WorldWideScience

Sample records for magnetic spectrometer ams

  1. The Alpha Magnetic Spectrometer (AMS)

    International Nuclear Information System (INIS)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A.; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.; Shoumilov, E.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G.S.; Suter, H.; Tang, X.W.; Ting, S.C.C.Samuel C.C.; Ting, S.M.; Tornikoski, M.; Torsti, J.; Tr umper, J.; Ulbricht, J.; Urpo, S.; Usoskin, I.; Valtonen, E.; Vandenhirtz, J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J.P.; Viertel, G.; Vite, D.; Gunten, H. Von; Wicki, S.W.S. Waldmeier; Wallraff, W.; Wang, B.C.; Wang, J.Z.; Wang, Y.H.; Wiik, K.; Williams, C.; Wu, S.X.; Xia, P.C.; Yan, J.L.; Yan, L.G.; Yang, C.G.; Yang, M.; Ye, S.W.; Yeh, P.; Xu, Z.Z.; Zhang, H.Y.; Zhang, Z.P.; Zhao, D.X.; Zhu, G.Y.; Zhu, W.Z.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m 2 ) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS

  2. Antimatter search with AMS (Alpha Magnetic Spectrometer) during STS-91 precursor flight

    International Nuclear Information System (INIS)

    Alpat, Behcet

    2000-01-01

    The Alpha Magnetic Spectrometer (AMS) is designed to study the antimatter, matter and dark matter in space. AMS successfully flown on space shuttle Discovery during precursor flight STS-91 in a 51.7 degree sign orbit at altitudes between 320 and 390 km. No antimatter nuclei with Z ≥ 2 were detected. In this report we present the AMS performances during shuttle flight and we give new limits on antimatter/matter flux ratio

  3. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet E-mail: behcet.alpat@pg.infn.it

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  4. Alpha Magnetic Spectrometer (AMS) for Extraterrestrial Study of Antimatter, Matter and Missing Matter on the International Space Station

    CERN Multimedia

    Lee, M W; Lipari, P; Berdugo perez, J F; Borgia, B; Lazzizzera, I; Battarbee, M C; Valente, V; Bartoloni, A

    2002-01-01

    % RE1\\\\ \\\\ AMS is the first magnetic particle physics spectrometer to be installed on the International Space Station. With a superconducting magnetic spectrometer, AMS will provide accurate measurements of electrons, positrons, protons, antiprotons and various nuclei up to TeV region. NASA has scheduled to install this detector on the International Space Station in May 2003. The first flight of AMS was done with a permanent magnet and this prototype detector has provided accurate information on the limit of the existence of antihelium. It also showed that proton and electron -positron spectra exhibited a complicated behavior in the near earth orbit. The construction of AMS is being carried out in Switzerland, Germany, Italy, France, Finland, Spain, Portugal, Romania, Russia, Taiwan, China and the United States. NASA provides the use of the space shuttle and the space station, as well as mission management.

  5. AMS, a particle spectrometer in space

    International Nuclear Information System (INIS)

    Buenerd, M.; Ohlsson-Malek, F.; Ren, Z.L.; Santos, D.; Thuillier, T.

    1997-01-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed for extraterrestrial study of anti-matter, matter and dark matter. A precursor flight and on the STS-91 flight of the shuttle is planned to take place on May 1998. AMS will be installed on the International Space Station in January 2002 where it will be operated next, for three to five years. The contributions of the ISN to the project on the shuttle (aerogel threshold Cherenkov counter) as well as the steps to build a RICH detector for AMS on the ISSA are explained here below. (authors)

  6. Assessment of Alphamagnetic Spectrometer (AMS) Upper Experiment Structural Configuration Shielding Effectiveness Associated with Change from Cryo-Cooled Magnet to Permanent Magnet

    Science.gov (United States)

    Scully, Robert

    2012-01-01

    In the spring of 2010, the Alpha Magnetic Spectrometer 2 (AMS-02) underwent a series of system level electromagnetic interference control measurements, followed by thermal vacuum testing. Shortly after completion of the thermal vacuum testing, the project decided to remove the cryogenically cooled superconducting magnet, and replace it with the original permanent magnet design employed in the earlier AMS- 01 assembly. Doing so necessitated several structural changes, as well as removal or modification of numerous electronic and thermal control devices and systems. At this stage, the project was rapidly approaching key milestone dates for hardware completion and delivery for launch, and had little time for additional testing or assessment of any impact to the electromagnetic signature of the AMS-02. Therefore, an analytical assessment of the radiated emissions behavioural changes associated with the system changes was requested.

  7. The Alpha Magnetic Spectrometer Silicon Tracker

    CERN Document Server

    Burger, W J

    1999-01-01

    The Alpha Magnetic Spectrometer (AMS) is designed as a independent module for installation on the International Space Station Alpha (ISSA) in the year 2002 for an operational period of three years. The principal scientific objectives are the searches for antimatter and dark matter in cosmic rays. The AMS uses 5.5 m sup 2 of silicon microstrip sensors to reconstruct charged particle trajectories in the field of a permanent magnet. The detector design and construction covered a 3 yr period which terminated with a test flight on the NASA space shuttle Discovery during June 2-12, 1988. In this contribution, we describe the shuttle version of the AMS silicon tracker, including preliminary results of the tracker performance during the flight. (author)

  8. Prof. Samuel ting presents results from AMS experiment at CERN main auditorium. Geneva 3 April 2013. The international team running the Alpha Magnetic Spectrometer (AMS1) today announced the first results in its search for dark matter

    CERN Multimedia

    Samuel Morier-Genoud

    2013-01-01

    Geneva 3 April 2013. The international team running the Alpha Magnetic Spectrometer (AMS) today announced the first results in its search for dark matter. The results, presented by AMS spokesperson Professor Samuel Ting in a seminar at CERN, are to be published in the journal Physical Review Letters. They report the observation of an excess of positrons in the cosmic ray flux

  9. Computing strategy of Alpha-Magnetic Spectrometer experiment

    International Nuclear Information System (INIS)

    Choutko, V.; Klimentov, A.

    2003-01-01

    Alpha-Magnetic Spectrometer (AMS) is an experiment to search in the space for dark matter, missing matter, and antimatter scheduled for being flown on the International Space Station in the fall of year 2005 for at least 3 consecutive years. This paper gives an overview of the AMS software with emphasis on the distributed production system based on client/server approach. We also describe our choice of hardware components to build a processing farm with TByte RAID arrays of IDE disks and highlight the strategies that make our system different from many other experimental systems

  10. The AMS [Accelerator Mass Spectrometer] program at LLNL

    International Nuclear Information System (INIS)

    Proctor, I.D.

    1988-09-01

    Livermore will have an operational Accelerator Mass Spectrometer (AMS) by mid-1989 as part of its new Multi-user Tandem Laboratory. The spectrometer was designed primarily for applications in archaeology and the geosciences and was co-funded by the University of California Regents. Radiological control for personnel protection, ion sources and injection systems, the tandem and all beam handling hardware are operated with a distributed processor computer control system. The Tandem is the former University of Washington injector FN which has been upgraded with Dowlish tubes, pelletron charging and SF 6 gas. Design goals for the AMS system, computer aided operation, automated measurement capability, initial results and some of our intended applications will be presented. 5 refs., 2 figs

  11. AMS ready for launch

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    On 29 April, the Alpha Magnetic Spectrometer (AMS) will complete its long expedition to the International Space Station on board the space shuttle Endeavour. The Endeavour is set to lift off from NASA’s Kennedy Space Station at 15:47 EST (21:47 CET).   Samuel Ting, principal investigator for the AMS project, and Rolf Heuer, CERN Director-General, visit the Kennedy Space Centre before the AMS launch.  Courtesy of NASA and Kennedy Space Center. AMS is a CERN recognised experiment, created by an internal collaboration of 56 institutes. It will be the first large magnetic spectrometer to be used in space, and has been designed to function as an external module on the ISS. AMS will measure cosmic rays without atmospheric interference, allowing researchers on the ground to continue their search for dark matter and antimatter in the Universe. Data collected by AMS will be analysed in CERN’s new AMS Control Centre in Building 946 (due for completion in June 2011). The End...

  12. On a low intensity 241 Am Compton spectrometer for measurement ...

    Indian Academy of Sciences (India)

    In this paper, a new design and construction of a low intensity (100 mCi) 241Am -ray Compton spectrometer is presented. The planar spectrometer is based on a small disc source with the shortest geometry. Measurement of the momentum density of polycrystalline Al is used to evaluate the performance of the new design.

  13. Magnetic spectrometer Grand Raiden

    International Nuclear Information System (INIS)

    Fujiwara, M.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Hatanaka, K.; Ikegami, H.; Katayama, I.; Nagayama, K.; Matsuoka, N.; Morinobu, S.; Noro, T.; Yoshimura, M.; Sakaguchi, H.; Sakemi, Y.; Tamii, A.; Yosoi, M.

    1999-01-01

    A high-resolution magnetic spectrometer called 'Grand Raiden' is operated at the RCNP ring cyclotron facility in Osaka for nuclear physics studies at intermediate energies. This magnetic spectrometer has excellent ion-optical properties. In the design of the spectrometer, the second-order dispersion matching condition has been taken into account, and almost all the aberration terms such as (x vertical bar θ 3 ), (x vertical bar θφ 2 ), (x vertical bar θ 2 δ) and (x vertical bar θδ 2 ) in a third-order matrix calculation are optimized. A large magnetic rigidity of the spectrometer (K = 1400 MeV) gives a great advantage to measure the charge-exchange ( 3 He, t) reactions at 450 MeV. The ability of the high-resolution measurement has been demonstrated. Various coincidence measurements are performed to study the nuclear structures of highly excited states through decay properties of nuclear levels following nuclear reactions at intermediate energies

  14. Progress in AMS measurements at the LLNL spectrometer

    International Nuclear Information System (INIS)

    Southon, J.R.; Vogel, J.S.; Trumbore, S.E.; Davis, J.C.; Roberts, M.L.; Caffee, M.; Finkel, R.; Proctor, I.D.; Heikkinen, D.W.; Berno, A.J.; Hornady, R.S.

    1991-06-01

    The AMS measurement program at LLNL began in earnest in late 1989, and has initially concentrated on 14 C measurements for biomedical and geoscience applications. We have now begun measurements on 10 Be and 36 Cl, are presently testing the spectrometer performance for 26 Al and 3 H, and will begin tests on 7 Be, 41 Ca and 129 I within the next few months. Our laboratory has a strong biomedical AMS program of 14 C tracer measurements involving large numbers of samples (sometimes hundreds in a single experiment) at 14 C concentrations which are typically .5--5 times Modern, but are occasionally highly enriched. The sample preparation techniques required for high throughput and low cross-contamination for this work are discussed elsewhere. Similar demands are placed on the AMS measurement system, and in particular on the ion source. Modifications to our GIC 846 ion source, described below, allow us to run biomedical and geoscience or archaeological samples in the same source wheel with no adverse effects. The source has a capacity for 60 samples (about 45 unknown) in a single wheel and provides currents of 30--60μA of C - from hydrogen-reduced graphite. These currents and sample capacity provide high throughput for both biomedical and other measurements: the AMS system can be started up, tuned, and a wheel of carbon samples measured to 1--1.5% in under a day; and 2 biomedical wheels can be measured per day without difficulty. We report on the present status of the Lawrence Livermore AMS spectrometer, including sample throughput and progress towards routine 1% measurement capability for 14 C, first results on other isotopes, and experience with a multi-sample high intensity ion source. 5 refs

  15. Some conceptual designs for a LASSY spectrometer magnet

    International Nuclear Information System (INIS)

    Green, M.A.

    1995-09-01

    The LASSY spectrometer is a gas filled spectrometer (hydrogen or helium at a pressure of about 1 torr). The design bending power for the primary bending magnet for the spectrometer will have an induction bend radius product of 2.5 tesla-meters. In order to increase the acceptance of the spectrometer, the bending magnet system must be located close to the target where the desired nuclei are created. The spectrometer magnet system must consist of both bending and focusing elements so that the wide acceptance of particles can be brought to a focus at the analysis point that is down stream from the last magnet element. In order improve the spectrometer resolution and to catch the shortest lived nuclei, the length of the magnet system must be as short as possible. The length for the LASSY spectrometer magnet system from the target to the analysis point has been set at 2.5 meters or less. To improve the resolution of the spectrometer, the bending angle for bending magnet system must be increased to close to 180 degrees. In order to achieve a large bending angle and a short magnet system length, the bending induction must be above 3 tesla and the focusing elements must be combined with the bending elements. As a result, a LASSY spectrometer will have bending magnet with a bending angle from 140 to 170 degrees. This magnet win be combined with one or more focusing magnets (a straight dipole in some places and a combined function dipole in other places). The result is a single superconducting bending magnet with one or more quadrupoles incorporated within the large angle bending magnet

  16. Initial results of the mexican participation in the Alpha Magnetic Spectrometer Project

    International Nuclear Information System (INIS)

    Belmont M, E.; Menchaca R, A.; Sandoval, A.; Alfaro, R.; Martinez D, A.; Grabski, V.

    2007-01-01

    Mexico is part of the AMS (Alpha Magnetic Spectrometer) project, consisting of several radiation detectors integrated in a single telescope to be sent to the outer space in search of antimatter. One of those detectors is a RICH (Ring Imaging Cherenkov), where the cosmic particle's speed is calculated from the Cherenkov light-rings observed. The IF-UNAM group works in characterizing the silica aerogel used as luminous element in this detector. Because the spectrometer will be in orbit for several years, some particular studies are necessary. Our group works on possible ageing mechanisms, showing that the main threat to this material is contamination rather than thermal, or vacuum, shocks. (Author)

  17. The OPERA magnetic spectrometer

    CERN Document Server

    Ambrosio, M; Dusini, S; Dulach, B; Fanin, C; Felici, G; Corso, F D; Garfagnini, A; Grianti, F; Gustavino, C; Monacelli, P; Paoloni, A; Stanco, L; Spinetti, M; Terranova, F; Votano, L

    2004-01-01

    The OPERA neutrino oscillation experiment foresees the construction of two magnetized iron spectrometers located after the lead-nuclear emulsion targets. The magnet is made up of two vertical walls of rectangular cross section connected by return yokes. The particle trajectories are measured by high precision drift tubes located before and after the arms of the magnet. Moreover, the magnet steel is instrumented with Resistive Plate Chambers that ease pattern recognition and allow a calorimetric measurement of the hadronic showers. In this paper we review the construction of the spectrometers. In particular, we describe the results obtained from the magnet and RPC prototypes and the installation of the final apparatus at the Gran Sasso laboratories. We discuss the mechanical and magnetic properties of the steel and the techniques employed to calibrate the field in the bulk of the magnet. Moreover, results of the tests and issues concerning the mass production of the Resistive Plate Chambers are reported. Final...

  18. Magnetic field calculations for the technical proposal of the TESLA spectrometer magnet

    International Nuclear Information System (INIS)

    Morozov, N.A.; Schreiber, H.J.

    2003-01-01

    The TESLA electron-positron linear collider is under consideration at DESY (Hamburg). The realization of the physical program at this collider requires the knowledge of the beam energy of both beams (e + and e - ) with a precision of ΔE/E ≤ 10 -4 . The magnetic spectrometer was proposed as an energy measuring device. The report describes calculations for the preliminary conceptual design of this type of the spectrometer. The 2D calculations of the magnetic field for the spectrometer magnet have been performed by POISSON SUPERFISH computer code. The basic technical parameters of the magnet have been determined. These data will serve as a basis for the technical design of the spectrometer magnet and discuss its integration in the spectrometer

  19. A magnetic-lens - mini-orange coincidence spectrometer

    International Nuclear Information System (INIS)

    Bargholtz, C.; Holmberg, L.; Ruus, N.; Tegner, P.E.; Weiss, G.

    1997-04-01

    A coincidence spectrometer consisting of a Gerholm type magnetic lens and a permanent magnet mini-orange spectrometer is described. Electron-electron or electron-positron coincidences may be registered in various angular settings. The spectrometer has been developed mainly to search for anomalous contributions to Bhabha scattering or positrons and is at present used for such studies. 6 refs

  20. Cosmic gamma ray detection and discovery potential with the AMS-2 spectrometer; Detection de rayons {gamma} cosmiques et potentiel de decouvertes avec le spectrometre AMS-02

    Energy Technology Data Exchange (ETDEWEB)

    Girard, L

    2004-12-15

    Yet designed to measure charged component of the cosmic rays, the foreseen Alpha Magnetic Spectrometer (AMS-02) could also release {gamma}-ray studies, in the energy range from GeV to TeV, using the tracker system, for {gamma}-rays converted in e{sup +}e{sup -} pair, and the electromagnetic calorimeter. In the first part of the thesis are described the calibrations and the performances of the engineering model of the calorimeter, obtained from the analysis of data taken during a test-beam performed at CERN in July 2002. In the second part of the thesis, the AMS-02 discovery potential for {gamma}-astrophysics is presented. While exposure maps of the {gamma}--sky are computed for one year of data taking with the {gamma}--detectors, the acceptance of the calorimeter is obtained from Monte-Carlo simulations. The AMS-02 potential is then estimated for signals from the Vela pulsar and for some supersymmetric signals from the Galactic Center. (author)

  1. AMS: From the ISS to CERN

    CERN Multimedia

    Jordan Juras

    2011-01-01

    The week of 16 May 2011 saw the successful launch and installation of the Alpha Magnetic Spectrometer aboard the International Space Station. Only 4 minutes after the installation had been completed, cosmic event data started to be recorded and began its long journey from low Earth orbit to the newly constructed Payload Operations and Control Centre located on CERN's Prévessin site.    The AMS Control Room in the newly constructed Building 946 in CERN’s Prévessin site. Unlike the detectors around the LHC ring, the Alpha Magnetic Spectrometer (AMS) does not have the luxury of a physical connection to data-processing infrastructure. Instead, cosmic events and data on AMS itself must undergo a lengthy journey before they arrive at the Payload and Operations on the Control Centre (POCC - building 946 Prévessin site) of the AMS collaboration. A joint effort between NASA and CERN makes this transmission possible. “The Space Stat...

  2. The new AMS control centre

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    Construction work for the future AMS control room began in November 2010 and should be finished this June. The new building, which will have been completed in record time thanks to the professionalism of the project team, will soon be ready to receive the initial data from the AMS experiment.     Luigi Scibile and Michael Poehler, from the GS department, at the AMS control centre construction site.   The Alpha Magnetic Spectrometer (AMS) is due to wing its way towards the International Space Station (ISS) on board the shuttle Discovery in April. Mainly intended for research on antimatter and dark matter, the data collected by AMS will be sent to Houston in the United States and then directly to CERN’s new Building 946. Construction work for the AMS control centre building on the Route Gentner at CERN’s Prévessin site started in November 2010 and must be completed in time to receive the first data from the spectrometer in June. “It normall...

  3. Magnetic field calculation of the Na-4 muon spectrometer

    International Nuclear Information System (INIS)

    Cvach, J.; Il'yushchenko, V.I.; Savin, I.A.; Vorozhtsov, S.B.

    1980-01-01

    A NA-4 muon spectrometer is described. Preliminary results of calculating a magnetic field in a toroidal magnetic detector are given. The spectrometer includes 10 similar supermodules each of which consists of 32 iron discs with 275 cm outer diameter magnetized up to saturation. Each module is an independent detector. The POISSON program is used for calculating magnetic field distribution in a toroidal spectrometer magnet. The results obtained show that a magnetic field of iron is a toroidal one and drops approximately according to the logarithmic law from 21.1 kGs on an inner magnet rig to 17.7 kGs on an outer. Magnet support gives approximately 2 % error

  4. The Top-of-Instrument corrections for nuclei with AMS on the Space Station

    Science.gov (United States)

    Ferris, N. G.; Heil, M.

    2018-05-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance, high precision magnetic spectrometer on the International Space Station (ISS). The top-of-instrument correction for nuclei flux measurements with AMS accounts for backgrounds due to the fragmentation of nuclei with higher charge. Upon entry in the detector, nuclei may interact with AMS materials and split into fragments of lower charge based on their cross-section. The redundancy of charge measurements along the particle trajectory with AMS allows for the determination of inelastic interactions and for the selection of high purity nuclei samples with small uncertainties. The top-of-instrument corrections for nuclei with 2 < Z ≤ 6 are presented.

  5. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  6. Introduction to the AMS Experiment

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Following the pioneering experiments (ATIC, BESS, CREAM, HEAT, PAMELA, …), using a magnetic spectrometer (AMS) on ISS is a unique way to provide precision long term measurements of primordial high energy charged cosmic rays. AMS was installed on the Station in May 2011. Up to now, 60 billion events have been collected. 40 billion events have been partially analysed. AMS is scheduled to be on the Station until at least 2024. By then AMS will have collected close to 200 billion events. The detector properties and the analysis methods will be introduced.

  7. Colloquium by prof Samuel TING on AMS results 2016

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    The First Five Years of the Alpha Magnetic Spectrometer on the International Space Station AMS is a multipurpose magnetic spectrometer designed to measure elementary particles and nuclei to the TeV region. In the five years since its installation on the International Space Station, it has collected more than 90 billion cosmic rays. Some of the unexpected results and their possible interpretations will be presented.

  8. QQDDQ magnet spectrometer 'BIG KARL'

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S A; Hardt, A; Meissburger, J; Berg, G P.A.; Hacker, U; Huerlimann, W; Roemer, J G.M.; Sagefka, T; Retz, A; Schult, O W.B.

    1983-09-01

    A magnet spectrometer consisting of two quadrupoles, two dipole magnets and another larger quadrupole in front of the detector was designed and installed at the nuclear research institute of the KFA Juelich. It has been used for charged-particle spectroscopy at the isochronous cyclotron since early 1979. Special features of the spectrometer are variable and high dispersion, coils for higher order field corrections in the dipole magnets and a focal plane perpendicular to the optical axis. A large mass-energy product of mE/q/sup 2/ < 540 u x MeV, an angular acceptance of d..cap omega..<12.5 msr, a high resolving power of p/..delta..p up to 3 x 10/sup 4/ and the possibility of kinematical corrections up to K=0.8 make the instrument a very versatile tool for many experiments in the fields of nuclear and atomic physics. 51 references.

  9. What Happened with Spectrometer Magnet 2B

    International Nuclear Information System (INIS)

    Green, Michael A.

    2010-01-01

    The spectrometer solenoid is supposed to be the first magnets installed in MICE (1)-(4). This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A (5), magnet 2A (6), and magnet 2B (7). Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  10. MAGNETIC SPECTROMETER DESIGN FOR ELECTRON SCATTERING ABOVE 1 Bev

    Energy Technology Data Exchange (ETDEWEB)

    Schopper, H.

    1963-06-15

    Design considerations are discussed for magnetic spectrometer electron scattering investigations with the higher energy (above 1 Bev) electron sources which are being developed. The spectrometers are to be used to discriminate between elastic and inelastic processes. A momentum resolution of the order of one per cent is required for these experiments. Various spectrometers are compared according to their optical properties and the number of magnets they consist of. (R.E.U.)

  11. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  12. In-flight operations and status of the AMS-02 silicon tracker

    OpenAIRE

    Ambrosi, G.; Azzarello, P.; Battiston, R.; Bertucci, B.; Choumilov, E.; Choutko, V.; Crispoltoni, M.; Delgado, C.; Duranti, M.; Donnini, F.; D'Urso, D.; Fiandrini, E.; Formato, V.; Graziani, M.; Habiby, M.

    2016-01-01

    The AMS-02 detector is a large acceptance magnetic spectrometer operating on the International Space Station since May 2011. More than 60 billion events have been collected by the instrument as of today. One of the key subdetectors of AMS-02 is the microstrip silicon Tracker, designed to precisely measure the trajectory and absolute charge of cosmic rays in the GeV-TeV energy range. In addition, with the magnetic field, is also measuring the particle magnetic rigidity, defined as R = pc/Ze, a...

  13. Inside the ETH spectrometer magnet

    CERN Multimedia

    1974-01-01

    The ETH spectrometer magnet being prepared for experiment S134, which uses a frozen spin polarized target to study the associated production of a kaon and a lambda by negative pions interacting with protons (CERN-ETH, Zurich-Helsinki-Imperial College, London-Southampton Collaboration). (See Photo Archive 7406316)

  14. Magnetic spectrometer control system

    International Nuclear Information System (INIS)

    Lecca, L.A.; Di Paolo, Hugo; Fernandez Niello, Jorge O.; Marti, Guillermo V; Pacheco, Alberto J.; Ramirez, Marcelo

    2003-01-01

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  15. Beta-spectrometer with magnetic filter of mini orange type

    International Nuclear Information System (INIS)

    Gorozhankin, V.M.; Gromov, K.Ya.; Kalinnikov, V.G.; Sereeter, Z.; Fominykh, V.I.; Malikov, Sh.R.; Yuldashev, M.B.

    1997-01-01

    At the ISOL facility YASNAPP-2 a β-spectrometer with a magnetic filter of the miniorange type is constructed to measure γ-ray internal conversion coefficients. The magnetic filter of the mini orange type is an assemblage of permanent magnets creating a toroidal magnetic field perpendicular to the electron trajectories from the source to the Si(Li) detector. The chosen profile of the permanent magnets allowed electron registration in the defined energy energy interval with some transmission increase. There are two sets of permanent magnets of the different thickness. Varying the type and number of permanent magnets one can set the detected electron energy intervals in a 50-2500 keV range. The efficiency of the spectrometer was investigated for different assemblages of the mini orange magnet. The facility can be used for the e-γ coincidence investigation. (A.A.D.)

  16. From carbon to actinides: A new universal 1MV accelerator mass spectrometer at ANSTO

    Science.gov (United States)

    Wilcken, K. M.; Hotchkis, M.; Levchenko, V.; Fink, D.; Hauser, T.; Kitchen, R.

    2015-10-01

    A new 1 MV NEC pelletron AMS system at ANSTO is presented. The spectrometer comprises large radius magnets for actinide measurements. A novel feature of the system is fast switching between isotopes both at low and high energy sections allowing measurements of up to 8 isotopes within a single sequence. Technical details and layout of the spectrometer is presented. Performance data for 14C, 10Be, 26Al and actinides demonstrate the system is ready for routine AMS measurements.

  17. From carbon to actinides: A new universal 1MV accelerator mass spectrometer at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Wilcken, K.M., E-mail: klaus.wilcken@ansto.gov.au [Australian Nuclear Science & Technology Organisation, Sydney, New South Wales (Australia); Hotchkis, M.; Levchenko, V.; Fink, D. [Australian Nuclear Science & Technology Organisation, Sydney, New South Wales (Australia); Hauser, T.; Kitchen, R. [National Electrostatics Corporation, 7540 Graber Road, Middleton, WI 53562-0310 (United States)

    2015-10-15

    A new 1 MV NEC pelletron AMS system at ANSTO is presented. The spectrometer comprises large radius magnets for actinide measurements. A novel feature of the system is fast switching between isotopes both at low and high energy sections allowing measurements of up to 8 isotopes within a single sequence. Technical details and layout of the spectrometer is presented. Performance data for {sup 14}C, {sup 10}Be, {sup 26}Al and actinides demonstrate the system is ready for routine AMS measurements.

  18. Wide-aperture magnetic spectrometer with face position of MWPC

    International Nuclear Information System (INIS)

    Avakyan, R.O.; Avetisyan, A.Eh.; Ajvazyan, R.B.; Asaturyan, R.A.; Dallakyan, K.R.; Kizogyan, O.S.; Matevosyan, Eh.M.; Sukiasyan, Yu.Z.; Taroyan, S.P.

    1988-01-01

    A pair magnetic spectrometer with automated wire chambers for studying electron and positron interactions with monocrystals at the Erevan synchrotron is described. As a working gas the argon-methane mixture with methylal vapor addition is used. Results of modelling and experiments with spectrometer are presented. 2 refs.; 6 figs

  19. An achromatic multipassage magnetic mass spectrometer

    International Nuclear Information System (INIS)

    Boulanger, P.; Baril, M.

    1999-01-01

    A design providing achromatic correction to a multipassage magnetic mass spectrometer previously described by the author is presented. The energy spatial dispersion caused by repeated passages in the magnetic prism is corrected by three supplementary mirrors placed in a reinjection loop. From this study one can see that we simultaneously eliminate the energy dispersion term C ΔE/E and the opening angle aberration term C α 2 and we may also eliminate the coupled aberration term C αΔE/E

  20. The AMS-02 experiment status

    International Nuclear Information System (INIS)

    Oliva, A.

    2011-01-01

    The Alpha Magnetic Spectrometer (AMS) is a high-energy physics experiment built to operate in space. The prototype of the AMS detector was AMS-01, fown in1998 on-board of the space shuttle Discovery (missionSTS-91). Starting from the experience acquired in the high successful AMS-01 mission the detector AMS-02 has been designed improving the AMS-01 energetic range, geometric acceptance and particle identifcation capabilities. In 2010 the AMS-02 detector has been validated for the space/scientifc operations by means of a wide test campaign(including beam tests, TVT test and EMI test). A major change in the design of AMS-02 has been decided after the thermo-vacuum test to extend as much aspossible the endurance of the experiment, profiting also of the extended endurance of the International Space Station (ISS) program toward 2020. The final AMS-02 configuration has been integrated during summer 2010, then tested on the H8 beam-line at CERN, and finally delivered to the launch site (Kennedy Space Center, Florida) at the end of August. AMS-02 is planned to be installed on the International Space Station in 2011 by the space shuttle Endeavour (mission STS-134).

  1. arXiv AMS tracking in-orbit performance

    CERN Document Server

    Pohl, Martin

    2015-09-18

    AMS-02 is a high precision magnetic spectrometer for cosmic rays in the GeV to TeV energy range. Its tracker consists of nine layers of double-sided silicon microstrip sensors. They are used to locate the trajectories of cosmic rays in the 0.14 T field of a cylindrical magnet, thus measuring their rigidity $p/Z$ and charge sign. In addition, they deliver a high resolution measurement of the absolute charge $|Z|$. The detector has been designed to operate in space with a position resolution of about 10 $\\mu$m for each hit and charge identification capabilities up to $Z=26$. In this talk I describe the performance in orbit of this detector component and its impact on the overall performance of the spectrometer.

  2. A pulse spectrometer for NMR measurements on magnetically ordered materials

    International Nuclear Information System (INIS)

    Englich, J.; Pikner, B.; Sedlak, B.

    1975-01-01

    A simple design of a pulse nuclear magnetic resonance spectrometer is described. The spectrometer permits spin echo measurements on magnetically ordered substances. It operates in the frequency range 10 to 130 MHz, but this basic range can be extended by a replacement of the compact radiofrequency unit. The transmitter gives radiofrequency pulses with an amplitude of up to 1 kV on the coil with the investigated sample. The pulse programmer makes possible relaxation measurements in a time interval of 10 -5 to 10 -1 s. Attention was devoted to obtaining a maximum signal-to-noise ratio in the whole frequency range. Sensitivity of the spectrometer is demonstrated by spin echo measurement on pure iron powder. (author)

  3. Design and performance estimates for the l'OASIS experiment magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, G.; Misuri, A.; Leemans, W.

    2001-11-19

    Two double-focusing magnetic specrometers will be used to momentum analyze the electron beam produced by the l'OASIS laser plasma wakefield accelerator. One spectrometer, based on a round pole magnet, has an operating range up to 50 MeV/c, with a resolution in the 1 - 2 percent range. The other spectrometer, based on a wedge dipole magnet, has better resolution (about 0.5 percent) but an operating range limited to below 18 MeV/c. This note describes the optical design of the spectrometers, and provides detailed estimates of performance features such as dynamic range, operating range, calibration, resolution, acceptance, and aberrations.

  4. Fission cross section measurement of Am-242m using lead slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Kimura, Itsuro; Ohkawachi, Yasushi; Wakabayashi, Toshio

    1998-03-01

    By making use of double fission chamber and lead slowing-down spectrometer coupled to an electron linear accelerator, fission cross section for the {sup 242m}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, of which evaluated data were broadened by the energy resolution function of the spectrometer. Although the JENDL-3.2 data seem to be a little smaller than the present measurement, good agreement can be seen in the general shape and the absolute values. The ENDF/B-VI data are larger more than 50 % than the present values above 3 eV. (author)

  5. Account of magnetic field effects of polarized proton target on charged particle trajectories in experiments with magnetic spectrometers

    International Nuclear Information System (INIS)

    Telegin, Yu.N.; Ranyuk, Yu.N.; Karnaukhov, I.M.; Lukhanin, A.A.; Sporov, E.A.

    1980-01-01

    Some effects of the influence of magnetic field of a polarized proton target (PPT) on trajectories of secondary particles in experiments using magnetic spectrometers are considered. It is shown that these effects can be eliminated by the target shift relatively to the spectrometer rotation axis and variation of the spectrometer installation angle. Numerical calculations of the correction values were performed for emitted particle momenta of 100-800 MeB/s and working intensity of the H 0 magnetic field H 0 =27 kG. The influence of the PPT magnetic field on the functions of angular and energy resolution in the γp→π + n experiment is investigated. The results obtained can be used in experiments with a polarized proton target

  6. Towards direction dependent fluxes with AMS-02

    Energy Technology Data Exchange (ETDEWEB)

    Zeissler, Stefan; Andeen, Karen; Boer, Wim de; Gebauer, Iris; Merx, Carmen; Nikonov, Nikolay; Vagelli, Valerio [Karlsruher Institut fuer Technologie KIT (Germany)

    2015-07-01

    The Alpha Magnetic Spectrometer (AMS-02) is a state-of-the-art particle physics detector designed to operate as an external module on the International Space Station (ISS). In the unique space environment cosmic particles can be measured with high precision over an energy range from GeV up to TeV. In 2014 electron and positron flux measurements where published which indicate an additional source of positrons among the various cosmic particles. The arrival directions of energetic positrons and electrons convey fundamental information on their origin. We evaluate the AMS-02 detector acceptance for each incoming particle direction and show preliminary results of a direction dependent measurement of the AMS-02 lepton flux.

  7. Spectrometer for external detection of magnetic and related double resonance

    International Nuclear Information System (INIS)

    Sagalyn, P.L.; Alexander, M.N.

    1977-01-01

    The patent relates to an improvement in nuclear magnetic resonance spectrometer apparatus. It consists of a spectrometer which utilizes separate materials containing, respectively, sample and detector spin systems as opposed to one in which the sample and detector spins are contained in the same single material

  8. Possibilities of magnet prism β-spectrometer application in on-line experiments

    International Nuclear Information System (INIS)

    Akhmetov, K.M.; Arynov, S.

    1996-01-01

    The main attention is paid to works with particle beam in up-to-date nuclear investigations. The application of magnet prism β-spectrometer for works in 'on-line' experiments is considered in this article. The source chamber and detector chamber are distanted from each other on great distance (4 m) and are out of operation field of spectrometer. There is a reliable defence of operating field of device from external parasitic fields by the magnetic screens system. The additional advantage is a factor that source (target) and detector could replacing in specific directions about few centimetres during the device operating. The main β-spectroscopic performances of device are compared with Grenoble spectroscopic complex. The liner depression of prism spectrometer account for from 3,6 up to 6 m; light force - from 2·10 -4 up to 6·10 -4 up to 4π; operating resolving power - 0,02-0,05% by impulse. Investigation range is from several keV up to 3 MeV. There are all opportunities for installing of the on-line magnetic prism spectrometer on the U-150 accelerator and the WWR-K reactor. Spectrometer application in 'on-line' experiments gives possibility to obtain more wide information. 4 refs

  9. Commissioning of the magnetic field in the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Arnaud, M.; Bardoux, J.; Bergsma, F.; Bobbink, G.; Bruni, A.; Chevalier, L.; Ennes, P.; Fleischmann, P.; Fontaine, M.; Formica, A.; Gautard, V.; Groenstege, H.; Guyot, C.; Hart, R.; Kozanecki, W.; Iengo, P.; Legendre, M.; Nikitina, T.; Perepelkin, E.; Ponsot, P.

    2008-01-01

    ATLAS is a general-purpose detector at the 14 TeV proton-proton Large Hadron Collider at CERN. The muon spectrometer will operate in the magnetic field provided by a large, eight-coil barrel toroid magnet bracketed by two smaller toroidal end-caps. The toroidal field is non-uniform, with an average value of about 0.5 T in the barrel region, and is monitored using three-dimensional Hall sensors which must be accurate to ∼1 mT. The barrel coils were installed in the cavern from 2004 to 2006, and recently powered up to their nominal current. The Hall-sensor measurements are compared with calculations to validate the magnetic models, and used to reconstruct the position and shape of the coil windings. Field perturbations by the magnetic materials surrounding the muon spectrometer are found in reasonable agreement with finite-element magnetic-field simulations

  10. Commissioning of the magnetic field in the ATLAS muon spectrometer

    CERN Document Server

    Arnaud, M; Bergsma, F; Bobbink, G; Bruni, A; Chevalier, L; Ennes, P; Fleischmann, P; Fontaine, M; Formica, A; Gautard, V; Groenstege, H; Guyot, C; Hart, R; Kozanecki, W; Iengo, P; Legendre, M; Nikitina, T; Perepelkin, E; Ponsot, P; Richardson, A; Vorozhtsov, A; Vorozthsov, S

    2008-01-01

    ATLAS is a general-purpose detector at the 14 TeV proton-proton Large Hadron Collider at CERN. The muon spectrometer will operate in the magnetic field provided by a large, eight-coil barrel toroid magnet bracketed by two smaller toroidal end-caps. The toroidal field is non-uniform, with an average value of about 0.5 T in the barrel region, and is monitored using three-dimensional Hall sensors which must be accurate to 1 mT. The barrel coils were installed in the cavern from 2004 to 2006, and recently powered up to their nominal current. The Hall-sensor measurements are compared with calculations to validate the magnetic models, and used to reconstruct the position and shape of the coil windings. Field perturbations by the magnetic materials surrounding the muon spectrometer are found in reasonable agreement with finite-element magnetic-field simulations.

  11. Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.

    1991-10-01

    The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab

  12. Computation of the magnetic field of a spectrometer in detectors region

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Yuldasheva, M.B.; Yudin, I.P.; Yuldashev, O.I.

    1995-01-01

    Computed results of the 3D magnetic field of a spectrometer intended for investigation of hadron production of charmed particles and the indication of the narrow resonances in neutron-nucleus interactions are presented. The methods used in computations: finite element method and finite element method with suggested new infinite elements are described. For accuracy control the computations were carried out on a sequence of three-dimensional meshes. Special attention is devoted to behaviour of the magnetic field in the basic detector (proportional chambers) region. The performed results can be used for the field behaviour estimate of similar spectrometer magnets. (orig.)

  13. Measurement of mass yields from the 241Am(2nth,f reaction at the Lohengrin Spectrometer

    Directory of Open Access Journals (Sweden)

    Köster U.

    2013-03-01

    Full Text Available The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (235U, 239Pu in the thermal neutron-induced fission, only few measurements have been performed on 242Am. The interest of 242Am concerns the reduction of radiotoxicity of 241Am in nuclear wastes using transmutation reactions. This paper presents the measurement of the fission mass yields from the reaction 241Am(2nth,f performed at the Lohengrin mass spectrometer (ILL, France for both the light and the heavy peaks: a total of 41 mass yields have been measured. The experiment was also meant to determine whether there is a difference in mass yields between the isomeric state and the ground state as it exists in fission and capture cross sections. The method used to address this question is based on a repeated measurement of a set of fission mass yields as a function of the ratio between the 242gAm and the 242mAm fission rates. The presented experiment is also a first step towards the measurement of the isotopic fission yields of 242Am.

  14. AMS Measurement of 36Cl with a Q3D Magnetic Spectrometer at CIAE

    International Nuclear Information System (INIS)

    Li Chaoli; He Ming; Wu Shaoyong; Li Zhenyu; Liu Jiancheng; Dong Kejun; Jiang Shan; Zhang Wei; He Xianwen

    2012-01-01

    The ratio of 36 Cl/Cl can determine the exposure age of surface rocks and monitor the secular equilibrium of 36 Cl of sedimentary and igneous rock in groundwater. Due to the uncertainty effects of different chemical separation processes for removing 36 S, there is a high degree of uncertainty in 36 Cl accelerator mass spectrometry (AMS) measurements if the ratio of 36 Cl/Cl is lower than 10 -14 . A 36 Cl AMS higher sensitivity measurement has been set up by using a ΔE-Q3D method at the China Institute of Atomic Energy (CIAE). The performances of ΔE-Q3D method for 36 Cl-AMS measurement had been systemically studied. The experimental results show that the ΔE-Q3D method has a higher isobar suppression factor. Taking advantage of direct removing 36 S, the sample preparation can be simplified and the uncertainty effects of different chemical separation processes can be reduced in 36 Cl AMS measurements.

  15. What Caused the Lead burn-out in Spectrometer Magnet 2B

    International Nuclear Information System (INIS)

    Green, Michael A.

    2010-01-01

    The spectrometer solenoids are supposed to be the first magnets installed in the MICE Cooling Channel. The results of the test of Spectrometer Magnet 2B are reported in a previous MICE Note. Magnet 2B was tested with all five coils connected in series. The magnet failed because a lead to coil M2 failed before it could be trained to its full design current of 275 A. First, this report describes the condition of the magnet when the lead failure occurred. The lead that failed was between the cold mass feed-through and the heavy lead that connected to coil M2 and the quench protection diodes. It is believed that the lead failed because the minimum propagation zone (MPZ) length was too short. The quench was probably triggered by lead motion in the field external to the magnet center coil. The effect of heat transfer on quench propagation and MPZ length is discussed. The MPZ length is compared for a number of cases that apply to the spectrometer solenoid 2B as built and as it has been repaired. The required heat transfer coefficient for cryogenic stability and the quench propagation velocity along the leads are compared for various parts of the Magnet leads inside the cold mass cryostat. The effect of the insulation on leads on heat transfer is and stability is discussed.

  16. Design and construction of a magnetic sector mass spectrometer

    International Nuclear Information System (INIS)

    Dallaqua, R.S.; Ludwig, G.O.; Montes, A.

    1991-08-01

    In this work we describe the design and construction of a sector magnetic mass spectrometer. The main parts of the instrument are: ion source, grids (extraction, energy analysis and ion acceleration), electrostatic lens, magnetic sector and detector. All these components are kept inside a vacuum chamber evacuated by a turbomolecular pump. (author)

  17. Computation of the Magnetic Field of a Spectrometer in Detectors Region

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Yuldasheva, M.B.; Yudin, I.P.; Yuldashev, O.I.

    1994-01-01

    Computed results of the 3D magnetic field of a spectrometer intended for investigation of hadron production of charmed particles and the indication of the narrow resonances in neutron-nucleus interaction are presented. The methods, used in computations - finite element method and finite element method with suggested new infinite elements are described. For accuracy control the computations were carried out on a sequence of three-dimensional meshes. Special attention is devoted to the behaviour of the magnetic field in the basic detectors (proportional chambers) region. The performed results can be used for the field behaviour estimate of similar spectrometer magnets. 12 refs., 16 figs

  18. In-flight operations and status of the AMS-02 silicon tracker

    CERN Document Server

    Ambrosi, G; Battiston, R; Bertucci, b B; Choumilov, E; Choutko, V; Crispoltoni, M; Delgado, C; Duranti, M; Donnini, F; D'Urso, D; Fiandrini, cE; Formato, V; Graziani, M; Habiby, M; Haino, S; Ionica, M; Kanishchev, K; Nozzoli, F; Oliva, c A; Paniccia, M; Pizzolotto, C; Pohl, c M; Qin, X; Rapin, d D; Saouter, P; Tomassetti, N; Vitale, V; Vitillo, c S; Wu, X; Zhang, Z; Zuccon, P

    2016-01-01

    The AMS-02 detector is a large acceptance magnetic spectrometer operating on the International Space Station since May 2011. More than 60 billion events have been collected by the instrument as of today. One of the key subdetectors of AMS-02 is the microstrip silicon Tracker, designed to precisely measure the trajectory and absolute charge of cosmic rays in the GeV-TeV energy range. In addition, with the magnetic field, is also measuring the particle magnetic rigidity, defined as R = pc/Ze, and the sign of the charge. This report presents the Tracker on-line operations and calibration during the first four years of data taking in space. The track reconstruction efficiency and the resolution will be also reviewed.

  19. AMS-02 data confront acceleration of cosmic ray secondaries in nearby sources

    DEFF Research Database (Denmark)

    Mertsch, Philipp; Sarkar, Subir

    2014-01-01

    We revisit the model proposed earlier to account for the observed increase in the positron fraction in cosmic rays with increasing energy, in the light of new data from the Alpha Magnetic Spectrometer (AMS-02) experiment. The model accounts for the production and acceleration of secondary electrons...

  20. Design of a large superconducting spectrometer magnet

    International Nuclear Information System (INIS)

    Shintomi, T.; Makida, Y.; Mito, T.; Yamanoi, Y.; Hashimito, O.; Nagae, T.

    1989-04-01

    The superconducting spectrometer magnet for nuclear physics experiments has been under construction by Institute for Nuclear Study, University of Tokyo with collaboration from KEK. The magnet has a sector type coil. The magnetic field is 3 T with the magnet gap of 50 cm and the stored energy is 11.8 MJ. The easy operation and maintenance are taken into consideration in addition to usual design concept. Three dimensional magnetic field calculation and the stress analysis have been performed. The code 'QUENCH' was applied to decide the operation current and to check the safety of the coil. As a result, the current of 500 A was selected. The heat leaks were checked and estimated less than 2 W at 4 K. A small refrigerator is to be used for thermal insulations at 80 and 20 K. (author)

  1. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    NARCIS (Netherlands)

    Erni, W.; Keshelashvili, I; Krusche, B.

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible

  2. Design of combined magnetic field system for magnetic-bottle time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Wang Chao; Tian Jinshou; Zhang Meizhi; Kang Yifan

    2011-01-01

    Based on the primary requirement for the magnetic field system in magnetic-bottle time-of-flight spectrometer, an appropriate combined inhomogeneous magnetic field system is designed. The inhomogeneous higher magnetic field part, with the highest field of 1.2 T, is produced by the combination of a permanent magnet and a pole piece with optimized shape. The magnet,known as NdFeB magnet,is one of rare earth permanent magnets in N52. The guiding uniform magnetic field of 1.0 x 10 -3 T is provided by solenoid, with length of 3 m and radius of 3 cm. The pitch between the pole piece and the near end of used solenoid is determined to be 5 cm, which can satisfy the actual engineering needs. (authors)

  3. Cosmic ray and gamma astrophysics with the AMS-02 experiment

    International Nuclear Information System (INIS)

    Natale, Sonia

    2006-01-01

    The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to operate on the International Space Station (ISS) for a minimum period of three years. The aim of AMS is the direct detection of charged particles in the rigidity range from 0.5 GV to few TV to perform high statistics studies of cosmic rays in space and a search for antimatter and dark matter. AMS will provide precise gamma measurements in the GeV range. In addition, the good angular resolution and identification capabilities of the detector will allow clean studies of galactic and extra-galactic sources, the diffuse gamma background and gamma ray bursts

  4. Operations of the thermal control system for Alpha Magnetic Spectrometer electronics following the beta angle of the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun; Li, Jinbo; Cui, Zheng; Wang, Naihua; Sun, Qie; Cheng, Lin, E-mail: cheng@sdu.edu.cn

    2014-12-11

    The Alpha Magnetic Spectrometer (AMS) has been running and measuring cosmic rays on the International Space Station (ISS) since May 19, 2011. The thermal control system (TCS) plays an important role in keeping all components and equipment working in an operational temperature range. Since the AMS started working on the ISS, AMS thermal engineers have been monitoring the on-orbit status of the TCS. During normal operation, the local temperature of AMS components regularly varies along with the β angle of the ISS. Based on the collected temperature data, the general characteristics of local temperature variations of TCS for AMS Electronics following the β of the ISS are discussed with the statistics of the orbit-averaged temperature and the orbit standard deviation of temperature. Furthermore some temperature anomalies at specific β are also studied. - Highlights: • The variation of the main radiators temperature is statistically analyzed. • The hot case and cold case for the main radiators are found in normal operations. • The solar illumination falling on the inner sheet of RAM radiator leads to temperature jump. • The temperature anomalies on the WAKE radiator show a uniform trend except WR3 sensor. • The regularity of the temperature variation is described with fitted equations.

  5. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, O; Xu, H; Becker, J; Feldbauer, F; Heinsius, F -H; Held, T; Koch, H; Kopf, B; Pelizaeus, M; Schröder, T; Steinke, M; Wiedner, U; Zhong, J; Bianconi, A; Bragadireanu, M; Pantea, D; Tudorache, A; Tudorache, V; De Napoli, M; Giacoppo, F; Raciti, G; Rapisarda, E; Sfienti, C; Bialkowski, E; Budzanowski, A; Czech, B; Kistryn, M; Kliczewski, S; Kozela, A; Kulessa, P; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; zycki, W Czy; Domagala, M; Hawryluk, M; Lisowski, E; Lisowski, F; Wojnar, L; Gil, D; Hawranek, P; Kamys, B; Kistryn, St; Korcyl, K; Krzemien, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wronska, A; Al-Turany, M; Augustin, I; Deppe, H; Flemming, H; Gerl, J; Goetzen, K; Hohler, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Mishra, D; Orth, H; Peters, K; Saitô, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Voss, B; Wieczorek, P; Wilms, A; Brinkmann, K -T; Freiesleben, H; Jaekel, R; Kliemt, R; Wuerschig, T; Zaunick, H -G; Abazov, V M; Alexeev, G; Arefev, A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigorian, S; Karmokov, A; Koshurnikov, E K; Kudaev, V Ch; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, A; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Föhl, K; Glazier, D; Watts, D; Woods, P; Eyrich, W; Lehmann, A; Teufel, A; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A G; Bettoni, D; Carassiti, V; Cecchi, A; Dalpiaz, P; Fioravanti, E; Garzia, I; Negrini, M; Savri`e, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Brodski, I; Döring, W; Drexler, P; Düren, M; Gagyi-Palffy, Z; Hayrapetyan, A; Kotulla, M; Kühn, W; Lange, S; Liu, M; Metag, V; Nanova, M; Novotny, R; Salz, C; Schneider, J; Schoenmeier, P; Schubert, R; Spataro, S; Stenzel, H; Strackbein, C; Thiel, M; Thoering, U; Yang, S; Clarkson, T; Cowie, E; Downie, E; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, S; MacGregor, D; McKinnon, B; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Bubak, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Löhner, H; Messchendorp, J; Smit, H; van der Weele, J C; García, F; Riska, D -O; Büscher, M; Dosdall, R; Dzhygadlo, R; Gillitzer, A; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Stockmanns, T; Wintz, P; Wüstner, P; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, S; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Balanutsa, V; Chernetsky, V; Demekhin, A; Dolgolenko, A; Fedorets, P; Gerasimov, A; Goryachev, V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Hoeppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Weitzel, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Varma, R; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Boucher, J; Hennino, T; Kunne, R; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Van de Wiele, J; Zerguerras, T; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Belikov, N I; Davidenko, A M; Derevshchikov, A A; Goncharenko, Yu M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Kravtsov, V I; Matulenko, Yu A; Melnik, Y M; Meshchanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasilev, A N; Yakutin, A E; Baeck, T; Cederwall, B; Bargholtz, C; Geren, L; Tegnér, P E; Belostotskii, S; Gavrilov, G; Itzotov, A; Kiselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Yu; Veretennikov, D; Vikhrov, V; Zhadanov, A; Fava, L; Panzieri, D; Alberto, D; Amoroso, A; Botta, E; Bressani, T; Bufalino, S; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Grasso, A; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Serbanut, G; Sosio, S; Bertini, R; Calvo, D; Coli, S; De Remigis, P; Feliciello, A; Filippi, A; Giraudo, G; Mazza, G; Rivetti, A; Szymanska, K; Tosello, F; Wheadon, R; Morra, O; Agnello, M; Iazzi, F; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Ekström, C; Calén, H; Grape, S; Hoeistad, B; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Zlomanczuk, Yu; Díaz, J; Ortiz, A; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlovskii, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.

  6. Workshop on CEBAF [Continuous Electron Beam Accelerator Facility] spectrometer magnet design and technology: Proceedings

    International Nuclear Information System (INIS)

    1986-09-01

    The planned experimental program at CEBAF includes high-resolution, large acceptance spectrometers and a large toroidal magnetic, detector. In order to take full advantage of the high quality beam characteristics, the performances required will make these devices quite unique instruments compared to existing facilities in the same energy range. Preliminary designs have shown that such performances can be reached, but key questions concerning design concepts and most appropriate and cost-effective technologies had to be answered before going further with the designs. It was the purpose of the Workshop on CEBAF Spectrometer Magnet Design and Technology, organized by the CEBAF Research and Engineering Divisions, to provide the most complete information about the state-of-the-art tools and techniques in magnet design and construction and to discuss the ones most appropriate to the CEBAF spectrometers. In addition, it is expected that this Workshop will be the staring point for further interactions and collaborations between international magnet experts and the CEBAF staff, during the whole process of designing and building the spectrometers

  7. Charged-particle magnetic-quadrupole spectrometer for neutron induced reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; Grimes, S.M.; Tuckey, B.J.; Anderson, J.D.

    1975-01-01

    A spectrometer has been developed for measuring the charged particle production cross sections and spectra in neutron-induced reactions. The spectrometer consists of a magnetic quadrupole doublet which focuses the charged particles onto a silicon surface barrier detector telescope which is 2 meters or more from the irradiated sample. Collimators, shielding, and the large source-to-detector distance reduce the background enough to use the spectrometer with a 14-MeV neutron source producing 4 . 10 12 n/s. The spectrometer has been used in investigations of proton, deuteron, and alpha particle production by 14-MeV neutrons incident on various materials. Protons with energies as low as 1.1 MeV have been measured. The good resolution of the detectors has also made possible an improved measurement of the neutron- neutron scattering length from the 0 0 proton spectrum from deuteron breakup by 14-MeV neutrons

  8. Measurement of fission cross section with pure Am-243 sample using lead slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Katsuhei; Yamamoto, Shuji; Kai, T.; Fujita, Yoshiaki; Yamamoto, Hideki; Kimura, Itsuro [Kyoto Univ. (Japan); Shinohara, Nobuo

    1997-03-01

    By making use of back-to-back type double fission chambers and a lead slowing-down spectrometer coupled to an electron linear accelerator, the fission cross section for the {sup 243}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, whose evaluated data were broadened by the energy resolution function of the spectrometer. General agreement was seen between the evaluated data and the measurement except that the ENDF/B-VI data were lower in the range from 15 to 60 eV and that the JENDL-3.2 data seemed to be lower above 100 eV. (author)

  9. Esperimento AMS: problemi teorici e sperimentali nella ricerca di antimateria in raggi cosmici

    OpenAIRE

    Casadei, D

    1998-01-01

    In this thesis are reported the design and the tests that have been done on the prototype counters of the Time of Flight (TOF) system of the AMS (Alpha Magnetic Spectrometer) experiment. The behaviour of the Hamamatsu R5900 under vacuum test is also shown. (text is in italian)

  10. Esperimento AMS problemi teorici e sperimentali nella ricerca di antimateria in raggi cosmici

    CERN Document Server

    Casadei, D

    1998-01-01

    In this thesis are reported the design and the tests that have been done on the prototype counters of the Time of Flight (TOF) system of the AMS (Alpha Magnetic Spectrometer) experiment. The behaviour of the Hamamatsu R5900 under vacuum test is also shown. (text is in italian)

  11. Some characteristics of the superconducting magnetic system of toroidal spectrometer STORS

    International Nuclear Information System (INIS)

    Andreev, S.V.; Vorozhtsov, S.B.; Kakurin, S.I.

    1993-01-01

    A superconducting toroidal spectrometer (STORS) has been suggested to provide precision measurements of structure functions in muon beams. In this paper we present the calculation of the magnet induction and forces influencing the elements of the magnet, requirements to the reliability and rigidity of the carrying elements of the magnet construction. (author.) 14 refs.; 50 figs.; 4 tabs

  12. Calibration of a compact magnetic proton recoil neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfu, E-mail: zhang_jianfu@163.com [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ouyang, Xiaoping; Zhang, Xianpeng [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ruan, Jinlu [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhang, Guoguang [Applied Institute of Nuclear Technology, China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Xiaodong [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua [Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-21

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium–tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  13. Recent results from the AMS-02 experiment

    Directory of Open Access Journals (Sweden)

    Vecchi Manuela

    2015-01-01

    Full Text Available The AMS-02 detector is a large acceptance magnetic spectrometer operating onboard the International Space Station since May 2011. The main goals of the detector are the search for antimatter and dark matter in space, as well as the measurement of cosmic ray composition and flux. Precise measurements of cosmic ray positrons and electrons are presented in this document, based on 41×109 events collected during the first 30 months of operations.

  14. A low-cost spectrometer for NMR measurements in the Earth's magnetic field

    International Nuclear Information System (INIS)

    Michal, Carl A

    2010-01-01

    We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US$200. The spectrometer performance is demonstrated with spin-echo and Carr–Purcell–Meiboom–Gill pulse sequences on a water sample

  15. A low-cost spectrometer for NMR measurements in the Earth's magnetic field

    Science.gov (United States)

    Michal, Carl A.

    2010-10-01

    We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US200. The spectrometer performance is demonstrated with spin-echo and Carr-Purcell-Meiboom-Gill pulse sequences on a water sample.

  16. AMS gets lift on space shuttle Discovery

    CERN Multimedia

    2009-01-01

    AMS-02, the CERN-recognized experiment that will seek dark matter, missing matter and antimatter in Space aboard the International Space Station (ISS), has recently got the green light to be part of the STS-134 NASA mission in 2010. Installation of AMS detectors in the Prévessin experiment hall.In a recent press release, NASA announced that the last or last-but-one mission of the Space Shuttle programme would be the one that will deliver AMS, the Alpha Magnetic Spectrometer, to the International Space Station. The Space Shuttle Discovery is due to lift off in July 2010 from Kennedy Space Center and its mission will include the installation of AMS to the exterior of the space station, using both the shuttle and station arms. "It wasn’t easy to get a lift on the Space Shuttle from the Bush administration," says professor Samuel Ting, spokesperson of the experiment, "since during his administration all the funds for space research w...

  17. A final test for AMS at ESTEC

    CERN Multimedia

    Paola Catapano

    2010-01-01

    The Alpha Magnetic Spectrometer (AMS) left CERN on Friday 12th February on the first leg of its journey to the International Space Station (ISS). The special convoy carrying the experiment arrived at the European Space Agency’s research and technology centre (ESTEC) in the Netherlands at 4.30 pm on Tuesday 16th February. AMS will then fly to the Kennedy Space Center in Florida before lifting off aboard the space shuttle.   Arrival of the AMS detector at ESTEC in the Netherlands (Credit ESA/Jari Makinen) The transportation of an 8.5-tonne load filled with superfluid helium across Europe is no ordinary shipment. The AMS detector was first inserted into a supporting structure, specially built by the collaboration’s mechanical engineers, then surrounded by protective plastic foil, placed in a box and finally carefully loaded onto the special lorry also carrying a diesel generator running a pump to keep the helium at the right temperature (about 2 K). Its initial destination is ES...

  18. A personal computer-based nuclear magnetic resonance spectrometer

    Science.gov (United States)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  19. New approach to determine the angular transmission in zero-degree magnetic spectrometers

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira-Conca, J.; Schmidt, K.H.

    2000-11-01

    A new method to estimate the angular transmission in zero-degree magnetic spectrometers is presented. This method is based on a parameterisation of the angular aperture of the spectrometer for any possible value of the magnetic rigidity of the transmitted particles. This parameterisation of the angular aperture together with a description of the kinematics of the reaction mechanism allows to determine the angular transmission analytically, avoiding tedious Monte-Carlo calculations. The analytical solutions are implemented for residual nuclei produced in fission, projectile-fragmentation and fusion-evaporation reactions. (orig.)

  20. The big bang - was it what we think it was? NdFeB-magnets help to find an answer

    International Nuclear Information System (INIS)

    Marik, H.-J.

    1998-01-01

    End of May 1998 the Space Shuttle Columbia will carry a three ton detector magnet into space. Under the leadership of nobel price winner Samuel C.C. Ting of MIT, USA, the ''antimatter magnet spectrometer'' (AMS) was designed and built as an international co-operation of scientists from USA, China, Taiwan, Russia, Italy, France, Finland, Switzerland and Germany. This will be the first ever sensitive particle spectrometer in space and it has only been made possible by recent advances in permanent magnet technology. The first approx. 10 day flight will essentially test AMS. In addition basic data concerning the background flux of cosmic particles such as electrons, positrons, protons and antiprotons are supposed to be collected. In 2001 AMS will be attached for three to five years to the International Space Station. Only then AMS will serve its real objectives. (orig.)

  1. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R., E-mail: hogstrom@lsu.edu; Carver, Robert L.; Gibbons, John P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 and Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Clarke, Taylor; Henderson, Alexander; Liang, Edison P. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, Texas 77005-1827 (United States)

    2015-09-15

    Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower

  2. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

    Science.gov (United States)

    McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P

    2015-09-01

    The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration

  3. The LLNL AMS facility

    International Nuclear Information System (INIS)

    Roberts, M.L.; Bench, G.S.; Brown, T.A.

    1996-05-01

    The AMS facility at Lawrence Livermore National Laboratory (LLNL) routinely measures the isotopes 3 H, 7 Be, 10 Be, 14 C, 26 Al, 36 Cl, 41 Ca, 59,63 Ni, and 129 I. During the past two years, over 30,000 research samples have been measured. Of these samples, approximately 30% were for 14 C bioscience tracer studies, 45% were 14 C samples for archaeology and the geosciences, and the other isotopes constitute the remaining 25%. During the past two years at LLNL, a significant amount of work has gone into the development of the Projectile X-ray AMS (PXAMS) technique. PXAMS uses induced characteristic x-rays to discriminate against competing atomic isobars. PXAMS has been most fully developed for 63 Ni but shows promise for the measurement of several other long lived isotopes. During the past year LLNL has also conducted an 129 I interlaboratory comparison exercise. Recent hardware changes at the LLNL AMS facility include the installation and testing of a new thermal emission ion source, a new multianode gas ionization detector for general AMS use, re-alignment of the vacuum tank of the first of the two magnets that make up the high energy spectrometer, and a new cryo-vacuum system for the AMS ion source. In addition, they have begun design studies and carried out tests for a new high-resolution injector and a new beamline for heavy element AMS

  4. Creation of the precision magnetic spectrometer SCAN-3

    Directory of Open Access Journals (Sweden)

    Afanasiev S.V.

    2017-01-01

    Full Text Available The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p and neutral (n particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei. Basic elements of the spectrometer and its characteristics are discussed in the article.

  5. Creation of the precision magnetic spectrometer SCAN-3

    Science.gov (United States)

    Afanasiev, S. V.; Anisimov, Yu. S.; Baldin, A. A.; Berlev, A. I.; Dryablov, D. K.; Dubinchik, B. V.; Elishev, A. F.; Fateev, O. V.; Igamkulov, Z. A.; Krechetov, Yu. F.; Kudashkin, I. V.; Kuznechov, S. N.; Malakhov, A. I.; Smirnov, V. A.; Shimansky, S. S.; Kliman, J.; Matousek, V.; Gmutsa, S.; Turzo, I.; Cruceru, I.; Cruceru, M.; Constantin, F.; Niolescu, G.; Ciolacu, L.; Paraipan, M.; Vokál, S.; Vrláková, J.; Baskov, V. A.; Lebedev, A. I.; L'vov, A. I.; Pavlyuchenko, L. N.; Polyansky, V. V.; Rzhanov, E. V.; Sidorin, S. S.; Sokol, G. A.; Glavanakov, I. V.; Tabachenko, A. N.; Jomurodov, D. M.; Bekmirzaev, R. N.; Ibadov, R. M.; Sultanov, M. U.

    2017-03-01

    The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p) and neutral (n) particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei). Basic elements of the spectrometer and its characteristics are discussed in the article.

  6. Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Burger, W. J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dadzie, K.; Dai, Y. M.; Datta, A.; Delgado, C.; Della Torre, S.; Demakov, O.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jia, Yi; Jinchi, H.; Kang, S. C.; Kanishev, K.; Khiali, B.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Kulemzin, A.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, Q.; Li, T. X.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lyu, S. S.; Machate, F.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Perrina, C.; Phan, H. D.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wu, H.; Wu, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zannoni, M.; Zeissler, S.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, J. H.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2017-12-01

    We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90 ×106 helium, 8.4 ×106 carbon, and 7.0 ×106 oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation. Above 60 GV, these three spectra have identical rigidity dependence. They all deviate from a single power law above 200 GV and harden in an identical way.

  7. Efficient mass calibration of magnetic sector mass spectrometers

    International Nuclear Information System (INIS)

    Roddick, J.C.

    1996-01-01

    Magnetic sector mass spectrometers used for automatic acquisition of precise isotopic data are usually controlled with Hall probes and software that uses polynomial equations to define and calibrate the mass-field relations required for mass focusing. This procedure requires a number of reference masses and careful tuning to define and maintain an accurate mass calibration. A simplified equation is presented and applied to several different magnetically controlled mass spectrometers. The equation accounts for nonlinearity in typical Hall probe controlled mass-field relations, reduces calibration to a linear fitting procedure, and is sufficiently accurate to permit calibration over a mass range of 2 to 200 amu with only two defining masses. Procedures developed can quickly correct for normal drift in calibrations and compensate for drift during isotopic analysis over a limited mass range such as a single element. The equation is: Field A·Mass 1/2 + B·(Mass) p where A, B, and p are constants. The power value p has a characteristic value for a Hall probe/controller and is insensitive to changing conditions, thus reducing calibration to a linear regression to determine optimum A and B. (author). 1 ref., 1 tab., 6 figs

  8. The big bang - was it what we think it was? NdFeB-magnets help to find an answer

    Energy Technology Data Exchange (ETDEWEB)

    Marik, H.-J. [Vacuumschmelze GmbH, Hanau (Germany)

    1998-07-01

    End of May 1998 the Space Shuttle Columbia will carry a three ton detector magnet into space. Under the leadership of nobel price winner Samuel C.C. Ting of MIT, USA, the ''antimatter magnet spectrometer'' (AMS) was designed and built as an international co-operation of scientists from USA, China, Taiwan, Russia, Italy, France, Finland, Switzerland and Germany. This will be the first ever sensitive particle spectrometer in space and it has only been made possible by recent advances in permanent magnet technology. The first approx. 10 day flight will essentially test AMS. In addition basic data concerning the background flux of cosmic particles such as electrons, positrons, protons and antiprotons are supposed to be collected. In 2001 AMS will be attached for three to five years to the International Space Station. Only then AMS will serve its real objectives. (orig.)

  9. Multiparticle magnetic spectrometer with dE/dx and TRD particle identification

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Longacre, R.S.

    1981-01-01

    Recent advances in detector development by BNL, CCNY and other groups have made possible new designs of fast high resolution large effective solid angle magnetic multiparticle spectrometers with excellent particle tracking, momentum measurement, and identification capability. These new spectrometers are relatively compact and relatively low cost electronics have been developed for them. Thus the cost is relatively low. These techniques are applied here primarily for design of spectrometers for low p/sub t/ and other physics (at moderate and even high p/sub t/) in the ISABELLE small angle hall. However, one should keep in mind that these techniques can be utilized in many other applications

  10. Search for positron anisotropies in cosmic rays with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Machate, Fabian [1. Physikalisches Institut B, RWTH Aachen University (Germany)

    2016-07-01

    The Alpha Magnetic Spectrometer (AMS-02) on the International Space Station has observed a significant excess of cosmic ray positrons over the background expected from secondary production at energies above 10 GeV. Nearby pulsars and annihilating dark matter particles as a primary source of electrons and positrons have been discussed as an explanation. A possible way of distinguishing between pulsar and dark matter origin is the measurement of dipole anisotropies in the positron flux or the positron to electron ratio. Any anisotropy will be reduced by diffusion in galactic magnetic fields to below the percent level. AMS-02 is the leading space-based experiment for cosmic ray detection and well suited for this search. A new analysis procedure for anisotropies using an event sample with large acceptance is presented. It relies on the ability of the Transition Radiation Detector (TRD) to separate positrons from the proton background.

  11. Magnetic spectrometer of the DEUTERON-2 set-up

    International Nuclear Information System (INIS)

    Ajvazyan, R.V.; Alanakyan, K.V.; Amaryan, M.J.

    1989-01-01

    A magnetic spectrometer of the two-arm DEUTERON-2 set-up of the Erevan Physical Institute is described. It is shown that the rejection factor for electrons and pions is 10 -2 - 10 -3 . The positively charged particles in the momentum range up to 1.5 GeV/c are identified by momentum and time-of-flight measurements. The main characteristics of the spectrometer are: momentum and angular acceptance δp/p = 46%, Δθ = 4 deg, solid angle ΔΩ = 2.75 msr, momentum resolution δp/p = 1.5%, angular resolutions δθ = 0.6 deg, δφ = 2 deg. The intervals of measured momentum and the polar scattering anlge are 0.5-3 GeV/c and 10-30 deg, 68-90 deg respectively. 7 refs.; 11 figs

  12. Physics of charged cosmic rays with the AMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vialle, J.P

    2000-04-01

    The AMS experiment aims at searching for primordial antimatter, non-baryonic dark matter, and measuring with high statistics and high accuracy the electrically charged cosmic ray particles and light nuclei in the extraterrestrial space beyond the atmosphere. AMS is the first magnetic spectrometer which will be flown in space. It will be installed for 3 years on the international space station (ISS) in 2003. A test flight with the space shuttle DISCOVERY took place in June 1998 with a first detector and gave many results: best limit on the existence of antinuclei, fluxes of protons, leptons, and helium nuclei above the geomagnetic threshold, existence of a secondary flux below the geomagnetic threshold. These results are described below. The physics goal and perspectives for AMS on the space station with an improved detector are described as well. (author)

  13. Precise measurement of cosmic ray fluxes with the AMS-02 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vecchi, Manuela, E-mail: manuela.vecchi@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São Carlos, SP (Brazil)

    2015-12-17

    The AMS-02 detector is a large acceptance magnetic spectrometer operating onboard the International Space Station since May 2011. The main goals of the detector are the search for antimatter and dark matter in space, as well as the measurement of cosmic ray composition and flux. In this document we present precise measurements of cosmic ray positrons, electrons and protons, collected during the first 30 months of operations.

  14. Automation of electrostatic and magnetic beta-spectrometers; Avtomatizatsiya ehlektrostaticheskogo i magnitnogo {beta}-spektrometra

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, V T; Petev, P A

    1996-12-31

    Paper describes control units of voltage and current NM respectively, for electrostatic and magnetic beta-spectrometers. These units may be designed on the basis of either SPELMAN company voltage devider ensuring 0.5 accuracy or using a computer modification of feedback. Software for automated electrostatic beta-spectrometer made according to CAMAC standards is considered. 5 figs.

  15. CologneAMS, a dedicated center for accelerator mass spectrometry in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A., E-mail: dewald@ikp.uni-koeln.de [CologneAMS, Institute of Nuclear Physics, University of Cologne (Germany); Heinze, S.; Jolie, J.; Zilges, A. [CologneAMS, Institute of Nuclear Physics, University of Cologne (Germany); Dunai, T.; Rethemeyer, J.; Melles, M.; Staubwasser, M. [Institute of Geology and Mineralogy, University of Cologne (Germany); Kuczewski, B. [Division of Nuclear Chemistry, University of Cologne (Germany); Richter, J. [Institute of Prehistoric Archaeology, University of Cologne (Germany); Radtke, U. [Institute of Geography, University of Cologne, Germany, Rectorate, University of Duisburg-Essen (Germany); Blanckenburg, F. von [GFZ, German Research Centre for Geosciences, Potsdam (Germany); Klein, M. [HVEE, Amersfoort (Netherlands)

    2013-01-15

    CologneAMS is a new centre for accelerator mass spectrometry (AMS) at University of Cologne. It has been funded by the German Research Foundation (DFG) to improve the experimental conditions especially for those German scientists that apply the AMS technique for their geologic, environmental, nuclear chemical, and nuclear astrophysical research. The new AMS-device has been built by High Voltage Engineering Europe (HVEE) and has been installed in the existing accelerator area of the Institute of Nuclear Physics. The AMS-facility is designed for the spectrometry of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, {sup 129}I in and heavy ions up to {sup 236}U and {sup 244}Pu. The central part of the AMS-facility is a 6 MV Tandetron Trade-Mark-Sign accelerator. Downstream of the high energy mass spectrometer an additional switching magnet is used as a further filter element which supplies also additional ports for future extensions of the detector systems. The current status of CologneAMS and the results of the first test measurements will be presented.

  16. Tracking performances of the dimuon spectrometer with a dipole magnet

    International Nuclear Information System (INIS)

    Cussonneau, J.P.; Gutbrod, H.; Lautridou, P.; Luquin, L.; Metivier, V.; Ramillien, V.

    1996-01-01

    The tracking performances of the ALICE forward muon spectrometer, with a dipole magnet, are investigated. The study concerns the track finding and the mass resolution as well as the acceptance of the spectrometer for the Φ's, J/Ψ's and Υ's. With the proposed setup, a mass resolution below 100 MeV is obtained and a track finding efficiency better than 90% is achieved for the heavy resonance. An absolute acceptance of 4.83% is found which is acceptable in order to reach the required statistic for Υ' and Υ'' in Pb-Pb collisions. (author)

  17. Efficient mass calibration of magnetic sector mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Roddick, J C

    1997-12-31

    Magnetic sector mass spectrometers used for automatic acquisition of precise isotopic data are usually controlled with Hall probes and software that uses polynomial equations to define and calibrate the mass-field relations required for mass focusing. This procedure requires a number of reference masses and careful tuning to define and maintain an accurate mass calibration. A simplified equation is presented and applied to several different magnetically controlled mass spectrometers. The equation accounts for nonlinearity in typical Hall probe controlled mass-field relations, reduces calibration to a linear fitting procedure, and is sufficiently accurate to permit calibration over a mass range of 2 to 200 amu with only two defining masses. Procedures developed can quickly correct for normal drift in calibrations and compensate for drift during isotopic analysis over a limited mass range such as a single element. The equation is: Field A{center_dot}Mass{sup 1/2} + B{center_dot}(Mass){sup p} where A, B, and p are constants. The power value p has a characteristic value for a Hall probe/controller and is insensitive to changing conditions, thus reducing calibration to a linear regression to determine optimum A and B. (author). 1 ref., 1 tab., 6 figs.

  18. Implement of a magnetic spectrometer at the CERN intersecting stockage rings (900 spectrometer in the R608 experiment)

    International Nuclear Information System (INIS)

    Reyrolle, M.

    1985-01-01

    By adding a new spectrometer at 90 0 in the R608 experiment at CERN (ISR) we can search correlations between some systems of particles fully measured in the forward and transverse directions. The corresponding new electronic trigger, which selects events with momentum above a chosen threshold, is mixed or not to the forward trigger, in order to record correlated or inclusive data from the collisions p-p, p-anti-p, α-α. In the 90 0 spectrometer, we build drift chambers, set before the dipolar magnet. We studied the spatial resolution and the methods to associate tracks before and after this magnet. We developed the method to determine the momenta, by taking account of the variations of the deflecting power: the accuracy of this method is better than O.3%, and the global resolution is about 0.01 P 2 . We proposed also how to identify the particles from time of flight measurements and aerogel cerenkov counters [fr

  19. The AMS experiment: first results and physics prospects

    International Nuclear Information System (INIS)

    Vialle, J.P.

    2000-04-01

    The main physics goal of the AMS experiment is the search for primordial antimatter, non-baryonic dark matter, and the measurement with high statistics and high accuracy of the electrically charged cosmic ray particles and light nuclei in the extraterrestrial space beyond the atmosphere. AMS is the first magnetic spectrometer which will be flown in space. It will be installed for 3 years on the international space station (ISS) in 2003. A precursor flight with the space shuttle DISCOVERY took place in June 1998. 100 millions particles were recorded during the test flight and unexpected physics results were observed on fluxes of protons, electrons, positrons, and helium nuclei. These results are described below, and the physics prospects for the second phase of the experiment on the space station as well. (author)

  20. Project for a high resolution magnetic spectrometer for heavy ions

    International Nuclear Information System (INIS)

    Birien, P.; Valero, S.

    1981-05-01

    The energy loss spectrometer presented in this report has an energy resolution of 2x10 -4 with the full solid angle of 5 msr. The maximum magnetic rigidity of the particles analysed is 2.88 Tesla-meters on the optical axis and the total acceptance in energy is 14%. Experiments with reaction angles near 0 0 are possible. Kinematic compensation is adapted to heavy ion physics. In this report, we have paid special attention to the simplicity of the construction and of the use of this spectrometer by experimentalists. This report is addressed both to non-specialists and to future users as well [fr

  1. Performance of drift chambers in a magnetic rigidity spectrometer for measuring the cosmic radiation

    International Nuclear Information System (INIS)

    Hof, M.; Bremerich, M.; Menn, W.; Pfeifer, C.; Reimer, O.; Simon, M.; Mitchell, J.W.; Barbier, L.M.; Christian, E.R.; Ormes, J.F.; Streitmatter, R.E.; Golden, R.L.; Stochaj, S.J.

    1994-01-01

    A drift chamber tracking system was developed and flown as part of the IMAX balloon-borne magnetic spectrometer. The drift chamber uses a hexagonal drift-cell structure and is filled with pure CO 2 gas. It operated with high efficiency in the strong and inhomogenous field of a superconducting magnet, demonstrating a spatial resolution of better than 100 μm over most of the drift path for singly charged particles, as well as for helium and lithium nuclei. The drift chamber portion of the spectrometer achieved a maximum detectable rigidity of 175 and 250 GV/c for protons and helium respectively. ((orig.))

  2. Imaging AMS

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.P.H.T. [Univ. of Oxford (United Kingdom)]|[Lawrence Livermore National Lab., CA (United States); Ramsey, C.B.; Hedges, R.E.M. [Univ. of Oxford (United Kingdom)

    1993-12-01

    The benefits of simultaneous high effective mass resolution and large spectrometer acceptance that accelerator mass spectrometry has afforded the bulk analysis of material samples by secondary ion mass spectrometry may also be applied to imaging SIMS. The authors are exploring imaging AMS with the addition to the Oxford {sup 14}C-AMS system of a scanning secondary ion source. It employs a sub micron probe and a separate Cs flood to further increase the useful ion yield. The source has been accommodated on the system by directly injecting sputtered ions into the accelerator without mass analysis. They are detected with a range of devices including new high-bandwidth detectors. Qualitative mass spectra may be easily generated by varying only the post-accelerator analysis magnet. Selected ion signals may be used for imaging. In developing the instrument for bioscience research the authors are establishing its capability for measuring the lighter elements prevalent in biological tissue. Importantly, the machine can map the distributions of radiocarbon labeled compounds with an efficiency of about 1{per_thousand}. A background due to misidentification of non-{sup 14}C ions as a result of the reduced ion mass filtering is too small to hinder high magnification microscopy.

  3. Production Management System for AMS Computing Centres

    Science.gov (United States)

    Choutko, V.; Demakov, O.; Egorov, A.; Eline, A.; Shan, B. S.; Shi, R.

    2017-10-01

    The Alpha Magnetic Spectrometer [1] (AMS) has collected over 95 billion cosmic ray events since it was installed on the International Space Station (ISS) on May 19, 2011. To cope with enormous flux of events, AMS uses 12 computing centers in Europe, Asia and North America, which have different hardware and software configurations. The centers are participating in data reconstruction, Monte-Carlo (MC) simulation [2]/Data and MC production/as well as in physics analysis. Data production management system has been developed to facilitate data and MC production tasks in AMS computing centers, including job acquiring, submitting, monitoring, transferring, and accounting. It was designed to be modularized, light-weighted, and easy-to-be-deployed. The system is based on Deterministic Finite Automaton [3] model, and implemented by script languages, Python and Perl, and the built-in sqlite3 database on Linux operating systems. Different batch management systems, file system storage, and transferring protocols are supported. The details of the integration with Open Science Grid are presented as well.

  4. The magnetic spectrometer of the PAMELA satellite experiment

    International Nuclear Information System (INIS)

    Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Gabbanini, A.; Grandi, M.; Papini, P.; Ricciarini, S.B.; Spillantini, P.; Straulino, S.; Taccetti, F.; Tesi, M.; Vannuccini, E.

    2003-01-01

    In this paper, we describe in detail the design and the construction of the magnetic spectrometer of the PAMELA experiment, that will be launched during 2003 to do a precise measurement of the energy spectra of the antimatter components in cosmic rays. This paper will mainly focus on the detailed description of the tracking system and on the solutions adopted to deal with the technical challenges that are required to build a very precise detector to be used in the hostile space environment

  5. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    Directory of Open Access Journals (Sweden)

    Torrisi Lorenzo

    2018-01-01

    Full Text Available The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  6. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    Science.gov (United States)

    Torrisi, Lorenzo; Costa, Giuseppe; Ceccio, Giovanni; Cannavò, Antonino; Restuccia, Nancy; Cutroneo, Mariapompea

    2018-01-01

    The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF) measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA) acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC) at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  7. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.

    Science.gov (United States)

    Simon, Ferenc; Murányi, Ferenc

    2005-04-01

    The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.

  8. An approximately 4π tracking magnetic spectrometer for RHIC

    International Nuclear Information System (INIS)

    1987-01-01

    A tracking magnetic spectrometer based on large Time Projection Chambers (TPC) is proposed to measure the momentum of charged particles emerging from the RHIC beam pipe at angles larger than four degrees and to identify the particle type for those beyond fifteen degrees with momenta up to 700 MeV/c, which is a large fraction of the final charged particles emitted by a low rapidity quark-gluon plasma

  9. AMS-02 in space: physics results, overview, and challenges

    Science.gov (United States)

    Tomassetti, Nicola; AMS Collaboration

    2015-08-01

    The Alpha Magnetic Spectrometer (AMS-02) is a state of the art particle detector measuring cosmic rays (CRs) on the International Space Station (ISS) since May 19th 2011. AMS-02 identifies CR leptons and nuclei in the energy range from hundreds MeV to few TeV per nucleon. Several sub-detector systems allow for redundant particle identification with unprecedented precision, a powerful lepton-hadron separation, and a high purity of the antimatter signal. The new AMS-02 leptonic data from 1 to 500 GeV are presented and discussed. These new data indicate that new sources of CR leptons need to be included to describe the observed spectra at high energies. Explanations of this anomaly may be found either in dark-matter particles annihilation or in the existence of nearby astrophysical sources of e±. Future data at higher energies and forthcoming measurements on the antiproton spectrum and the boron-to-carbon ratio will be crucial in providing the discrimination among the different scenario.

  10. Physics of charged cosmic rays with the AMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vialle, J.P

    2001-01-01

    The electrically charged cosmic rays contain very important information about the mechanisms of stars and galaxies and about primordial universe which cannot be found elsewhere. The AMS experiment aims at searching for primordial antimatter, non-baryonic dark matter, and at measuring with high statistics and high accuracy the electrically charged cosmic ray particles and light nuclei in the extraterrestrial space beyond the atmosphere. AMS is the first magnetic spectrometer which will be flown in space. It will be installed for 3 years on the international space station (ISS) in 2003. A test flight with the space shuttle DISCOVERY took place in June 1998 with a first detector and gave many results: best limit on the existence of antinuclei, fluxes of protons, leptons, and helium nuclei above the geomagnetic threshold, existence of a secondary flux below the geomagnetic threshold. These results are described below. The physics goal and perspectives for AMS on the space station with an improved detector are described as well. (author)

  11. The AMS-02 transition radiation detector

    CERN Document Server

    Kirn, Th

    2004-01-01

    The Alpha Magnetic Spectrometer AMS02 will be equipped with a large transition radiation detector (TRD) to achieve a proton background suppression necessary for dark matter searches. The AMS02 TRD consists of 20 layers of fleece radiator each with Xe/CO//2 proportional wire straw tubes read out by a dedicated low-power data- acquisition system. A space-qualified TRD design will be presented. The performance of a 20-layer prototype was tested at CERN with electron, myon and pion beams up to l00 GeV and with protons up to 250 GeV. The beam-test results will be compared to Geant3 MC predictions. The detector is under construction at RWTH Aachen; the gas system will be built at MIT, slow-control at MIT and INFN Rome and DAQ at TH Karlsruhe. This project is funded by the German Space Agency DLR, the US Department of Energy DOE and NASA.

  12. Nuclear Magnetic Resonance Spectrometer Console Upgrade for a Type II Quantum Computer

    National Research Council Canada - National Science Library

    Cory, David

    2003-01-01

    ...) spectrometer to enable an improved implementation of type II quantum computers (TTQC). This upgrade is fully functional and has permitted our NMR studies to be moved to higher strength magnetic fields for better sensitivity and spectral dispersion...

  13. A permanent magnet system for a cyclotron used as a mass spectrometer

    International Nuclear Information System (INIS)

    Li, C.Y.; Cooper, M.; Halbach, K.; Kunkel, W.B.; Leung, K.N.; Wells, R.P.; Young, A.T.

    1992-07-01

    The design of a compact, low energy cyclotron used as a mass spectrometer is presented. The instrument is designed for high resolution, high sensitivity detection of trace. It features the use of permanent magnets to excite the soft iron pole pieces which provide the magnetic field of the cyclotron. Tuning magnets are used to enable the field to be varied. This significantly improves the operational requirements of the instrument when compared to one which uses electromagnets. The cyclotron will use a spiral reflector for axial injection

  14. The magnetic shield design and simulation of an X-ray spectrometer for Chang'E mission

    International Nuclear Information System (INIS)

    Zhang Jiayu; Wang Huanyu; Zhang Chengmo; Yang Jiawei; Liang Xiaohua; Wang Jinzhou; Cao Xuelei; Gao Min; Cui Xingzhu; Peng Wenxi

    2008-01-01

    Basic design methods about the magnetic shield of an X-ray spectrometer for Chang'E Mission were introduced in this paper. The real magnetic field distribution was obtained through the measure experiment, and according to the measure results, the simulation to evaluate the magnetic shield effect was carded on. The results showed that the collimator can play a good role in magnetic shield to the electron. (authors)

  15. A double zero-dispersion magnetic spectrometer used in a telescopic mode for very forward heavy ions studies

    International Nuclear Information System (INIS)

    Bacri, C.O.; Roussel, P.

    1990-01-01

    An original method based on the use of a double magnetic spectrometer in a telescopic mode is proposed for the studies of heavy ions collisions both at very forward angles and for magnetic rigidities close to that of the beam. It consists in the direct measurement of angular distributions on doubly - Bρ and angle - sorted events. The method has been tested on the LISE spectrometer at GANIL with a 44 MeV/A 40 Ar beam impinging on C, Al, Ni and Au targets. Milliradian angular accuracy have been obtained at magnetic rigidities as close as 0.9977 of that of the beam

  16. Bipolar power sources for the correction magnets of AmPS

    International Nuclear Information System (INIS)

    Es, J.T. van; Luigjes, G.; Trigt, J.H. van.

    1992-01-01

    AmPS consists of many correction magnets which must provide the currents. These currents serve continuously between -3 Amp and +3 Amp. The adjusted current must be stable inside 0,1%. The copper resistance of magnet coils and their wires are ≤ 8 ohm and the self induction is 200 mH. An extended market research on power supplies has enabled the authors to decide to develop it themselves. This development has led to a module system with Bitbus control. (authors). 14 figs., 4 tabs

  17. Small angle spectrometers: Summary

    International Nuclear Information System (INIS)

    Courant, E.; Foley, K.J.; Schlein, P.E.

    1986-01-01

    Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices

  18. Track calorimeter (TCAL) of alpha magnetic spectrometer (AMS) (a particle physics experiment on the international space station alpha)

    International Nuclear Information System (INIS)

    Anosov, V.; Baranov, S.; Bednyakov, V.

    1999-01-01

    Based on the simulation and R and D results the JINR project - to supplement AMS with a finely granulated scintillator calorimeter (TCAL) - is discussed. The project cost is about 1 million USD. TCAL would essentially increase the AMS potential in the studies of antimatter, matter and missing matter in the experiments in outer space

  19. Los Alamos Meson Physics Facility high-resolution-spectrometer dipole magnets: a summary report

    International Nuclear Information System (INIS)

    Kozlowski, T.; Madland, D.G.; Rolfe, R.; Smith, W.E.; Spencer, J.E.; Tanaka, N.; Thiessen, H.A.; Varghese, P.; Wilkerson, L.C.

    1982-12-01

    This report explains the design, fabrication, measurement, optimization, and installation of two 122 metric ton electromagnets for the High Resolution Proton Spectrometer at the Los Alamos Meson Physics Facility. These two magnets are the principal components of the proton spectrometer, which has an energy resolution of less than or equal to 10 - 4 FWHM. Many technical problems occurred during fabrication, measurement, and optimization, and the majority have been successfully solved. We hope that this report will help others planning similar projects

  20. Results on search for a QGP with a TPC magnetic spectrometer at AGS and plans for an ∼4π TPC magnetic spectrometer at RHIC

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.

    1991-01-01

    In the first part of this paper a search for a Quark-Gluon Plasma (QGP) with a TPC Magnetic Spectrometer at AGS by the BNL/CCNY/Johns Hopkins/Rice (E-810) Collaboration is discussed. At AGS energies the expected increase in baryon density is near maximum. If a QGP is formed even rarely this approach provides a sensitive method for its detection. We have found some interesting phenomena including strangeness enhancement, multi-Λ and K s 0 events and an increased slope for π - (corresponding to a reduced temperature) in the usual temperature plot for p perpendicular < 0.2 GeV/c. We plan to increase the statistics with the 14.5 GeV/c x A Si ions on targets from light to heavy and then to continue the program with incident Au ions. In Part 2 we discuss the BNL/CCNY/Notre Dame/Rice proposal for an ∼ 4π TPC Magnetic Spectrometer for RHIC which we believe will be a sensitive probe for hadronic QGP signals, and also capable of observing departures from QCD should they occur. 8 refs., 12 figs

  1. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  2. Indirect and inclusive search for dark matter with AMS02 space spectrometer

    International Nuclear Information System (INIS)

    Brun, Pierre

    2007-01-01

    AMS02 is a particle physics detector designed for 3 years of data taking aboard the International Space Station. Equipped with a superconducting magnet, it will allow to measure gamma and cosmic ray fluxes in the GeV to TeV region with high particle identification capabilities. Its performance is based on the redundancy of measurements in specific sub-detectors: a Time-Of-Flight counter, a Transition Radiation Detector, a Silicon Tracker, a Ring Imaging Cherenkov counter and an Electromagnetic calorimeter (Ecal). The Ecal is studied in details, in particular with the qualification of a stand-alone trigger devoted to gamma ray astronomy. This system allows to increase the AMS02 sensitivity to photons, and to improve the reconstruction of electromagnetic events. The analog part of the trigger system has been tested with test benches and in-beam at CERN. The in-orbit calibration of the Ecal is studied, it may proceed in two steps. First, the Ecal cells responses have to be equalized with minimum ionizing particles data. Then an absolute calibration can be performed with cosmic electrons. For both the relative and the absolute calibration, possible procedures are defined and realistic calibration times are estimated. The second part deals with the indirect searches for dark matter and the study of the AMS02 sensitivity. Dark matter stands for 84% of the Universe mass and could consist in new particles. Dark matter particles are expected to surround our Galaxy and annihilate in high density regions. These annihilations could become observable exotic primary cosmic ray sources. Searches for anomalous excesses in (p-bar, e + , D-bar) and γ ray fluxes will be performed by AMS02. A numerical tool allowing to perform predictions for these exotic fluxes within supersymmetry or extra-dimension is developed and is presented in details. Phenomenological studies regarding possible enhancements of these signals by over-dense regions of the halo have also been performed. The

  3. A 5 tesla superconducting magnet and cryostats for an EPR/FMR spectrometer

    NARCIS (Netherlands)

    Reuvekamp, E.M.C.M.; Gerritsma, G.J.; ten Kate, Herman H.J.; van de Klundert, L.J.M.

    1988-01-01

    A description is given of the cryogenic part of an electron paramagnetic resonance (EPR)/ferromagnetic resonance (FMR) spectrometer using Ka-band (26.5-40 GHz) and U-band (40-60 GHz) frequencies for resonance measurements on large magnetic thin-films. The unit has two cryostats; the first has a

  4. Progress on multi-nuclide AMS of JAEA-AMS-TONO

    Science.gov (United States)

    Saito-Kokubu, Yoko; Matsubara, Akihiro; Miyake, Masayasu; Nishizawa, Akimitsu; Ohwaki, Yoshio; Nishio, Tomohiro; Sanada, Katsuki; Hanaki, Tatsumi

    2015-10-01

    The JAEA-AMS-TONO (Japan Atomic Energy Agency's Accelerator Mass Spectrometer established at the Tono Geoscience Center) facility has been used for the dating of geological samples. The AMS system is versatile, based on a 5 MV tandem Pelletron-type accelerator. Since its establishment in 1997, the AMS system has been used for measurement of carbon-14 (14C) mainly for 14C dating studies in neotectonics and hydrogeology, in support of JAEA's research on geosphere stability applicable to the long-term isolation of high-level radioactive waste. Results of the measurement of 14C in soils and plants has been applied to the dating of fault activity and volcanism. Development of beryllium-10 (10Be) and aluminum-26 (26Al) AMS systems are now underway to enhance the capability of the multi-nuclide AMS in studies of dating by cosmogenic nuclides. The 10Be-AMS system has already been used for routine measurements in applied studies and improvements of the measurement technique have been made. Now we plan to fine tune the system and perform test measurements to develop the 26Al-AMS system.

  5. Progress on multi-nuclide AMS of JAEA-AMS-TONO

    Energy Technology Data Exchange (ETDEWEB)

    Saito-Kokubu, Yoko, E-mail: kokubu.yoko@jaea.go.jp [Japan Atomic Energy Agency, Toki, Gifu 509-5102 (Japan); Matsubara, Akihiro [Japan Atomic Energy Agency, Toki, Gifu 509-5102 (Japan); Miyake, Masayasu; Nishizawa, Akimitsu; Ohwaki, Yoshio; Nishio, Tomohiro; Sanada, Katsuki [Pesco Corp., Ltd., Toki, Gifu 509-5123 (Japan); Hanaki, Tatsumi [Japan Atomic Energy Agency, Toki, Gifu 509-5102 (Japan)

    2015-10-15

    The JAEA-AMS-TONO (Japan Atomic Energy Agency’s Accelerator Mass Spectrometer established at the Tono Geoscience Center) facility has been used for the dating of geological samples. The AMS system is versatile, based on a 5 MV tandem Pelletron-type accelerator. Since its establishment in 1997, the AMS system has been used for measurement of carbon-14 ({sup 14}C) mainly for {sup 14}C dating studies in neotectonics and hydrogeology, in support of JAEA’s research on geosphere stability applicable to the long-term isolation of high-level radioactive waste. Results of the measurement of {sup 14}C in soils and plants has been applied to the dating of fault activity and volcanism. Development of beryllium-10 ({sup 10}Be) and aluminum-26 ({sup 26}Al) AMS systems are now underway to enhance the capability of the multi-nuclide AMS in studies of dating by cosmogenic nuclides. The {sup 10}Be-AMS system has already been used for routine measurements in applied studies and improvements of the measurement technique have been made. Now we plan to fine tune the system and perform test measurements to develop the {sup 26}Al-AMS system.

  6. Convection Enhances Magnetic Turbulence in AM CVn Accretion Disks

    Science.gov (United States)

    Coleman, Matthew S. B.; Blaes, Omer; Hirose, Shigenobu; Hauschildt, Peter H.

    2018-04-01

    We present the results of local, vertically stratified, radiation magnetohydrodynamic shearing-box simulations of magnetorotational instability (MRI) turbulence for a (hydrogen poor) composition applicable to accretion disks in AM CVn type systems. Many of these accreting white dwarf systems are helium analogs of dwarf novae (DNe). We utilize frequency-integrated opacity and equation-of-state tables appropriate for this regime to accurately portray the relevant thermodynamics. We find bistability of thermal equilibria in the effective-temperature, surface-mass-density plane typically associated with disk instabilities. Along this equilibrium curve (i.e., the S-curve), we find that the stress to thermal pressure ratio α varied with peak values of ∼0.15 near the tip of the upper branch. Similar to DNe, we found enhancement of α near the tip of the upper branch caused by convection; this increase in α occurred despite our choice of zero net vertical magnetic flux. Two notable differences we find between DN and AM CVn accretion disk simulations are that AM CVn disks are capable of exhibiting persistent convection in outburst, and ideal MHD is valid throughout quiescence for AM CVns. In contrast, DNe simulations only show intermittent convection, and nonideal MHD effects are likely important in quiescence. By combining our previous work with these new results, we also find that convective enhancement of the MRI is anticorrelated with mean molecular weight.

  7. Indirect and inclusive search for dark matter with AMS02 space spectrometer

    International Nuclear Information System (INIS)

    Brun, P.

    2007-06-01

    AMS02 is a particle physics detector designed for 3 years of data collecting aboard the International Space Station. Equipped with a superconducting magnet, it will allow to measure gamma and cosmic ray fluxes in the GeV to TeV region with high particle identification capabilities. Its performance is based on the redundancy of measurements in specific sub-detectors: a Time-Of-Flight counter, a Transition Radiation Detector, a Silicon Tracker, a Ring Imaging Cherenkov counter and an Electromagnetic calorimeter (Ecal). The Ecal is studied in details, in particular with the qualification of a stand-alone trigger devoted to gamma ray astronomy. This system allows the increase of the AMS02 sensitivity to photons, and the improvement of the reconstruction of electromagnetic events. The analog part of the trigger system has been tested with test benches and with a beam at CERN. The in-orbit calibration of the Ecal is studied, it may proceed in two steps. First, the Ecal cells responses have to be equalized with minimum ionizing particles data. Then an absolute calibration can be performed with cosmic electrons. For both the relative and the absolute calibration, possible procedures are defined and realistic calibration times are estimated. The second part deals with the indirect searches for dark matter and the study of the AMS02 sensitivity. Dark matter stands for 84% of the Universe mass and could consist in new particles. Dark matter particles are expected to surround our Galaxy and annihilate in high density regions. These annihilations could become observable exotic primary cosmic ray sources. Searches for anomalous excesses in (p-bar, e + , D-bar) and γ ray fluxes will be performed by AMS02. A numerical tool allowing us to perform predictions for these exotic fluxes within supersymmetry or extra-dimension is developed and is presented in details. Phenomenological studies regarding possible enhancements of these signals by over-dense regions of the halo have also

  8. Single Event Upset Analysis: On-orbit performance of the Alpha Magnetic Spectrometer Digital Signal Processor Memory aboard the International Space Station

    Science.gov (United States)

    Li, Jiaqiang; Choutko, Vitaly; Xiao, Liyi

    2018-03-01

    Based on the collection of error data from the Alpha Magnetic Spectrometer (AMS) Digital Signal Processors (DSP), on-orbit Single Event Upsets (SEUs) of the DSP program memory are analyzed. The daily error distribution and time intervals between errors are calculated to evaluate the reliability of the system. The particle density distribution of International Space Station (ISS) orbit is presented and the effects from the South Atlantic Anomaly (SAA) and the geomagnetic poles are analyzed. The impact of solar events on the DSP program memory is carried out combining data analysis and Monte Carlo simulation (MC). From the analysis and simulation results, it is concluded that the area corresponding to the SAA is the main source of errors on the ISS orbit. Solar events can also cause errors on DSP program memory, but the effect depends on the on-orbit particle density.

  9. Development of low background germanium spectrometer for measurement of neutrino magnetic moment

    CERN Document Server

    Beda, A G; Starostin, A S

    2000-01-01

    The prospects for a search for neutrino magnetic moment down to (3-5)centre dot 10 sup - sup 1 sup 1 of the Bohr magneton with the use of low background Ge-NaI spectrometer built in ITEP are discussed. The lowest level of background for shallow setups was achieved in the preliminary test measurements of background. This result and estimations of additional sources of the background in a reactor experiment testify that using the low background Ge-NaI spectrometer with mass of Ge-crystal of 2 kg it is possible to achieve above objective, that will be one order of magnitude better than the present experimental limit.

  10. Measurement of Am-242 fission yields at the Lohengrin spectrometer; improvement and Benchmarking of the semi-empirical code GEF

    International Nuclear Information System (INIS)

    Amouroux, Charlotte

    2014-01-01

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (U-235, Pu-239) in the thermal neutron-induced fission, only few measurements were performed on Am-242. Moreover, the two main data libraries do not agree among each other on the light peak. Am-241 and Am-242 are nuclei of interest for the MOX-fuel reactors and for the reduction of nuclear waste radiotoxicity using transmutation reactions. Thus, a campaign of precise measurement of the fission mass yields from the reaction Am-241(2n,f) was performed at the Lohengrin mass spectrometer (ILL, France) for both the light and the heavy peak. Forty-one masses were measured. Moreover, the measurement of the isotopic fission yields on the heavy peak by gamma-ray spectrometry led to the extraction of 20 independent isotopic yields. Our measurement was also meant to determine whether there is a difference in fission yields between the Am-242 isomeric state and its ground state as it exists in fission cross sections. The experimental method used to answer this question is based on the measurement a set of fission mass yields as a function of the ratio of Am-242gs to Am-242m fission rate. Results show that the mass yields are independent of the fission rate ratio. A future experimental campaign is proposed to observe a possible influence on the isomeric yields. The theoretical models are nowadays unable to predict the fission yields with enough accuracy and therefore we have to rely on experimental data and phenomenological models. The accuracy of the predictions of the semi empirical GEF fission model predictions makes it a useful tool for evaluation. This thesis also presents the physical content and part of the development of this model. Validation of the kinetic energy distributions, isomeric yields and fission yields predictions was performed. The extension of the GEF

  11. Proceedings of the 3rd workshop on balloon-borne experiments with superconducting magnet spectrometers

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    1992-04-01

    The Third Work Shop on Balloon Borne Experiment with a Superconducting Magnet Spectrometer was held at National Laboratory for High Energy Physics (KEK), Tsukuba, Japan on February 24 - 25, 1992. The main effort for this workshop was focused on the progress of the BESS (Balloon Borne Experiment with a Superconducting Spectrometer) experiment and on the scope for scientific investigation with the BESS detector. The progress was reviewed and further investigation was discussed for the BESS further scientific collaboration among Univ. of Tokyo, Kobe University, KEK, ISAS and NMSU. (J.P.N.)

  12. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Science.gov (United States)

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  13. Electrostatic systems used for the multipassage magnetic mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C; Baril, M

    1987-08-15

    Improvement in the power of resolution is desirable in the multiplication of passages in magnetic fields; our guiding principle is to carry out the operation using a single magnetic prism. In the multipassage process the ions must first turn back after leaving the prism. This turnback is obtained by an electrostatic mirror. We obtain a large enough number of passages by placing two mirrors and two systems with time-varying roles at right angles. These systems are referred to as lens-mirror 1. When they act as mirrors, they enable the particles to circulate in a closed circuit; when they act as lenses, they enable the particles to enter the circuit or leave it. The coupling of two multipassage spectrometers is momentarily possible thanks to lens-mirror 2. The function change results from a change in electrode potential. The requirements for these electrostatic systems and their construction are studied.

  14. A 4π tracking TPC magnetic spectrometer for RHIC

    International Nuclear Information System (INIS)

    Danby, G.; Eiseman, S.E.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Van Dijk, J.H.; Lindenbaum, S.J.; Chan, C.S.; Kramer, M.A.; Zhao, K.; Biswas, N.; Kenney, P.; Piekarz, J.; Adams, D.L.; Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Corcoran, M.D.; Empl, T.; Miettinen, H.E.; Mutchler, G.S.; Roberts, J.B.; Skeens, J.

    1990-01-01

    The primary physics objective of the 4π TPC magnetic spectrometer proposal is to search for the Quark-Gluon Plasma. In previous workshops we have discussed what the possible hadronic signatures of such a state of matter would be. Succinctly, the QGP is a direct prediction of non-perturbative QCD. Therefore the question of the existence of this new state of matter bears directly on the validity of non-perturbative QCD. However, since non-perturbative QCD has never been established, it is apparent that what may await us is a host of new phenomena that will go beyond the standard model

  15. The SPEDE spectrometer

    Science.gov (United States)

    Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    2018-03-01

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

  16. Effect of a spectrometer magnet on the beam-beam interaction

    International Nuclear Information System (INIS)

    Cornacchia, M.; Parzen, G.

    1981-01-01

    The presence of experimental apparatus in the interaction regions of an intersecting beam accelerator changes the configuration of the crossing beams. This changes the space-charge forces with respect to the standard, magnet-free crossing. The question is: what is the maximum allowable perturbation caused by the spectrometer magnet that can be tolerated from the point of view of the beam dynamics. This paper is limited to the perturbations that the curved trajectories cause the beam-beam space charge nonlinearities. The question has arisen of how one defines the strength of the perturbation. The only solution is to compute the strength of the most important nonlinear resources. In what follows, the computational method used in calculating these resonances is described, and compared with those induced by random orbit errors

  17. Effect of a spectrometer magnet on the beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, M; Parzen, G

    1981-01-01

    The presence of experimental apparatus in the interaction regions of an intersecting beam accelerator changes the configuration of the crossing beams. This changes the space-charge forces with respect to the standard, magnet-free crossing. The question is: what is the maximum allowable perturbation caused by the spectrometer magnet that can be tolerated from the point of view of the beam dynamics. This paper is limited to the perturbations that the curved trajectories cause the beam-beam space charge nonlinearities. The question has arisen of how one defines the strength of the perturbation. The only solution is to compute the strength of the most important nonlinear resources. In what follows, the computational method used in calculating these resonances is described, and compared with those induced by random orbit errors.

  18. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Science.gov (United States)

    Salehpour, M.; Håkansson, K.; Possnert, G.; Wacker, L.; Synal, H.-A.

    2016-03-01

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV 14,13,12C3+ ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the 14C/12C and the 13C/12C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  19. Lessons Learned for the MICE Coupling Solenoid from the MICE Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Green, Michael A.; Wang, Li; Pan, Heng; Wu, Hong; Guo, Xinglong; Li, S.Y.; Zheng, S.X.; Virostek, Steve P.; DeMello, Allen J.; Li, Derun; Trillaud, Frederick; Zisman, Michael S.

    2010-01-01

    Tests of the spectrometer solenoids have taught us some important lessons. The spectrometer magnet lessons learned fall into two broad categories that involve the two stages of the coolers that are used to cool the magnets. On the first spectrometer magnet, the problems were centered on the connection of the cooler 2nd-stage to the magnet cold mass. On the first test of the second spectrometer magnet, the problems were centered on the cooler 1st-stage temperature and its effect on the operation of the HTS leads. The second time the second spectrometer magnet was tested; the cooling to the cold mass was still not adequate. The cryogenic designs of the MICE and MuCOOL coupling magnets are quite different, but the lessons learned from the tests of the spectrometer magnets have affected the design of the coupling magnets.

  20. Operational status of the JAEA-Mutsu tandetron AMS

    International Nuclear Information System (INIS)

    Kabuto, Shoji; Kinoshita, Naoki; Amano, Hikaru; Watanabe, Yukiya; Baba, Masami

    2008-01-01

    A Tandetron AMS (Accelerator Mass Spectrometer) had been set up at the Japan Atomic Energy Agency (formerly the Japan Atomic Energy Research Institute), Mutsu in 1997. The AMS features 3MV Tandetron accelerator and two independent beamlines for 14 C and 129 I measurement. In this paper, we describe the current status and troubles for the Tandetron AMS with the showing of examples from the last year. (author)

  1. A 4π tracking magnetic spectrometer for RHIC

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.

    1988-01-01

    A tracking magnetic spectrometer based on large Time Projection Chambers (TPC) was previously proposed to measure the momentum of charged particles emerging from the RHIC beam pipe at angles larger than four degrees and to identify the particle type for those beyond fifteen degrees with momenta up to 700 MeV/c, which is a large fraction of the final charged particles emitted by a low cm rapidity quark-gluon plasma. Experimental progress in the successful performance of a TPC developed for AGS E-810 is reported. We have also included typical results of our event generator which contains an interface of an improved HIJET and a plasma bubble model. Typical plasma signals one can expect from this model are presented. 4 refs., 9 figs

  2. Detector tests in a high magnetic field and muon spectrometer triggering studies on a small prototype for an LHC experiment

    CERN Document Server

    Ambrosi, G; Basile, M; Battiston, R; Bergsma, F; Castro, H; Cifarelli, Luisa; Cindolo, F; Contin, A; De Pasquale, S; Gálvez, J; Gentile, S; Giusti, P; Laurent, G; Levi, G; Lin, Q; Maccarrone, G D; Mattern, D; Nania, R; Rivera, F; Schioppa, M; Sharma, A; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    The "Large Area Devices" group of the LAA project is working on R&D for muon detection at a future super-collider. New detectors are under development and the design of a muon spectrometer for an LHC experiment is under study. Our present choice is for a compact, high field, air-core toroidal muon spectrometer. Good momentum resolution is achievable in this compact solution, with at least one plane of detection elements inside the high field region. A new detector, the Blade Chamber, making use of blades instead of wires, has been developed for the forward and backward regions of the spectrometer, where polar coordinate readings are desirable.The assembling of a CERN high energy beam line, equipped with high resolution drift chambers and a strong field magnet could give us the opportunity to test our chambers in a high magnetic field and to study the muon trigger capabilities of a spectrometer, like the one proposed, on a small prototype.

  3. The Omega spectrometer

    CERN Multimedia

    1972-01-01

    The Omega spectrometer which came into action during the year. An array of optical spark chambers can be seen withdrawn from the magnet aperture. In the 'igloo' above the magnet is located the Plumbicon camera system which collects information from the spark chambers.

  4. A multichannel magnetic β-ray spectrometer for rapid measurements of electron spectra

    International Nuclear Information System (INIS)

    Kariya, Komyo; Morikawa, Kaoru.

    1989-01-01

    In order to make the magnetic β-ray spectrometer suitable for rapid measurements of electron spectra with short-lived nuclides, twelve small GM counters have been arrayed along the focal plane of a 180deg focusing flat type design. All the signal pulses from each one of these detectors are mixed together onto a single cable. By means of multichannel PHA, each pulse can be traced back to the specific detector which sent it out. In order to avoid time consuming evacuation procedures, the sample source is placed outside a thin window of the preevacuated analyzer chamber. By the use of this multichannel spectrometer a β-ray spectrum with maximum energy up to about 10 MeV can be measured within 1 min or so. Electron spectra measured with 113m In, 119m In and 144 Pr source are shown. (author)

  5. The Dipole Magnet Design for the ALICE DiMuon Arm Spectrometer

    CERN Document Server

    Akishin, P G; Blinov, N; Boguslavsky, I V; Cacaut, D E; Danilov, V; Datskov, V I; Golubitsky, O M; Kalimov, A; Kochournikov, E; Lyubimtsev, A; Makarov, A; Mikhailov, K; Olex, I; Popov, V; Semashko, S; Shabunov, A; Shishov, Yu A; Shurygin, A; Shurygina, M; Sissakian, A N; Swoboda, Detlef; Vodopyanov, A S

    2002-01-01

    An essential part of the DiMuon Arm Spectrometer of the ALICE experiment is a conventional Dipole Magnet of about 890 tons which provides the bending power to measure the momenta of muons. The JINR engineering design of the Dipole Magnet, technical characteristics and description of the proposed manufacturing procedure are presented. The proposed Coil fabrication technique is based on winding of flat pancakes, which are subsequently bent on cylindrical mandrels. The pancakes are then stacked and cured with prepreg insulation. The method is demonstrated on hand of the prototype II, which consists of a pancake made with full-size aluminium conductor. Some details of electromagnetic and mechanical calculations are described. The results of measuring of mechanical and electrical characteristics of materials related to the coil composite structure are discussed.

  6. New results from the
 AMS experiment on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The Alpha Magnetic Spectrometer, AMS, is a general purpose high energy particle phys- ics detector. It was installed on the International Space Station, ISS, on 19 May 2011 to conduct a unique long duration mission of fundamental physics research in space. Knowledge of the precise rigidity dependence of the proton and helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. Pre- cise measurements of the proton and of the helium flux in primary cosmic rays with rigidities (momentum/charge) up to the TV scale are presented and the detailed varia- tion with rigidity of the flux spectral indices will be discussed. A precision measurement by AMS of the antiproton flux and antiproton-to-proton ratio in primary cosmic rays in the rigidity range from 1 to 450 GV is presented. This measurement increases the precision of the previous observations and significantly extends their rigidity range. It shows that the antiproton-to-proton ratio remains constant above ∼60 GV. In a...

  7. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  8. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  9. Crystallography and magnetic properties of transuranium element oxygen compounds (Np, Pu and Am)

    International Nuclear Information System (INIS)

    Tabuteau, Alain.

    1981-05-01

    This paper includes: 1) The brief description of the experimental techniques used for analyzing very small quantities of solid radioactive compounds (differential thermal micro-analyses, diffraction of X rays, magnetic susceptibility and Moessbauer resonance). 2) The methods of synthesis of the ternary oxides of transuranic elements at oxidation degrees III (Pu 2 MoO 6 , Pu 2 WO 6 , Pu 2 (WO 4 ) 3 , Am 2 MoO 6 , Am 2 WO 6 , Am 2 (MoO 4 ) 3 and Am 2 (WO 4 ) 3 ) and at degree IV (Np(VO 3 ) 4 , Np(MoO 4 ) 2 , Np(WO 4 ) 2 and Pu(MoO 4 ) 2 ). The drawing up of liquid-solid balance diagrams enabled the field of stability of molybdate (or tungstate) systems of alkaline transuranic - mobybdates (or tungstates) to be clarified. 3) The study of the structural properties of the identified phases. These results taken as a whole made it possible to establish a ''comparative crystal - chemistry'' of the oxigenated phases of Np, Pu and Am with those of the thorium and uranium actinide elements and with the rare earths of adjacent ionic radius. 4) The Moessbauer resonance study of 237 Np in the solid solution Usub(1-x)Npsub(x)O 2 (0 [fr

  10. Magnetic field measurement in the analyzing magnet of NIS spectrometer

    Science.gov (United States)

    Avramenko, S. A.; Afanas'ev, S. V.; Voloshina, I. G.; Dolgii, S. A.; Yusupov, A. Yu.; Kalmykov, A. V.; Makoveev, V. K.; Nikolaevskii, G. P.; Ostrovskii, I. V.; Perepelkin, E. E.; Peresedov, V. F.; Plyashkevich, S. N.; Rossiiskaya, N. S.; Salmin, R. A.; Spodarets, V. K.; Strokovskii, E. A.; Yudin, I. P.

    2006-12-01

    The main goals of the Nucleon Intrinsic Strangeness experiment (NIS) are the search for the effects of hidden polarized strangeness in the nucleon and the exploration and study of exotic baryons (pentaquarks) in NN reactions. The setup is located in the Laboratory of High Energies at the Joint Institute for Nuclear Research in channel 4V of the Nuclotron extracted beam with the energy between 1 and 4 GeV. The 1SP-40-4V electromagnet of the spectrometer has the external dimensions 3.20 × 3.26 × 4.48 m and the aperture 2.74 × 0.68 m. The magnetic field measurement was performed using the three-component Hall magnetometer in the computer-controlled automated mode. The volume of measurements was 1.03 × 0.60 × 3.92 m. The description of the measuring equipment and measurement procedure is given. The results of the measurements are used for the Monte Carlo computer modeling of the experiment. These results will be used in the analysis of physical data after their acquisition.

  11. Large solid angle tracking of Monte Carlo events of heavy ion collisions in TPC magnetic spectrometers

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Asoka-Kumar, P.P.V.; Chan, C.S.; Kramer, M.A.

    1987-01-01

    The BNL/CCNY collaboration has for some time had as its goal the development and use of ≅ 4π solid angle magnetic spectrometer tracking of charged particles produced in heavy ion collision experiments at AGS, and eventually RHIC. (orig./HSI)

  12. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, M., E-mail: mehran.salehpour@physics.uu.se [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Håkansson, K.; Possnert, G. [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Wacker, L.; Synal, H.-A. [Ion Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 (Switzerland)

    2016-03-15

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV {sup 14,13,12}C{sup 3+} ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the {sup 14}C/{sup 12}C and the {sup 13}C/{sup 12}C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  13. Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

    CERN Document Server

    Aguilar, M; Wiik, K; Grimm, O; Sartorelli, G; Zhou, Y; Pauss, F; Alpat, B; Capell, M; Djambazov, L; Yang, M; Yang, J; Extermann, P; Arefiev, A; Zhuang, H L; Hermel, V; Mihul, A; Galaktionov, Y; Park, H B; Von Gunten, H; Vetlitsky, I; Zhou, F; Vandenhirtz, J; Ambrosi, G; Suter, H; Becker, U; Zhang, H Y; Alcaraz, J; Casaus, J; Ren, Z; Fiandrini, E; Hungerford, W; Ren, D; Wicki, S W; Eppling, F J; Flugge, G; Karlamaa, K; Boella, G; Levi, G; Choi, Y Y; Laborie, G; Lubelsmeyer, K; Gervasi, M; Kirn, T; Azzarello, P; Kounine, A; Barreira, G; Yan, L G; Burger, W J; Koutsenko, V; Grandi, D; Ribordy, M; Gu, W Q; Bindi, V; Favier, J; Haino, S; Shin, J W; Mana, C; Seo, E S; Plyaskin, V; Shoumilov, E; Cannarsa, P; Xia, P C; Ionica, M; Jongmanns, M; Shoutko, V; Wallraff, W; Margotti, A; Lee, S C; Giovacchini, F; Schael, S; Bourquin, M; Roeser, U; Lu, Y S; Torsti, J; Kossakowski, R; Chang, Y H; Menichelli, M; Verlaat, B; Paniccia, M; Steuer, M; Fouque, N; Boschini, M; Zimmermann, B; Song, T; Zuccon, P; Contin, A; Produit, N; Laitinen, T; Kim, K S; Viertel, G; Lin, C H; Lechanoine-Leluc, C; Delgado, C; Lu, G; Pohl, M; Yang, C G; Tornikoski, M; Duranti, M; Cindolo, F; Xu, S; Lebedev, A; Xu, Z Z; Crespo, D; Cristinziani, M; Tomassetti, N; Kim, D H; Biland, A; Bertucci, B; Trumper, J; Buenerd, M; Hangarter, K; Kenney, G; Quadrani, L; Hofer, H; Berdugo, J; Siedenburg, T; Chen, Z G; Ting, S M; Vezzu, F; Cortina-Gil, E; Dai, T S; Barao, F; Commichau, V; Zhang, Z P; Sun, G S; Zhu, W Z; Laurenti, G; Chen, H S; Kim, G N; Sagdeev, R; Wu, S X; Urpo, S; Lee, M W; Rapin, D; Kraeber, M; Chen, H F; Engelberg, J; Ritakari, J; Di Falco, S; Zhu, G Y; Vite, D; Ulbricht, J; Bruni, G; Bellagamba, L; Williams, C; Fisher, P H; D'Antone, I; Pevsner, A; Castellini, G; Chernoplekov, N A; Ao, L; Giusti, P; McNeil, R R; Allaby, J; Yan, J L; Son, D; Santos, D; Cai, X D; Rancoita, P G; Becker, R; Wang, J Z; Oliva, A; Karpinski, W; Cernuda, I; Saouter, P; Ro, S; Anderhub, H; Dela Guia, C; Schwering, G; Ting, S C C; Lamanna, G; Pauluzzi, M; Berges, P; Riihonen, E; Pojidaev, V; Chiueh, T H; Valtonen, E; Pereira, R; Spinella, F; Perrin, E; Park, W H; Dong, Z R; Zichichi, A; Battiston, R; von Dratzig, A S; Vialle, J P; Klimentov, A; Liu, H T; Bartoloni, A; Arruda, L; Tang, X W; Mujunen, A; Pimenta, M; Casadei, D; Spada, F R; Eronen, T; Mayet, F; Palmonari, F; Lustermann, W; Velikhov, E; Pilo, F; Zhao, D X; Luckey, D; Basile, M; Sbarra, C; Natale, S; Siedling, R; Ye, S W; Burger, J D

    2011-01-01

    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper, we present measurements of the isotopic ratios (2)H/(4)He, (3)He/(4)He, (6)Li/(7)Li, (7)Be/((9)Be+(10)Be), and (10)B/(11)B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.

  14. Cosmic ray anisotropy searches with AMS-02

    Energy Technology Data Exchange (ETDEWEB)

    Zeissler, Stefan; Gebauer, Iris; Trumpf, Ricarda [Karlsruher Institut fuer Technologie (KIT) (Germany)

    2016-07-01

    The Alpha Magnetic Spectrometer (AMS-02) is a state-of-the-art particle detector designed to operate as an external module on the International Space Station (ISS). In this unique space environment cosmic particles can be measured with high precision over an energy range from GeV up to TeV. The AMS collaboration provided precise measurements of the electron and positron fluxes, which indicate an additional source of positrons among the various cosmic particles. Possible candidates for this source are local pulsars, a local source of positrons produced in proton-gas interactions or dark matter annihilation. In the first two cases a possible anisotropy in the electrons and positrons incoming direction at Earth might be detectable. To determine the level of isotropy the measured data is compared to reference maps, which simulate the measurement of an isotropic sky. A common choice of reference maps are proton count maps or shuffled maps, which redistribute measured incoming directions over the whole measuring time. Both choices lead to difficulties in the reconstruction of a marginal signal with a big expansion over the galactic sky as it would be the case for charged cosmic particles. We developed a method to construct reference maps based on fundamental detector characteristics such as the lifetime and the geometric acceptance. Using this we are able to reconstruct the isotropic sky as it would be seen by the detector. We demonstrate the performance of the method using AMS-02 data.

  15. Study and realization of a detection apparatus for the Grenoble magnetic spectrometer

    International Nuclear Information System (INIS)

    Burel, J.-P.

    1975-01-01

    Two multiwire proportional chambers were studied for a magnetic spectrometer. The first one is constructed for visualization of the attenuated beam at the place of the target. The sensitive area is 4x4cm 2 . The anode wires are 0.020mm diameter, gold plated tungsten, 2mm spaced. Each cathode plane wires are connected to a 20 units-5ns delay line. The planes are 3.2mm spaced. The spatial resolution obtained is better than 0.3mm. The second chamber is placed at the focal plane of the spectrometer. The sensitive area is 50x5cm 2 . The horizontal position detection uses an original charge-division system with four chains of capacitors. The particle position results of the center of gravity calculus of different amplified pulses. An electronic circuit has been constructed and the result is directly stored in a memory unit. The spatial resolution obtained is 0.4mm [fr

  16. APES: Acute Precipitating Electron Spectrometer - A High Time Resolution Monodirectional Magnetic Deflection Electron Spectrometer

    Science.gov (United States)

    Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-01-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  17. The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet.

    CERN Multimedia

    2006-01-01

    A 3-D event display of a cosmic muon event, showing the path of a muon travelling through three layers of the barrel muon spectrometer. Three of the eight coils of the barrel toroid magnet can be seen in the top half of the drawing.

  18. Two-lens spectrometer for. beta. polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Holdsworth, D; Paul, D [Toronto Univ., Ontario (Canada). Dept. of Physics

    1984-06-01

    A test spectrometer has been built having four degrees of freedom which have been varied to optimize the transmission in a configuration in which the image distance is large compared to the object distance. Iron-clad magnets of 15 cm effective inside diameter were used. Within the limits of the primary magnet field, the optimized transmission T (%. of 4..pi.. sr) increases as the source is advanced through the magnet towards the polarimeter, approximately as T=5.1 exp(zsub(s)/10.5), where zsub(s) is in cm, measured from the position of peak axial field. When the source-image distance is 1.8 m the optimum separation of the peak axial fields of the magnets is 67+-1 cm and the spectrometer transmission is the same for parallel or antiparallel fields. When operating in the optimum configuration, the spectrometer accepts particles with initial trajectories from 18/sup 0/ to 42/sup 0/ relative to the axis and delivers them at the target with half-angle of convergence less than 4.1/sup 0/.

  19. The SeaQuest Spectrometer at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Aidala, C.A.; et al.

    2017-06-29

    The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution tracking device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.

  20. Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2009-02-01

    Full Text Available Systematic laboratory experiments were performed to investigate quantification of various species with two versions of the Aerodyne Aerosol Mass Spectrometer, a Quadrupole Aerosol Mass Spectrometer (Q-AMS and a compact Time-of-Flight Aerosol Mass Spectrometer (c-ToF-AMS. Here we present a new method to continuously determine the detection limits of the AMS analyzers during regular measurements, yielding detection limit (DL information under various measurement conditions. Minimum detection limits range from 0.03 μg m−3 (nitrate, sulfate, and chloride up to 0.5 μg m−3 (organics for the Q-AMS. Those of the c-ToF-AMS are found between 0.003 μg m−3 (nitrate, sulfate and 0.03 μg m−3 (ammonium, organics. The DL values found for the c-ToF-AMS were ~10 times lower than those of the Q-AMS, mainly due to differences in ion duty cycle. Effects causing an increase of the detection limits include long-term instrument contamination, measurement of high aerosol mass concentrations and short-term instrument history. The self-cleaning processes which reduce the instrument background after measurement of large aerosol concentrations as well as the influences of increased instrument background on mass concentration measurements are discussed. Finally, improvement of detection limits by extension of averaging time intervals, selected or reduced ion monitoring, and variation of particle-to-background measurement ratio are investigated.

  1. A highly polarized hydrogen/deuterium internal gas target embedded in a toroidal magnetic spectrometer

    International Nuclear Information System (INIS)

    Cheever, D.; Ihloff, E.; Kelsey, J.; Kolster, H.; Meitanis, N.; Milner, R.; Shinozaki, A.; Tsentalovich, E.; Zwart, T.; Ziskin, V.; Xiao, Y.; Zhang, C.

    2006-01-01

    A polarized hydrogen/deuterium internal gas target has been constructed and operated at the internal target region of the South Hall Ring (SHR) of the MIT-Bates Linear Accelerator Center to carry out measurements of spin-dependent electron scattering at 850MeV. The target used an Atomic Beam Source (ABS) to inject a flux of highly polarized atoms into a thin-walled, coated storage cell. The polarization of the electron beam was determined using a Compton laser backscattering polarimeter. The target polarization was determined using well-known nuclear reactions. The ABS and storage cell were embedded in the Bates Large Acceptance Toroidal Spectrometer (BLAST), which was used to detect scattered particles from the electron-target interactions. The target has been designed to rapidly (∼8h) switch operation from hydrogen to deuterium. Further, this target was the first to be operated inside a magnetic spectrometer in the presence of a magnetic field exceeding 2kG. An ABS intensity 2.5x10 16 at/s and a high polarization (∼70%) inside the storage cell have been achieved. The details of the target design and construction are described here and the performance over an 18 month period is reported

  2. Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array

    Science.gov (United States)

    Hunacek, J.; Bock, J.; Bradford, C. M.; Butler, V.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Frez, C.; Hailey-Dunsheath, S.; Hoscheit, B.; Kim, D. W.; Li, C.-T.; Marrone, D.; Moncelsi, L.; Shirokoff, E.; Steinbach, B.; Sun, G.; Trumper, I.; Turner, A.; Uzgil, B.; Weber, A.; Zemcov, M.

    2018-04-01

    TIME is a mm-wavelength grating spectrometer array that will map fluctuations of the 157.7-μm emission line of singly ionized carbon ([CII]) during the epoch of reionization (redshift z ˜ 5-9). Sixty transition-edge sensor (TES) bolometers populate the output arc of each of the 32 spectrometers, for a total of 1920 detectors. Each bolometer consists of gold absorber on a ˜ 3 × 3 mm silicon nitride micro-mesh suspended near the corners by 1 × 1 × 500 μm silicon nitride legs targeting a photon-noise-dominated NEP ˜ 1 × 10^{-17} W/√{Hz} . Hafnium films are explored as a lower-T_c alternative to Ti (500 mK) for TIME TESs, allowing thicker support legs for improved yield. Hf T_c is shown to vary between 250 and 450 mK when varying the resident Ar pressure during deposition. Magnetic shielding designs and simulations are presented for the TIME first-stage SQUIDs. Total axial field suppression is predicted to be 5 × 10^7.

  3. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  4. The MEG positron spectrometer

    International Nuclear Information System (INIS)

    Nishiguchi, Hajime

    2007-01-01

    We have been developing an innovative spectrometer for the MEG experiment at the Paul Scherrer Institute (PSI) in Switzerland. This experiment searches for a lepton flavour violating decay μ + →e + γ with a sensitivity of 10 -13 in order to explore the region predicted by supersymmetric extensions of the standard model. The MEG positron spectrometer consists of a specially designed superconducting solenoidal magnet with a highly graded field, an ultimate low-mass drift chamber system, and a precise time measuring counter system. This innovative positron spectrometer is described here focusing on the drift chamber system

  5. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  6. Experience in automatic processing of 340.000 images from ITEF 3-m magnetic spectrometer

    International Nuclear Information System (INIS)

    Dzhelyadin, R.I.; Dukhovskoj, I.A.; Ivanov, L.V.; Kishkurno, V.V.; Krutenkova, A.P.; Kulikov, V.V.; Lyulevich, V.I.; Polikarpov, V.M.; Radkevich, I.A.; Fedorets, V.S.; Fedotov, O.P.

    1974-01-01

    A number of conclusions were made regarding automatic processing of 340.000 pictures (1.020.000 frames) developed on a three-meter magnetic spectrometer with spark chambers. Possibilities for time optimization of automatic processing programs are discussed. The results of processing of a series of photographs were analysed to compare the paramters of automatic ans semi-automatic processing. Some problems relating to organization and technology of picture processing are also autlined [ru

  7. Ultraviolet observations of AM Herculis

    International Nuclear Information System (INIS)

    Tanzi, E.G.; Treves, A.; Milan Univ.; Sandford, M.C.W.; Willis, A.J.; Wilson, R.

    1980-01-01

    Seven ultraviolet spectra (1100-3200 Angstroem) of AM Her were obtained with the low resolution spectrometer of the IUE satellite. Strong emission features appear superimposed on a well defined continuum which is well fitted by a Fsub(lambda) D lambda -2 law. The observations are compared with the expectations from models of the source. (orig.) 891 WL/orig. 892 HIS

  8. Biochemical paths in humans and cells: Frontiers of AMS bioanalysis

    International Nuclear Information System (INIS)

    Vogel, J.S.; Palmblad, N.M.; Ognibene, T.; Kabir, M.M.; Buchholz, B.A.; Bench, G.

    2007-01-01

    The publication rate of 3 H and 14 C use in biomedical research decreased by a factor of three since 1990 when the first applications of AMS in biomedicine were published. Against this decrease, the high sensitivity of AMS for these isotopes in small isolated samples has made significant contributions. New smaller spectrometers and increased commercial availability of AMS have solved some of the issues surrounding availability and cost, but improved quantitation in non-isotopic methods now compete with some early uses of AMS. We review the strength of AMS for quantifying rare biochemical events and chemical passages through individual people or cells and consider these as the frontiers of quantitation leading to profitable science unavailable to other techniques

  9. Indirect and inclusive search for dark matter with AMS02 space spectrometer; Recherche indirecte et inclusive de matiere noire avec le spectrometre spatial AMS02

    Energy Technology Data Exchange (ETDEWEB)

    Brun, P

    2007-06-15

    AMS02 is a particle physics detector designed for 3 years of data collecting aboard the International Space Station. Equipped with a superconducting magnet, it will allow to measure gamma and cosmic ray fluxes in the GeV to TeV region with high particle identification capabilities. Its performance is based on the redundancy of measurements in specific sub-detectors: a Time-Of-Flight counter, a Transition Radiation Detector, a Silicon Tracker, a Ring Imaging Cherenkov counter and an Electromagnetic calorimeter (Ecal). The Ecal is studied in details, in particular with the qualification of a stand-alone trigger devoted to gamma ray astronomy. This system allows the increase of the AMS02 sensitivity to photons, and the improvement of the reconstruction of electromagnetic events. The analog part of the trigger system has been tested with test benches and with a beam at CERN. The in-orbit calibration of the Ecal is studied, it may proceed in two steps. First, the Ecal cells responses have to be equalized with minimum ionizing particles data. Then an absolute calibration can be performed with cosmic electrons. For both the relative and the absolute calibration, possible procedures are defined and realistic calibration times are estimated. The second part deals with the indirect searches for dark matter and the study of the AMS02 sensitivity. Dark matter stands for 84% of the Universe mass and could consist in new particles. Dark matter particles are expected to surround our Galaxy and annihilate in high density regions. These annihilations could become observable exotic primary cosmic ray sources. Searches for anomalous excesses in (p-bar, e{sup +}, D-bar) and {gamma} ray fluxes will be performed by AMS02. A numerical tool allowing us to perform predictions for these exotic fluxes within supersymmetry or extra-dimension is developed and is presented in details. Phenomenological studies regarding possible enhancements of these signals by over-dense regions of the halo

  10. Spectrometer magnet for experiment NA4 (deep inelastic muon scattering)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    This is one section of the toroidal-field spectrometer magnet of experiment NA4 (deep inelastic muon scattering), shown here during the installation period and later located in the North Area of the SPS. To see all 4 sections, select 7709201. Igor Savin from Dubna looks at what his lab had provided: the huge iron disks were machined at and provided by Dubna. Multi-Wire Proportional Chambers were installed in the gaps between the packs of 4 disks. When the beam from the SPS struck the target (to the right in this picture), the iron would quickly stop the hadronic shower, whilst the muons would go on, performing oscillations in the toroidal field. NA4 was a CERN-Dubna-Munich-Saclay (later also Bologna) collaboration, spokesman: Carlo Rubbia.

  11. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-01-01

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  12. Sorption of Am(III) on attapulgite/iron oxide magnetic composites. Effect of pH, ionic strength and humic acid

    International Nuclear Information System (INIS)

    Yu, T.; East China Institute of Technology, Fuzhou, Jiangxi; Fan, Q.H.; Wu, W.S.; Lanzhou Univ., Gansu; Liu, S.P.; Pan, D.Q.; Zhang, Y.Y.; Li, P.

    2012-01-01

    Attapulgite/iron oxide magnetic (ATP/IOM) composites was prepared, and the sorption behavior of Am(III) on that composites was studied as a function of pH, ionic strength, the solid-to-liquid ratio (m/V), contact time, and the concentration of Am(III) under ambient conditions using batch technique. The time to achieve the sorption equilibrium was less than 5 h. The sorption of Am(III) on ATP/IOM composites was strongly affected by pH and ionic strength. Though ion exchange reaction contributed to Am(III) sorption over low pH range and low ionic strength, the sorption was mainly dominated by surface complexion (i.e., outer- and/or inner-sphere complexes) in the whole observed pH range. In the presence of humic acid (HA), the sorption edge of Am(III) on ATP/IOM composites obviously shifted to lower pH; but Am(III) sorption gradually became weak after pH exceeded 4, which may be mainly in terms of the soluble complexes of HA-Am(III). (orig.)

  13. Indirect and inclusive search for dark matter with AMS02 space spectrometer; Recherche indirecte et inclusive de matiere noire avec le spectrometre spatial AMS02

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Pierre [Laboratoire d' Annecy-le-vieux de Physique des Particules, Chemin de Bellevue, BP 110, 74941 Annecy-le-Vieux Cedex (France)

    2007-07-01

    AMS02 is a particle physics detector designed for 3 years of data taking aboard the International Space Station. Equipped with a superconducting magnet, it will allow to measure gamma and cosmic ray fluxes in the GeV to TeV region with high particle identification capabilities. Its performance is based on the redundancy of measurements in specific sub-detectors: a Time-Of-Flight counter, a Transition Radiation Detector, a Silicon Tracker, a Ring Imaging Cherenkov counter and an Electromagnetic calorimeter (Ecal). The Ecal is studied in details, in particular with the qualification of a stand-alone trigger devoted to gamma ray astronomy. This system allows to increase the AMS02 sensitivity to photons, and to improve the reconstruction of electromagnetic events. The analog part of the trigger system has been tested with test benches and in-beam at CERN. The in-orbit calibration of the Ecal is studied, it may proceed in two steps. First, the Ecal cells responses have to be equalized with minimum ionizing particles data. Then an absolute calibration can be performed with cosmic electrons. For both the relative and the absolute calibration, possible procedures are defined and realistic calibration times are estimated. The second part deals with the indirect searches for dark matter and the study of the AMS02 sensitivity. Dark matter stands for 84% of the Universe mass and could consist in new particles. Dark matter particles are expected to surround our Galaxy and annihilate in high density regions. These annihilations could become observable exotic primary cosmic ray sources. Searches for anomalous excesses in (p-bar, e{sup +}, D-bar) and {gamma} ray fluxes will be performed by AMS02. A numerical tool allowing to perform predictions for these exotic fluxes within supersymmetry or extra-dimension is developed and is presented in details. Phenomenological studies regarding possible enhancements of these signals by over-dense regions of the halo have also been performed

  14. GGA+U study on phase transition, optoelectronic and magnetic properties of AmO{sub 2} with spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bendjedid, A.; Seddik, T. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Baltache, H. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Azam, Sikander; Khan, Saleem Ayaz [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2015-12-15

    In this work, we have investigated the structural, phase transition, optoelectronic and magnetic properties of AmO{sub 2} using the full potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The exchange-correlation potential was treated with the generalized gradient approximation (GGA). Moreover, the GGA+U approximation (where U denotes the Hubbard Coulomb energy U term) is employed to treat the f electrons properly. The structurally stable AmO{sub 2} compound is the Fm3m phase and at a pressure between 40 and 60 GPa underwent a phase transition to the Pnma phase. Our present calculations have considered ferromagnetic and simple antiferromagnetic ground states and the AF state is favored. However, the experimental situation suggests a complex magnetic structure, perhaps involving multipolar ordering. Our band structure calculation with GGA and GGA+U predicted the metallic behavior of AmO{sub 2}; however, with the spin–orbit coupling (SOC) added to the Coulomb energy U term, semiconducting ground states with antiferromagnetism is correctly predicted. The projected density of states from the energy-band structure indicates that the band gap opening is governed by the partially filled Am “5f” state, and the calculated gap is approximately 1.29 eV. Moreover, the optical properties reveal strong response of AmO{sub 2} in the UV region. - Highlights: • AmO{sub 2} is antiferromagnetic and stable in the Fm3m phase under ambient conditions. • It makes structural transition from the Fm3m to the Pnma phase at 55.91 GPa. • Columbic repulsion parameter U correctly predicted the electronic state of AmO{sub 2}. • This compound absorbs strongly in the UV region.

  15. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species

    Science.gov (United States)

    Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.; Croteau, Philip; Canagaratna, Manjula R.; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose L.

    2017-08-01

    Aerosol mass spectrometers (AMSs) and Aerosol Chemical Speciation Monitors (ACSMs) commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV) that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE) to correct for the loss of particles due to bounce. A new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in the laboratory. Four standard species, NH4NO3, NaNO3, (NH4)2SO4 and NH4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature (Tv ˜ 200-800 °C) on the detected fragments, CE and size distributions are investigated. A Tv of 500-550 °C for the CV is recommended. In the CV, CE was identical (around unity) for more volatile species (e.g. NH4NO3) and comparable to or higher than the SV for less-volatile species (e.g. (NH4)2SO4), demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO3 and SO4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO2(g) from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH4NO3 and comparable to the SV for NaNO3. . We observe an extremely consistent fragmentation for ammonium compared to very large changes for the

  16. Recent ion optics and mass spectrometers

    International Nuclear Information System (INIS)

    Matsuda, Hisashi

    1976-01-01

    The establishment of the third order approximation method for computing the orbit of the ion optical system for mass spectrometers and the completion of its computer program are reported. A feature of this orbit computation is in that the effect of the fringing field can be considered with the accuracy of third order approximation. Several new ion optical systems for mass spectrometers have been proposed by using such orbit computing programs. Brief explanation and the description on the future prospect and problems are made on the following items: the vertual image double focusing mass spectrometer, the second order double focusing mass spectrometer, the E x B superposed field mass spectrometer, and the apparatus with a cylindrical electric field and Q-lens. In the E x B superposed field with Matsuda plates, if the magnetic field is generated by an electromagnet instead of a permanent magnet, the dispersion of mass and energy can be changed at will. The Matsuda plates are known as the auxiliary electrodes positioned at the top and bottom of a cylindrical capacitor. Utilizing those characteristics, a zoom spectrometer can be made, with which only a necessary part of mass spectra can be investigated in detail, but the whole spectra are investigated roughly. In addition, the distribution of energy can be investigated simultaneously after the separation of ionic mass similarly to the parabola apparatus. (Iwakiri, K.)

  17. Circular polarimetry of the magnetic compact binary AM Herculis

    Energy Technology Data Exchange (ETDEWEB)

    Piirola, V; Vilhu, O; Tuominen, I

    1982-01-01

    Circular polarimetry in the red and simultaneous photometric observations in the UBVRI bands during the period June 1 to 3, 1981, of AM Herculis are discussed. Peak value of negative circular polarization (- 15 %) is stronger than observed in 1976 to 1979. Variations in the shape of the polarization and light curves occur from night to night. Positive crossover and reversal of the sign of the circular polarization are only marginal. Long term changes in polarization may be partly due to precession of the axis of rotation of the white dwarf about the binary axis. However, the duration of the phase interval where circular polarization remains close to zero changes on a time scale of days, casting doubt on precession models. The changing shape and position of the accretion columns with respect to the magnetic axis could explain short term variations. (ESA)

  18. Alpha spectrum analysis of 241Am in the urine

    International Nuclear Information System (INIS)

    Qiu Yongmei; Yang Yong

    2006-10-01

    With 241 Am as indicator, americium in the urine was concentrated by the method of codeposition, then it was purified by the method of anion exchange, at last, the americium was electroplated. 241 Am in the urine was analysed by six channel low level alpha measuring instrument and Alpha Spectrometer. The results show that the recovering ratio is beyond 60% under the condition that the indicator added to the urine is at the level of mBq. So, 241 Am in the urine can be quantitatively analysed by this method, uncertainty of the result is under 40%, detection limit of the instrument is under 10 -4 Bq. (authors)

  19. Mass spectrometic isotope dilution analysis of Am and Cm in spent fuels

    International Nuclear Information System (INIS)

    Wantschik, M.; Koch, L.; Commission of the European Communities, Karlsruhe; Ganser, B.

    1983-01-01

    Spent nuclear fuels contain Am and Cm in the 10 ppb to 100 ppm range. Because of this low abundance and the necessity of handling small samples of the highly toxic fuel material only a mass-spectrometric isotope dilution analysis can give sufficiently accurate results. Since suitable spikes and/or standards have been lacking, this method has not been applied. Using known masses (+- 0.1%) of Am-241 and Cm-244 metal, Am-243 and Cm-248 spikes were calibrated to an accuracy of better than 0.2%. The standards were reanalysed by chemical titration and several radiometric techniques. The chemical conditioning is based on ionexchange chromatography with alpha-hydroxyisobutyric acid. A sample size of 10 -7 g is sufficient. For the mass-spectrometric measurement 10 -9 g of the elements are required. The accuracy for the determination of the main isotope is 0.5%. (orig./BRB)

  20. Evolution of fabric in Chitradurga granite (south India) - A study based on microstructure, anisotropy of magnetic susceptibility (AMS) and vorticity analysis

    Science.gov (United States)

    Mondal, Tridib Kumar

    2018-01-01

    In this paper, the fabric in massive granite ( 2.6 Ga) from the Chitradurga region (Western Dharwar Craton, south India) is analyzed using microstructure, anisotropy of magnetic susceptibility (AMS) study and kinematic vorticity analysis. The microstructural investigation on the granite shows a progressive textural overprint from magmatic, through high-T to low-T solid-state deformation textures. The mean magnetic foliation in the rocks of the region is dominantly NW-SE striking which have developed during regional D1/D2 deformation on account of NE-SW shortening. The plunge of the magnetic lineation varies from NW to vertical to SE, and interpreted to be a consequence of regional D3 deformation on account of NW-SE to E-W shortening. The vorticity analysis from magnetic fabric in the region reveals that the NW-SE oriented fabric formed under pure shear condition during D1/D2 regional deformation. However, some parts of the region particularly close to the adjacent Chitradurga Shear Zone show that the magnetic fabrics are oblique to the foliation as well as shear zone orientation and inferred to be controlled by simple shearing during D3 regional deformation. The shape preferred orientation (SPO) analysis from oriented thin sections suggest that the shape of the recrystallized quartz grains define the magnetic fabric in Chitradurga granite and the degree of the SPO reduces away from the Chitradurga Shear Zone. It is interpreted that the change in magnetic fabrics in some parts of the granite in the region are dominantly controlled by the late stage sinistral shearing which occurred during the development of Chitradurga Shear Zone. Anisotropy of magnetic susceptibility (AMS) data of granite from the Chitradurga region (West Dharwar Craton, southern India). Km = Mean susceptibility; Pj = corrected degree of magnetic anisotropy; T = shape parameter. K1 and K3 are the maximum and minimum principal axes of the AMS ellipsoid, respectively. dec = Declination; inc

  1. Overview of the magnetic properties experiments on the Mars Exploration Rovers

    DEFF Research Database (Denmark)

    Madsen, M. B.; Goetz, W.; Bertelsen, P.

    2009-01-01

    , while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am-2 kg(-1)). On the basis of Mossbauer spectra the dust contains magnetite, olivine, pyroxene......The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images......, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fe-tot similar to 0.6) than rocks in the Gusev plains (similar to 0.1-0.2) or average Gusev soil (similar to 0.3). Alpha Particle X-Ray Spectrometer data of the dust...

  2. Pollutants identification of ambient aerosols by two types of aerosol mass spectrometers over southeast coastal area, China.

    Science.gov (United States)

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Li, Lei

    2018-02-01

    Two different aerosol mass spectrometers, Aerodyne Aerosol Mass Spectrometer (AMS) and Single Particle Aerosol Mass Spectrometer (SPAMS) were deployed to identify the aerosol pollutants over Xiamen, representing the coastal urban area. Five obvious processes were classified during the whole observation period. Organics and sulfate were the dominant components in ambient aerosols over Xiamen. Most of the particles were in the size range of 0.2-1.0μm, accounting for over 97% of the total particles measured by both instruments. Organics, as well as sulfate, measured by AMS were in good correlation with measured by SPAMS. However, high concentration of NH 4 + was obtained by AMS, while extremely low value of NH 4 + was detected by SPAMS. Contrarily, high particle number counts of NO 3 - and Cl - were given by SPAMS while low concentrations of NO 3 - and Cl - were measured by AMS. The variations of POA and SOA obtained from SPAMS during event 1 and event 2 were in accordance with the analysis of HOA and OOA given by AMS, suggesting that both of AMS and SPAMS can well identify the organic clusters of aerosol particles. Overestimate or underestimate of the aerosol sources and acidity would be present in some circumstances when the measurement results were used to analyze the aerosol properties, because of the detection loss of some species for both instruments. Copyright © 2017. Published by Elsevier B.V.

  3. A ring imaging Cherenkov counter for the AMS experiment: simulation, prototype and perspective; Un imageur d'anneaux tcherenkov pour l'experience AMS: simulation, prototypie et perspectives physiques

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T

    2000-05-01

    The AMS spectrometer is scheduled to be installed on the International Space Station ISS in 2003. The detector will be equipped with a Ring Imaging Cherenkov Counter (RICH). The report starts with a presentation of the physics goals of AMS and continues with a description of the spectrometer. The RICH detector response and event reconstruction is then described and detailed. The presentation proceeds with a simulation study of cosmic ray nuclei expected with the AMS RICH counter in space. Next, the thesis reports on the research and development of a RICH prototype built and tested in the period 1997-1999 in the Grenoble Institute of Nuclear Science (ISN). The response of the prototype and its calibration are described. Tests have been performed with cosmic rays at ground and ion beam at GSI-Darmstadt. The data analysis of the test campaigns is then presented and compared with simulation results. Finally, a dedicated test of Albedo particle Rejection Power of the RICH detector is reported. (author)

  4. The 'Big Karl' magnetic spectrometer - studies of the 103Ru transition nucleus with (d,p) and (p,d) reactions

    International Nuclear Information System (INIS)

    Huerlimann, W.

    1981-04-01

    The paper describes the structure and characteristics of the spectrometer and its application in a study of the 102 Ru(d,p) 103 Ru and 104 Ru(p,d) 103 Ru reactions. The study is structured as follows: To begin with the theoretical fundamentals, ion-optical characteristics and layout of BIG KARL are described. Field measurements and analyses carried out on the magnets of the spectrometer are described as well as the functioning of the 'Ht correction coils' used here for the first time to prevent faulty imaging. Chapter IV then describes methods employed so far to optimize resolution for large aperture angles of the spectrometer. Finally, chapter V investigates the 103 Ru transition nucleons on the basis of the 102 Ru(d,p) 103 RU and 104 Ru(p,d) 103 Ru transfer reactions measured in BIG KARL. (orig./HSI) [de

  5. Neutron and gamma-ray spectra of 239PuBe and 241AmBe

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Manzanares-Acuna, Eduardo; Becerra-Ferreiro, A.M.; Carrillo-Nunez, Aureliano

    2002-01-01

    Neutron and gamma-ray spectra of 239 PuBe and 241 AmBe were measured and their dosimetric features were calculated. Neutron spectra were measured using a multisphere neutron spectrometer with a 6 LiI(Eu) scintillator. The 239 PuBe neutron spectrum was measured in an open environment, while the 241 AmBe neutron spectrum was measured in a closed environment. Gamma-ray spectra were measured using a NaI(Tl) scintillator using the same experimental conditions for both sources. The effect of measuring conditions for the 241 AmBe neutron spectrum indicates the presence of epithermal and thermal neutrons. The low-resolution neutron spectra obtained with the multisphere spectrometer allows one to calculate the dosimetric features of neutron sources. At 100 cm both sources produce approximately the same count rate as that of the 4.4 MeV gamma-ray per unit of alpha emitter activity

  6. Momentum reconstruction procedure for a nonfocusing spectrometer with wide-aperture analyzing magnet and nonuniform field

    International Nuclear Information System (INIS)

    Azhgirej, L.S.; Malinina, L.V.; Strokovskij, E.A.; Augustyniak, W.; Farhi, L.; Kunne, R.A.

    1999-01-01

    The SPES-4 spectrometer at SATURNE II has recently been equipped with a detection system working in coincidence with it. This system uses a wide-aperture dipole magnet. A method is described to determine the momentum vector and interaction vertex of the detected charged particle from its trajectory parameters measured outside the inhomogeneous field of the magnet. The feature of the set-up is that all detectors are placed outside the dipole field, while the target is inside the ∼ 1 T field and the incoming track is not measured. The feature of the method is that it is simple and fast, while it uses only the straight line part of the particle trajectory, which can be measured with sufficient accuracy

  7. Improved detection limits for electrospray ionization on a magnetic sector mass spectrometer by using an array detector.

    Science.gov (United States)

    Cody, R B; Tamura, J; Finch, J W; Musselman, B D

    1994-03-01

    Array detection was compared with point detection for solutions of hen egg-white lysozyme, equine myoglobin, and ubiquitin analyzed by electrospray ionization with a magnetic sector mass spectrometer. The detection limits for samples analyzed by using the array detector system were at least 10 times lower than could be achieved by using a point detector on the same mass spectrometer. The minimum detectable quantity of protein corresponded to a signal-to-background ratio of approximately 2∶1 for a 500 amol/μL solution of hen egg-white lysozyme. However, the ultimate practical sample concentrations appeared to be in the 10-100 fmol/μL range for the analysis of dilute solutions of relatively pure proteins or simple mixtures.

  8. Automation of a thermal ionisation mass spectrometer

    International Nuclear Information System (INIS)

    Pamula, A.; Leuca, M.; Albert, S.; Benta, Adriana

    2001-01-01

    A thermal ionization mass spectrometer was upgraded in order to be monitored by a PC. A PC-LMP-16 National Instruments data acquisition board was used for the ion current channel and the Hall signal channel. A dedicated interface was built to allow commands from the computer to the current supply of the analyzing magnet and to the high voltage unit of the mass spectrometer. A software application was worked out to perform the adjustment of the spectrometer, magnetic scanning and mass spectra acquisition, data processing and isotope ratio determination. The apparatus is used for isotope ratio 235 U/ 238 U determination near the natural abundance. A peak jumping technique is applied to choose between the 235 U and 238 U signal, by switching the high voltage applied to the ion source between two preset values. This avoids the delay between the acquisition of the peaks of interest, a delay that would appear in the case of a 'pure' magnetic scanning. Corrections are applied for the mass discrimination effects and a statistical treatment of the data is achieved. (authors)

  9. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, H. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Carlini, R. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Tadevosyan, V., E-mail: tadevosn@jlab.org [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Arrington, J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Asaturyan, A. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Christy, M.E. [Hampton University, Hampton, VA 23668 (United States); Dutta, D. [Triangle Universities Nuclear Laboratory and Duke University, Durham, NC 27708 (United States); Ent, R.; Fenker, H.C.; Gaskell, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Horn, T. [Catholic University of America, Washington, DC 20064 (United States); Jones, M.K. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Keppel, C.E. [Hampton University, Hampton, VA 23668 (United States); Mack, D.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Malace, S.P. [Triangle Universities Nuclear Laboratory and Duke University, Durham, NC 27708 (United States); Mkrtchyan, A. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Niculescu, M.I. [James Madison University, Harrisonburg, VA 22807 (United States); Seely, J. [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA (United States); Tvaskis, V. [Hampton University, Hampton, VA 23668 (United States); Wood, S.A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); and others

    2013-08-11

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing High Momentum Spectrometer (HMS) and Short Orbit Spectrometer (SOS), design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than σ/E∼6%/√(E) and pion/electron (π/e) separation of about 100:1 has been achieved in the energy range of 1–5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined π{sup −} suppression factors by close to a factor of two. For the Super High Momentum Spectrometer (SHMS), presently under construction, details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter. -- Highlights: • Construction and performance of lead glass calorimeters in JLab/Hall C are presented. • ∼5%/√(E) resolution, ∼100:1π/e separation is achieved in HMS calorimeter in GeV range. • Simulated resolution of the HMS calorimeter is in good agreement with experiment. • Simulated pion suppression of the HMS calorimeter exceeds experiment, by less than 2. • Pion suppression of ∼400:1 is predicted in projected SHMS calorimeter by simulations.

  10. HISS spectrometer at LBL

    International Nuclear Information System (INIS)

    Greiner, D.

    1980-11-01

    The Heavy Ion Spectrometer System at LBL is designed to be a general purpose experimental work bench able to support a wide variety of experiments. Our philosophy is to provide instruments capable of investigating, with multi-particle sensitivity, a large portion of phase space. We have not chosen a particular region such as mid-rapidity or projectile frame but, instead, have made sure that the magnet and the instrumentation allow these choices as well as many others. The beam can be brought into the magnet at a variable position and the magnet can be rotated

  11. Spectrometer sensitivity calibration in the extreme uv by means of branching ratios of magnetic dipole lines

    International Nuclear Information System (INIS)

    Denne, B.; Hinnov, E.

    1984-04-01

    Relative intensity measurements of various line pairs resulting from magnetic dipole transitions within the configurations s 2 p 2 and s 2 p 4 , in conjunction with calculated transition probabilities, have been used to determine the wavelength dependence of the sensitivity of a grazing incidence spectrometer, in the range 400 to 1000 A. Emissions from Cr XIX, Fe XXI, Ni XXI and XXIII, Cu XXIV, and Zr XXVII ions in PLT tokamak discharges were used for this purpose. Absolute sensitivity of the spectrometer at selected wavelengths had been determined by the traditional hydrogen, helium, carbon, and oxygen electric-dipole line pairs from the same discharges. Similar attempts to use transitions in the s 2 p 3 configurations in Cr XVIII, Zr XXVI, and Mo XXVIII ions resulted in significant discrepancies that are ascribed to uncertainties in the corresponding calculated transition probabilities

  12. Setup of Mössbauer spectrometers at RCPTM

    Science.gov (United States)

    Pechoušek, J.; Jančík, D.; Frydrych, J.; Navařík, J.; Novák, P.

    2012-10-01

    Setup of Mössbauer spectrometers (MS) for structural, phase, and magnetic characterization of iron-or tin-containing samples is presented. This comprehensive line of 57Fe and 119Sn Mössbauer spectrometers covers transmission spectrometers (TMS) for roomtemperature (RT) measurements, temperature dependent measurements and measurements in an external magnetic field. An RT Conversion Electron/Conversion X-ray Mössbauer technique (CEMS/CXMS) is also available. The main concept of the RT MS is a table-top spectrometric bench with a control unit based on special-purpose hardware or standard PC platform. The first way offers a compact design and PC independent spectra collection system. The second setup, a PC-based system, which uses commercial devices and LabVIEW software, offers easy customization and enables advancement in spectrometer construction. The both types of control systems are able to operate special parts (velocity transducers, gamma-ray detectors) of unusual spectrometric benches. The standard velocity axis range is up to ±20 mm/s with a maximum nonlinearity of 0.1%. Applicable measuring conditions of presented TMSs cover a cryogenic temperature range from 1.5 up to 300 K and high temperature range from RT up to 1000 °C. With in-field low-temperature MS, we are able to analyze samples normally in the external magnetic fields up to 8 T (in temperature interval from 1.5 up to 300 K). In addition, special modes of measurements can be applied including backscattering gamma-ray geometry or measurement in an inert or controlled-humidity atmosphere. Technical details and construction aspects of spectrometers are presented.

  13. Operational status of the JAEA-MUTSU tandetron AMS 2008-2009

    International Nuclear Information System (INIS)

    Kabuto, Shoji; Kinoshita, Naoki; Tanaka, Takayuki; Yamamoto, Nobuo

    2010-01-01

    A Tandetron Accelerator Mass Spectrometer (AMS) manufactured by High Voltage Engineering Europa in Netherlands had been set up at the Mutsu office of Aomori Research and Development Center, Japan Atomic Energy Agency (JAEA) in 1997. This AMS features 3MV Tandetron accelerator and two independence beamlines for 14 C and 129 I measurement. This AMS has measured both internal and external JAEA researcher's samples based on an open door policy since April 2006. Furthermore, the total operation time of this AMS from the routine operation started exceeds more than 20,000 hours in this year. In this report, we describe not only the summary of the current status and troubles from the previous symposium but also the upgrading of the operation system in this AMS which is carried out from June to July in 2009. (author)

  14. The BTeV main spectrometer

    International Nuclear Information System (INIS)

    Sheldon, P.D.

    2001-01-01

    BTeV is a second generation B-factory experiment that will use a double-arm, forward spectrometer in the C0 experimental hall at the Fermilab Tevatron. I will describe the motivation and design of the 'main spectrometer', consisting of a ring-imaging Cherenkov system for charged particle identification, an electromagnetic calorimeter of lead-tungstate crystals, a proportional tube muon system with magnetized filtering steel, and a straw-tube and silicon strip charged particle tracking system

  15. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS through laboratory studies of inorganic species

    Directory of Open Access Journals (Sweden)

    W. Hu

    2017-08-01

    Full Text Available Aerosol mass spectrometers (AMSs and Aerosol Chemical Speciation Monitors (ACSMs commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE to correct for the loss of particles due to bounce. A new capture vapourizer (CV has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in the laboratory. Four standard species, NH4NO3, NaNO3, (NH42SO4 and NH4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature (Tv ∼ 200–800 °C on the detected fragments, CE and size distributions are investigated. A Tv of 500–550 °C for the CV is recommended. In the CV, CE was identical (around unity for more volatile species (e.g. NH4NO3 and comparable to or higher than the SV for less-volatile species (e.g. (NH42SO4, demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO3 and SO4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO2(g from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH4NO3 and comparable to the SV for NaNO3. . We observe an extremely consistent fragmentation for ammonium compared to very

  16. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response

  17. Basis for developing samarium AMS for fuel cycle analysis

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Biegalski, Steven R.; Whitney, Scott M.; Tumey, Scott J.; Jordan Weaver, C.

    2010-01-01

    Modeling of nuclear reactor fuel burnup indicates that the production of samarium isotopes can vary significantly with reactor type and fuel cycle. The isotopic concentrations of 146 Sm, 149 Sm, and 151 Sm are potential signatures of fuel reprocessing, if analytical techniques can overcome the inherent challenges of lanthanide chemistry, isobaric interferences, and mass/charge interferences. We review the current limitations in measurement of the target samarium isotopes and describe potential approaches for developing Sm-AMS. AMS sample form and preparation chemistry will be discussed as well as possible spectrometer operating conditions.

  18. X-ray observations of AM Herculis from OSO-8

    Science.gov (United States)

    Coe, M. J.; Dennis, B. R.; Dolan, J. F.; Crannell, C. J.; Frost, K. J.; Orwig, L. E.

    1979-01-01

    The white dwarf binary system AM Herculis (2A1815+500) was observed in X-rays at both low energies (E less 10 keV) and higher energies. The exact shape of the spectrum, particularly at the higher energies, has yet to be determined. Results from the high energy scintillation spectrometer on OSO-8 are presented. These are combined with results published elsewhere obtained concurrently with the proportional counter on the same satellite, thereby giving for the first time coincident observations of AM Her over the range 2 to 250 keV.

  19. A new BPM-TOF system for CologneAMS

    Energy Technology Data Exchange (ETDEWEB)

    Pascovici, Gheorghe; Dewald, Alfred; Heinze, Stefan; Schiffer, Markus; Feuerstein, Mark [CologneAMS, Universitaet Koeln (Germany); Pfeiffer, Michael; Jolie, Jan; Zell, Karl Oskar [IKP, Universitaet Koeln (Germany); Blanckenburg, Friedhelm von [GFZ, Potsdam (Germany)

    2011-07-01

    At the center for accelerator mass spectrometry (CologneAMS) a complex beam detector consisting of a high resolution Beam Profile Monitor (BPM) and a Time of Flight (TOF) spectrometer with tracking capabilities was designed especially for the needs of the Cologne AMS facility. The complex beam detector assembly is designed to match the beam specifications of the 6MV Tandetron AMS setup and its DAQ system, which is presently in the commissioning phase at the IKP of the University of Cologne. The BPM-TOF system will have a reconfigurable structure, namely: either a very fast TOF subsystem with a small active area or a more complex BPM -TOF detector with beam tracking capabilities and with a large active area. The systems aims for background suppression in case of the spectrometry of heavy ions, e.g. U, Cm, Pu, Am etc. and could also be used as an additional filter e.g., for the isobar {sup 36}S in case of the spectrometry of {sup 36}Cl.

  20. Paleocurrents of the Middle-Upper Jurassic strata in the Paradox Basin, Colorado, inferred from anisotropy of magnetic susceptibility (AMS)

    Science.gov (United States)

    Ejembi, J. I.; Ferre, E. C.; Potter-McIntyre, S. L.

    2017-12-01

    The Middle-Upper Jurassic sedimentary strata in the southwestern Colorado Plateau recorded pervasive eolian to fluvio-lacustrine deposition in the Paradox Basin. While paleocurrents preserved in the Entrada Sandstone, an eolian deposition in the Middle Jurassic, has been well constrained and show a northwesterly to northeasterly migration of ergs from the south onto the Colorado Plateau, there is yet no clear resolution of the paleocurrents preserved in the Wanakah Formation and Tidwell Member of the Morrison Formation, both of which are important sedimentary sequences in the paleogeographic framework of the Colorado Plateau. New U-Pb detrital zircon geochronology of sandstones from these sequences suggests that an abrupt change in provenance occurred in the early Late Jurassic, with sediments largely sourced from eroding highlands in central Colorado. We measured the anisotropy of magnetic susceptibility (AMS) of sediments in oriented sandstone samples from these three successive sequences; first, to determine the paleocurrents from the orientations of the AMS fabrics in order to delineate the source area and sediments dispersal pattern and second, to determine the depositional mechanisms of the sediments. Preliminary AMS data from two study sites show consistency and clustering of the AMS axes in all the sedimentary sequences. The orientations of the Kmin - Kint planes in the Entrada Sandstone sample point to a NNE-NNW paleocurrent directions, which is in agreement with earlier studies. The orientations of the Kmin - Kint planes in the Wanakah Formation and Tidwell Member samples show W-SW trending paleocurrent directions, corroborating our hypothesis of a shift in provenance to the eroding Ancestral Front Range Mountain, located northeast of the Paradox Basin, during the Late Jurassic. Isothermal remanence magnetization (IRM) of the samples indicate that the primary AMS carriers are detrital, syndepositional ferromagnetic minerals. Thus, we contend that AMS can

  1. A 4π dilepton spectrometer: PEPSI

    International Nuclear Information System (INIS)

    Buda, A.; Bacelar, J.C.S.; Balanda, A.; Klinken, J. van; Sujkowski, Z.; Woude, A. van der

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2 Fe 14 B permanent magnets forming a compact 4π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient (α π ) of the 15.1 MeV M1 transition from a J π =1 + state to the ground state in 12 C. Our experimental value of α π =(3.3±0.5)x10 -3 is in good agreement with theoretical estimates. (orig.)

  2. A 4 π dilepton spectrometer: PEPSI

    Science.gov (United States)

    Buda, A.; Bacelar, J. C. S.; Bałanda, A.; van Klinken, J.; Sujkowski, Z.; van der Woude, A.

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2Fe 14B permanent magnets forming a compact 4 π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ( απ) of the 15.1 MeV M1 transition from a Jπ = 1 + state to the ground state in 12C. Our experimental value of απ = (3.3 ± 0.5) × 10 -3 is in good agreement with theoretical estimates.

  3. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  4. AMS prepares for long stay in space

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the successful space qualification tests at the ESA Technology Centre (ESTEC) in Noordwijk in the Netherlands, AMS is now back in the integration hall at CERN Prévessin. The collaboration is replacing the superconducting magnet with a permanent (non-superconducting) one, which will ensure reliable operation of the experiment for the recently planned longer run on board the International Space Station (ISS).   Work is under way at the AMS integration hall at CERN Prévessin. Following a trip to ESTEC in Noordwijk in the Netherlands, where tests confirmed its fitness for launch into space on board the International Space Station (ISS), the AMS experiment is now back at CERN for final modifications. “The collaboration agreed to adopt a modified configuration that, among other things, re-uses the permanent magnet of the AMS-01 prototype that was flown into space in 1998”, says Samuel Ting, Spokesperson of the AMS experiment. Althoug...

  5. Pulsed coherent spectrometer of nuclear magnetic and nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Karnachev, A.S.; Solov'ev, E.E.

    1996-01-01

    The spectrometer intended for studies on solid bodies was created on the basis of the X1-48 device for investigation of amplitude-frequency characteristics with the frequency range of 5-100 MHz, the receiver sensitivity by the signal-noise ratio at the outlet of 12 dB not worse than 0.5 μV and the feed-up capacity up to 80 W. The X1-48 minimal remodeling made it possible to use it in the spectrometer system as a signal feed-up source and measurer of the amplitude-frequency characteristic of the spectrometer receiver tract. 12 refs., 11 figs

  6. Description of the double Compton spectrometer at Mayence MPI

    International Nuclear Information System (INIS)

    Borchert, H.; Ziegler, B.; Gimm, H.; Zieger, A.; Hughes, R.J.; Ahrens, J.

    1977-01-01

    The double Compton spectrometer of the Laboratories of the Mayence Linear Accelerator consists in two identical magnetic spectrometers, in which the electron scattered forwards by photons through a Compton process, are detected. The spectrometers have been built to detect 10-350 MeV photons and, as they involve thin Compton targets, their effect on the photon flux is negligible. They are put in cascade inside a well collimated bremsstrahlung beam. A thick absorbing target (max. thickness 2m) can be inserted inside the beam. The facility is outlined, some special properties of the accelerator and the bremsstrahlung beam are given. The properties of a Compton spectrometer involving eleven detectors are given by eleven response functions giving the relations between the photon flux impinging the Compton target and the counting rates of the detectors for a given adjustment of the magnets. A Monte-Carlo method is used for the calculation together with analytical methods neglecting the multiple scattering effects [fr

  7. A new 14C AMS facility at IUAC, New Delhi

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Ojha, S.; Sharma, R.; Gargari, S.; Joshi, R.; Chopra, S.; Kanjilal, D.

    2015-01-01

    A new state of art Accelerator Mass Spectrometry (AMS) facility for 14 C has been developed at IUAC. This facility is based on the 0.5 MV Pelletron accelerator and an Automated Graphitization Equipment (AGE). In addition to the 14 C measurements, this system has the capability to perform 10 Be and 26 AI measurements also. The system is called XCAMS i.e., Compact, Accelerator Mass Spectrometer eXtended for 10 Be and 26 AI. A detailed description of the newly developed AMS facility and the recent measurements will be discussed

  8. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  9. General concept and present status of the AMS - project

    International Nuclear Information System (INIS)

    Stan-Sion, C.; Plostinaru, D.; Catana, L.; Radulescu, M.; Marinescu, L.; Dima, R.

    1998-01-01

    The Institute of Nuclear Physics and Engineering, IFIN-HH, Bucharest started in 1996 the Construction Project for an AMS facility in Bucharest. The Project is supported by the German-Romanian scientific cooperation project RUM-013-97. In the frame of this project, scientific research, construction activities of electronic and mechanical devices and activities for calibration and optimization were performed. The activities in this year are concentrated on experimental tests and optimization of the AMS analysis procedure and on improving the tandem acceleration and transmission capability. These are as follows: - construction and tests of a high current sputter source, with spherical ionizer and automatic many-sample changer. Experimental tests and measurements of emittance and beam profile; - construction of the Injector Platform; - construction and tests of a Bragg - charged particle detector; - calibration and optimization experiments of the AMS ensemble. The AMS facility is based on the 8 MV - FN tandem accelerator and has the following main components: the AMS ion injector, a Wien - velocity filter, a 60 angle bending magnet and the particle detection system. For heavy particle detection we constructed a Bragg ionization chamber. This should be used for standard AMS measurements. A specific part of the AMS facility represents the AMS injector deck. The main components are: the high current sputter source, the analyzing double focusing magnet, two optical systems, a four-slit beam defining system in front of the analyzing magnet and a four-slit aperture with remote controlled Faraday cup (for beam current integration of stable isotopes) after the magnet. Finally, the pre-acceleration tube (40 kV) connects the ensemble to the ground potential of the accelerator beam line. For AMS measurements, the sputter ion source is able to provide both high beam current and small beam emittance. These characteristics are necessary in order to achieve high analyzing

  10. Neutron and gamma-ray spectra of {sup 239}PuBe and {sup 241}AmBe

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Carrillo, H.R. E-mail: rvega@cantera.reduaz.mx; Manzanares-Acuna, Eduardo; Becerra-Ferreiro, A.M.; Carrillo-Nunez, Aureliano

    2002-08-01

    Neutron and gamma-ray spectra of {sup 239}PuBe and {sup 241}AmBe were measured and their dosimetric features were calculated. Neutron spectra were measured using a multisphere neutron spectrometer with a {sup 6}LiI(Eu) scintillator. The {sup 239}PuBe neutron spectrum was measured in an open environment, while the {sup 241}AmBe neutron spectrum was measured in a closed environment. Gamma-ray spectra were measured using a NaI(Tl) scintillator using the same experimental conditions for both sources. The effect of measuring conditions for the {sup 241}AmBe neutron spectrum indicates the presence of epithermal and thermal neutrons. The low-resolution neutron spectra obtained with the multisphere spectrometer allows one to calculate the dosimetric features of neutron sources. At 100 cm both sources produce approximately the same count rate as that of the 4.4 MeV gamma-ray per unit of alpha emitter activity.

  11. The new LLNL AMS sample changer

    International Nuclear Information System (INIS)

    Roberts, M.L.; Norman, P.J.; Garibaldi, J.L.; Hornady, R.S.

    1993-01-01

    The Center for Accelerator Mass Spectrometry at LLNL has installed a new 64 position AMS sample changer on our spectrometer. This new sample changer has the capability of being controlled manually by an operator or automatically by the AMS data acquisition computer. Automatic control of the sample changer by the data acquisition system is a necessary step towards unattended AMS operation in our laboratory. The sample changer uses a fiber optic shaft encoder for rough rotational indexing of the sample wheel and a series of sequenced pneumatic cylinders for final mechanical indexing of the wheel and insertion and retraction of samples. Transit time from sample to sample varies from 4 s to 19 s, depending on distance moved. Final sample location can be set to within 50 microns on the x and y axis and within 100 microns in the z axis. Changing sample wheels on the new sample changer is also easier and faster than was possible on our previous sample changer and does not require the use of any tools

  12. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    Science.gov (United States)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  13. Simulations for a compact electron-positron spectrometer

    International Nuclear Information System (INIS)

    Filep, T.; Krasznahorkay, A.; Csatlos, M.; Gulyas, J.

    2011-01-01

    Complete text of publication follows. In the frame of the ENSAR (FP7) project, we are constructing a Compact Positron- Electron spectrometer (COPE) using toroidal magnetic field. It will be used for studying the internal pair creation process in nuclear transitions. It will look like a miniaturized model of the ATLAS spectrometer at CERN at a scale of 1:100. The mean design parameters are high efficiency, good energy resolution and precise angle reconstruction. By our plans the size of this spectrometer would be limited to a diameter of about 30 cm and length about 20 cm, having 1 % energy- and 2deg angular resolutions. The solid angle of the planned spectrometer will be 2π. It is necessary to develop a geometry in which the inhomogeneity of the field can be easily handled. Prior to the construction it was necessary to perform computer simulations in order to avoid rough construction mistakes. The better approach of the reality with simulations is very important. The problem what we have to solve is very complicated. We need to simulate the magnetic field and trajectory of the particle moving in that field. We started our simulations using the PerMag software package. >From the result we learned the followings: 1) It has no meaning to cover the magnets with iron coat because it complicates the magnetic field. 2) It is not a good idea to form the magnetic one-segment from a big magnet and 12 smaller magnets. The fringing field of the small magnets significantly modifies the magnetic field distribution around the segment. On the other hand the construction of one segment from pieces is very difficult in reality. 3) The best shape for a segment which can easily be constructed is simple box. The PerMag package could simulate the magnetic field only in 2D, but we wanted to do more precise simulation in 3D. The free package developed by the European Synchrotron Radiation Facility (ESRF) was used for the simulation of the magnetic field applying the finite element method

  14. Astrophysics and particle physics in space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Lamanna, G

    2003-01-01

    The Alpha Magnetic Spectrometer is a high energy particle physics experiment in space scheduled to be installed on the International Space Station (ISS) by 2006 for a three-year mission. After a precursor flight of a prototype detector on board of the NASA Space Shuttle in June 1998, the construction of the detector in its final configuration is started and it will be completed by 2004. The purpose of this experiment is to provide a high statistics measurement of charged particles and nuclei in rigidity range 0.5 GV to few TV and to explore the high-energy (>1 GeV) gamma-ray sky. In this paper we describe the detector layout and present an overview of the main scientific goals both in the domain of astrophysics: cosmic- ray origin, age and propagation and the exploration of the most energetic gamma-ray sources; and in the domain of astroparticle: the antimatter and the dark matter searches. (53 refs).

  15. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcken, K.M., E-mail: klaus.wilcken@ansto.gov.au [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Freeman, S.P.H.T.; Xu, S.; Dougans, A. [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom)

    2013-01-15

    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such {sup 14}C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed {sup 13}C and {sup 16}O by improvising an additional Wien filter on our SSAMS deck. Also, {sup 14}C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the {sup 14}N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  16. A NMR spectrometer for educational purposes; Espectrometro de RMN para ensino

    Energy Technology Data Exchange (ETDEWEB)

    Colnago, Luiz A; Torre Neto, Andre [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Sao Carlos, SP (Brazil). Nucleo de Pesquisa e Desenvolvimento de Instrumentacao Agropecuaria; Villar, Jose D.F.; Seidl, Peter R [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    1992-12-31

    A NMR spectrometer has been constructed for educational purposes, such as teaching of the technique basic principles and instrumentation. The spectrometer has been designed with a minimum number of components so that the students may have acquittance with both the spectrometer, through block diagrams, and the small numbers of existent components . The device was based on a 0.t Tesla magnet from the continuous wave spectrometer (E M 300 - Varian) existent at the Instituto Militar de Engenharia, and it is expected to facilitate the comprehension of the commercial spectrometers 1 ref., 3 figs.

  17. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, David K [State Univ. of New York (SUNY), Geneseo, NY (United States)

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  18. The CHAOS spectrometer for pion physics at TRIUMF

    International Nuclear Information System (INIS)

    Smith, G.R.; Amaudruz, P.A.; Brack, J.T.

    1994-12-01

    The Canadian high acceptance orbit spectrometer (CHAOS) is a unique magnetic spectrometer system recently commissioned for studies of pion induced reactions at TRIUMF. It is based on a cylindrical dipole magnet producing vertical magnetic fields up to 1.6 T. The scattering target is located in the center of the magnet. Charged particle tracks produced by pion interactions there are identified using four concentric cylindrical wire chambers surrounding the target. Particle identification and track multiplicity are determined by cylindrical layers of scintillation counters and lead glass Cerenkov counters, which also provide a first level trigger. A sophisticated second level trigger system permits pion fluxes in excess of 5 MHz to be employed. The detector subtends 360 o in the horizontal plane, and ±7 o out of this plane for a solid angle coverage approximately 10% of 4π sr. The momentum resolution delivered by the detector system is 1% (σ). (author). 16 refs., 12 figs

  19. AMS of 93Zr: Passive absorber versus gas-filled magnet

    Science.gov (United States)

    Hain, Karin; Deneva, Boyana; Faestermann, Thomas; Fimiani, Leticia; Gómez-Guzmán, José Manuel; Koll, Dominik; Korschinek, Gunther; Ludwig, Peter; Sergeyeva, Victoria; Thiollay, Nicolas

    2018-05-01

    Two different isobar separation techniques were tested for the detection of the long-lived fission product 93Zr (T1/2 = 1.64 · 106 a) using Accelerator Mass Spectrometry (AMS), i.e. a passive absorber and a gas-filled magnet, respectively. Both techniques were used in combination with a Time-of-Flight path for the identification of the stable neighboring isotopes 92Zr and 94Zr. The passive absorber was represented by a stack of silicon nitride foils for high flexibility regarding the thickness for optimal isobar separation. Ion beams with a large variety of energies, between 80 and 180 MeV, were provided for this experiment by the tandem accelerator at the Maier-Leibnitz Laboratory in Garching, Germany. With these beams, the stopping powers of 93Zr and 93Nb as a function of energy were determined experimentally and compared to the results obtained with the simulation program SRIM. Considerable discrepancies regarding the energy dependence of the two stopping power curves relative to each other were found. The lowest detection limit for 93Zr achieved with the passive absorber setup was 93Zr/Zr = 1 · 10-10. In comparison, by optimizing the gas-filled magnet set-up, 93Nb was suppressed by around six orders of magnitude and a detection limit of 93Zr/Zr = 5 · 10-11 was obtained. To our knowledge, these results represent the lowest detection limit achieved for 93Zr until now.

  20. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  1. Rotating double arm spectrometer to study hard scattering interactions at Serpukhov accelerator

    International Nuclear Information System (INIS)

    Abramov, V.V.; Baldin, B.Yu.; Buzulutskov, A.F.

    1991-01-01

    The double arm magnetic spectrometer designed to study high P T particle production with intense proton and pion beams is described. Particle trajectories are measured by the drift and proportional chambers. Particles are identified by Cherenkov ring spectrometer and muon identifier. The spectrometer can be rotated around the target up to 160 mrad. 2 tabs.; 13 figs

  2. The magnetic spectrometer PAMELA for the study of cosmic antimatter in space

    International Nuclear Information System (INIS)

    Basini, G.; Hof, M.; Barbiellini, G.; Boezio, M.; Bellotti, R.; Cafagna, F.

    1995-01-01

    In the framework of the RIM (Russian Italian mission) program, PAMELA is the experiment devoted to the accurate measurement of the positron and antiproton spectra from the very low energy thresh-old of 100 MeV up to more than 50 GeV, and to hunt antinuclei with sensitivity better than 10 -7 in the helium/helium ratio. A permanent magnet equipped by microstrip silicon sensors, measures the particle momentum with MDR=400 GV/c on GF=25 cm 2 sr. An accurate ToF system, a 19 X o deep imaging calorimeter, an aerogel Cherenkov counter and a TRD detector complement the spectrometer in order an efficient e +- /p +- separation and some light isotope identification capability. The PAMELA experiment will be carried out on a 700 km high polar orbit, on board of the Earth-observation meteor-3A satellite, to be launched at the end of 1988

  3. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Kirch, K. [Paul Scherrer Institute, Villigen (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen (Switzerland); Bodek, K.; Zejma, J. [Jagellonian University, Cracow (Poland); Grujic, Z.; Kasprzak, M.; Weis, A. [University of Fribourg (Switzerland); Hélaine, V. [Laboratoire de Physique Corpusculaire, Caen (France); Paul Scherrer Institute, Villigen (Switzerland); Koch, H.-C. [Institut für Physik, Johannes-Gutenberg-Universität, Mainz (Germany); University of Fribourg (Switzerland); and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  4. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  5. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J W; Russell, G J [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  6. Background reduction of the KATRIN spectrometers. Transmission function of the pre-spectrometer and systematic tests of the main-spectrometer wire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Prall, Matthias

    2011-07-04

    The KArlsruhe TRItium Neutrino experiment, KATRIN will determine the mass of the anti {nu}{sub e} with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the {beta}-spectrum of tritium decaying in a windowless gaseous molecular tritium source near its endpoint of 18.57 keV. This approach relies exclusively on the relativistic kinematics of the decay products rendering the experiment model independent and reducing the systematic uncertainty. An ultra-low background of a few mHz and an energy resolution of 0.93 eV are among the requirements to reach the sensitivity. These demands are fulfilled with the main spectrometer (MS). While the {beta}-decay electrons are guided by a magnetic field through the experiment, the MS acts as a high-pass filter for the {beta}-decay electrons. Only those above an energy barrier, the retarding potential, are transmitted to the detector. The last about 30 eV of the T{sub 2} {beta}-spectrum will be scanned in this way. The MS is equipped with a 650 m{sup 2}, two-layered, UHV compatible and quasi-massless wire electrode suppressing secondary electron background originating at the main-spectrometer walls and caused by residual radioactivity and cosmic muons. Its energy resolution of 0.93 eV is only achieved, if a large part of the 248 wire electrode modules, which determine the electric field inside the MS, has a mechanical precision of 0.2 mm. Not a single of the about 28.000 wires of the electrode must break during the lifetime of KATRIN. A 2-dimensional laser sensor for contact-less position (precision about 0.01 mm) and tension (precision about 0.04 N) measurements was developed and applied, to firstly, verify the mechanical precision of the electrode modules and secondly, to examine their reliability. A 3-dimensional coordinate measurement table was automated to perform these measurements in a clean room. This table was also used to verify the precision of components using a camera system and image recognition methods (0.05 mm

  7. Feasibility study of a SiC sandwich neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian, E-mail: caepwujian@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Lei, Jiarong, E-mail: jiarong_lei@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Jiang, Yong; Chen, Yu; Rong, Ru; Zou, Dehui; Fan, Xiaoqiang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Chen, Gang; Li, Li; Bai, Song [Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2013-04-21

    Semiconductor sandwich neutron spectrometers are suitable for in-pile measurements of fast reactor spectra thanks to their compact and relatively simple design. We have assembled and tested a sandwich neutron spectrometer based on 4H-silicon carbide (4H-SiC) Schottky diodes. The SiC diodes detect neutrons via neutron-induced charged particles (tritons and alpha particles) produced by {sup 6}Li(n,α){sup 3}H reaction. {sup 6}LiF neutron converter layers are deposited on the front surface of Schottky diodes by magnetron sputtering. The responses of SiC diodes to charged particles were investigated with an {sup 241}Am alpha source. A sandwich neutron spectrometer was assembled with two SiC Schottky diodes selected based on the charged-particle-response experimental results. The low-energy neutron response of the sandwich spectrometer was measured in the neutron field of the Chinese Fast Burst Reactor-II (CFBR-II). Spectra of alpha particles and tritons from {sup 6}Li(n,α){sup 3}H reaction were obtained with two well-resolved peaks. The energy resolution of the sum spectrum was 8.8%. The primary experimental results confirmed the 4H-SiC sandwich neutron spectrometer's feasibility. -- Highlights: ► Sandwich neutron spectrometer employing 4H-SiC as a detecting material has been developed for the first time. ► {sup 6}LiF neutron converter has been deposited on the surface of 4H-SiC Schottky diode. ► Preliminary testing results obtained with the 4H-SiC sandwich neutron spectrometer are presented.

  8. Simulated performance of the in-beam conversion-electron spectrometer, SPICE

    Energy Technology Data Exchange (ETDEWEB)

    Ketelhut, S., E-mail: ketelhut@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Evitts, L.J.; Garnsworthy, A.B.; Bolton, C.; Ball, G.C.; Churchman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Dunlop, R. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Hackman, G.; Henderson, R.; Moukaddam, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Rand, E.T.; Svensson, C.E. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Witmer, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada)

    2014-07-01

    The SPICE spectrometer is a new in-beam electron spectrometer designed to operate in conjunction with the TIGRESS HPGe Clover array at TRIUMF-ISAC. The spectrometer consists of a large area, annular, segmented lithium-drifted silicon electron detector shielded from the target by a photon shield. A permanent magnetic lens directs electrons around the photon shield to the detector. Experiments will be performed utilising Coulomb excitation, inelastic-scattering, transfer and fusion–evaporation reactions using stable and radioactive ion beams with suitable heavy-ion detection. Good detection efficiency can be achieved in a large energy range up to 3500 keV electron energy using several magnetic lens designs which are quickly interchangeable. COMSOL and Geant4 simulations have been used to maximise the detection efficiency. In addition, the simulations have guided the design of components to minimise the contributions from various sources of backgrounds.

  9. The magnetic spectrometer PAMELA for the study of cosmic antimatter in space

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Hof, M. [Siegen univ. (Germany). Fachbereich Physik; Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Bellotti, R.; Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy)

    1995-09-01

    In the framework of the RIM (Russian Italian mission) program, PAMELA is the experiment devoted to the accurate measurement of the positron and antiproton spectra from the very low energy thresh-old of 100 MeV up to more than 50 GeV, and to hunt antinuclei with sensitivity better than 10{sup -7} in the helium/helium ratio. A permanent magnet equipped by microstrip silicon sensors, measures the particle momentum with MDR=400 GV/c on GF=25 cm{sup 2} sr. An accurate ToF system, a 19 X{sub o} deep imaging calorimeter, an aerogel Cherenkov counter and a TRD detector complement the spectrometer in order an efficient e{sup +-}/p{sup +-} separation and some light isotope identification capability. The PAMELA experiment will be carried out on a 700 km high polar orbit, on board of the Earth-observation meteor-3A satellite, to be launched at the end of 1988.

  10. Design, construction, and calibration of a nonfocusing neutron spectrometer

    International Nuclear Information System (INIS)

    Storey, W.

    1974-12-01

    A fourteen-channel time-resolved neutron spectrometer with associated Faraday cup has been designed and constructed for use in the field. A neutron energy range of 9.5 to 15 MeV is covered. Both instruments detect protons elastically scattered from a thin hydrogenous foil in interaction with the neutron beam, with magnetic analysis of the protons by the spectrometer. The design requirements of small size and weight and 0.6 to 0.7 MeV resolution have been met. Following a description of the instrument and of its geometry, there is a detailed presentation of the design and construction of the instrument. The section on instrument performance is concerned with the comparison between predicted performance based upon computation, in which the magnet is of primary interest, and upon measured performance based upon a calibration experiment, which is given a general description in Appendix A. Software used mainly for signal prediction and unfolding, for both the neutron spectrometer and Faraday cup, is described

  11. Mini ion trap mass spectrometer

    Science.gov (United States)

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  12. Determination of the Jet Neutron Rate and Fusion Power using the Magnetic Proton Recoil Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestrand, Henrik

    2003-01-01

    In this thesis a new independent method has been developed to enable precise measurements of neutron yields and rates from fusion plasmas and thereby determining the fusion power and fusion energy. The new method, together with the associated diagnostics, can provide information of great importance to present and future high fusion yield experiments, such as the Joint European Torus (JET) tokamak and the International Thermonuclear Experiment Reactor (ITER). The method has been applied to data from high fusion rate experiments from the tritium campaign at JET. By using the count-rate from the Magnetic Proton Recoil (MPR) neutron spectrometer the number of neutrons in the spectrometer's line of sight has been calculated. To be able to do this, all relevant factors between the plasma and the instrument have been evaluated. The number of neutrons in the MPR line of sight has been related to the total number of produced neutrons in the plasma by using information on the neutron emission profile. The achieved results have been compared with other JET neutron diagnostic data and the agreement is shown to be very good.

  13. Mass-spectrometer of knock-on nuclei for reactor 'Pik'

    International Nuclear Information System (INIS)

    Begzhanov, P.B.; Nazarov, A.G.; Petrov, G.A.; Pikul', V.P.

    1999-01-01

    For reactor 'Pik' (that is being built in St. Petersburg Institute of Nuclear Physics) there was designed a universal two shoulder mass-spectrometer for non-decelerated fission products (FP) of nuclei. The spectrometer helps to obtain different values of linear magnification, dispersion, aberration coefficients and transmission without making structural changes in the device. To separate FP for one shoulder of spectrometer we chose ion-optical scheme (IOS) consisting of three electrostatic analyzers and three-sectional magnet 'JOSEF' that had high dispersion by masses at small deflection radius. IOS calculations of mass-spectrometer were performed with the help of program TRANSVOL (transfer of phase volume) designed basing on TRIO program. The program allows calculating of complete IOS transmission with taking into account elements aperture and beam officering

  14. The thermal triple-axis-spectrometer EIGER at the continuous spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U., E-mail: uwe.stuhr@psi.ch [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Roessli, B.; Gvasaliya, S. [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Rønnow, H.M. [Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Féderale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Filges, U.; Graf, D.; Bollhalder, A.; Hohl, D.; Bürge, R.; Schild, M.; Holitzner, L.; Kaegi, C.; Keller, P.; Mühlebach, T. [Laboratory for Scientific Development and Novel Materials, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2017-05-01

    EIGER is the new thermal triple-axis-spectrometer at the continuous spallation SINQ at PSI. The shielding of the monochromator consists only of non- or low magnetizable materials, which allows the use of strong magnetic fields with the instrument. This shielding reduces the high energy neutron contamination to a comparable level of thermal spectrometers at reactor sources. The instrument design, the performance and first results of the spectrometer are presented.

  15. New proposal of mechanical reinforcement structures to annular REBaCuO bulk magnet for compact and cryogen-free NMR spectrometer

    Science.gov (United States)

    Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2018-07-01

    We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.

  16. Magnetic fields of AM band radio broadcast signals at the Richmond Field Station

    International Nuclear Information System (INIS)

    Becker, Alex; Frangos, William

    1998-01-01

    Non-invasive sensing of the shallow subsurface is necessary for detection and delineation of buried hazardous wastes, monitoring of the condition of clay containment caps, and a variety of other purposes. Electromagnetic methods have proven to be effective in environmental site characterization where there is a need for increased resolution in subsurface characterization. Two considerations strongly suggest the use of frequencies between 100 kHz and 100 MHz for such applications: 1) the induction response of many targets is small due to small size, and 2) a need to determine both the electrical conductivity and dielectric permittivity which are related to chemistry and hydrology. Modeling and physical parameter studies confirm that measurements at frequencies between 1 and 100 MHz can resolve variations in subsurface conductivity and permittivity. To provide the necessary technology for shallow subsurface investigations, we propose to exploit the concept of electromagnetic impedance, the ratio of orthogonal horizontal electric and magnetic fields. Prior to assembling the equipment for measuring surface impedance using controlled, local source it was felt prudent to measure the surface impedance of geological materials at the University of California at Berkeley's Richmond Field (RFS) using ambient energy in the broadcast band. As a first step toward this intermediate goal, we have examined and characterized local AM band radio signals in terms of both signal strength and polarization of the magnetic component as received at RFS. In addition, we have established the viability of a commercial radio-frequency magnetic sensor

  17. A 'tiny-orange' spectrometer for electrons

    International Nuclear Information System (INIS)

    Silva, N.C. da.

    1990-01-01

    An tiny-orange electron spectrometer was designed and constructed using flat permanent magnets and a surface barrier detector. The transmission functions of different system configurations were determined for energies in the 200-1100 KeV range. A mathematical model for the system was developed. (L.C.J.A.)

  18. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    Science.gov (United States)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  19. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  20. Discovery of the radioactive decay of 223Ra by 14C emission and experiments with the magnetic spectrometer Soleno

    International Nuclear Information System (INIS)

    Hourani, E.; Hussonnois, M.

    1987-01-01

    The aim of this report is to review the experiment of Rose and Jones (discovery in 1984 of radioactive decay of 223 Ra by 14 C nuclei emission) with the subsequent one of Alexandrov (et al) performed with the same technique. The experiments performed by the group at Orsay on 14 C radioactivity of radium isotopes with the magnetic spectrometer Soleno are also reviewed. This review comprises the presentation and comments of the original results and arguments taken in their historical context

  1. GHz nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  2. Single spectrometer station for neutrino-tagging

    International Nuclear Information System (INIS)

    Nedyalkov, I.P.

    1984-01-01

    A neutrino tagging station built with respect to the following scheme is proposed. A beam of muons and kaons passes through a magnetic spectrometer, where the energy of each particle is measured. There are coordinate detectors behind the spectrometer in several planes, where the direction of the trajectory of a given particle is determined. Thus, mesons enter the decay point wth the known 4-momentum. Behind the decay point the direction of μ-meson generated by the decay of parent mesons is measured. It is shown that information is sufficient for determining the kind of parent particle (pion or kaon), the energy and the direction of trajectory of the neutrino

  3. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Frenje, J. A., E-mail: jfrenje@psfc.mit.edu; Wink, C. W.; Gatu Johnson, M.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, San Diego, California 92186 (United States); Bell, P.; Bionta, R.; Cerjan, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T{sub i}), yield (Y{sub n}), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10{sup 16}. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  4. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF).

    Science.gov (United States)

    Frenje, J A; Hilsabeck, T J; Wink, C W; Bell, P; Bionta, R; Cerjan, C; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T i ), yield (Y n ), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10 16 . At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  5. Study of the functional characteristics of a NaI(Tl) scintillator gamma spectrometer

    International Nuclear Information System (INIS)

    Jesus Barbosa, S. de.

    1983-01-01

    Functional characteristics (resolution, stability, linearity, counting efficiency) of a NaI(Tl) scintillator gamma spectrometer were studied. Diagrams were plotted and several standard sources ( 241 Am, 109 Cd, 57 Co, 137 Cs, 54 Mn, 22 Na) with gamma energies ranging from 60 to 1275 KeV were used. (C.L.B.) [pt

  6. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    □ Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  7. Phase II, Compact AMS System for Biological Tracer Detection Final Report CRADA No. TSV-1533-96

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamm, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    The objective of this collaboration between LLNL and AccSys Technology, Inc. of Pleasanton, California was to build and demonstrate a low cost, compact tritium (3H) Accelerator Mass Spectrometer (AMS) system matched to the requirements of biomedical research.

  8. Am angledetector based on magnetic sensing

    DEFF Research Database (Denmark)

    Kaulberg, Thomas; Bogason, Gudmundur

    1994-01-01

    bar magnet placed above a silicon chip. Because of the galvanic separation between the anglesetting bar magnet and the electrical circuit, this component is insensitive to the rather hostile environment hearing aids are exposed to. The lifetime of the component is thereby increased significantly...

  9. Possibility of testing the light dark matter hypothesis with the alpha magnetic spectrometer.

    Science.gov (United States)

    Hooper, Dan; Xue, Wei

    2013-01-25

    The spectrum and morphology of gamma rays from the Galactic center and the spectrum of synchrotron emission observed from the Milky Way's radio filaments have each been interpreted as possible signals of ∼ 7-10 GeV dark matter particles annihilating in the inner Galaxy. In dark matter models capable of producing these signals, the annihilations should also generate significant fluxes of ∼ 7-10 GeV positrons which can lead to a distinctive bumplike feature in a local cosmic ray positron spectrum. In this Letter, we show that while such a feature would be difficult to detect with PAMELA, it would likely be identifiable by the currently operating Alpha Magnetic Spectrometer experiment. As no known astrophysical (i.e., nondark matter) sources or mechanisms are likely to produce such a sharp feature, the observation of a positron bump at around 7-10 GeV would significantly strengthen the case for a dark matter interpretation of the reported gamma-ray and radio anomalies.

  10. Neutron spin echo spectrometer at JRR-3M

    International Nuclear Information System (INIS)

    Takeda, Takayoshi; Komura, Shigehiro; Seto, Hideki; Nagai, Michihiro; Kobayashi, Hideki; Yokoi, Eiji; Ebisawa, Tooru; Tasaki, Seiji.

    1993-01-01

    We have designed and have been constructing at C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimized magnets for neutron spin precession, a position sensitive detector (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.01 A -1 to 0.3 A -1 and that of energy E from 30neV to 0.1meV. This spectrometer makes it possible to study a mesoscopic spatial structure of the order of 1-100nm combined with a nanosecond temporal structure of the order of 0.1-100ns corresponding to dynamical behavior of large molecules such as polymer. A test experiment shows that the homogeneity condition of the precession magnet is loosened by means of PSD. (author)

  11. A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment

    Science.gov (United States)

    Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.

    1982-01-01

    A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.

  12. Magnetic resonance in zero-field: construction of a spectrometer, evaluation of a method for structure studies

    International Nuclear Information System (INIS)

    Llor, M.

    1987-01-01

    The method known as Nuclear Resonance in the zero-field, applied to the spectral analysis of powders, is discussed. In the method, the anisotropy due to the preferential direction of the magnetic field is suppressed, but a high sensitivity is keeped. For powders spectra, the process allows the obtention resolutions, of dipolar and quadrupolar couplings, in the range of those only obtained on monocrystals under strong fields. By suitable magnetic field oscillations, and by the effect of the high field on the RMN signal, the transient evolutions of the spins are obtained. Concerning the absence of a preferred direction in the zero-field, a powder or the monocrystals show nearly the same behavior. In such conditions, a much more interesting spectra than those from a powder in a strong field, can be obtained. The RMN spectrometer is described. The possibilities, the experimental and theoretical limits of the proposed method, are analyzed. Applications on dipolar (proton and phosphor) and quadrupolar (deuterium) interactions, on hydrated salts and on cyclophasphazenes are carried out [fr

  13. IN5 Polarisation Option (IPOP) and HIgh FIeld Magnet Option (HIFIMO) for the IN5 time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Ollivier, J.; Mutka, H.

    2011-01-01

    The new secondary spectrometer for the cold neutron time-of-flight (ToF) instrument IN5 was built with non-magnetic material, keeping in mind the upgrade option of polarisation analysis (PA) and the possibility of applying high continuous magnetic fields. The refurbished instrument has a high incident flux and elevated count-rate and offers a unique opportunity for applying polarised neutron methods for high resolution inelastic scattering, including single crystal investigations. On IN5 the polarised option would use the PASTIS concept of three sets of compact perpendicular coils (see the PANTHER proposal) allowing XYZPA and a 3 He analyser banana. As for high magnetic fields: a magnet suitable for ToF instruments must place a minimal amount of material in the incoming and outgoing beams and provide a large asymmetric view towards the detectors. An homogeneous field area of about 20 mm diameter over 30 mm height is also required. There is a size constraint set by the 800 mm diameter sample chamber and the optimal angular acceptance towards the detectors is -12 degrees / +135 degrees in the equatorial plane and +/- 22 degrees in the vertical direction

  14. Development and testing of a double-focusing, static, axisymmetric mass spectrometer

    International Nuclear Information System (INIS)

    Ritter, G.

    1979-04-01

    The developed mass spectrometer affords very high acceptance (cm 2 sr) compared with conventional mass spectrometers owing to its large solid angle of 0.178 sr. The ion optical properties of the instrument were tested by bombarding various targets (Al, Ni, Ti, Cu, Si) with potassium or caesium ions from a thermionic ion source with energies of 1, 2 and 3 keV and recording mass spectra of positive and negative sputtered ions. The ion optical beam path was calculated analytically (magnet system) in part and numerically in part (energy analyzer, einzel lenses and detector system) and represented in graph form. The results obtained from the mass spectra showed that the magnet system with its twelve permanent magnets is too irregular to produce mass linses with good resolution. Furthermore, it was found that the maximum primary energy of the alkali ions that was possible in this mass spectrometer owing to the breakdown strength was not sufficient to record surface-specific mass spectra since the target surface was covered within a very short time with an at least monatomic layer of alkali ions from the thermionic ion source. (orig./HP) [de

  15. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  16. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    International Nuclear Information System (INIS)

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-01-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup

  17. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Science.gov (United States)

    Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  18. A particle identification technique for large acceptance spectrometers

    International Nuclear Information System (INIS)

    Cappuzzello, F.; Cavallaro, M.; Cunsolo, A.; Foti, A.; Carbone, D.; Orrigo, S.E.A.; Rodrigues, M.R.D.

    2010-01-01

    A technique to identify the heavy ions produced in nuclear reactions is presented. It is based on the use of a hybrid detector, which measures the energy loss, the residual energy, the position and angle of the ions at the focal plane of a magnetic spectrometer. The key point is the use of a powerful algorithm for the reconstruction of the ion trajectory, which makes the technique reliable even with large acceptance optical devices. Experimental results with the MAGNEX spectrometer show a remarkable resolution of about 1/160 in the mass parameter.

  19. Neutrino Spectrometers - A Search for Information

    Science.gov (United States)

    Gallo, C. F.

    2004-05-01

    Due to their "wave-particle" nature, Neutrinos will undergo Redshifts due to Doppler and/or Space Expansion effects similar to Electromagnetic Radiation (Photons). However, in some situations (ex., Quasars, etc), Photon Redshifts may be due to cumulative energy-loss mechanisms with the intervening medium. In this situation, the corresponding Neutrino Redshifts will be much smaller since the interaction cross-section for neutrino-medium interactions will be much smaller than any photon-medium cross-section. Thus, observation and comparison of photon redshifts vs corresponding neutrinos redshifts will be very informative. If the photon and neutrino redshifts are similar, then a Doppler and/or Space Exapnsion interpretation is justified. It the neutrino redshift is much smaller than any corresponding photon redshift, then an interpretation via a cumulative energy-loss mechanism is justified. This is a very definitive experimental test of redshift interpretations. Since Neutrino Spectrometers are under design and construction, I am most anxious to learn details about their detection capabilities. I am hoping to contact the relevant scientists and explore situations which may yield definitive experimental results in the forseeable future.

  20. AMS Observations over Coastal California from the Biological and Oceanic Atmospheric Study (BOAS)

    Science.gov (United States)

    Bates, K. H.; Coggon, M. M.; Hodas, N.; Negron, A.; Ortega, A. M.; Crosbie, E.; Sorooshian, A.; Nenes, A.; Flagan, R. C.; Seinfeld, J.

    2015-12-01

    In July 2015, fifteen research flights were conducted on a US Navy Twin Otter aircraft as part of the Biological and Oceanic Atmospheric Study (BOAS) campaign. The flights took place near the California coast at Monterey, to investigate the effects of sea surface temperature and algal blooms on oceanic particulate emissions, the diurnal mixing of urban pollution with other airmasses, and the impacts of biological aerosols on the California atmosphere. The aircraft's payload included an aerosol mass spectrometer (AMS), a differential mobility analyzer, a cloud condensation nuclei counter, a counterflow virtual impactor, a cloudwater collector, and two instruments designed to detect biological aerosols - a wideband integrated biological spectrometer and a SpinCon II - as well as a number of meteorology and aerosol probes, two condensation particle counters, and instruments to measure gas-phase CO, CO2, O3, and NOx. Here, we describe in depth the objectives and outcomes of BOAS and report preliminary results, primarily from the AMS. We detail the spatial characteristics and meteorological variability of speciated aerosol components over a strong and persistent bloom of Pseudo-Nitzschia, the harmful algae that cause 'red tide', and report newly identified AMS markers for biological particles. Finally, we compare these results with data collected during BOAS over urban, forested, and agricultural environments, and describe the mixing observed between oceanic and terrestrial airmasses.

  1. NMR spectrometers. Current status and assessment of demand for high-resolution NMR spectrometers and for high-performance, solid NMR spectrometers at the scientific colleges and other research institutes in the Federal Republic of Germany. Pt. 1

    International Nuclear Information System (INIS)

    Schmidt, K.

    1989-01-01

    The survey includes high-resolution NMR spectrometers for liquids and solutions with magnetic field intensities of 11.7 Tesla and more (proton frequencies from 500 to 600 MHz) as well as high-performance solid-state NMR spectrometers with field intensities of, at least, 6.3 Tesla (proton frequencies of 270 MHz and more). The given results which had been obtained from documents of the manufacturers try to meet the manufacturers' need for safety. Market shares and sites are not listed. (DG) [de

  2. Proposal for a forward spectrometer at the 4π detector

    International Nuclear Information System (INIS)

    Berdermann, E.; Luehning, J.; Lynen, U.; Milkau, U.; Mueller, K.; Sann, H.; Stelzer, H.; Trautmann, W.; Kreutz, P.; Kuehmichel, A.; Pinkenburg, C.; Pochodzalla, J.; Moretto, L.; Mueller, W.F.J.; Wozniak, G.; Imme, G.; Raciti, G.; Adloff, G.C.; Bilwes, B.; Bilwes, R.; Michel, M.; Masse, C.; Rudolf, G.; Scheibling, F.; Stuttge, L.

    1988-03-01

    We propose to complement the 4π detector to be installed at the SIS-ESR facility with a forward spectrometer (ALADiN) capable of detecting and identifying nuclear fragments up to the largest masses and momenta expected at SIS. Positioned behind the time-of-flight wall of the 4π detector the spectrometer should subtend an angular range of approximately ±5 0 in horizontal and at least ±2 0 in vertical direction and thus cover a sufficiently large part of the forward region. In order to satisfy these requirements and to obtain the necessary resolution in mass and momentum the dipole magnet needs, at least, a gap height of 0.5 m, a horizontal acceptance of 1.5 m and a bending power of 2 Tm. The following sections of this proposal start out with a more detailed presentation of the physics motivation which will concentrate on multifragmentation as a new and hitherto unexplored decay mode of nuclear matter under extreme conditions. The description of the spectrometer divides into three sections containing the description of the magnet and the vacuum system, of the detectors needed to track and to identify the fragments, and of the performance of the spectrometer. (orig./HSI)

  3. Status of recent utilization of JAEA AMS MUTSU and the revision of the charge

    International Nuclear Information System (INIS)

    Yamamoto, Nobuo; Kinoshita, Naoki; Kabuto, Shoji; Tanaka, Takayuki

    2010-01-01

    Tandetron Accelerator Mass Spectrometer in the Japan Atomic Energy Agency Mutsu office (JAEA AMS Mutsu: High Voltage Engineering Europa product, Model 4130-AMS) consists of 3MV tandem type accelerator and the 2 beam lines for measurement of isotope ratio for carbon and iodine. Steady operation of carbon beam line was started in December, 1999 and that of iodine beam line was started in May, 2003. This facility was initially used for studies on transport processes of radionuclides in marine environment. From the fiscal year 2006, this facility became a shared facility to provide data for various projects at JAEA and others. This paper describes the status of recent utilization of JAEA AMS MUTSU, and the revision of the charge from fiscal year 2010. (author)

  4. Cosmic rays measurements between 1 GeV and 1 PeV by AMS and CREAM experiments; Mesures des rayons cosmiques entre le GeV et le PeV par les experiences AMS et CREAM

    Energy Technology Data Exchange (ETDEWEB)

    Mangin-Brinet, M

    2007-11-15

    The AMS (Alpha Magnetic Spectrometer) and CREAM (Cosmic Ray Energetics and Mass) experiments that are devoted to the detection of cosmic radiations have a similar architecture and both use a Cherenkov detector whose scintillating material is a silicon aerogel. The performance of the Cherenkov detector rests on an accurate knowledge of the refractive index of the aerogel plane. This report deals with an adequate methodology of measuring the refractive index. The first chapter reviews the contributions of AMS and CREAM experiments to the physics of cosmic radiations. The second chapter presents different methods used for mapping the refractive index of the aerogel plane. The prism method is based on the measurement of the deflection of a laser beam through the sides of an aerogel tile. The most satisfying method to measure the changes in the refractive index is to use an electron beam, in this case any change infers a change in the emission angle of the Cherenkov photons that can be detected and the value of the refractive index is deduced. A new method based on the deflection of a laser beam on the 2 parallel sides of an aerogel tile has been developed. The characterization of the 2 Cherenkov detectors are given in the second and the third chapter. The last chapter presents some aspects of the simulation works and of the data processing. (A.C.)

  5. Design of a pulsed angular selective electron gun for the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Winzen, Daniel; Hannen, Volker; Ortjohann, Hans-Werner; Zacher, Michael; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2012-07-01

    The KATRIN (KArlsruhe TRItium Neutrino mass) experiment will study the tritium {beta}-spectrum near the endpoint of 18.6 keV, aiming to measure the mass of the electron antineutrino. Using an electrostatic retarding spectrometer (MAC-E-Filter), the projected sensitivity for m{sub ve} is 200 meV/c{sup 2} at 90% C.L. In order to map out the electric and magnetic fields in the main spectrometer, an angular selective electron gun is currently being developed. The e-gun uses an UV-Laser to produce electrons via the photo-electric effect from a copper substrate which are then accelerated electrostatically. It features a small energy spread of approx. 0.1 eV, a sharp emission angle and will be able to cover the whole magnetic flux tube of KATRIN. Using a pulsed laser it is also possible to investigate the time of flight (TOF) of electrons through the spectrometer, offering enhanced sensitivity to spectrometer properties far away from the analysing plane. By comparing information from transmission function measurements and TOF data with Monte Carlo simulations of the setup, one will be able to achieve a detailed understanding of the spectrometer properties.

  6. Magnetic fabric and flow direction in the Ediacaran Imider dyke swarms (Eastern Anti-Atlas, Morocco), inferred from the Anisotropy of Magnetic Susceptibility (AMS)

    Science.gov (United States)

    Otmane, Khadija; Errami, Ezzoura; Olivier, Philippe; Berger, Julien; Triantafyllou, Antoine; Ennih, Nasser

    2018-03-01

    Located in the Imiter Inlier (Eastern Saghro, Anti-Atlas, Morocco), Ediacaran volcanic dykes have been studied for their petrofabric using Anisotropy of Magnetic Susceptibility (AMS) technique. Four dykes, namely TF, TD, FF and FE show andesitic compositions and are considered to belong to the same dyke swarm. They are oriented respectively N25E, N40E, N50E, and N10E and have been emplaced during a first tectonic event. The dyke FW, oriented N90E displays a composition of alkali basalt and its emplacement is attributed to a subsequent tectonic event. These rocks are propylitized under greenschist facies conditions forming a secondary paragenesis constituted by calcite, chlorite, epidote and sericite. The dykes TF, TD, FF and FE are sub-volcanic calc-alkaline, typical of post-collisional basalts/andesites, belonging to plate margin andesites. The FW dyke shows a within-plate basalt signature; alkaline affinity reflecting a different petrogenetic process. The thermomagnetic analyses show a dominantly ferromagnetic behaviour in the TF dyke core carried by single domain Ti-poor magnetite, maghemite and pyrrhotite. The dominantly paramagnetic susceptibilities in TF dyke rims and TD, FE, FF and FW dykes are controlled by ilmenite, amphibole, pyroxene and chlorite. The magnetic fabrics of the Imider dykes, determined by our AMS study, allows us to reconstitute the tectonic conditions which prevailed during the emplacement of these two generations of volcanic dykes. The first tectonic event was characterized by a roughly NE-SW compression and the second tectonic event is characterized by an E-W shortening followed by a relaxation recording the end of the Pan-African orogeny in the eastern Anti-Atlas.

  7. Single-sphere multiple-detector neutron spectrometer. Final report on Phase 1

    International Nuclear Information System (INIS)

    Sinclair, F.; Stern, I.; Hahn, R.W.; Entine, G.

    1987-07-01

    To address the problem of accurate, timely estimates of the neutron spectral flux, researchers are developing a monitoring instrument based on a single moderating sphere with a large number of independent sensors. Such a single-sphere spectrometer would allow easy measurement of quality factors. This is made possible by the recent development of a novel digital sensor which detects radiation induced errors in a dynamic random-access memory. During Phase I of the SBIR program, researchers constructed a first prototype of the single-sphere spectrometer, measured its response in a neutron flux from an isotopic Am-Be source in several geometries, and compared these with the results of Monte Carlo simulations of neutron transport. The preliminary results show that the approach is feasible and relatively straightforward

  8. An emission-line model for AM Herculis systems

    International Nuclear Information System (INIS)

    Ferrario, L.; Tuohy, I.R.; Wickramasinghe, D.T.; Australian National Univ., Canberra)

    1989-01-01

    The optical spectra of the AM Herculis binaries are characterized by extremely complex emission lines whose profiles can be resolved into at least three components which are formed in different regions of the accretion stream leading from the companion star toward the magnetic white dwarf. A theoretical model is presented for the radial velocity and velocity dispersion of the broad emission line component assuming that it originates mainly in the gas which is diverted out of the orbital plane and funneled onto the white dwarf surface along magnetic field lines. The model is used to locate the line-forming region in three AM Her variables: E1405-451, CW 1103+254, and EXO 033319-2554.2, using as constraints the radial velocity and velocity dispersion data. The analyses of these systems show that the material is threaded by the magnetic field in a very azimuthally extended coupling region located 0.5-0.75 of the way between the white dwarf and the inner Lagrange point. 36 refs

  9. ''VECTON-1'' two-arm spectrometer for rho--meson photoproduction study

    International Nuclear Information System (INIS)

    Anokhin, M.V.; Kanetsyan, A.R.; Kukarev, V.M.

    1977-01-01

    A two-arm spectrometer for registering p - mesons according to a charged pion and one of the neutral pion disintegration photons has been designed. The spectrometer arm which registers charged pion comprises a deflecting magnet, dual wide-gap spark chambers and dual scintillation counters. The spectrometer arm for registering the disintegration photon comprises a scintillation counter, a dual wide-gap spark chamber and a shower detector. The principal characteristics of the spectrometer components are listed. The functional diagram of the useful events selection unit is discussed. It is shown that the experimental results obtained with the aid of the ''VEKTON-1'' set-up are in good agreement with the earlier results: P - meson rest energy is 731+-30 MeV, the resonant range width is 195+-58 MeV

  10. An imaging proton spectrometer for short-pulse laser plasma experiments

    International Nuclear Information System (INIS)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R.; Fuchs, J.; Gauthier, M.

    2010-01-01

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  11. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R. [Lawrence Livermore National Laboratory, Livemore, California 94551 (United States); Fuchs, J.; Gauthier, M. [LULI Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2010-10-15

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  12. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  13. AMS measurements

    International Nuclear Information System (INIS)

    Lawson, E.M.

    1999-01-01

    Accelerator mass spectrometry (AMS) ia an ultrasensitive analysis technique using a system based on a nuclear particle accelerator and its beam transport system to detect and measure individual 14 C ions.. In AMS a 14 C abundance is obtained by comparing the measurement rates of 14 C and 13 C ions. This is not as simple as it sounds. The enormous difference in the numbers of the two isotopes makes it very hard to uniquely detect 14 C ions. For modern samples, those with the most 14 C, some 10 10 13 C ions leave the source for every 14 C ion. However, the use of an accelerator and various high energy techniques makes it possible to the detect the 14 C and to reject the 13 C. in order to achieve this high rejection efficiency the injection magnet is set to transmit only one isotope, namely 14 C. However, a subsequent measurement of 13 C must be made. The number and the rate of arrival of 13 C ions is such that individual ions cannot be measured, instead a 13 C current is measured in a Faraday cup. It is possible to alternate the injection magnet field between that to transmit 14 C and that to transmit 13 C. This method is known as slow cycling but suffers from significant dead (not useful) periods while the magnet field is changed and stabilises. Furthermore and more significantly, during this dead time changes in ion source output may occur distorting the 14 C/ 13 C ratio. We instead employ a method known as fast cycling which involves rapidly increasing the energy of the 13 C ions as they enter the injection magnet. This is achieved by the use of a high voltage (6.7 kV) pulser. We can also inject 12 C by this method although a 14.7 kV pulse is required. The switching time from one carbon isotope to another is only a fraction of a millisecond in this fast cycling method. Hence one has quasi-simultaneous measurement of 14 C and 13 C. Measurements of the 14 C/ 13 C ratio from a sample are always compared to the same ratio from an internationally accepted standard

  14. Quadrupole magnetic mapping of the high resolution spectrometers of Thomas Jefferson National Accelerator Laboratory, Hall A. (Q.M.M. project: Quadrupole Magnetic Measurement)

    International Nuclear Information System (INIS)

    Quemener, Gilles

    1997-01-01

    This thesis describes the magnetic measurements that have been performed on the superconducting quadrupoles of the High Resolution Spectrometers of TJNAF, Hall A (USA), which are designed to measure particle momentum up to 4 GeV.c -1 with a σp/p = 10 -4 resolution. The mapping method is based on rotating coil technique, the originality being a segmentation of the probe along the quad axis. Together with an accurate magnet modelling, the measurement of the flux variations through the set of rotating coils allows to determine the magnetic field at each point. We use the 3D field formalism, i.e., the Fourier-Bessel expansion of the field obtained by solving the Laplace equation. We describe the QMM method and then the apparatus consisting in two probes of length 1.6 m and 3.2 m built to map the three quadrupoles Q1, Q2, Q3. Data processing uses Fourier analysis. The mapping of the Electron Arm took place in situ in 1996. A first set of results concerns integral measurements including the properties of excitation cycle of the magnets (saturation and hysteresis). Second set of results in terms of local field yields the 3D field maps of the quadrupoles. After having applied corrections to the data we obtain a local field accuracy of 5 Gauss on each component, i.e. an uncertainty of 5.10 -4 relative to the quadrupole central field. We use SNAKE ray-tracing code with the implementation of QMM field maps and obtain preliminary results on HRS optics. (author)

  15. Investigation of background processes in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Axel [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (IKP) (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The KArlsruhe TRItium Neutrino experiment aims to probe the mass of the electron antineutrino in a model-independent way with an unsurpassed sensitivity of m{sub ν}=200 meV/c{sup 2} (90% C.L.). In order to determine the neutrino mass, the energy spectrum of electrons from the tritium β-decay is analyzed by a high-resolution electrostatic spectrometer which is based on the MAC-E filter principle. To keep the influence of the spectrometer background on the neutrino mass sensitivity small, KATRIN aims for a background level of 0.01 cps. For the investigation of different background components such as cosmic muons, external gamma radiation and the radioactive decay of isotopes in the volume of the spectrometer or on its surface, a series of dedicated measurements were performed with a combined system of main spectrometer and detector. This talk presents the results of measurements focusing on the secondary electron production at the inner surface of the spectrometer and compare them with electro-magnetic electron tracking simulations performed with the KATRIN developed simulation software KASSIOPEIA.

  16. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  17. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  18. The Philippine spectrometer

    International Nuclear Information System (INIS)

    Juliano, J.O.

    1965-01-01

    A notable project for international collaboration, in which participants from Indonesia, Korea, Thailand, China and the Philippines are working together, has been launched in the Philippines with Indian assistance under the aegis of the Agency. This is a regional training and research programme using a neutron crystal spectrometer, which has been established since January 1965 at the Philippine Atomic Research Centre in Diliman, Quezon City, Philippines. It is called the IPA Project after the signatories to a five year trilateral agreement, namely, the Government of India,the Republic of the Philippines, and the International Atomic Energy Agency. The programme is administered by a Joint Committee composed of one representative each of the Philippines, India and the Agency. The objective of this cooperative venture is to establish a research centre on neutron diffraction in which scientists and technicians from any Member State of IAEA in South Asia, South-East Asia and Pacific, or Far East regions could come to participate in research and training. Studies in solid state physics, such a s the structure determination of alloys and organic crystals, studies on the orientation of magnetic moments in the lattice of magnetic substances, and other problems based on elastic and inelastic scattering of neutrons are undertaken. There are a number of research reactors in this region where neutron spectrometers can be utilized and the recent establishment of this cooperative international research and training programme has been a timely one for this area of the world. Indeed, a number of other countries have shown a strong growing interest in the development of the project

  19. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  20. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  1. Australis: AMS for ultra sensitive trace element and isotopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S H; Suter, G F [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1994-12-31

    The accelerator mass spectrometer (AMS) at the CSIRO HIAF laboratory is being upgraded to enable in-situ measurements of ultratraces and isotopic-ratios in mineralogical applications. The upgraded system will include a microbeam Cs ion source which is designed to produce better than 50 micrometre diameter Cs beam to enable analyses of monomineralic grains. The Cs primary beam will be mass analysed in order to minimize contamination of the sample. The detection system will be upgraded to enable analyses of elements up to U, at 2 MV terminal voltage for charge states 4 and 5. The system will be known as AUSTRALIS: A.M.S. for Ultra Sensitive TRAce eLement and Isotopic Studies. An overview of the system and the anticipated applications in minerals exploration and mining research are presented. 4 refs., 1 fig.

  2. Australis: AMS for ultra sensitive trace element and isotopic studies

    International Nuclear Information System (INIS)

    Sie, S.H.; Suter, G.F.

    1993-01-01

    The accelerator mass spectrometer (AMS) at the CSIRO HIAF laboratory is being upgraded to enable in-situ measurements of ultratraces and isotopic-ratios in mineralogical applications. The upgraded system will include a microbeam Cs ion source which is designed to produce better than 50 micrometre diameter Cs beam to enable analyses of monomineralic grains. The Cs primary beam will be mass analysed in order to minimize contamination of the sample. The detection system will be upgraded to enable analyses of elements up to U, at 2 MV terminal voltage for charge states 4 and 5. The system will be known as AUSTRALIS: A.M.S. for Ultra Sensitive TRAce eLement and Isotopic Studies. An overview of the system and the anticipated applications in minerals exploration and mining research are presented. 4 refs., 1 fig

  3. Australis: AMS for ultra sensitive trace element and isotopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The accelerator mass spectrometer (AMS) at the CSIRO HIAF laboratory is being upgraded to enable in-situ measurements of ultratraces and isotopic-ratios in mineralogical applications. The upgraded system will include a microbeam Cs ion source which is designed to produce better than 50 micrometre diameter Cs beam to enable analyses of monomineralic grains. The Cs primary beam will be mass analysed in order to minimize contamination of the sample. The detection system will be upgraded to enable analyses of elements up to U, at 2 MV terminal voltage for charge states 4 and 5. The system will be known as AUSTRALIS: A.M.S. for Ultra Sensitive TRAce eLement and Isotopic Studies. An overview of the system and the anticipated applications in minerals exploration and mining research are presented. 4 refs., 1 fig.

  4. Study of $\\overline{p}$-Nucleus Interaction with a High Resolution Magnetic Spectrometer

    CERN Multimedia

    2002-01-01

    This experiment uses the high resolution, large solid angle and large momentum acceptance magnetic spectrometer SPES~II to study the interaction between @* and complex nuclei in the following experiments: \\\\ \\\\ \\item 1)~~~~A(@*, @*)A. Angular distribution of @* elastically scattered from |1|2C, |4|0Ca and |2|0|8Pb. \\item 2)~~~~A(@*, @*')A*. Excitation energy spectra and some angular distributions of @* inelastically scattered from |1|2C, |4|0Ca and |2|0|8Pb up to an excitation energy of &prop.~100~MeV. \\item 3)~~~~A(@*, p)A^z^-^1 (@*). Excitation energy spectra for knock out reaction on |6Li, |1|2C, |6|3Cu and |2|0|9Bi at several angles. \\end{enumerate}\\\\ \\\\ Any beam momentum between 300 MeV/c and 800 MeV/c will be suitable for this experiment. In order to vary the effect of strong absorption of @* by nuclei, elastic and inelastic scattering will be performed at two or three different @* momenta (depending on the way LEAR will be operated) down to 300~MeV/c.

  5. Piotron at SIN - a large superconducting double torus spectrometer

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Zellweger, J.

    1981-01-01

    A test facility for radiation therapy with negative /pi/-mesons was constructed in Switzerland. The facility is a large double torus spectrometer similar to the Stanford design. For variation of stopping depth different momenta are selected by variation of the magnetic field. Superconducting ac magnets are necessary for tumor scanning and represent a major part of such a facility. Main design features and performance are reported. 10 refs

  6. Development of an ion time-of-flight spectrometer for neutron depth profiling

    Science.gov (United States)

    Cetiner, Mustafa Sacit

    signal. Without loss of generality, the secondary signal is obtained by the passage of the ion through a thin carbon foil, which produces ion-induced secondary electron emission (IISEE). The time-of-flight spectrometer physically acts as an ion/electron separator. The electrons that enter the active volume of the spectrometer are transported onto the microchannel plate detector to generate the secondary signal. The electron optics can be designed in variety of ways depending on the nature of the measurement and physical requirements. Two ion time-of-flight spectrometer designs are introduced: the parallel electric and magnetic (PEM) field spectrometer and the cross electric and magnetic (CEM) field spectrometer. The CEM field spectrometers have been extensively used in a wide range of applications where precise mass differentiation is required. The PEM field spectrometers have lately found interest in mass spectroscopy applications. The application of the PEM field spectrometer for energy measurements is a novel approach. The PEM field spectrometer used in the measurements employs axial electric and magnetic fields along the nominal direction of the incident ion. The secondary electrons are created by a thin carbon foil on the entrance disk and transported on the microchannel plate that faces the carbon foil. The initial angular distribution of the secondary electrons has virtually no effect on the transport time of the secondary electrons from the surface of the carbon foil to the electron microchannel plate detector. Therefore, the PEM field spectrometer can offer high-resolution energy measurement for relatively lower electric fields. The measurements with the PEM field spectrometer were made with the Tandem linear particle accelerator at the IBM T. J. Watson Research Center at Yorktown Heights, NY. The CEM field spectrometer developed for the thesis employs axial electric field along the nominal direction of the ion, and has perpendicular magnetic field. As the

  7. A new beam profile monitor and time of flight system for CologneAMS

    Energy Technology Data Exchange (ETDEWEB)

    Pascovici, G. [CologneAMS, University of Cologne (Germany); Dewald, A., E-mail: dewald@ikp.uni-koeln.de [CologneAMS, University of Cologne (Germany); Institute of Nuclear Physics, University of Cologne (Germany); Heinze, S., E-mail: heinze@ikp.uni-koeln.de [CologneAMS, University of Cologne (Germany); Fink, L.; Mueller-Gatermann, C.; Schiffer, M.; Feuerstein, C. [CologneAMS, University of Cologne (Germany); Pfeiffer, M.; Jolie, J.; Thiel, S.; Zell, K.O.; Arnopolina, O. [Institute of Nuclear Physics, University of Cologne (Germany); Blanckenburg, F. von [GFZ, German Research Centre for Geosciences, Potsdam (Germany)

    2013-01-15

    A complex beam detector consisting of a high-resolution beam profile monitor (BPM) and a time of flight (TOF) spectrometer with tracking capabilities was designed especially for the special needs of the Cologne center for accelerator mass spectrometry (CologneAMS). The beam detector assembly is designed to match the beam specifications of the 6 MV Tandetron AMS setup and its data acquisition system. It will have a reconfigurable structure, either as a fast TOF subsystem with a ca. 10 cm{sup 2} equivalent active area, or as a more complex BPM-TOF detector with beam tracking capabilities and a larger active area (16 cm{sup 2}). The purpose of this detector is to suppress background during spectrometry of heavy ions (U, Cm, Pu, Am etc.) and to suppress isobaric interferences such as {sup 36}S in {sup 36}Cl spectra.

  8. Beam optics of the AmPS extraction line

    International Nuclear Information System (INIS)

    Hoekstra, R.

    1991-01-01

    The design of the Amsterdam Pulse Stretcher includes a feasibility study of part of the extraction trajectory. The latter includes some proposed curves projected through the hall of the beam switch yard. Since extraction is performed in the north line of the ring and the connection to the trajectory of the spectrometers is planned in a trajectory parallel to the east line of the ring the curves contain bending magnets for bending 90 degrees either by only two magnets or by making use of ring bending magnets in the same way as the ring curves are constructed. The bending through 90 degrees has optimal imaging properties of a unit cell much the same as the curves in the ring. This one-to-one (or one-to-minus-one) property is intended to shift the known required beam dimensions stream upwards from a defined point in the trajectory of the spectrometers to be able to create the dimensions at this shifted point by means of a so called beam transformer, placed in between the extraction point and this position. This report deals with the further developments with respect to the extraction trajectory. (author). 5 refs.; 9 figs.; 3 tabs

  9. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    Science.gov (United States)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  10. The Nab Spectrometer, Precision Field Mapping, and Associated Systematic Effects

    Science.gov (United States)

    Fry, Jason; Nab Collaboration

    2017-09-01

    The Nab experiment will make precision measurements of a, the e- ν correlation parameter, and b, the Fierz interference term, in neutron beta decay, aiming to deliver an independent determination of the ratio λ =GA /GV to sensitively test CKM unitarity. Nab utilizes a novel, long asymmetric spectrometer to measure the proton TOF and electron energy. We extract a from the slope of the measured TOF distribution for different electron energies. A reliable relation of the measured proton TOF to a requires detailed knowledge of the effective proton pathlength, which in turn imposes further requirements on the precision of the magnetic fields in the Nab spectrometer. The Nab spectrometer, magnetometry, and associated systematics will be discussed.

  11. A Systematic Comparison of the Anisotropy of Magnetic Susceptibility (AMS) and Anisotropy of Remanence (ARM) Fabrics of Ignimbrites: Examples from the Quaternary Bandelier Tuff, Jemez Mountains, New Mexico and Miocene Ignimbrites Near Gold Point, Nevada

    Science.gov (United States)

    Lycka, Ranyah

    Anisotropy of magnetic susceptibility (AMS) has been widely used to define petrofabrics in silicic, elevated-temperature pyroclastic deposits (i.e., ignimbrites) and these fabrics have been successfully utilized to infer pyroclastic emplacement, or transport, directions in many cases. Selected exposures of the Quaternary Bandelier Tuff, exposed in the Jemez Mountains, New Mexico, have been studied to systematically compare anisotropy of remanence (mainly anhysteretic remanent magnetization, AARM) with AMS data from the same sites. In addition, as part of a broad study to understand the Neogene history of deformation associated with a displacement transfer system in the western Great Basin, paleomagnetic and magnetic fabric data have been collected from ignimbrites that originated from the Timber Mountain Caldera complex, active from about 14 to 11.5 Ma. Here, AMS and AARM are compared for 21 (9-12 samples per site) sites in the Quaternary Bandelier Tuff, and 15 (9-10 samples per site) sites in Timber Mountain ignimbrites, with each chosen to examine the effects of varying degrees of welding and crystal content on the fabrics obtained. The relationships between AARM and AMS fabrics for the selected sites are not uniform, and include normal, intermediate, reverse, and oblique fabrics. The differences may be controlled by the degree of welding and/or crystal content, which requires further explanation. Ultimately, the fabrics identified in both suites of rocks are compared with anisotropy of isothermal remanent magnetization (AIRM) data, along with other rock magnetic data, to more fully evaluate the domain state control on the fabrics.

  12. Cosmic rays measurements between 1 GeV and 1 PeV by AMS and CREAM experiments

    International Nuclear Information System (INIS)

    Mangin-Brinet, M.

    2007-11-01

    The AMS (Alpha Magnetic Spectrometer) and CREAM (Cosmic Ray Energetics and Mass) experiments that are devoted to the detection of cosmic radiations have a similar architecture and both use a Cherenkov detector whose scintillating material is a silicon aerogel. The performance of the Cherenkov detector rests on an accurate knowledge of the refractive index of the aerogel plane. This report deals with an adequate methodology of measuring the refractive index. The first chapter reviews the contributions of AMS and CREAM experiments to the physics of cosmic radiations. The second chapter presents different methods used for mapping the refractive index of the aerogel plane. The prism method is based on the measurement of the deflection of a laser beam through the sides of an aerogel tile. The most satisfying method to measure the changes in the refractive index is to use an electron beam, in this case any change infers a change in the emission angle of the Cherenkov photons that can be detected and the value of the refractive index is deduced. A new method based on the deflection of a laser beam on the 2 parallel sides of an aerogel tile has been developed. The characterization of the 2 Cherenkov detectors are given in the second and the third chapter. The last chapter presents some aspects of the simulation works and of the data processing. (A.C.)

  13. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection

    Science.gov (United States)

    Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.

    2017-10-01

    A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.

  14. Modelling of the new FLNR magnetic analyzer vacuum channel

    International Nuclear Information System (INIS)

    Bashevoj, V.V.; Majdikov, V.Z.

    1998-01-01

    The quality of any magnetic analyzer directly depends on the area of radial cross section of its volume filled with the ions trajectories. The conception of new magnetic spectrometer vacuum channel is based on computer modelling of the maximum filling of the spectrometer acceptance with given pole pieces width and the gap height of the magnetic dipole together with the maximum transmission of underflected in magnetic field emission from the target at the angle of measurements. The correct correlation of the aperture of the vacuum channel with durability, engineering and ease of handling characteristics combined with ion-optical properties of the spectrometer determines its construction in the whole

  15. Actinide AMS at DREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Khojasteh, Nasrin B.; Merchel, Silke; Rugel, Georg; Scharf, Andreas; Ziegenruecker, Rene [HZDR, Dresden (Germany); Pavetich, Stefan [HZDR, Dresden (Germany); ANU, Canberra (Australia)

    2016-07-01

    Radionuclides such as {sup 236}U and {sup 239}Pu were introduced into the environment by atmospheric nuclear weapon tests, reactor accidents (Chernobyl, Fukushima), releases from nuclear reprocessing facilities (Sellafield, La Hague), radioactive waste disposal, and accidents with nuclear devices (Palomares, Thule) [1]. Accelerator Mass Spectrometry (AMS) is the most sensitive method to measure these actinides. The DREsden AMS (DREAMS) facility is located at a 6 MV accelerator, which is shared with ion beam analytics and implantation users, preventing major modifications of the accelerator and magnetic analyzers. DREAMS was originally designed for {sup 10}Be, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, and {sup 129}I. To modify the system for actinide AMS, a Time-of-Flight (TOF) beamline at the high-energy side has been installed and performance tests are on-going. Ion beam and detector simulations are carried out to design a moveable ionization chamber. Especially, the detector window and anode dimensions have to be optimized. This ionization chamber will act as an energy detector of the system and its installation is planned as closely as possible to the stop detector of the TOF beamline for highest detection efficiency.

  16. Automatic device for compensating the earths, magnetic field around a {beta} spectrometer; Ensemble automatique de compensation du champ terrestre autour d'un spectrometre

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, Ch [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-02-15

    This paper shows how the earth magnetic field inside a double focusing, {pi}{radical}2, iron free, beta ray spectrometer (radius 50 cm ) has been compensated. Three orthogonal magnetic fields are generated by three square coils sets. Each stabilized power supply is regulated through its own magnetometer (of the fluxgate type) and the earth field inside the spectrometer is compensated to 10{sup -4} Oe whatever the earth field or power supply oscillation could be. (author) [French] Cette etude a pour but de compenser le champ magnetique terrestre autour d'un spectrometre beta {pi}{radical}2 a double focalisation, a bobines sans fer et de rayon moyen des trajectoires de 50 cm. Le champ magnetique terrestre est compense par superposition de trois champs orthogonaux, chacun cree par un ensemble de cadres carres. Chacune de ces composantes est mesuree par un magnetometre. Cet ensemble permet de travailler en regulation de courant ou en regulation de champ. En regulation de courant, l'operation est manuelle. En regulation de champ, pour chaque groupe de cadres, l'alimentation stabilisee est asservie par son magnetometre et malgre les variations du champ terrestre ou de la tension secteur, la compensation du champ terrestre se fait toujours correctement au niveau du spectrometre, a 10{sup -4} Oe pres. (auteur)

  17. Development of portable ESR spectrometer as a reader for alanine dosimeters

    International Nuclear Information System (INIS)

    Kojima, T.; Haruyama, Y.; Tachibana, H.; Tanaka, R.; Okamoto, J.

    1993-01-01

    A prototype portable electron spin resonance (ESR) spectrometer was designed and tested, and its feasibility as a reader of alanine dosimeters was studied from the two standpoints of reproducibility of readings and sensitivity sufficient for dosimetry in the absorbed dose range 1-100 kGy. It has two main components: a permanent magnet and resonator; and a unit box with a microwave and auto-frequency control (AFC) circuit, a sweep controller of magnetic field, display, etc. In the present preliminary study, reproducibility values are measured with the same ESR parameters and alanine-polystyrene (alanine-PS) dosimeter at a dose of 1 kGy: repeatedly measuring without removing dosimeter from the cavity; individual measurement with removing and inserting again into the cavity with readjustment of ESR parameters. Alanine/ESR dosimetry using this spectrometer has a measurable dose range from 1 to 100 kGy with relatively high precision within ± 3% (1σ) as a preliminary result. The portable ESR spectrometer may also be modified as an automatic, more precise, dedicated alanine dosimeter reader. (author)

  18. The HISS spectrometer at LBL

    International Nuclear Information System (INIS)

    Greiner, D.

    1981-01-01

    The Heavy Ion Spectrometer System at LBL is designed to be a general purpose experimental work bench able to support a wide variety of experiments. Our philosophy is to provide instruments capable of investigating, with multi-particle sensitivity, a large portion of phase space. We have not chosen a particular region such as mid-rapidity or projectile frame, but instead, have made sure that the magnet and the instrumentation allow these choices as well as many others. (orig.)

  19. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-04-01

    Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and

  20. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-09-01

    Full Text Available Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the

  1. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-09-01

    Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal

  2. Drift chambers for a large-area, high-precision muon spectrometer

    International Nuclear Information System (INIS)

    Alberini, C.; Bari, G.; Cara Romeo, G.; Cifarelli, L.; Del Papa, C.; Iacobucci, G.; Laurenti, G.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Perotto, E.; Prisco, G.; Willutsky, M.; Basile, M.; Contin, A.; Palmonari, F.; Sartorelli, G.

    1987-01-01

    We have tested two prototypes of high-precision drift chamber for a magnetic muon spectrometer. Results of the tests are presented, with special emphasis on their efficiency and spatial resolution as a function of particle rate. (orig.)

  3. The thin-foil magnetic proton recoil neutron spectrometer MPRu at JET

    International Nuclear Information System (INIS)

    Andersson Sunden, E.; Sjoestrand, H.; Conroy, S.; Ericsson, G.; Gatu Johnson, M.; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Tardocchi, M.; Combo, A.; Cruz, N.; Batista, A.; Pereira, R.; Fortuna, R.; Sousa, J.; Popovichev, S.

    2009-01-01

    Neutrons are produced in fusion energy experiments with both deuterium (D) and deuterium-tritium (DT) plasmas. Neutron spectroscopy is a valuable tool in the study of the underlying fuel ion populations. The magnetic proton recoil neutron spectrometer, originally installed at JET in 1996 for 14-MeV neutron measurements, has been upgraded, with the main aim of improving its signal-to-background ratio (S/B), making measurements of the 2.5-MeV neutron emission in D plasmas possible. The upgrade includes a new focal-plane detector, based on the phoswich technique and consequently less sensitive to background, and a new custom-designed digital data acquisition system based on transient recorder cards. Results from JET show that the upgraded MPRu can measure 2.5-MeV neutrons with S/B=5, an improvement by a factor of 50 compared with the original MPR. S/B of 2.8x10 4 in future DT experiments is estimated. The performance of the MPRu is exemplified with results from recent D plasma operations at JET, concerning both measurements with Ohmic, ion cyclotron resonance (ICRH) and neutral beam injection (NBI) plasma heating, as well as measurements of tritium burn-up neutrons. The upgraded instrument allows for 2.5-MeV neutron emission and deuterium ion temperature measurements in plasmas with low levels of tritium, a feature necessary for the ITER experiment.

  4. HELIOS: A high intensity chopper spectrometer at LANSCE

    International Nuclear Information System (INIS)

    Mason, T.E.; Broholm, C.; Fultz, B.

    1998-01-01

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,ω). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating

  5. HELIOS: A high intensity chopper spectrometer at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Mason, T.E. [Oak Ridge National Lab., TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy; Fultz, B. [California Inst. of Tech., Pasadena, CA (United States). Dept. of Materials Science] [and others

    1998-12-31

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,{omega}). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating.

  6. TASCC newsletter. Vol. 5 no. 9

    International Nuclear Information System (INIS)

    Thomson, L.

    1991-09-01

    Scheduled experiments included superdeformation studies with the 8-pi spectrometer, redevelopment of 40 MeV/nucleon nitrogen and irradiation of metal samples plus first development of a uranium beam with the superconducting cyclotron, and tests of the Q3D spectrometer as an alternative to a gassy magnet for AMS development. (L.L.)

  7. Modification of an achromatic mass spectrometer to include transverse focusing

    Energy Technology Data Exchange (ETDEWEB)

    Baril, M; Noel, M

    1987-08-15

    Modification has been made to a magnetic mass spectrometer, comprising a magnetic prism and a parallel plane mirror, to increase its transmission and to obtain a stigmatic image. This has been done by adding two quadrupole lenses, one between the magnetic prism and the mirror to add some focusing in the transverse direction, the other after the mirror to correct the astigmatism created by the first quadrupole lens. In this paper, we derive all the parameters of the quadrupole lenses needed to ensure this objective.

  8. The Omega spectrometer in the West Hall.

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    Inside the hut which sits on top of the superconducting magnet are the TV cameras that observe the particle events occurring in the spark chambers in the magnet gap below. On the background the two beam lines feeding the spectrometer target, for separated hadrons up to 40 GeV, on the right, for 80 GeV electrons, on the left, respectively. The latter strikes a radiator thus sending into Omega tagged photons up to 80 GeV. On the foreground, the two sections of the large gas Cerenkov counter working at atmospheric pressure, used for trigger purpose.

  9. Thermal chopper spectrometer for the European spallation source

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt; Lefmann, Kim

    2011-01-01

    One of the instruments being considered for the ESS is a thermal chopper spectrometer, intended for the study of lattice vibrations and magnetic excitations. However, as the ESS will be a long pulsed source, we propose a very long instrument (180–300 m). We here present a guide system that can ac...

  10. Studies on reducing the scale of a double focusing mass spectrometer

    International Nuclear Information System (INIS)

    Chambers, D.M.; Gregg, H.R.; Andresen, B.D.

    1993-05-01

    Several groups have developed miniaturized sector mass spectrometers with the goal of remote sensing in confined spaces or portability. However, these achievements have been overshadowed by more successful development of man-portable quadrupole and ion trap mass spectrometers. Despite these accomplishments the development of a reduced-scale sector mass spectrometer remains attractive as a potentially low-cost, robust instrument requiring very simple electronics and low power. Previous studies on miniaturizing sector instruments include the use of a Mattauch-Herzog design for a portable mass spectrograph weighing less than 10 kg. Other work has included the use of a Nier-Johnson design in spacecraft-mountable gas chromatography mass spectrometers for the Viking spacecraft as well as miniature sector-based MS/MS instrument. Although theory for designing an optimized system with high resolution and mass accuracy is well understood, such specifications have not yet been achieved in a miniaturized instrument. To proceed further toward the development of a miniaturized sector mass spectrometer, experiments were conducted to understand and optimize a practical, yet nonideal instrument configuration. The sector mass spectrometer studied in this work is similar to the ones developed for the Viking project, but was further modified to be low cost, simple and robust. Characteristics of this instrument that highlight its simplicity include the use of a modified Varian leak detector ion source, source ion optics that use one extraction voltage, and an unshunted fixed nonhomogeneous magnetic sector. The effects of these design simplifications on ion trajectory were studied by manipulating the ion beam along with the magnetic sector position. This latter feature served as an aid to study ion focusing amidst fringing fields as well as nonhomogeneous forces and permitted empirical realignment of the instrument

  11. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  12. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    International Nuclear Information System (INIS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.

    2013-01-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  13. Status of the “new” AMS facility in Trondheim

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, Marie-Josée; Vaernes, Einar; Svarva, Helene Løvstrand; Larsen, Eiliv; Gulliksen, Steinar [Department of Archaeometry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Matthias; Mous, Dirk J.W. [High Voltage Engineering Europa B.V., P.O. Box 99, 3800 AB Amersfoort (Netherlands)

    2015-10-15

    The Radiocarbon Laboratory of the Norwegian University of Science and Technology (NTNU) in Trondheim has a long history, dating back to the 1950s. Its relatively new AMS facility is based on a 1 MV Tandetron from High Voltage Engineering Europa B.V. that is equipped with a hybrid solid/gas SO-110 ion source, a low energy spectrometer supporting sequential injection, a high energy analysis system consisting of a magnet and an electrostatic deflector, allowing insertion of an absorber foil for isobar suppression, and a two dimensional gas ionisation detector (E and ΔE). The system is at present capable of measuring {sup 10}Be, {sup 14}C, and {sup 26}Al and can be easily modified to measure isotopes of higher masses. Acceptance tests results for {sup 10}Be{sup 1+}, {sup 14}C{sup 2+}, {sup 26}Al{sup 1+}, and {sup 26}Al{sup 3+} are presented. The laboratory measures only {sup 14}C at present and the routine procedures are described. The system has demonstrated a very low background (70,000 {sup 14}C years BP or 2·10{sup −16} on Alfa Aesar 40795 graphite powder, −200 mesh, 99.9995%) for {sup 14}C when charge state 2+ is measured and the interference of Li ions in the detector is minimal. Some ion optical peculiarities of the system are also discussed.

  14. HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays

    International Nuclear Information System (INIS)

    Burnstein, R.A.; Chakravorty, A.; Chan, A.; Chen, Y.C.; Choong, W.-S.; Clark, K.; Dukes, E.C.; Durandet, C.; Felix, J.; Fuzesy, R.; Gidal, G.; Gu, P.; Gustafson, H.R.; Ho, C.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C.M.; Jones, T.D.; Kaplan, D.M.; Lederman, L.M.; Leros, N.; Longo, M.J.; Lopez, F.; Lu, L.C.; Luebke, W.; Luk, K.-B.; Nelson, K.S.; Park, H.K.; Perroud, J.-P.; Rajaram, D.; Rubin, H.A.; Teng, P.K.; Turko, B.; Volk, J.; White, C.G.; White, S.L.; Zyla, P.

    2005-01-01

    The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ and Λ hyperon decays with a sensitivity of 10 -4 . Intense charged secondary beams were produced by 800GeV/c protons and momentum selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in 12 months of data-taking

  15. SU-F-T-84: Measurement and Monte-Carlo Simulation of Electron Phase Spaces Using a Wide Angle Magnetic Electron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Englbrecht, F; Lindner, F; Bin, J; Wislsperger, A; Reiner, M; Kamp, F; Belka, C; Dedes, G; Schreiber, J; Parodi, K [LMU Munich, Munich, Bavaria (Germany)

    2016-06-15

    Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by an online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser

  16. A Bonner Sphere Spectrometer with extended response matrix

    Energy Technology Data Exchange (ETDEWEB)

    Birattari, C. [University of Milan, Department of Physics, Via Celoria 16, 20133 Milan (Italy); Dimovasili, E.; Mitaroff, A. [CERN, 1211 Geneva 23 (Switzerland); Silari, M., E-mail: marco.silari@cern.c [CERN, 1211 Geneva 23 (Switzerland)

    2010-08-21

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  17. A Bonner Sphere Spectrometer with extended response matrix

    International Nuclear Information System (INIS)

    Birattari, C.; Dimovasili, E.; Mitaroff, A.; Silari, M.

    2010-01-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  18. A Bonner Sphere Spectrometer with extended response matrix

    Science.gov (United States)

    Birattari, C.; Dimovasili, E.; Mitaroff, A.; Silari, M.

    2010-08-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  19. Critical mass calculations for 241Am, 242mAm and 243Am

    International Nuclear Information System (INIS)

    Dias, Hemanth; Tancock, Nigel; Clayton, Angela

    2003-01-01

    Criticality mass calculations are reported for 241 Am, 242m Am and 243 Am using the MONK and MCNP computer codes with the UKNDL, JEF-2.2, ENDF/B-VI and JENDL-3.2 nuclear data libraries. Results are reported for spheres of americium metal and dioxide in bare, water reflected and steel reflected systems. Comparison of results led to the identification of a serious inconsistency in the 241 Am ENDF/B-VI DICE library used by MONK - this demonstrates the importance of using different codes to verify critical mass calculations. The 241 Am critical mass estimates obtained using UKNDL and ENDF/B-VI show good agreement with experimentally inferred data, whilst both JEF-2.2 and JENDL-3.2 produce higher estimates of critical mass. The computed critical mass estimates for 242m Am obtained using ENDF/B-VI are lower than the results produced using the other nuclear data libraries - the ENDF/B-VI fission cross-section for 242m Am is significantly higher than the other evaluations in the fast region and is not supported by recent experimental data. There is wide variation in the computed 243 Am critical mass estimates suggesting that there is still considerable uncertainty in the 243 Am nuclear data. (author)

  20. Solid state low power pulsed NMR spectrometer system

    International Nuclear Information System (INIS)

    Nadkarni, S.S.; Parthasarathy, T.G.; Menon, M.P.S.; Hannurkar, P.R.

    1981-01-01

    A pulsed nuclear magnetic resonance spectrometer system is described for relaxation time studies on solid and liquid samples. The spectrometer design is fully solid state and a special microcomputer interface is incorporated for automatic evaluation of the relaxation times. The prototype system has been designed to operate at 9 MHz, but the modular concept used in the construction permits operation at any frequency in the range 5-10 MHz. The system has a recovery time of 15 micro seconds at 9 MHz. The range of measurement for the spin-lattice relaxation time is 0.1 millisecond to 1000 seconds; for spin-spin relaxation time, the range is 14μ seconds to 100 milliseconds. (author)

  1. Next stop: space

    CERN Multimedia

    Paola Catapano

    2010-01-01

    At 6:30 a.m. on 25 August, the runway at Geneva International Airport was more crowded than usual, as dozens of airport staff and a few CERN personnel gathered as close as possible to watch the landing of one of the world's largest aircraft, a USAF (US Air Force) C5 Super Galaxy. Having left Afghanistan (where it transported provisions for the US military contingent) the day before, it had spent a few hours at a US military base in Iraq before finally landing in Geneva on a very special mission: to load AMS-02, the Alpha Magnetic Spectrometer, into its huge cargo bay.   On 25 August, after an 11 hour-long flight, the US Air Force C-5 Galaxy carrying the Alpha Magnetic Spectrometer (AMS-02) experiment landed at the Kennedy Space Centre (KSC) in Florida, US. Weighing 7.5 tonnes and measuring 5 by 4 by 3 metres, AMS-02 is one of the most complex scientific instruments ever built for space. The experiment, assembled and tested at CERN, uses particle physics technologies but smaller and lighter (by pa...

  2. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN 2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  3. Method for internal conversion coefficients determination by means of a magnetic spectrometer. Application to 129Xe and 77Se

    International Nuclear Information System (INIS)

    Arqueros, F.; Campos, J.

    1986-01-01

    The method used for efficiency calibration of a magnetic electron spectrometer and its applications to conversion electron spectrometry is described. The present results point out that apparatus combining magnetic deflection and semiconductor detection have a nondecreasing interest in nuclear spectrometry for applications where good resolution and large background rejection are both necessary. The present apparatus can be employed with source of relatively low activity, (0.lμCi). The nuclides studied were 129 Xe and 77 Se resulting from 129 Cs and 77 Br decay. The parent nulcides were produced in ISOLDE on line isotope separator at CERN. The efficiency calibration method used for energies higher than 200 keV made use of the well known beta spectrum of 36 Cl. The calibration for low energies was made with Auger electron intensities and suitable conversion lines of 129 Xenon. Results for relative intensities of conversion electron lines and intense gamma lines of 129 Xe and 77 Se are given. From these measurements internal conversion coefficients for transitions of both nuclides were obtained. The results were in agreement with theoretical calculations. (author)

  4. Injection system of the minicyclotron accelerator mass spectrometer

    International Nuclear Information System (INIS)

    Liu Yonghao; Li Deming; Chen Maobai; Lu Xiangshun

    1999-01-01

    The existing injection system of the SMCAMS (super-sensitive mini-cyclotron accelerator mass spectrometer) is described together with the discussion of its disadvantages exposed after having been operating for five years, which provides a basis for consideration of improvements to the injection system. An optimized injection system with an analytical magnet added prior to the minicyclotron has been proposed and calculated

  5. A review on research activities using the SANS spectrometer in transmission geometry at ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Adib, M.

    1999-01-01

    The phased double rotor facility operating at ET-RR-1 reactor (2MW) was rearranged to operate as SANS spectrometer in transmission geometry. The rotors are suspended in magnetic fields and are spinning up to 16,000 rpm producing bursts of polyenergetic neutrons with wavelengths from 0.2 nm to 6.5 nm and beam divergence of 17' on the sample. The review on research activities using the SANS spectrometer and its applications for powder particle size determination and the long wavelength fluctuation of magnetization of the Fe-Ni alloys are discussed. (author)

  6. A multi-passage spectrometer for charge-state separation at MLLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christine; Gartzke, Eva; Habs, Dietrich; Krug, Kevin; Szerypo, Jerzy; Thirolf, Peter [Fakultaet fuer Physik, LMU - Muenchen (Germany); Kolhinen, Veli [Department of Physics, University of Jyvaeskylae (Finland)

    2010-07-01

    MLLTRAP is a Penning trap mass spectrometer facility which is currently being commissioned at the Maier-Leibnitz Tandem Accelerator Laboratory in Garching. Here, atomic mass values are determined by comparison of cyclotron frequencies, {omega}{sub c}=qB/m, of stored ions with mass m and charge q in a strong magnetic field B, relative to those of well-known ion species. One of the future goals of MLLTRAP is to utilize highly-charged ions for an improvement in the achievable mass accuracy {delta}m/m. For this purpose, singly-charged ions will have to be injected into a charge-breeding device, such as an EBIT, and transferred back towards the Penning traps, while being q/A selected. A multi-passage-spectrometer (MPS) is being built to fulfill these tasks. It consists of a fast-ramping, round-pole dipole magnet with a four-way electrostatic mirror system. In this presentation, the planned MLLTRAP setup focussing on the q/A-selection with the MPS system is presented.

  7. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  8. A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim; Waite, J. Hunter [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); Westlake, Joseph [The Johns Hopkins University Applied Physics Laboratory LLC, 11100 Johns Hopkins Road, Laurel, Maryland 20723 (United States); Ostrom, Nathaniel; Ostrom, Peggy H. [Department of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, Michigan 48824 (United States)

    2015-10-15

    A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is around 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.

  9. CERN celebrated the first year in space for the Alpha Magnetic Spectrometer (AMS) with a visit from the crew of the shuttle mission, STS-134, who successfully delivered AMS to the International Space Station (ISS) last year.

    CERN Multimedia

    Laurent Egli

    2012-01-01

    During the celebrations at CERN, the astronauts unveiled a commemorative plaque on the lawn outside the POCC to mark the occasion and later gave a public lecture at CERN. Picture 28 : STS-134 astronauts (left to right) Andrew Feustel, Gregory Chamitoff, Gregory Johnson, Michael Fincke and Mark Kelly in the AMS Payload Operations Centre at CERN.

  10. A Bonner Sphere Spectrometer with extended response matrix

    CERN Document Server

    Silari, M; Dimovasili, E; Birattari, C

    2010-01-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators. (C) 2010 Elsevier B.V. All rights reserved.

  11. A small and compact AMS facility for tritium depth profiling

    Indian Academy of Sciences (India)

    employing diamond-like carbon (DLC) stripper foils at this accelerator, another ... the switching magnet the tritium ions are counted with a surface barrier detector. .... AMS has been successfully applied to depth profiling of tritium in graphite ...

  12. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Casey, D.; Clancy, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T. [General Atomics, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States)

    2014-11-15

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%–5% can be achieved in the range of 2–25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ρR (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup −5} γ/n); and 1 × 10{sup 16} DT-n for fuel ρR (at 1 g/cm{sup 2})

  13. Eclipse Science Results from the Airborne Infrared Spectrometer (AIR-Spec)

    Science.gov (United States)

    Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.; Judge, P. G.; Lussier, L.; Madsen, C. A.; Marquez, V.; Tomczyk, S.; Vira, A.

    2017-12-01

    We present the first science results from the commissioning flight of the Airborne Infrared Spectrometer (AIR-Spec), an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). During the eclipse, AIR-Spec will image five magnetically sensitive coronal emission lines between 1.4 and 4 microns to determine whether they may be useful probes of coronal magnetism. The instrument will measure emission line intensity, FWHM, and Doppler shift from an altitude of over 14 km, above local weather and most of the absorbing water vapor. Instrumentation includes an image stabilization system, feed telescope, grating spectrometer, infrared camera, and visible slit-jaw imager. Results from the 2017 eclipse are presented in the context of the mission's science goals. AIR-Spec will identify line strengths as a function of position in the solar corona and search for the high frequency waves that are candidates for heating and acceleration of the solar wind. The instrument will also identify large scale flows in the corona, particularly in polar coronal holes. Three of the five lines are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. Finally, the AIR-Spec measurements will complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure infrared emission of ions observed in the visible from the ground, giving insight into plasma heating and acceleration at radial distances inaccessible to existing or planned spectrometers.

  14. A new method of alpha ray measurement using a Quadrupole Mass Spectrometer

    International Nuclear Information System (INIS)

    Iwata, Y.; Inoue, Y.; Minowa, M.

    2007-01-01

    We propose a new method of alpha (α)-ray measurement that detects helium atoms with a Quadrupole Mass Spectrometer (QMS). A demonstration is undertaken with a plastic-covered 241 Am α-emitting source to detect α-rays stopped in the capsule. We successfully detect helium atoms that diffuse out of the capsule by accumulating them for 1-20h in a closed chamber. The detected amount is found to be proportional to the accumulation time. Our method is applicable to probe α-emitting radioactivity in bulk material

  15. Charge determination of nuclei with the AMS-02 silicon tracker

    OpenAIRE

    Alpat, B.; G. Ambrosi; Azzarello, P.; Battiston, R.; Bene, P.; Bertucci, B.; Bizzaglia, S.; Bizzarri, M.; Blasko, S.; Bourquin, M.; Cortina Gil, Eduardo

    2005-01-01

    The silicon tracker of the AMS-02 detector measures the trajectory in three dimensions of electrons, protons and nuclei to high precision in a dipole magnetic field and thus measures their rigidity (momentum over charge) and the sign of their charge. In addition, it measures the specific energy loss of charged particles to determine the charge magnitude. Ladders from the AMS-02 tracker have been exposed to ion beams at CERN and GSI to study their response to nuclei from helium up to the iron ...

  16. Monte-Carlo study of the influence of backscattered electrons on the transmission of a mini-orange β spectrometer

    Science.gov (United States)

    Detistov, Pavel; Balabanski, Dimiter L.

    2015-04-01

    This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made.

  17. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  18. High-effective position time spectrometer in actual measurements of low intensity region of electron spectra

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Zhdanov, V.S.

    2002-01-01

    Magnetic position-time spectrometer was proposed in previous work, where not only electron coordinates in focal plane are measured by position sensitive detector (PSD) but places of their birth in beta source plane of a large area are fixed using another PSD, situated behind it, by quick effects, accompanying radioactive decay. PSD on the basis of macro-channel plates are used. It is succeeded in position-time spectrometer to combine beta sources of a large area with multichannel registration for a wide energy interval, that efficiency of measurements was two orders of magnitude increase d in comparison magnetic apparatus having PSD only in focal plane. Owing to two detectors' switching on coincidence the relation effect/background in increased minimum on two orders of magnitude in comparison with the same apparatus. At some complication of mathematical analysis it was obtained, that high characteristics of position-time spectrometer are kept during the use the magnetic field, providing double focusing. Owning to this focusing the gain the efficiency of measurements will make one more order of magnitude. Presented high-effective position-time spectrometer is supposed to use in the measurements of low-intensity region of electron spectra, which are important for development of fundamental physics. This is the first of all estimation of electron anti-neutrino mass by the form of beta spectrum of tritium in the region of boundary energy. Recently here there was problem of non physical negative values. This problem can be solved by using in measurement of different in principle high-effective spectrometers, which possess improved background properties. A position-time spectrometers belongs to these apparatus, which provides the best background conditions at very large effectiveness of the measurements of tritium beta spectrum in the region of boundary energy with acceptable high resolution. An important advantage of position-time spectrometer is the possibility of

  19. Magnetic inelastic scattering: Present results and future trends

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.

    1996-04-01

    Experience over the last 15 years has shsown that pulsed neutron spectrometers are able to contribute to the field of magnetic inelastic scattering. Such spectrometers have high resolution and wide dynamic range, both of which are necessary in order to characterize the magnetic response of the complex systems of current interest, ranging from rare earth-transition metal permanent magnets to quantum critical scatterers. Howevera, all these studies have been constrained by current flux limitations. The development of more powerful spallation neutron sources, such as the JHP, is likely to transform these interesting demonstrations of the potential of pulsed neutron scattering into routine tools for the study of magnetic correlations.

  20. A novel spectrometer for studying exotic nuclei with the electron/ion collider ELISe

    International Nuclear Information System (INIS)

    Berg, G.P.A.; Adachi, T.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Woertche, H.J.; Simon, H.; Koop, I.A.; Couder, M.; Fujiwara, M.

    2011-01-01

    A novel concept of an electron spectrometer developed for the ELISe facility is presented. This spectrometer will be constructed as a part of the international Facility for Antiprotons and Ion Research (FAIR) at GSI Helmholtzzentrum fuer Schwerionenforschung. The spectrometer is designed to analyze electron scattering at the ion-electron interaction region of the NESR and EAR colliding storage rings with a high resolution and a large solid angle. A pre-deflector with a zero-field central channel along the path of the intersecting beam allows the measurement of scattered electrons without interfering with the circulating beams. Ion-optical and magnet design calculations are presented to demonstrate the feasibility and achievement of realistic design specifications.

  1. A novel spectrometer for neutrino experiments

    CERN Document Server

    Pasqualini, Laura

    2015-01-01

    The WA104-NESSiE program developed in the context of the CERN Neutrino Platform, includes an innovative spectrometer to measure the charge and the momentum of muons in 0.5-5 GeV/c range. A tracking apparatus with a spatial resolution of 1 mm was designed, to be placed in a magnetized air volume in order to achieve a charge resolution and mis-identification of better than 1% at 1 GeV/c. Preliminary results obtained by detecting cosmic ray muons are reported.

  2. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-01-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate

  3. Possible physics program with a large acceptance hyperon spectrometer at J-PARC

    International Nuclear Information System (INIS)

    Imai, Kenichi

    2013-01-01

    We are going to construct a large acceptance hyperon spectrometer (HypTPC) at J-PARC primarily to search for H-dibaryon. The HypTPC consists of a superconducting Helmholtz magnet and a Time Projection Chamber (TPC). The short-life hyperons can be detected with high precision as well as any charged particles. Here, we discuss possible physics programs other than H-dibaryon which can be done with this spectrometer, such as a nucleon resonance spectroscopy experiment, systematic study of Λ(1405) and spectroscopy of Ξ and Ω - resonances. (author)

  4. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenhao, E-mail: wenhao_sun@126.com [Southeast University, Nanjing 210096 (China); Cai, Xudong [Massachusetts Institute of Technology, MA 02139-4307 (United States); Meng, Qiao [Southeast University, Nanjing 210096 (China)

    2016-04-11

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  5. Characterization of aerosol particles from grass mowing by joint deployment of ToF-AMS and ATOFMS instruments

    Science.gov (United States)

    Drewnick, Frank; Dall'Osto, Manuel; Harrison, Roy

    During a measurement campaign at a semi-urban/industrial site a grass-cutting event was observed, when the lawn in the immediate surrounding of the measurement site was mowed. Using a wide variety of state-of-the-art aerosol measurement technology allowed a broad characterization of the aerosol generated by the lawn mowing. The instrumentation included two on-line aerosol mass spectrometers: an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS) and a TSI Aerosol Time-of-Flight Mass Spectrometer (ATOFMS); in addition, a selection of on-line aerosol concentration and size distribution instruments (OPC, APS, SMPS, CPC, FDMS-TEOM, MAAP) was deployed. From comparison of background aerosol measurements during most of the day with the aerosol measured during the lawn mowing, the grass cutting was found to generate mainly two different types of aerosol particles: an intense ultrafine particle mode (1 h average: 4 μg m -3) of almost pure hydrocarbon-like organics and a distinct particle mode in the upper sub-micrometer size range containing particles with potassium and nitrogen-organic compounds. The ultrafine particles are probably lubricating oil particles from the lawn mower exhaust; the larger particles are swirled-up plant debris particles from the mowing process. While these particle types were identified in the data from the two mass spectrometers, the on-line aerosol concentration and size distribution data support these findings. The results presented here show that the combination of quantitative aerosol particle ensemble mass spectrometry (ToF-AMS) and single particle mass spectrometry (ATOFMS) provides much deeper insights into the nature of the aerosol properties than each of the instruments could do alone. Therefore a combined deployment of both types of instruments is strongly recommended.

  6. Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, J.C. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Diefenbach, J. [Hampton University, Hampton, VA (United States); Elbakian, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Gavrilov, G. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Goerrissen, N. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Hasell, D.K.; Henderson, B.S. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Holler, Y. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Karyan, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Ludwig, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Marukyan, H. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Naryshkin, Y. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); O' Connor, C.; Russell, R.L.; Schmidt, A. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Schneekloth, U. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Suvorov, K.; Veretennikov, D. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    2016-07-01

    The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme (Lekien and Marsden, 2005 [1]). This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroidal axis.

  7. Identification and energy measurement of charged particles in the 50-300 MeV energy range by means of a magnet-free hardron spectrometer

    International Nuclear Information System (INIS)

    Bayukov, Yu D.; Bukiej, A.E.; Gavrilov, V.B.

    1980-01-01

    Studied are the main characteristics (efficiency, time delay and amplitude singal distribution) of a magnet-free hadron spectrometer, in which a plastic scintillator block is the main part. The plastic scintillator having the form of a cylinder of the 20 cm diameter and the 20 cm height is examined with a photomultiplier through a 50 cm light guide. The dependencies of the amplitude conversion coefficient and signal time delay on the distance between the scintillation point and the light guide are resented. The analysis of the results obtained has shown that the closer the beam passes to the light guide, the greater is the signal amplitude. The counter signal delay linearly increases with the distance increase between the beam and the light guide. The dependence of the spectrometer efficiency on the proton energy is measured as well. The investigations have proved possible utilization of the scintillation detector described for identification of charged particles in the 50-300 MeV range and measurement of their energy with the 3-8% accuracy

  8. AMS at the National Institute of Nuclear Physics and Engineering in Bucharest

    International Nuclear Information System (INIS)

    Stan-Sion, C.; Ivascu, M.; Plostinaru, D.; Catana, D.; Marinescu, L.; Radulescu, M.; Nolte, E.

    2000-01-01

    A new beam line and injector deck for AMS measurements have been built at the 8 MV tandem accelerator of the National Institute of Nuclear Physics and Engineering, Bucharest, Romania. The main components on the low-energy side are a high-current cesium sputter source, a 90 deg. injection magnet and a pre-acceleration stage. At the high-energy side the beam line is achromatic, consisting of two 90 deg. analysing magnets with mass energy product 120 MeV amu and a gas-filled ionization chamber. The system will be complete with a Wien filter and a multi-anode gas detector with time-of-flight discrimination. Presently, the AMS facility is undergoing tests and routine measurements are expected to start soon

  9. AMS at the National Institute of Nuclear Physics and Engineering in Bucharest

    Energy Technology Data Exchange (ETDEWEB)

    Stan-Sion, C. E-mail: stansion@ifin.nipne.ro; Ivascu, M.; Plostinaru, D.; Catana, D.; Marinescu, L.; Radulescu, M.; Nolte, E

    2000-10-01

    A new beam line and injector deck for AMS measurements have been built at the 8 MV tandem accelerator of the National Institute of Nuclear Physics and Engineering, Bucharest, Romania. The main components on the low-energy side are a high-current cesium sputter source, a 90 deg. injection magnet and a pre-acceleration stage. At the high-energy side the beam line is achromatic, consisting of two 90 deg. analysing magnets with mass energy product 120 MeV amu and a gas-filled ionization chamber. The system will be complete with a Wien filter and a multi-anode gas detector with time-of-flight discrimination. Presently, the AMS facility is undergoing tests and routine measurements are expected to start soon.

  10. The nuclear magnetic resonance well logging

    International Nuclear Information System (INIS)

    Zhang Yumin; Shen Huitang

    2003-01-01

    In this paper, the characteristic of the nuclear magnetic resonance logging is described at first. Then its development and its principle is presented. Compared with the nuclear magnetic resonance spectrometer, the magnet techniques is the first question that we must solve in the manufacture of the NMR well logging

  11. A 16-detector alpha spectrometer using 1 multichannel analyzer

    International Nuclear Information System (INIS)

    Phillips, W.G.

    1978-01-01

    An alpha spectrometer containing 16 independent detectors and utilizing one 4096-channel multichannel analyzer (MCA) was constructed from commerically available modules. The spectrometer was designed specifically for the counting of low levels of radioactivity in environmental samples. Gated analog routing allows spectral data acquisition into 256 channel regions of the MCA memory as if each region were an independent 256-channel MCA. External live-time clocks and 50-Mhz analog-to-digital converters control timing and acquisition on each unit of eight detectors. Spectral data output is to magnetic tape in units of 256 channels each with a unique tagword. These tapes are then read and processed, and final reports are generated, by a large Control Data 6000 series computer

  12. Cavity BPM system tests for the ILC energy spectrometer

    Science.gov (United States)

    Slater, M.; Adolphsen, C.; Arnold, R.; Boogert, S.; Boorman, G.; Gournaris, F.; Hildreth, M.; Hlaing, C.; Jackson, F.; Khainovski, O.; Kolomensky, Yu. G.; Lyapin, A.; Maiheu, B.; McCormick, D.; Miller, D. J.; Orimoto, T. J.; Szalata, Z.; Thomson, M.; Ward, D.; Wing, M.; Woods, M.

    2008-07-01

    The main physics programme of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of 10-4 or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 h for a 1 m long BPM triplet. We find micron-level stability over 1 h for 3 BPM stations distributed over a 30 m long baseline. The understanding of the behaviour and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out.

  13. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Skulina, K.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M. P.; Hoppe, M.; Kilkenny, J. D.; Reynolds, H. G.; Schoff, M. E. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.

  14. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2014-09-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ˜30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  15. Electron spectroscopy measurements with a shifted analyzing plane setting in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Dyba, Stephan [Institut fuer Kernphysik, Uni Muenster (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    With the KATRIN (KArlsruhe TRItium Neutrino) experiment the endpoint region of the tritium beta decay will be measured to determine the electron-neutrino mass with a sensitivity of 200 meV/c{sup 2} (90% C.L.). For the high precision which is needed to achieve the sub-eV range a MAC-E filter type spectrometer is used to analyze the electron energy. To understand the various background contributions inside the spectrometer vessel different electric and magnetic field settings were investigated during the last commissioning phase. This talk will focus on the so called shifted analyzing plane measurement in which the field settings were tuned in a way to provide non standard potential barriers within the spectrometer. The different settings allowed to perform a spectroscopic measurement, determining the energy spectrum of background electrons born within the spectrometer.

  16. Monte-Carlo study of the influence of backscattered electrons on the transmission of a mini-orange β spectrometer

    International Nuclear Information System (INIS)

    Detistov, Pavel; Balabanski, Dimiter L

    2015-01-01

    This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made. (paper)

  17. Ion optics of a high resolution multipassage mass spectrometer with electrostatic ion mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Osaka Univ. (Japan). Dept. of Physics; Baril, M [Departement de Physique, Faculte des Sciences et de Genie, Universite Laval, Ste-Foy, Quebec G1K 7P4 (Canada)

    1995-09-01

    Ion trajectories in an electrostatic ion mirror are calculated. The interferences of the extended fringing fields of the mirror with finite aperture are studied. The results of the calculations are represented by three transfer matrices, which describe ion trajectories under the effects of a fringing field at the entrances, of an idealized mirror region, and of a fringing field at the exit. The focusing effects and ion-optical properties of mass spectrometers with electrostatic ion mirrors can be evaluated by using these transfer matrices. A high performance multipassage mass spectrometer is designed. The system has one magnet and four electrostatic sector analyzers and two ion mirrors. The double focusing condition and stigmatic focusing condition are achieved in any passage of the system. The mass resolution increases linearly with the number of passages in a magnet. (orig.).

  18. Study of preshower in the PANDA target spectrometer

    International Nuclear Information System (INIS)

    Dutta, Kamal; Kalita, Kushal; Suzuki, K.; Steinschaden, D.; Roy, B.J.

    2015-01-01

    PANDA (antiProton ANnihilation at DArmstdt) is one of the major projects at FAIR, GSI, Germany. The main objective of this experiment is to study the fundamental questions of hadron physics and QCD in pp¯ annihilation using high intensity cooled anti-proton beams with momenta between 1.5 GeV/c and 15 GeV/c. To achieve high momentum resolution and full solid angle coverage, the PANDA detector is split in to two parts: target spectrometer and forward spectrometer. The target spectrometer is a complex detector consisting of several subsystems surrounding the interaction point. It is surrounded by a 2 T superconducting solenoid magnet. A Micro Vertex Detector (MVD), close to interaction point, detects secondary vertices of D and Hyperon decays. The Straw Tube Tracker (STT) is the central tracking system around the MVD. A cherenkov counter named DIRC (Detection of Internally Reflected Cherenkov light), provides π/K separation for particle momenta up to 3.5 GeV/c. The barrel Time-of-Flight (TOF) detector, consists of plastic scintillator tiles with a time resolution of 100 ps. It is used to identify particles of momentum below cherenkov threshold

  19. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    Science.gov (United States)

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species.

  20. Considerations for design of a Fourier transform mass spectrometer in the 4.2 K cold bore of a superconducting magnet.

    Science.gov (United States)

    O'Connor, Peter B

    2002-01-01

    An external source Fourier transform mass spectrometer (FTMS) constructed inside the vertical cold bore of a superconducting magnet will have dramatic advantages in effective magnetic field, noise figures, and base pressure over current commercially available external source FTMS systems. There are substantial, but solvable, difficulties in the design, primarily with regard to control of the helium boiloff rate to an acceptable level, as well as relatively minor design challenges with heat sinks, contraction of metallic ion optic elements in the extreme temperature, and tandem mass spectrometry experiments. However, the ability to construct the FTMS inside the narrow bore tube of existing, commercially available vertical bore NMR magnets will allow access to the upper magnetic field limit currently used by 900 MHz (21 Tesla) - 1 GHz (23.3 Tesla) NMR experiments. The vacuum system, simply by being held inside the cold bore at 4.2 K, will cryopump itself dropping base pressures substantially, and heat sinking the input resistor of the preamplifier to this cryogenically cooled vacuum chamber will allow reduction of the input Johnson noise by a factor of 8.4 with associated 8.4-fold improvement in signal/noise, sensitivity, and dynamic range. The simultaneous improvement of three fundamental limiting factors in the FTMS (field strength, base pressure, and Johnson noise figure) will clearly outweigh the concomitant increased helium boiloff rate particularly if this rate can be dropped to the estimated <5 L/day range. The additional use of modern cryorefrigerators will further reduce helium boiloff to zero except during MS(n) experiments and system cooldown. Copyright 2002 John Wiley & Sons, Ltd.

  1. NASA declares no room for antimatter experiment

    CERN Multimedia

    Law??, Andrew

    2007-01-01

    "The Alpha Magnetic Spectrometer (AMS) is a model of international cooperation, led by a dynamic Nobel Prize winner, and promises to do impressive science in space. But it may never get a chance to do its thing." (1 page)

  2. A four-detector spectrometer for e--γ PAC on-line with the ISOLDE-CERN isotope separator

    International Nuclear Information System (INIS)

    Marques, J.G.; Correia, J.G.; Melo, A.A.; Silva, M.F. da; Soares, J.C.

    1995-01-01

    A four-detector e - -γ spectrometer has been installed on-line with the ISOLDE isotope separator. The spectrometer consists of two magnetic lenses for detection of conversion electrons, and two BaF 2 scintillators for γ-ray detection. The spectrometer has been equipped with a 20 kV pre-acceleration system which enables detection of conversion electrons down to 2 keV. Implantation and measurement can be performed simultaneously on a large temperature range by heating or cooling the sample holder. The advantages of using the e - -γ PAC technique on-line at ISOLDE are discussed. (orig.)

  3. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  4. The EBIT Calorimeter Spectrometer: a new, permanent user facility at the LLNL EBIT

    International Nuclear Information System (INIS)

    Porter, F.S.; Beiersdorfer, P.; Brown, G.V.; Doriese, W.; Gygax, J.; Kelley, R.L.; Kilbourne, C.A.; King, J.; Irwin, K.; Reintsema, C.; Ullom, J.

    2007-01-01

    The EBIT Calorimeter Spectrometer (ECS) is currently being completed and will be installed at the EBIT facility at the Lawrence Livermore National Laboratory in October 2007. The ECS will replace the smaller XRS/EBIT microcalorimeter spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory program. The new ECS spectrometer was built to be a low maintenance, high performance implanted silicon microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 (micro)s event timing, and capable of uninterrupted acquisition sessions of over 60 hours at 50 mK. The XRS/EBIT program has been very successful, producing many results on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES instrument.

  5. Inelastic rotor spectrometer at the Harwell Linac

    International Nuclear Information System (INIS)

    Boland, B.C.

    1983-01-01

    The spectrometer is designed to measure energy transfer from 50 MeV to 400 MeV covering a range of Q values from 1 to 15 A - 1 . Particular emphasis has been placed on the low Q counter banks where measurements at low Q reduce multiphonon contributions in vibrational spectra, diffusional broadening in liquids and allow measurements to be made on magnetic excitations. All indications are that the energy resolution is as predicted and is certainly twice as good as that of any other spectrometer presently available to the UK users at these energy transfers. Backgrounds on the high angle banks 24 0 to 94 0 are excellent but at the low angles are too high at present for anything but hydrogenous samples. Tests have shown that much of this background comes from the main beam in the area of the collimation between the chopper and the sample, and steps are being taken to improve this area

  6. A five-collector system for the simultaneous measurement of argon isotope ratios in a static mass spectrometer

    Science.gov (United States)

    Stacey, J.S.; Sherrill, N.D.; Dalrymple, G.B.; Lanphere, M.A.; Carpenter, N.V.

    1981-01-01

    A system is described that utilizes five separate Faraday-cup collector assemblies, aligned along the focal plane of a mass spectrometer, to collect simultaneous argon ion beams at masses 36-40. Each collector has its own electrometer amplifier and analog-to-digital measuring channel, the outputs of which are processed by a minicomputer that also controls the mass spectrometer. The mass spectrometer utilizes a 90?? sector magnetic analyzer with a radius of 23 cm, in which some degree of z-direction focussing is provided for all the ion beams by the fringe field of the magnet. Simultaneous measurement of the ion beams helps to eliminate mass-spectrometer memory as a significant source of measurement error during an analysis. Isotope ratios stabilize between 7 and 9 s after sample admission into the spectrometer, and thereafter changes in the measured ratios are linear, typically to within ??0.02%. Thus the multi-collector arrangement permits very short extrapolation times for computation of initial ratios, and also provides the advantages of simultaneous measurement of the ion currents in that errors due to variations in ion beam intensity are minimized. A complete analysis takes less than 10 min, so that sample throughput can be greatly enhanced. In this instrument, the factor limiting analytical precision now lies in short-term apparent variations in the interchannel calibration factors. ?? 1981.

  7. Construction of a NMR permanent magnet; Construcao de um ima permanente para RMN

    Energy Technology Data Exchange (ETDEWEB)

    Colnago, Luiz Alberto; Martins Neto, Ladislau; Oste, Rene de [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Sao Carlos, SP (Brazil). Nucleo de Pesquisa e Desenvolvimento de Instrumentacao Agropecuaria

    1992-12-31

    Viewing the development of the pulsed, low resolution NMR spectrometers for quantitative analysis, the electronic part of a NMR spectrometer has first been constructed, based on a 1.4 Tesla magnet of a 60 MHz Varian device, with a gap increased to 23 mm, therefore reducing the field to .66 Tesla (28 MHz for the hydrogen). For the complete construction of the spectrometer in Brazil, a permanent magnet for NMR has also been constructed 9 refs., 3 figs.

  8. A Moessbauer effect spectrometer

    International Nuclear Information System (INIS)

    Fayek, M.K.; Abbas, Y.M.; Bahgat, A.A.

    1983-01-01

    A Moessbauer effect spectrometer of Harwell type is installed and put in operation. The driving system is of a constant acceleration mode with a velocity range 40mm/sec. and associated to a 1024 multichannel analyser working in a multiscalar time mode. The gamma ray sources are 50 mCi Co 57 in Pd and 20 mCi Snsup(119m) in Ba Sn(O) 3 . Measurements are taken with the source kept at room temperature, while the absorber can be maintained at various temperatures. Gamma ray resonance spectra of different standard samples are obtained. Zero velocity and magnetic field calibration curves are deduced. Examples of some Moessbauer spectra for running investigated materials with a comprehensive general description are also given

  9. Photon pair spectrometers in a μ → eγ decay search with the MEGA experiment

    International Nuclear Information System (INIS)

    Dzemidzic, M.

    1993-01-01

    The MEGA experiment at LAMPF is conducting a search for the lepton family number violating decay μ + →e + γ with a branching ratio sensitivity of a few parts in 10 -13 . The detectors are contained in a 1.5 T solenoidal magnetic field. Positrons are confined to the central region and are measured by a set of cylindrical MWPCs. Photons are converted into e + e - pairs by one of three pair spectrometers in the outer region. Each pair spectrometer consists of an inner layer of plastic scintillator, two lead converters separated by a MWPC and three layers of drift chambers. The MEGA collaboration successfully concluded 1992 data taking with a set of positron MWPCs and two pair spectrometers. A brief overview of the pair spectrometer design and performance will be followed by a presentation of results to date of the data analysis

  10. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  11. Highly effective portable beta spectrometer for precise depth selective electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Aldiyarov, N.U.; Kadyrzhanov, K.K.; Seytimbetov, A.M.; Zhdanov, V.S.

    2007-01-01

    Full text: More broad application of the nuclear-physical method of precise Depth Selective Electron Moessbauer Spectroscopy (DS EMS) is limited by insufficient accessibility of highly-effective beta spectrometers with acceptable resolution. It should be mentioned that the method DS EMS is realized at a combined installation that consists of a highly-effective beta spectrometer and a conventional portable nuclear gamma-resonance spectrometer. Yet few available beta spectrometers have sophisticated design and controlling; in most cases they are cumbersome. All the attempts to simplify beta spectrometers resulted in noticeable worsening of depth resolution for the DS EMS method making the measurements non precise. There is currently an obvious need in a highly-effective portable easily controlled beta spectrometer. While developing such portable beta spectrometer, it is more promising to use as basis a simpler spectrometer, which has ratio of sample size to spectrometer size of about five times. The paper presents an equal-arm version of a highly-effective portable beta spectrometer with transverse heterogeneous sector magnetic field that assures double focusing. The spectrometer is equipped with a large-area non-equipotential source (a sample under investigation) and a position-sensitive detector. This portable spectrometer meets all requirements for achievement of the DS EMS depth resolution close to the physical limit and demonstrates the following main characteristics: equilibrium orbit radius ρ 0 = 80 mm, instrumental energy resolution 0.6 % at solid angle 1 % of 4π steradian, area of non-equipotential source ∼ 80 mm 2 , registration by position-sensitive detector of ∼ 10 % of the energy interval. Highly-effective portable beta spectrometer assures obtaining Moessbauer data with depth resolution close to physical limit of the DS EMS method. So in measurements at conversion and Auger electrons with energies of about units of keV and above, the achieved

  12. Determination of the bending field integral of the LEP spectrometer dipole

    International Nuclear Information System (INIS)

    Chritin, R.; Cornuet, D.; Dehning, B.; Hidalgo, A.; Hildreth, M.; Kalbreier, W.; Leclere, P.; Mugnai, G.; Palacios, J.; Roncarolo, F.; Torrence, E.; Wilkinson, G.

    2005-01-01

    The LEP spectrometer performed calibrations of the beam energy in the 2000 LEP run, in order to provide a kinematical constraint for the W boson mass measurement. The beam was deflected in the spectrometer by a steel core dipole, and the bending angle was measured by Beam-Position Monitors on either side of the magnet. The energy determination relies on measuring the change in bending angle when ramping the beam from a reference point at 50GeV to an energy within the LEP W physics regime, typically 93GeV. The ratio of integrated bending fields at these settings (approximately 1.18Tm/0.64Tm) must be known with a precision of a few 10 -5 . The paper reports on the field mapping measurements which were conducted to determine the bending integral under a range of excitation currents and coil temperatures. These were made in the laboratory before and after spectrometer operation, using a test-bench equipped with a moving arm, carrying an NMR probe and Hall probes, and in the LEP tunnel itself, with a mapping trolley inside the vacuum chamber. The mapping data are related to local readings supplied by fixed NMR probes in the dipole, and a predictive model developed which shows good consistency for all datasets within the estimated uncertainty, which is 14x10 -5 for the moving arm, and 3x10 -5 for the mapping trolley. Measurements are also presented of the field gradient inside the dipole, and of the environmental magnetic fields in the LEP tunnel. When applied to the spectrometer energy calibrations, the bending field model calculates the ratio of integrated fields with an estimated uncertainty of 1.5x10 -5

  13. Complementary analyses of hollow cylindrical unioriented permanent magnet (HCM) with high permeability external layer

    Science.gov (United States)

    Lobo, Carlos M. S.; Tosin, Giancarlo; Baader, Johann E.; Colnago, Luiz A.

    2017-10-01

    In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers.

  14. Low Current Magnet

    Science.gov (United States)

    1992-01-01

    Because Goddard Space Flight Center needed a way to cool sensors aboard the AXAF, a low current superconducting magnet was developed under contract by Cryomagnetics, Inc. The magnet, now commercially available, reduced the rate of helium consumption, extending the lifetime of the AXAF's x-ray spectrometer. On Earth, it offers a way to reduce operating costs through smaller, less expensive power supplies and reduced use of coolant. The magnet has particular advantages for MRI systems, as it is safer and has lower maintenance requirements.

  15. Search for a QGP with a TPC spectrometer, and QGP signals predicted by new event generator

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.

    1988-01-01

    The BNL/CCNY/Johns Hopkins/Rice Collaboration has developed and successfully tested a TPC Magnetic Spectrometer to search for OGP signals produced by ion beams at AGS. Test data with 14.5 GeV/c /times/ A Oxygen ions incident on a Pb target has been obtained. These include a 78-prong nuclear interaction in the MPS magnet which was pattern recognized with an efficiency ∼75%. A cascade and plasma event generator has also been developed, the predictions of which are used to illustrate how our technique can detect possible plasma signals at AGS and RHIC. A 4π tracking TPC magnetic spectrometer has been proposed for RHIC. The new event generator predicts striking central rapidity bump QGP signals at RHIC for p, /bar p/, π/sup +-/, K/sup +-/, etc., produced by 100 GeV/c /times/ A Au on Au collisions and these are presented. 2 refs., 13 figs., 1 tab

  16. Preliminary results with the CLAMSUD pion spectrometer at the Moscow Meson Factory

    International Nuclear Information System (INIS)

    Badala, A.; Barbera, R.; Librizzi, F.; Longhitano, A.; Nicotra, D.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Santoro, A.; Turrisi, R.; Aseev, V.; Feschenko, A.; Gavrilov, Yu.; Guber, F.; Golubeva, M.; Karavicheva, T.; Kurepin, A.; Ostroumov, P.; Potapov, V.; Tiflov, V.; Zhuravlev, A.

    1995-01-01

    A magnetic spectrometer has been recently installed at the new proton beam facility of the Moscow Meson Factory, to study charged pion production from proton-nucleus interactions at 200-400 MeV bombarding energy. Preliminary reults obtained during the first runs are reported. The planned physics program is also discussed. (orig.)

  17. The Alignment System of the ATLAS Muon End-Cap Spectrometer

    CERN Document Server

    Schricker, Alexander

    2002-01-01

    The Large Hadron Collider at CERN will offer an unparalleled opportunity to probe fundamental physics at an energy scale well beyond that reached by current experiments. The ATLAS detector is being designed to fully exploit the potential of the LHC for revealing new aspects of the fundamental structure of nature. The muon spectrometer itself must measure with a momentum resolution of s10% for muons with a transverse momentum of pT =1TeV, to fully exploit the advantages offered by the open superconducting air core muon toroid magnet system. At this level of momentum resolution the muon spectrometer relies heavily on the ability to master the alignment of the large muon chambers spaced far apart. The overall contribution of the alignment to the total sagitta error must be less than 30 μm r.m.s. In order to meet the stringent alignment requirements the positions of the muon chambers are constantly monitored with optical alignment technologies. The end-caps of this spectrometer are therefore embedded in an align...

  18. Polarisation analysis on the LET time-of-flight spectrometer

    Science.gov (United States)

    Nilsen, G. J.; Košata, J.; Devonport, M.; Galsworthy, P.; Bewley, R. I.; Voneshen, D. J.; Dalgliesh, R.; Stewart, J. R.

    2017-06-01

    We present a design for implementing uniaxial polarisation analysis on the LET cold neutron time-of-flight spectrometer, installed on the second target station at ISIS. The polarised neutron beam is to be produced by a transmission-based supermirror polariser with the polarising mirrors arranged in a “double-V” formation. This will be followed by a Mezei-type precession coil spin flipper, selected for its small spatial requirements, as well as a permanent magnet guide field to transport the beam polarisation to the sample position. The sample area will contain a set of holding field coils, whose purpose is to produce a highly homogenous magnetic field for the wide-angle 3He analyser cell. To facilitate fast cell changes and reduce the risk of cell failure, we intend to separate the cell and cryostat from the vacuum of the sample tank by installing both in a vessel at atmospheric pressure. When the instrument upgrade is complete, the performance of LET is expected to be commensurate with existing and planned polarised cold neutron spectrometers at other sources. Finally, we discuss the implications of performing uniaxial polarisation analysis only, and identify quasi-elastic neutron scattering (QENS) on ionic conducting materials as an interesting area to apply the technique.

  19. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  20. Proceedings of the nuclear magnetic resonance user meeting

    International Nuclear Information System (INIS)

    1987-01-01

    Studies on utilization of nuclear magnetic resonance, such as: chemical analysis in complexes and organic compounds; structures and magnetic properties of solids; construction of images and; spectrometer designs, are presented. (M.C.K.) [pt

  1. AMS studies in Portuguese variscan granites

    Science.gov (United States)

    Sant'Ovaia, Helena; Martins, Helena; Noronha, Fernando

    2014-05-01

    A large volume of Variscan granitic rocks outcrop in Central Iberian Zone which are well documented concerning geological mapping, petrography and geochemistry but whose magnetic characteristics and fabric remain unknown. In this study we summarize the available AMS data from approximately 644 sampling stations (5152 samples) on different massifs of Variscan Portuguese granites. Despite their different geological, petrographic and geochemical characteristics, magnetic susceptibility (K) values obtained for the majority of the studied granites range from 15 to 300 × 10-6 SI. The dominant paramagnetic behaviour of the granite bodies reflects the presence of ilmenite as the main iron oxide. This feature indicates the reduced conditions involved in the granite melt formation during the Variscan orogeny. The two-mica granites show K values ranging between 15 to 70 × 10-6 SI which are lower than values displayed by the biotite-rich facies scattered within the interval of 70 and 300 × 10-6 SI. The magnetite-bearing granites are scarce but represented in Lavadores, Gerês and Manteigas. Even so, only the Lavadores body could be considered as a true magnetite-type granite (K >3.0 × 10-3 SI) in face of its K, comprised between 1550 and 19303 × 10-6 SI. Magnetic anisotropy can be used as a "marker" for the deformation experienced by granite mushes during their crustal emplacement and further cooling. Magnetic anisotropy can thus be correlated with the finite deformation of a rock, as record by mineral fabrics. Post-tectonic granites, such as those from Vila Pouca de Aguiar, Pedras Salgadas, Caria, Vila da Ponte, Chaves and Lamas de Olo, have a magnetic anisotropy <2.5% which corresponds to a deformation hardly visible to the naked eye. Nevertheless, at microscopic scale, these granites display almost ubiquitous magmatic to submagmatic microstructures (rare wavy extinction in quartz, erratic subgrain boundaries in quartz and, eventually, folded or kinked biotites). For

  2. Polarized triple-axis spectrometer TASP

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P; Keller, P [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs.

  3. Field reconstruction for the KEK large-aperture-spectrometer-magnet 'TOKIWA'

    International Nuclear Information System (INIS)

    Amako, K.; Kawano, K.; Sugimoto, S.; Matsui, T.

    1978-10-01

    Field reconstruction has been performed for the KEK large-aperture-magnet ''TOKIWA''. The magnetic field components are determined point-by-point by an iteration method in which the output voltage from the Hall probes placed in three dimensional directions are used simultaneously. The field components are thus reconstructed accurately within 32 G everywhere in the magnet volume. (author)

  4. Overview of the Axial Field Spectrometer in the ISR tunnel

    CERN Multimedia

    1980-01-01

    A view of the Axial Field Spectrometer – the last large experiment at the ISR. The horizontal top and vertical outer arrays of the uranium-scintillator hadron calorimeter are clear to be seen, with the blue cylindrical pole piece of the magnet just visible. The pipes that are visible in front of the pole piece are cryogenic feed pipes for the superconducting low-beta quadrupoles.

  5. Charge determination of nuclei with the AMS-02 silicon tracker

    CERN Document Server

    Alpat, B; Azzarello, P; Battiston, R; Bene, P; Bertucci, B; Bizzaglia, S; Bizzarri, M; Blasko, S; Bourquin, M; Bouvier, P; Burger, W J; Capell, M; Cecchi, C; Chang, Y H; Cortina, E; Dinu, N; Esposito, G; Fiandrini, E; Haas, D; Hakobyan, H; Ionica, M; Ionica, R; Kounine, A; Koutsenko, V F; Lebedev, A; Lechanoine-Leluc, C; Lin, C H; Masciocchi, F; Menichelli, M; Natale, S; Paniccia, M; Papi, A; Pauluzzi, M; Perrin, E; Pohl, M; Rapin, D; Richeux, J P; Wallraff, W; Willenbrock, M; Zuccon, P

    2005-01-01

    The silicon tracker of the AMS-02 detector measures the trajectory in three dimensions of electrons, protons and nuclei to high precision in a dipole magnetic field and thus measures their rigidity (momentum over charge) and the sign of their charge. In addition, it measures the specific energy loss of charged particles to determine the charge magnitude. Ladders from the AMS-02 tracker have been exposed to ion beams at CERN and GSI to study their response to nuclei from helium up to the iron group. The longest ladder, 72 multiplied by 496mm2, verified in the tests contains 12 sensors. Good charge resolution is observed up to iron.

  6. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    Science.gov (United States)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  7. Design and experimental tests of a novel neutron spin analyzer for wide angle spin echo spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Peter; Farago, Bela; Andersen, Ken H.; Bentley, Phillip M.; Pastrello, Gilles; Sutton, Iain; Thaveron, Eric; Thomas, Frederic [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Moskvin, Evgeny [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Pappas, Catherine [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2009-09-15

    This paper describes the design and experimental tests of a novel neutron spin analyzer optimized for wide angle spin echo spectrometers. The new design is based on nonremanent magnetic supermirrors, which are magnetized by vertical magnetic fields created by NdFeB high field permanent magnets. The solution presented here gives stable performance at moderate costs in contrast to designs invoking remanent supermirrors. In the experimental part of this paper we demonstrate that the new design performs well in terms of polarization, transmission, and that high quality neutron spin echo spectra can be measured.

  8. The combination of the liquid chromatograph with the nuclear magnetic resonance spectrometer

    International Nuclear Information System (INIS)

    Scott, R.P.W.

    1986-01-01

    The association of the liquid chromatograph with the NMR spectrometer would be a very powerful analytical system for the separation and identification of unknown mixtures. There are, however, some serious difficulties involved with the association of these two techniques. The historical development of NMR chromatography is outlined and some problems are discussed. (Auth.)

  9. Removal of stored particle background via the electric dipole method in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hilk, Daniel [Institut fuer Experimentelle Kernphysik, KIT, Karlsruhe (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The goal of the KArlsruhe TRItium Neutrino (KATRIN) experiment is to determine the effective mass of the electron anti neutrino by measuring the electron energy spectrum of tritium beta decay near the endpoint. The goal is to reach a sensitivity on the neutrino mass of 200 meV for which a low background level of 10{sup -2} counts per second is mandatory. Electrons from single radioactive decays of radon and tritium in the KATRIN main spectrometer with energies in the keV range can be magnetically stored for hours. While cooling down via ionization of residual gas molecules, they produce hundreds of secondary electrons, which can reach the detector and contribute to the background signals. In order to suppress this background component, several methods are investigated to remove stored electrons, such as the application of an electric dipole field and the application of magnetic pulses. This talk introduces the mechanism of background production due to stored electrons and their removal by the electric dipole method in the main spectrometer. In context of the spectrometer- and detector-commissioning phase in summer 2015, measurement results of the application of the electric dipole method are presented.

  10. Complementary analyses of hollow cylindrical unioriented permanent magnet (HCM) with high permeability external layer.

    Science.gov (United States)

    Lobo, Carlos M S; Tosin, Giancarlo; Baader, Johann E; Colnago, Luiz A

    2017-10-01

    In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Summary of existing superconducting magnet experience and its relevance to the safety of fusion magnet

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Allinger, J.; Danby, G.; Keane, J.; Powell, J.; Prodell, A.

    1975-01-01

    A comprehensive summary of experience with over twenty superconducting magnet systems has been collected through visits to and discussions about existing facilities including, for example, the bubble chamber magnets at Brookhaven National Laboratory, Argonne National Laboratory and Fermi National Accelerator Laboratory, and the large superconducting spectrometer at Stanford Linear Accelerator Center. This summary includes data relating to parameters of these magnets, magnet protection methods, and operating experiences. The information received is organized and presented in the context of its relevance to the safe operation of future, very large superconducting magnet systems for fusion power plants

  12. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Dongge Deng

    2016-10-01

    Full Text Available A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  13. The DEIS high energy muon spectrometer. II. The data acquisition system

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Dau, W.D.; Faehnders, E.; Jokisch, H.; Kaleschke, G.P.; Klemke, G.; Sauerland, K.; Schmidtke, G.; Uhr, R.C.; Bella, G.; Oren, Y.; Virni, U.; Seidman, A.

    1977-01-01

    The whole spectrometer is read out and controlled on-line via a CAMAC-system by a minicomputer. The magnetostrictive read out signals of 66 magnetostrictive read out wands of the wire spark chambers are digitized by 20-MHz-scalers which can store up to 8 sparks per chamber. The time-of-flight of the muon, the pulse heights of the scintillation counters, the time of event are also recorded. The on-line-computer makes reliability checks of the data and stores them together with monitor data about magnetic field, gas and high voltage system, etc. on magnetic tape for off-line analysis. (author)

  14. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  15. The H1 forward muon spectrometer

    International Nuclear Information System (INIS)

    Kenyon, I.R.; Phillips, H.; Cronstroem, H.I.; Hedberg, V.; Jacobsson, C.; Joensson, L.; Lohmander, H.; Nyberg, M.; Biddulph, P.; Finnegan, P.; Foster, J.; Gilbert, S.; Hilton, C.; Ibbotson, M.; Mehta, A.; Sutton, P.; Stephens, K.; Thompson, R.

    1993-02-01

    The H1 detector started taking data at the electron- proton collider HERA in the beginning of 1992. In HERA 30 GeV electrons collide with 820 GeV protons giving a strong boost of the centre-of-mass system in the direction of the proton, also called the forward region. For the detection of high momentum muons in this region a muon spectrometer has been constructed, consisting of six drift chamber planes, three either side of a toroidal magnet. A first brief description of the system and its main parameters as well as the principles for track reconstruction and Τ 0 determination is given. (orig.)

  16. Mass spectrometer data system at LLL

    International Nuclear Information System (INIS)

    Friesen, R.D.

    1975-01-01

    The data systems on the three mass spectrometers at LLL are computer-controlled, pulse-counting systems synchronized to a repeatedly-swept magnetic field. The data are accumulated in the memory of the computer or in a Nuclear Data ND 180 in a multi-scaler mode of operation. This mode of sweeping allows a continuous check of the background stability and makes tune-up easier. But the main benefit is a reduction in the required ion emission rate stability. By the use of standards to set the system dead time, we have been able to utilize the sensitivity of a pulse counting system without the expense of exotic equipment

  17. Powder Neutron Diffraction and Magnetic structures

    International Nuclear Information System (INIS)

    Vigneron, F.

    1986-01-01

    The determination of the magnetic structures of materials (ferromagnetic, antiferromagnetic, helimagnetic, .) can be achieved only by neutron diffraction. A general survey of the powder technique is given: 2-axis spectrometer and analysis of the magnetic data. For the REBe/sb13/ intermetallic compounds (RE = Rare Earth), commensurate and/or incommensurate magnetic structures are observed and discussed as a function of RE (Gd, Tb, Dy, Ho, Er)

  18. Spectroscopic study of S = -2 hypernuclei with a new spectrometer S-2S

    International Nuclear Information System (INIS)

    Kanatsuki, Shunsuke; Amano, Nobuaki; Ekawa, Hiroyuki

    2015-01-01

    A spectroscopic study of Ξ hypernucleus is planned to carry out in the J-PARC E05 experiment at J-PARC K1.8 beam line. We aim to observe bound state peaks of Ξ hypernucleus through the "1"2C(K"-, K"+) reaction with an energy resolution of better than 2 MeV. For this experiment, we are constructing a new spectrometer to analyze the scattered K"+ momentum precisely. Construction of the magnets will be completed by the end of JFY2014, and most parts of detectors are almost ready. The plan of the experiment and the design and status of the new spectrometer are presented. (author)

  19. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is

  20. In-flight calibration of Hitomi Soft X-ray Spectrometer. (1) Background

    Science.gov (United States)

    Kilbourne, Caroline A.; Sawada, Makoto; Tsujimoto, Masahiro; Angellini, Lorella; Boyce, Kevin R.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Koyama, Shu; Leutenegger, Maurice A.; Loewenstein, Michael; McCammon, Dan; Mitsuda, Kazuhisa; Nakashima, Shinya; Porter, Frederick S.; Seta, Hiromi; Takei, Yoh; Tashiro, Makoto S.; Terada, Yukikatsu; Yamada, Shinya; Yamasaki, Noriko Y.

    2018-03-01

    The X-Ray Spectrometer (XRS) instrument of Suzaku provided the first measurement of the non-X-ray background (NXB) of an X-ray calorimeter spectrometer, but the data set was limited. The Soft X-ray Spectrometer (SXS) instrument of Hitomi was able to provide a more detailed picture of X-ray calorimeter background, with more than 360 ks of data while pointed at the Earth, and a comparable amount of blank-sky data. These data are important not only for analyzing SXS science data, but also for categorizing the contributions to the NXB in X-ray calorimeters as a class. In this paper, we present the contributions to the SXS NXB, the types and effectiveness of the screening, the interaction of the screening with the broad-band redistribution, and the residual background spectrum as a function of magnetic cut-off rigidity. The orbit-averaged SXS NXB in the range 0.3-12 keV was 4 × 10-2 counts s-1 cm-2. This very low background in combination with groundbreaking spectral resolution gave SXS unprecedented sensitivity to weak spectral lines.

  1. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-10-12

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158 molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).

  2. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    Science.gov (United States)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  3. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  4. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  5. The SAGE spectrometer

    International Nuclear Information System (INIS)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M.; Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D.; Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J.

    2014-01-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  6. Simultaneous ion detection in a mass spectrometer with variable mass dispersion

    International Nuclear Information System (INIS)

    Tuithof, H.H.

    1977-01-01

    This thesis mainly describes the ion-optics of a magnetic mass spectrometer system, especially applied to the projection of a significant part of the mass spectrum onto a flat ion-detector. The complete detector consists of a channeltron electron multiplier array with phosphor screen and a Vidicon-multichannel analyzer combination for simultaneous read-out. In order to optimise the spectral range projected onto the channelplate, by varying the mass dispersion and to rotate the oblique angle of the mass focal plane with respect to the detector surface, the sector magnet has been combined with electrostatic and magnetic quadrupole lenses. This detector will find wide application in the analysis of minute sample quantities, in the recording of extremely short ion events (large molecules) and at collision activation mass-spectrometry studies

  7. Magnetic Fabrics and Source Implications of Chisulryoung Ignimbrites, South Korea

    Directory of Open Access Journals (Sweden)

    Hoabin Hong

    2016-08-01

    Full Text Available The anisotropy of magnetic susceptibility (AMS of late Cretaceous ash-flow tuffs in Chisulryoung Volcanic Formation, southeastern Korea was studied to define the primary pyroclastic flow azimuth. AMS data revealed a dominant oblate fabric with a tight clustering of k3 (minimum axis of magnetic susceptibility and shallow dispersal of k1 (maximum axis of magnetic susceptibility and k2 (intermediate axis of magnetic susceptibility. Dominance of oblate fabrics indicates clast imbrications imposed by compaction and welding. Flow azimuth inferred from AMS data indicates the nearby intrusive welded tuff (IWT as the source of calderas for ignimbrites. Such an inference is supported by geologic investigations, in which the IWT displays eutaxitic textures nearly parallel to its subvertical contacts. The results are compatible with a unique prolate fabric and an anomalously high inclination observed for the IWT, possibly produced by rheomorphic flows as the welded tuff is squeezed along the rough-surfaced dyke walls due to agglutination.

  8. Hybrid emulsion spectrometer for the detection of hadronically produced heavy flavor states

    International Nuclear Information System (INIS)

    Kodama, K.; Ushida, N.; Lander, R.L.; Mokhtarani, A.; Paolone, V.S.; Wilcox, J.O.; Yager, P.M.; Edelstein, R.M.; Freyberger, A.P.; Gibaut, D.B.; Lipton, R.J.; Nichols, W.R.; Potter, D.M.; Russ, J.R.; Zhang, Y.; Jang, H.I.; Kim, J.Y.; Pac, M.Y.; Baller, B.R.; Stefanski, R.J.; Nakazawa, K.; Tasaka, S.; Choi, Y.S.; Chung, K.H.; Kim, D.C.; Park, I.G.; Song, J.S.; Yoon, C.S.; Chikawa, M.; Abe, T.; Fujii, T.; Fujioka, G.; Fujiwara, K.; Fukushima, H.; Hara, T.; Takahashi, Y.; Taruma, K.; Tsuzuki, Y.; Yokoyama, C.; Chang, S.D.; Cheon, B.G.; Cho, J.H.; Kang, J.S.; Kim, C.O.; Kim, K.Y.; Kim, T.Y.; Lee, J.C.; Lee, S.B.; Lim, G.Y.; Lim, I.T.; Nam, S.W.; Shin, T.S.; Sim, K.S.; Woo, J.K.; Isokane, Y.; Tsuneoka, Y.; Aoki, S.; Gauthier, A.; Hoshino, K.; Kitamura, H.; Kobayashi, M.; Miyanishi, M.; Nakamura, K.; Nakamura, M.; Nakamura, Y.; Nakanishi, S.; Niu, K.; Niwa, K.; Tajima, H.; Dunlea, J.M.; Frederiksen, S.G.; Kuramata, S.; Lundberg, B.G.; Oleynik, G.A.; Reay, N.W.; Reibel, K.; Rush, C.J.; Sidwell, R.A.; Stanton, N.R.; Moriyama, K.; Shibata, H.; Jaffery, T.S.; Kalbfleisch, G.R.; Skubic, P.L.; Snow, J.M.; Willis, S.E.; Yuan, W.Y.; Kusumoto, O.; Okusawa, T.; Teranaka, M.; Tominaga, T.; Watanabe, T.; Yamato, J.; Okabe, H.; Yokota, J.; Sato, Y.; Tezuka, I.; Bahk, S.Y.; Kim, S.K.

    1990-01-01

    A hybrid apparatus consisting of a movable emulsion target and a magnetic spectrometer was used in a fixed target Fermilab Tevatron experiment to study the production of heavy quarks by high-energy hadron beams. High-resolution silicon microstrip detectors were used for precise tracking in the dense particle environment. Details of the experimental apparatus, including the data acquisition system, are described. (orig.)

  9. Performance of the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Aleksa, M.

    1999-09-01

    ATLAS is a general-purpose experiment for the future large hadron collider (LHC) at CERN. Its Muon Spectrometer will require ∼5500 m 2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5 m to 15 m length, embedded in a magnetic field of ∼0.5 T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼1200 drift chambers. The LHC physics discovery range indicates the need for a momentum resolution of ∼10 % for muons with a transverse momentum of p T =1 TeV/c. Following a detailed engineering optimisation of the magnetic-field strength versus the chamber resolution, the ATLAS collaboration opted for a drift-chamber system with very high spatial resolution, σ 2 93/7). Measurements performed in a high-background environment - similar to the ATLAS operational environment - gave us a complete understanding of the individual effects which deteriorate the spatial resolution at high rates. Four effects responsible for a resolution deterioration have been identified: two electronics effects which depend on the count rate of a tube (baseline shift and baseline fluctuations), and two space-charge effects that depend on the local count rate (gain drop and field fluctuations). The understanding of these effects had a major impact on the choice of the drift gas and the front-end electronics. The strong dependence of the drift velocity on the drift field is one major disadvantage of the baseline gas. In this work the full set of effects which lead to systematic errors to the track-position measurement in one tube (e.g. variations of the background rate) was investigated and quantified for realistic LHC operating conditions. For the biggest effects analytical corrections are presented. Finally, the muon-system performance was investigated and a calibration method for the absolute mass scale developed. By means of simulation it was shown that the energy

  10. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  11. Anisotropy of magnetic susceptibility (AMS) studies of Campanian ...

    Indian Academy of Sciences (India)

    trial, paralic and shallow marine strata. It com- prises of lower ... Sillakkudi sandstone was deposited under shallow ..... Jelinek V 1978 Statistical processing of anisotropy of mag- ... reorientation of magnetic fabrics in deep-sea sediments at.

  12. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn; Creber, Sarah A.; Vrouwenvelder, Johannes S.; Johns, Michael L.

    2015-01-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  13. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  14. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Herrmann, H. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kilkenny, J. D. [General Atomics, San Diego, California 92186 (United States)

    2014-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4–20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80–140 mg/cm{sup 2} and CH-ablator ρR's of 400–680 mg/cm{sup 2} are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  15. A novel electrostatic ion-energy spectrometer by the use of a proposed ``self-collection'' method for secondary-electron emission from a metal collector

    Science.gov (United States)

    Hirata, M.; Nagashima, S.; Cho, T.; Kohagura, J.; Yoshida, M.; Ito, H.; Numakura, T.; Minami, R.; Kondoh, T.; Nakashima, Y.; Yatsu, K.; Miyoshi, S.

    2003-03-01

    For the purpose of end-loss-ion energy analyses in open-field plasmas, a newly developed electrostatic ion-energy spectrometer is proposed on the basis of a "self-collection" principle for secondary-electron emission from a metal collector. The ion-energy spectrometer is designed with multiple grids for analyzing incident ion energies, and a set of parallelly placed metal plates with respect to lines of ambient magnetic forces in an open-ended device. One of the most important characteristic properties of this spectrometer is the use of our proposed principle of a "self-collection" mechanism due to E×B drifts for secondary electrons emitted from the grounded metal-plate collector by the use of no further additional magnetic systems except the ambient open-ended fields B. The proof-of-principle and characterization experiments are carried out by the use of a test-ion-beam line along with an additional use of a Helmholtz coil system for the formation of open magnetic fields similar to those in the GAMMA 10 end region. The applications of the developed ion-energy spectrometer for end-loss-ion diagnostics in the GAMMA 10 plasma experiments are demonstrated under the conditions with simultaneous incidence of energetic electrons produced by electron-cyclotron heatings for end-loss-plugging potential formation, since these electrons have contributed to disturb these ion signals from conventional end-loss-ion detectors.

  16. Activity determination of the Am-241 sources from radioactive lightning rods

    International Nuclear Information System (INIS)

    Minematsu, Denise; Dellamano, Jose Claudio; Ferreira, Robson de Jesus

    2009-01-01

    The authorization for manufacture commerce and installation of radioactive lightning rods, in Brazil, was lifted in 1989 by the National Nuclear Energy Commission - CNEN (Resolution no 4/89). Since this date, these devices have been replaced and have been sent to the Institutes subordinated to the CNEN, amongst them the Nuclear and Energy Research Institute - IPEN-CNEN/SP. Radioactive Waste Management Laboratory - RWML of the IPEN - CNEN/SP had received, approximately, 16,000 units up to the end of 2008. The radioactive lightning rod is constituted in its majority, for a central metallic rod, where two or three metallic plates are mounted. In these plates, on average, six Am-241 sources are fixed. The process used for the radioactive lightning rods treatment is the dismantling of the device and the withdrawal of the sources from the metallic plates. The activity values of the lightning rods sources, supplied by the manufacturers, vary from two to three orders of magnitude and therefore it is necessary to characterize these sources. This paper describes the methodology used to measure the actual activity of each Am-241 sources extracted from the radioactive lightning rods. The first step was to sample tens of Am-241 sources and carry out the activity measurements for further use in the system calibration. The equipment used in this first stage was a gamma spectrometer, previously calibrated with an Am-241 standard source, in agreement with the same arrangement and same geometry in the measures of the sources. Results show that there are sources with similar activity values of those supplied by the manufacturers, but there are also sources with no activity - or also activity very low compared with the expected value -, as well as sources contend other radionuclides. (author)

  17. Exotic particle searches using the Purdue AMS facility

    International Nuclear Information System (INIS)

    Javorsek, D. II; Elmore, D.; Fischbach, E.; Miller, T.

    2001-01-01

    Two exotic particle searches are being performed using the Accelerator Mass Spectrometer (AMS) at the Purdue Rare Isotope Measurement Laboratory (PRIME Lab). Recent theoretical developments allow for the possibility of small violations of the symmetrization postulate, which may lead in turn to detectable violations of the Pauli exclusion principle. We report the results of a new experimental search for paronic (Pauli-violating) Be, denoted by Be', in samples where Be' retention would be highest. Our limits represent an improvement by a factor of approximately 300 over a previous search for Be'. There are also several recent cosmological motivations for strongly interacting massive particles (SIMPs). We present results from our current search for anomalous heavy isotopes of Au in samples of Australian and laboratory gold with a limit on SIMP abundance ratios as low as 10 -12 . This experiment provides significant constraints on the existence of such particles in high Z nuclei

  18. Studies of magnetic properties of permalloy (Fe-30%Ni) prepared by SLM technology

    International Nuclear Information System (INIS)

    Zhang Baicheng; Fenineche, Nour-Eddine; Zhu Lin; Liao Hanlin; Coddet, Christian

    2012-01-01

    In the present study, a high permeability induction Fe-30%Ni alloy cubic bulk was prepared by the selective laser melting process. In order to reveal the microstructure effect on soft magnetic properties, the microstructure and magnetic properties of the Fe-30%Ni alloy were carefully investigated by scanning electron microscopy, X-ray diffraction and hysteresis measurements. The bcc-Fe (Ni) phase formation is identified by X-ray diffraction. Meanwhile, it was found that low bcc lattice parameter and high grain size could be obtained when high laser scanning velocity and low laser power were used. Moreover, the lowest value of coercivity is 88 A/m, and the highest value of saturation magnetization is 565 Am 2 /kg, which can be obtained at a low laser scanning velocity of 0.4 m/s and high laser power input at 110 W. - Highlights: → Proper Fe-30%Ni alloy (permalloy) using selective laser melting technology. → Microstructure of Fe-30%Ni alloy exhibits fine cellular structure of approximately 100 nm. → Magnetic properties can be controlled by laser parameter. → Lowest coercivity is 88 A/m and highest saturation magnetization is 565 Am 2 /kg.

  19. Magnetic system for small-angle neutron scattering investigation at YUMO instrument of nanomaterials

    International Nuclear Information System (INIS)

    Balasoiu, M.; Kirilov, A.S.; Kutuzov, S.A.; Smirnov, A.A.; Kuklin, A.I.; Kappel, W.; Cios, M.; Cios, A.

    2009-01-01

    SANS measurements using unpolarized neutron beams are able to provide quantitative information on the magnetic microstructure and the magnitude and microstructure of the magnetic anisotropy of nanomagnetic materials. Here we describe a new magnetic system for SANS at YUMO spectrometer. The system includes 2.5 T electromagnet established on a two-axes goniometric table, power supply, cooling system, PC-based control equipment. Main features of magnetic system are: big changeable gap for the samples (up to 130 mm size), computer controlled horizontal and vertical rotation and sufficiently large space for the sample holders. The system has been developed in cooperation with the INCDIE ICPE-CA (Bucharest) and CIPEC SRL (Bucharest). First experimental results of SANS in ferrofluids and magnetic elastomers obtained at YUMO spectrometer equipped with the new magnetic system are presented

  20. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek

    2011-05-11

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  1. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek; Luque, Rafael L.; Fihri, Aziz; Zhu, Haibo; Bouhrara, Mohamed; Basset, Jean-Marie

    2011-01-01

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  2. Performance Validation of the ATLAS Muon Spectrometer

    CERN Document Server

    Mair, Katharina

    ATLAS (A Toroidal LHC ApparatuS) is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN, which is scheduled to begin operation in the year 2007, providing experiments with proton-proton collisions. The center-of-mass energy of 14TeV and the design luminosity of 1034 cm−2s−1 will allow to explore many new aspects of fundamental physics. The ATLAS Muon Spectrometer aims at a momentum resolution better than 10% for transverse momentum values ranging from pT = 6 GeV to pT = 1TeV. Precision tracking will be performed by Ar-CO2-gas filled Monitored Drift Tube chambers (MDTs), with a single wire resolution of < 100 μm. In total, about 1 200 chambers, arranged in a large structure, will allow muon track measurements over distances up to 15m in a magnetic field of 0.5 T. Given the large size of the spectrometer it is impossible to keep the shape of the muon chambers and their positions stable within the requested tracking accuracy of 50 μm. Therefore the concept of an optical alig...

  3. A silicon microstrip detector in a magnetic spectrometer for high-resolution electron scattering experiments at the S-DALINAC

    International Nuclear Information System (INIS)

    Lenhardt, A.W.; Bonnes, U.; Burda, O.; Neumann-Cosel, P. von; Platz, M.; Richter, A.; Watzlawik, S.

    2006-01-01

    A silicon microstrip detector was developed as focal plane detector of the 169.7 deg. magic angle double-focussing spectrometer at the superconducting Darmstadt electron linear accelerator (S-DALINAC). It allows experiments with minimum ionizing electrons at data rates up to 100 kHz, utilizing the maximum resolution of the spectrometer achievable in dispersion-matching mode

  4. Recent 210Pb, 137Cs and 241Am accumulation in an ombrotrophic peatland from Amsterdam Island (Southern Indian Ocean).

    Science.gov (United States)

    Li, Chuxian; Le Roux, Gaël; Sonke, Jeroen; van Beek, Pieter; Souhaut, Marc; Van der Putten, Nathalie; De Vleeschouwer, François

    2017-09-01

    Over the past 50 years, 210 Pb, 137 Cs and 241 Am have been abundantly used in reconstructing recent sediment and peat chronologies. The study of global aerosol-climate interaction is also partially depending on our understanding of 222 Rn- 210 Pb cycling, as radionuclides are useful aerosol tracers. However, in comparison with the Northern Hemisphere, few data are available for these radionuclides in the Southern Hemisphere, especially in the South Indian Ocean. A peat core was collected in an ombrotrophic peatland from the remote Amsterdam Island (AMS) and was analyzed for 210 Pb, 137 Cs and 241 Am radionuclides using an underground ultra-low background gamma spectrometer. The 210 Pb Constant Rate of Supply (CRS) model of peat accumulations is validated by peaks of artificial radionuclides ( 137 Cs and 241 Am) that are related to nuclear weapon tests. We compared the AMS 210 Pb data with an updated 210 Pb deposition database. The 210 Pb flux of 98 ± 6 Bq·m -2 ·y -1 derived from the AMS core agrees with data from Madagascar and South Africa. The elevated flux observed at such a remote location may result from the enhanced 222 Rn activity and frequent rainfall in AMS. This enhanced 222 Rn activity itself may be explained by continental air masses passing over southern Africa and/or Madagascar. The 210 Pb flux at AMS is higher than those derived from cores collected in coastal areas in Argentina and Chile, which are areas dominated by marine westerly winds with low 222 Rn activities. We report a 137 Cs inventory at AMS of 144 ± 13 Bq·m -2 (corrected to 1969). Our data thus contribute to the under-represented data coverage in the mid-latitudes of the Southern Hemisphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. NMRbot: Python scripts enable high-throughput data collection on current Bruker BioSpin NMR spectrometers.

    Science.gov (United States)

    Clos, Lawrence J; Jofre, M Fransisca; Ellinger, James J; Westler, William M; Markley, John L

    2013-06-01

    To facilitate the high-throughput acquisition of nuclear magnetic resonance (NMR) experimental data on large sets of samples, we have developed a simple and straightforward automated methodology that capitalizes on recent advances in Bruker BioSpin NMR spectrometer hardware and software. Given the daunting challenge for non-NMR experts to collect quality spectra, our goal was to increase user accessibility, provide customized functionality, and improve the consistency and reliability of resultant data. This methodology, NMRbot, is encoded in a set of scripts written in the Python programming language accessible within the Bruker BioSpin TopSpin ™ software. NMRbot improves automated data acquisition and offers novel tools for use in optimizing experimental parameters on the fly. This automated procedure has been successfully implemented for investigations in metabolomics, small-molecule library profiling, and protein-ligand titrations on four Bruker BioSpin NMR spectrometers at the National Magnetic Resonance Facility at Madison. The investigators reported benefits from ease of setup, improved spectral quality, convenient customizations, and overall time savings.

  6. Effective mass trigger at the Brookhaven Multi-Particle Spectrometer (MPS)

    International Nuclear Information System (INIS)

    Willen, E.H.

    1980-01-01

    An effective mass trigger for use at the Brookhaven Multiparticle Spectrometer (MPS) is described. It is a microprocessor based device using extensive fast memory attached to proportional wire chambers in the MPS magnetic field. It will select kinematic quantities unique to the reaction being studied, thereby permitting higher sensitivities and a reduction in data-processing cost for MPS experiments. The principles of operation for this trigger, and the results of simulations to assess its performance, are presented

  7. Results of the first air ion spectrometer calibration and intercomparison workshop

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2009-01-01

    Full Text Available The Air Ion Spectrometer (AIS measures mobility and size distributions of atmospheric ions. The Neutral cluster and Air Ion Spectrometer (NAIS can additionally measure neutral particles. The number of the (NAIS instruments in the world is only 11. Nevertheless, they are already widely used in atmospheric ion studies, particularly related to the initial steps of new particle formation. There is no standard method applicable for calibrating the ion spectrometers in the sub-3 nm ion range. However, recent development of high resolution DMAs has enabled the size separation of small ions with good mobility resolution. For the first time, the ion spectrometers were intercompared and calibrated in a workshop, held in January–February 2008 in Helsinki, Finland. The overall goal was to experimentally determine the (NAIS transfer functions. Monomobile mobility standards, 241-Am charger ions and silver particles were generated and used as calibration aerosols. High resolution DMAs were used to size-separate the smaller (1–10 nm ions, while at bigger diameters (4–40 nm the size was selected with a HAUKE-type DMA. Negative ion mobilities were detected by (NAISs with slightly better accuracy than positive, nonetheless, both were somewhat overestimated. A linear fit of slope of one to the whole dataset of mobilities suggested that (NAISs measured the negative mobilities 1.36±0.16 times larger compared with the reference instruments. Similarly, positive mobilities were measured 1.39±0.15 times larger compared with the reference instruments. The completely monomobile mobility standards were measured with the best accuracy. The (NAIS concentrations were compared with an aerosol electrometer (AE and a condensation particle counter (CPC. At sizes below 1.5 nm (positive and 3 nm (negative the ion spectrometers detected higher concentrations while at bigger sizes they showed similar concentrations as the reference instruments. The total particle

  8. Further improvement for {sup 10}Be measurement on an upgraded compact AMS radiocarbon facility

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dongpo; Ding, Xingfang [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, Peking University, Beijing 100871,China (China); Liu, Kexin, E-mail: kxliu@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, Peking University, Beijing 100871,China (China); Müller, Arnold Milenko; Suter, Martin; Christl, Marcus [Laboratory of Ion Beam Physics, ETH Zürich, 8093 Zürich (Switzerland); Zhou, Liping [Department of Geography, Peking University, Beijing 100871 (China); Synal, Hans-Arno [Laboratory of Ion Beam Physics, ETH Zürich, 8093 Zürich (Switzerland)

    2015-10-15

    The Peking University 500 kV NEC compact AMS radiocarbon facility (PKU-CAMS) has been modified in order to have additionally the possibility to measure {sup 10}Be. In the preliminary experiment a silicon nitride foil was mounted in front of the electrostatic deflector as passive boron degrader, and the original Si detector for radiocarbon detection was replaced by an ETHZ-designed high-resolution ΔE − E{sub res} gas ionization chamber (GIC) for {sup 10}Be identification. This simple arrangement has yielded an overall {sup 10}Be transmission of 2.2% and a {sup 10}Be/{sup 9}Be background level of 3.5 × 10{sup −14}. To further reduce the background and increase the transmission by re-focusing the {sup 10}Be ions, an additional 90° bending magnet with 350 mm radius was installed after the electrostatic deflector. The silicon detector was shifted slightly relative to its position of original NEC system setup in opposite direction of beam and can be lifted up manually without breaking vacuum when {sup 10}Be measurements are carried out. In this way the system can be easily and fast set up for {sup 10}Be without affecting any parameters for radiocarbon measurement. The gas detector for {sup 10}Be was mounted at the end of the beam line after the additional magnet. The lay-out of the upgraded spectrometer is very compact and does not require more space than the original instrument. Using this compact setup, the overall transmission for {sup 10}Be was doubled to 5–6% and the {sup 10}Be/{sup 9}Be background level was reduced to radios as low as 2.4 × 10{sup −15}.

  9. A study for the fabulously of introducing an acceleration mass spectrometer facility (ABMs) for carbon-14 applications

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Comsan, N.; Sadek, M.

    2004-01-01

    In this work a study was conducted to show the importance and feasibility of introducing an accelerating mass spectrometer facility for carbon-14 analysis in the environmental levels. The different applications of Carbon-14 (e.g. dating and identification of food additives of synthetic origin) are discussed. There are two methods for C- 14 measurements, beta decay counting and accelerator mass spectrometry (AMS). The beta decay method requires gram quantities of the sample carbon, compared to few milligram quantities in case of AMS method. The Central Lab. for Environmental Isotope Hydrology of the National Center for Nuclear Safety and Radiation Control has a Carbon-14 analysis facility based on beta decay counting using a liquid scintillation counter after sample preparation in the form of benzene through rather complicated chemical conversion steps. This strongly limits the capacity of the laboratory to about 100-150 samples per year. Also, the amount of sample required limits our expansion for some very important applications like dating of archaeological small samples and especially old bone samples which normally have a low concentration of organic compounds. These applications are only possible by using the AMS method. For some applications only AMS could be used e.g measuring C-14 in atmospheric gases such as methane and carbon dioxide is virtually impossible using decay counting but quite feasible with AMS. The importance of purchasing an AMS facility or upgrading the existing accelerator is discussed in view of the shortage of such a facility in Africa and the Middle East. Acquiring an AMS in Egypt will make it possible to accurately date the Egyptian antiquities and to act as a regional laboratory and to enter into new applications where the amount of sample is limiting

  10. Computerized mass spectrometer data system at LLL

    International Nuclear Information System (INIS)

    Friesen, R.D.; Dupzyk, R.J.

    1976-01-01

    The data systems on the three mass spectrometers at LLL are computer-controlled, pulse-counting systems synchronized to a repeatedly swept magnetic field. The data are accumulated in the memory of the computer or in a Nuclear Data ND 180 in a multi-scaler mode of operation. This mode of data acquisition allows a continuous check of the background stability and makes tune-up easier. But the main benefit is a reduction in the required ion emission rate stability. By the use of standards to set the system dead time, we have been able to utilize the sensitivity of a pulse counting system without the expense of exotic equipment

  11. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as d...

  12. The Omicron Spectrometer

    CERN Document Server

    Allardyce, B W

    1976-01-01

    It is intended to build a spectrometer with a large solid angle and a large momentum acceptance at the reconstructed synchrocyclotron at CERN. This spectrometer will have an energy resolution of about 1 MeV for particles with momenta up to about 400 MeV/c.

  13. Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period

    OpenAIRE

    Vlachou, Athanasia; Daellenbach, Kaspar R.; Bozzetti, Carlo; Chazeau, Benjamin; Salazar Quintero, Gary Abdiel; Szidat, Sönke; Jaffrezo, Jean-Luc; Hueglin, Christoph; Baltensperger, Urs; Haddad, Imad El; Prévôt, André S. H.

    2018-01-01

    Carbonaceous aerosols are related to adverse human health effects. Therefore, identification of their sources and analysis of their chemical composition is important. The offline AMS (aerosol mass spectrometer) technique offers quantitative separation of organic aerosol (OA) factors which can be related to major OA sources, either primary or secondary. While primary OA can be more clearly separated into sources, secondary (SOA) source apportionment is more challenging because different source...

  14. Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period

    OpenAIRE

    A. Vlachou; K. R. Daellenbach; C. Bozzetti; B. Chazeau; G. A. Salazar; S. Szidat; J.-L. Jaffrezo; C. Hueglin; U. Baltensperger; I. E. Haddad; A. S. H. Prévôt

    2018-01-01

    Carbonaceous aerosols are related to adverse human health effects. Therefore, identification of their sources and analysis of their chemical composition is important. The offline AMS (aerosol mass spectrometer) technique offers quantitative separation of organic aerosol (OA) factors which can be related to major OA sources, either primary or secondary. While primary OA can be more clearly separated into sources, secondary (SOA) source apportionment is more challenging because d...

  15. One of the three multiwire proportional chambers used in the photon tagging system at the Omega spectrometer

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The momentum of incoming electrons, generated by SPS beams, is determined by magnets before they are directed onto a foil. The tagging system, a magnet and the MWPCs then determines the electron momentum after the foil and the difference between the two measurements gives the momentum of the photon which is heading for the spectrometer. The MWPCs were built in Daresburyand coupled with new CERN read0ut electronics.

  16. A gamma scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Symbalisty, S

    1952-07-01

    A scintillation type gamma ray spectrometer employing coincidence counting, designed and built at the Physics Department of the University of Western Ontario is described. The spectrometer is composed of two anthracene and photomultiplier radiation detectors, two pulse analyzing channels, a coincidence stage, three scalers and a high voltage stabilized supply. A preliminary experiment to test the operation of the spectrometer was performed and the results of this test are presented. (author)

  17. Development of AMS procedure for measurement of 93Zr

    Science.gov (United States)

    Lu, Wenting; Collon, Philippe; Kashiv, Yoav; Bowers, Matthew; Robertson, Daniel; Schmitt, Christopher

    2011-10-01

    The procedure for measuring 93Zr (t1/2 = 1.5 Ma) by AMS is currently being developed at the Nuclear Science Lab at the University of Notre Dame and we report on first experiments performed in this direction. AMS detection of 93Zr can potentially be applied to address astrophysical and environmental issues: (1) the measurement of the 92Zr(n,γ)93Zr reaction cross-section at nucleosynthesis s-process relevant temperatures, (2) the search for potential live 93Zr from a supernova in deep sea sediments, (3) hydrological and radioactive waste tracing. The measurement of 93Zr requires adequate separation from its stable isobar 93Nb. We are currently working on optimizing this separation by using the GasFilled Magnet technique with additional multiple dE measurements in a focal plane ionization chamber.

  18. Future directions of the AMS program at Lucas Heights

    International Nuclear Information System (INIS)

    Tuniz, C.

    1998-01-01

    The research program based on the ANTARES AMS spectrometer involves applications of the long-lived radionuclides 14 C, 10 Be, 26 Al, 36 Cl and 129 I in earth sciences and archaeology. Examples of environmental applications of AMS at Lucas Heights include: use of the 14 C bomb pulse to determine the age and age-spread of air trapped in Antarctic ice bubbles, key parameters to study the variability of CO 2 and other greenhouse gases in the past; analyses of 14 C bomb-pulse curves in tree rings from tropical regions and the southern hemisphere to improve our understanding of the carbon cycle and air-sea interactions, important processes for the global climate; analyses of 10 Be and 36 Cl produced in-situ in polished glacial bedrock and moraine boulders from Tasmania, New Zealand and Antarctica, as part of a major national project to unravel the timing of glacial cycles in the southern hemisphere. A recent archaeological application has been the radiocarbon dating of charcoal fragments from the rock shelter at Jinmium in the Northern Territory demonstrating that this site was occupied by Aboriginal people only during the late Holocene. In environmental monitoring, the analysis of 129 I, 14 C and 36 Cl in water specimens from Mururoa and Fangatauga contributed to an IAEA study regarding residual radioactivity in the Pacific after the French nuclear program

  19. 'aspect' - a new spectrometer for the measurement of the angular correlation coefficient a in neutron beta decay

    CERN Document Server

    Zimmer, O; Grinten, M G D; Heil, W; Glück, F

    2000-01-01

    The combination of the coefficient a of the antineutrino/electron angular correlation with the beta asymmetry of the neutron provides a sensitive test for scalar and tensor contributions to the electroweak Lagrangian, as well as for right-handed currents. A method is given for measuring a with high sensitivity from the proton recoil spectrum. The method is based on a magnetic spectrometer with electrostatic retardation potentials such as used for searches of the neutrino mass in tritium beta decay. The spectrometer can also be used for similar studies using radioactive nuclei.

  20. Another look at AM Herculis - radio-astrometric campaign with the e-EVN at 6 cm

    Science.gov (United States)

    Gawroński, M. P.; Goździewski, K.; Katarzyński, K.; Rycyk, G.

    2018-03-01

    We conducted radio-interferometric observations of the well-known binary cataclysmic system AM Herculis. This particular system is formed from a magnetic white dwarf (primary) and a red dwarf (secondary), and it is the prototype of so-called polars. Our observations were conducted with the European VLBI Network (EVN) in e-EVN mode at 5 GHz. We obtained six astrometric measurements spanning 1 yr, which make it possible to update the annual parallax for this system with the best precision to date (π = 11.29 ± 0.08 mas), which is equivalent to a distance of 88.6 ± 0.6 pc. The system was observed mostly in the quiescent phase (visual magnitude mv ˜ 15.3), when the radio emission was at the level of about 300 μJy. Our analysis suggests that the radio flux of AM Herculis is modulated with the orbital motion. Such specific properties of the radiation can be explained using an emission mechanism like the scenario proposed for V471 Tau and, in general, for RS CVn-type stars. In this scenario, the radio emission arises near the surface of the red dwarf, where the global magnetic field strength may reach a few kG. We argue that the quiescent radio emission distinguishes AM Herculis and AR Ursae Majoris (a second known persistent radio polar) from other polars, which are systems with a magnetized secondary star.

  1. Toward the drip lines and the superheavy island of stability with the Super Separator Spectrometer S{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dechery, F.; Boutin, D.; Gall, B.; Le Blanc, F. [Universite de Strasbourg, IPHC, Strasbourg (France); CNRS, UMR7178, Strasbourg (France); Drouart, A.; Authier, M.; Delferriere, O.; Payet, J.; Uriot, D. [CEA-Saclay, Irfu, Gif-sur-Yvette (France); Savajols, H.; Stodel, M.H.; Traykov, E. [GANIL, Caen (France); Nolen, J. [Argonne National Laboratory, Argonne, IL (United States); Amthor, A.M. [Bucknell University, Lewisburg, PA (United States); Hue, A.; Laune, B. [Universite Paris-Sud 11, CNRS/IN2P3, IPNO, Orsay (France); Manikonda, S. [AML Superconductivity and Magnetics, Palm Bay, Florida (United States); Collaboration: S3 Collaboration

    2015-06-15

    The Super Separator Spectrometer S{sup 3} is a major experimental system developed for SPIRAL2. It has been designed for physics experiments with very low cross sections by taking full advantage of the very high intensity stable beams to be produced by LINAG, the superconducting linear accelerator at GANIL. These intensities will open new opportunities in several physics domains using fusion evaporation reactions, principally: super-heavy and very heavy element properties, spectroscopy at and beyond the dripline, and isomer and ground-state properties. The common feature of these experiments is the requirement to separate very rare events from intense backgrounds. S{sup 3} accomplishes this with a large acceptance, a high background rejection efficiency, and a physical mass separation. This article will present the technical specifications and optical constraints needed to achieve these physical goals. The optical layout of the spectrometer will be presented, focusing on technical elements of the target system, the superconducting multipole magnets used to correct high-order optical aberrations, the electric and magnetic dipoles, and the open multipole triplet used for primary beam rejection. The expected system performance will be presented for three experimental cases using 3 specific optical modes of the spectrometer. (orig.)

  2. Acquisition of HPLC-Mass Spectrometer

    Science.gov (United States)

    2015-08-18

    31-Jan-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of HPLC -Mass Spectrometer The views, opinions and/or findings...published in peer-reviewed journals: Final Report: Acquisition of HPLC -Mass Spectrometer Report Title The acquisition of the mass spectrometer has been a

  3. Baby MIND: A Magnetised Spectrometer for the WAGASCI Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, M.; et al.

    2017-04-26

    The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.

  4. The forward detector of the ANKE spectrometer. Tracking system and its use in data analysis

    International Nuclear Information System (INIS)

    Dymov, S.; Erven, W.; Kacharava, A.

    2004-01-01

    The tracking system of the forward detector of the ANKE magnetic spectrometer at the internal beam of the accelerator COSY (Juelich, Germany) is described. Data analysis procedures, including track search and momentum reconstruction, are presented, and the performance of the tracking system is illustrated with the use of experimental data

  5. Development of a alpha spectrometer system with the surface barrier detector

    International Nuclear Information System (INIS)

    Alencar, Marcus Alexandre Vallini de

    1994-04-01

    The aim of this work is the development of an α spectrometer of low cost and home made technology. The spectrometer is mounted in a double NIM module and includes a surface barrier detector and dedicate electronic system. Six barrier surface detectors were made, three of which with η type silicon wafer 3350 Ω.cm, 270mm 2 and three other with ρ type silicon wafer 5850 Ω.cm and 220mm 2 . The rectifier and the ohmic contacts were prepared at high vacuum (10 -2 to 10 -3 Pa) evaporation with 40μg/cm 2 of Au and Al respectively for the η type detectors, and with Al and Au respectively for the ρ type detectors. The electronic system is composed by a low noise charge sensitive preamplifier with the operational amplifier LF-356 mounted with 1OOMΩ feedback resistor and a 0.5 pF capacitor. The linear amplifier is also based in the LF-356 and the LM-310 operational amplifier. The bipolar output is formatted through a (CR) 2- (RC) 4 shaping network and the unipolar output is obtained through a CR-(RC) 4 shaping system which is sufficient to realize a almost true Gaussian shaping pulse with a time constant of 3.0μs. This format was chosen because we can expect a low counting rate and the gaussian pulse can improve the signal/noise ratio. The first CR differentiation has also a active pole-zero cancellation network.The resolution of detectors for 241 Am α particles at room temperature (24 degree) vary 21 to 44 keV FWHM. The electronic noise of the noise of the system is 7.5 keV FWHM at OpF input capacitance. The overall resolution of the spectrometer was found to be 62 keV FWHM at room temperature. The simplicity of the electronic system, the low cost of the construction and the overall resolution show that this alpha spectrometer can be readily used in measurements where high resolution is not a premium. (author)

  6. UNIGE in space... hunting astroparticles

    CERN Multimedia

    2016-01-01

    Switzerland has a long history of involvement in cosmic-ray physics and space research projects: some of the most notable examples are its pioneering research since the beginning of the 20th century; its co-founding of major European space organisations; its provision of state-of-the-art scientific equipment to major international space agencies and the missions of a Swiss astronaut in the 1990s.   The Alpha Magnetic Spectrometer (AMS) project, whose control centre is at CERN, has benefitted from the cutting-edge knowhow of the Nuclear and Corpuscular Physics Department (DNPC) of the University of Geneva (UNIGE). An extremely sensitive, high-resolution spectrometer was built for the project and was installed on the International Space Station (ISS) in 2011. The DNPC was responsible for designing the particle tracker – the device at the heart of both the AMS 01 prototype and the final model sent into space, AMS 02. The aim of this research project is to advance humankind’s kno...

  7. Seen it in the Bulletin? Now see it in real-life!

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Detector Technologies (Map: C4): Read more about the construction and physics of the new NA62 straw chambers in “Straw Detector: 1 - Vacuum: 0”.   The Synchrocyclotron (Map: B2): Read more about the newly opened synchrocyclotron (SC) in “New life for CERN's first accelerator”.   Linac 4 (Map: D4): Visit the site of CERN’s newest linear accelerator: Linac4. Read more about the accelerator in “Linac4: the final assembly stage is under way” (2013), “Testing begins on Linac4” (2012), and “Sixteen silver wires to assemble 350 kg of copper” (2010).   Alpha Magnetic Spectrometer (AMS) (Map: I3): AMS is the most sensitive particle physics spectrometer ever deployed in space. Read about its launch in “AMS: From the ISS to CERN”.   COMPASS (Map: I1): COMPASS is a high-energy physics experiment at the SPS. Read more about its newest phase in ...

  8. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  9. Search for “anomalies” from neutrino and anti-neutrino oscillations at $\\Delta_m^{2} ≈ 1eV^{2}$ with muon spectrometers and large LAr–TPC imaging detectors

    CERN Document Server

    Antonello, M; Baibussinov, B; Bilokon, H; Boffelli, F; Bonesini, M; Calligarich, E; Canci, N; Centro, S; Cesana, A; Cieslik, K; Cline, D B; Cocco, A G; Dequal, D; Dermenev, A; Dolfini, R; De Gerone, M; Dussoni, S; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Garvey, G T; Gatti, F; Gibin, D; Gninenko, S; Guber, F; Guglielmi, A; Haranczyk, M; Holeczek, J; Ivashkin, A; Kirsanov, M; Kisiel, J; Kochanek, I; Kurepin, A; Łagoda, J; Lucchini, G; Louis, W C; Mania, S; Mannocchi, G; Marchini, S; Matveev, V; Menegolli, A; Meng, G; Mills, G B; Montanari, C; Nicoletto, M; Otwinowski, S; Palczewski, T J; Passardi, G; Perfetto, F; Picchi, P; Pietropaolo, F; Płonski, P; Rappoldi, A; Raselli, G L; Rossella, M; Rubbia, C; Sala, P; Scaramelli, A; Segreto, E; Stefan, D; Stepaniak, J; Sulej, R; Suvorova, O; Terrani, M; Tlisov, D; Van de Water, R G; Trinchero, G; Turcato, M; Varanini, F; Ventura, S; Vignoli, C; Wang, H G; Yang, X; Zani, A; Zaremba, K; Benettoni, M; Bernardini, P; Bertolin, A; Bozza, C; Brugnera, R; Cecchetti, A; Cecchini, S; Collazuol, G; Creti, P; Dal Corso, F; De Mitri, I; De Robertis, G; De Serio, M; Degli Esposti, L; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Fiore, G; Garfagnini, A; Giacomelli, G; Giacomelli, R; Grella, G; Guandalini, C; Guerzoni, M; Kose, U; Laurenti, G; Laveder, M; Lippi, I; Loddo, F; Longhin, A; Loverre, P; Mancarella, G; Mandrioli, G; Margiotta, A; Marsella, G; Mauri, N; Medinaceli, E; Mengucci, A; Mezzetto, M; Michinelli, R; Muciaccia, M T; Orecchini, D; Paoloni, A; Pastore, A; Patrizii, L; Pozzato, M; Rescigno, R; Rosa, G; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Stellacci, S; Surdo, A; Tenti, M; Togo, V; Ventura, M; Zago, M

    2012-01-01

    This proposal describes an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN "Far" position. An additional 1/4 of the T600 detector will be constructed and located in the "Near" position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-magnet, to perform charge identification and muon momentum measurements in a wide energy range over a large transverse area. In the two positions, the radial and energy spectra of the nu_e beam are practically identical. Comparing the two detectors, in absence of oscillations, all cross sections and experimenta...

  10. Modern pulsed spectrometer EPR for longitudinal relaxation time (T1) investigation - computer programs for measurement and data analysis

    International Nuclear Information System (INIS)

    Ilnicki, J.; Koziol, J.; Galinski, W.; Oles, T.; Kostrzewa, J.; Froncisz, W.

    1994-01-01

    The computerized control and data processing systems for new spectrometer designed for nuclear magnetic resonance studies of biological samples are presented. Both programs were written for INTEL 386 processor and they works under the Windows 3.0 environment

  11. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  12. Electronic structure and nonmagnetic character of δ -Pu-Am alloys

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Havela, L.; Kolorenč, Jindřich; Drchal, Václav; Gouder, T.; Oppeneer, P.M.

    2006-01-01

    Roč. 73, č. 10 (2006), 104415/1-104415/4 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA100100530; GA ČR(CZ) GA202/04/1103; GA ČR(CZ) GA202/04/1055 Institutional research plan: CEZ:AV0Z1010914 Keywords : fcc -Pu-Am alloys * electronic structure * localised moments Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.107, year: 2006

  13. Determination of the neutron magnetic moment

    International Nuclear Information System (INIS)

    Greene, G.L.; Ramsey, N.F.; Mampe, W.; Pendlebury, J.M.; Smith, K.; Dress, W.B.; Miller, P.D.; Perrin, P.

    1981-01-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H 2 O), we find μ/sub n//μ/sub p/ = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units

  14. Magnetic irone oxide nanoparticles in photosynthetic systems

    International Nuclear Information System (INIS)

    Khalilov, R.I.; Nasibova, A.N.; Khomutov, G.B.

    2014-01-01

    Full text : It was found and studied the effect of biogenic formation of magnetic inclusions in photosynthetic systems - in various higher plants under the influence of some external stress factors (radiation impact, moisture deficit) and in a model system - a suspension of chloroplasts. For registration and characterization of magnetic nanoparticles in the samples used EPR spectrometer because superparamagnetic and ferromagnetic nanoparticles have a chcracteristic signals of electron magnetic resonance. For direct visualization of magnetic nanoparticles it was used the method of transmission electron microscopy

  15. The evolution of polar caps in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Frank, J.; Chanmugam, G.

    1986-01-01

    A simple analysis of the evolution of the size of the magnetic polar cap in accreting white dwarfs is made on the basis of current theories of the secular evolution of magnetic cataclysmic variables. For white dwarfs with dipolar fields it is shown that the size of the polar cap in DQ Her binaries is larger than in AM Her binaries. The size of the former is, however, smaller than deduced from interpretation of their X-ray light curves, while that of the latter is in rough agreement. If the dwarf contains an aligned magnetic quadrupole the size of the polar caps of the DQ Her binaries is significantly increased. Magnetic field decay of the quadrupole moment in the older AM Her binaries implies that their fields are predominantly dipolar. (author)

  16. Indigenous instrumentation for mass spectrometry: Part II - development of plasma source mass spectrometers. PD-5-3

    International Nuclear Information System (INIS)

    Nataraju, V.

    2007-01-01

    The growing demands from analytical community, for a precise isotope ratio and ultra trace concentration measurements, has lead to significant improvement in mass spectrometer instrumentation development with respect to sensitivity, detection limits, precision and accuracy. Among the many analytical techniques available, plasma source mass spectrometers like Inductively Coupled Plasma Mass Spectrometry (ICPMS), multi collector (MC) ICPMS and Glow Discharge Mass Spectrometry (GDMS), have matured into reliable tools for the above applications. Where as ICPMS is by far the most successful method for aqueous solutions, GDMS is being applied for bulk and impurity analysis of conducting as well non-conducting solids. VPID, BARC has been developing mass spectrometers for different inorganic applications of DAE users. Over the years expertise has been developed in all the aspects of mass spectrometry instrumentation. Part 1 of this indigenous instrumentation on mass spectrometry gives details of magnetic sector instruments with either EI or TI source for isotopic ratio analysis. The present paper is a continuation of that on plasma source and quadrupole mass spectrometers. This paper covers i) ICP-QMS, ii) MC-ICPMS, iii) GDMS and iv) QMS

  17. Measurement of the pp → dπ+ reaction at 793, 800 and 1920 MeV/c and fixing the transport matrix of the magnetic spectrometer Big Karl

    International Nuclear Information System (INIS)

    Razen, B.

    1997-12-01

    This work presents measurements of the pp → dπ + reaction at a beam momentum of 793 MeV/c and 801 MeV/c. Differential and total cross sections at these energies were measured with the magnetic spectrometer Big Karl, which grants a nearly 4π-acceptance in the center of mass system. A major emphasis is given to the deduction of the transfer-matrix of the magnetic system, which allows full momentum reconstruction of the deuterons at the target point. Anisotropies and partial wave contributions are deduced from these measurements. They suggest not negligible P-wave contribution already close to threshold. Comparing our data to the measurements of the isospin related reaction np → dπ 0 yields some difference, which might be a hint to some isospin-breaking. Finally a measurement at 1920 MeV/c beam momentum was done to calibrate the momentum of the external beam of COSY. (orig.)

  18. Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance

    Science.gov (United States)

    Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.

    2018-05-01

    A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.

  19. Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Royal Institute of Technology, Department of Physics, Stockholm (Sweden); University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Gadea, A. [CSIC-University of Valencia, Istituto de Fisica Corpuscular, Valencia (Spain); Valiente-Dobon, J.J. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Quintana, B. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Modamio, V. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); University of Oslo, Oslo (Norway); Mengoni, D. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Moeller, O.; Pietralla, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Dewald, A. [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2017-10-15

    The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unshifted peak ratio method. The technique has been validated using data measured with the γ-ray array AGATA, the PRISMA spectrometer and the Cologne plunger setup. In this paper a test performed with the AGATA-PRISMA setup at LNL and the advantages of this new approach with respect to the conventional Recoil Distance Doppler Shift Method are discussed. (orig.)

  20. Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongzhen [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Wang, Anding; Chang, Chuntao [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai District, Ningbo, Zhejiang 315201 (China); Wang, Yanguo [Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 (China); Dong, Bangshao [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Zhou, Shaoxiong, E-mail: sxzhou@atmcn.com [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2014-10-25

    Highlights: • Thermal stability of the FeSiBPNbCu alloys is strongly dependent on the Fe content. • The FeSiBPNbCu alloys with high Fe content exhibit good soft magnetic properties. • The coexistence of Cu, P and Nb leads to the excellent soft magnetic properties. - Abstract: A series of [Fe{sub 0.76+x}(Si{sub 0.4}B{sub 0.4}P{sub 0.2}){sub 0.24−x}]{sub 98.25}Nb{sub 1}Cu{sub 0.75} (x = 0–0.08) nanocrystalline soft-magnetic alloys with high saturation magnetization were synthesized by adjusting Fe content and improving the crystallization behavior, soft-magnetic properties and microstructure. It is found that the temperature interval between the two crystallization peaks is significantly enlarged from 50 to 180 °C when the Fe content of the alloys increases from x = 0 to x = 0.08, which greatly expands the optimum annealing temperature range. The alloys with higher Fe content are prone to form more uniform nanocomposite microstructure with better thermal stability and soft magnetic properties. The Fe-rich FeSiBPNbCu nanocrystalline alloys with x = 0.08 exhibit excellent soft-magnetic properties, including the high saturation magnetic flux density of up to 1.74 T, low coercivity of about 3.3 A/m and high effective permeability of more than 2.2 × 10{sup 4} at 1 kHz under a field of 1 A/m. The combination of excellent soft-magnetic properties, low cost and good productivity makes the FeSiBPNbCu alloys to be a kind of promising soft-magnetic materials for electrical and electronic industry applications.

  1. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  2. AMS of actinides in ground- and seawater: a new procedure for simultaneous analysis of U, Np, Pu, Am and Cm isotopes below ppq levels

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, Francesca; Lagos, Markus; Plaschke, Markus; Schaefer, Thorsten; Geckeis, Horst [Institut fuer Nukleare Entsorgung, KIT, Eggenstein-Leopoldshafen (Germany); Steier, Peter [VERA Laboratory, University of Vienna, Vienna (Austria)

    2015-07-01

    U-236, Np-237, Pu isotopes and Am-243 were determined in ground- and seawater samples at levels below ppq with a maximum sample size of 0.250 l. Such high sensitivity measurement was possible by using accelerator mass spectrometry (AMS) with an improved gas stripping and an additional high resolving magnet. The use of non-isotopic tracers was investigated in order to allow the determination of those nuclides, namely Np-237 and Am-243, for which isotopic tracers for mass spectrometry are rarely available. The actinides were concentrated from the sample matrix via iron hydroxide co-precipitation and measured sequentially without previous chemical separation from each other. The analytical method was validated with the analysis of IAEA 443 seawater Reference Material and applied to background samples from the Colloid Formation and Migration project at the Grimsel Test Site and to sea- and freshwater samples affected solely by global fallout. The sensitivity of the presented analytical method provides the capability to study the long-term release of actinide tracers in field experiments as well as the transport of actinides in a variety of environmental systems.

  3. Kinematics of Mass Transport Deposits revealed by magnetic fabrics

    Science.gov (United States)

    Weinberger, R.; Levi, T.; Alsop, G. I.; Marco, S.

    2017-08-01

    The internal deformation and movement directions of Mass Transport Deposits (MTDs) are key factors in understanding the kinematics and dynamics of their emplacement. Although these are relatively easy to recover from well-bedded sediments, they are more difficult to deduce from massive beds without visible strain markers. In order to test the applicability of using anisotropy of magnetic susceptibility (AMS) to determine MTD movement, we compare AMS fabrics, with structural measurements of visible kinematic indicators. Our case study involves the structural analysis of slumped lake sediments extensively exposed in MTDs within the Dead Sea Basin. Structural analyses of MTDs outcropping for >100 km reveal radial transport directions toward the basin depocenter. We show that the AMS fabrics display the same transport directions as inferred from structural analyses. Based on this similarity, we outline a robust procedure to obtain the transport direction of slumped MTDs from AMS fabrics. Variations in the magnetic fabrics and anisotropies in fold-thrust systems within the slumps match the various structural domains. We therefore suggest that magnetic fabrics and anisotropy variations in drill cores may reflect internal deformation within the slumps rather than different slumps. Obtaining magnetic fabrics from MTDs provides a viable way to infer the transport directions and internal deformation of MTDs and reconstruct the basin depocenter in ancient settings. The present results also have implications beyond the kinematics of MTDs, as their geometry resembles fold-thrust systems in other geological settings, scales, and tectonic environments.

  4. X-ray observations of AM Herculis from OSO 8

    Science.gov (United States)

    Coe, M. J.; Dennis, B. R.; Dolan, J. F.; Crannell, C. J.; Frost, K. J.; Orwig, I. E.

    1979-01-01

    X-ray observations of the white dwarf binary system AM Herculis in the range 2 to 250 keV, taken by OSO 8, are presented and compared with balloon and Ariel 5 measurements. The composite spectrum of the 2 to 40 and 20 to 250 keV fluxes determined by the proportional counter and the high energy scintillation spectrometer, respectively, on board the satellite is shown averaged over the entire binary cycle. Variations in spectral shape and intensity between the OSO 8 results and balloon measurements taken 10 to 20 days apart are observed. Results indicate the presence of a spectral break at about 15 keV on some occasions, similar to that seen in Her X-1, however presumably caused by a different mechanism than in the neutron star. It is also considered unlikely that the gamma-ray tail observed by Ariel 5 existed during OSO 8 observations.

  5. The design of the Spectrometer Ring at the HIAF

    Science.gov (United States)

    Wu, B.; Yang, J. C.; Xia, J. W.; Yan, X. L.; Hu, X. J.; Mao, L. J.; Sheng, L. N.; Wu, J. X.; Yin, D. Y.; Chai, W. P.; Shen, G. D.; Ge, W. W.; Wang, G.; Zhao, H.; Ruan, S.; Ma, X. W.; Wang, M.; Litvinov, S.; Wen, W. Q.; Chen, X. C.; Chen, R. J.; Tang, M. T.; Wu, W.; Luo, C.; Zhao, T. C.; Shi, C. F.; Fu, X.; Liu, J.; Liang, L.

    2018-02-01

    The Spectrometer Ring (SRing) is an essential part of the High Intensity heavy-ion Accelerator Facility project (HIAF) in China. It is designed as a multi-functional experimental storage ring, which will be able to operate in three ion optical operation modes. The SRing will be used as a time-of-flight mass spectrometer for short-lived, especially neutron-rich nuclei. It will also be used to collect and cool Rare Isotope Beams (RIBs) or highly-charged stable ion beams for nuclear and atomic physics experiments. The design magnetic rigidity is in the range 1.5 to 15 Tm. The beam cooling system consists of stochastic cooling and electron cooling devices. With a help of an electron cooler, stored ions will be decelerated to a minimum energy of 30 MeV/u by RF cavities. The extraction system of the SRing will allow cooled ion beams to be extracted to an external target for further ion manipulations or reaction experiments. The general ion optics design and technical requirements of SRing subsystems are presented and discussed in this paper.

  6. Electronic structure of Pu-Ce(-Ga) and Pu-Am(-Ga) alloys, stabilized in the {delta} phase; Structure electronique d'alliages Pu-Ce(-Ga) et Pu-Am(-Ga) stabilises en phase {delta}

    Energy Technology Data Exchange (ETDEWEB)

    Dormeval, M

    2001-09-01

    The behaviour of {delta}-plutonium, stable between 319 and 451 deg C, exhibits numerous singularities which are still a mystery for both physicists and metallurgists. This is due to its complex electronic structure, and in particular to the 5f electrons, which are at the edge between localization and delocalization. The stability domain of the {delta} phase can be extended down to room temperature by alloying with so called 'deltagen atoms' such as gallium (Ga), aluminum (A1), cerium (Ce) or americium (Am). The present work deals, one the one hand, with the influence of cerium and americium solutes regarding the localization of the 5f electrons of {delta}-plutonium, in binary Pu-Ce and Pu-Am alloys. On the other hand, the effect of two different deltagen solutes, simultaneously present, on the stability of the {delta} phase has been studied in ternary Pu-Am-Ga and Pu-Ce-Ga alloys. The electronic structure being strongly related to the crystalline organization, characterization methods such as X-Ray diffraction and EXAFS measurements were used together with electrical resistivity and magnetic susceptibility experiments. These showed that the roles of cerium and americium, supposed to be similar at the beginning of this investigation, are actually very different. Moreover, the additive effect of cerium and gallium, and, americium and gallium, has been demonstrated. Studying plutonium alloys, which are radioactive, also means following their evolution in time. The characteristics of the alloys have then been followed which allowed to detect, in Pu-Ce(-Ga) alloys, a destabilization of the {delta} phase and, to observe, in Pu-Am(-Ga) alloys, the influence of self-irradiation defects on the magnetic response. (author)

  7. A mass spectrometer for the rapid analysis of gaseous mixtures

    International Nuclear Information System (INIS)

    Cassignol, C.; Ortel, Y.; Taieb, J.

    1950-01-01

    A mass spectrometer for leak detection and rapid gas analysis were constructed, having the characteristics and several structural features of a simple instrument described by Siry in Rev. Sri. Instruments. 540 (1947). Although exhibiting a good resolving power, the apparatus, which has no ion lenses and whose electrodes can be regulated during the performance, has not been sufficiently tested. Since several design defects have been discovered, it will probably be rebuilt with various improvements (ion source outside the magnetic field, modified circuits, etc.). (author)

  8. Wide-angle NSE and TOF the spectrometer SPAN at BENSC

    CERN Document Server

    Pappas, C; Kischnik, R; Mezei, F

    2002-01-01

    The cylindrical symmetry of the magnetic field configuration of SPAN allows for simultaneous neutron spin echo (NSE) measurements over the whole range of scattering angles accessible by a spectrometer. The open construction also allows for time-of-flight (TOF) measurements, which can be performed under the same conditions as NSE, in particular with polarization analysis. TOF and NSE spectra are then directly comparable with each other, without any adjustable parameters, covering a dynamic range of more than four orders of magnitude at a single wavelength. (orig.)

  9. Wide-angle NSE and TOF: the spectrometer SPAN at BENSC

    International Nuclear Information System (INIS)

    Pappas, C.; Triolo, A.; Kischnik, R.; Mezei, F.

    2002-01-01

    The cylindrical symmetry of the magnetic field configuration of SPAN allows for simultaneous neutron spin echo (NSE) measurements over the whole range of scattering angles accessible by a spectrometer. The open construction also allows for time-of-flight (TOF) measurements, which can be performed under the same conditions as NSE, in particular with polarization analysis. TOF and NSE spectra are then directly comparable with each other, without any adjustable parameters, covering a dynamic range of more than four orders of magnitude at a single wavelength. (orig.)

  10. Dual Electron Spectrometer for Magnetospheric Multiscale Mission: Results of the Comprehensive Tests of the Engineering Test Unit

    Science.gov (United States)

    Avanov, Levon A.; Gliese, Ulrik; Mariano, Albert; Tucker, Corey; Barrie, Alexander; Chornay, Dennis J.; Pollock, Craig James; Kujawski, Joseph T.; Collinson, Glyn A.; Nguyen, Quang T.; hide

    2011-01-01

    The Magnetospheric Multiscale mission (MMS) is designed to study fundamental phenomena in space plasma physics such as a magnetic reconnection. The mission consists of four spacecraft, equipped with identical scientific payloads, allowing for the first measurements of fast dynamics in the critical electron diffusion region where magnetic reconnection occurs and charged particles are demagnetized. The MMS orbit is optimized to ensure the spacecraft spend extended periods of time in locations where reconnection is known to occur: at the dayside magnetopause and in the magnetotail. In order to resolve fine structures of the three dimensional electron distributions in the diffusion region (reconnection site), the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure three dimensional electron velocity distributions with an extremely high time resolution of 30 ms. In order to achieve this unprecedented sampling rate, four dual spectrometers, each sampling 180 x 45 degree sections of the sky, are installed on each spacecraft. We present results of the comprehensive tests performed on the DES Engineering & Test Unit (ETU). This includes main parameters of the spectrometer such as energy resolution, angular acceptance, and geometric factor along with their variations over the 16 pixels spanning the 180-degree tophat Electro Static Analyzer (ESA) field of view and over the energy of the test beam. A newly developed method for precisely defining the operational space of the instrument is presented as well. This allows optimization of the trade-off between pixel to pixel crosstalk and uniformity of the main spectrometer parameters.

  11. Neutron energy spectra of sup 2 sup 5 sup 2 Cf, Am-Be source and of the D(d,n) sup 3 He reaction

    CERN Document Server

    Sang Tae Park

    2003-01-01

    The neutron energy spectrum of the following sources were measured using a fast neutron spectrometer with the NE-213 liquid scintillator: sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He reaction from a 3 MeV Pelletron accelerator in Tokyo Institute of Technology. The measured proton recoil pulse height data of sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He were unfolded using the mathematical program to obtain the neutron energy spectrum. The sup 2 sup 5 sup 2 Cf and Am-Be neutron energy spectra were measured and the results obtained showed a good agreement with the spectra usually published in the literature. The neutron energy spectrum from D(d,n) sup 3 He was measured and the results obtained also showed a good agreement with the calculation by time of flight (TOF) methods. (author)

  12. The system AM HER = 4U 1814 + 50

    International Nuclear Information System (INIS)

    Chiappetti, L.; Tanzi, E.G.; Treves, A.; Consiglio Nazionale delle Ricerche, Milan

    1980-01-01

    The binary system AM Herculis = 4U 1814 + 50 gives the first well ascertained example of an X-ray emitting magnetic white dwarf. The orbital period (3.1sup(h)) is apparent from X-ray to IR frequencies and in linear and circular polarization. Since the time of the identification of the X-ray source the system has been extensively studied. The observations (which range from 1 MeV to 20 μm) are reviewed and compared with the present theory of X-ray emitting white dwarfs. (orig.)

  13. Validation Tools for ATLAS Muon Spectrometer Commissioning

    International Nuclear Information System (INIS)

    Benekos, N.Chr.; Dedes, G.; Laporte, J.F.; Nicolaidou, R.; Ouraou, A.

    2008-01-01

    The ATLAS Muon Spectrometer (MS), currently being installed at CERN, is designed to measure final state muons of 14 TeV proton-proton interactions at the Large Hadron Collider (LHC) with a good momentum resolution of 2-3% at 10-100 GeV/c and 10% at 1 TeV, taking into account the high level background enviroment, the inhomogeneous magnetic field, and the large size of the apparatus (24 m diameter by 44 m length). The MS layout of the ATLAS detector is made of a large toroidal magnet, arrays of high-pressure drift tubes for precise tracking and dedicated fast detectors for the first-level trigger, and is organized in eight Large and eight Small sectors. All the detectors of the barrel toroid have been installed and the commissioning has started with cosmic rays. In order to validate the MS performance using cosmic events, a Muon Commissioning Validation package has been developed and its results are presented in this paper. Integration with the rest of the ATLAS sub-detectors is now being done in the ATLAS cavern

  14. Study of the performance of HPGe detectors operating in very high magnetic fields

    International Nuclear Information System (INIS)

    Agnello, M.; Botta, E.; Bressani, T.; Bruschi, M.; Bufalino, S.; De Napoli, M.; Feliciello, A.; Fontana, A.; Giacobbe, B.; Lavezzi, L.; Raciti, G.; Rapisarda, E.; Rotondi, A.; Sbarra, C.; Sfienti, C.; Zoccoli, A.

    2009-01-01

    A new generation of high-resolution hypernuclear γ-spectroscopy experiments using high-purity germanium (HPGe) detectors is presently designed for the FINUDA spectrometer at DAΦNE, the Frascati Φ-factory, and for PANDA, the p-p-bar hadron spectrometer at the future FAIR facility. In both spectrometers the HPGe detectors have to be operated in strong magnetic fields. In this paper we report on a series of measurements performed on a HPGe detector inserted in a magnetic field of intensity up to 2.5 T, the highest ever reached for operations with a HPGe, and with different orientations of the detector's axis with respect to field direction. A significant worsening of the energy resolution was found, but with a moderate loss of the efficiency. The most relevant features of the peak shapes, described by bi-Gaussian functions, are parametrized in terms of field intensity and energy: this allows to correct the spectra measured in magnetic field and to recover the energy resolution almost completely.

  15. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part I - an absolute traceable energy calibration for electron spectrometers

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.; Anthony, M.T.

    1991-01-01

    Experiments have been made to provide calibrated kinetic energy values for AES peaks in order to calibrate Auger electron spectrometers of various resolving powers. The kinetic energies are measured using a VG Scientific ESCALAB 2 which has power supplies appropriate for AES measurements in both the constant ΔE and constant ΔE/E modes. The absolute calibration of the energy scale is obtained by the development of a new measurement chain which, in turn, is calibrated in terms of the post-1990 representation of electron volts using XPS peaks with a traceable kinetic energy accuracy of 0.02 eV. The effects of instrumental and operating parameters, including the spectrometer dispersion and stray magnetic fields, are all assessed and contribute errors for three peaks not exceeding 0.06 eV and for two peaks not exceeding 0.03 eV. Calibrated positions in the direct spectrum are given for the Cu M 2,3 VV, Au N 6,7 VV, Ag M 4 NN, Cu L 3 VV and Au M 5 N 6,7 N 6,7 transitions at 0.2 eV resolution, referred to both the Standard Vacuum Level and the Fermi level. For the derivative spectrum the positions of the negative excursions are derived numerically by computer from this data and are established with the same accuracy. Data are tabulated for the above peaks in both the direct and differentiated modes for the popular resolutions of 0.15%, 0.3% and 0.6% produced by Gaussian broadening of the high resolution spectra. Differentiations are effected by both sinusoidal modulation and Savitzky-Golay functions of 2 eV and 5 eV peak-to-peak

  16. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  17. Simulation of the SAGE spectrometer

    International Nuclear Information System (INIS)

    Cox, D.M.; Herzberg, R.D.; Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.; Hauschild, K.

    2015-01-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  18. Calibration and energy resolution study of a high dispersive power Thomson Parabola Spectrometer with monochromatic proton beams

    International Nuclear Information System (INIS)

    Schillaci, F.; Cirrone, G.A.P.; Cuttone, G.; Pisciotta, P.; Rifuggiato, D.; Romano, F.; Scuderi, V.; Stancampiano, C.; Tramontana, A.; Amato, A.; Caruso, G.F.; Salamone, S.; Maggiore, M.; Velyhan, A.; Margarone, D.; Palumbo, G. Parasiliti; Russo, G.

    2014-01-01

    A high energy resolution, high dispersive power Thomson Parabola Spectrometer has been developed at INFN-LNS in order to characterize laser-driven beams up to 30- 40 MeV for protons. This device has parallel electric and magnetic field to deflect particles of a certain charge-to-mass ratio onto parabolic traces on the detection plane. Calibration of the deflection sector is crucial for data analysis, namely energy determination of analysed beam, and to evaluate the effective energy limit and resolution. This work reports the study of monochromatic proton beams delivered by the TANDEM accelerator at LNS (Catania) in the energy range between 6 and 12.5 MeV analysed with our spectrometer which allows a precise characterization of the electric and magnetic deflections. Also the energy and the Q/A resolutions and the energy limits have been evaluated proposing a mathematical model that can be used for data analysis, for the experimental set up and for the device scalability for higher energy

  19. Study of the nuclear reactions 208Pb + 58Ni and 208Pb + 64Ni with a focusing time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Sapotta, K.

    1983-01-01

    In the first part of this thesis the construction of a time-of-flight spectrometer for heavy ions with magnetic focusing is described. Then ion trajectories are calculated, and the effective spatial angle and the angular resolution are determined. In the second part the study of quasielastic transfer and deep inelastic reactions of 58 Ni and 64 Ni with 208 Pb at E=265 MeV respectively 260 MeV by means of this spectrometer is described. (HSI) [de

  20. Organic aerosol source apportionment by offline-AMS over a full year in Marseille

    Science.gov (United States)

    Bozzetti, Carlo; El Haddad, Imad; Salameh, Dalia; Daellenbach, Kaspar Rudolf; Fermo, Paola; Gonzalez, Raquel; Cruz Minguillón, María; Iinuma, Yoshiteru; Poulain, Laurent; Elser, Miriam; Müller, Emanuel; Gates Slowik, Jay; Jaffrezo, Jean-Luc; Baltensperger, Urs; Marchand, Nicolas; Prévôt, André Stephan Henry

    2017-07-01

    We investigated the seasonal trends of OA sources affecting the air quality of Marseille (France), which is the largest harbor of the Mediterranean Sea. This was achieved by measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). In total 216 PM2. 5 (particulate matter with an aerodynamic diameter water-soluble ions, metals, elemental and organic carbon (EC / OC), and organic markers, including n-alkanes, hopanes, polycyclic aromatic hydrocarbons (PAHs), lignin and cellulose pyrolysis products, and nitrocatechols. The application of positive matrix factorization (PMF) to the water-soluble AMS spectra enabled the extraction of five factors, related to hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), oxygenated OA (OOA), and an industry-related OA (INDOA). Seasonal trends and relative contributions of OA sources were compared with the source apportionment of OA spectra collected from the AMS field deployment at the same station but in different years and for shorter monitoring periods (February 2011 and July 2008). Online- and offline-AMS source apportionment revealed comparable seasonal contribution of the different OA sources. Results revealed that BBOA was the dominant source during winter, representing on average 48 % of the OA, while during summer the main OA component was OOA (63 % of OA mass on average). HOA related to traffic emissions contributed on a yearly average 17 % to the OA mass, while COA was a minor source contributing 4 %. The contribution of INDOA was enhanced during winter (17 % during winter and 11 % during summer), consistent with an increased contribution from light alkanes, light PAHs (fluoranthene, pyrene, phenanthrene), and selenium, which is commonly considered as a unique coal combustion and coke production marker. Online- and offline-AMS source apportionments revealed evolving levoglucosan : BBOA ratios, which were higher during late autumn and March. A similar seasonality was

  1. Electronic structure of Pu-Ce(-Ga) and Pu-Am(-Ga) alloys, stabilized in the {delta} phase; Structure electronique d'alliages Pu-Ce(-Ga) et Pu-Am(-Ga) stabilises en phase {delta}

    Energy Technology Data Exchange (ETDEWEB)

    Dormeval, M

    2001-09-01

    The behaviour of {delta}-plutonium, stable between 319 and 451 deg C, exhibits numerous singularities which are still a mystery for both physicists and metallurgists. This is due to its complex electronic structure, and in particular to the 5f electrons, which are at the edge between localization and delocalization. The stability domain of the {delta} phase can be extended down to room temperature by alloying with so called 'deltagen atoms' such as gallium (Ga), aluminum (A1), cerium (Ce) or americium (Am). The present work deals, one the one hand, with the influence of cerium and americium solutes regarding the localization of the 5f electrons of {delta}-plutonium, in binary Pu-Ce and Pu-Am alloys. On the other hand, the effect of two different deltagen solutes, simultaneously present, on the stability of the {delta} phase has been studied in ternary Pu-Am-Ga and Pu-Ce-Ga alloys. The electronic structure being strongly related to the crystalline organization, characterization methods such as X-Ray diffraction and EXAFS measurements were used together with electrical resistivity and magnetic susceptibility experiments. These showed that the roles of cerium and americium, supposed to be similar at the beginning of this investigation, are actually very different. Moreover, the additive effect of cerium and gallium, and, americium and gallium, has been demonstrated. Studying plutonium alloys, which are radioactive, also means following their evolution in time. The characteristics of the alloys have then been followed which allowed to detect, in Pu-Ce(-Ga) alloys, a destabilization of the {delta} phase and, to observe, in Pu-Am(-Ga) alloys, the influence of self-irradiation defects on the magnetic response. (author)

  2. Future directions of the AMS program at Lucas Heights

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-12-31

    The research program based on the ANTARES AMS spectrometer involves applications of the long-lived radionuclides {sup 14}C, {sup 10}Be, {sup 26}Al, {sup 36}Cl and {sup 129}I in earth sciences and archaeology. Examples of environmental applications of AMS at Lucas Heights include: use of the {sup 14}C bomb pulse to determine the age and age-spread of air trapped in Antarctic ice bubbles, key parameters to study the variability of CO{sub 2} and other greenhouse gases in the past; analyses of {sup 14}C bomb-pulse curves in tree rings from tropical regions and the southern hemisphere to improve our understanding of the carbon cycle and air-sea interactions, important processes for the global climate; analyses of {sup 10}Be and {sup 36}Cl produced in-situ in polished glacial bedrock and moraine boulders from Tasmania, New Zealand and Antarctica, as part of a major national project to unravel the timing of glacial cycles in the southern hemisphere. A recent archaeological application has been the radiocarbon dating of charcoal fragments from the rock shelter at Jinmium in the Northern Territory demonstrating that this site was occupied by Aboriginal people only during the late Holocene. In environmental monitoring, the analysis of {sup 129}I, {sup 14}C and {sup 36}Cl in water specimens from Mururoa and Fangatauga contributed to an IAEA study regarding residual radioactivity in the Pacific after the French nuclear program Extended abstract. 5 refs.

  3. The eclipsing AM Herculis star 2A 0311 - 227

    International Nuclear Information System (INIS)

    Allen, D.A.; Wright, A.E.; Ward, M.J.

    1981-01-01

    Infrared photometry and optical spectrophotometry of the AM Herculis star 2A 0311 - 227 are described. In its 81-min orbit there are two eclipses at infrared wavelengths and a third, intermittent eclipse of the optical emission lines. One of these eclipses is caused by an M dwarf which orbits a magnetic white dwarf. Much of the geometry of the system can be specified. An inclination near 80 0 is found, and a mass of the M dwarf which corresponds to a spectral type of M7 or M8. Accretion appears to occur on to two magnetic poles of the white dwarf, but the field strengths differ so that one pole emits preferentially at optical wavelengths and the other mostly in the infrared. The location of the redder-emitting magnetic pole can be specified because of its eclipse by the white dwarf, but there remains some uncertainty in the location of the bluer pole. All interpretations seem to require that the magnetic poles are not symmetrically disposed about the white dwarf, and some evidence suggests that like poles are less than 60 0 apart. (author)

  4. Study of multimuon events in 0.4x3.0 TeV proton-proton collisions with multimuon spectrometer MMS

    International Nuclear Information System (INIS)

    Abramov, V.V.; Ajinenko, I.V.; Antipov, Yu.M.

    1990-01-01

    The physical motivation and the proposal of an experiment to study multimuon events with a major goal to search and study t-quark production at 0.4x3.0 TeV pp collider with 10 33 cm -2 s -1 luminosity at IHEP are prsented. A muon spectrometer based on magnetized iron combined with hadron and electromagnetic calorimeters not having a track system in the vicinity of beam crossing is described. The spectrometer is capable to cope with the mentioned luminosity. 13 refs.; 9 figs.; 2 tabs

  5. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  6. Neutron reference spectra measurements with the Bonner multi-spheres spectrometer

    International Nuclear Information System (INIS)

    Lemos Junior, Roberto Mendonca de

    2004-01-01

    This paper aims to define a procedure to use the Bonner Multisphere Spectrometer with a 6 LiI(Eu) detector in order to determine of neutron spectra. It was measured 238 PuBe spectra and same of reference ( 241 AmBe, 252 Cf e 252 Cf+D 2 O) published in ISO 8529-1 (2001) Norm. The data were processed by a computer program (BUNKI), which presents the results in neutrons energy fluency. Each input parameter of the program was studied in order to establish their influence in the adjustment result. The environment dose equivalent rate obtained placing the detector 1 m from the 241 AmBe source was 122 ± 4 μSv/h with 7% of uncertainty and 95% of confidence level. The procedure established in this work was tested with the 238 PuBe spectrum, obtaining an environment dose equivalent rate of 286 ± 9 μSv/h, 8% lower than the value measured experimentally used as reference. Through this procedure will be possible to measure neutron spectra in different work places where neutrons sources are used. Knowing these spectra, it will be possible to evaluate which area monitors, are more suitable, as well as, to study better the response of individual neutron monitors, as for instance, to obtain a conversion coefficient more appropriate to the albedo dosimeter used in different work places. As the measurements need a long time to be accomplished, the work optimization is fundamental to reduce the exposing time of the Bonner spectrometer operator. For this reason, an important parameter examined in this paper was the possibility of reducing the number of spheres used during the measurement without changing the final result. Considering the radiation protection standards, this parameter has a huge importance when the measurements are performed in work places where the neutron fluency and gamma rate offer risks to the operator's health, as for instance, in nuclear centrals. Studying this parameter, it was possible to conclude that removing the 20,32 cm diameter sphere it will be

  7. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  8. Deep-level defects in semiconductors: studies by magnetic resonance

    International Nuclear Information System (INIS)

    Ammerlaan, C.A.J.

    1983-01-01

    This work is divided into two parts. In the first one, the following topics are discussed: paramagnetic centers in semiconductors, principles of magnetic resonance, spin-Hamiltonian, g-tensor, hyperfine interaction, magnetic resonance spectrometer. In the second part it is dicussed defects studied by magnetic resonance including vacancy and divacancy in silicon, iron in silicon, nitrogen in diamond and antisite defects in III-V compounds. (A.C.A.S.) [pt

  9. The multiple disk chopper neutron time-of-flight spectrometer at NIST

    International Nuclear Information System (INIS)

    Altorfer, F.B.; Cook, J.C.; Copley, J.R.D.

    1995-01-01

    A highly versatile multiple disk chopper neutron time-of-flight spectrometer is being installed at the Cold Neutron Research Facility of the National institute of Standards and Technology. This new instrument will fill an important gap in the portfolio of neutron inelastic scattering spectrometers in North America. It will be used for a wide variety of experiments such as studies of magnetic and vibrational excitations, tunneling spectroscopy, and quasielastic neutron scattering investigations of local and translational diffusion. The instrument uses disk choppers to monochromate and pulse the incident beam, and the energy changes of scattered neutrons are determined from their times-of-flight to a large array of detectors. The disks and the guide have been designed to make the instrument readily adaptable to the specific performance requirements of experimenters. The authors present important aspects of the design, as well as estimated values of the flux at the sample and the energy resolution for elastic scattering. The instrument should be operational in 1996

  10. A new dual injection system for AMS facility

    International Nuclear Information System (INIS)

    Liu Lin; Zhou Weijian; Cheng Peng; Yu Huagui; Chen Maobai

    2007-01-01

    In order to measure long-lived radioisotopes such as 10 Be with high sensitivity using an HVEE model 4130 AMS system, as well as to guarantee 14 C measurements of high precision, a new dual injection system for the AMS system is proposed. The proposal is to add a Wien filter located between the ion source system and the recombinator of the HVEE model 4130. When a pulsing voltage is optionally applied to the Wien filter, a sequential injection mode is turned on. The isotopes would alternately pass on different trajectories through the recombinator. When the pulsing voltage and magnetic field are turned off, the Wien filter acts as a field-free drift space and the standard simultaneous injection mode is on. Beam optics calculation show that the new dual injection system will increase the number of radio-nuclides which can be analyzed, keep the high precision capability for radiocarbon dating and achieve high sensitivity for 10 Be and 26 Al measurements, together with simplifying the layout as compared to existing dual-injector and dual high-energy beam line systems

  11. Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba-F-Fe deposits (France)

    Science.gov (United States)

    Sizaret, Stanislas; Chen, Yan; Chauvet, Alain; Marcoux, Eric; Touray, Jean Claude

    2003-02-01

    This study presents a possible use of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. Ba-F-Fe-rich deposits within the Chaillac Basin are on the southern border of the Paris Basin. In these deposits hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented by hydrothermal goethite. 278 oriented cores from 24 sites have been collected in these formations. In addition, a lateritic duricrust superimposed on the hydrothermal formation has been sampled. Rock magnetic investigations show that the principal magnetic carrier is goethite for the hydrothermal mineralization and for the laterite level. The AMS measurements show distinguishable behaviors in the different mineralogical and geological contexts. The K1 magnetic lineation (maximum axis) is strongly inclined for the vertical veins. For the horizontally mineralized sinters, the magnetic lineation is almost horizontal with an azimuth similar to the sedimentary flow direction. The AMS of goethite-rich sandstone close to the veins shows strongly inclined K1 as they are probably influenced by the vertical veins; however, when the distance from the vein is larger than 1 m, the AMS presents rather horizontal K1 directions, parallel to the sedimentary flow. The laterite has a foliation dominance of AMS with vertically well-grouped K3 axes and scattered K1 and K2 axes. Field structural observations suggest that the ore deposit is mainly controlled by EW extension tectonics associated with NS trending normal faults. Combining the AMS results on the deposit with vein textures and field data a model is proposed in which AMS results are interpreted in terms of hydrothermal fluid flow. This work opens a new investigation field to constrain hydrodynamic models using the AMS method. Textural study combined with efficient AMS fabric measurements should be used for systematic investigation to trace flow direction in fissures

  12. It's About Time: Interpreting AMS Antimatter Data in Terms of Cosmic Ray Propagation

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    If cosmic ray positrons come from a secondary origin, then their production spectrum is correlated with the production spectrum of other secondary particles such as boron and antiprotons through scattering cross sections measured in the laboratory. This allows to define a first-principle upper bound on the positron flux at the Earth, independent of propagation model assumptions. Using currently available B/C and antiproton/proton data, we show that the positron flux reported by AMS is consistent with the bound and saturates it at high energies. This coincidence is a compelling indication for a secondary source. We explain how improved AMS measurements of the high energy boron, antiproton, and secondary radioactive nuclei fluxes can corroborate or falsify the secondary source hypothesis. Assuming that the positrons are secondary, we show that AMS data imply a propagation time in the Galaxy of order 1Myr or less for cosmic rays with magnetic rigidity > 300 GV. This corresponds to an average traversed interstel...

  13. Applicability of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer for determination of chemical composition of ultrafine aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.

    2013-11-01

    This thesis is based on the construction of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer (laser AMS), which is capable of measuring 10 to 50 nm aerosol particles collected from urban and rural air at-site and in near real time. The operation and applicability of the instrument was tested with various laboratory measurements, including parallel measurements with filter collection/chromatographic analysis, and then in field experiments in urban environment and boreal forest. Ambient ultrafine aerosol particles are collected on a metal surface by electrostatic precipitation and introduced to the time-of-flight mass spectrometer (TOF-MS) with a sampling valve. Before MS analysis particles are desorbed from the sampling surface with an infrared laser and ionized with a UV laser. The formed ions are guided to the TOF-MS by ion transfer optics, separated according to their m/z ratios, and detected with a micro channel plate detector. The laser AMS was used in urban air studies to quantify the carbon cluster content in 50 nm aerosol particles. Standards for the study were produced from 50 nm graphite particles, suspended in toluene, with 72 hours of high power sonication. The results showed the average amount of carbon clusters (winter 2012, Helsinki, Finland) in 50 nm particles to be 7.2% per sample. Several fullerenes/fullerene fragments were detected during the measurements. In boreal forest measurements, the laser AMS was capable of detecting several different organic species in 10 to 50 nm particles. These included nitrogen-containing compounds, carbon clusters, aromatics, aliphatic hydrocarbons, and oxygenated hydrocarbons. A most interesting event occurred during the boreal forest measurements in spring 2011 when the chemistry of the atmosphere clearly changed during snow melt. On that time concentrations of laser AMS ions m/z 143 and 185 (10 nm particles) increased dramatically. Exactly at the same time, quinoline concentrations

  14. RITA-type triple axis spectrometers

    International Nuclear Information System (INIS)

    Roennow, H.M.

    2001-01-01

    The RITA spectrometer at Risoe National Laboratory was the first to incorporate a complete re-thinking of the neutron-path from source, through detector to analysis. Since then, other RITA-type spectrometers such as SPINS at NIST, RITA-II at PSI have been built, and several new spectrometers around the world are adapting the same philosophy. The main novelty of RITA was the introduction of a single back-end tank featuring both an analyser block with multiple individually turnable analyser blades and a 2D position sensitive detector. Several new triple-axis spectrometers are presently being built at existing and future sources, and almost all of them have learnt from the experience with RITA. (R.P.)

  15. Influence of Radiation Damage and Isochronal Annealing on the Magnetic Susceptibility of Pu1-xAmx Alloys

    International Nuclear Information System (INIS)

    McCall, Scott K.; Fluss, Michael J.; Chung, Brandon W.; Haire, Richard G.

    2008-01-01

    Results of radiation damage in Pu and Pu 1-x Am x alloys studied with magnetic susceptibility, χ(T), and resistivity are presented. Damage accumulated at low temperatures increases χ(T) for all measured alloys, with the trend generally enhanced as the lattice expands. There is a trend towards saturation observable in the damage induced magnetic susceptibility data. that is not evident in similar damage induced resistivity data taken on the same specimen. A comparison of isochronal annealing curves measured by both resistivity and magnetic susceptibility on a 4.3 at% Ga stabilized δ-Pu specimen show that Stage I annealing, where interstitials begin to move, is largely transparent to the magnetic measurement. This indicates that interstitials have little impact on the damage induced increase in the magnetic susceptibility. The isochronal annealing curves of the Pu 1-x Am x alloys do not show distinct annealing stages as expected for alloys. However, samples near 20% Am concentration show an unexpected increase in magnetization beginning when specimens are annealed to 35 K. This behavior is also reflected in a time dependent increase in the magnetic susceptibility of damaged specimens indicative of first order kinetics. These results suggest there may be a metastable phase induced by radiation damage and annealing in Pu 1-x Am x alloys. (authors)

  16. Applying the anisotropy of magnetic susceptibility technique to the study of the tectonic evolution of the West Spitsbergen Fold-and-Thrust Belt

    Directory of Open Access Journals (Sweden)

    Katarzyna Dudzisz

    2016-12-01

    Full Text Available We demonstrate the use of the anisotropy of magnetic susceptibility (AMS method to determine the orientation of the principal tectonic strain directions developed during the formation of the West Spitsbergen Fold-and-Thrust Belt (WSFTB. The AMS measurements and extensive rock-magnetic studies of the Lower Triassic rocks reported here were focused on the recognition of the magnetic fabric, the identification of ferromagnetic minerals and an estimation of the influence of ferro- and paramagnetic minerals on magnetic susceptibility. At most sites, the paramagnetic minerals controlled the magnetic susceptibility, and at only one site the impact of ferromagnetic minerals was higher. The AMS technique documented the presence of different types of magnetic fabrics within the sampled sites. At two sites, a normal (Kmin perpendicular to the bedding magnetic fabric of sedimentary origin was detected. This was associated with a good clustering of the maximum AMS axes imposed by tectonic strain. The Kmax magnetic lineation directions obtained here parallel the general NNW–SSE trend of the WSFTB fold axial traces and thrust fronts. The two other investigated sites possessed mixed and inverted fabrics, the latter of which appear to reflect the presence of iron-bearing carbonates.

  17. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials

    Science.gov (United States)

    Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.

    2017-08-01

    In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.

  18. Triggering and measuring bent cosmic muon tracks with the Muon Spectrometer barrel for the first time

    CERN Multimedia

    Fabio Cerutti

    During the ATLAS barrel toroid stability test, bent cosmic muon tracks were seen for the first time in the ATLAS cavern by means of the ATLAS muon spectrometer. The barrel toroid has been powered at its nominal current (20.5 thousand Amperes) and kept in steady state for more than one day during the weekend of 18-19 November (see a report on this test in the Magnet section). During this test one large sector and part of a small sector of the barrel muon spectrometer were readout and used to detect the cosmic muons tracks bent by the toroidal magnetic field. Thirteen muon stations in the feet sectors (sectors 13 and 14) have been used in this test. The muon stations are formed of Resistive Plate Chambers (RPC) that were providing the muon trigger, and Monitored Drift Tubes that were used to measure with high accuracy the muon curvature hence their momentum. The Level-1 Barrel trigger chain was based on the Barrel Middle Large chambers equipped with final production modules on both the on-detector and the o...

  19. The Crustal Magnetization Mapping in the Ocean Basin of the South China Sea and its Tectonic Implications

    Science.gov (United States)

    Guo, L.; Meng, X.

    2015-12-01

    The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, was formed by the interaction of the three plates and the Cenozoic seafloor spreading. Magnetic data is the crucial data for understanding tectonic evolution and seafloor spreading model in the SCS. Magnetization intensity is related closely to rock type and tectonics. Through magnetization mapping, the distribution of apparent magnetization in the subsurface will be obtained, benefiting in lithologic classification and geological mapping. Due to strong remanence presented in the oceanic crust, magma and seamounts in the SCS, the magnetization directions are complex and heterogeneous, quite different from the modern geomagnetic field directions. However, the routine techniques for magnetization mapping are based on negligence of remanence. The normalized source strength (NSS), one quantity transformed from the magnetic anomalies, is insensitive to remanence and responds well to the true locations of magnetic sources. The magnetization mapping based on the NSS will effectively reduce effects of remanence, benefitting in better geological interpretation. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then transformed them into the NSS. Then we did magnetization mapping based on the NSS to obtain the crustal magnetization distribution in the studied area. The results show that the magnetization distribution inside of each subbasin is relatively homogeneous, but that of eastern subbasin is mostly strong with amplitude of 0.2A/m~4.2A/m, while that of southwestern subbasin is weak with amplitude of 0.2A/m~1.1A/m. It implies that magnetic structure and tectonic features in the crust are discriminative between both subbasins, and the tectonic boundary between both subbasins is roughly ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank.

  20. Results from a prototype chicane-based energy spectrometer for a linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Lyapin, A. [Univ. College London (United Kingdom); London Univ., Egham (United Kingdom). Royal Holloway; Schreiber, H.J.; Viti, M. [Deutsches Electronen Synchrotron DESY, Hamburg (Germany); Deutsches Electronen Synchrotron DESY, Zeuthen (DE)] (and others)

    2010-11-15

    The International Linear Collider (ILC) and other proposed high energy e{sup +}e{sup -} machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for achieving this goal is a measurement of the incident beam energy with an uncertainty close to 10{sup -4}. This article presents the analysis of data from a prototype energy spectrometer commissioned in 2006-2007 in SLAC's End Station A beamline. The prototype was a 4-magnet chicane equipped with beam position monitors measuring small changes of the beam orbit through the chicane at different beam energies. A single bunch energy resolution close to 5 . 10{sup -4} was measured, which is satisfactory for most scenarios. We also report on the operational experience with the chicane-based spectrometer and suggest ways of improving its performance. (orig.)