhui (China); Niu, Erwu [ITER China, 15B Fuxing Road, Beijing 100862 (China); Gung, Chenyu; Su, Man [ITER Organization, Route de Vinon-sur-Verdon – CS 90046, 13067 St Paul-lez-Durance Cedex (France)

    2016-11-01

    The Magnet Feeder system in the International Thermonuclear Experimental Reactor (ITER) deploys electrical currents and supercritical helium to the superconducting magnets and the magnet diagnostic signals to the operators. In the current design, the feeders located in the upper L3 level of the Tokamak gallery penetrate the Tokamak coolant water system vault, the biological shield and the cryostat. As a secondary confinement to contain the activated coolant water in the vault in the case of water pipe burst accident, a water barrier is welded between the penetration in the water pipe chase outer wall and the mid-plane of the vacuum jacket of the Feeder Coil Terminal Box (CTB). A thin-wall stainless steel diaphragm with an omega shape profile is welded around the CTB as the water barrier to endure 2 bar hydraulic pressure. In addition, the barrier is designed as a flexible compensator to withstand a maximum of 15 mm of axial displacement of the CTB in case of helium leak accident without failure. This paper presents the detail configuration, the manufacturing and assembly processes of the water barrier. Test results of the prototype water barrier under simulated accident conditions are also reported. Successful qualification of the design and manufacturing process of the water barrier lays a good foundation for the series production of this subsystem.

  5. Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry

    Science.gov (United States)

    Takayama, S.; Koyanagi, K.; Miyazaki, H.; Takami, S.; Orikasa, T.; Ishii, Y.; Kurusu, T.; Iwata, Y.; Noda, K.; Obana, T.; Suzuki, K.; Ogitsu, T.; Amemiya, N.

    2017-07-01

    Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.

  6. CERN: LHC magnets

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With test magnets for CERN's LHC proton-proton collider regularly attaining field strengths which show that 10 Tesla is not forbidden territory, attention turns to why and where quenches happen. If 'training' can be reduced, superconducting magnets become easier to commission

  7. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  8. Automatic Management Systems for the Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Tovar-Gonzalez, A; Herblin, L; Lamboy, J P; Vullierme, B

    2006-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine shall be entirely tested at reception on modular test facilities. The operation 24 hours per day of the cryogenic test facilities is conducted in turn by 3-operator teams, assisted in real time by the use of the Test Bench Priorities Handling System, a process control application enforcing the optimum use of cryogenic utilities and of the "Tasks Tracking System", a web-based e-traveller application handling 12 parallel 38-task test sequences. This paper describes how such computer-based management systems can be used to optimize operation of concurrent test benches within technical boundary conditions given by the cryogenic capacity, and how they can be used to study the efficiency of the automatic steering of all individual cryogenic sub-systems. Finally, this paper presents the overall performance of the cryomagnet test station for the first complete year of operation at high produ...

  9. Proton magnetic resonance spectroscopy and perfusion magnetic resonance imaging in the evaluation of musculoskeletal tumors

    International Nuclear Information System (INIS)

    Costa, Flavia Martins; Setti, Marcela; Vianna, Evandro Miguelote; Domingues, Romulo Cortes; Meohas, Walter; Rezende, Jose Francisco; Gasparetto, Emerson Leandro

    2009-01-01

    Objective: To assess the role of proton magnetic resonance spectroscopy and dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign musculoskeletal tumors. Materials And Methods: Fifty-five patients with musculoskeletal tumors (27 malignant and 28 benign) were studied. The examinations were performed in a 1.5 T magnetic resonance scanner with standard protocol, and single voxel proton magnetic resonance spectroscopy with 135 msec echo time. The dynamic contrast study was performed using T1-weighted gradient-echo sequence after intravenous gadolinium injection. Time signal intensity curves and slope values were calculated. The statistical analysis was performed with the Levene's test, followed by a Student's t-test, besides the Pearson's chi-squared and Fischer's exact tests. Results: Proton magnetic resonance spectroscopy sensitivity, specificity and accuracy were, respectively, 87.5%, 92.3% and 90.9% (p < 0.0001). Statistically significant difference was observed in the slope (%/min) between benign (mean, 27.5%/min) and malignant (mean, 110.9%/min) lesions (p < 0.0001). Conclusion: The time-intensity curve and slope values using dynamic-enhanced perfusion magnetic resonance imaging in association with the presence of choline peak demonstrated by single voxel magnetic resonance spectroscopy study are useful in the differentiation between malignant and benign musculoskeletal tumors. (author)

  10. Development and test of model apparatus of non-contact spin processor for photo mask production applying radial-type superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Saito, Kimiyo; Fukui, Satoshi; Maezawa, Masaru; Ogawa, Jun; Oka, Tetsuo; Sato, Takao

    2013-01-01

    Highlights: ► We develop test spinner for non-contact spinning process in photo mask production. ► This test spinner shows improved spinning ability compared with our previous one. ► Large vertical movement of turn table still occurs during acceleration. ► Method to control vertical movement of turn table should be developed in next step. -- Abstract: In semiconductor devices, miniaturization of circuit patterning on wafers is required for higher integrations of circuit elements. Therefore, very high tolerance and quality are also required for patterning of microstructures of photo masks. The deposition of particulate dusts generated from mechanical bearings of the spin processor in the patterns of the photo mask is one of main causes of the deterioration of pattern preciseness. In our R and D, application of magnetic bearing utilizing bulk high temperature superconductors to the spin processors has been proposed. In this study, we develop a test spinner for the non-contact spinning process in the photo mask production system. The rotation test by using this test spinner shows that this test spinner accomplishes the improvement of the spinning ability compared with the test spinner developed in our previous study. This paper describes the rotation test results of the new test spinner applying the magnetic bearing with bulk high temperature superconductors

  11. Design and testing of a coaxial linear magnetic spring with integral linear motor. [for spacecraft energy storage

    Science.gov (United States)

    Patt, P. J.

    1985-01-01

    The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.

  12. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  13. Saclay Magnet-Fest

    CERN Multimedia

    Jean Ernwein

    Three large LHC projects in which the Saclay laboratory has contributed in a major way have recently come to their successful completion: the LHC quadrupoles, the CMS solenoid and the ATLAS barrel toroid. These superconducting magnets were initially designed and partly prototyped in Saclay, their components manufactured in European industry, assembled and tested in industry or at CERN in the framework of large collaborations. The barrel toroid "Common Project" was conducted by the ATLAS project management and involved, in addition to the Saclay "Magnet Lab", the Italian LASA and CERN. You may recall the various steps which led to the commissioning of the barrel toroid in the cavern with full current in November of last year. The initial "race track" magnet was tested in Saclay where the B0 prototype coil was also built. The eight full size coils were assembled and individually tested in building 180 at CERN, before being lowered to the cavern and assembled. To mark these achievements, a happy gathering of m...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  15. Efficiency test of filtering methods for the removal of transcranial magnetic stimulation artifacts on human electroencephalography with artificially transcranial magnetic stimulation-corrupted signals

    Science.gov (United States)

    Zilber, Nicolas A.; Katayama, Yoshinori; Iramina, Keiji; Erich, Wintermantel

    2010-05-01

    A new approach is proposed to test the efficiency of methods, such as the Kalman filter and the independent component analysis (ICA), when applied to remove the artifacts induced by transcranial magnetic stimulation (TMS) from electroencephalography (EEG). By using EEG recordings corrupted by TMS induction, the shape of the artifacts is approximately described with a model based on an equivalent circuit simulation. These modeled artifacts are subsequently added to other EEG signals—this time not influenced by TMS. The resulting signals prove of interest since we also know their form without the pseudo-TMS artifacts. Therefore, they enable us to use a fit test to compare the signals we obtain after removing the artifacts with the original signals. This efficiency test turned out very useful in comparing the methods between them, as well as in determining the parameters of the filtering that give satisfactory results with the automatic ICA.

  16. Using external magnet guidance and endoscopically placed magnets to create suture-free gastro-enteral anastomoses.

    Science.gov (United States)

    Myers, Christopher; Yellen, Benjamin; Evans, John; DeMaria, Eric; Pryor, Aurora

    2010-05-01

    To facilitate endolumenal and natural orifice procedures, this study evaluated a novel technique using external and endoscopically placed magnets to create suture-free gastroenteral anastomoses. Seven anesthetized adult swine underwent endoscopic placement of magnets into the small bowel and stomach. Using external magnets, the endoscopically placed internal magnets were brought into opposition under endoscopic view. After 1-2 weeks, the pigs were killed and analyzed. At laparotomy and under sterile conditions, peritoneal cultures were obtained. The anastomoses were evaluated endoscopically and tested using an air insufflation test. Finally, the anastomoses were resected and evaluated microscopically. The average operative time for endoscopic placement of the magnets was 34.3 +/- 14.8 min. Successful placement and creation of anastomoses occurred in six of the pigs. One pig did not form an anastomosis because the magnets were too large to pass through the pylorus at the time of attempted magnet placement. Six swine experienced uncomplicated postoperative courses. One pig's postoperative course involved constipation for several days, requiring additional fluids and fiber supplementation. The findings at endoscopy showed that the magnets were adhered to the anastomosis, which were easily freed, or within the stomach. The air insufflation test results were negative for all the pigs. At laparotomy, there was no evidence of infection, abscess, or leak, but two peritoneal culture results were positive with scant growth of Staphylococcus aureus and coagulase-negative staphylococcus, presumably contaminants. Microscopically, the anastomoses illustrated granulation and fibrous connective tissue without evidence of infection or leak. Endoscopically placed magnets with external magnet guidance is a feasible and novel approach to creating patent gastroenteral anastomoses without abdominal incisions or sutures.

  17. Magnetic S-parameter

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free gauge theories developing an infrared fixed point by computing the S-parameter in the electric and dual magnetic description. In particular we show that at the lower bound of the conformal window...... the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes a simple expression in terms of the elementary magnetic degrees of freedom. The results further support our recent conjecture of the existence of a universal lower bound on the S parameter and indicates...

  18. Approach to magnetic neutron capture therapy

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Podoynitsyn, Sergey N.; Filippov, Victor I.; Komissarova, Lubov Kh.; Kuznetsov, Oleg A.

    2005-01-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area of tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity

  19. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  20. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. Based on preliminary tests, it was seen that permanent quadrupole magnets can offer a low cost, reliable solution in applications requiring small, fixed-field focusing devices for use in ion or electron-beam transport systems. Permanent magnets do require special considerations in design, fabrication, handling, and service that are different than encountered in conventional quadrupole magnets. If these basic conditions are satisfied, the resulting beam-focusing device would be stable, maintenance free, with virtually an indefinite lifetime

  1. Disentangling the magnetic force noise contribution in LISA Pathfinder

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    Magnetically-induced forces on the inertial masses on-board LISA Pathfinder are expected to be one of the dominant contributions to the mission noise budget, accounting for up to 40%. The origin of this disturbance is the coupling of the residual magnetization and susceptibility of the test masses with the environmental magnetic field. In order to fully understand this important part of the noise model, a set of coils and magnetometers are integrated as a part of the diagnostics subsystem. During operations a sequence of magnetic excitations will be applied to precisely determine the coupling of the magnetic environment to the test mass displacement using the on-board magnetometers. Since no direct measurement of the magnetic field in the test mass position will be available, an extrapolation of the magnetic measurements to the test mass position will be carried out as a part of the data analysis activities. In this paper we show the first results on the magnetic experiments during an end- to-end LISA Pathfinder simulation, and we describe the methods under development to map the magnetic field on-board. (paper)

  2. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1985-08-01

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 200 0 C. The design description and results of the prototype capsule performance are presented

  3. Liquid helium cooling of the MFTF superconducting magnets

    International Nuclear Information System (INIS)

    VanSant, J.H.; Zbasnik, J.P.

    1986-09-01

    During acceptance testing of the Mirror Fusion Test Facility (MFTF), we measured these tests: liquid helium heat loads and flow rates in selected magnets. We used the data from these tests to estimate helium vapor quality in the magnets so that we could determine if adequate conductor cooling conditions had occurred. We compared the measured quality and flow with estimates from a theoretical model developed for the MFTF magnets. The comparison is reasonably good, considering influences that can greatly affect these values. This paper describes the methods employed in making the measurements and developing the theoretical estimates. It also describes the helium system that maintained the magnets at required operating conditions

  4. Stress analysis of superconducting magnets for magnetic fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility (ETF).

  5. Stress analysis of superconducting magnets for magnetic fusion reactors

    International Nuclear Information System (INIS)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility

  6. Superconducting magnet for 'ML-100'

    Energy Technology Data Exchange (ETDEWEB)

    Saito, R; Fujinaga, T; Tada, N; Kimura, H

    1974-07-01

    A magneticaly levitated experimental vehicle (Ml-100) was designed and constructed in commemoration of the centenary of the Japanese National Railways. For magnetic levitation the vehicle is provided with two superconducting magnets. In the test operation of the vehicle, these superconducting magnets showed stable performance in levitating vehicle body.

  7. Gamma irradiation testing of prototype ITER in-vessel magnetic pick-up coils

    International Nuclear Information System (INIS)

    Vermeeren, Ludo; Leysen, Willem

    2013-01-01

    Highlights: ► We tested five prototype ITER in-vessel coils up to a gamma dose of 72 MGy. ► Before and after irradiation thermal tests were also performed from 30 °C till 130 °C. ► The continuity resistances and the insulation resistances were continuously monitored. ► The observed behavior of all coils was satisfactory in all conditions. ► For the further design the mechanical robustness should be taken into account. -- Abstract: To fulfill the requirements for ITER in-vessel magnetic diagnostics, several coil prototypes have been developed, aiming at minimizing the disturbing effects of temperature gradients and radiation induced phenomena. As a first step in the radiation resistance testing of these prototypes, an in-situ high dose rate gamma radiation test on a selection of prototypes was performed. The aim of this test was to get a first experimental feedback regarding the behavior of the pick-up coil prototypes under radiation. Five prototypes (a coil wound with glass-insulated copper wire, two LTCC coils and two HTCC coils) were irradiated at a dose rate of 46 kGy/h up to a total dose of 72 MGy and at a temperature of 50 °C. During the irradiation, the continuity resistances and the insulation resistances were continuously measured. Before and after irradiation reference data were recorded as a function of temperature (from 30 °C to 130 °C). This paper includes the results of the temperature and irradiation tests and a discussion of the behavior of the prototype coils in terms of electrical and mechanical properties

  8. Quench Performance of the LHC Insertion Magnets

    CERN Document Server

    Lasheras, N C; Siemko, A; Ostojic, R; Kirby, G

    2009-01-01

    After final installation in the LHC tunnel, the MQM and MQY quadrupole magnets of the LHC insertions are now being commissioned to their nominal currents. These two types of magnets operate at 1.9 K and 4.5 K and with nominal currents ranging from 3600 A to 5390 A. From the very first acceptance tests of the bare magnets coming from the manufacturers, they have been powered using different cycles, in different configurations, at different temperatures and in different tests facilities. In this paper we present the global results of these powering tests. We aim at separating common from individual features of these groups of magnets. Temperature dependence of the training, temperature margin, and ultimate current can be extracted from these tests. As these magnets are used to match the optics and the dispersion in the machine, the projected ultimate current at which they can be operated is critical in view of operation of LHC.

  9. Spanish Minister of Science and Technology visits the LHC magnet test facility

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister of Science and Technology, Spain, toured the test facility for LHC magnets in building SM18 during his visit to CERN in November. In this series of photos Felix Rodriguez Mateo explains the operation of the test facilty to the ministerial party. Photo 01: (left to right) Felix Rodriguez Mateo; the Minister; Francisco Giménez-Reyna, Spanish delegate to the CERN Finance Committee; M. Aguilar Benitez, Spanish delegate to the CERN Council; G. Babé and G. Léon. Photo 02: (left to right) Felix Rodriguez Mateos; César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology); the Minister; G. Babé; M. Aguilar Benitez; and G. Léon. Photo 03: Francisco Giménez-Reyna; Felix Rodriguez Mateos; César Dopazo; the Minister; Juan Antonio Rubio, leader of the Education and Technology Transfer division at CERN; G. Babé behind M. Aguilar Benitez. Photo 04: Francisco Giménez-Reyna, partially hidden behind Felix Rodriguez Mateos; César Dop...

  10. The Magnetic Reconnection Code: Center for Magnetic Reconnection Studies

    Energy Technology Data Exchange (ETDEWEB)

    Amitava Bhattacharjee

    2007-04-20

    Understanding magnetic reconnection is one of the principal challenges in plasma physics. Reconnection is a process by which magnetic fields reconfigure themselves, releasing energy that can be converted to particle energies and bulk flows. Thanks to the availability of sophisticated diagnostics in fusion and laboratory experiments, in situ probing of magnetospheric and solar wind plasmas, and X-ray emission measurements from solar and stellar plasmas, theoretical models of magnetic reconnection can now be constrained by stringent observational tests. The members of the CMRS comprise an interdisciplinary group drawn from applied mathematics, astrophysics, computer science, fluid dynamics, plasma physics, and space science communities.

  11. Development of magnetic drive packless valves for commercial purpose

    International Nuclear Information System (INIS)

    Hwang, Sung Tae; Park, Jin Ho; Choi, Yoon Dong; Choi, Jong Hyun; Cho, Byung Ryeol; Kim, Tae Jun; Moon, Byung Hwan; Hong, Soon Bok; Jeong, Ji Young

    1995-09-01

    A study on development of magnetic drive packless valves for commercial purpose showed the results as follows; 1. Study on the radial rays effecting to the permanent magnets -Measurement of the strength of Nd-magnets according to irradiation of radial rays. 2. Effects of temperature on the magnetic driving device -Temperature dependency of the Nd-casting magnets. -Effects of temperature on the heat releasing fins of high-temperature valve. 3. Optimization of torque -Arranging method of permanent magnets -Measuring method and results of torque. 4. Design, manufacture and test for the pressure-resisting structure of magnetic power transmitting device -Calculation and design for the flat circular plates under pressure of the magnetic power transmitting device -Design, manufacture and test for the pressure-resisting structure of magnetic power transmitting device -Comparison of the characteristics between magnetic drive valve and general/bellows-sealed valves. 5. Pressure test and strength analysis of flat circular plates under pressure. 6. Patent application. 12 tabs., 24 figs., 1 ref. (Author)

  12. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings.

    Science.gov (United States)

    Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.

  13. Circular swimming in mice after exposure to a high magnetic field.

    Science.gov (United States)

    Houpt, Thomas A; Houpt, Charles E

    2010-06-16

    There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.

  14. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    Science.gov (United States)

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of

  15. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  16. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    International Nuclear Information System (INIS)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-01-01

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450±10 G. The carriage motor tolerated up to 2000±10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600±10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance

  17. Structural alloys for high field superconducting magnets

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4 0 K and by rate effects associated with adiabatic heating during the tests. 46 refs

  18. Correction of magnetization sextupole in one-meter long dipole magnets using passing superconductor

    International Nuclear Information System (INIS)

    Green, M.A.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Gilbert, W.S.; Green, M.I.; Scanlan, R.M.

    1990-03-01

    The generation of higher multipoles due to the magnetization of the superconductor in the dipoles of the SSC is a problem during injection of the beam into the machine. The use of passive superconductor was proposed some years ago to correct the magnetization sextupole in the dipole magnet. This paper presents the LBL test results in which the magnetization sextupole was greatly reduced in two one-meter long dipole magnets by the use of passive superconductor mounted on the magnet bore tube. The magnetization sextupole was reduced a factor of five on one magnet and a factor of eight on the other magnet using this technique. Magnetization decapole was also reduced by the passive superconductor. The passive superconductor method of correction also reduced the temperature dependence of the magnetization multipoles. In addition, the drift in the magnetization sextupole due to flux creep was also reduced. Passive superconductor correction appears to be a promising method of correcting out the effects of superconductor magnetization in SSC dipoles and quadrupoles. 10 refs., 6 figs

  19. Test of two 1.8 M SSC model magnets with iterated design

    International Nuclear Information System (INIS)

    Wanderer, P.; Cottingham, J.G.; Dahl, P.

    1989-01-01

    We report results from two 1.8 m-long dipoles built as part of the Superconducting Super Collider (SSC) RandD program. These magnets contain design changes made on both the 1.8 m and the full-length 17 m dipoles to improve quench performance, magnetic field uniformity, and manufacturability. The magnets reach 8 T with little training. 10 refs., 5 figs., 1 tab

  20. Accurate measurement of the anomalous magnetic moments of the electron and the muon as a special relativity theory test

    International Nuclear Information System (INIS)

    Jurco, B.; Tolar, J.

    1983-01-01

    The exact experimental measurement of the gyromagnetic factor of the electron and the muon also represent an exact test of the validity of the special relativity theory. The gyromagnetic factor may be measured in two ways: in the magnetic field the resonance frequency is measured for transitions between the Rabi-Landau levels with the opposite spin orientation or precession is observed of the spin of a lepton flying in the magnetic field. The latter method is theoretically analyzed in great detail and described by equations. The measured values are given according to foreign experiments with an accuracy of 1 per mille. (M.D.)

  1. Accurate measurement of the anomalous magnetic moments of the electron and the muon as a special relativity theory test

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B.; Tolar, J. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska)

    1983-04-01

    The exact experimental measurement of the gyromagnetic factor of the electron and the muon also represent an exact test of the validity of the special relativity theory. The gyromagnetic factor may be measured in two ways: in the magnetic field the resonance frequency is measured for transitions between the Rabi-Landau levels with the opposite spin orientation or precession is observed of the spin of a lepton flying in the magnetic field. The latter method is theoretically analyzed in great detail and described by equations. The measured values are given according to foreign experiments with an accuracy of 1 per mille.

  2. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  3. Interfacial Phenomena of Magnetic Fluid with Permanent Magnet in a Longitudinally Excited Container

    International Nuclear Information System (INIS)

    Sudo, Seiichi; Wakuda, Hirofumi; Yano, Tetsuya

    2008-01-01

    This paper describes the magnetic fluid sloshing in a longitudinally excited container. Liquid responses of magnetic fluid with a permanent magnet in a circular cylindrical container subject to vertical vibration are investigated. Experiments are performed on a vibration- testing system which provided longitudinal excitation. A cylindrical container made with the acrylic plastic is used in the experiment. A permanent magnet is in the state of floating in a magnetic fluid. The disk-shaped and ring-shaped magnets are examined. The different interfacial phenomena from the usual longitudinal liquid sloshing are observed. It is found that the wave motion frequency of magnetic fluid with a disk-shaped magnet in the container subject to vertical vibration is exactly same that of the excitation. In the case of ring-shaped magnet, the first symmetrical mode of one-half subharmonic response is dominant at lower excitation frequencies. The magnetic fluid disintegration of the free surface was also observed by a high-speed video camera system

  4. Interfacial Phenomena of Magnetic Fluid with Permanent Magnet in a Longitudinally Excited Container

    Science.gov (United States)

    Sudo, Seiichi; Wakuda, Hirofumi; Yano, Tetsuya

    2008-02-01

    This paper describes the magnetic fluid sloshing in a longitudinally excited container. Liquid responses of magnetic fluid with a permanent magnet in a circular cylindrical container subject to vertical vibration are investigated. Experiments are performed on a vibration- testing system which provided longitudinal excitation. A cylindrical container made with the acrylic plastic is used in the experiment. A permanent magnet is in the state of floating in a magnetic fluid. The disk-shaped and ring-shaped magnets are examined. The different interfacial phenomena from the usual longitudinal liquid sloshing are observed. It is found that the wave motion frequency of magnetic fluid with a disk-shaped magnet in the container subject to vertical vibration is exactly same that of the excitation. In the case of ring-shaped magnet, the first symmetrical mode of one-half subharmonic response is dominant at lower excitation frequencies. The magnetic fluid disintegration of the free surface was also observed by a high-speed video camera system.

  5. MSCAP [Magnet System Circuitry Analysis Program] simulations of TESPE magnet safety transients

    International Nuclear Information System (INIS)

    Herring, J.S.; Juengst, K.P.; Jones, J.L.; Kraus, H.G.

    1988-01-01

    During 1987, a series of tests were carried out on the TESPE Facility at the Institut fuer Technische Physik of the Kernforschungszentrum Karlsruhe in conjunction with the Idaho National Engineering Laboratory (INEL) to experimentally and analytically investigate arcing phenomena in high field superconducting magnets. One objective of the tests was to verify computer code simulations of the magnet system. TESPE is a six coil, NbTi, toroidal magnet set, designed to operate with 7 T and 8.3 MJ at 7000 A. The full TESPE circuit was modeled for four series of experiments: internal shorts during charge and discharge, arcs initiated by electrode separation, arcs initiated by a vaporizing wire, and arcs moving along two rails. 3 refs., 15 figs., 1 tab

  6. Magnet Systems

    Data.gov (United States)

    Federal Laboratory Consortium — Over the decades, Fermilab has been responsible for the design, construction, test and analysis of hundreds of conventional and superconducting accelerator magnets...

  7. Magnetics Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Processing Lab equipped to perform testing of magnetometers, integrate them into aircraft systems, and perform data analysis, including noise reduction...

  8. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications

    Science.gov (United States)

    Wang, Xiaorong; Caspi, Shlomo; Dietderich, Daniel R.; Ghiorso, William B.; Gourlay, Stephen A.; Higley, Hugh C.; Lin, Andy; Prestemon, Soren O.; van der Laan, Danko; Weiss, Jeremy D.

    2018-04-01

    REBCO coated conductors maintain a high engineering current density above 16 T at 4.2 K. That fact will significantly impact markets of various magnet applications including high-field magnets for high-energy physics and fusion reactors. One of the main challenges for the high-field accelerator magnet is the use of multi-tape REBCO cables with high engineering current density in magnet development. Several approaches developing high-field accelerator magnets using REBCO cables are demonstrated. In this paper, we introduce an alternative concept based on the canted cos θ (CCT) magnet design using conductor on round core (CORC®) wires that are wound from multiple REBCO tapes with a Cu core. We report the development and test of double-layer three-turn CCT dipole magnets using CORC® wires at 77 and 4.2 K. The scalability of the CCT design allowed us to effectively develop and demonstrate important magnet technology features such as coil design, winding, joints and testing with minimum conductor lengths. The test results showed that the CCT dipole magnet using CORC® wires was a viable option in developing a REBCO accelerator magnet. One of the critical development needs is to increase the engineering current density of the 3.7 mm diameter CORC® wire to 540 A mm-2 at 21 T, 4.2 K and to reduce the bending radius to 15 mm. This would enable a compact REBCO dipole insert magnet to generate a 5 T field in a background field of 16 T at 4.2 K.

  9. Manufacturing the MFTF magnet

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Hinkle, R.E.; Hodges, A.J.

    1980-01-01

    The Mirror Fusion Test Facility (MFTF) is a large mirror program experiment for magnetic fusion energy. It will combine and extend the near-classical plasma confinement achieved in 2XIIB with advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime

  10. Measurement system for SSRF pulsed magnets

    International Nuclear Information System (INIS)

    Peng Chengcheng; Gu Ming; Liu Bo; Ouyang Lianhua

    2007-01-01

    This paper describes the magnetic field measurement system for pulsed magnets in SSRF. The system consists of magnetic probes, analog active integrator, oscilloscope, stepper motor and a controller. An application program based on LabVIEW has been developed as main control unit. After the magnetic field mapping of a septum magnet prototype, it is verified that the test results accord with the results of theoretical calculation and computer simulation. (authors)

  11. Development and Testing of a Magnetically Actuated Capsule Endoscopy for Obesity Treatment.

    Directory of Open Access Journals (Sweden)

    Thanh Nho Do

    Full Text Available Intra-gastric balloons (IGB have become an efficient and less invasive method for obesity treatment. The use of traditional IGBs require complex insertion tools and flexible endoscopes to place and remove the balloon inside the patient's stomach, which may cause discomfort and complications to the patient. This paper introduces a new ingestible weight-loss capsule with a magnetically remote-controlled inflatable and deflatable balloon. To inflate the balloon, biocompatible effervescent chemicals are used. As the source of the actuation is provided via external magnetic fields, the magnetic capsule size can be significantly reduced compared to current weight-loss capsules in the literature. In addition, there are no limitations on the power supply. To lose weight, the obese subject needs only to swallow the magnetic capsule with a glass of water. Once the magnetic capsule has reached the patient's stomach, the balloon will be wirelessly inflated to occupy gastric space and give the feeling of satiety. The balloon can be wirelessly deflated at any time to allow the magnetic capsule to travel down the intestine and exit the body via normal peristalsis. The optimal ratio between the acid and base to provide the desired gas volume is experimentally evaluated and presented. A prototype capsule (9.6mm x 27mm is developed and experimentally validated in ex-vivo experiments. The unique ease of delivery and expulsion of the proposed magnetic capsule is slated to make this development a good treatment option for people seeking to lose excess weight.

  12. Characterizing permanent magnet blocks with Helmholtz coils

    Science.gov (United States)

    Carnegie, D. W.; Timpf, J.

    1992-08-01

    Most of the insertion devices to be installed at the Advanced Photon Source will utilize permanent magnets in their magnetic structures. The quality of the spectral output is sensitive to the errors in the field of the device which are related to variations in the magnetic properties of the individual blocks. The Advanced Photon Source will have a measurement facility to map the field in the completed insertion devices and equipment to test and modify the magnetic strength of the individual magnet blocks. One component of the facility, the Helmholtz coil permanent magnet block measurement system, has been assembled and tested. This system measures the total magnetic moment vector of a block with a precision better than 0.01% and a directional resolution of about 0.05°. The design and performance of the system will be presented.

  13. Second generation superconducting super collider dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The SSC Magnet Development Program is developing accelerator dipole magnets in successive iterations. The initial iteration is complete with six full length model magnets and a thermal model having been built and tested. This initial experience along with the evolving SSC Magnet System Requirements have resulted in the second generation magnet cryostat design. It is this configuration that will be employed for the near term ongoing magnetic, thermal, string and accelerated life testing and will be the design considered for Phase I; i.e., Technology Orientation, of the SSC Magnet Industrialization Program. 5 refs., 7 figs., 1 tab

  14. How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based Orientation Estimation.

    Science.gov (United States)

    Fan, Bingfei; Li, Qingguo; Liu, Tao

    2017-12-28

    With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method.

  15. Overview of NASA Magnet and Linear Alternator Research Efforts

    Science.gov (United States)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2005-02-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  16. MFTF magnet cryostability

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1979-01-01

    A pair of large superconducting magnets will be installed in the Mirror Fusion Test Facility (MFTF), which is to begin operation in 1981. To ensure a stable superconducting state for the niobium-titanium (Nb-Ti) conductor, special consideration has been given to certain aspects of the magnet system design. These include the conductor, joints, coil assembly, vapor plenums, liquid-helium (LHe) supply system, and current leads. Heat transfer is the main consideration; i.e., the helium quality and temperature are limited so that the superconductor will perform satisfactorily in the magnet environment

  17. Magnetic field measurements of full length 50 mm aperture SSC dipole magnets at Fermilab

    International Nuclear Information System (INIS)

    Strait, J.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Ozelis, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.; Ogitsu, T.

    1992-09-01

    Thirteen 16 m long, 50 mm aperture SSC dipole magnets, designed jointly by Fermilab, Brookhaven National Laboratory, Lawrence Berkeley Laboratory and the SSC Laboratory, have been built at Fermilab. The first nine magnets have been fully tested to date. The allowed harmonics are systematically shifted from zero by amounts larger than the specification. The unallowed harmonics, with the exception of the skew sextupole, are consistent with zero. The magnet-to-magnet RMS variation of all harmonics is much smaller than the specification

  18. The last magnet on the bench

    CERN Multimedia

    2007-01-01

    A ceremony was held on Thursday, 1st March, to commemorate the end of the cryostat assembly and cryogenic testing on the LHC super-conducting magnets. The team, consisting of CERN staff, several industrial support teams and a hundred guest engineers from India, have tested 2000 magnets over the last four years.

  19. Magnetic Decoupling Design and Experimental Validation of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine for HEVs

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-10-01

    Full Text Available The radial-radial flux compound-structure permanent-magnet synchronous machine (CS-PMSM, integrated by two concentrically arranged permanent-magnet electric machines, is an electromagnetic power-splitting device for hybrid electric vehicles (HEVs. As the two electric machines share a rotor as structural and magnetic common part, their magnetic paths are coupled, leading to possible mutual magnetic-field interference and complex control. In this paper, a design method to ensure magnetic decoupling with minimum yoke thickness of the common rotor is investigated. A prototype machine is designed based on the proposed method, and the feasibility of magnetic decoupling and independent control is validated by experimental tests of mutual influence. The CS-PMSM is tested by a designed driving cycle, and functions to act as starter motor, generator and to help the internal combustion engine (ICE operate at optimum efficiency are validated.

  20. Tests of the 30-MJ superconducting magnetic-energy storage unit

    International Nuclear Information System (INIS)

    Boenig, H.J.; Dean, J.W.; Rogers, J.D.; Schermer, R.I.; Hauer, J.F.

    1983-01-01

    A 30-MJ (8.4 kWh) superconducting magnetic energy storage (SMES) unit with a 10-MW converter was installed during the later months of 1982 at the Bonneville Power Administration (BPA) Tacoma substation in Tacoma, Washington. The unit, which is capable of absorbing and releasing up to 10 MJ of energy at a frequency of 0.35 Hz, was designed to damp the dominant power swing mode of the Pacific AC Intertie. Extensive tests were performed with the unit during the first half of 1983. This paper will review the major components of the storage unit and describe the startup and steady state operating experience with the coil, dewar, refrigerator and converter. The unit has absorbed power up to a level of 11.8 Mw. Real power was modulated following a sinusoidal power demand with frequencies from 0.1 to 1.2 Hz and a power level up to +- 8.3 MW. The unit has performed in accordance with design expectations and no major problems have developed

  1. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  2. Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide

    International Nuclear Information System (INIS)

    Okano, M; Iwamoto, T; Furuse, M; Fuchino, S; Ishii, I

    2006-01-01

    A pinning-type superconducting magnetic levitation guide with bulk high-Tc superconductors was studied for use as a goods transportation system, an energy storage system, etc. A superconducting magnetic levitation running test apparatus with a circular track of ca. 38 m length, 12 m diameter, which comprises the magnetic rail constituted by Nd-B-Fe rare-earth permanent magnets and steel plates, was manufactured to examine loss and high-speed performance of the magnetic levitation guide. Running tests were conducted in air. These tests clarify that a vehicle supported by a superconducting magnetic levitation guide runs stably at speeds greater than 42 km/h above the circular track

  3. Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide

    Science.gov (United States)

    Okano, M.; Iwamoto, T.; Furuse, M.; Fuchino, S.; Ishii, I.

    2006-06-01

    A pinning-type superconducting magnetic levitation guide with bulk high-Tc superconductors was studied for use as a goods transportation system, an energy storage system, etc. A superconducting magnetic levitation running test apparatus with a circular track of ca. 38 m length, 12 m diameter, which comprises the magnetic rail constituted by Nd-B-Fe rare-earth permanent magnets and steel plates, was manufactured to examine loss and high-speed performance of the magnetic levitation guide. Running tests were conducted in air. These tests clarify that a vehicle supported by a superconducting magnetic levitation guide runs stably at speeds greater than 42 km/h above the circular track.

  4. Developing a magnetism conceptual survey and assessing gender differences in student understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2012-02-01

    We discuss the development of a research-based conceptual multiple-choice survey of magnetism. We also discuss the use of the survey to investigate gender differences in students' difficulties with concepts related to magnetism. We find that while there was no gender difference on the pre-test. However, female students performed significantly worse than male students when the survey was given as a post-test in traditionally taught calculus-based introductory physics courses with similar results in both the regular and honors versions of the course. In the algebra-based courses, the performance of female and male students has no statistical difference on the pre-test or the post-test.

  5. Development of a REBCO HTS magnet for Maglev - repeated bending tests of HTS pancake coils -

    Science.gov (United States)

    Sugino, Motohikoa; Mizuno, Katsutoshi; Tanaka, Minoru; Ogata, Masafumi

    2018-01-01

    In the past study, two manufacturing methods were developed that can manufacture pancake coils by using REBCO coated conductors. It was confirmed that the conductors have no electric degradation that caused by the manufacturing method. The durability evaluation tests of the pancake coils were conducted as the final evaluation of the coil manufacturing method in this study. The repeated bending deformation was applied to manufactured pancake coils in the tests. As the results of these tests, it was confirmed that the pancake coils that were manufactured by two methods had the durability for the repeated bending deformation and the coils maintained the appropriate mechanical performance and electric performance. We adopted the fusion bonding method as the coil manufacturing method of the HTS magnet Furthermore, using the prototype pancake coil that was manufactured by the fusion bonding method as a test sample, the repeated bending test under the exited condition was conducted. Thus it was confirmed that the coil manufactured by the fusion bonding method has no degradation of the electricity performance and the mechanical properties even if the repeated bending deformation was applied under the exited condition.

  6. Cryogenic testing of by-pass diode stacks for the superconducting magnets of the large hadron collider at CERN

    International Nuclear Information System (INIS)

    Della Corte, A.; Catitti, A.; Chiarelli, S.; Di Ferdinando, E.; Verdini, L.; Gharib, A.; Hagedorn, D.; Turtu, S.; Basile, G. L.; Taddia, G.; Talli, M.; Viola, R.

    2002-01-01

    A dedicated facility prepared by ENEA (Italian Agency for Energy and Environment) for the cryogenic testing of by-pass diodes for the protection of the CERN Large Hadron Collider main magnets will be described. This experimental activity is in the frame of a contract awarded to OCEM, an Italian firm active in the field of electronic devices and power supplies, in collaboration with ENEA, for the manufacture and testing of all the diode stacks. In particular, CERN requests the measurement of the reverse and forward voltage diode characteristics at 300 K and 77 K, and endurance test cycles at liquid helium temperature. The experimental set-up at ENEA and data acquisition system developed for the scope will be described and the test results reported

  7. The ELETTRA fast magnets

    International Nuclear Information System (INIS)

    Tommasini, D.

    1992-01-01

    The design of the fast magnets to be used to inject the electron beam into the 2 GeV storage ring Elettra is presented and discussed. Injection makes use of two types of fast magnets: the septa and the kickers. There are two identical septa magnets of the so called 'eddy current' type, which will be housed in a vacuum tank. The orbit bump is generated by four identical kicker magnets symmetrically placed around the mid-point of a single straight section: they will be in air with an internal vacuum chamber. Extensive electric and magnetic tests have been performed on prototypes, and the relevant results are presented and discussed. (author) 6 refs.; 6 figs.; 2 tabs

  8. Influence of the inductor shape, and the magnetization processes on a trapped magnetic flux in a superconducting bulk

    Energy Technology Data Exchange (ETDEWEB)

    Gony, B., E-mail: bashar.gony@univ-lorraine.fr; Linares, R.; Lin, Q.; Berger, K.; Douine, B.; Leveque, J.

    2014-08-15

    Highlights: • We tested two inductors: vortex coil and system of three coils. • The system of three coils is better than the vortex coil. • We presented and compared two processes of PFM method. • Similar results were found for the two processes. - Abstract: In this paper, we study the form of the inductor for producing a magnetic field in a superconductor bulk by using a method of PFM (Pulsed Field Magnetization). We tested two inductors: vortex coil and system of three coils, where we found the best results with the system of three coils. After that, we presented two processes for trapping a magnetic field in the bulk: direct magnetization and successive magnetization where we found similar results.

  9. The actual problems of the standardization of magnetically hard materials and permanent magnets

    International Nuclear Information System (INIS)

    Kurbatov, P.A.; Podolskiy, I.D.

    1998-01-01

    The standardization of industrial products raises their accordance with functional purpose, contributes to technological developments and the elimination of technical barriers in trade. The progress of the world trade necessitates the certification of permanent magnets and their manufacturing methods. According to ISO/IEC recommendations, the certification standards should contain the clear requirements to operation parameters of products, that can be impartially controlled. The testing procedures should be clearly formulated and assure that the results may be reproduced. This calls for creation of a system of interconnected certification standards: the standard for technical characteristics of prospective commercial magnetically hard materials, the standard specifications for permanent magnets, the standards for typical testing procedures and the standards for metrological assurance of measurements. (orig.)

  10. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    International Nuclear Information System (INIS)

    Huang, Haihong; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-01-01

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H p (y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H p (y), its slope coefficient K S and maximum gradient K max changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H p (y) and its slope coefficient K S increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H p (y) and K S reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H p (y) instead of changing the signal curve′s profile; and the magnitude of H p (y), K S , K max and the change rate of K S increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H p (y) signals. • Magnitude of H p (y), K S and K max increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  11. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  12. New approaches in the design of magnetic tweezers–current magnetic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bessalova, Valentina [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Perov, Nikolai [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); Rodionova, Valeria [Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); National University of Science and Technology ' MISiS' , Leninsky Prospect 4, 119049 Moscow (Russian Federation)

    2016-10-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10{sup −11} A m{sup 2} at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  13. New approaches in the design of magnetic tweezers–current magnetic tweezers

    International Nuclear Information System (INIS)

    Bessalova, Valentina; Perov, Nikolai; Rodionova, Valeria

    2016-01-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10 −11 A m 2 at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  14. Ten out of ten for LHC decapole magnets

    CERN Multimedia

    2001-01-01

    CERN's Albert Ijspeert (left) and Avinash Puntambekar of the Indian CAT laboratory with the ten Indian decapole magnets on the test bench. Tests will be carried out by the LHC-MTA group. A batch of 10 superconducting decapole magnets for the LHC has just arrived at CERN from India. These will be used to correct for slight imperfections in the dipole magnets that will steer proton beams around CERN's new accelerator. All magnets have slight imperfections in the fields they produce, and in the LHC dipoles these will be corrected for using sextupoles and decapoles. The sextupoles were the first LHC magnets to be given the production green-light following successful tests of pre-series magnets last year (Bulletin 21/2000, 22 May 2000). Now it is the turn of pre-series decapoles to go on trial at CERN. Of the LHC's 1232 dipole magnets, half will use sextupole correctors only and the other half will use both sextupoles and decapoles. That means that a total of 616 pairs of decapoles are needed. Like the sextupole...

  15. Vibrating sample magnetometer 2D and 3D magnetization effects associated with different initial magnetization states

    Directory of Open Access Journals (Sweden)

    Ronald E. Lukins

    2017-05-01

    Full Text Available Differences in VSM magnetization vector rotation associated with various initial magnetization states were demonstrated. Procedures and criteria were developed to select sample orientation and initial magnetization states to allow for the combination of two different 2D measurements runs (with the same field profiles to generate a dataset that can be representative of actual 3D magnetization rotation. Nickel, cast iron, and low moment magnetic tape media were used to demonstrate these effects using hysteresis and remanent magnetization test sequences. These results can be used to generate 2D and 3D magnetic properties to better characterize magnetic phenomena which are inherently three dimensional. Example applications are magnetic tape-head orientation sensitivity, reinterpretation of 3D coercivity and other standard magnetic properties, and multi-dimensional shielding effectiveness.

  16. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  17. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-β micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient

  18. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-..beta.. micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient.

  19. Neuropathy Tests

    Science.gov (United States)

    ... LD) Lactoferrin Lactose Tolerance Tests LDL Cholesterol LDL Particle Testing (LDL-P) Lead Legionella Testing Leptin Levetiracetam Lipase ... tests, such as computed tomography (CT) scans or magnetic resonance imaging ... suspected, additional testing may be performed to evaluate heart rate, blood ...

  20. [Multiple coil pulsed magnetic resonance method to measure the SSC bending magnet multipole moments

    International Nuclear Information System (INIS)

    Clark, W.G.

    1990-01-01

    The main emphasis has been to continue development of the high frequency (to 300 MHz) instrumentation, to test the system on a prototype bending magnet, construct the high frequency 32-channel electronics and probes, to seek industrial partners for technology transfer and commercial exploitation, and to do computer simulations for optimizing design parameters. Experience gained from tests made on a dipole magnet at Lawrence Berkeley Laboratory was extremely valuable and has resulted in substantial modifications to the original design

  1. An experimental study of magnetic-field and temperature dependence on magnetic fluid’s heating power

    International Nuclear Information System (INIS)

    Beković, Miloš; Trlep, Mladen; Jesenik, Marko; Goričan, Viktor; Hamler, Anton

    2013-01-01

    This paper firstly presents a measurement system for determining the magnetic properties of magnetic fluids, based on three pickup coils. The accuracy of the system was tested on known samples and then used for the characterization of magnetic losses (heating power P) on the magnetic fluid sample using two different methods. The first method is based on determining the hysteresis loop area and the second on determining the complex susceptibility; and showed that both methods are equivalent. The aim of this paper was to identify the heating power of the liquid at a known value for the magnetic field, and the arbitrary temperature. Thus, we explored the actual reduction in the heating power due to the heating of the sample, which cannot be achieved without the temperature regulated heat bath using established calorimetric methods. -- Highlights: ► A new measurement system was tested with numerous samples, and results were promising. ► Magnetic fluid heating power was determined using a system of J-compensated coil. ► Complex susceptibility method results equal losses as hysteresis loops approach. ► Temperature dependent heating power was explored without the heath-bath . ► For larger magnetic fields a linear H dependence of heating power is revealed

  2. Design and test of a flat-top magnetic field system driven by capacitor banks.

    Science.gov (United States)

    Jiang, Fan; Peng, Tao; Xiao, Houxiu; Zhao, Jianlong; Pan, Yuan; Herlach, Fritz; Li, Liang

    2014-04-01

    An innovative method for generating a flat-top pulsed magnetic field by means of capacitor banks is developed at the Wuhan National High Magnetic Field Center (WHMFC). The system consists of two capacitor banks as they are normally used to generate a pulsed field. The two discharge circuits (the magnet circuit and the auxiliary circuit) are coupled by a pulse transformer such that the electromotive force (EMF) induced via the transformer in the magnet circuit containing the magnet coil is opposed to the EMF of the capacitor bank. At a certain point before the current pulse in the coil reaches its peak, the auxiliary circuit is triggered. With optimized parameters for charging voltage and trigger delay, the current in the magnet circuit can be approximately kept constant to obtain a flat-top. A prototype was developed at the WHMFC; the magnet circuit was energized by seven 1 MJ (3.2 mF/25 kV) capacitor modules and the auxiliary circuit by four 1 MJ modules. Fields up to 41 T with 6 ms flat-top have been obtained with a conventional user magnet used at the WHMFC.

  3. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2007-01-01

    of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing...

  4. The effects of magnetic perturbations on plasma transport or is magnetic turbulence important in tokamaks?

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1993-01-01

    A test particle model is verified and then used to interpret estimates of fast electron diffusivities in terms of magnetic fluctuation levels. The implied fluctuation levels are themselves interpreted with another verified model to predict electron thermal diffusivities. If the fast electron diffusivities represent local values, then the implied associated thermal transport is too small to explain experimental values. That is, magnetic fluctuations are not important. However, if the fast electron diffusivities represent effective values across mixed good (i.e. with no magnetic fluctuations) and bad (with magnetic fluctuations) surfaces then the implied magnetic fluctuation levels can influence electron thermal transport. (author)

  5. Flexural Behavior of GFRP Tubes Filled with Magnetically Driven Concrete.

    Science.gov (United States)

    Xie, Fang; Chen, Ju; Dong, Xinlong; Feng, Bing

    2018-01-08

    Experimental investigation of GFRP (glass fiber reinforced polymer) tubes that were filled with magnetically driven concrete was carried out to study the flexural behavior of specimens under bending. Specimens having different cross section and lengths were tested. The test specimens were fabricated by filling magnetically driven concrete into the GFRP tubes and the concrete was vibrated using magnetic force. Specimens vibrated using vibrating tube were also tested for comparison. In addition, specimens having steel reinforcing bars and GFRP bars were both tested to study the effect of reinforcing bars on the magnetically driven concrete. The load-displacement curves, load-strain curves, failure mode, and ultimate strengths of test specimens were obtained. Design methods for the flexural stiffness of test specimens were also discussed in this study.

  6. Measurement of the 60 GHz ECR ion source using megawatt magnets - SEISM magnetic field map

    International Nuclear Information System (INIS)

    Marie-Jeanne, M.; Jacob, J.; Lamy, T.; Latrasse, L.; Debray, F.; Matera, J.; Pfister, R.; Trophine, C.

    2012-01-01

    LPSC has developed a 60 GHz Electron Cyclotron Resonance (ECR) Ion Source prototype called SEISM. The magnetic structure uses resistive poly-helix coils designed in collaboration with the French National High Magnetic Fields Facility (LNCMI) to produce a CUSP magnetic configuration. A dedicated test bench and appropriate electrical and water cooling environments were built to study the validity of the mechanics, the thermal behaviour and magnetic field characteristics obtained at various current intensities. During the last months, measurements were performed for several magnetic configurations, with up to 7000 A applied on the injection and extraction coils sets. The magnetic field achieved at 13000 A is expected to allow 28 GHz ECR condition, so by extrapolation 60 GHz should be possible at about 28000 A. However, cavitation issues that appeared around 7000 A are to be solved before carrying on with the tests. This contribution will recall some of the crucial steps in the prototype fabrication, and show preliminary results from the measurements at 7000 A. Possible explanations for the differences observed between the results and the simulation will be given. The paper is followed by the slides of the presentation. (authors)

  7. Magnetic field distribution inside the aperture of a steerer magnet prototype

    International Nuclear Information System (INIS)

    Chiriţă, Ionel; Dan, Daniel; Tănase, Nicolae

    2015-01-01

    The High Energy Storage Ring (HESR), an important part of the Facility for Antiproton and Ion Research (FAIR) international project [1], which will be set up in Darmstadt in the next years, contains, among other magnets, several corrector magnets used for vertical and horizontal beam deviation. A prototype of a 2mrad vertical steerer magnet was designed by National Institute for R and D in Electrical Engineering (ICPE-CA) Romania in close cooperation with Forschungszentrum Jülich Germany [2] and then manufactured and tested by ICPE-CA [3], Romanian Institute for Electrical Engineering—Advanced Research. Magnetic field measurements using a 3D Hall probe were performed. Measured data and their analysis are presented. The system used for Hall probe positioning and data acquisition is also described. (paper)

  8. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haihong, E-mail: huanghaihong@hfut.edu.cn; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-10-15

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H{sub p}(y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H{sub p}(y), its slope coefficient K{sub S} and maximum gradient K{sub max} changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H{sub p}(y) and its slope coefficient K{sub S} increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H{sub p}(y) and K{sub S} reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H{sub p}(y) instead of changing the signal curve′s profile; and the magnitude of H{sub p}(y), K{sub S}, K{sub max} and the change rate of K{sub S} increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H{sub p}(y) signals. • Magnitude of H{sub p}(y), K{sub S} and K{sub max} increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  9. ''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor

    International Nuclear Information System (INIS)

    Marston, P.G.; Iwasa, Y.; Thome, R.J.; Hoenig, M.O.

    1981-01-01

    Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test of that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs

  10. Analysis of the magnetic susceptibility well log in drill hole UE25a-5, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    Magnetic susceptibility measurements have been shown to be dependent upon the magnetite content of rocks with variations in rock susceptibility arising from changes in the shape, size, composition, and quantity of the contained magnetite grains. The present study was undertaken to determine the factor(s) responsible for the variation in magnetic susceptibility measurements from borehole UE25a-5 on the Nevada Test Site (NTS). The well logs and sample analyses presented in this paper form part of a larger geophysical well-logging project studying the physical properties of welded tuffs at NTS. The ash-flow sheets at NTS appear to be the products of single compositionally zoned magmas that tend, within a cooling unit, to erupt hotter, more mafic, and more crystal-rich with time. These factors, however, have little effect on the degree to which the tuffs become welded. Furthermore, zones of crystallization and alteration are superimposed upon the welded units. X-ray data show poor correspondence between the relative abundance of magnetite in a sample and the borehole magnetic susceptibility measurement associated with it. Curie balance experiments demonstrate no change in the magnetic mineralogy that could account for the susceptibility variation. Thin-section observations corroborate the x-ray data, but indicate a proportional relationship between the borehole susceptibility measurements and the grain-size distribution of magnetite. The association of magnetic susceptibility anomalies with the crystal-rich zones of the welded tuffs will aid in the identification and correlation of the eruptive sequences at NTS

  11. Bats Respond to Very Weak Magnetic Fields

    Science.gov (United States)

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944

  12. The OPERA magnetic spectrometer

    CERN Document Server

    Ambrosio, M; Dusini, S; Dulach, B; Fanin, C; Felici, G; Corso, F D; Garfagnini, A; Grianti, F; Gustavino, C; Monacelli, P; Paoloni, A; Stanco, L; Spinetti, M; Terranova, F; Votano, L

    2004-01-01

    The OPERA neutrino oscillation experiment foresees the construction of two magnetized iron spectrometers located after the lead-nuclear emulsion targets. The magnet is made up of two vertical walls of rectangular cross section connected by return yokes. The particle trajectories are measured by high precision drift tubes located before and after the arms of the magnet. Moreover, the magnet steel is instrumented with Resistive Plate Chambers that ease pattern recognition and allow a calorimetric measurement of the hadronic showers. In this paper we review the construction of the spectrometers. In particular, we describe the results obtained from the magnet and RPC prototypes and the installation of the final apparatus at the Gran Sasso laboratories. We discuss the mechanical and magnetic properties of the steel and the techniques employed to calibrate the field in the bulk of the magnet. Moreover, results of the tests and issues concerning the mass production of the Resistive Plate Chambers are reported. Final...

  13. Construction of CHESS compact undulator magnets at Kyma

    Science.gov (United States)

    Temnykh, Alexander B.; Lyndaker, Aaron; Kokole, Mirko; Milharcic, Tadej; Pockar, Jure; Geometrante, Raffaella

    2015-05-01

    In 2014 KYMA S.r.l. has built two CHESS Compact Undulator (CCU) magnets that are at present installed and successfully operate at the Cornell Electron Storage Ring. This type of undulator was developed for upgrade of Cornell High Energy Synchrotron Source beam-lines, but it can be used elsewhere as well. CCU magnets are compact, lightweight, cost efficient and in-vacuum compatible. They are linearly polarized undulators and have a fixed gap. Magnetic field tuning is achieved by phasing (shifting) top magnetic array relative bottom. Two CCUs constructed by KYMA S.r.l. have 28.4 mm period, 6.5 mm gap, 0.93 T peak field. Magnetic structure is of PPM type, made with NdFeB (40UH grade) permanent magnet material. Transitioning from the laboratory to industrial environment for a novel design required additional evaluation, design adjusting and extensive testing. Particular attention was given to the soldering technique used for fastening of the magnetic blocks to holders. This technique had thus far never been used before for undulator magnet construction by industry. The evaluation included tests of different types of soldering paste, measurements of strength of solder and determining the deformations of the soldered magnet and holder under simulated loading forces. This paper focuses on critical features of the CCU design, results of the soldering technique testing and the data regarding permanent magnets magnetization change due to soldering. In addition it deals with optimization-assisted assembly and the performance of the assembled devices and assesses some of the results of the CCU magnets operation at CESR.

  14. Thermal optimum analyses and mechanical design of 10-kA, vapor-cooled power leads for SSC superconducting magnet tests at MTL

    International Nuclear Information System (INIS)

    Shu, Q.S.; Demko, J.; Dorman, R.; Finan, D.; Hatfield, D.; Syromyatnikov, I.; Zolotov, A.; Mazur, P.; Peterson, T.

    1992-08-01

    The spiral-fin, 10-kA, helium vapor-cooled power leads have been designed for Superconducting Super Collider superconducting magnet tests at the Magnet Test Laboratory. In order to thermally optimize the parameters of the power leads, the lead diameters-which minimize the Carnot work for several different lengths, two different fin geometries, and two RRR values of the lead materials-were determined. The cryogenic refrigeration and liquefaction loads for supporting the leads have also been calculated. The optimum operational condition with different currents is discussed. An improved mechanical design of the 10-kA power leads was undertaken, with careful consideration of the cryogenic and mechanical performance. In the design, a new thermal barrier device to reduce heat conduction from the vacuum and gas seal area was employed. Therefore, the electric insulation assembly, which isolates the ground potential parts of the lead from the high-power parts, was moved into a warm region in order to prevent vacuum and helium leakage in the 0-ring seals due to transient cold temperature. The instrumentation for testing the power leads is also discussed

  15. Magnetic rubber inspection (MRI)

    International Nuclear Information System (INIS)

    Carro, L.

    1997-01-01

    Magnetic Rubber Inspection (MRI) was developed to inspect for small cracks and flaws encountered in high performance aircraft. A formula of very fine magnetic particles immersed in a room temperature curing rubber is catalysed and poured into dams (retainers) on the surface of the part to be inspected. Inducing a magnetic field then causes the particles to be drawn to discontinuities in the component under test. These indicating particles are held to the discontinuity by magnetic attraction, as the rubber cures. The solid rubber cast (Replica) is then removed and examined under a microscope for indicating lines of particle concentrations. 3 refs., 6 figs

  16. A beam test of a prototype of the BESIII drift chamber in magnetic field

    International Nuclear Information System (INIS)

    Liu, J.B.; Qin, Z.H.; Wu, L.H.; Chen, C.; Zhuang, B.A.; Chen, Y.B.; Jin, Y.; Liu, R.G.; Ma, X.Y.; Ma, Y.Y.; Tang, X.; Wang, L.; Xu, M.H.; Zhang, G.F.; Zhu, M.X.; Zhu, Q.M.

    2006-01-01

    A prototype of the BESIII drift chamber was tested with He/C 3 H 8 (60/40) gas mixture in a 1T magnetic field at the π-2 beam line of KEK 12GeV PS. The drift distance-time relationship was extracted for various conditions. The performance of the chamber, such as the spatial resolution, the dE/dx resolution and the cell efficiency, was studied in detail. The dE/dx was measured as a function of βγ to calculate the particle separation power. Based on the test results, the operating voltage of the BESIII drift chamber is optimized to be 2200V, resulting in a spatial resolution better than 110μm, a cell efficiency over 98%, a dE/dx resolution better than 5% and the 3σπ/K separation at a momentum exceeding 700MeV/c. These results confirm the validation of the physics design of the BESIII drift chamber

  17. Use of automated test equipment and open-quotes paperlessclose quotes process control to implement efficient production of SSC dipole magnets

    International Nuclear Information System (INIS)

    Tobin, T.; Fagan, R.; Mitchell, D.

    1994-01-01

    In an effort to minimize human error and maximize process control and test capabilities during Collider Dipole Magnets (CDM) production, General Dynamics is developing automated test and process control equipment; known as Test ampersand Process Control Modules (TPCM's). When used along with software designed to create open-quotes paperlessclose quotes process control documentation, the system becomes the Test ampersand Process Control System (TPCS). This system simplifies business decisions and eliminates some problems normally associated with process control documentation, while reducing human errors during CDM production. It is also designed to reduce test operator errors normally incurred during test setup and data analysis. The authors present an overview of the TPCS hardware and software being developed at General Dynamics, along with the process control techniques included in TPCS

  18. Design of a magnetic field alignment diagnostic for the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Deadrick, F.J.; House, P.A.; Frye, R.W.

    1985-01-01

    Magnet alignment in tandem mirror fusion machines plays a crucial role in achieving and maintaining plasma confinement. Various visual alignment tools have been described by Post et al. to align the Tara magnet system. We have designed and installed a remotely operated magnetic field alignment (MFA) diagnostic system as a part of the Mirror Fusion Test Facility (MFTF-B). It measures critical magnetic field alignment parameters of the MFTF-B coil set while under full-field operating conditions. The MFA diagnostic employs a pair of low-energy, electron beam guns on a remotely positionable probe to trace and map selected magnetic field lines. An array of precision electrical detector paddles locates the position of the electron beam, and thus the magnetic field line, at several critical points. The measurements provide a means to compute proper compensating currents to correct for mechanical misalignments of the magnets with auxiliary trim coils if necessary. This paper describes both the mechanical and electrical design of the MFA diagnostic hardware

  19. Hysteresis force loss and damping properties in a practical magnet-superconductor maglev test vehicle

    International Nuclear Information System (INIS)

    Yang Wenjiang; Liu Yu; Wen Zheng; Chen Xiaodong; Duan Yi

    2008-01-01

    In order to investigate the feasible application of a permanent magnet-high-temperature superconductor (PM-HTS) interaction maglev system to a maglev train or a space vehicle launcher, we have constructed a demonstration maglev test vehicle. The force dissipation and damping of the maglev vehicle against external disturbances are studied in a wide range of amplitudes and frequencies by using a sine vibration testing set-up. The dynamic levitation force shows a typical hysteresis behavior, and the force loss is regarded as the hysteresis loss, which is believed to be due to flux motions in superconductors. In this study, we find that the hysteresis loss has weak frequency dependence at small amplitudes and that the dependence increases as the amplitude grows. To analyze the damping properties of the maglev vehicle at different field cooling (FC) conditions, we also employ a transient vibration testing technique. The maglev vehicle shows a very weak damping behavior, and the damping is almost unaffected by the trapped flux of the HTSs in different FC conditions, which is believed to be attributed to the strong pinning in melt-textured HTSs

  20. Influence of magnet eddy current on magnetization characteristics of variable flux memory machine

    Science.gov (United States)

    Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang

    2018-05-01

    In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.

  1. Characterization of the magnetic micro- and nanostructure in unalloyed steels by magnetic force microscopy

    Science.gov (United States)

    Batista, L.; Rabe, U.; Hirsekorn, S.

    2013-01-01

    The formation of a cementite phase influences significantly the macroscopic mechanical and magnetic properties of steels. Based on a correlation between mechanical and magnetic properties, mechanical properties as well as the morphology and content of the cementite phase can be inspected by electromagnetic non-destructive testing methods. The influence of the carbon content on bulk magnetic properties of unalloyed steels is studied on a macroscopic scale by hysteresis loop and Barkhausen noise measurements. The micro- and nanostructure is investigated by atomic force microscopy and magnetic force microscopy. Surface topography images and magnetic images of globular cementite precipitates embedded in a ferrite matrix are presented. The size, shape, and orientation of the precipitates influence the domain configuration. Applied external magnetic fields cause magnetization processes mainly in the ferrite matrix: Bloch walls move and are pinned by the cementite precipitates. The correlation between the microscopic observations and macroscopic magnetic properties of the material is discussed.

  2. Remediation of Hanford tank waste using magnetic separation

    International Nuclear Information System (INIS)

    Worl, L.A.; Avens, L.R.; de Aguero, K.J.; Coyne Prenger, F.; Stewart, W.F.; Hill, D.D.

    1992-01-01

    Large volumes of high-level radioactive waste are stored at the Department of Energy's Hanford site. Magnetic separation, a physical separation, process, can be used to segregate actinides and certain fission products from the waste. High gradient magnetic separation (HGMS) tests have been performed successfully using a simulated, nonradioactive underground storage tank (UST) waste. Variations in HGMS test parameters included separator matrix material, magnetic field strength, slurry surfactant, and slurry solids loading. Cerium was added to the simulated tank waste to act as a uranium surrogate. Results show that over 77% of the uranium surrogate can be captured and concentrated from the original bulk with a simple procedure. The results of these tests and the feasibility of magnetic separation for pretreatment of UST waste are discussed

  3. Magnetic Gimbal Proof-of-Concept Hardware performance results

    Science.gov (United States)

    Stuart, Keith O.

    1993-01-01

    The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.

  4. Status of magnet power supply development for the APS storage ring

    International Nuclear Information System (INIS)

    McGhee, D.

    1989-01-01

    To simplify installation and speed testing of the Advanced Photon Source (APS) storage ring magnets, vacuum chambers and magnet power supplies, a modular approach was developed. All but the dipole magnets are independently controlled. Pulse width modulated dc-to-dc converters are used to power the individual magnets, with 12-pulse power supplies providing the raw dc to the converters. A magnet support base is the heart of a module and may hold as many as 7 magnets with 8 individually powered coils. The dc-to-dc converters are part of each magnet base module. This paper will show the modular approach which is used for the storage ring magnet systems and will give the test results of the prototype topology for the cd-to-cd converters that are being built and tested to power 680 quadrupole and sextupole magnets. 4 refs., 11 figs., 1 tab

  5. Bench-scale magnetic separation of Department of Energy wastes

    International Nuclear Information System (INIS)

    Hoegler, J.M.

    1987-07-01

    Criteria were developed for selection of candidate wastes for testing magnetic separation of uranium and/or other paramagnetic materials. A survey of Department of Energy (DOE) hazardous wastes was conducted to determine good candidates for bench-scale magnetic separation tests. Representatives of 21 DOE sites were contacted, and 11 materials were identified as potential candidates for magnetic separation. To date, seven samples have been obtained and tested for separability of uranium with a bench-scale magnetic assaying device. The samples tested have been obtained from the K-1401B and K-1401C ponds in Oak Ridge, Tennessee; from waste piles in Maywood, New Jersey; from North and South Ponds in Richland, Washington; and from magnesium fluoride drums in Fernald, Ohio. The magnetic device utilized in these tests can be used in an open-gradient mode with dry particulate or liquid-suspended materials. Uranium separation from magnesium fluoride has shown exceptionally good performance in both open- and high-gradient modes and could be an important application of the technology

  6. submitter Status of the Demonstrator Magnets for the EuCARD-2 Future Magnets Project

    CERN Document Server

    Kirby, G; Badel, A; Bajko, M; Ballarino, A; Bottura, L; Dhalle, M; Durante, M; Fazilleau, P; Fleiter, J; Goldacker, W; Haro, E; Himbele, J; Kario, A; Langeslag, S; Lorin, C; Murtzomaki, J; van Nugteren, J; de Rijk, G; Salmi, T; Senatore, C; Stenvall, A; Tixador, P; Usoskin, A; Volpini, G; Yang, Y; Zangenberg, N

    2016-01-01

    EuCARD-2 is a project partly supported by FP7 European Commission aiming at exploring accelerator magnet technology for 20-T dipole operating field. The EuCARD-2 collaboration is liaising with similar programs for high-field magnets in the U.S. and Japan. EuCARD-2 focuses, through the work package 10 “future magnets,” on the development of a 10-kA-class superconducting high-current-density cable suitable for accelerator magnets, for a 5-T stand-alone dipole of 40-mm bore and about 1-m length. After stand-alone testing, the magnet will be inserted in a large bore background dipole, 10-18 T. This paper reports on the design and development of models, which are called Feather0, wound with REBCO Roebel cable. Based on aligned block design to take advantage of the anisotropy of the REBCO tapes, Feather0 is a precursor of Feather2, which should reach the project goals in 2016. Feather0 is planned to be tested both in stand alone and as an insert mounted in the CERN Fresca facility providing 10-T background fiel...

  7. Manipulating the magnetic anisotropy and magnetization dynamics by stress: Numerical calculation and experiment

    Science.gov (United States)

    Correa, M. A.; Bohn, F.

    2018-05-01

    We perform a theoretical and experimental investigation of the magnetic properties and magnetization dynamics of a ferromagnetic magnetostrictive multilayer grown onto a flexible substrate and submitted to external stress. We calculate the magnetic behavior and magnetoimpedance effect for a trilayered system from an approach that considers a magnetic permeability model for planar geometry and a magnetic free energy density which takes into account induced uniaxial and magnetoelastic anisotropy contributions. We verify remarkable modifications of the magnetic anisotropy with external stress, as well as we show that the dynamic magnetic response is strongly affected by these changes. We discuss the magnetic features that lead to modifications of the frequency limits where distinct mechanisms are responsible by the magnetoimpedance variations, enabling us to manipulate the resonance fields. To test the robustness of the approach, we directly compare theoretical results with experimental data. Thus, we provide experimental evidence to confirm the validity of the theoretical approach, as well as to manipulate the resonance fields to tune the MI response according to real applications in devices.

  8. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  9. Magnetizing of permanent magnet using HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2011-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole containing the HTS bulk magnet, generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnetic plates inversely with various overlap distances between the tracks of the HTS bulk magnet. The magnetic field of the 'rewritten' magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated. (author)

  10. Superconducting magnets for ISABELLE

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1976-01-01

    The application of superconducting magnet technology to high-energy accelerators has been studied at BNL for many years. Recently this effort has focused on the magnet system for the proposed Intersecting Storage Accelerator, ISABELLE. Several full-sized dipole and quadrupole magnets were fabricated and tested. A dipole was successfully operated using a high pressure forced circulation refrigeration system similar to that proposed for the accelerator. This magnet reached a maximum central field of 4.9 T, considerably above the design field of 3.9 T. A quadrupole of similar design was equally successful, achieving a gradient of 71 T/m compared to the design value of 53 T/m. A summary is given of the present status of the magnet development program, and the direction of future work is outlined

  11. TESTING MODELS OF MAGNETIC FIELD EVOLUTION OF NEUTRON STARS WITH THE STATISTICAL PROPERTIES OF THEIR SPIN EVOLUTIONS

    International Nuclear Information System (INIS)

    Zhang Shuangnan; Xie Yi

    2012-01-01

    We test models for the evolution of neutron star (NS) magnetic fields (B). Our model for the evolution of the NS spin is taken from an analysis of pulsar timing noise presented by Hobbs et al.. We first test the standard model of a pulsar's magnetosphere in which B does not change with time and magnetic dipole radiation is assumed to dominate the pulsar's spin-down. We find that this model fails to predict both the magnitudes and signs of the second derivatives of the spin frequencies (ν-double dot). We then construct a phenomenological model of the evolution of B, which contains a long-term decay (LTD) modulated by short-term oscillations; a pulsar's spin is thus modified by its B-evolution. We find that an exponential LTD is not favored by the observed statistical properties of ν-double dot for young pulsars and fails to explain the fact that ν-double dot is negative for roughly half of the old pulsars. A simple power-law LTD can explain all the observed statistical properties of ν-double dot. Finally, we discuss some physical implications of our results to models of the B-decay of NSs and suggest reliable determination of the true ages of many young NSs is needed, in order to constrain further the physical mechanisms of their B-decay. Our model can be further tested with the measured evolutions of ν-dot and ν-double dot for an individual pulsar; the decay index, oscillation amplitude, and period can also be determined this way for the pulsar.

  12. Magnetic susceptibility characterisation of superparamagnetic microspheres

    Science.gov (United States)

    Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve

    2018-04-01

    The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.

  13. Two cylinder permanent magnet stirrer for liquid metals

    Science.gov (United States)

    Bojarevičs, A.; Baranovskis, R.; Kaldre, I.; Milgrāvis, M.; Beinerts, T.

    2017-07-01

    To achieve a uniform liquid metal composition and temperature distribution, stirring is often necessary for industrial processes. Here, a novel permanent magnet system for liquid melt stirring is proposed. It promises very low energy consumption and options for multiple different flow types compared to traditional travelling magnetic field inductors or mechanical stirrers. The proposed system has a simple design: it consists of two rotating permanent magnet cylinders, which are magnetized transversely to the axis of the cylinders. The experimental device was developed and tested under various regimes using GaInSn alloy in a cylindrical crucible. Aluminum stirring by permanent magnets in laboratory scale is tested, and stirring impact on directional solidification of metallic alloys is experimentally investigated.

  14. 28 May 2010 - Japanese Ambassador H. Ueda visiting the LHC superconducting magnet test hall with CERN Technology Deputy Department Head L. Rossi.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    CERN-HI-1005088 02 Japanese Ambassador H. Ueda (right) visiting the LHC superconducting magnet test hall with Technology Deputy Department Head L. Rossi(left). H. Ueda is accompanied by KEK and ATLAS Collaboration T. Kondo (centre).

  15. On test results of the superconducting magnetic energy storage (SMES) system in Ariuragawa Power Station

    International Nuclear Information System (INIS)

    Katahira, Osamu; Fukui, Fumihiko; Karano, Koichi; Irie, Fujio; Takeo, Masakatsu; Okada, Hidehiko; Shimojo, Toshikazu.

    1991-01-01

    SMES system is that for storing electric energy in the form of magnetic energy by flowing DC current through a superconducting coil by utilizing the characteristics of its superconductivity. It comprises a superconducting coil for storing energy, an AC-DC converter, the cooling system for maintaining extremely low temperature and so on. The features of SMES are the high efficiency of storing electric energy (more than 90 % in the large scale system), the fast response to store and release electric power, and effective power and reactive power can be independently and arbitrarily controlled. It is expected that SMES can be applied to the stabilization of electric power system, the adjustment of system voltage, the adjustment of varying load and so on. In order to verify the results of the laboratory research in actual power system, the system test was carried out in Ariuragawa Power Station on November 20-22, 1990. The outline of the test, the method of controlling SMES, the test results and the examination of the results are reported. (K.I.)

  16. Quark deconfinement in nuclei: A review of experimental tests based on nuclear magnetic moment measurements

    International Nuclear Information System (INIS)

    Stone, N.J.; Rikovska, J.

    1988-01-01

    The introduction very briefly outlines the basic idea and experimental evidence to suggest that quarks may behave differently in nuclei and in individual nucleons, with possible consequences for the calculation of nuclear magnetic dipole moments. After description of a calculation of moments made using the extreme model of total quark deconfinement (the MIT bag model) attention is focussed on experimental tests and the state of current evidence for more partial quark deconfinement. The arguments of Yamazaki which give an experimental basis for distinguishing quark deconfinement effects from, specifically, effects caused by pion exchange currents, are given in more detail. The reasons underlying choice of nuclei in which meaningful tests may be possible are given. Early claims by Karl et al. to have demonstrated the existence of quark deconfinement in mass 3 nuclei are discussed. The current status of evidence for deconfinement based on orbital g-factor measurements in heavier nuclei is also summarised. Finally some examples are given of possible experiments using recently developed on-line facilities which may provide further tests of these ideas. (orig.)

  17. New possibility of magnetic ripple shielding for specific heat measurements in hybrid magnets

    NARCIS (Netherlands)

    Tarnawski, Z.; Meulen, der, H. van; Franse, J.J.M.; Kadowaki, K.; Veenhuizen, P.A.; Klaasse, J.

    1988-01-01

    A test of the new high Tc superconducting materials for magnetic ripple shielding has been carried out. It was found that magnetic ripples of 0.0009 T (peak-to-peak) in the frequency range below 20 kHz can be completely shielded in high static fields by a 2 mm thick Y-Ba-Cu-O screen.

  18. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  19. Cooldown of superconducting magnet strings

    International Nuclear Information System (INIS)

    Yuecel, A.; Carcagno, R.H.

    1995-01-01

    A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses

  20. PS overcomes two serious magnet failures

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Two magnets and a bus bar connection in the PS were found to be faulty during high-voltage tests at the end of the accelerator shutdown. A five-week repair schedule was quickly devised. A team of mechanics, technicians and engineers worked at full speed to replace the faulty magnets, succeeding in limiting the delay of the accelerators' spring start-up to two weeks. Here we see the PS magnet string awaiting the replacement no. 6 magnet.

  1. Design and construction of permanent magnetic gears

    DEFF Research Database (Denmark)

    Jørgensen, Frank Thorleif

    /l]. Measurement from this gear has resulted in a measured total torque density of 23 [Nm/l]. Mechanical versions of this gear type are found with total torque density in the 16 to 31 [Nm/l] range. The third and last gear technology that is investigated is a gear that reminds of a planetary gear. Research shows......This thesis deals with design and development of permanent magnetic gears. The goal of this thesis is to develop knowledge and calculation software for magnetic gears. They use strong NdFeB permanent magnets and a new magnetic gear technology, which will be a serious alternative to classical...... mechanical gears. The new magnetic gear will have a high torque density1 relationship –high efficiency and are maintenance free. In this project was manufactured two test gears which is tested and verified with models developed in this project. Present technological status for magnetic gears is introduced...

  2. The cycloid Permanent Magnetic Gear

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Andersen, Torben Ole; Jørgensen, Frank T.

    2008-01-01

    This paper presents a new permanent-magnet gear based on the cycloid gearing principle. which normally is characterized by an extreme torque density and a very high gearing ratio. An initial design of the proposed magnetic gear was designed, analyzed, and optimized with an analytical model...... regarding torque density. The results were promising as compared to other high-performance magnetic-gear designs. A test model was constructed to verify the analytical model....

  3. The methods of the LHC magnets' magnetic axis location measurement

    International Nuclear Information System (INIS)

    Bottura, L.; Buzio, M.; Deferne, G.; Sievers, P.; Smirnov, N.; Villar, F.P.; Walckiers, L.

    1999-01-01

    More than 8 thousands LHC magnets of various types will be extensively measured during series magnetic test at both room and superfluid helium temperature. The precise knowledge of the magnetic axis positioning is vital for the alignment of those magnets in the tunnel. The most efficient and cost effective method with rotating pick up coil is chosen currently as a baseline for series measurement. The position of the measuring coil axis herewith is measured with a dedicated optical system. The deflection of the light beam in the air due to temperature gradient either passing through the cold bore when the magnet excited for warm measurement or through the anti-cryostat during cold measurement can reach magnitudes significantly exceeding tolerance and therefore is a critical issue. We present studies of the light deflection in 10 m long dipole at warm and cold and propose means to reduce it. The result of the dipole centring powered in Quadrupole Configured Dipole (QCD) or 'ugly quad' configuration and correlation with centring based on high order harmonics are presented as well. (authors)

  4. Development of a dc motor with virtually zero powered magnetic bearing

    Science.gov (United States)

    1971-01-01

    The development of magnetic bearings for use in direct current electric motors is discussed. The characteristics of the magnets used in the construction of the bearings are described. A magnetic bearing using steel armoring on permanent magnets was selected for performance tests. The specifications of the motor are presented. The test equipment used in the evaluation is described.

  5. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    Science.gov (United States)

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  6. Conceptual design of a Bitter-magnet toroidal-field system for the ZEPHYR Ignition Test Reactor

    International Nuclear Information System (INIS)

    Williams, J.E.C.; Becker, H.D.; Bobrov, E.S.; Bromberg, L.; Cohn, D.R.; Davin, J.M.; Erez, E.

    1981-05-01

    The following problems are described and discussed: (1) parametric studies - these studies examine among other things the interdependence of throat stresses, plasma parameters (margins of ignition) and stored energy. The latter is a measure of cost and is minimized in the present design; (2) magnet configuration - the shape of the plates are considered in detail including standard turns, turns located at beam ports, diagnostic and closure flanges; (3) ripple computation - this section describes the codes by which ripple is computed; (4) field diffusion and nuclear heating - the effect of magnetic field diffusion on heating is considered along with neutron heating. Current, field and temperature profiles are computed; (5) finite element analysis - the two and three dimensional finite element codes are described and the results discussed in detail; (6) structures engineering - this considers the calculation of critical stresses due to toroidal and overturning forces and discusses the method of constraint of these forces. The Materials Testing Program is also discussed; (7) fabrication - the methods available for the manufacture of the constituent parts of the Bitter plates, the method of assembly and remote maintenance are summarized

  7. Maximum field capability of energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Turkot, F.; Cooper, W.E.; Hanft, R.; McInturff, A.

    1983-01-01

    At an energy of 1 TeV the superconducting cable in the Energy Saver dipole magnets will be operating at ca. 96% of its nominal short sample limit; the corresponding number in the quadrupole magnets will be 81%. All magnets for the Saver are individually tested for maximum current capability under two modes of operation; some 900 dipoles and 275 quadrupoles have now been measured. The dipole winding is composed of four individually wound coils which in general come from four different reels of cable. As part of the magnet fabrication quality control a short piece of cable from both ends of each reel has its critical current measured at 5T and 4.3K. In this paper the authors describe and present the statistical results of the maximum field tests (including quench and cycle) on Saver dipole and quadrupole magnets and explore the correlation of these tests with cable critical current

  8. QA engineering for the LCP USA magnet manufacturers

    International Nuclear Information System (INIS)

    Childress, C.E.; Batey, J.E.; Burn, P.B.

    1981-01-01

    This paper describes the QA and QC efforts and results used in fabricating the superconducting magnets of competing designs being developed by American Manufacturers for testing in the ORNL Large Coil Test Facility. Control of the design, materials and processes to assure proper functioning of the magnets in the test facility as well as the content of archival data being compiled is discussed

  9. Internal magnetic target of proton synchrotron

    International Nuclear Information System (INIS)

    Gachurin, V.V.; Kats, M.M.; Kondrat'ev, L.N.; Rogal', A.D.; Rusinov, V.Yu.

    1988-01-01

    Proton extraction from a synchrotron by means of an internal target of magnetized iron is described. The particles that are aimed at the target pass directly through it and are deflected by the internal magnetic field of the target in the extraction direction. The general properties of magnetic targets are examined theoretically and a specific devices and results of its testing are described

  10. Enhancement of crystallinity and magnetization in Fe3O4 nanoferrites induced by a high synthesized magnetic field

    Science.gov (United States)

    Ma, Xinxiu; Zhang, Zhanxian; Chen, Shijie; Lei, Wei; Xu, Yan; Lin, Jia; Luo, Xiaojing; Liu, Yongsheng

    2018-05-01

    A one-step hydrothermal method in different dc magnetic fields was used to prepare the Fe3O4 nanoparticles. Under the magnetic field, the average particle size decreased from 72.9 to 41.6 nm, meanwhile, the particle crystallinity is greatly improved. The magnetic field enhances its saturation magnetization and coercivity. The high magnetic field induce another magnetic structure. At room temperature, these nanoparticles exhibit superparamagnetism whose critical size (D sp) is about 26 nm. The Verwey transition is observed in the vicinity of 120 K of Fe3O4 nanoparticles. The effective magnetic anisotropy decreases with the increase of the test temperature because of the H c decreased.

  11. The magnet components database system

    International Nuclear Information System (INIS)

    Baggett, M.J.; Leedy, R.; Saltmarsh, C.; Tompkins, J.C.

    1990-01-01

    The philosophy, structure, and usage of MagCom, the SSC magnet components database, are described. The database has been implemented in Sybase (a powerful relational database management system) on a UNIX-based workstation at the Superconducting Super Collider Laboratory (SSCL); magnet project collaborators can access the database via network connections. The database was designed to contain the specifications and measured values of important properties for major materials, plus configuration information (specifying which individual items were used in each cable, coil, and magnet) and the test results on completed magnets. The data will facilitate the tracking and control of the production process as well as the correlation of magnet performance with the properties of its constituents. 3 refs., 9 figs

  12. The magnet components database system

    International Nuclear Information System (INIS)

    Baggett, M.J.; Leedy, R.; Saltmarsh, C.; Tompkins, J.C.

    1990-01-01

    The philosophy, structure, and usage MagCom, the SSC magnet components database, are described. The database has been implemented in Sybase (a powerful relational database management system) on a UNIX-based workstation at the Superconducting Super Collider Laboratory (SSCL); magnet project collaborators can access the database via network connections. The database was designed to contain the specifications and measured values of important properties for major materials, plus configuration information (specifying which individual items were used in each cable, coil, and magnet) and the test results on completed magnets. These data will facilitate the tracking and control of the production process as well as the correlation of magnet performance with the properties of its constituents. 3 refs., 10 figs

  13. One thousand magnets delivered!

    CERN Multimedia

    2005-01-01

    The little matchstick-like objects, neatly lined up like colouring pencils in their box, are in fact LHC magnets seen from the air. These particular ones are being stored at Point 19 just alongside SM18, the magnet assembly and testing hall, which can be seen on the right of the picture. On the right in the background, is the Meyrin site.

  14. Superconducting magnets for the RAON electron cyclotron resonance ion source.

    Science.gov (United States)

    Choi, S; Kim, Y; Hong, I S; Jeon, D

    2014-02-01

    The RAON linear accelerator of Rare Isotope Science Project has been developed since 2011, and the superconducting magnet for ECRIS was designed. The RAON ECR ion source was considered as a 3rd generation source. The fully superconducting magnet has been designed for operating using 28 GHz radio frequency. The RAON ECRIS operates in a minimum B field configuration which means that a magnetic sextupole field for radial confinement is superimposed with a magnetic mirror field for axial confinement. The highest field strength reaches 3.5 T on axis and 2 T at the plasma chamber wall for operating frequency up to 28 GHz. In this paper, the design results are presented of optimized superconducting magnet consisting of four solenoids and sextupole. The prototype magnet for ECRIS was fabricated and tested to verify the feasibility of the design. On the basis of test results, a fully superconducting magnet will be fabricated and tested.

  15. Sudden flux change studies in high field superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Feher, S.; Bordini, B.; Carcagno, R.; Makulski, A.; Orris, D.F.; Pischalnikov, Y.M.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet Program at Fermilab many magnets have been tested which utilize multi strand Rutherford type cable made of state-of-the art Nb 3 Sn strands. During these magnet tests we observed sudden flux changes by monitoring coil voltages and the magnetic field close to the magnets. These flux changes might be linked to magnet instabilities. The voltage spike signals were correlated with quench antenna signals, a strong indication that these are magnet phenomena. With a new high resolution voltage spike detection system, we were able to observe the detailed structure of the spikes. Two fundamentally different signal shapes were distinguished, most likely generated by different mechanisms

  16. Improved cable insulation for superconducting magnets

    International Nuclear Information System (INIS)

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-01-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/Fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where wires in neighboring turns crossed one another and where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system

  17. Improved cable insulation for superconducting magnets

    International Nuclear Information System (INIS)

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-01-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system

  18. Foucault current testing of ferritic steel fuel cans

    International Nuclear Information System (INIS)

    Stossel, A.

    1984-10-01

    The analysis of impedance involved by a Foucault current test of ferritic steel tubes, is quite different from the classical analysis which refers to non-magnetic tubes; more particularly, volume defects are considered as magnetic anomalies. Contrarily to current instructions which recommend to test the product in a satured magnetic state, it is very interesting to work with a continuous energizing field, comparatively low, corresponding to a sequenced magnetization, of which value is obtained according to the magnetic structure of the product. This analysis is useful when testing fast reactor fuel cans [fr

  19. Nb3Sn dipole magnet reacted after winding

    International Nuclear Information System (INIS)

    Taylor, C.; Scanlan, R.; Peters, C.; Wolgast, R.; Gilbert, W.; Hassenzahl, W.; Meuser, R.; Rechen, J.

    1984-09-01

    A 5 cm bore dia., 1-m-long dipole model magnet was constructed by winding un-reacted cable, followed by reaction and epoxy-impregnation. Experience and test results are described on the 1.7 mm dia. internal-tin wire, the eleven-strand flattened cable, fiberglass insulation, and construction of the magnet. Each half of the magnet has two double-pancake-type windings that were reacted in a single operation. The two double-pancakes were then separately vacuum impregnated after soldering the flexible Nb-Ti leads to the Nb 3 Sn conductors. No iron flux return yoke was used. In initial tests a central field of 8.0 T was reached at 4.4 K. However, evidence from training behavior, and 1.8 K tests indicate that premature quenching, rather than critical current of the cable, limited the field intensity. The magnet was reassembled and more rigidly clamped; additional test results are reported

  20. Make way for the ATLAS magnet

    CERN Multimedia

    2007-01-01

    On 5 and 6 February, the first ATLAS End Cap Toroid magnet was transported to begin a two-month regime of cryogenic testing. The magnet is scheduled to be installed in the cavern the first week of June.