The role of short-range magnetic correlations in the gap opening of topological Kondo insulators
Ramos, E.; Franco, R.; Silva-Valencia, J.; Foglio, M. E.; Figueira, M. S.
2017-08-01
In this article we investigate the effects of short-range anti-ferromagnetic correlations on the gap opening of topological Kondo insulators. We add a Heisenberg term to the periodic Anderson model at the limit of strong correlations in order to allow a small degree of hopping of the localized electrons between neighboring sites of the lattice. This new model is adequate for studying topological Kondo insulators, whose paradigmatic material is the compound SmB6 . The main finding of the article is that the short-range antiferromagnetic correlations, present in some Kondo insulators, contribute decisively to the opening of the Kondo gap in their density of states. These correlations are produced by the interaction between moments on the neighboring sites of the lattice. For simplicity, we solve the problem on a two dimensional square lattice. The starting point of the model is the 4f-Ce ions orbitals, with J=5/2 multiplet in the presence of spin-orbit coupling. We present results for the Kondo and for the antiferromagnetic correlation functions. We calculate the phase diagram of the model, and as we vary the Ef level position from the empty regime to the Kondo regime, the system develops metallic and topological Kondo insulator phases. The band structure calculated shows that the model describes a strong topological insulator.
Short range correlations and the EMC effect.
Weinstein, L B; Piasetzky, E; Higinbotham, D W; Gomez, J; Hen, O; Shneor, R
2011-02-04
This Letter shows quantitatively that the magnitude of the EMC effect measured in electron deep inelastic scattering at intermediate x(B), 0.35≤x(B)≤0.7, is linearly related to the short range correlation (SRC) scale factor obtained from electron inclusive scattering at x(B)≥1. The observed phenomenological relationship is used to extract the ratio of the deuteron to the free pn pair cross sections and F(2)(n)/F(2)(p), the ratio of the free neutron to free proton structure functions. We speculate that the observed correlation is because both the EMC effect and SRC are dominated by the high virtuality (high momentum) nucleons in the nucleus.
Hard probes of short-range nucleon-nucleon correlations
Energy Technology Data Exchange (ETDEWEB)
J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian
2012-10-01
The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.
Energy Technology Data Exchange (ETDEWEB)
Wakimoto, S [Japan Atomic Energy Agency (JAEA); Hiraka, Haruhiro [Institute for Materials Research, Tohoku University, Sendai, Japan; Kudo, Kazutaka [Institute for Materials Research, Tohoku University, Sendai, Japan; Okamoto, Daichi [Institute for Materials Research, Tohoku University, Sendai, Japan; Nishizaki, Terukazu [Institute for Materials Research, Tohoku University, Sendai, Japan; Kakurai, Kazuhisa [Japan Atomic Energy Agency (JAEA); Hong, Tao [ORNL; Zheludev, Andrey [Laboratory for Neutron Scattering ETHZ & PSI; Tranquada, John M. [Brookhaven National Laboratory (BNL); Kobayashi, Norio [Institute for Materials Research, Tohoku University, Sendai, Japan; Yamada, Kazuyoshi [Institute for Materials Research, Tohoku University, Sendai, Japan
2010-08-01
We report electrical-resistivity measurements and neutron-diffraction studies under magnetic fields of Bi{sub 1.75}Pb{sub 0.35}Sr{sub 1.90}Cu{sub 0.91}Fe{sub 0.09}O{sub 6+y}, in which hole carriers are overdoped. This compound shows short-range incommensurate magnetic correlation with incommensurability {delta} = 0.21, whereas a Fe-free compound shows no magnetic correlation. Resistivity shows an up turn at low temperature in the form of ln(1/T) and shows no superconductivity. We observe reduction in resistivity by applying magnetic fields (i.e., a negative magnetoresistive effect) at temperatures below the onset of short-range magnetic correlation. Application of magnetic fields also suppresses the Fe-induced incommensurate magnetic correlation. We compare and contrast these observations with two different models: (1) stripe order and (2) dilute magnetic moments in a metallic alloy with associated Kondo behavior. The latter picture appears to be more relevant to the present results.
Short range correlations between nucleons in finite nuclei
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; MA Wei-Xing
2008-01-01
The short-range correlation between nucleons in finite nuclei is investigated in high energy protonnucleus and α-nucleus elastic scattering in the framework of Glauber multiple scattering theory without any free parameters. The effects on the p-4He and 4He-12C elastic scattering, and in particular on the proton elastic scattering off hallo-like nuclei, 6,8He, are estimated. Our calculations show that the short-range correlations play an important role in reproducing experimental data and could be also thought of as being possible origin and nature of halo-like phenomena in the nuclear structure. More accurate calculations along this line are needed.
Short-range correlations in quark and nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Froemel, Frank
2007-06-15
In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)
Short-range correlations of partons & 3D nucleon structure
Directory of Open Access Journals (Sweden)
Schweitzer P.
2014-03-01
Full Text Available Dynamical breaking of chiral symmetry in QCD is caused by non-perturbative interactions on a scale ρ ∼ 0.3 fm much smaller than the hadronic size R ∼ 1 fm. This has important consequences for the nucleon structure such as the prediction that the transverse momentum distribution of sea quarks is significantly broader than the pT -distribution of valence quarks due to short-range correlations between sea quarks in the nucleon’s light-cone wave function.
Effects of short range correlations on Ca isotopes
Lalazissis, G A
1996-01-01
The effect of Short Range Correlations (SRC) on Ca isotopes is studied using a simple phenomenological model. Theoretical expressions for the charge (proton) form factors, densities and moments of Ca nuclei are derived. The role of SRC in reproducing the empirical data for the charge density differences is examined. Their influence on the depletion of the nuclear Fermi surface is studied and the fractional occupation probabilities of the shell model orbits of Ca nuclei are calculated. The variation of SRC as function of the mass number is also discussed.
Short-Range Correlation Models in Electronic Structure Theory
Goldey, Matthew Bryant
Correlation methods within electronic structure theory focus on recovering the exact electron-electron interaction from the mean-field reference. For most chemical systems, including dynamic correlation, the correlation of the movement of electrons proves to be sufficient, yet exact methods for capturing dynamic correlation inherently scale polynomially with system size despite the locality of the electron cusp. This work explores a new family of methods for enhancing the locality of dynamic correlation methodologies with an aim toward improving accuracy and scalability. The introduction of range-separation into ab initio wavefunction methods produces short-range correlation methodologies, which can be supplemented with much faster approximate methods for long-range interactions. First, I examine attenuation of second-order Moller-Plesset perturbation theory (MP2) in the aug-cc-pVDZ basis. MP2 treats electron correlation at low computational cost, but suffers from basis set superposition error (BSSE) and fundamental inaccuracies in long-range contributions. The cost differential between complete basis set (CBS) and small basis MP2 restricts system sizes where BSSE can be removed. Range-separation of MP2 could yield more tractable and/or accurate forms for short- and long-range correlation. Retaining only short-range contributions proves to be effective for MP2 in the small aug-cc-pVDZ (aDZ) basis. Using one range-separation parameter within either the complementary error function (erfc) or a sum of two error functions (terfc), superior behavior is obtained versus both MP2/aDZ and MP2/CBS for inter- and intra-molecular test sets. Attenuation of the long-range helps to cancel both BSSE and intrinsic MP2 errors. Direct scaling of the MP2 correlation energy (SMP2) proves useful as well. The resulting SMP2/aDZ, MP2(erfc, aDZ), and MP2(terfc, aDZ) methods perform far better than MP2/aDZ across systems with hydrogen-bonding, dispersion, and mixed interactions at a
Ising model with short-range correlated dilution
Branco, N. S.; de Queiroz, S. L. A.; Dos Santos, Raimundo R.
1988-07-01
We consider a diluted Ising model in which the absence of a spin affects the exchange coupling of a nearest-neighbor pair along the line joining the three spins; that is, it aquires the value αJ, where α is a phenomenological parameter ɛ[0,1]. This model has been proposed to explain the experimental phase diagram for KNixMg1-xF3. A position-space renormalization-group analysis clearly distinguishes two percolation thresholds depending on whether α=0 or α>0, though both cases seem to be in the same universality class. Further, thermal fluctuations dominate over the geometrical ones as in the uncorrelated case and the critical curve (critical temperature versus concentration of magnetic sites) displays an upward curvature for intermediate degrees of correlation 0<α<1, as experimentally observed.
A novel nuclear dependence of nucleon-nucleon short-range correlations
Dai, Hongkai; Huang, Yin; Chen, Xurong
2016-01-01
A linear correlation is found between the magnitude of nucleon-nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon-nucleon short-range correlations of some unmeasured nuclei are predicted. Discussions on nucleon-nucleon pairing energy and nucleon-nucleon short-range correlations are made. The found nuclear dependence of nucleon-nucleon short-range correlations may shed some lights on the short-range structure of nucleus.
Guo, J. L.; Zhang, X. Z.
2016-01-01
Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented. PMID:27596050
Short-range correlations in low-lying nuclear excited states
Mokhtar, S R; Lallena, A M; Mokhtar, Sherif R.; Co', Giampaolo; Lallena, Antonio M.
2000-01-01
The electromagnetic transitions to various low-lying excited states of 16O, 48Ca and 208Pb are calculated within a model which considers the short-range correlations. In general the effects of the correlations are small and do not explain the required quenching to describe the data.
Nuclear Halo-Like Phenomena of 6,8He and Nuclear Short Range Correlation
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; WU Qing; HE Xiao-Rong; MA Wei-Xing
2004-01-01
Based on the nuclear short range correlation in a halo-like nucleus, theoretical analysis of the experimental cross sections for small-angle elastic p-4,6,8He scattering at the energy of about 0.7 GeV has been performed in the framework of Glauber multiple scattering theory. Our theoretical calculations reproduce the corresponding experimental data quite successfully. These good agreements confirm that the nuclear halo-like phenomena may originate from the short range correlation between nucleons in a halo-like nucleus.
Nuclear Halo-Like Phenomena and Short-Range Nuclear Correlation
Institute of Scientific and Technical Information of China (English)
MAWei-Xing; HUZhao-Hui; ZHOULi-Juan; ZHUJi-Zhen; LUJuan
2003-01-01
Based on Glauber Multiple Scattering Theory, high-energy proton elastic scattering on halo-like nucleus 13C is studied in a single nucleon wave function with low angular momentum configurations. A great agreement with experimental data is obtained and the theoretical prediction clearly shows that 13U has a neutron halo-like structure.Then, the origin and nature of nuclear halo phenomena are explained in terms of nuclear short-range correlations. Our conclnsion shows ttiat the origin of nuclear halo-like phenomena originates from short range nuclear correlation.
Nuclear Halo-Like Phenomena and Short-Range Nuclear Correlation
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; HU Zhao-Hui; ZHOU Li-Juan; ZHU Ji-Zhen; LU Juan
2003-01-01
Based on Glauber Multiple Scattering Theory, high-energy proton elastic scattering on halo-like nucleus 13C is studied in a single nucleon wave function with low angular momentum configurations. A great agreement with experimental data is obtained and the theoretical prediction clearly shows that 13 C has a neutron halo-like structure.Then, the origin and nature of nuclear halo phenomena are explained in terms of nuclear short-range correlations. Our conclusion shows that the origin of nuclear halo-like phenomena originates from short range nuclear correlation.
Nuclear Halo-Like Phenomena of 6,8 He and Nuclear Short Range Correlation
Institute of Scientific and Technical Information of China (English)
ZHOULi-Juan; WUQinq; HEXiao-Rong; MAWei-Xing
2004-01-01
Based on the nuclear short range correlation in a halo-like nucleus, theoretical analysis of the experimental cross sections for small-angle elastic p-4,6,8 He scattering at the energy of about 0.7 GeV has been performed in the framework of Glauber multiple scattering theory. Our theoretical calculations reproduce the corresponding experimental data quite successfully. These good agreements confirm that the nuclear halo-like phenomena may originate from the short range correlation between nucleons in a halo-like nucleus.
The Wigner function and short-range correlations in the deuteron
Neff, Thomas
2016-01-01
$\\textbf{Background:}$ The deuteron shows the essential features of short-range correlations found in all nuclei. Experimental observables related to short-range correlations are connected with the high-momentum components of one- and two-body momentum distributions. An intuitive understanding of short-range correlations is provided by the suppression of the two-body density in coordinate space at small distances. $\\textbf{Purpose:}$ The Wigner function provides a quasi-probability distribution in phase-space that allows to investigate short-range correlations as a function of distance and relative momentum in a unified picture. $\\textbf{Method:}$ The Wigner function for the deuteron is calculated for bare and SRG evolved AV8' and N3LO interactions and investigated as a function of distance, relative momentum and angular orientation. Partial momentum and coordinate space distributions are obtained by integrating over parts of phase space. $\\textbf{Results:}$ The Wigner function shows a pronounced low-momentum...
Short Range Wake Field Caused by Electron Cloud in Bending Magnet
Wang, L; Zimmermann, Frank; Ohmi, K
2001-01-01
A short-range wake field caused by the electron cloud has previously been studied for a drift space. In a bending magnet, the cloud electrons undergo cyclotron motion with a small radius (10 GHz) in the horizontal plane due to the strong magnetic field of order 1 T. In this report, we study the motion of electrons under the combined influence of a strong magnetic dipole field and the electric field of the beam on the time scale of the bunch length, discuss the short-range wake field caused by the electrons, and simulate the emittance growth. As expected, the wake field in a bending magnet is very different from that in a drift space. The dipole field almost completely suppresses any horizontal coherent motion and rms-size blow up, and it also slows down the instability in the vertical direction.
Study of the effect of short ranged ordering on the magnetism in FeCr alloys
Energy Technology Data Exchange (ETDEWEB)
Jena, Ambika Prasad, E-mail: apjena@bose.res.in [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Sanyal, Biplab, E-mail: biplab.sanyal@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India)
2014-01-15
For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied.
Characterizing short-range vs. long-range spatial correlations in dislocation distributions
Energy Technology Data Exchange (ETDEWEB)
Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)
2010-03-15
Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.
Wave function and strange correlator of short-range entangled states.
You, Yi-Zhuang; Bi, Zhen; Rasmussen, Alex; Slagle, Kevin; Xu, Cenke
2014-06-20
We demonstrate the following conclusion: If |Ψ⟩ is a one-dimensional (1D) or two-dimensional (2D) nontrivial short-range entangled state and |Ω⟩ is a trivial disordered state defined on the same Hilbert space, then the following quantity (so-called "strange correlator") C(r,r('))=⟨Ω|ϕ(r)ϕ(r('))|Ψ⟩/⟨Ω|Ψ⟩ either saturates to a constant or decays as a power law in the limit |r-r(')|→+∞, even though both |Ω⟩ and |Ψ⟩ are quantum disordered states with short-range correlation; ϕ(r) is some local operator in the Hilbert space. This result is obtained based on both field theory analysis and an explicit computation of C(r,r(')) for four different examples: 1D Haldane phase of spin-1 chain, 2D quantum spin Hall insulator with a strong Rashba spin-orbit coupling, 2D spin-2 Affleck-Kennedy-Lieb-Tasaki state on the square lattice, and the 2D bosonic symmetry-protected topological phase with Z(2) symmetry. This result can be used as a diagnosis for short-range entangled states in 1D and 2D.
Nuclear matrix element of neutrinoless double-β decay: Relativity and short-range correlations
Song, L. S.; Yao, J. M.; Ring, P.; Meng, J.
2017-02-01
Background:The discovery of neutrinoless double-β (0 ν β β ) decay would demonstrate the nature of neutrinos, have profound implications for our understanding of matter-antimatter mystery, and solve the mass hierarchy problem of neutrinos. The calculations for the nuclear matrix elements M0 ν of 0 ν β β decay are crucial for the interpretation of this process. Purpose: We study the effects of relativity and nucleon-nucleon short-range correlations on the nuclear matrix elements M0 ν by assuming the mechanism of exchanging light or heavy neutrinos for the 0 ν β β decay. Methods:The nuclear matrix elements M0 ν are calculated within the framework of covariant density functional theory, where the beyond-mean-field correlations are included in the nuclear wave functions by configuration mixing of both angular-momentum and particle-number projected quadrupole deformed mean-field states. Results: The nuclear matrix elements M0 ν are obtained for ten 0 ν β β -decay candidate nuclei. The impact of relativity is illustrated by adopting relativistic or nonrelativistic decay operators. The effects of short-range correlations are evaluated. Conclusions: The effects of relativity and short-range correlations play an important role in the mechanism of exchanging heavy neutrinos though the influences are marginal for light neutrinos. Combining the nuclear matrix elements M0 ν with the observed lower limits on the 0 ν β β -decay half-lives, the predicted strongest limits on the effective masses are || |-1>3.065 ×108GeV for heavy neutrinos.
Mass- and isospin-dependence of short-range correlated pairs
Mosel, U
2016-01-01
The target-mass number dependence of nucleon-nucleon pairs with short-range correlations is explored in a physically transparent geometrical model. The observed $A$-dependence of 2-nucleon ejection cross sections in $(e,e')$ reactions is found to reflect the mass-dependence of nuclear density distributions. The dependence of proton-proton vs. proton-neutron pairs is also analyzed in this model. The mass-number dependence relative to $^{12}C$ can be understood using simple combinatorics.
Measurement of 2- and 3-Nucleon Short Range Correlation Probabilities in Nuclei
Egiyan, K S; Sargsian, M M; Strikman, M I; Weinstein, L B; Adams, G; Ambrozewicz, P; Anghinolfi, M; Asavapibhop, B; Asryan, G; Avakian, H; Baghdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Batourine, V; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Biselli, A S; Bonner, B E; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Brooks, W K; Bültmann, S; Burkert, V D; Bultuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Chen, S; Cole, P L; Coltharp, P; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; De Sanctis, E; De Vita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Fedotov, G; Feuerbach, R J; Forest, T A; Funsten, H; Gavalian, G; Gevorgyan, N G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hu, J; Huertas, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Jüngst, H G; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A; Klusman, M; Kramer, L H; Kubarovski, V; Kühn, J; Kuhn, S E; Kuleshov, S; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Lee, T; Livingston, K; Maximon, L C; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R C; Mirazita, M; Miskimen, R; Mokeev, V; Morrow, S A; Müller, J; Mutchler, G S; Nadel-Turonski, P; Napolitano, J; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Peterson, C; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Rowntree, D; Rubin, P D; Sabatie, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Shaw, J; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A V; Stepanyan, S; Stokes, B E; Stoler, P; Strauch, S; Suleiman, R; Taiuti, M; Taylor, S; Tedeschi, D J; Thompson, R; Tkabladze, A; Tkachenko, S I; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zana, L; Zhang, J
2006-01-01
The ratios of inclusive electron scattering cross sections of He4, C12 and Fe56 to He3 have been measured at 1 1.4 GeV^2, the ratios exhibit two separate plateaus, at 1.5 2.25. This pattern is predicted by models that include 2- and 3-nucleon short-range correlations (SRC). Relative to A=3, the per-nucleon probabilities of 3-nucleon SRC are 2.3, 3.2, and 4.6 times larger for A=4, 12 and 56. This is the first measurement of 3-nucleon SRC probabilities in nuclei. \\\\
Short-range correlations studies in collisions of polarized nuclei at Nuclotron-M
Directory of Open Access Journals (Sweden)
Sakai H.
2010-04-01
Full Text Available The status and prospects of 2-nucleon and 3-nucleon short range correlations (SRCs studies at Nuclotron-M (JINR are presented. This program is focused on the investigations of the spin part of SRCs with polarized deuteron beam from new high intensity polarized deuterons ion source which is under development at JINR. The wide experimental program on the systematic studies of the polarization eﬀects in dp- elastic scattering, dp- nonmesonic breakup, dd → 3Hen(3Hp and d3He → p4He reactions sensitive to SRCs using both internal and extracted beam at Nuclotron-M is presented.
Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhihong [Univ. of Virginia, Charlottesville, VA (United States)
2013-12-01
The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)^{2} for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1
Mass dependence of nuclear short- range correlations and the EMC effect
Cosyn, Wim; Ryckebusch, Jan
2014-01-01
We sketch an approximate method to quantify the number of correlated pairs in any nucleus $A$. It is based on counting independent-particle model (IPM) nucleon-nucleon pairs in a relative $S$-state with no radial excitation. We show that IPM pairs with those quantum numbers are most prone to short-range correlations and are at the origin of the high-momentum tail of the nuclear momentum distributions. Our method allows to compute the $a_2$ ratios extracted from inclusive electron scattering. Furthermore, our results reproduce the observed linear correlation between the number of correlated pairs and the magnitude of the EMC effect. We show that the width of the pair center-of-mass distribution in exclusive two-nucleon knockout yields information on the quantum numbers of the pairs.
The 0nbb-decay nuclear matrix elements with self-consistent short-range correlations
Simkovic, Fedor; Muther, Herbert; Rodin, Vadim; Stauf, Markus
2009-01-01
A self-consistent calculation of nuclear matrix elements of the neutrinoless double beta decays (0nbb) of 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te and 130Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely from charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations matrix elements for the 0nbb-decay are obtained, which are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0nbb-decay matrix elements.
Connections among residual strong interaction, the EMC effect and short range correlations
Wang, Rong
2015-01-01
A linear correlation is shown quantitatively between the magnitude of the EMC effect measured in electron deep inelastic scattering (DIS) and the nuclear residual strong interaction energy (RSIE) obtained from the nuclear binding energy subtracting the Coulomb energy part. The observed correlation supports the recent speculation that the nuclear dependence of quark distributions depend on the local nuclear density. This phenomenological relationship can be used to extract the size of in-medium correction (IMC) effect on deuteron. Most importantly, the EMC slopes $dR_{EMC}/dx$ of nuclei can be predicted with the nuclear binding energy data. The relationship between nucleon-nucleon (N-N) short range correlation (SRC) and RSIE is also presented.
Vynck, Kevin; Pierrat, Romain; Carminati, Rémi
2016-09-01
We develop a model based on a multiple scattering theory to describe the diffusion of polarized light in disordered media exhibiting short-range structural correlations. Starting from exact expressions of the average field and the field spatial correlation function, we derive a radiative transfer equation for the polarization-resolved specific intensity that is valid for weak disorder and we solve it analytically in the diffusion limit. A decomposition of the specific intensity in terms of polarization eigenmodes reveals how structural correlations, represented via the standard anisotropic scattering parameter g , affect the diffusion of polarized light. More specifically, we find that propagation through each polarization eigenchannel is described by its own transport mean free path that depends on g in a specific and nontrivial way.
Vynck, Kevin; Carminati, Rémi
2016-01-01
We develop a model based on a multiple scattering theory to describe the diffusion of polarized light in disordered media exhibiting short-range structural correlations. Starting from exact expressions of the average field and the field spatial correlation function, we derive a radiative transfer equation for the polarization-resolved specific intensity that is valid for weak disorder and we solve it analytically in the diffusion limit. A decomposition of the specific intensity in terms of polarization eigenmodes reveals how structural correlations, represented via the standard anisotropic scattering parameter $g$, affect the diffusion of polarized light. More specifically, we find that propagation through each polarization eigenchannel is described by its own transport mean free path that depends on $g$ in a specific and non-trivial way.
Massen, S E; Grypeos, M E
1995-01-01
We investigate the effects of fluctuations of the nuclear surface on the harmonic oscillator elastic charge form factor of light nuclei, while simultaneously approximating the short-range correlations through a Jastrow correlation ~factor. Inclusion of surface-fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of ^{16}O and ^{40}Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that the surface-fluctuation correlations produce a drastic change in the asymptotic behavior of the point-proton form factor, which now falls off quite slowly (i.e. as const. \\cdot q^{-4}) at large values of the momentum transfer q.
Institute of Scientific and Technical Information of China (English)
Wang Wen-Peng; Li Hong-Yun; Wang Shu-Bao; Lin Sheng-Lu
2008-01-01
This paper presents recurrence spectra of highly excited lithium atoms with M = 1 state in parallel electric and magnetic fields at a fixed scaled energy ε = -0.03. Short-ranged potentials including ionic core potential and centrifugal barrier are taken into account. Their effects on the states and photo-absorption spectrum are analysed in detail. This demonstrates that the geometric features of classical orbits are of special importance for modulations of the spectral pattern. Thus the weak polarization as well as the reduction of correlation of electrons induced by short-ranged potentials give rise to the recurrence spectra of lithium M = 1 atoms more compact than that of the M = 0 one, which is in good agreement with the experimental prediction.
Multi-Nucleon Short-Range Correlation Model for Nuclear Spectral Functions: I. Theoretical Framework
Artiles, Oswaldo
2016-01-01
We develop a theoretical approach for nuclear spectral functions at high missing momenta and removal energy based on the multi-nucleon short-range correlation~(SRC) model. The approach is based on the effective Feynman diagrammatic method which allows to account for the relativistic effects important in the SRC domain. In addition to two-nucleon SRC with center of mass motion we derived also the contribution of three-nucleon SRCs to the nuclear spectral functions. The latter is modeled based on the assumption that 3N SRCs are a product of two sequential short range NN interactions. This approach allowed us to express the 3N SRC part of the nuclear spectral function as a convolution of two NN SRCs. Thus the knowledge of 2N SRCs allows us to model both two- and three-nucleon SRC contribution to the spectral function. The derivations of the spectral functions are based on the two theoretical frameworks in evaluating covariant Feynman diagrams: In the first, referred as virtual nucleon approximation, we reduce Fe...
New data strengthen the connection between Short Range Correlations and the EMC effect
Hen, O; Weinstein, L B
2012-01-01
Recently published measurements of the two nucleon short range correlation ($NN$-SRC) scaling factors, $a_2(A/d)$, strengthen the previously observed correlation between the magnitude of the EMC effect measured in electron deep inelastic scattering at $0.35\\le x_B\\le 0.7$ and the SRC scaling factor measured at $x_B \\ge 1$. The new results have improved precision and include previously unmeasured nuclei. The measurements of $a_2(A/d)$ for $^9$Be and $^{197}$Au agree with published predictions based on the EMC-SRC correlation. This paper examines the effects of the new data and of different corrections to the data on the slope and quality of the EMC-SRC correlation, the size of the extracted deuteron IMC effect, and the free neutron structure function. The results show that the linear EMC-SRC correlation is robust and that the slope of the correlation is insensitive to most combinations of corrections examined in this work. The inclusion of new nuclei shows that while neither the EMC effect nor the SRC scaling ...
Cosyn, W; Ryckebusch, J
2007-01-01
A relativistic and quantum mechanical framework to compute nuclear transparencies for pion photo- and electroproduction reactions is presented. Final-state interactions for the ejected pions and nucleons are implemented in a relativistic eikonal approach. At sufficiently large ejectile energies, a relativistic Glauber model can be adopted. At lower energies, the framework possesses the flexibility to use relativistic optical potentials. The proposed model can account for the color-transparency (CT) phenomenon and short-range correlations (SRC) in the nucleus. Results are presented for kinematics corresponding to completed and planned experiments at Jefferson Lab. The influence of CT and SRC on the nuclear transparency is studied. Both the SRC and CT mechanisms increase the nuclear transparency. The two mechanisms can be clearly separated, though, as they exhibit a completely different dependence on the hard scale parameter. The nucleon and pion transparencies as computed in the relativistic Glauber approach a...
Short Range Correlations and the EMC Effect in Effective Field Theory
Chen, Jiunn-Wei; Lynn, Joel E; Schwenk, Achim
2016-01-01
We show that the empirical linear relation between the magnitude of the EMC effect in deep inelastic scattering on nuclei and the short range correlation scaling factor $a_2$ extracted from high-energy quasi-elastic scattering at $x\\ge 1$ is a natural consequence of scale separation and derive the relationship using effective field theory. While the scaling factor $a_2$ is a ratio of nuclear matrix elements that depend on the calculational scheme, we show that the ratio is independent of this choice. We perform Green's function Monte Carlo calculations with both chiral and Argonne-Urbana potentials to verify this and determine the scaling factors for light nuclei. The resulting values for $^3$He and $^4$He are in good agreement with experimental values. We also present results for $^9$Be and $^{12}$C extracted from variational Monte Carlo calculations.
Measurement of Two- and Three-Nucleon Short-Range Correlation Probabilities in Nuclei
Energy Technology Data Exchange (ETDEWEB)
K. S. Egiyan; N. B. Dashyan; M. M. Sargsian; M. I. Strikman; L. B. Weinstein; G. Adams; P. Ambrozewicz; M. Anghinolfi; B. Asavapibhop; G. Asryan; H. Avakian; H. Baghdasaryan; N. Baillie; J. P. Ball; N. A. Baltzell; V. Batourine; M. Battaglieri; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; A. S. Biselli; B. E. Bonner; S. Bouchigny; S. Boiarinov; R. Bradford; D. Branford; W. K. Brooks; S. Bültmann; V. D. Burkert; C. Bultuceanu; J. R. Calarco; S. L. Careccia; D. S. Carman; B. Carnahan; S. Chen; P. L. Cole; P. Coltharp; P. Corvisiero; D. Crabb; H. Crannell; J. P. Cummings; E. De Sanctis; R. DeVita; P. V. Degtyarenko; H. Denizli; L. Dennis; K. V. Dharmawardane; C. Djalali; G. E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O. P. Dzyubak; H. Egiyan; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; R. J. Feuerbach; T. A. Forest; H. Funsten; G. Gavalian; N. G. Gevorgyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; J. T. Goetz; E. Golovatch; R. W. Gothe; K. A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; J. Hardie; F. W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C. E. Hyde-Wright; Y. Ilieva; D. G. Ireland; B. S. Ishkhanov; M. M. Ito; D. Jenkins; H. S. Jo; K. Joo; H. G. Juengst; J. D. Kellie; M. Khandaker; K. Y. Kim; K. Kim; W. Kim; A. Klein; F. J. Klein; A. Klimenko; M. Klusman; L. H. Kramer; V. Kubarovsky; J. Kuhn; S. E. Kuhn; S. Kuleshov; J. Lachniet; J. M. Laget; J. Langheinrich; D. Lawrence; T. Lee; K. Livingston; L. C. Maximon; S. McAleer; B. McKinnon; J. W. C. McNabb; B. A. Mecking; M. D. Mestayer; C. A. Meyer; T. Mibe; K. Mikhailov; R. Minehart; M. Mirazita; R. Miskimen; V. Mokeev; S. A. Morrow; J. Mueller; G. S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; S. Niccolai; G. Niculescu; I. Niculescu; B. B. Niczyporuk; R. A. Niyazov; G. V. O' Rielly; M. Osipenko; A. I. Ostrovidov; K. Park; E. Pasyuk; C. Peterson; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; S. Pozdniakov; B. M. Preedom; J. W. Price; Y. Prok; D. Protopopescu; L. M. Qin; B. A. Raue; G. Riccardi; G. Ricco; M. Ripani; B. G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P. D. Rubin; F. Sabatié; C. Salgado; J. P. Santoro; V. Sapunenko; R. A. Schumacher; V. S. Serov; Y. G. Sharabian; J. Shaw; E. S. Smith; L. C. Smith; D. I. Sober; A. Stavinsky; S. Stepanyan; B. E. Stokes; P. Stoler; S. Strauch; R. Suleiman; M. Taiuti; S. Taylor; D. J. Tedeschi; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M. F. Vineyard; A. V. Vlassov; D. P. Weygand; M. Williams; E. Wolin; M. H. Wood; A. Yegneswaran; J. Yun; L. Zana; and J. Zhang
2006-03-01
The ratios of inclusive electron scattering cross sections of 4He, 12C, and 56Fe to 3He have been measured at 1
Spontaneous dimerization, critical lines, and short-range correlations in a frustrated spin-1 chain
Chepiga, Natalia; Affleck, Ian; Mila, Frédéric
2016-11-01
We report on a detailed investigation of the spin-1 J1-J2-J3 Heisenberg model, a frustrated model with nearest-neighbor coupling J1, next-nearest neighbor coupling J2, and a three-site interaction J3[(Si -1.Si) (Si.Si +1) +H .c . ] previously studied in [Phys. Rev. B 93, 241108(R) (2016), 10.1103/PhysRevB.93.241108]. Using density matrix renormalization group (DMRG) and exact diagonalizations, we show that the phase boundaries between the Haldane phase, the next-nearest neighbor Haldane phase, and the dimerized phase can be very accurately determined by combining the information deduced from the dimerization, the ground-state energy, the entanglement spectrum and the Berry phase. By a careful investigation of the finite-size spectrum, we also show that the transition between the next-nearest neighbor Haldane phase and the dimerized phase is in the Ising universality class all along the critical line. Furthermore, we justify the conformal embedding of the SU (2) 2 Wess-Zumino-Witten conformal field theory in terms of a boson and an Ising field, and we explicitly derive a number of consequences of this embedding for the spectrum along the SU (2) 2 transition line between the Haldane phase and the dimerized phase. We also show that the solitons along the first-order transition line between the Haldane phase and the dimerized phase carry a spin-1/2, while the domain walls between different dimerization domains inside the dimerized phase carry a spin 1. Finally, we show that short-range correlations change character in the Haldane and dimerized phases through disorder and Lifshitz lines, as well as through the development of short-range dimer correlations in the Haldane phase, leading to a remarkably rich phase diagram.
Multinucleon short-range correlation model for nuclear spectral functions: Theoretical framework
Artiles, Oswaldo; Sargsian, Misak M.
2016-12-01
We develop a theoretical approach for nuclear spectral functions at high missing momenta and removal energies based on the multinucleon short-range correlation (SRC) model. The approach is based on the effective Feynman diagrammatic method which allows us to account for the relativistic effects important in the SRC domain. In addition to two-nucleon (2N) SRC with center of mass motion we also derive the contribution of three-nucleon SRCs to the nuclear spectral functions. The latter is modeled based on the assumption that 3N SRCs are a product of two sequential short-range nucleon-nucleon (NN) interactions. This approach allows us to express the 3N SRC part of the nuclear spectral function as a convolution of two NN SRCs. Thus the knowledge of 2N SRCs allows us to model both two- and three-nucleon SRC contributions to the spectral function. The derivations of the spectral functions are based on two theoretical frameworks for evaluating covariant Feynman diagrams: In the first, referred to as virtual nucleon approximation, we reduce Feynman diagrams to the time ordered noncovariant diagrams by evaluating nucleon spectators in the SRC at their positive energy poles, neglecting explicitly the contribution from vacuum diagrams. In the second approach, referred to as light-front approximation, we formulate the boost invariant nuclear spectral function in the light-front reference frame in which case the vacuum diagrams are generally suppressed and the bound nucleon is described by its light-front variables such as momentum fraction, transverse momentum, and invariant mass.
Multi-Nucleon Short-Range Correlation Model for Nuclear Spectral Functions.
Artiles, Oswaldo; Sargsian, Misak
2017-01-01
We develop a theoretical model for nuclear spectral functions at high missing momenta and energies based on the multi-nucleon short-range correlation (SRC) model aimed at probing nuclear structure at short-distances. The model is based on the effective Feynman diagram method which allows us to account for the relativistic effects in the SRC domain. We derive the contribution of two-nucleon SRC with center of mass motion, and three-nucleon SRCs to the nuclear spectral functions. The spectral functions are based on two theoretical approaches in evaluating covariant Feynman diagrams: In the first, referred to as virtual nucleon approximation, we reduce Feynman diagrams to the time ordered non-covariant diagrams by evaluating nucleon spectators on the SRC at their positive energy poles, neglecting the contribution from vacuum diagrams. In the second approach, referred to as light-front approximation, we formulate the boost invariant nuclear spectral function on the light-front reference frame, on which the vacuum diagrams are suppressed. Numerical calculations and parametrization of spectral functions and momentum distributions are presented. This work is supported by U.S. Department of Energy grant under contract DE- FG02-01ER41172.
Influence of short-range correlations in neutrino-nucleus scattering
Van Cuyck, Tom; Jiménez, Raúl González; Martini, Marco; Pandey, Vishvas; Ryckebusch, Jan; Van Dessel, Nils
2016-01-01
Background: Nuclear short-range correlations (SRCs) are corrections to mean-field wave functions connected with the short-distance behavior of the nucleon-nucleon interaction. These SRCs provide corrections to lepton- nucleus cross sections as computed in the impulse approximation (IA). Purpose: We want to investigate the influence of SRCs on the one-nucleon (1N) and two-nucleon (2N) knockout channel for muon-neutrino induced processes on a $^{12}$C target at energies relevant for contemporary measurements. Method: The model adopted in this work, corrects the impulse approximation for SRCs by shifting the com- plexity induced by the SRCs from the wave functions to the operators. Due to the local character of the SRCs, it is argued that the expansion of these operators can be truncated at a low order. Results: The model is compared with electron-scattering data, and two-particle two-hole responses are presented for neutrino scattering. The contributions from the vector and axial-vector parts of the nuclear cur...
Hen, O; Piasetzky, E; Weinstein, L B
2016-01-01
This article reviews our current understanding of how the internal quark structure of a nucleon bound in nuclei differs from that of a free nucleon. We focus on the interpre- tation of measurements of the EMC effect for valence quarks, a reduction in the Deep Inelastic Scattering (DIS) cross-section ratios for nuclei relative to deuterium, and its possible connection to nucleon-nucleon Short-Range Correlations (SRC) in nuclei. Our review of the available experimental and theoretical evidence shows that there is a phe- nomenological relation between between the EMC effect and the effects of SRC that is not an accident. There is an underlying cause of both effects: the influence of strongly correlated neutron-proton pairs is largely responsible. This conclusion needs to be so- lidified by the future experiments and improved theoretical analyses that are discussed herein.
Yan, Zidan; Perdew, John P.; Kurth, Stefan
2000-03-01
Within a density functional context, the random phase approximation (RPA) for the correlation emergy makes a short-range error which is well-suited for correction by a local spin density or generalized gradient approximation (GGA). Here we construct a GGA for the short-range correction, following the same reliable procedure used earlier to construct the GGA for the whole exchange-correlation energy: real-space cutoff of the spurious long-range contribution to the gradient expansion of the hole around an electron. The resulting density functional is nearly local, and predicts a substantial correction to the RPA correlation energy of an atom but \\underlinevery small corrections to the RPA atomization energy of a molecule, which may by itself come close to "chemical accuracy", and to the RPA surface energy of a metal. A by-product of this work is a density functional for the system-averaged correlation hole within RPA.
von Wegner, F; Tagliazucchi, E; Brodbeck, V; Laufs, H
2016-11-01
We analyze temporal autocorrelations and the scaling behaviour of EEG microstate sequences during wakeful rest. We use the recently introduced random walk approach and compute its fluctuation function analytically under the null hypothesis of a short-range correlated, first-order Markov process. The empirical fluctuation function and the Hurst parameter H as a surrogate parameter of long-range correlations are computed from 32 resting state EEG recordings and for a set of first-order Markov surrogate data sets with equilibrium distribution and transition matrices identical to the empirical data. In order to distinguish short-range correlations (H ≈ 0.5) from previously reported long-range correlations (H > 0.5) statistically, confidence intervals for H and the fluctuation functions are constructed under the null hypothesis. Comparing three different estimation methods for H, we find that only one data set consistently shows H > 0.5, compatible with long-range correlations, whereas the majority of experimental data sets cannot be consistently distinguished from Markovian scaling behaviour. Our analysis suggests that the scaling behaviour of resting state EEG microstate sequences, though markedly different from uncorrelated, zero-order Markov processes, can often not be distinguished from a short-range correlated, first-order Markov process. Our results do not prove the microstate process to be Markovian, but challenge the approach to parametrize resting state EEG by single parameter models.
Short-range spin- and pair-correlations : a variational wave-function
van der Marel, D
2004-01-01
A many-body wave-function is postulated, which is sufficiently general to describe superconducting pair-correlations, and/or spin-correlations, which can occur either as long-range order or as finite-range correlations. The proposed wave-function appears to summarize some of the more relevant aspect
Short-range correlation effects on the nuclear matrix element of neutrinoless double-$\\beta$ decay
Benhar, Omar; Speranza, Enrico
2014-01-01
We report the results of a calculation of the nuclear matrix element of neutrinoless double-$\\beta$ decay of $^{48}$Ca, carried out taking into account nucleon-nucleon correlations in both coordinate- and spin-space. Our numerical results, obtained using nuclear matter correlation functions, suggest that inclusion of correlations leads to a $\\sim$ $20\\%$ decrease of the matrix element, with respect to the shell model prediction. This conclusion is supported by the results of an independent calculation, in which correlation effects are taken into account using the spectroscopic factors of $^{48}$Ca obtained from an {\\em ab intitio} many body approach.
Effect of Jahn-Teller distortion on the short range magnetic order in copper ferrite
Abdellatif, M. H.; Innocenti, Claudia; Liakos, Ioannis; Scarpellini, Alice; Marras, Sergio; Salerno, Marco
2017-02-01
Copper ferrite of spinel crystal structure was synthesized in the form of nano-particles using citrate-gel auto-combustion method. The sample morphology and composition were identified using scanning electron microscopy, X-ray diffraction, and X-ray spectroscopy. The latter technique reveals an inverse spinel structure with Jahn-Teller tetragonal distortion. The static magnetization was measured using vibrating sample magnetometer. Magnetic force microscopy was used in combination with the magnetization data to demonstrate the finite size effect of the magnetic spins and their casting behavior due to the introduction of copper ions in the tetrahedral magnetic sub-lattices, which results in tetragonal distorting the spinel structure of the copper ferrite. The magnetic properties of materials are a result of the collective behavior of the magnetic spins, and magnetic force microscopy can probe the collective behavior of the magnetic spins in copper ferrite, yet providing a sufficient resolution to map the effects below the micrometer size scale, such as the magnetic spin canting. A theoretical study was done to clarify the finite size effect of Jahn-Teller distortion on the magnetic properties of the material. When the particles are in the nano-scale, below the single domain size, their magnetic properties are very sensitive to their size change.
Kuindersma, S. R.; Sanchez, J. P.; Haas, C.
1980-01-01
Neutron diffraction data of VI2 show a magnetic phase transition at 14 K from a 120° magnetic structure to a collinear structure. The collinear structure is compatible with low-temp. Moessbauer spectra. The 120° structure is not a magnetic phase with long-range order but rather a paramagnetic phase
Long and Short Range Correlations in Healthy and Pathologic Human Cardiac Prosses
Bunde, Armin
2001-03-01
Healthy sleep consists of several stages: deep sleep, light sleep and REM sleep. In this talk, recent work on the characterization of heart-rates in the three stages by long-range correlations is presented. Only in REM sleep, long-range correlations reminiscent to the wake phase occur, and the heart-rates show multifractal behaviour. In contrast, in non-REM phases, the heart-rates are uncorrelated above the typical breathing cycle time, pointing to a random regulation of the heartbeat during non-REM sleep. In deep sleep, the heart-rates show simple multifractal behaviour.
Mathey, Steven; Agoritsas, Elisabeth; Kloss, Thomas; Lecomte, Vivien; Canet, Léonie
2017-03-01
We investigate the stationary-state fluctuations of a growing one-dimensional interface described by the Kardar-Parisi-Zhang (KPZ) dynamics with a noise featuring smooth spatial correlations of characteristic range ξ . We employ nonperturbative functional renormalization group methods to resolve the properties of the system at all scales. We show that the physics of the standard (uncorrelated) KPZ equation emerges on large scales independently of ξ . Moreover, the renormalization group flow is followed from the initial condition to the fixed point, that is, from the microscopic dynamics to the large-distance properties. This provides access to the small-scale features (and their dependence on the details of the noise correlations) as well as to the universal large-scale physics. In particular, we compute the kinetic energy spectrum of the stationary state as well as its nonuniversal amplitude. The latter is experimentally accessible by measurements at large scales and retains a signature of the microscopic noise correlations. Our results are compared to previous analytical and numerical results from independent approaches. They are in agreement with direct numerical simulations for the kinetic energy spectrum as well as with the prediction, obtained with the replica trick by Gaussian variational method, of a crossover in ξ of the nonuniversal amplitude of this spectrum.
Particle in short-range potential in two dimensional structure in magnetic field
Andreev, S. P.; Pavlova, T. V.
2006-01-01
An exact solution is given for the problem of determining the ground state of a charge particle in a zero range force field located in a quantum well and in a magnetic field. The dependence of the electron's ground state on the potential depth and the magnetic field is investigated in a semiconducto
Short-range magnetic order in two-dimensional cobalt-ferrite nanoparticle assemblies
Georgescu, M; Viota, J.L.; Klokkenburg, M.; Erne, B.H.; Vanmaekelbergh, D.; Zeijlmans Van Emmichoven, P.A.
2008-01-01
Magnetic order in two-dimensional islands of spherical 21 nm cobalt-ferrite (CoFe2O4) nanoparticles is studied by magnetic force microscopy and spectroscopy. Images obtained at a temperature of 105 K clearly reveal the presence of repulsive and attractive areas on top of the islands. Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Masatsugu [Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-6016 (United States); Suzuki, Itsuko S [Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-6016 (United States); Walter, Juergen [Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-6016 (United States)
2004-02-18
Pd-metal graphite (Pd-MG) has a layered structure, where each Pd sheet is sandwiched between adjacent graphene sheets. The DC magnetization and AC magnetic susceptibility of Pd-MG have been measured using a SQUID magnetometer. Pd-MG undergoes a superconducting transition at T{sub c} (= 3.63 {+-} 0.04 K). The superconductivity occurs in the Pd sheets. The irreversibility between {chi}{sub ZFC} and {chi}{sub FC} occurs well above T{sub c}. The susceptibility {chi}{sub FC} obeys a Curie-Weiss behaviour with a negative Curie-Weiss temperature (-13.1 {<=}{theta} {<=}-5.4 K). The growth of magnetic order is limited by the disordered nature of nanographites, forming magnetic short-range order at low temperature in the graphene sheets.
Study of the effect of short ranged ordering on the magnetism in FeCr alloys
Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit
2014-01-01
For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments.
Chemical short range order and magnetic correction in liquid manganese-gallium zero alloy
Grosdidier, B.; Ben Abdellah, A.; Osman, S. M.; Ataati, J.; Gasser, J. G.
2015-12-01
The Mn66Ga34 alloy at this particular composition is known to be zero alloy in which the linear combination of the two neutron scattering lengths weighted by the atomic compositions vanish. Thus for this specific concentration, the effect of the partial structure factors SNN and SNC is cancelled by a weighted term, which value is zero. Then the measured total structure factor S(q) gives directly the concentration-concentration structure factor SCC(q). We present here the first experimental results of neutron diffraction on the Mn66Ga34 "null matrix alloy" at 1050 °C. The main peak of the experimental SCC(q) gives a strong evidence of a hetero-atomic chemical order in this coordinated alloy. This order also appears in real space radial distribution function which is calculated by the Fourier transform of the structure factor. The degree of hetero-coordination is discussed together with other manganese-polyvalent alloys. However manganese also shows abnormal magnetic scattering in the alloy structure factor which must be corrected. This correction gives an experimental information on the mean effective spin of manganese in this liquid alloy. We present the first critical theoretical calculations of the magnetic correction factor in Mn-Ga zero-alloy based on our accurate experimental measurements of SCC(q).
Chemical short range order and magnetic correction in liquid manganese–gallium zero alloy
Energy Technology Data Exchange (ETDEWEB)
Grosdidier, B. [Laboratoire de Chimie Physique – Approche Multi-Echelle des Milieux Complexes, Institut Jean Bariol, Université de Lorraine, Institut de Chimie, Physique et Matériaux, 1 Bd Arago, 57078 Metz Cedex 3 (France); Ben Abdellah, A. [Laboratoire de Chimie Physique – Approche Multi-Echelle des Milieux Complexes, Institut Jean Bariol, Université de Lorraine, Institut de Chimie, Physique et Matériaux, 1 Bd Arago, 57078 Metz Cedex 3 (France); Innovation and Management of Industrial Systems, Abdelmalek Essaadi University, College of Sciences and Techniques of Tangier , P.O. Box 416, Postal code 90000, Tangier (Morocco); Université Internationale de Rabat, Parc Technopolis Rabat-Shore, 11100 Sala El Jadida (Morocco); Osman, S.M., E-mail: osm@squ.edu.om [Physics Department, College of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123, Al-Khod, Muscat (Oman); Ataati, J. [Innovation and Management of Industrial Systems, Abdelmalek Essaadi University, College of Sciences and Techniques of Tangier, P.O. Box 416, Postal code 90000, Tangier (Morocco); Gasser, J.G. [Laboratoire de Chimie Physique – Approche Multi-Echelle des Milieux Complexes, Institut Jean Bariol, Université de Lorraine, Institut de Chimie, Physique et Matériaux, 1 Bd Arago, 57078 Metz Cedex 3 (France)
2015-12-15
The Mn{sub 66}Ga{sub 34} alloy at this particular composition is known to be zero alloy in which the linear combination of the two neutron scattering lengths weighted by the atomic compositions vanish. Thus for this specific concentration, the effect of the partial structure factors S{sub NN} and S{sub NC} is cancelled by a weighted term, which value is zero. Then the measured total structure factor S(q) gives directly the concentration–concentration structure factor S{sub CC}(q). We present here the first experimental results of neutron diffraction on the Mn{sub 66}Ga{sub 34} “null matrix alloy” at 1050 °C. The main peak of the experimental S{sub CC}(q) gives a strong evidence of a hetero-atomic chemical order in this coordinated alloy. This order also appears in real space radial distribution function which is calculated by the Fourier transform of the structure factor. The degree of hetero-coordination is discussed together with other manganese-polyvalent alloys. However manganese also shows abnormal magnetic scattering in the alloy structure factor which must be corrected. This correction gives an experimental information on the mean effective spin of manganese in this liquid alloy. We present the first critical theoretical calculations of the magnetic correction factor in Mn–Ga zero-alloy based on our accurate experimental measurements of S{sub CC}(q).
Investigation of Proton-Proton Short-Range Correlations via the 12C(e,e'pp) Reaction
Energy Technology Data Exchange (ETDEWEB)
J. Arrington; H. Benaoum; F. Benmokhtar; P. Bertin; W. Bertozzi; W. Boeglin; J. P. Chen; Seonho Choi; E. Chudakov; E. Cisbani; B. Craver; C. W. de Jager; R. Feuerbach; S. Frullani; F. Garibaldi; O. Gayou; S. Gilad; R. Gilman; O. Glamazdin; J. Gomez; O. Hansen; D. W. Higinbotham; T. Holmstrom; H. Ibrahim; R. Igarashi; E. Jans; X. Jiang; Y. Jiang; L. Kaufman; A. Kelleher; A. Kolarkar; E. Kuchina; G. Kumbartzki; J. J. LeRose; R. Lindgren; N. Liyanage; D. J. Margaziotis; P. Markowitz; S. Marrone; M. Mazouz; R. Michaels; B. Moffit; S. Nanda; C. F. Perdrisat; E. Piasetzky; M. Potokar; V. Punjabi; Y. Qiang; J. Reinhold; B. Reitz; G. Ron; G. Rosner; A. Saha; B. Sawatzky; A. Shahinyan; S. Sirca; K. Slifer; P. Solvignon; V. Sulkosky; N. Thompson; P. E. Ulmer; G. M. Urciuoli; E. Voutier; K. Wang; J. W. Watson
2007-08-01
We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2 = 2 [GeV/c]2, x_B = 1.2, and in an (e,e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing-momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For(9.5 +/- 2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing momentum vector, an experimental signature of correlations.
New Measurements of the EMC Effect and Short Range Correlations at JLab Hall C at 11 GeV
Craycraft, Kayla
2016-09-01
The nuclear dependence of the Deep Inelastic Scattering (DIS) cross section (known as the EMC effect) has shown conclusively that the distribution of quarks in a nucleus is modified when compared to the deuteron. On the other hand, Short Range Correlations, which arise from hard interactions between nucleons inside the nucleus give rise to high momentum tails in nucleon momentum distributions. The observation that the size of the EMC effect is correlated with the number of SRC NN pairs in a nucleus suggests a possible origin of the EMC effect. While the observed relationship is compelling, more investigation using adding additional nuclei and improving the precision on existing measurements is necessary. Jefferson Lab experiments E12-06-105 and E12-10-008 aim to do just that, making measurements of electron scattering cross section ratios in the DIS regime and at x > 1 for a large body of nuclei. These experiments will attempt to disentangle whether the EMC-SRC correlation is driven only by the size/atomic number of the nucleus, or if it also depends on the neutron to proton ratio. DE-SC0013615, JSA Graduate Fellowship.
Modrzejewski, Marcin; Rajchel, Łukasz; Szczęśniak, Małgorzata M; Chałasiński, Grzegorz
2014-01-01
We present a physically motivated correlation functional belonging to the meta-generalized gradient approximation (meta-GGA) rung, which can be supplemented with long-range dispersion corrections without introducing double-counting of correlation contributions. The functional is derived by the method of constraint satisfaction, starting from an analytical expression for a real-space spin-resolved correlation hole. The model contains a position-dependent function that controls the range of the interelectronic correlations described by the semilocal functional. With minimal empiricism, this function may be adjusted so that the correlation model blends with a specific dispersion correction describing long-range contributions. For a preliminary assessment, our functional has been combined with the DFT-D3 dispersion correction and full Hartree-Fock (HF)-like exchange. Despite the HF-exchange approximation, its predictions compare favorably with reference interaction energies in an extensive set of non-covalently b...
Qin, Mingpu; Shi, Hao; Zhang, Shiwei
2017-08-01
Optical lattice experiments with ultracold fermion atoms and quantum gas microscopy have recently realized direct measurements of magnetic correlations at the site-resolved level. We calculate the short-range spin-correlation functions in the ground state of the two-dimensional repulsive Hubbard model with the auxiliary-field quantum Monte Carlo (AFQMC) method. The results are numerically exact at half filling where the fermion sign problem is absent. Away from half filling, we employ the constrained path AFQMC approach to eliminate the exponential computational scaling from the sign problem. The constraint employs unrestricted Hartree-Fock trial wave functions with an effective interaction strength U , which is optimized self-consistently within AFQMC. Large supercells are studied, with twist averaged boundary conditions as needed, to reach the thermodynamic limit. We find that the nearest-neighbor spin correlation always increases with the interaction strength U , contrary to the finite-temperature behavior where a maximum is reached at a finite U value. We also observe a change of sign in the next-nearest-neighbor spin correlation with increasing density, which is a consequence of the buildup of the long-range antiferromagnetic correlation. We expect the results presented in this paper to serve as a benchmark as lower temperatures are reached in ultracold atom experiments.
Short-range Incommensurate Magnetic Order Near the Superconducting Phase Boundary in Fe1+δTe1−xSex
Energy Technology Data Exchange (ETDEWEB)
Wen, J.; Xu, G.; Xu, Z.; Lin, Z.W.; Li, Q.; Ratcliff, W.; Gu, G.; Tranquada, J.M.
2009-09-10
We performed elastic neutron-scattering and magnetization measurements on Fe{sub 1.07}Te{sub 0.75}Se{sub 0.25} and FeTe{sub 0.7}Se{sub 0.3}. Short-range incommensurate magnetic order is observed in both samples. In the former sample with higher Fe content, a broad magnetic peak appears around (0.46,0,0.5) at low temperature, while in FeTe{sub 0.7}Se{sub 0.3}, the broad magnetic peak is found to be closer to the antiferromagnetic (AFM) wave vector (0.5,0,0.5). The incommensurate peaks are only observed on one side of the AFM wave vector for both samples, which can be modeled in terms of an imbalance of ferromagnetic/antiferromagnetic correlations between nearest-neighbor spins. We also find that with higher Se (and lower Fe) concentration, the magnetic order becomes weaker while the superconducting temperature and volume increase.
Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko
2017-04-01
Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one
Short-range correlations in d-f cyanido-bridged assemblies with XY and XY-Heisenberg anisotropy
Tanase, S.; Evangelisti, M.; de Jongh, L. J.
2011-01-01
Two new d-f cyanido-bridged 1D assemblies [RE(pzam)3(H2O)Mo(CN)8]·H2O (RE = Sm(III), Er(III)) were synthesized and their magneto-structural properties have been studied by field-dependent magnetization and specific heat measurements at low temperatures (≥0.3 K). Below ≈ 10 K the ground state of both
Cai, W. P.; Yan, Z. R.; Liu, R. M.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.
2017-10-01
Based on the modified Heisenberg–Kitaev model, the effects of magnetic substitution on the magnetic properties of the honeycomb-lattice iridate Na2 IrO3 are studied using Monte Carlo simulations. It is observed that the long-range zigzag state of the original system is rather fragile and can be replaced by a spin-glass state even for small substitution, well consistent with the experimental observation in Ru-substituted samples (Mehlawat et al 2015 Phys. Rev. B 92 134412). Both the disordered Heisenberg and Kitaev interactions caused by the magnetic ion-doping are suggested to be responsible for the magnetic phase transitions in the system. More interestingly, a short-range zigzag order is suggested to survive above the freezing temperature even at high magnetic impurity doping levels.
Aclander, J.; Alster, J.; Barton, D.; Bunce, G.; Carroll, A.; Christensen, N.; Courant, H.; Durrant, S.; Gushue, S.; Heppelmann, S.; Kosonovsky, E.; Mardor, I.; Mardor, Y.; Marshak, M.; Makdisi, Y.; Minor, E. D.; Navon, I.; Nicholson, H.; Piasetzky, E.; Roser, T.; Russell, J.; Sargsian, M.; Sutton, C. S.; Tanaka, M.; White, C.; Wu, J.-Y.
1999-05-01
The reaction 12C(p,2p+n) was measured for momentum transfers of 4.8 and 6.2 (GeV/c)2 at beam momenta of 5.9 and 7.5 GeV/c. We measured the quasi-elastic reaction(p,2p) atθcm~=90 deg, in a kinematically complete measurement. The neutron momentum was measured in triple coincidence with the two emerging high momentum protons. We present the correlation between the momenta of the struck target proton and the neutron. The events are associated with the high momentum components of the nuclear wave function. We present sparse data which, combined with a quasi elastic description of the (p,2p) reaction and kinematical arguments, point to a novel way for isolating two-nucleon short range correlations.
Babilas, Rafał; Mariola, Kądziołka-Gaweł; Burian, Andrzej; Temleitner, László
2016-05-01
Selected soft magnetic amorphous alloys Fe80B20, Fe70Nb10B20 and Fe62Nb8B30 were produced by the melt-spinning and characterized by X-ray diffraction (XRD), transmission Mössbauer spectroscopy (MS), Reverse Monte Carlo modeling (RMC) and relative magnetic permeability measurements. The Mössbauer spectroscopy allowed to study the local environments of the Fe-centered atoms in the amorphous structure of binary and ternary glassy alloys. The MS provided also information about the changes in the amorphous structure due to the modification of chemical composition by various boron and niobium content. The RMC simulation based on the structure factors determined by synchrotron XRD measurements was also used in modeling of the atomic arrangements and short-range order in Fe-based model alloys. Addition of boron and niobium in the ternary model alloys affected the disorder in as-cast state and also influenced on the number of nearest neighbor Fe-Fe atoms, consequently. The distributions of Fe- and B-centered coordination numbers showed that N=10, 9 and 8 are dominated around Fe atoms and N=9, 8 and 7 had the largest population around B atoms in the examined amorphous alloys. Moreover, the relationship between the content of the alloying elements, the local atomic ordering and the magnetic permeability (magnetic after-effects) was mentioned.
Fedorov, V. V.; Kuznetsov, I. A.; Voronin, V. V.
2013-08-01
New approach to measure both neutron electric dipole moment (EDM) and short-range pseudomagnetic nucleon-nucleon interaction using neutron optics of a crystal without center of symmetry is presented. This approach allows getting best direct constraint on the parameters of short range pseudomagnetic interaction of a free neutron with matter for the range of interaction distances λ<10-7 m.
Energy Technology Data Exchange (ETDEWEB)
Babilas, Rafał, E-mail: rafal.babilas@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego St. 18a, 44-100 Gliwice (Poland); Mariola, Kądziołka-Gaweł [August Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4 St., 40-007 Katowice (Poland); Burian, Andrzej [August Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4 St., 40-007 Katowice (Poland); Silesian Center of Education and Interdisciplinary Research, 75 Pułku Piechoty St., 40-500 Chorzów (Poland); Temleitner, László [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest (Hungary)
2016-05-15
Selected soft magnetic amorphous alloys Fe{sub 80}B{sub 20}, Fe{sub 70}Nb{sub 10}B{sub 20} and Fe{sub 62}Nb{sub 8}B{sub 30} were produced by the melt-spinning and characterized by X-ray diffraction (XRD), transmission Mössbauer spectroscopy (MS), Reverse Monte Carlo modeling (RMC) and relative magnetic permeability measurements. The Mössbauer spectroscopy allowed to study the local environments of the Fe-centered atoms in the amorphous structure of binary and ternary glassy alloys. The MS provided also information about the changes in the amorphous structure due to the modification of chemical composition by various boron and niobium content. The RMC simulation based on the structure factors determined by synchrotron XRD measurements was also used in modeling of the atomic arrangements and short-range order in Fe-based model alloys. Addition of boron and niobium in the ternary model alloys affected the disorder in as-cast state and also influenced on the number of nearest neighbor Fe–Fe atoms, consequently. The distributions of Fe- and B-centered coordination numbers showed that N=10, 9 and 8 are dominated around Fe atoms and N=9, 8 and 7 had the largest population around B atoms in the examined amorphous alloys. Moreover, the relationship between the content of the alloying elements, the local atomic ordering and the magnetic permeability (magnetic after-effects) was mentioned. - Highlights: • SRO was investigated by XRD, Mössbauer, RMC and magnetic measurements. • N=10,9,8 are dominated around Fe atoms for Fe{sub 80}B{sub 20}, Fe{sub 70}Nb{sub 10}B{sub 20} and Fe{sub 62}Nb{sub 8}B{sub 30}. • N=9, 8 and 7 had the largest population around B atoms. • Fe-centered clusters with N=12 indicating icosahedral atomic configurations. • Magnetic after-effects is sensitive to the SRO and concentration of free volume.
Nonperturbative short-range dynamics in TMDs
Energy Technology Data Exchange (ETDEWEB)
Weiss, Christian [JLAB
2013-05-01
This presentation covers: deep inelastic processes and transverse momentum distributions; chiral symmetry breaking, including the physical picture, the dynamical model, and parton distributions; partonic structures, including transverse momentum distributions, coordinate space correlator, and short range correlations; and measurements of semi-inclusive deep inelastic scattering, correlations, and multi-parton processes in pp interactions.
Short-range communication system
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2012-01-01
A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.
Spin-orbital short-range order in the honeycomb-based quantum magnet Ba3CuSb2O9
Nakatsuji, Satoru
2013-03-01
The realization of quantum correlated matter beyond one dimension has been vigorously pursued in geometrically frustrated spin systems for decades. In frustrated magnetic materials, however, symmetry breaking of orbital and chemical origin is usually found to induce semi-classical spin freezing. In this talk, I present a contrast case where spins and possibly orbitals remain in a liquid state down to low temperature even in a highly disordered structure of 6H-perovskite Ba3CuSb2O9. Our comprehensive experimental analysis indicates that the geometrical frustration of Wannier's Ising antiferromagnet on a triangular lattice can be exploited to build a nano-structured bipartite honeycomb lattice from electric dipolar spin-1/2 molecules. Despite a strong local Jahn-Teller distortion about the Cu2+ ion, the resulting spin-orbital random bond lattice not only retains hexagonal symmetry averaged over time and space, but it supports a gapless excitation spectrum without spin freezing down to ultralow temperatures. This is the work based on the collaboration with K. Kuga, K. Kimura, R. Satake, N. Katayama, E. Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges, T. U. Ito, W. Higemoto, Y. Karaki, M. Halim, A. A. Nugroho, J. A. Rodriguez-Rivera, M. A. Green, C. Broholm. This work is partially supported by Grant-in-Aid for Scientific Research (No. 20340089,21684019) from JSPS, by Grant-in-Aid for Scientific Research on Priority Areas (No. 1951010,19052003) from MEXT, Japan.
Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Joris; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Khalil, Shaaban; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Dietz-Laursonn, Erik; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Pitzl, Daniel; Raspereza, Alexei; Raval, Amita; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Berger, Joram; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gomber, Bhawna; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Kumar, Ashok; Naimuddin, Md; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bellato, Marco; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Gasparini, Fabrizio; Gonella, Franco; Gozzelino, Andrea; Gulmini, Michele; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Nespolo, Massimo; Passaseo, Marina; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Triossi, Andrea; Vanini, Sara; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Son, Taejin; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jeong, Min-Soo; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tadel, Matevz; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Dutta, Suchandra; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Ekenel, Ali; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Yilmaz, Sedat; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Liu, Hongxuan; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Cassel, David; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Prescott, Craig; Remington, Ronald; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hamdan, Saleh; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Flood, Kevin; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Palmonari, Francesco; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc
2011-01-01
First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV over a broad range in relative pseudorapidity, Delta(eta), and the full range of relative azimuthal angle, Delta(phi). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Delta(phi) approximately pi) azimuthal correlation is observed at all Delta(eta), as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Delta(eta) are observed for particles with similar phi values. This phenomenon, also known as the "ridge", persists up to at least |Delta(eta)| = 4. For particles with transverse momenta (pt) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pt = 2-6 GeV/c, and to be much reduced when paired with particles of pt = 10-12 GeV/c.
Energy Technology Data Exchange (ETDEWEB)
Gritsenko, O.V.; Schipper, P.R.T.; Baerends, E.J.
2000-01-20
The long-range asymptotic behavior of the exchange-correlation Kohn-Sham (KS) potential {nu}{sub xc} and its relation to the exchange-correlation energy E{sub xc} are considered using various approaches. The line integral of {nu}{sub xc}([{rho}];r) yielding the exchange-correlation part {Delta}E{sub xc} of a relative energy {Delta}E of a finite system, shows that a uniform constant shift of {nu}{sub xc} never shows up in any physically meaningful energy difference {Delta}E. {nu}{sub xv} may thus be freely chosen to tend asymptotically to zero or to some nonzero constant. Possible choices of the asymptotics of the potential are discussed with reference to the theory of open systems with a fractional number of electrons. The authors adhere to the conventional choice {nu}{sub xc}({infinity}) = 0 for the asymptotics of the potential leading to {epsilon}{sub N} = {minus}I{sub p} for the energy {epsilon}{sub N} of the highest occupied orbital. A statistical average of orbital dependent model potentials is proposed as a way to model {nu}{sub xc}. An approximate potential {nu}{sub xco}{sup SAOP} with exact {minus}1/r asymptotics is developed using the statistical average of, on the one hand, a model potential {nu}{sub xc{sigma}}{sup Ei} for the highest occupied KS orbital {psi}{sub N{sigma}} and, on the other hand, a model potential {nu}{sub xc}{sup GLB} for other occupied orbitals. It is demonstrated for the well-studied case of the Ne atom, that calculations with the new model potential can, in principle, reproduce perfectly all energy characteristics.
Charilaou, M.; Bordel, C.; Berche, P.-E.; Maranville, B. B.; Fischer, P.; Hellman, F.
2016-06-01
Magnetic properties of thin Co/Pt multilayers have been investigated in order to study the dependence of magnetization M , uniaxial anisotropy Ku, and Curie temperature TC on the multilayer thickness, composition, and structure. A comparison between epitaxial submonolayer multilayers and epitaxial fcc CoPt3 alloy films with large perpendicular magnetic anisotropy (PMA) attributed to growth-induced Co clustering reveals significant differences in the temperature dependence of magnetization M (T ) , despite the presence of thin planar Co platelets in both cases. Even the thinnest discontinuous multilayered structure shows a Langevin-like M (T ) , while the alloy films with PMA show a broadened and enhanced M (T ) indicating a distribution of environments, including monolayer Co platelets separated by only 1-2 layers of Pt. These differences have been reproduced in Monte Carlo simulations, and are shown to be due to different distributions of Co-Co and Co-Pt nearest neighbors. The relatively uniform Co-Co coordination of even a discontinuous rough multilayer produces a Langevin-like M (T ) , whereas the broader distribution associated with platelets in the PMA films results in a nearly linear T dependence of M .
Heisenberg magnets with short-range order and spin dynamics of YBa sub 2 Cu sub 3 O sub 6+ x
Energy Technology Data Exchange (ETDEWEB)
Mila, F. (Serin Physics Laboratory, Rutgers University, Piscataway, NJ (USA))
1990-08-01
We use the Schwinger-boson mean-field theory to study the spin dynamics of Heisenberg magnets in which quantum (finite {ital S}) fluctuations have destroyed the classical Neel long-range order. The low-temperature physics is dominated by the zone-center gap {Delta}({ital T}) which remains finite as {ital T}{r arrow}0. The effect of this {ital T}-dependent low-energy cutoff on the magnetic response functions (susceptibilty, structure factor, relaxation rates) is analyzed. We use this model to discuss the validity of a description of antiferromagnetic fluctuations in YBa{sub 2}Cu{sub 3}O{sub 6+{ital x}} in terms of local moments.
WPC's Short Range Forecast Coded Bulletin
National Oceanic and Atmospheric Administration, Department of Commerce — Short Range Forecast Coded Bulletin. The Short Range Forecast Coded Bulletin describes the expected locations of high and low pressure centers, surface frontal...
Accelerating universes from short-range interactions
Energy Technology Data Exchange (ETDEWEB)
Diez-Tejedor, Alberto [Departamento de Fisica Teorica, Universidad del Pais Vasco, Apdo. 644, 48080, Bilbao (Spain)]. E-mail: wtbditea@lg.ehu.es; Feinstein, Alexander [Departamento de Fisica Teorica, Universidad del Pais Vasco, Apdo. 644, 48080, Bilbao (Spain)]. E-mail: a.feinstein@ehu.es
2006-02-13
We show that short-range interactions between the fundamental particles in the universe can drive a period of accelerated expansion. This description fits the early universe. In the present day universe, if one postulates short-range interactions or a sort of 'shielded gravity', the picture may repeat.
Accelerating Universes from Short-Range Interactions
Diez-Tejedor, A; Diez-Tejedor, Alberto; Feinstein, Alexander
2006-01-01
We show that short-range interactions between the fundamental particles in the universe can drive a period of accelerated expansion. This description fits the early universe. In the present day universe, if one postulates short-range interactions or a sort of "shielded gravity", the picture may repeat.
Short range radio research in Twente
Meijerink, Arjan
2010-01-01
The research and education by the Telecommunication Engineering Group at the University of Twente is dedicated to physical layer topics in communications. Three research tracks have prominence: Short Range Radio, Microwave Photonics, and Electromagnetic Compatibility. Arjan is active in the Short Ra
Alvioli, M.; Ciofi degli Atti, C.; Morita, H.
2016-10-01
Background: The two-nucleon momentum distributions of nucleons N1 and N2 in a nucleus A , nAN1N2(krel,Kc .m .) , is a relevant quantity that determines the probability of finding two nucleons with relative momentum krel and center-of-mass (c.m.) momentum Kc .m .; at high values of the relative momentum and, at the same time, low values of the c.m. momentum, nAN1N2(krel,Kc .m .) provides information on the short-range structure of nuclei. Purpose: Our purpose is to calculate the momentum distributions of proton-neutron and proton-proton pairs in 3He, 4He, 12C, 16O, and 40Ca, in correspondence to various values of krel and Kc .m .. Methods: The momentum distributions for A >4 nuclei are calculated as a function of the relative, krel, and center-of-mass, Kc.m., momenta and relative angle Θ , within a linked cluster many-body expansion approach, based upon realistic local two-nucleon interaction of the Argonne family and variational wave functions featuring central, tensor, and spin-isospin correlations. Results: Independently of the mass number A , at values of the relative momentum krel≳1.5 -2 fm-1 the momentum distributions exhibit the property of factorization, nAN1N2(krel,Kc .m .) ≃nrelN1N2(krel) nc.m . N1N2(Kc .m .) ; in particular, for p n back-to-back pairs one has nAp n(krel,Kc .m .=0 ) ≃CAp nnD(krel) nc.m . p n(Kc .m .=0 ) , where nD is the deuteron momentum distribution, nc.m . p n(Kc .m .=0 ) the c.m. motion momentum distribution of the pair, and CAp n the p n nuclear contact measuring the number of back-to-back p n pairs with deuteron-like momenta (kp≃-kn,Kc .m .=0 ). Conclusions: The values of the p n nuclear contact are extracted from the general properties of the two-nucleon momentum distributions corresponding to Kc .m .=0 . The Kc .m .-integrated p n momentum distributions exhibit the property nAp n(krel) ≃CAp nnD(krel) but only at very high values of krel, ≳3.5 -4 fm-1. The theoretical ratio of the p p /p n momentum distributions of 4He
OMV--Short Range Vehicle Concept
1986-01-01
In this 1986 artist's concept, the Orbital Maneuvering Vehicle (OMV), is shown without its main propulsion module. Essentially two propulsion vehicles in one, the OMV could be powered by a main propulsion module , or, in its short range vehicle configuration shown here, use its own hydrazine and cold gas thrusters. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.
Freely cooling granular gases with short-ranged attractive potentials
Energy Technology Data Exchange (ETDEWEB)
Murphy, Eric; Subramaniam, Shankar, E-mail: shankar@iastate.edu [Department of Mechanical Engineering, Center for Multiphase Flow Research, Iowa State University, Ames, Iowa 50011 (United States)
2015-04-15
We treat the case of an undriven gas of inelastic hard-spheres with short-ranged attractive potentials via an extension of the pseudo-Liouville operator formalism. New evolution equations for the granular temperature and coordination number are obtained. The granular temperature exhibits deviation from both Haff’s law and the case of long-ranged potentials. We verify this departure using soft-sphere discrete element method simulations. Excellent agreement is found for the duration of the simulation even beyond where exclusively binary collisions are expected. Simulations show the emergence of strong spatial-velocity correlations on the length scale of the last peak in the pair-correlation function but do not show strong correlations beyond this length scale. We argue that molecular chaos may remain an adequate approximation if the system is modelled as a Smoluchowski type equation with aggregation and break-up processes.
Freely cooling granular gases with short-ranged attractive potentials
Murphy, Eric; Subramaniam, Shankar
2015-04-01
We treat the case of an undriven gas of inelastic hard-spheres with short-ranged attractive potentials via an extension of the pseudo-Liouville operator formalism. New evolution equations for the granular temperature and coordination number are obtained. The granular temperature exhibits deviation from both Haff's law and the case of long-ranged potentials. We verify this departure using soft-sphere discrete element method simulations. Excellent agreement is found for the duration of the simulation even beyond where exclusively binary collisions are expected. Simulations show the emergence of strong spatial-velocity correlations on the length scale of the last peak in the pair-correlation function but do not show strong correlations beyond this length scale. We argue that molecular chaos may remain an adequate approximation if the system is modelled as a Smoluchowski type equation with aggregation and break-up processes.
Energy Technology Data Exchange (ETDEWEB)
Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.
2011-07-01
First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV over a broad range in relative pseudorapidity, Delta(eta), and the full range of relative azimuthal angle, Delta(phi). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Delta(phi) approximately pi) azimuthal correlation is observed at all Delta(eta), as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Delta(eta) are observed for particles with similar phi values. This phenomenon, also known as the "ridge", persists up to at least |Delta(eta)| = 4. For particles with transverse momenta (pt) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pt = 2-6 GeV/c, and to be much reduced when paired with particles of pt = 10-12 GeV/c.
Alvioli, Massimiliano; Morita, Hiko
2016-01-01
The two-nucleon momentum distributions have been calculated for nuclei up to A=40 and various values of the relative and center-of-mass momenta and angle between them. For complex nuclei a parameter-free linked-cluster expansion, based upon a realistic local two-nucleon interaction of the Argonne family and variational wave function featuring central, tensor, spin and iso-spin correlations, has been used. The obtained results show that: 1) independently of the mass number A, at values of the relative momentum k_rel> 2 fm^{-1} the proton-neutron momentum distributions for back-to-back (BB) nucleons (K_cm=0) exhibit the factorization property n_A^{pn}(k_rel,K_cm=0)=C_A^{pn} n_D(k_rel) n_{cm}^{pn}(K_cm=0), where n_D is the deuteron momentum distribution, n_{cm}^{pn}(K_{cm}=0) the momentum distribution of the c.m. motion of the pair and C_A^{pn} the nuclear contact measuring the number of BB pn pairs with deuteron-like momenta; 2) the values of the proton-neutron nuclear contact C_A^{pn} are obtained in a model-i...
Short-range correlations in asymmetric nuclear matter
2003-01-01
The spectral function of protons in the asymmetric nuclear matter is calculated in the self-consistent T-matrix approach. The spectral function per proton increases with increasing asymmetry. This effect and the density dependence of the spectral function partially explain the observed increase of the spectral function with the mass number of the target nuclei in electron scattering experiments.
Uthaman, Bhagya; Manju, P; Thomas, Senoy; Jaiswal Nagar, Deepshikha; Suresh, K G; Varma, Manoj Raama
2017-05-17
We report on the observation of double transition - a first order and a second order transition in Gd5Si2-xCoxGe2 with x = 0, 0.1, 0.2 and 0.4 with the appearance of short-range ferromagnetic correlations. The first order phase transition is due to a combined magnetostructural transition from monoclinic paramagnetic phase to orthorhombic ferromagnetic phase on cooling while the second order transition arises from an orthorhombic paramagnetic to ferromagnetic phase on cooling. Structural studies show that the substituted compounds crystallize in a combination of Gd5Si2Ge2 and Gd5Si4 phases. Low-temperature X-ray diffraction measurements confirm the complete transformation from monoclinic to orthorhombic phase. DC magnetization measurements reveal an anomalous low field magnetic behaviour indicating a Griffiths-like phase. This unusual behaviour is attributed to the local disorder within the crystallographic structure indicating the presence of short-range magnetic correlations and ferromagnetic clustering, which is stabilized and enhanced by competing intra-layer and inter-layer magnetic interactions. The magnetostructural transition results in entropy changes (-ΔSM) of 9 J kg(-1) K(-1) at 260 K for x = 0.1, 8.5 J kg(-1) K(-1) at 245 K for x = 0.2 and 4.2 J kg(-1) K(-1) at 210 K for x = 0.4 for a field change of 50 kOe. Co substitution induces compelling crystallographic and magnetoresponsive effects in the Gd-Si-Ge system, which could be useful for potential and smart applications such as solid-state magnetic refrigeration and sensitive magnetic switching from paramagnetic to ferromagnetic state. Universal curve analysis has been carried out on the substituted samples to study the order of the magnetic transition.
Relativistic Hamiltonians and short-range structure of nuclei
Forest, Jun Lu
1998-12-01
This work is divided into two parts. In the first part, short-range structure of deuteron is studied using a nonrelativistic Hamiltonian. The equidensity surfaces for spin projection Ms = 0 distributions are found to be toroidal in shape, while those of Ms = ±1 have dumbbell shapes at large density. The toroidal shapes indicate that the tensor correlations have near maximal strength at the interparticle distance r OPEP) and the second is from boost interaction. The OPEP contribution is reduced by ~15% by the relativistic nonlocality, which may also have significant effects on pion exchange currents. However, almost all of this reduction is canceled by changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding energy is very small. The boost interactions, on the other hand, give repulsive contributions of ~0.4 (1.9) MeV in 3H (4He) and account for ~1/3 of the phenomenological part of the three-nucleon interaction needed in the nonrelativistic Hamiltonians.
Short-range order in undercooled metallic liquids
Energy Technology Data Exchange (ETDEWEB)
Holland-Moritz, D.; Schenk, T.; Simonet, V.; Bellissent, R.; Convert, P.; Hansen, T.; Herlach, D.M
2004-07-15
The containerless processing technique of electromagnetic levitation was combined with elastic neutron scattering in order to study the short-range order (SRO) of stable and deeply undercooled liquids of the pure elements Ni, Fe and Zr and of the quasicrystal-forming alloy Al{sub 65}Cu{sub 25}Co{sub 10}. The results deliver experimental evidence for an icosahedral short-range order (ISRO) prevailing in the investigated metallic melts.
Combined Search for Lorentz Violation in Short-Range Gravity.
Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecký, V Alan
2016-08-12
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9} m^{2}, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.
Combined search for Lorentz violation in short-range gravity
Shao, Cheng-Gang; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecky, Alan
2016-01-01
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of $10^{-9}$ m$^2$, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.
Looking for Lorentz Violation in Short-Range Gravity
Xu, Rui
2016-01-01
General violations of Lorentz symmetry can be described by the Standard-Model Extension (SME) framework. The SME predicts modifications to existing physics and can be tested in high-precision experiments. By looking for small deviations from Newton gravity, short-range gravity experiments are expected to be sensitive to possible gravitational Lorentz-violation signals. With two group's short-range gravity data analyzed recently, no nonminimal Lorentz violation signal is found at the micron distance scale, which gives stringent constraints on nonminimal Lorentz-violation coefficients in the SME.
Double scattering of light from biophotonic nanostructures with short-range order
Noh, Heeso; Saranathan, Vinodkumar; Prum, Richard O; Mochrie, Simon G J; Dufresne, Eric R; Cao, Hui
2009-01-01
We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.
Magnetic and topographic correlations in Co nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Ciria, M. [Departamento de Magnetismo de Solidos, Departmento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza and Consejo Superior de Investigaciones Cientificas, Zaragoza (Spain)]. E-mail: ciria@unizar.es; Arnaudas, J.I. [Departamento de Magnetismo de Solidos, Departmento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza and Consejo Superior de Investigaciones Cientificas, Zaragoza (Spain); Huttel, Y. [Instituto de Microelectronica de Madrid, Centro Nacional de Microelectronica, Consejo Superior de Investigaciones Cientificas, Tres Cantos, Madrid (Spain); Gomez, H. [Instituto de Microelectronica de Madrid, Centro Nacional de Microelectronica, Consejo Superior de Investigaciones Cientificas, Tres Cantos, Madrid (Spain); Cebollada, A. [Instituto de Microelectronica de Madrid, Centro Nacional de Microelectronica, Consejo Superior de Investigaciones Cientificas, Tres Cantos, Madrid (Spain); Armelles, G. [Instituto de Microelectronica de Madrid, Centro Nacional de Microelectronica, Consejo Superior de Investigaciones Cientificas, Tres Cantos, Madrid (Spain)
2007-09-15
We present a study of the magnetic domains structure in Co films grown on AlN composed of particles with nominal thicknesses between 3 and 15 nm. The images taken by using a scanning force microscope show that as the film thickness increases the domains have the magnetization vector pointing out of the plane, and that the magnetization in the particle tends to be in a single domain state with the particle boundaries being the main source for domains boundaries. The variation of the magnetic and topographic correlation functions in terms of the particle thickness suggests that the magnetic state is formed by a correlated super-spin glass structure.
Measuring magnetic correlations in nanoparticle assemblies
DEFF Research Database (Denmark)
Beleggia, Marco; Frandsen, Cathrine
2014-01-01
We illustrate how to extract correlations between magnetic moments in assemblies of nanoparticles from, e.g., electron holography data providing the combined knowledge of particle size distribution, inter-particle distances, and magnitude and orientation of each magnetic moment within...... a nanoparticle superstructure, We show, based on simulated data, how to build a radial/angular pair distribution function f(r,θ) encoding the spatial and angular difference between every pair of magnetic moments. A scatter-plot of f(r,θ) reveals the degree of structural and magnetic order present, and hence...... provides a measure of the strength and range of magnetic correlations....
Testing local Lorentz invariance with short-range gravity
Kostelecký, V. Alan; Mewes, Matthew
2017-03-01
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
On nuclear matrix element uncertainties in short range $0\
Klapdor-Kleingrothaus, H V
2000-01-01
The evaluation of short range contributions to neutrinoless double beta decay has been challenged due to critics of the ansatz of the nuclear matrix element calculations. We comment on the critics and uncertainties of these calculations and the effect on the derived limits.
Testing local Lorentz invariance with short-range gravity
Kostelecky, Alan
2016-01-01
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
Small Device For Short-Range Antenna Measurements Using Optics
DEFF Research Database (Denmark)
Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten
2011-01-01
This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...
Neutron diffraction test on spin-dependent short range interaction
Voronin, V V
2008-01-01
In this short note we discuss the possibility to get the constraint on the parameters of short range pseudomagnetic interaction of free neutron with matter from the crystal-diffraction experiment. It is demonstrated that for range of $\\lambda<10^{-6}$m this constraint can be a few order better than in any other method.
Oliveira, Gonçalo Nuno; Lopes, Armandina Lima; Amaral, João Sequeira; dos Santos, António; Ren, Yan; Mendonca, Tania Manuela; Sousa, Célia Tavares; Amaral, Vitor Sequeira; Correia, João Guilherme; Araújo, João Pedro
2012-01-01
The cubic spinel CdCr$_2$S$_4$ gained recently a vivid interest, given the relevance of relaxor-like dielectric behavior in its paramagnetic phase. By a singular combination of local probe techniques namely Pair Distribution Function and Perturbed Angular Correlation we firmly establish that the Cr ion plays the central key role on this exotic phenomenon, namely through a dynamic off-centering displacement of its coordination sphere. We further show that this off centering of the magnetic Cr-ion gives rise to a peculiar entanglement between the polar and magnetic degrees of freedom, stabilizing, in the paramagnetic phase, short range magnetic clusters, clearly seen in ultra-low field susceptibility measurements. Moreover, the Landau theory is here used to demonstrate that a linear coupling between the magnetic and polar order parameters is sufficient to justify the appearance of magnetic cluster in paramagnetic phase of this compound. These results open insights on the hotly debated magnetic and polar interac...
Short-range photoassociation of LiRb
Blasing, D. B.; Stevenson, I. C.; Pérez-Ríos, J.; Elliott, D. S.; Chen, Y. P.
2016-12-01
We have observed short-range photoassociation of 7Li85Rb to the two lowest vibrational states of the d 3Π potential. We have also observed several a3Σ+ vibrational levels with generation rates between ˜102 and ˜103 molecules per second, resulting from the spontaneous decay of these d 3Π molecules. We observe an alternation of the peak heights in the rotational photoassociation spectrum that depends on the parity of the excited molecular state. Franck-Condon overlap calculations predict that photoassociation to higher vibrational levels of the d 3Π potential, in particular, the sixth vibrational level, should populate the lowest vibrational level of the a 3Σ+ state at a rate as high as 104 molecules per second. This work also motivates an experimental search for short-range photoassociation to other bound molecular states, such as c 3Σ+ or b 3Π , as prospects for preparing ground-state molecules.
Trapped Three Interacting Bosons with a Short-Ranged Interaction
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang
2006-01-01
A system of three bosons trapped by a parabolic confinement and interacting with a short-ranged interaction has been investigated by the exact diagonalization of the Hamiltonian matrix. We report a calculation for the energy spectrum of the low-lying states of a system of three interacting bosons. The important feature of the low-lying states of three interacting bosons trapped by a parabolic confinement is obtained via an analysis of the energy spectrum.
Effect of short range hydrodynamic on bimodal colloidal gel systems
Boromand, Arman; Jamali, Safa; Maia, Joao
2015-03-01
Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.
Short-range mechanical properties of skeletal and cardiac muscles.
Campbell, Kenneth S
2010-01-01
Striated muscles are disproportionately stiff for small movements. This facet of their behavior can be demonstrated by measuring the force produced when the muscle is stretched more than about 1% of its initial length. When this is done, it can be seen that force rises rapidly during the initial phases of the movement and much less rapidly during the latter stages of the stretch. Experiments performed using chemically permeabilized skeletal and cardiac muscles show that the initial stiffness of the preparations increases in proportion with isometric force as the free Ca²(+) concentration in the bathing solution is raised from a minimal to a saturating value. This is strong evidence that the short-range mechanical properties of activated muscle result from stretching myosin cross-bridges that are attached between the thick and thin filaments. Relaxed intact muscles also exhibit short-range mechanical properties but the molecular mechanisms underlying this behavior are less clear. This chapter summarizes some of the interesting features of short-range mechanical properties in different types of muscle preparation, describes some of the likely underlying mechanisms and discusses the potential physiological significance of the behavior.
Impact of prescribed diabatic heating on short range weather forecasts
Marx, L.; Shukla, J.
1984-01-01
Using the 9 layer general circulation model developed at the Goddard Laboratory for Atmospheric Sciences (GLAS), several 4 to 5 day integrations were made to assess the impact that latent heating processes (supersaturation and moist convective) have on the model forecasts. In an earlier study by Shukla (1981) it was hypothesized that because of strong interaction between dynamics and moist convection, small initial errors grow very fast and make short range forecasting difficult. The purpose of this study was to examine if prescribed heating rates can improve the forecasts for a few days.
High-Capacity Short-Range Optical Communication Links
DEFF Research Database (Denmark)
Tatarczak, Anna
Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths...
Short-range lidar for bioagent detection and classification
Hô, Nicolas; Émond, Frédéric; Babin, François; Healy, Dave; Simard, Jean-Robert; Buteau, Sylvie; McFee, John E.
2010-04-01
We have developed a small, relatively lightweight and efficient short range (Bacillus Globigii, an anthrax simulant, at a distance of 100 m (assumed worst case where 1 ppl = 1 ACPLA) considering particle sizes between 0.5 and 10 μm, with a geometric mean at 1 um. The apparatus has been tested in the field during three test and evaluation campaigns with multiple bioagents and public security products. Preliminary results show that the system is able to distinguish between harmful bioagents and naturally occurring ones. A classification algorithm was successfully tested with a single type of bioagent; experiments for daytime measurements are discussed.
Unsupervised learning in neural networks with short range synapses
Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.
2013-01-01
Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.
Short-range Photoassociation of LiRb
Blasing, David B; Pérez-Ríos, Jesús; Elliott, Daniel S; Chen, Yong P
2016-01-01
We have observed short-range photoassociation of LiRb to the two lowest vibrational states of the $d\\,^3\\Pi$ potential. These $d\\,^3\\Pi$ molecules then spontaneously decay to vibrational levels of the $a^3\\,\\Sigma^+$ state with generation rates of $\\sim10^3$ molecules per second. This is the first observation of many of these $a\\,^3\\Sigma^+$ levels. We observe an alternation of the peak heights in the rotational photoassociation spectrum that suggests a $p$-wave shape resonance in the scattering state. Franck-Condon overlap calculations predict that photoassociation to higher vibrational levels of the $d\\,^3\\Pi$, in particular the sixth vibrational level, should populate the lowest vibrational level of the $a\\,^3\\Sigma^+$ state with a rate as high as $10^4$ molecules per second. These results encourage further work to explain our observed LiRb collisional physics using PECs. This work also motivates an experimental search for short-range photoassociation to other bound molecules, such as the $c\\,^3\\Sigma^+$ o...
An artificial boundary approach for short-ranged interactions
Jacobs, David M.
2016-07-01
Real physical systems are only understood, experimentally or theoretically, to a finite resolution so in their analysis there is generally an ignorance of possible short-range phenomena. It is also well-known that the boundary conditions of wavefunctions and fields can be used to model short-range interactions when those interactions are expected, a priori. Here, a real-space approach is described wherein an artificial boundary of ignorance is imposed to explicitly exclude from analysis the region of a system wherein short-distance effects may be obscure. The (artificial) boundary conditions encode those short-distance effects by parameterizing the possible UV completions of the wavefunction. Since measurable quantities, such as spectra and cross sections, must be independent of the position of the artificial boundary, the boundary conditions must evolve with the radius of the boundary in a particular way. As examples of this approach, an analysis is performed of the non-relativistic free particle, harmonic oscillator, and Coulomb potential, and some known results for point-like (contact) interactions are recovered, however from a novel perspective. Generically, observables differ from their canonical values and symmetries are anomalously broken compared to those of idealized models. Connections are made to well-studied physical systems, such as the binding of light nuclei and cold atomic systems. This method is arguably more physically transparent and mathematically easier to use than other techniques that require the regularization and renormalization of delta-function potentials, and may offer further generalizations of practical use.
A Novel Solution to the Short Range Bluetooth Communication
G, Preetha K
2011-01-01
Bluetooth is developed for short range communication. Bluetooth Devices are normally having low power and low cost. This is a wireless communication technology designed to connect phones, laptops and PDAs. The greater availability of portable devices with Bluetooth connectivity imposes wireless connection between enabled devices. On an average the range of Bluetooth devices is about 10 meters. The basic limitation of the Bluetooth communication is this range limitation. In this paper I have studied the limitations of Bluetooth communication and consider range constraint as the major limitation. I propose a new expanded Blue tooth network to overcome the range constraint of Bluetooth device. This creates a network of Bluetooth enabled devices that will include laptops, set top devices and also mobile phones. The main purpose of this proposal is to establish a network will enable the users to communicate outside the range without any range constraint.
Tricritical wedge filling transitions with short-ranged forces
Energy Technology Data Exchange (ETDEWEB)
Romero-Enrique, J M [Departamento de Fisica Atomica, Molecular y Nuclear, Area de Fisica Teorica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla (Spain); Parry, A O [Department of Mathematics, Imperial College 180 Queen' s Gate, London SW7 2BZ (United Kingdom)
2005-11-16
We show that the 3D wedge filling transition in the presence of short-ranged interactions can be first order or second order depending on the strength of the line tension associated with the wedge bottom. This fact implies the existence of a tricritical point characterized by a short-distance expansion which differs from the usual continuous filling transition. Our analysis is based on an effective one-dimensional model for the 3D wedge filling, which arises from the identification of the breather modes as the only relevant interfacial fluctuations. From such analysis we find a correspondence between continuous 3D filling at bulk coexistence and 2D wetting transitions with random-bond disorder.
Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co3TeO6
Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sharma, G.; Saha, J.; Patnaik, S.
2016-01-01
We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co3TeO6, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ˜17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable to single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.
Directory of Open Access Journals (Sweden)
Tao Liu
2016-12-01
Full Text Available Objective: Addiction is a chronic relapsing brain disease. Brain structural abnormalities may constitute an abnormal neural network that underlies the risk of drug dependence. We hypothesized that individuals with Betel Quid Dependence (BQD have functional connectivity alterations that can be described by long- and short-range functional connectivity density(FCD maps. Methods: We tested this hypothesis using functional magnetic resonance imaging (fMRI data from subjects of the Han ethnic group in Hainan, China. Here, we examined BQD individuals (n = 33 and age-, sex-, and education-matched healthy controls (HCs (n = 32 in a rs-fMRI study to observe FCD alterations associated with the severity of BQD. Results: Compared with HCs, long-range FCD was decreased in the right anterior cingulate cortex (ACC and increased in the left cerebellum posterior lobe (CPL and bilateral inferior parietal lobule (IPL in the BQD group. Short-range FCD was reduced in the right ACC and left dorsolateral prefrontal cortex (dlPFC, and increased in the left CPL. The short-range FCD alteration in the right ACC displayed a negative correlation with the Betel Quid Dependence Scale (BQDS (r=-0.432, P=0.012, and the long-range FCD alteration of left IPL showed a positive correlation with the duration of BQD(r=0.519, P=0.002 in BQD individuals. Conclusions: fMRI revealed differences in long- and short- range FCD in BQD individuals, and these alterations might be due to BQ chewing, BQ dependency, or risk factors for developing BQD.
Short range ordering and microstructure property relationship in amorphous alloys
Energy Technology Data Exchange (ETDEWEB)
Shariq, A.
2006-07-01
A novel algorithm, ''Next Neighbourhood Evaluation (NNE)'', is enunciated during the course of this work, to elucidate the next neighbourhood atomic vicinity from the data, analysed using tomographic atom probe (TAP) that allows specifying atom positions and chemical identities of the next neighbouring atoms for multicomponent amorphous materials in real space. The NNE of the Pd{sub 55}Cu{sub 23}P{sub 22} bulk amorphous alloy reveals that the Pd atoms have the highest probability to be the next neighbours to each other. Moreover, P-P correlation corroborates earlier investigations with scattering techniques that P is not a direct next neighbour to another P atom. Analogous investigations on the Fe{sub 40}Ni{sub 40}B{sub 20} metallic glass ribbons, in the as quenched state and for a state heat treated at 350 C for 1 hour insinuate a pronounced elemental inhomogeneity for the annealed state, though, it also depicts glimpse of a slight inhomogeneity for B distribution even for the as quenched sample. Moreover, a comprehensive microstructural investigation has been carried out on the Zr{sub 53}Co{sub 23.5}Al{sub 23.5} glassy system. TEM and TAP investigations evince that the as cast bulk samples constitutes a composite structure of an amorphous phase and crystalline phase(s). The crystallization is essentially triggered at the mould walls due to heterogeneous nucleation. The three dimensional atomic reconstruction maps of the volume analysed by TAP reveal a complex stereological interconnected network of two phases. The phase that is rich in Zr and Al concentration is depleted in Co concentration while the phase that is rich in Co concentration is depleted both in Zr and Al. Zr{sub 53}Co{sub 23.5}Al{sub 23.5} glassy splat samples exhibit a single exothermic crystallization peak contrary to the as cast bulk sample with a different T{sub g} temperature. A single homogeneous amorphous phase revealed by TEM investigations depicts that the faster cooling
Combining 2-m temperature nowcasting and short range ensemble forecasting
Directory of Open Access Journals (Sweden)
A. Kann
2011-12-01
Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous
μ--e+ conversion from short-range operators
Geib, Tanja; Merle, Alexander
2017-03-01
We present a detailed discussion of the lepton flavor and number violating conversion of bound muons into positrons. This process is a viable alternative to neutrinoless double beta decay, and, given that experiments on ordinary μ-- e- conversion are expected to improve their sensitivities by several orders of magnitude in the coming years, we can also assume the limit on μ-- e+ conversion to improve by roughly the same factor. We discuss how new physics at a high scale can lead to short-range contributions to this conversion process, and we present one explicit case in great detail (the single one for which the corresponding nuclear matrix element is presently known). The main goal of our discussion is to make the respective computation accessible to the particle physics community, so that promising models can be investigated while the nuclear physics community can simultaneously advance the computation of nuclear matrix elements. Given the progress to be expected on the experimental side, it may even be possible that lepton number violation in the e μ -sector is discovered by μ-- e+ conversion before neutrinoless double beta decay can show its existence in the e e -sector.
Short range spread-spectrum radiolocation system and method
Smith, Stephen F.
2003-04-29
A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.
Atomistic microstructures in short-range ordered alloys
Hata, S
2002-01-01
Short-range order (SRO) in Ni-Mo alloys and their relatives has been controversial for decades, since it causes clearly diffraction intensity maxima at positions which do not coincide with the superlattice reflections in the long-range order (LRO) state. This paper gives an overview of recent studies on the structure of SRO and the transition from SRO to LRO in Ni-Mo alloys, including our results obtained in atomic level by combination of kinetic Monte Carlo simulation and semi-quantitative high-resolution transmission electron microscopy. It is rationalized in our results that the SRO state is set up by local ordering of A sub 4 B, A sub 3 B and A sub 2 B types in sub-unit cell scale. The dispersed mixture of the sub-unit cell clusters gives diffraction intensity maxima at the particular positions. An LRO state is formed by selected growth of the A sub 4 B, A sub 3 B and A sub 2 B type clusters into LRO domains depending on alloy-composition.
Suicide: the key role of short range ties
Röhner, B M
2005-01-01
The paper explores the connection between short-range social ties (i.e. links with close relatives) and the occurrence of suicide. The objective is to discriminate between a model based on social ties and a model based on psychological traumas. Our methodological strategy is to focus on instances characterized by the severance of some social ties. We consider several situations of this kind. (i) Prisoners in the first days after their incarceration. (ii) Prisoners in solitary confinement. (iii) Prisoners who are transferred from one prison to another. (iv) Prisoners in closed versus open prisons. (v) Prisoners in the weeks following their release. (vi) Immigrants in the years following their relocation. (vii) Unmarried versus married people. Furthermore, in order to test the impact of major shocks we consider the responses in terms of suicides to the following shocks. (i) The attack of September 11, 2001 in Manhattan. (ii) The Korean War. (iii) The two world wars. (iv) The Great Depression in the United State...
Short-range spin glasses and Random Overlap Structures
Arguin, Louis-Pierre
2010-01-01
Properties of Random Overlap Structures (ROSt)'s constructed from the Edwards-Anderson (EA) Spin Glass model on $\\Z^d$ with periodic boundary conditions are studied. ROSt's are $\\N\\times\\N$ random matrices whose entries are the overlaps of spin configurations sampled from the Gibbs measure. Since the ROSt construction is the same for mean-field models (like the Sherrington-Kirkpatrick model) as for short-range ones (like the EA model), the setup is a good common ground to study the effect of dimensionality on the properties of the Gibbs measure. In this spirit, it is shown, using translation invariance, that the ROSt of the EA model possesses a local stability that is stronger than stochastic stability, a property known to hold at almost all temperatures in many spin glass models with Gaussian couplings. This fact is used to prove stochastic stability for the EA spin glass at all temperatures and for a wide range of coupling distributions. On the way, a theorem of Newman and Stein about the pure state decompo...
Standoff Stack Emissions Monitoring Using Short Range Lidar
Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin
2016-06-01
There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.
The energetics and electronic origins for atomic long- and short-range order in Ni-Fe invar alloys
Energy Technology Data Exchange (ETDEWEB)
Johnson, D.D. [Sandia National Labs., Albuquerque, NM (United States); Shelton, W.A. [Oak Ridge National Lab., TN (United States)
1996-12-31
States of magnetic and compositional order are strongly coupled in many magnetic alloys, with Ni-Fe Invar being the most celebrated example. Results of an electronic-based method that addresses compositional and magnetic disorder, as well as atomic short-range order and energetics, are discussed. This allows a system-dependent microscopic understanding of the interplay of chemical, magnetic, and displacive effects, and a direct comparison to diffuse scattering experiments. Discussion is in context of total-energy calculations for various magnetic states in chemically disordered and ordered Ni- Fe alloys, emphasizing the importance of exchange-splitting and the implication for phase stability in Ni-Fe system.
The MOLDY short-range molecular dynamics package
Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.
2011-12-01
We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as
Inferring short-range linkage information from sequencing chromatograms.
Directory of Open Access Journals (Sweden)
Bastian Beggel
Full Text Available Direct Sanger sequencing of viral genome populations yields multiple ambiguous sequence positions. It is not straightforward to derive linkage information from sequencing chromatograms, which in turn hampers the correct interpretation of the sequence data. We present a method for determining the variants existing in a viral quasispecies in the case of two nearby ambiguous sequence positions by exploiting the effect of sequence context-dependent incorporation of dideoxynucleotides. The computational model was trained on data from sequencing chromatograms of clonal variants and was evaluated on two test sets of in vitro mixtures. The approach achieved high accuracies in identifying the mixture components of 97.4% on a test set in which the positions to be analyzed are only one base apart from each other, and of 84.5% on a test set in which the ambiguous positions are separated by three bases. In silico experiments suggest two major limitations of our approach in terms of accuracy. First, due to a basic limitation of Sanger sequencing, it is not possible to reliably detect minor variants with a relative frequency of no more than 10%. Second, the model cannot distinguish between mixtures of two or four clonal variants, if one of two sets of linear constraints is fulfilled. Furthermore, the approach requires repetitive sequencing of all variants that might be present in the mixture to be analyzed. Nevertheless, the effectiveness of our method on the two in vitro test sets shows that short-range linkage information of two ambiguous sequence positions can be inferred from Sanger sequencing chromatograms without any further assumptions on the mixture composition. Additionally, our model provides new insights into the established and widely used Sanger sequencing technology. The source code of our method is made available at http://bioinf.mpi-inf.mpg.de/publications/beggel/linkageinformation.zip.
Search for exotic short-range interactions using paramagnetic insulators
Chu, P -H; Liu, C -Y; Long, J C
2015-01-01
We describe a proposed experimental search for exotic spin-coupled interactions using a solid state paramagnetic insulator. The experiment is sensitive to the net magnetization induced by the exotic interaction between the unpaired insulator electrons with a dense, non-magnetic mass in close proximity. An existing experiment has been used to set limits on the electric dipole moment of the electron by probing the magnetization induced in a cryogenic gadolinium gallium garnet sample on application of a strong electric field. With suitable additions, including a movable source mass, this experiment can be used to explore "monopole-dipole" forces on polarized electrons with unique or unprecedented sensitivity. The solid-state, non-magnetic construction, combined with the low-noise conditions and extremely sensitive magnetometry available at cryogenic temperatures leads to a sensitivity over ten orders of magnitude greater than exiting limits in the range below 1 mm.
Lefort, Ronan; Guégan, Régis; Guendouz, Mohammed; Zanotti, Jean-Marc; Frick, Bernhard; 10.1103/PhysRevE.78.040701
2009-01-01
We analyze the molecular dynamics heterogeneity of the liquid crystal 4-n-octyl-4'-cyanobiphenyl nanoconfined in porous silicon. We show that the temperature dependence of the dynamic correlation length ?wall, which measures the distance over which a memory of the interfacial slowing down of the molecular dynamics persists, is closely related to the growth of the short-range static order arising from quenched random fields. More generally, this result may also shed some light on the connection between static and dynamic heterogeneities in a wide class of condensed and soft matter systems.
Building blocks for correlated superconductors and magnets
Directory of Open Access Journals (Sweden)
J. L. Sarrao
2015-04-01
Full Text Available Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.
Building blocks for correlated superconductors and magnets
Energy Technology Data Exchange (ETDEWEB)
Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J.-X.; Thompson, J. D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-04-01
Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.
Hand-Held Units for Short-Range Wireless Biotelemetry
Miranda, Felix A.; Simons, Rainee N.
2008-01-01
Special-purpose hand-held radiotransceiver units have been proposed as means of short-range radio powering and interrogation of surgically implanted microelectromechanical sensors and actuators. These units are based partly on the same principles as those of the units described in "Printed Multi- Turn Loop Antennas for RF Biotelemetry" (LEW-17879-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48. Like the previously reported units, these units would make it unnecessary to have wire connections between the implanted devices and the external equipment used to activate and interrogate them. Like a unit of the previously reported type, a unit of the type now proposed would include a printed-circuit antenna on a dielectric substrate. The antenna circuitry would include integrated surface-mount inductors for impedance tuning. Circuits for processing the signals transmitted and received by the antenna would be included on the substrate. During operation, the unit would be positioned near (but not in electrical contact with) a human subject, in proximity to a microelectromechanical sensor or actuator that has been surgically implanted in the subject. It has been demonstrated that significant electromagnetic coupling with an implanted device could be established at a distance of as much as 4 in. (.10 cm). During operation in the interrogation mode, the antenna of the unit would receive a radio telemetry signal transmitted by the surgically implanted device. The antenna substrate would have dimensions of approximately 3.25 by 3.75 inches (approximately 8.3 by 9.5 cm). The substrate would have a thickness of the order of 30 mils (of the order of a somewhat less than a millimeter). The substrate would be made of low-radiofrequency- loss dielectric material that could be, for example, fused quartz, alumina, or any of a number of commercially available radio-frequency dielectric composite materials. The antenna conductors would typically be made of copper or a
Froufe-Pérez, Luis S; Damasceno, Pablo F; Muller, Nicolas; Haberko, Jakub; Glotzer, Sharon C; Scheffold, Frank
2016-01-01
We study photonic band gap formation in two-dimensional high refractive index disordered ma- terials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.
DEFF Research Database (Denmark)
Fromager, Emmanuel; Toulouse, Julien; Jensen, Hans Jørgen Aagaard
2007-01-01
) adequately which, on the other hand, can be described in wave-function theory (WFT), for example, with a multiconfigurational self-consistent field (MCSCF) model. It is therefore of high interest to develop a hybrid model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can......In many cases, the dynamic correlation can be calculated quite accurately and at a fairly low computational cost in Kohn-Sham density-functional theory (KS-DFT), using current standard approximate functionals. However, in general, KS-DFT does not treat static correlation effects (near degeneracy...... be achieved by splitting the two-electron interaction into long-range and short-range parts. The long-range part is then treated by WFT and the short-range part by DFT. In this work the authors consider the so-called "erf" long-range interaction erf(µ r12) / r12, which is based on the standard error function...
Effect of long- and short-range interactions on the thermodynamics of dipolar spin ice
Energy Technology Data Exchange (ETDEWEB)
Shevchenko, Yuriy, E-mail: shevchenko.ya@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Makarov, Aleksandr, E-mail: makarov.ag@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Nefedev, Konstantin, E-mail: nefedev.kv@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Institute of Applied Mathematics of Far Eastern Branch, Russian Academy of Science, 7 Radio Str, Vladivostok (Russian Federation)
2017-02-05
The thermodynamic properties of dipolar spin ice on square, honeycomb and shakti lattices in the long-range and short-range dipole interaction models are studied. Exact solutions for the density of states, temperature dependencies of heat capacity, and entropy are obtained for these lattices with a finite number of point dipoles by means of complete enumeration. The magnetic susceptibility and average size of the largest low-energy cluster are calculated for square spin ice by means of Wang–Landau and Metropolis methods. We show that the long-range interaction leads to a blurring of the energy spectrum for all considered lattices. The inclusion of the long-range interaction leads to a significant change in the thermodynamic behaviour. An additional peak of heat capacity appears in the case of the honeycomb lattice. The critical temperature shifts in the direction of low or high temperatures; the direction depends on the lattice geometry. The critical temperature of the phase transition of square spin ice in the long-range model with frustrated ground states is obtained with the Wang–Landau and Metropolis methods independently. - Highlights: • The long-range and short-range dipole interaction effects are compared. • Differences are showed for Honeycomb, Shakti and Square spin ice lattices. • The additional heat capacity peaks appear for long-range interaction. • The temperature of heat capacity peak shifts while changing the interaction range.
Probing the short range spin dependent interactions by polarized {sup 3}He atom beams
Energy Technology Data Exchange (ETDEWEB)
Yan, H. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Sun, G.A.; Gong, J.; Pang, B.B.; Wang, Y.; Yang, Y.W.; Zhang, J.; Zhang, Y. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China)
2014-10-15
Experiments using polarized {sup 3}He atom beams to search for short range spin dependent forces are proposed. High intensity, high polarization, small beam size {sup 3}He atom beams have been successfully produced and used in surface science researches. By incorporating background reduction designs as combination shielding by μ-metal and superconductor and double beam paths, the precision of spin rotation angle per unit length could be improved by a factor of ∝ 10{sup 4}. By this precision, in combination with a high density and low magnetic susceptibility sample source mass, and reversing one beam path if necessary, sensitivities on three different types of spin dependent interactions could be improved by as much as ∝ 10{sup 2} to ∝ 10{sup 8} over the current experiments at the millimeter range. (orig.)
Nature of short-range order in the paramagnetic state of manganites
Energy Technology Data Exchange (ETDEWEB)
Ramirez, Fabian E.N.; Francisquini, Elton; Souza, José Antonio, E-mail: joseantonio.souza@ufabc.edu.br
2013-09-15
Highlights: •The Curie–Weiss law is redefined in the studied temperature range. •This will lead to a homogeneous macroscopic electronic state picture. •It is in contrast with the coexistence of insulating and metallic regions. -- Abstract: We study the nature of short-range magnetic interactions observed in the paramagnetic phase of colossal magnetoresistance compounds. Our results reveal that ferromagnetic-like interaction between Mn ions cannot be explained by the conventional double exchange mechanism. The results show evidence that the e{sub g} electrons are localized in Mn{sup 3+} ions regardless the introduction of holes leading to ferromagnetic/antiferromagnetic superexchange-like interactions.
Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4
Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.
2017-05-01
The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.
Coupled Hamiltonians and Three Dimensional Short-Range Wetting Transitions
Parry, A. O.; Swain, P S
1997-01-01
We address three problems faced by effective interfacial Hamiltonian models of wetting based on a single collective coordinate \\ell representing the position of the unbinding fluid interface. Problems (P1) and (P2) refer to the predictions of non-universality at the upper critical dimension d=3 at critical and complete wetting respectively which are not borne out by Ising model simulation studies. (P3) relates to mean-field correlation function structure in the underlying continuum Landau mod...
Energy Technology Data Exchange (ETDEWEB)
Alvarez, G., E-mail: memodin@yahoo.com [Seccion de Estudios de Posgrado e Investigacion, ESFM-IPN, U.P. Adolfo Lopez Mateos Edificio 9, Av. Instituto Politecnico Nacional S/N, San Pedro Zacatenco, Mexico DF 07738 (Mexico); Montiel, H. [Departamento de Tecnociencias, Centro de Ciencias Aplicadas y Desarrollo Tecnologico de la Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Mexico DF 04510 (Mexico); Castellanos, M.A. [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Mexico DF 04510 (Mexico); Heiras, J. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km. 107, Carretera Tijuana Ensenada, Ensenada, Baja California 22860 (Mexico); Zamorano, R. [Seccion de Estudios de Posgrado e Investigacion, ESFM-IPN, U.P. Adolfo Lopez Mateos Edificio 9, Av. Instituto Politecnico Nacional S/N, San Pedro Zacatenco, Mexico DF 07738 (Mexico)
2011-10-17
Highlights: {yields} LFMA spectra showed straight lines with positive slope and non-hysteretic traces. {yields} The spectral changes for the plot of the slope vs. temperature give evidence of the formation of iron clusters. {yields} These small orderly regions of iron ions generate short-range magnetic correlations, and that they produce changes in dynamics of microwave absorption. - Abstract: An electron paramagnetic resonance (EPR) study of the complex perovskite Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3} (PFT) at X-band (8.8-9.8 GHz) is presented. The EPR spectra show a single broad line in the 300-480 K temperature range, attributable to Fe{sup 3+} (S = 5/2) ions. The temperature dependence of the EPR parameters: the peak-to-peak linewidth ({Delta}H{sub pp}), the resonance field (H{sub res}) and the integrated intensity (I{sub EPR}), suggests the existence of short-range magnetic correlations; which are associated with the presence of small orderly regions of iron ions in B-sites of the perovskites-type structure, and that they give origin to formation of iron clusters. Low-field microwave absorption (LFMA) is used to give further knowledge on this material; where this technique also gives evidence of these short-range orderly regions.
Dynamic off-centering of Cr3+ ions and short-range magneto-electric clusters in CdCr2S4
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Goncalo [University of Porto, Portugal; Pereira, Andre [University of Porto, Portugal; Lopes, Armandina [Centro de Fisica Nuclear da Universidade de Lisboa, Portugal; Amaral, Joao [University of Aveiro, Portugal; Moreira Dos Santos, Antonio F [ORNL; Ren, Yang [Argonne National Laboratory (ANL); Mendonca, Tania [University of Porto, Portugal; Sousa, C T [University of Porto, Portugal; Amaral, Vitor [University of Aveiro, Portugal; Correa, Joao [Instituto Tecnologico e Nuclear, Sacavem, Portugal; Araujo, Joao Pedro [University of Porto, Portugal
2012-01-01
The cubic spinel CdCr2S4 gained recently a vivid interest, given the relevance of relaxor-like dielectric behavior in its paramagnetic phase. By a singular combination of local probe techniques, namely, pair distribution function and perturbed angular correlation, we firmly establish that the Cr ion plays the central key role on this exotic phenomenon, namely, through a dynamic off-centering displacement of its coordination sphere. We further show that this off-centering of the magnetic Cr ion gives rise to a peculiar entanglement between the polar and magnetic degrees of freedom, stabilizing, in the paramagnetic phase, short-range magnetic clusters, clearly seen in ultralow-field susceptibility measurements. Moreover, the Landau theory is here used to demonstrate that a linear coupling between the magnetic and polar order parameters is sufficient to justify the appearance of magnetic cluster in the paramagnetic phase of this compound. These results open insights on the hotly debated magnetic and polar interaction, setting a step forward in the reinterpretation of the coupling of different physical degrees of freedom.
Short range investigation of sub-micron zirconia particles
Energy Technology Data Exchange (ETDEWEB)
Caracoche, M C; Martinez, J A [Departamento de Fisica, IFLP, Facultad de Ciencias Exactas, CICPBA, Universidad Nacional de La Plata (Argentina); Rivas, P C [IFLP-CONICET, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (Argentina); Bondioli, F; Cannillo, V [Dipartimento di Ingegniria dei Materiali e dell' Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia (Italy); Ferrari, A M, E-mail: cristina@fisica.unlp.edu.a [Dipartimento di Scienza a Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia (Italy)
2009-05-01
The Perturbed Angular Correlations technique was used to determine the configurations around Zirconium ions and their thermal behavior in non-aggregated sub-micron zirconia spherical particles. Three residues containing- Zr surroundings were determined for the non-crystalline starting particles, which were identified under the assumption of a certain chemical reactions sequence during synthesis. While the one made up mainly by hydroxyl groups was common to both samples, the two involving mainly organic residues were particle size dependent. Upon crystallization, both samples stabilized in the t'- and t- tetragonal forms and the Xc-cubic form but their amounts and temperatures of appearance were different. On heating, the structure of the smaller particles became gradually monoclinic achieving total degradation upon the subsequent cooling to RT.
Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)
Energy Technology Data Exchange (ETDEWEB)
THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)
2014-04-15
We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.
AN APPROACH TO SUPPRESS SHORT-RANGE CLUTTER FOR NON-SIDE LOOKING AIRBORNE RADAR
Institute of Scientific and Technical Information of China (English)
Li Ming; Liao Guisheng; Zhang Liang
2011-01-01
When the Airborne Early Warning (AEW) radar transmits medial or high Pulse Repetitive Frequency (PRF) signal,the range ambiguity occurs.The clutter of short-range clutter has serious range dependence problem for non-Side Looking Airborne Radar (non-SLAR).As a result,the clutter plus noise covariance matrix can not be estimated correctly,and the performance of clutter suppression obtained by Space-Time Adaptive Processing (STAP) degrades greatly.The uniform linear array has not elevation degrees; therefore,the short-range clutter can not be suppressed directly.A short-range clutter suppression method is proposed.The method first estimate the elevation angles of the ambiguous short-range gate,then eliminates short-range clutter by space time interpolation and adds moving target protection in the procedure.This method can suppress the short-range clutter well.Simulation results show the validity of the method.
Yuan, Shichen; Miyoshi, Toshikazu
2015-03-01
Mesophase is intermediate phase between crystalline and melt state. Characterization of short-range structures of disordered mesomorphic phase without long-range order is challenging issue in polymer characterization. The short range order was considered same as α or β i PP, or neither. In this work, a new strategy using 13C-13C through space interactions as well as molecular dynamics based on chemical shift anisotropy (CSA) re-orientation is proposed for evaluating short-range order of mesophase of isotactic-polypropylene (iPP). 13C-13C double quantum (DQ) build up curves of 13C 15 percent CH3 selectively labeled iPP and spin dynamics simulations elucidate that local packing structures in mesophase is very close to that in β phase. Moreover, exchange NMR proves that the crystalline chains perform large amplitude motions in all α, β, and mesophase. The correlation time of overall dynamics of stems in mesophase follows the same Arrhenius line with that of β phase but is largely deviated from the Arrhenius line of the α phase. Through the obtained results, it is concluded that short-range order in mesophase is exceedingly close or same to those in β phase. This work was financially supported by the National Science Foundation (Grant No. DMR-1105829) and by UA startup funds.
Vieira, D.; Krems, R. V.; Tscherbul, T. V.
2017-01-01
We use accurate quantum scattering calculations to elucidate the role of short-range molecule-field interactions in atom-molecule inelastic collisions and abstraction chemical reactions at low temperatures. We consider two examples: elastic and inelastic scattering of NH(3Σ) molecules with Mg(1S) atoms in a magnetic field; reactive scattering LiF + H → Li + HF in an electric field. Our calculations suggest that, for non-reactive collision systems and abstraction chemical reactions, the molecule-field interactions cannot generally be neglected at short range because the atom-molecule potential passes through zero at short range. An important exception occurs for Zeeman transitions in atom-molecule collisions at magnetic fields ≲1000 G, for which the molecule-field couplings need only be included at large ρ outside the range of the atom-molecule interaction. Our results highlight the importance of an accurate description of ρ-dependent molecule-field interactions in quantum scattering calculations on molecular collisions and chemical reactions at low temperatures.
Ding, Zhaohua; Xu, Ran; Bailey, Stephen K; Wu, Tung-Lin; Morgan, Victoria L; Cutting, Laurie E; Anderson, Adam W; Gore, John C
2016-01-01
Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. Copyright © 2015 Elsevier Inc. All rights reserved.
Magnetic correlations in oxides: Neutron diffraction and neutron depolarization study
Indian Academy of Sciences (India)
S M Yusuf
2008-10-01
We have studied magnetic correlations in several oxide materials that belong to colossal magnetoresistive, naturally occurring layered oxide showing low-dimensional magnetic ordering, solid oxide fuel cell interconnect materials, and magnetic nanoparticles using neutron diffraction and neutron depolarization techniques. In this paper, an overview of some of these results is given.
Energy Technology Data Exchange (ETDEWEB)
Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath [Homi Bhabha National Institute, Raja Ramanna Center for Advanced Technology, Indore 452013 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013 (India); Chandrasekhar Rao, T. V. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sharma, G.; Saha, J.; Patnaik, S. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)
2016-01-28
We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable to single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.
The influence of non-locality on fluctuation effects for 3D short-ranged wetting
Energy Technology Data Exchange (ETDEWEB)
Parry, A O; Bernardino, N R [Department of Mathematics, Imperial College London, London SW7 2BZ (United Kingdom); Romero-Enrique, J M [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Apartado de Correos 1065, 41080 Seville (Spain); Rascon, C [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, 28911 Leganes (Spain)
2008-12-17
We use a non-local interfacial Hamiltonian to revisit a number of problems associated with the fluctuation theory of critical wetting transitions in three-dimensional systems with short-ranged forces. These centre around previous renormalization group predictions of strongly non-universal critical singularities and also possible fluctuation-induced first-order (stiffness-instability) behaviour, based on local interfacial models, which are not supported by extensive Monte Carlo simulations of wetting in the three-dimensional Ising model. Non-locality gives rise to long-ranged two-body interfacial interactions controlling the repulsion from the wall not modelled correctly in previous interfacial descriptions. In particular, correlation functions are characterized by two diverging parallel correlation lengths, {xi}{sub ||} and {xi}{sub NL} {proportional_to} {radical} ln {xi}{sub ||}, not one as previously thought. Mean-field, Ginzburg criterion and linear renormalization group analyses all show that some interfacial fluctuation effects are strongly damped for wavenumbers q>1/{xi}{sub NL}. This prevents a stiffness-instability and reduces the size of the asymptotic critical regime where non-universality can be observed. Non-universal critical singularities along the critical wetting isotherm are determined by a smaller, effective value of the wetting parameter which slowly approaches its asymptotic limit as the wetting film grows. This is confirmed by numerical simulation of a discretized version of the non-local model.
Effect of long- and short-range interactions on the thermodynamics of dipolar spin ice
Shevchenko, Yuriy; Makarov, Aleksandr; Nefedev, Konstantin
2017-02-01
The thermodynamic properties of dipolar spin ice on square, honeycomb and shakti lattices in the long-range and short-range dipole interaction models are studied. Exact solutions for the density of states, temperature dependencies of heat capacity, and entropy are obtained for these lattices with a finite number of point dipoles by means of complete enumeration. The magnetic susceptibility and average size of the largest low-energy cluster are calculated for square spin ice by means of Wang-Landau and Metropolis methods. We show that the long-range interaction leads to a blurring of the energy spectrum for all considered lattices. The inclusion of the long-range interaction leads to a significant change in the thermodynamic behaviour. An additional peak of heat capacity appears in the case of the honeycomb lattice. The critical temperature shifts in the direction of low or high temperatures; the direction depends on the lattice geometry. The critical temperature of the phase transition of square spin ice in the long-range model with frustrated ground states is obtained with the Wang-Landau and Metropolis methods independently.
Gattenlöhner, S; Hannes, W-R; Ostrovsky, P M; Gornyi, I V; Mirlin, A D; Titov, M
2014-01-17
We explore the longitudinal conductivity of graphene at the Dirac point in a strong magnetic field with two types of short-range scatterers: adatoms that mix the valleys and "scalar" impurities that do not mix them. A scattering theory for the Dirac equation is employed to express the conductance of a graphene sample as a function of impurity coordinates; an averaging over impurity positions is then performed numerically. The conductivity σ is equal to the ballistic value 4e2/πh for each disorder realization, provided the number of flux quanta considerably exceeds the number of impurities. For weaker fields, the conductivity in the presence of scalar impurities scales to the quantum-Hall critical point with σ≃4×0.4e2/h at half filling or to zero away from half filling due to the onset of Anderson localization. For adatoms, the localization behavior is also obtained at half filling due to splitting of the critical energy by intervalley scattering. Our results reveal a complex scaling flow governed by fixed points of different symmetry classes: remarkably, all key manifestations of Anderson localization and criticality in two dimensions are observed numerically in a single setup.
Carrier Induced Magnetism In Correlated Materials
Lee, Byounghak; Trivedi, Nandini; Zhang, Shiwei; Martin, Richard
2003-03-01
We study a two dimensional Hubbard model with magnetic impurities using a combination of single particle and quantum Monte Carlo techniques. Our aim is to determine the interaction between magnetic ions in both strongly interacting hosts, such as magnetic perovskites, and weakly interacting hosts, such as magnetic semiconductors. In the first step, the interactions are treated within an inhomogeneous Hartree-Fock approach and self-consistency is demanded at each site, providing a more accurate treatment of disorder effects compared with other mean-field treatments such as virtual crystal and coherent potential approximations. These are then augmented with determinantal quantum Monte Carlo techniques that treat the electron interactions more accurately. We calculate the exchange coupling as a function of the magnetic impurity concentration, the repulsive electron-electron interaction, carrier concentration, and temperature. We compare the calculated local density of states with STM measurements and also obtain the ferromagnetic transition temperature.
Screening methods for linear-scaling short-range hybrid calculations on CPU and GPU architectures
Beuerle, Matthias; Kussmann, Jörg; Ochsenfeld, Christian
2017-04-01
We present screening schemes that allow for efficient, linear-scaling short-range exchange calculations employing Gaussian basis sets for both CPU and GPU architectures. They are based on the LinK [C. Ochsenfeld et al., J. Chem. Phys. 109, 1663 (1998)] and PreLinK [J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138, 134114 (2013)] methods, but account for the decay introduced by the attenuated Coulomb operator in short-range hybrid density functionals. Furthermore, we discuss the implementation of short-range electron repulsion integrals on GPUs. The introduction of our screening methods allows for speedups of up to a factor 7.8 as compared to the underlying linear-scaling algorithm, while retaining full numerical control over the accuracy. With the increasing number of short-range hybrid functionals, our new schemes will allow for significant computational savings on CPU and GPU architectures.
Long-term RFID SLAM using Short-Range Sparse Tags
Directory of Open Access Journals (Sweden)
Jiun-Fu Chen
2015-02-01
Full Text Available While on the path forward to the long-term or lifelong robotics, one of the most important capabilities is to have a reliable localization and mapping module. Data association and loop detection play critical roles in the localization and mapping problem. By utilizing the radio frequency identification (RFID technology, these problems can be solved using the extended Kalman filter (EKF based simultaneous localization and mapping (SLAM with the tag information. But one of the critical barriers to the long-term SLAM is the overconfidence issue. In this paper, we focus on solving the overconfidence issue, which is introduced by the linearization errors. An Unit Circle Representation (UCR is proposed to diminish the error in the prediction stage and a Correlation Coefficient Preserved Inflation (CCPI is developed to recover the overconfidence issue in the update stage. Based on only odometry and sparse short-range RFID data, the proposed method is capable to compensate the linearization errors in both simulation and real experiments.
Percolation transition of short-ranged square well fluids in bulk and confinement.
Neitsch, Helge; Klapp, Sabine H L
2013-02-14
Using grand canonical Monte Carlo simulations, we investigate the percolation behavior of a square-well fluid with an ultra-short range of attraction in three dimension (3D) and in confined geometry. The latter is defined through two parallel and structureless walls (slit-pore). We focus on temperatures above the critical temperature of the (metastable) condensation transition of the 3D system. Investigating a broad range of systems sizes, we first determine the percolation thresholds, i.e., the critical packing fraction for percolation η(c). For the slit-pore systems, η(c) is found to vary with the wall separation L(z) in a continuous but non-monotonic way, η(c)(L(z)→∞)=η(c)(3D). We also report results for critical exponents of the percolation transition, specifically, the exponent ν of the correlation length ξ and the two fisher exponents τ and σ of the cluster-size distribution. These exponents are obtained from a finite-size analysis involving the cluster-size distribution and the radii of gyration distribution at the percolation threshold. Within the accuracy of our simulations, the values of the critical exponents of our 3D system are comparable to those of 3D random percolation theory. For narrow slit-pores, the estimated exponents are found to be close to those obtained from the random percolation theory in two dimensions.
Short-range ordering of ion-implanted nitrogen atoms in SiC-graphene
Energy Technology Data Exchange (ETDEWEB)
Willke, P.; Druga, T.; Wenderoth, M. [IV. Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Amani, J. A.; Weikert, S.; Hofsäss, H. [II. Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Thakur, S.; Maiti, K. [Department of Condensed Matter Physics and Materials' Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)
2014-09-15
We perform a structural analysis of nitrogen-doped graphene on SiC(0001) prepared by ultra low-energy ion bombardment. Using scanning tunneling microscopy, we show that nitrogen atoms are incorporated almost exclusively as graphitic substitution in the graphene honeycomb lattice. With an irradiation energy of 25 eV and a fluence of approximately 5 × 10{sup 14 }cm{sup −2}, we achieve a nitrogen content of around 1%. By quantitatively comparing the position of the N-atoms in the topography measurements with simulated random distributions, we find statistically significant short-range correlations. Consequently, we are able to show that the dopants arrange preferably at lattice sites given by the 6 × 6-reconstruction of the underlying substrate. This selective incorporation is most likely triggered by adsorbate layers present during the ion bombardment. This study identifies low-energy ion irradiation as a promising method for controlled doping in epitaxial graphene.
Evidence for short range corelations from high Q{sup 2} (e,e{prime}) reactions
Energy Technology Data Exchange (ETDEWEB)
Strikman, M.I. [Pennsylvania State Univ., University Park, PA (United States); Frankfurt, L.L.; Sargayan, M.M. [Tel Aviv Univ. (Iceland)] [and others
1994-04-01
For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e{prime}) reactions, where Q{sup 2} > 1 (GeV/c){sup 2}, x = Q{sup 2}/2mq{sub o} > 1 and 1 GeV > q{sub o}> 300 {approximately} 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration.
Enhanced gel formation in binary mixtures of nanocolloids with tunable short-range attraction
Leheny, R.; Guo, H.; Bertrand, M.; Shendruk, T.; Ramakrishnan, S.; Harden, J.
We report a combined experimental, theoretical, and simulation study of the phase behavior and microstructural dynamics of concentrated binary mixtures of spherical nanocolloids with a size ratio near two and with a tunable, intrinsic short-range attraction. In the absence of the attraction, the suspensions behave as well mixed, hard-sphere liquids. For sufficiently strong attraction, the suspensions undergo a gel transition. Rheometry measurements show that the fluid-gel boundary of the mixtures does not follow an ideal mixing law, but rather the gel state is stable at weaker interparticle attraction in the mixtures than in the corresponding monodisperse suspensions. X-ray photon correlation spectroscopy measurements reveal that, in contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures coincides with dynamic arrest of the smaller colloids while the larger colloids remain mobile. Molecular dynamics simulations indicate the arrest results from microphase separation that is caused by a subtle interplay of entropic and enthalpic effects and that drives the smaller particles to form dense regions.
Energy Technology Data Exchange (ETDEWEB)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch [Laboratorium fur Physikalische Chemie, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich (Switzerland); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark); Olsen, Jógvan Magnus Haugaard [Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark); Knecht, Stefan [Laboratorium fur Physikalische Chemie, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich (Switzerland); Kongsted, Jacob, E-mail: kongsted@sdu.dk; Jensen, Hans Jørgen Aagaard, E-mail: hjj@sdu.dk [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark)
2015-03-21
We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linear response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.
Bond lifetime and diffusion coefficient in colloids with short-range interactions.
Ndong Mintsa, E; Germain, Ph; Amokrane, S
2015-03-01
We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.
Reducing Modal Noise in Short-Range Radio over Multimode Fibre Links
DEFF Research Database (Denmark)
Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal
2010-01-01
Reducing gain fluctuations in Short Range Radio over Multimode Fiber Links requires Central Launch. Furthermore, the quality of today’s optical connectors gives importance to the combined effect of finite detecting area and Laser frequency chirp.......Reducing gain fluctuations in Short Range Radio over Multimode Fiber Links requires Central Launch. Furthermore, the quality of today’s optical connectors gives importance to the combined effect of finite detecting area and Laser frequency chirp....
Demonstration of short-range wind lidar in a high-performance wind tunnel
DEFF Research Database (Denmark)
Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm;
A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and hi...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....
Demonstration of short-range wind lidar in a high-performance wind tunnel
DEFF Research Database (Denmark)
Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm;
2012-01-01
A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and hi...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....
Sanna, S; Carretta, P; Bonfà, P; Prando, G; Allodi, G; De Renzi, R; Shiroka, T; Lamura, G; Martinelli, A; Putti, M
2011-11-25
We report on the recovery of the short-range static magnetic order and on the concomitant degradation of the superconducting state in optimally F-doped SmFe(1-x)Ru(x)AsO(0.85)F(0.15) for 0.1≤x≲0.5. The two reduced order parameters coexist within nanometer-size domains in the FeAs layers and eventually disappear around a common critical threshold x(c)~0.6. Superconductivity and magnetism are shown to be closely related to two distinct well-defined local electronic environments of the FeAs layers. The two transition temperatures, controlled by the isoelectronic and diamagnetic Ru substitution, scale with the volume fraction of the corresponding environments. This fact indicates that superconductivity is assisted by magnetic fluctuations, which are frozen whenever a short-range static order appears, and totally vanish above the magnetic dilution threshold x(c).
Study of local correlations of magnetic and multiferroic compounds
Alves, E J
We propose to study magnetic and multiferroic strongly correlated electron materials using radioactive nuclear probe techniques, at ISOLDE . Following the strategy of a previous project, IS390, our aim is to provide local and element selective information on some of the mechanisms that rule structural, charge and orbital correlations, electronic and magnetic interactions and the coupling of the associated degrees of freedom. The main technique used is Perturbed Angular Correlations (PAC), which allows combined magnetic and electric hyperfine studies. This study is complemented by the use of conventional characterisation techniques, and the investigation of relevant macroscopic properties.
Short-range correlations in carbon-12, oxygen-16, and neon-20: Intrinsic properties
Braley, R. C.; Ford, W. F.; Becker, R. L.; Patterson, M. R.
1972-01-01
The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used.
Estimating relic magnetic fields from CMB temperature correlations
Giovannini, Massimo
2009-01-01
The temperature and polarization inhomogeneities of the Cosmic Microwave Background might bear the mark of pre-decoupling magnetism. The parameters of a putative magnetized background are hereby estimated from the observed temperature autocorrelation as well as from the measured temperature-polarization cross-correlation.
Magnetic Flyer Facility Correlation and UGT Simulation
1978-05-01
IYP Ol RE RICO covEtReD ~7PERORMIN OROAI~kTT~d NAE Alt AOORSS P)AM RLI E N PORO CT, TSK II. COTOL N iV O kPC NAME AND ACOR SS RRT OAT LM S ionRSU Ida...34Calculation of Magnetically Driven Flrer Behavior From Bank Discharge Data Records," KN-70-62(R), December 1970. 2. Private communication, Mr. Gene
Suggestion for aircraft flying qualities requirements of a short-range air combat mission
Directory of Open Access Journals (Sweden)
Lixin WANG
2017-06-01
Full Text Available Owing to the lack of a direct link with the operations in short-range air combat, conventional aircraft flying qualities criteria are inappropriate to guide the design of a task-tailored flight control law. By applying the mission-oriented flying qualities evaluation approach, various aircraft with different control law parameters are evaluated on a ground-based simulator. This paper compares the evaluation results with several conventional flying qualities criteria, and discusses the appropriate parameter combination to reflect the flying qualities requirements of short-range air combat. The comparison and analysis show that a short-range air combat mission requires a higher minimum short period mode natural frequency and a smaller maximum roll mode time constant, and allows a lower minimum pitch attitude bandwidth and a higher maximum short period mode damp ratio than those of conventional flying qualities criteria. Furthermore, a combination of the pitch attitude bandwidth, the pitch attitude magnitude at the bandwidth frequency, and the pitch attitude transfer function gain can define the flying qualities requirements of short-range air combat. The new metric can successfully predict the flying quality levels of aircraft in a short-range air combat mission.
Magnetic correlations in doped transition metal oxides
Energy Technology Data Exchange (ETDEWEB)
Aeppli, G. [AT and T Bell Labs., Murray Hill, NJ (United States); Bao, W.; Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States)] [and others
1995-02-15
The authors review recent reactor- and spallation-source-based neutron scattering experiments on the magnetic fluctuations and order in a variety of doped transition metal oxides. In particular, data are shown for the NiO chain compound, Y{sub 2{minus}x}Ca{sub x}BaNiO{sub 5}, the two-dimensional cuprate superconductors La{sub 2{minus}x}Sr{sub x}CuO{sub 4} and YBa{sub 2}Cu{sub 3} O{sub 6+x}, and the classical three-dimensional ``Mott-Hubbard`` system V{sub 2{minus}y}O{sub 3}.
Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals
Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui
2016-10-01
Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Taking one-dimensional shallow water wave equation as an example, a comparative analysis on the computational stability related to the short-range motion of atmosphere and ocean is carried out for the conservative and nonconservative scheme, and it is pointed out that the computational stability of conservative scheme is absolutely different from that of the nonconservative scheme. The relationship between the short-range motion of atmosphere and ocean and the conservative and nonconservative scheme is further discussed. The constructed conservative scheme is proved to be stable by the numerical experiment for the short-range motion of atmosphere and ocean while the CTCS scheme is unstable. So that the conservative scheme for the solution of this kind of problem has more advantages.
Photonic Band Gaps in 3D Network Structures with Short-range Order
Liew, Seng Fatt; Noh, Heeso; Schreck, Carl F; Dufresne, Eric R; O'Hern, Corey S; Cao, Hui
2011-01-01
We present a systematic study of photonic band gaps (PBGs) in three-dimensional (3D) photonic amorphous structures (PAS) with short-range order. From calculations of the density of optical states (DOS) for PAS with different topologies, we find that tetrahedrally connected dielectric networks produce the largest isotropic PBGs. Local uniformity and tetrahedral order are essential to the formation of PBGs in PAS, in addition to short-range geometric order. This work demonstrates that it is possible to create broad, isotropic PBGs for vector light fields in 3D PAS without long-range order.
Short Range Top Attack Trajectory Optimum Design Based on Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in short range top attack flight trajectory is optimized by using genetic algorithm. The short range top attack trajectory designed meets the design requirements, with the increase of the falling angle and the decrease of the minimum range. The application of genetic algorithm to top attack trajectory optimization is proved to be feasibly and effectively according to the analyses of results.
Short-range wireless communication fundamentals of RF system design and application
Bensky, Alan
2004-01-01
The Complete "Tool Kit for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen
Energy Technology Data Exchange (ETDEWEB)
Malegori, Giovanna; Ferrini, Gabriele, E-mail: gabriele@dmf.unicatt.it [Dipartimento di Matematica e Fisica, Universita Cattolica, I-25121 Brescia (Italy)
2011-05-13
The use of wavelet transforms in thermally excited dynamic force spectroscopy allows us to gain insight into the fundamental thermodynamical properties of a cantilever's Brownian motion as well as giving a meaningful and intuitive representation of the cantilever dynamics in time and frequency caused by the interaction with long- and short-range forces. The possibility of carrying out measurements across the jump-to-contact transition without interruption, providing information on both van der Waals forces and short-range adhesion surface forces, is remarkable.
Short-range Ising spin glasses: The metastate interpretation of replica symmetry breaking
Read, N.
2014-09-01
Parisi's formal replica-symmetry-breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a nonstandard interpretation of the RSB results in which the metastate is nontrivial and is responsible for what was called non-self-averaging. In this picture, each state drawn from the metastate has the ultrametric properties of the old theory, but when the state is averaged using the metastate, the resulting mixed state has little structure. This picture was constructed so as to agree both with the earlier RSB results and with rigorous results. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the nonstandard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low-temperature phase; the corresponding exponent ζ takes the value 4 according to the field theory in high dimensions d, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size W can be observed is of order Wd -ζ. These results extend the nonstandard picture quantitatively; we show that arguments against this scenario are inconclusive. More generally, in terms of Parisi's function q (x), if q(0)≠∫01dxq(x ), then the
Link Design Rules for Cost-Effective Short-Range Radio Over Multimode Fiber Systems
DEFF Research Database (Denmark)
Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal
2010-01-01
Referring to short-range radio over multimode fiber links, we find out important guidelines for the realization of cost-effective intensity modulated directly detected systems. Since the quality of today's connectors is considerably higher than in the past, we demonstrate that two important param...
Short-Range Ultra-Wideband Imaging with Multiple-Input Multiple-Output Arrays
Zhuge, X.
2010-01-01
Compact, cost-efficient and high-resolution imaging sensors are especially desirable in the field of short-range observation and surveillance. Such sensors are of great value in fields of security, rescue and medical applications. Systems can be formed for various practical purposes, such as detecti
A superformula for neutrinoless double $\\beta$ decay; 2, The short range part
Päs, H; Klapdor-Kleingrothaus, H V; Kovalenko, S G
2001-01-01
A general Lorentz-invariant parameterization for the short-range part of the 0vBB decay rate is derived. Combined with the long range part already published this general parameterization in terms of effective B-L violating couplings allows one to extract the 0vBB limits on arbitrary lepton number violating theories.
Cellular Controlled Short-Range Communication for Cooperative P2P Networking
DEFF Research Database (Denmark)
Fitzek, Frank H. P.; Katz, Marcos; Zhang, Qi
2009-01-01
This article advocates a novel communication architecture and associated collaborative framework for future wireless communication systems. In contrast to the dominating cellular architecture and the upcoming peer-to-peer architecture, the new approach envisions a cellular controlled short-range ...
Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction
Kern, N.; Frenkel, D.
2003-01-01
We present a systematic numerical study of the phase behavior of square-well fluids with a "patchy" short-ranged attraction. In particular, we study the effect of the size and number of attractive patches on the fluid–fluid coexistence. The model that we use is a generalization of the hard sphere
Short-Range Ultra-Wideband Imaging with Multiple-Input Multiple-Output Arrays
Zhuge, X.
2010-01-01
Compact, cost-efficient and high-resolution imaging sensors are especially desirable in the field of short-range observation and surveillance. Such sensors are of great value in fields of security, rescue and medical applications. Systems can be formed for various practical purposes, such as
Correlation of Magnetic Resonance Imaging Tumor Volume with Histopathology
Turkbey, Baris; Mani, Haresh; Aras, Omer; Rastinehad, Ardeshir R.; Shah, Vijay; Bernardo, Marcelino; Pohida, Thomas; Daar, Dagane; Benjamin, Compton; McKinney, Yolanda L.; Linehan, W. Marston; Wood, Bradford J.; Merino, Maria J.; Choyke, Peter L.; Pinto, Peter A.
2017-01-01
Purpose The biology of prostate cancer may be influenced by the index lesion. The definition of index lesion volume is important for appropriate decision making, especially for image guided focal treatment. We determined the accuracy of magnetic resonance imaging for determining index tumor volume compared with volumes derived from histopathology. Materials and Methods We evaluated 135 patients (mean age 59.3 years) with a mean prostate specific antigen of 6.74 ng/dl who underwent multiparametric 3T endorectal coil magnetic resonance imaging of the prostate and subsequent radical prostatectomy. Index tumor volume was determined prospectively and independently by magnetic resonance imaging and histopathology. The ellipsoid formula was applied to determine histopathology tumor volume, whereas manual tumor segmentation was used to determine magnetic resonance tumor volume. Histopathology tumor volume was correlated with age and prostate specific antigen whereas magnetic resonance tumor volume involved Pearson correlation and linear regression methods. In addition, the predictive power of magnetic resonance tumor volume, prostate specific antigen and age for estimating histopathology tumor volume (greater than 0.5 cm3) was assessed by ROC analysis. The same analysis was also conducted for the 1.15 shrinkage factor corrected histopathology data set. Results There was a positive correlation between histopathology tumor volume and magnetic resonance tumor volume (Pearson coefficient 0.633, p <0.0001), but a weak correlation between prostate specific antigen and histopathology tumor volume (Pearson coefficient 0.237, p=0.003). On linear regression analysis histopathology tumor volume and magnetic resonance tumor volume were correlated (r2=0.401, p <0.00001). On ROC analysis AUC values for magnetic resonance tumor volume, prostate specific antigen and age in estimating tumors larger than 0.5 cm3 at histopathology were 0.949 (p <0.0000001), 0.685 (p=0.001) and 0.627 (p=0
On the search for magnetic correlations in double perovskites
Energy Technology Data Exchange (ETDEWEB)
Hammerath, Franziska [Institute for Solid State Physics, Dresden Technical University (Germany); IFW Dresden, Institute for Solid State Research (Germany); Sarkar, Rajib; Kamusella, Sirko; Klauss, H.H. [Institute for Solid State Physics, Dresden Technical University (Germany); Baines, C. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Villigen (Switzerland); Dey, T.; Aslan Cansever, Gizem; Manna, Kaustuv; Zimmermann, Andreas; Maljuk, Andrey; Sturza, Mihai; Efremov, Dmitriy; Wurmehl, Sabine; Buechner, Bernd [IFW Dresden, Institute for Solid State Research (Germany)
2016-07-01
The cubic double perovskite Ba{sub 2}YIrO{sub 6} has been investigated by the local probe techniques NMR and μSR. Both methods confirm the absence of long range order in this compound, but observe signatures of magnetic correlations: The NMR spin-lattice relaxation rate suggests the presence of growing magnetic correlations at low temperatures. An increase of the μSR spin-lattice relaxation rate confirms the presence of weak magnetism. These findings cannot be explained by the recently suggested excitonic type of magnetism, but also go beyond a simple nonmagnetic ground state picture of the 5d{sup 4} (J{sub eff}=0) electronic configuration of Ir{sup 5+}. In the monoclinic analog Sr{sub 2}YIrO{sub 6}, the NMR line width and spin-lattice relaxation rates reveal a nonmagnetic behavior, in contrast to a first report, but in line with a recent study.
Bao, Wei; Broholm, C.; Aeppli, G.; Carter, S. A.; Dai, P.; Rosenbaum, T. F.; Honig, J. M.; Metcalf, P.; Trevino, S. F.
1998-11-01
Magnetic correlations in all four phases of pure and doped vanadium sesquioxide (V2O3) have been examined by magnetic thermal-neutron scattering. Specifically, we have studied the antiferromagnetic and paramagnetic phases of metallic V2-yO3, the antiferromagnetic insulating and paramagnetic metallic phases of stoichiometric V2O3, and the antiferromagnetic and paramagnetic phases of insulating V1.944Cr0.056O3. While the antiferromagnetic insulator can be accounted for by a localized Heisenberg spin model, the long-range order in the antiferromagnetic metal is an incommensurate spin-density wave, resulting from a Fermi surface nesting instability. Spin dynamics in the strongly correlated metal are dominated by spin fluctuations with a ``single lobe'' spectrum in the Stoner electron-hole continuum. Furthermore, our results in metallic V2O3 represent an unprecedentedly complete characterization of the spin fluctuations near a metallic quantum critical point, and provide quantitative support for the self-consistent renormalization theory for itinerant antiferromagnets in the small moment limit. Dynamic magnetic correlations for ħω
Field-strength correlators for QCD in a magnetic background
Meggiolaro, Enrico; Mesiti, Michele; Negro, Francesco
2016-01-01
We present the results of an exploratory study (by means of Monte Carlo simulations on the lattice) of the properties of the gauge-invariant two-point correlation functions of the gauge-field strengths for $N_f=2$ QCD at zero temperature and in the presence of a magnetic background field: the analysis provides evidence for the emergence of anisotropies in the nonperturbative part of the correlators and for an increase of the gluon condensate as a function of the external magnetic field.
Bernazzani, Paul; Delmas, Genevieve
1998-03-01
Amylose, a major component of starch, is one of the most important biopolymers, being mainly associated with the pharmacological and food industries. Although widely studied, a complete control and understanding of the physical properties of amylose is still lacking. It is well known that structure and phase transition are important aspects of the functionality of biopolymers since they influence physical attributes such as appearance, digestibility, water holding capacity, etc. In the past, we have studied polyethylene phase composition by DSC in a very slow temperature (T) ramp (1K/h) and have demonstrated the presence and importance of short-range order on the polymer and its characteristics. In this study, we evaluated the phase composition of potato amylose and associated the thermodynamic properties with the presence of short-range order. Two methods were correlated, DSC (in a 1K/h T-ramp) and FTIR as a function of temperature, also in a 1K/h T-ramp. The effects of the various phases on thermodynamic properties such as gelation and enzyme or chemical resistance are discussed.
Probing correlations of early magnetic fields using mu-distortion
DEFF Research Database (Denmark)
Ganc, Jonathan; Sloth, Martin Snoager
2014-01-01
\\rangle$ of this distortion with the temperature anisotropy $T$ of the CMB to search for a correlation $\\langle B^2\\zeta\\rangle$ between the magnetic field $B$ and the curvature perturbation $\\zeta$; knowing the $\\langle B^2\\zeta\\rangle$ correlation would help us distinguish between different models of magnetogenesis. Since......_\\mu\\gtrsim 1$ nG, one would have to consider the specifics of the inflationary magnetogenesis model. We also discuss the potential post-magnetogenesis sources of a $\\langle B^2\\zeta\\rangle$ correlation and explain why there will be no contribution from the evolution of the magnetic field in response...... the perturbations which produce the $\\mu$-distortion will be much smaller scale than the relevant density perturbations, the observation of this correlation is sensitive to the squeezed limit of $\\langle B^2\\zeta\\rangle$, which is naturally parameterized by $b_{\\text{NL}}$ (a parameter defined analogously to $f...
Short-range force detection using optically-cooled levitated microspheres
Geraci, Andrew A; Kitching, John
2010-01-01
We propose an experiment using optically trapped and cooled dielectric microspheres for the detection of short-range forces. The center-of-mass motion of a microsphere trapped in vacuum can experience extremely low dissipation and quality factors of $10^{12}$, leading to yoctonewton force sensitivity. Trapping the sphere in an optical field enables positioning at less than 1 $\\mu$m from a surface, a regime where exotic new forces may exist. We expect that the proposed system could advance the search for non-Newtonian gravity forces via an enhanced sensitivity of $10^5-10^7$ over current experiments at the 1 $\\mu$m length scale. Moreover, our system may be useful for characterizing other short-range physics such as Casimir forces.
Calibration of Short Range 2D Laser Range Finder for 3D SLAM Usage
Directory of Open Access Journals (Sweden)
Petr Olivka
2016-01-01
Full Text Available The laser range finder is one of the most essential sensors in the field of robotics. The laser range finder provides an accurate range measurement with high angular resolution. However, the short range scanners require an additional calibration to achieve the abovementioned accuracy. The calibration procedure described in this work provides an estimation of the internal parameters of the laser range finder without requiring any special three-dimensional targets. This work presents the use of a short range URG-04LX scanner for mapping purposes and describes its calibration. The precision of the calibration was checked in an environment with known ground truth values and the results were statistically evaluated. The benefits of the calibration are also demonstrated in the practical applications involving the segmentation of the environment. The proposed calibration method is complex and detects all major manufacturing inaccuracies. The procedure is suitable for easy integration into the current manufacturing process.
Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review
Directory of Open Access Journals (Sweden)
Changzhan Gu
2016-07-01
Full Text Available Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.
Enhanced sensitivity to Lorentz invariance violations in short-range gravity experiments
Shao, Cheng-Gang; Tan, Yu-Jie; Luo, Jun; Yang, Shan-Qing; Tobar, Michael Edmund
2016-01-01
Recently, first limits on putative Lorentz invariance violation coefficients in the pure gravity sector were determined by the reanalysis of short-range gravity experiments. Such experiments search for new physics at sidereal frequencies. They are not, however, designed to optimize the signal strength of a Lorentz invariance violation force; in fact the Lorentz violating signal is suppressed in the planar test mass geometry employed in those experiments. We describe a short-range torsion pendulum experiment with enhanced sensitivity to possible Lorentz violating signals. A periodic, striped test mass geometry is used to augment the signal. Careful arrangement of the phases of the striped patterns on opposite ends of the pendulum further enhances the signal while simultaneously suppressing the Newtonian background.
SOUTH CHINA REGIONAL SHORT RANGE CLIMATE PREDICTION MODEL AND ITS PERFORMANCE
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper, a newly established "South China Regional Short Range Climate Prediction Model System" is introduced and its performance is analyzed in real case simulation. It shows that the system has a good performance and suitable for short range climate modeling. The model simulates well the monthly mean, pentad mean and daily field, pentad mean and daily field and can depict more details than coarse resolution analyses. Weather systems and information can pass into and out of the model domain through lateral boundaries without notable damping. Almost all of the weather and climate changes can be reflected in the simulation, in which both the changing tendencies, amplitudes, speeds, and phases are consistent with the real cases. The simulated precipitation is much close to the observed one, both in the extent, position and in the intensity of rainfall. In addition, some smaller precipitation centers could also be reflected in the simulation.
Directory of Open Access Journals (Sweden)
K. Chandramohan
2014-01-01
Full Text Available To increase the road safety and secure communication among the vehicles in the network environment, Dedicated Short Range Communication (DSRC is followed. Nowadays, research over DSRC is dramatically increased for enhancing the road safety applications. The main task of DSRC is to protect the vehicles by communicating the warning message regarding the vehicle changing conditions, traffic occurrence and dangers over the road in the network. So, it is necessary to maintain the accurate communication timely with high reliability by implementing the appropriate protocol. In the literature there are several methods which provided specifications defined in the physical layer and the Medium Access Control (MAC layer. In those methods, current IEEE 802.11p MAC is not able to provide predictable Quality of Service (QoS for high-priority safety services. Motivated by the fact that the existing work provided three levels of safety-related broadcast services, but did not focus on current traffic load conditions, in this study, we plan to present Traffic Controlled DSRC (TC-DSRC model to analyze and categorize the traffic patterns in the vehicular communication for safety related application. A new algorithm is presented to evaluate the process of traffic controlled DSRC model for secure communication in VANET. The dedicated short range communication broadcast of messages is sent to all the vehicles at a specific instance for defined radius on the traffic zone. Multiple traffic load conditions are categorically stated to handle the vehicular safety with quick response time. Integrating these two performance metrics (i.e., quick response time and security, by using the proposed algorithm, the traffic patterns are categorized for communication between vehicles to provide the safety measure. In addition, our proposed scheme with the categorization using traffic patterns improves the network performance by deriving a specific pattern. Compared with the recent
Heng, Kiang Huat; Zhong, Wen-De; Cheng, Tee Hiang; Liu, Ning; He, Yingjie
2009-03-10
The problems associated with using a single fixed beam divergence for short-range inter-unmanned aerial vehicle free-space optical communications are discussed. To overcome the problems, a beam divergence changing mechanism is proposed. Four different methods are then proposed to implement the beam divergence changing mechanism. The performance of these methods is evaluated in terms of transmission distance under adverse weather conditions. The results show that the performance is greatly improved when the beam divergence changing mechanism is used.
Voronoi analysis of the short-range atomic structure in iron and iron-carbon melts
Sobolev, Andrey; Mirzoev, Alexander
2015-08-01
In this work, we simulated the atomic structure of liquid iron and iron-carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short-range atomic order of iron atoms — it remains effectively the same as in pure iron melts.
Calibration of Short Range 2D Laser Range Finder for 3D SLAM Usage
Petr Olivka; Michal Krumnikl; Pavel Moravec; David Seidl
2016-01-01
The laser range finder is one of the most essential sensors in the field of robotics. The laser range finder provides an accurate range measurement with high angular resolution. However, the short range scanners require an additional calibration to achieve the abovementioned accuracy. The calibration procedure described in this work provides an estimation of the internal parameters of the laser range finder without requiring any special three-dimensional targets. This work presents the use of...
Suggestion for aircraft flying qualities requirements of a short-range air combat mission
Wang, Lixin; Youguang GUO; Zhang, Qi; Yue, Ting
2017-01-01
Owing to the lack of a direct link with the operations in short-range air combat, conventional aircraft flying qualities criteria are inappropriate to guide the design of a task-tailored flight control law. By applying the mission-oriented flying qualities evaluation approach, various aircraft with different control law parameters are evaluated on a ground-based simulator. This paper compares the evaluation results with several conventional flying qualities criteria, and discusses the appropr...
Guidance of an autonomous planetary rover based on a short-range hazard detection system
Yerazunis, S. W.; Frederick, D. K.; Hunter, E.; Troiani, N.
1979-01-01
The guidance of an autonomous planetary roving vehicle using a scanning laser/multidetector terrain sensor for short-range hazard detection has been simulated. The sensor data are used to model the terrain, thereby providing the information required by a path selection algorithm to control the motion of the rover. These simulation studies are providing the basis for developing both the real-time computer control software and the hardware systems for laboratory and field testing of rover.
Search for Lorentz Violation using Short-Range Tests of Gravity
Long, J
2016-01-01
Experimental tests of the newtonian inverse square law at short range, one at Indiana University and the other at the Huazhong University of Science and Technology, have been used to set limits on Lorentz violation in the pure gravity sector of the nonminimal Standard-Model Extension. In the nonrelativistic limit, the constraints derived for the 14 independent SME coefficients for Lorentz violation acting simultaneously are of order $10^{-9}$ m$^{2}$.
Performance Evaluation of a Prototype Underwater Short-Range Acoustic Telemetry Modem
2010-09-01
fabricated by contractor Teledyne Benthos , Inc. and is identified as Model ATM-90X. It was developed for use in the Seastar underwater Local Area...Teledyne Benthos Inc. and is identified as Model ATM-90X. It was developed for use in the Seastar underwater Local Area Network (LAN). The ATM-90X...32 3. Required Narrowband Source Level for 1 Symbol ........................33 IV. TELEDYNE BENTHOS PROTOTYPE SHORT-RANGE
Neutrino-Nucleus Interactions and the Short-Range Structure of Nuclei
Energy Technology Data Exchange (ETDEWEB)
Cavanna, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palamara, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schiavilla, R. [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wiringa, R. B. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-01-08
Improvements in theoretical modeling of Short Range structures and phenomena, and comparisons with data, will require sustained collaboration between nuclear theorists and neutrino experimentalists. The extensive history of studying this area of nuclear physics in electron- and hadron-scattering experiments, coupled with the transformative capabilities of LArTPCs to identify neutrinos, will provide a ripe opportunity for new discoveries that will further our understanding of the nucleus.
Short range automotive radar based on UWB pseudo-random coding
2007-01-01
In this paper, a radar system for short range automotive application based on ultra-wideband (UWB) technology is studied. UWB uses very short pulses, so that the spectrum of the transmitted signals may spread over several Gigahertzes. In order to increase, from one part, the resolution in distance of this radar system and to avoid, from another part, multi-users interferences for an optimal detectability, we propose to improve the radar performances by using coding techniques. It consists on ...
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-06-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields
Van Vleet, Mary J; Stone, Anthony J; Schmidt, J R
2016-01-01
Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones (${A}/{r^{12}}$) or Born-Mayer ($A\\exp(-Br)$) forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, and robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Finally, we show how this methodology can be adapted to yield the standard Born-Mayer functional for...
A short-range optical wireless transmission method based on LED
Miao, Meiyuan; Chen, Ailin; Zhu, Mingxing; Li, Ping; Gao, Yingming; Zou, Nianyu
2016-10-01
As to electromagnetic wave interfere and only one to one transmission problem of Bluetooth, a short-range LED optical wireless transmission method is proposed to be complementary technology in this paper. Furthermore achieved image transmission through this method. The system makes C52 to be the mater controller, transmitter got data from terminals by USB and sends modulated signals with LED. Optical signal is detected by PD, through amplified, filtered with shaping wave from, and demodulated on receiver. Then send to terminals like PC and reverted back to original image. Analysis the performance from peak power and average power, power consumption of transmitter, relationship of bit error rate and modulation mode, and influence of ambient light, respectively. The results shows that image can be received accurately which uses this method. The most distant transmission distance can get to 1m with transmitter LED source of 1w, and the transfer rate is 14.4Kbit/s with OOK modulation mode on stabilization system, the ambient light effect little to LED transmission system in normal light environment. The method is a convenient to carry LED wireless short range transmission for mobile transmission equipment as a supplement of Bluetooth short-range transmission for its ISM band interfere, and the analysis method in this paper can be a reference for other similar systems. It also proves the system is feasibility for next study.
Correlating biodegradation to magnetization in oil bearing sedimentary rocks
Emmerton, Stacey; Muxworthy, Adrian R.; Sephton, Mark A.; Aldana, Milagrosa; Costanzo-Alvarez, Vincenzo; Bayona, German; Williams, Wyn
2013-07-01
A relationship between hydrocarbons and their magnetic signatures has previously been alluded to but this is the first study to combine extensive geochemical and magnetic data of hydrocarbon-associated samples. We report a detailed study that identifies a connection between magnetic mineralogy and oil biodegradation within oil-bearing sedimentary units from Colombia, Canada Indonesia and the UK. Geochemical data reveal that all the oil samples are derived from mature type-II kerogens deposited in oxygen-poor environments. Biodegradation is evident to some extent in all samples and leads to a decrease in oil quality through the bacterially mediated conversion of aliphatic hydrocarbons to polar constituents. The percentage of oil components and the biodegradation state of the samples were compared to the magnetic susceptibility and magnetic mineralogy. A distinct decrease in magnetic susceptibility is correlated to decreasing oil quality and the amount of extractable organic matter present. Further magnetic characterization revealed that the high quality oils are dominated by pseudo-single domain grains of magnetite and the lower quality oils by larger pseudo-single domain to multidomain grains of magnetite and hematite. Hence, with decreasing oil quality there is a progressive dominance of multidomain magnetite as well as the appearance of hematite. It is concluded that biodegradation is a dual process, firstly, aliphatic hydrocarbons are removed thereby reducing oil quality and secondly, magnetic signatures are both created and destroyed. This complex relationship may explain why controversy has plagued previous attempts to resolve the connection between magnetics and hydrocarbon deposits. These findings reinforce the importance of bacteria within petroleum systems as well as providing a platform for the use of magnetization as a possible exploration tool to identify subsurface reservoirs and a novel proxy of hydrocarbon migration.
Xu, Zhijun; Wen, Jinsheng; Xu, Guangyong; Gu, Genda; Tranquada, John
2011-03-01
We have performed a series of neutron scattering and magnetization measurements on Fe 1+y Te 1-x Se x with different Fe and Se compositions to study the interplay between magnetism and superconductivity. FeTeSe is rather unique for possessing two different types of spin configurations: one is a ``bicollinear'' or ``E-type'' structure that corresponds to the static order near (0.5,0), and the other is a ``collinear'' or ``C-type'' spin configuration that gives rise to spin excitations near (0.5,0.5). Short-range static magnetic order near the (0 . 5 , 0) in-plane wave-vector (using the two-Fe unit cell) is found in all non-superconducting samples. The static order disappears and bulk superconductivity emerges, as the spectral weight of the magnetic excitations shift to the region of reciprocal space near the in-plane wave-vector (0 . 5 , 0 . 5) with Se doping. Besides Se doping, Fe also plays an essential role in superconductivity and the magnetic correlations. Our results suggest that spin fluctuations associated with the collinear magnetic structure appear to be universal in all Fe-based superconductors, and there is a strong correlation between superconductivity and the character of the magnetic order/fluctuations in this system.
Directory of Open Access Journals (Sweden)
Felix Tobias Kurz
2016-12-01
Full Text Available In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.
Kurz, Felix; Kampf, Thomas; Buschle, Lukas; Schlemmer, Heinz-Peter; Bendszus, Martin; Heiland, Sabine; Ziener, Christian
2016-12-01
In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.
Crystal structure and short range oxygen defects in La- and Nd-modified ZrO[sub 2
Energy Technology Data Exchange (ETDEWEB)
Loong, C.K. (Argonne National Laboratory, Argonne, IL 60439 (United States)); Richardson, J.W. Jr. (Argonne National Laboratory, Argonne, IL 60439 (United States)); Ozawa, Masakuni (Nagoya Institute of Technology, Tajimi, Gifu, 507 (Japan)); Kimura, Mareo (Toyota Central Research and Development Laboratories, Inc. Nagakute, Aichi, 480-11 (Japan))
1994-06-01
The crystal structure of rare earth modified zirconia and the associated oxygen defects were studied by neutron diffraction. A Rietveld analysis of the neutron powder patterns of heat-treated samples of La- and Nd-10 mol% ZrO[sub 2] revealed the composition of a major tetragonal phase (space group P4[sub 2]/nmc) and a minor cubic phase (space group Fm3m). The short-range oxygen defects structure was examined by a Fourier filtering technique. A real-space correlation function, obtained from a Fourier transform of the filtered residual diffuse scattering, showed evidence of static, oxygen vacancy-induced atomic displacements along the left angle 1 1 1 right angle and other directions of the pseudocubic cell. ((orig.))
Directory of Open Access Journals (Sweden)
J Matthew Mahoney
Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.
Interface-induced magnetism and strong correlation in oxide heterostructures
Stemmer, Susanne
2015-03-01
Two-dimensional electron gases (2DEGs) at interfaces between two insulating oxides have attracted significant attention because they can exhibit unique properties, such as strong electron correlations, superconductivity and magnetism. In this presentation, we will discuss the emergent properties of 2DEGs in SrTiO3 quantum wells that are interfaced with Mott insulating rare earth titanates (RTiO3) . We show that the magnetic properties of the 2DEG can be tuned to be either (incipient) ferromagnetic or (incipient) antiferromagnetic, depending on the specific RTiO3 that interfaces it. The thickness of the quantum well is a critical tuning parameter and determines the onset of magnetism, the proximity to a quantum critical point, and the onset of non-Fermi liquid behavior for those quantum wells that are in proximity to an antiferromagnetic transition. We will also discuss the role of symmetry-lowering structural transitions in the quantum well.
Charged Magnetic Brane Correlators and Twisted Virasoro Algebras
D'Hoker, Eric
2011-01-01
Prior work using gauge/gravity duality has established the existence of a quantum critical point in the phase diagram of 3+1-dimensional gauge theories at finite charge density and background magnetic field. The critical theory, obtained by tuning the dimensionless charge density to magnetic field ratio, exhibits nontrivial scaling in its thermodynamic properties, and an associated nontrivial dynamical critical exponent. In the present work, we analytically compute low energy correlation functions in the background of the charged magnetic brane solution to 4+1-dimensional Einstein-Maxwell-Chern-Simons theory, which represents the bulk description of the critical point. Results are obtained for neutral scalar operators, the stress tensor, and the U(1)-current. The theory is found to exhibit a twisted Virasoro algebra, constructed from a linear combination of the original stress tensor and chiral U(1)-current. The effective speed of light in the IR is renormalized downward for one chirality, but not the other, ...
Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics
DEFF Research Database (Denmark)
Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.
2005-01-01
In this paper we propose a SISO UWB radio channel model for short-range radio link scenarios between a fixed device and a dynamic user hand-held device. The channel model is derived based on novel experimental UWB radio propagation investigations carried out in typical indoor PAN scenarios...... including realistic device and user terminal antenna configurations. The radio channel measurements have been performed in the lower UWB frequency band of 3GHz to 5GHz with a 2x4 MIMO antenna configuration. Several environments, user scenarios and two types of user terminals have been used. The developed...
DEFF Research Database (Denmark)
Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa
2016-01-01
inadequate when the molecule has near-degeneracies and/or low-lying double-excited states. To address these issues we have recently proposed multiconfiguration short-range density-functional theory-MC-srDFT-as a new tool in the toolbox. While initial applications for systems with multireference character......-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2...
Magnitude of the prewetting boundary tension near wetting for short-range forces
Varea, C.; Robledo, A.
1993-05-01
We determine in a mean field approximation the spin-1/2 Ising model line tension τ along the boundary between surface states at the prewetting transition in the neighborhood of the wetting transition at bulk phase coexistence. We find very close agreement with the predictions of the interface displacement model for short-range interactions, i.e., τ increases (with a square-root dependence on the bulk external field h) towards a finite limit with diverging slope at wetting. Our findings help both in settling the discussion on the limiting value of τ and in understanding the origin of its singular behavior.
Perturbation theory for short-range weakly-attractive potentials in one dimension
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)
2017-03-15
We have obtained the perturbative expressions up to sixth order for the energy of the bound state in a one dimensional, arbitrarily weak, short range finite well, applying a method originally developed by Gat and Rosenstein Ref. [1]. The expressions up to fifth order reproduce the results already known in the literature, while the sixth order had not been calculated before. As an illustration of our formulas we have applied them to two exactly solvable problems and to a nontrivial problem.
Measurement based scenario analysis of short-range distribution system planning
DEFF Research Database (Denmark)
Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe
2009-01-01
This paper focuses on short-range distribution system planning using a probabilistic approach. Empirical probabilistic distributions of load demand and distributed generations are derived from the historical measurement data and incorporated into the system planning. Simulations with various...... feasible scenarios are performed based on a local distribution system at Støvring in Denmark. Simulation results provide more accurate and insightful information for the decision-maker when using the probabilistic analysis than using the worst-case analysis, so that a better planning can be achieved....
Effect of Cerium on Chemical Short-Range Order of Al-Fe-Ce Amorphous Alloy
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The chemical short-range order of Al-Fe-Ce amorphous alloy was studied by means of X-ray diffraction(XRD) and differential scanning calorimetry(DSC). It is found that the prepeak position in X-ray diffraction intensity curve shifts to higher angles as the content of Fe increases, but it shifts to smaller angles as the content of Ce increases. The crystallization character of the amorphous alloy changes with the variation of the content of Fe and Ce. Ce can improve the interaction between atoms and the capacity of compound formation, so it is favorable to Al-based glass formability.
The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap
Directory of Open Access Journals (Sweden)
Metsch B. Ch.
2010-04-01
Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Eﬁmov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].
One spatial dimensional finite volume three-body interaction for a short-range potential
Guo, Peng
2016-01-01
In this work, we use McGuire's model to describe scattering of three spinless identical particles in one spatial dimension, we first present analytic solutions of Faddeev's equation for scattering of three spinless particles in free space. The three particles interaction in finite volume is derived subsequently, and the quantization conditions by matching wave functions in free space and finite volume are presented in terms of two-body scattering phase shifts. The quantization conditions obtained in this work for short range interaction are L\\"uscher's formula like and consistent with Yang's results in \\cite{Yang:1967bm}.
Probing correlations of early magnetic fields using μ-distortion
Energy Technology Data Exchange (ETDEWEB)
Ganc, Jonathan; Sloth, Martin S., E-mail: ganc@cp3.dias.sdu.dk, E-mail: sloth@cp3.dias.sdu.dk [CP" 3-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
2014-08-01
The damping of a non-uniform magnetic field between the redshifts of about 10{sup 4} and 10{sup 6} injects energy into the photon-baryon plasma and causes the CMB to deviate from a perfect blackbody spectrum, producing a so-called μ-distortion. We can calculate the correlation (μ T) of this distortion with the temperature anisotropy T of the CMB to search for a correlation ( B{sup 2}ζ) between the magnetic field B and the curvature perturbation ζ; knowing the ( B{sup 2}ζ) correlation would help us distinguish between different models of magnetogenesis. Since the perturbations which produce the μ-distortion will be much smaller scale than the relevant density perturbations, the observation of this correlation is sensitive to the squeezed limit of ( B{sup 2}ζ), which is naturally parameterized by b{sub NL} (a parameter defined analogously to f{sub NL}). We find that a PIXIE-like CMB experiments has a signal to noise S/N≈ 1.0 × b{sub NL} ( B-tilde {sub μ}/10nG){sup 2}, where B-tilde {sub μ} is the magnetic field's strength on μ-distortion scales normalized to today's redshift; thus, a 10 nG field would be detectable with b{sub NL}=O(1). However, if the field is of inflationary origin, we generically expect it to be accompanied by a curvature bispectrum (ζ{sup 3}) induced by the magnetic field. For sufficiently small magnetic fields, the signal ( B{sup 2} ζ) will dominate, but for B-tilde {sub μ}∼> 1 nG, one would have to consider the specifics of the inflationary magnetogenesis model. We also discuss the potential post-magnetogenesis sources of a ( B{sup 2}ζ) correlation and explain why there will be no contribution from the evolution of the magnetic field in response to the curvature perturbation.
Magnetic noise measurements using cross-correlated Hall sensor arrays
Jung, G.; Ocio, M.; Paltiel, Y.; Shtrikman, H.; Zeldov, E.
2001-01-01
An experimental technique for measuring magnetic fluctuations by means of a double-layer Hall sensor array is described. The technique relies on cross-correlating Hall signals from two independent sensors positioned one above the other in two separate two-dimensional-electron-gas layers of a GaAs/AlGaAs heterostructure. The effectiveness of the technique is demonstrated by a reduction of the magnitude of the background noise floor of the correlated sensors with respect to the noise level of the best single sensor.
Correlation effects driven by reduced dimensionality in magnetic surface alloys
Indian Academy of Sciences (India)
U Manju
2015-06-01
The evolution of electronic properties and correlation effects in manganese-based two-dimensional magnetic surface alloys are discussed. Enhanced correlations resulting from the reduced dimensionality of the surface alloys lead to the modification of the core level and valence band electronic structures resulting in the appearance of distinct satellite features. Apart from this, surface alloying-induced strong modifications in the substrate surface states arising from charge reorganization and electron transfer to the surface states as well as band-gap openings are also discussed.
Probing correlations of early magnetic fields using $\\mu$-distortion
Ganc, Jonathan
2014-01-01
The damping of a non-uniform magnetic field between the redshifts of about $10^4$ and $10^6$ injects energy into the photon-baryon plasma and causes the CMB to deviate from a perfect blackbody spectrum, producing a so-called $\\mu$-distortion. We can calculate the correlation $\\langle\\mu T\\rangle$ of this distortion with the temperature anisotropy $T$ of the CMB to search for a correlation $\\langle B^2\\zeta\\rangle$ between the magnetic field $B$ and the curvature perturbation $\\zeta$. Since the perturbations which produce the $\\mu$-distortion will be much smaller scale than the relevant density perturbations, the observation of this correlation is sensitive to the squeezed limit of $\\langle B^2\\zeta\\rangle$, which is naturally parameterized by $b_{\\text{NL}}$ (a parameter defined analogously to $f_{\\text{NL}}$). We find that a PIXIE-like CMB experiments has a signal to noise $S/N\\approx 1.0 \\times b_{\\text{NL}} (\\tilde B_\\mu/10\\text{ nG})^2$, where $\\tilde B_\\mu$ is the magnetic field's strength on $\\mu$-disto...
Critical properties of short-range Ising spin glasses on a Wheatstone-bridge hierarchical lattice.
Almeida, Sebastião T O; Nobre, Fernando D
2015-08-01
An Ising spin-glass model with nearest-neighbor interactions, following a symmetric probability distribution, is investigated on a hierarchical lattice of the Wheatstone-bridge family characterized by a fractal dimension D≈3.58. The interaction distribution considered is a stretched exponential, which has been shown recently to be very close to the fixed-point coupling distribution, and such a model has been considered lately as a good approach for Ising spin glasses on a cubic lattice. An exact recursion procedure is implemented for calculating site magnetizations, mi=〈Si〉T, as well as correlations between pairs of nearest-neighbor spins, 〈SiSj〉T (〈〉T denote thermal averages), for a given set of interaction couplings on this lattice. From these local magnetizations and correlations, one can compute important physical quantities, such as the Edwards-Anderson order parameter, the internal energy, and the specific heat. Considering extrapolations to the thermodynamic limit for the order parameter, such as a finite-size scaling approach, it is possible to obtain directly the critical temperature and critical exponents. The transition between the spin-glass and paramagnetic phases is analyzed, and the associated critical exponents β and ν are estimated as β=0.82(5) and ν=2.50(4), which are in good agreement with the most recent results from extensive numerical simulations on a cubic lattice. Since these critical exponents were obtained from a fixed-point distribution, they are universal, i.e., valid for any coupling distribution considered.
Fiore, Carlos E.
2014-02-01
Motivated by recent findings, we discuss the existence of a direct and robust mechanism providing discontinuous absorbing transitions in short-range systems with single species, with no extra symmetries or conservation laws. We consider variants of the contact process, in which at least two adjacent particles (instead of one, as commonly assumed) are required to create a new species. Many interaction rules are analyzed, including distinct cluster annihilations and a modified version of the original pair contact process. Through detailed time-dependent numerical simulations, we find that for our modified models, the phase transitions are of first order, hence contrasting with their corresponding usual formulations in the literature, which are of second order. By calculating the order-parameter distributions, the obtained bimodal shapes as well as the finite-scale analysis reinforce coexisting phases and thus a discontinuous transition. These findings strongly suggest that the above particle creation requirements constitute a minimum and fundamental mechanism determining the phase coexistence in short-range contact processes.
A Model for One-Dimensional Coherent Synchrotron Radiation including Short-Range Effects
Ryne, Robert D; Qiang, Ji; Yampolsky, Nikolai
2012-01-01
A new model is presented for simulating coherent synchrotron radiation (CSR) in one dimension. The method is based on convolving an integrated Green function (IGF) with the longitudinal charge density. Since it is based on an IGF, the accuracy of this approach is determined by how well one resolves the charge density and not by resolving the single particle wake function. Since short-range wakefield effects are included analytically, the approach can be much more efficient than ordinary (non-IGF) approaches in situations where the wake function and charge density have disparate spatial scales. Two cases are presented: one derived from the full wake including short-range effects, and one derived from the asymptotic wake. In the latter case the algorithm contains the same physics as others based on the asymptotic approximation, but requires only the line charge density and not its derivative. Examples are presented that illustrate the limitations of the asymptotic-wake approximation, and that illustrate how mic...
CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications
Aznar, Francisco; Calvo Lopez, Belén
2013-01-01
This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints. These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip. The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length. This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...
Passive FOG IMU for short-range missile application: from qualification toward series production
Trommer, Gert F.; Mueller, R.; Opitz, S.
1996-11-01
An inertial measurement unit (IMU) with angular rate, angular increment and linear acceleration measurement systems for short range missile application is described. It consists of a three axis fiber optic gyroscope (FOG) cluster, three linear vibrating beam accelerometers and an electronics device for signal evaluation and data transmission via a serial transputer link. The FOG cluster is realized by means of a passive all-fiber open loop configuration. Due to the inherent optical phase shift of 3 by 3 couplers, completely passive operation near the quadrature point is achieved without the need for a non- reciprocal optical phase modulation in the fiber loop. Basing on that concept more than 50 rugged IMUs have been built for implementation into a short range air to air missile. Verification tests for flight clearance with stresses simulating air carriage and missile free flight environments have been computed. The operation under extreme vibration and shock environments without the use of vibration isolator fixings due to very tight requirements on data time delay has been demonstrated. The first telemetered missile firings have been performed successfully. The line- setup for large quantity series production is progressing. The implementation of the workstations for the integration of the IMU is finished. The production equipment for calibration and acceptance testing of IMUs in parallel allowing for a rate of more than 150 unit per month has been installed and will be operational in autumn this year.
Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm)
Energy Technology Data Exchange (ETDEWEB)
Sun, Shengtong [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; School of Chemical Engineering, State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai 200237 P.R. China; Chevrier, Daniel M. [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Zhang, Peng [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Gebauer, Denis [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; Cölfen, Helmut [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany
2016-09-09
Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO_{3} units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO_{3} entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO_{3} core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.
Short-range order types in binary alloys: A reflection of coherent phase stability
Energy Technology Data Exchange (ETDEWEB)
W. Wolverton; V. Ozolins; Alex Zunger
1999-11-23
The short-range order (SRO) present in disordered solid solutions is classified according to three characteristic system-dependent energies: (1) formation enthalpies of ordered compounds, (2) enthalpies of mixing of disordered alloys, and (3) the energy of coherent phase separation, (the composition-weighted energy of the constituents each constrained to maintain a common lattice constant along an A/B interface). These energies are all compared against a common reference, the energy of incoherent phase separation (the composition-weighted energy of the constituents each at their own equilibrium volumes). Unlike long-range order (LRO), short-range order is determined by energetic competition between phases at a fixed composition, and hence only coherent phase-separated states are of relevance for SRO. The authors find five distinct SRO types, and show examples of each of these five types, including Cu-Au, Al-Mg, GaP-InP, Ni-Au, and Cu-Ag. The SRO is calculated from first-principles using the mixed-space cluster expansion approach combined with Monte Carlo simulations. Additionally, they examine the effect of inclusion of coherency strain in the calculation of SRO, and specifically examine the appropriate functional form for accurate SRO calculations.
Getzlaff, Mathias
2010-01-01
This volume reviews on selected aspects related to surface magnetism, a field of extraordinary interest during the last decade. The special emphasis is set to the correlation of structural, electronic and magnetic properties in rare earth metal systems and ferromagnetic transition metals. This is made possible by the combination of electron emission techniques (spin polarized photoelectron spectroscopy, magnetic dichroism in photoemission and spin polarized metastable deexcitation spectroscopy) and local probes with high lateral resolution down to the atomic scale (spin polarized scanning tunneling microscopy / spectroscopy).
Dynamics of Coulomb correlations in semiconductors in high magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Fromer, Neil Alan [Univ. of California, Berkeley, CA (United States)
2002-01-01
Current theories have been successful in explaining many nonlinear optical experiments in undoped semiconductors. However, these theories require a ground state which is assumed to be uncorrelated. Strongly correlated systems of current interest, such as a two dimensional electron gas in a high magnetic field, cannot be explained in this manner because the correlations in the ground state and the low energy collective excitations cause a breakdown of the conventional techniques. We perform ultrafast time-resolved four-wave mixing on $n$-modulation doped quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic field, when only a single Landau level is excited and also when two levels are excited together. We find evidence for memory effects and as strong coupling between the Landau levels induced by the electron gas. We compare our results with simulations based on a new microscopic approach capable of treating the collective effects and correlations of the doped electrons, and find a good qualitative agreement. By looking at the individual contributions to the model, we determine that the unusual correlation effects seen in the experiments are caused by the scattering of photo-excited electron-hole pairs with the electron gas, leading to new excited states which are not present in undoped semiconductors, and also by exciton-exciton interactions mediated by the long-lived collective excitations of the electron gas, inter-Landau level magnetoplasmons.
Dynamics of Coulomb correlations in semiconductors in high magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Fromer, Neil Alan
2002-05-01
Current theories have been successful in explaining many nonlinear optical experiments in undoped semiconductors. However, these theories require a ground state which is assumed to be uncorrelated. Strongly correlated systems of current interest, such as a two dimensional electron gas in a high magnetic field, cannot be explained in this manner because the correlations in the ground state and the low energy collective excitations cause a breakdown of the conventional techniques. We perform ultrafast time-resolved four-wave mixing on $n$-modulation doped quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic field, when only a single Landau level is excited and also when two levels are excited together. We find evidence for memory effects and as strong coupling between the Landau levels induced by the electron gas. We compare our results with simulations based on a new microscopic approach capable of treating the collective effects and correlations of the doped electrons, and find a good qualitative agreement. By looking at the individual contributions to the model, we determine that the unusual correlation effects seen in the experiments are caused by the scattering of photo-excited electron-hole pairs with the electron gas, leading to new excited states which are not present in undoped semiconductors, and also by exciton-exciton interactions mediated by the long-lived collective excitations of the electron gas, inter-Landau level magnetoplasmons.
Directory of Open Access Journals (Sweden)
Sengupta Dhriti
2012-06-01
Full Text Available Abstract Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC of long (LRN-, short (SRN- and all-range (ARN networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at
79 GHz UWB automotive short range radar - Spectrum allocation and technology trends
Bloecher, H.-L.; Sailer, A.; Rollmann, G.; Dickmann, J.
2009-05-01
Automotive UWB (Ultra-Wideband) short range radar (SSR) is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.
79 GHz UWB automotive short range radar – Spectrum allocation and technology trends
Directory of Open Access Journals (Sweden)
H.-L. Bloecher
2009-05-01
Full Text Available Automotive UWB (Ultra-Wideband short range radar (SSR is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.
Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation
Altaf, Muhammad
2013-08-01
This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.
Control of Adult Neurogenesis by Short-Range Morphogenic-Signaling Molecules.
Choe, Youngshik; Pleasure, Samuel J; Mira, Helena
2015-12-04
Adult neurogenesis is dynamically regulated by a tangled web of local signals emanating from the neural stem cell (NSC) microenvironment. Both soluble and membrane-bound niche factors have been identified as determinants of adult neurogenesis, including morphogens. Here, we review our current understanding of the role and mechanisms of short-range morphogen ligands from the Wnt, Notch, Sonic hedgehog, and bone morphogenetic protein (BMP) families in the regulation of adult neurogenesis. These morphogens are ideally suited to fine-tune stem-cell behavior, progenitor expansion, and differentiation, thereby influencing all stages of the neurogenesis process. We discuss cross talk between their signaling pathways and highlight findings of embryonic development that provide a relevant context for understanding neurogenesis in the adult brain. We also review emerging examples showing that the web of morphogens is in fact tightly linked to the regulation of neurogenesis by diverse physiologic processes.
Cellular Controlled Short-Range Communication for Cooperative P2P Networking
DEFF Research Database (Denmark)
Fitzek, Frank H. P.; Katz, Marcos; Zhang, Qi
2009-01-01
This article advocates a novel communication architecture and associated collaborative framework for future wireless communication systems. In contrast to the dominating cellular architecture and the upcoming peer-to-peer architecture, the new approach envisions a cellular controlled short......-range communication network among cooperating mobile and wireless devices. The role of the mobile device will change, from being an agnostic entity in respect to the surrounding world to a cognitive device. This cognitive device is capable of being aware of the neighboring devices as well as on the possibility...... to establish cooperation with them. The novel architecture together with several possible cooperative strategies will bring clear benefits for the network and service providers, mobile device manufacturers and also end users....
LGBT Students’ Short Range Narratives and Gender Performance in the EFL Classroom
Directory of Open Access Journals (Sweden)
Francisco Rondón Cardenas
2012-06-01
Full Text Available By means of the analysis of six short range narratives, utilizing as a methodology (Feminist Post –Structuralist Discourse Analysis FPDA,this paper unveils some significant moments which evidence the way LGBT EFL students draw on different discourses to adapt, negotiate,resist, emancipate, and reproduce heteronormativity. EFL students Methodological FrameworkConstantly shift positions and perform their gender assuming simultaneously powerful and powerless stances in the EFL classroom.The study categorizes the emancipatory discourse as a way to resist, the discourse of vulnerability as a way to reproduce and cope withmarginalization, and the homophobic discourse as a way to position LGBT individuals as abnormal. Finally, the article will reflect on themoments LGBT student mitigate their oral skills and constrain their participation in class, due to the fact that they are frequently evaluatingtheir comments to avoid accidental disclosure of their sexual identity.
Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal.
Sheng, Yan; Saltiel, Solomon M; Koynov, Kaloian
2009-03-01
Collinear third-harmonic generation at 526.7 nm was realized by the simultaneous phase matching of two second-order processes in a single quadratic crystal: second-harmonic generation (SHG) and sum-frequency mixing (SFM). The measured conversion efficiency was 12%. As a nonlinear medium a LiNbO(3) nonlinear photonic crystal with short-range order was used that allowed simultaneous phase matching by use of discrete reciprocal vector (for the SHG process) and continuous reciprocal vectors (for the SFM process). It was demonstrated that the third harmonic could be generated efficiently in such a crystal even if the intermediate process of SHG was not perfectly phase matched.
Three-body problem with short-range forces: Renormalized equations and regulator-independent results
Afnan, I. R.; Phillips, Daniel R.
2004-03-01
We discuss effective field theory treatments of the problem of three particles interacting via short-range forces. One case of such a system is neutron-deuteron (nd) scattering at low energies. We demonstrate that in attractive channels the renormalization-group evolution of the 1+2 scattering amplitude may be complicated by the presence of eigenvalues greater than unity in the kernel. We also show that these eigenvalues can be removed from the kernel by one subtraction, resulting in an equation which is renormalization-group invariant. A unique solution for 1+2 scattering phase shifts is then obtained. We give an explicit demonstration of our procedure for both the case of three spinless bosons and the case of the doublet channel in nd scattering. After the contribution of the two-body effective range is included in the effective field theory, it gives a good description of the nd doublet phase shifts below deuteron breakup threshold.
Utilizing Context in Location-Aware Short-Range Wireless Communication
Directory of Open Access Journals (Sweden)
Vesa A. Korhonen
2010-01-01
Full Text Available We discuss how a short-range wireless communication service implemented for modern mobile communication devices can provide additional value for both the consumer and the service/product provider. When used as an information search tool, such systems allow services and products being promoted at the location they are available. For the customer, it may provide a “digitally augmented vision”, an enhanced view to the current environment. With data filtering and search rules, this may provide a self-manageable context, where the user's own personal environment and preferences to the features available in the current surroundings cooperate with a direct connection to the web-based social media. A preliminary design for such service is provided. The conclusion is that the method can generate additional revenue to the company and please the customers' buying process. In addition to the marketing, the principles described here are also applicable to other forms of human interaction.
Deng, Hui; Tao, Xiaoming; Ge, Ning; Lu, Jianhua
This letter studies cellular controlled short-range communication in OFDMA networks. The network needs to decide when to allow direct communication between a closely located device-to-device (D2D) pair instead of conveying data from one device to the other via the base station and when not to, in addition to subchannel and power allocation. Our goal is to maximize the total network throughput while guaranteeing the rate requirements of all users. For that purpose, we formulate an optimization problem subject to subchannel and power constraints. A scheme which combines a joint mode selection and subchannel allocation algorithm based on equal power allocation with a power reallocation scheme is proposed. Simulation results show that our proposed scheme can improve the network throughput and outage probability compared with other schemes.
An Empirical Path-Loss Model for Wireless Channels in Indoor Short-Range Office Environment
Directory of Open Access Journals (Sweden)
Ye Wang
2012-01-01
Full Text Available A novel empirical path-loss model for wireless indoor short-range office environment at 4.3–7.3 GHz band is presented. The model is developed based on the experimental datum sampled in 30 office rooms in both line of sight (LOS and non-LOS (NLOS scenarios. The model is characterized as the path loss to distance with a Gaussian random variable X due to the shadow fading by using linear regression. The path-loss exponent n is fitted by the frequency using power function and modeled as a frequency-dependent Gaussian variable as the standard deviation σ of X. The presented works should be available for the research of wireless channel characteristics under universal indoor short-distance environments in the Internet of Things (IOT.
Energy Technology Data Exchange (ETDEWEB)
Kim, SungSoo; Kang, Suk Hoon; Kim, Young Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-03-15
The short range ordering (SRO) reaction is investigated in 316L stainless steel through differential scanning calorimeter (DSC) using thermo-mechanically treated specimens. It is interpreted that the exothermic reaction and the endothermic reaction during DSC analysis are due to the ordering and disordering, respectively. The activation energy for the exothermic reaction is determined to be 234 kJ/mol. This suggests that the exothermic reaction is governed by substitutional diffusion. It supports that the nature of the exothermic reaction is the SRO reaction. The cold work affects the kinetics of SRO significantly and shifts the SRO region from 500-570 ℃ to 200-600 ℃. The exothermic energy due to the SRO reaction increases with the amount of cold work. The fact that the SRO is an unavoidable reaction below 570 ℃ is very important.
Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy
Zhang, F. X.; Zhao, Shijun; Jin, Ke; Xue, H.; Velisa, G.; Bei, H.; Huang, R.; Ko, J. Y. P.; Pagan, D. C.; Neuefeind, J. C.; Weber, W. J.; Zhang, Yanwen
2017-05-01
Multielement solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the local structural characteristics. The local structure of a NiCoCr solid solution alloy is measured with x-ray or neutron total scattering and extended x-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis does not exhibit an observable structural distortion. However, an EXAFS analysis suggests that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) may make an important contribution to the low values of the electrical and thermal conductivities of the Cr-alloyed solid solutions. In addition, an EXAFS analysis of Ni ion irradiated samples reveals that the degree of SRO in NiCoCr alloys is enhanced after irradiation.
Homodyne detection of short-range Doppler radar using a forced oscillator model
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-01-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000
Efficient Parallelization of Short-Range Molecular Dynamics Simulations on Many-Core Systems
Meyer, R
2013-01-01
This article describes an algorithm for the parallelization of molecular-dynamics simulations with short-range forces on many-core systems with shared-memory. The algorithm is designed to achieve high parallel speedups for strongly inhomogeneous systems like nanodevices or nanostructured materials. In the proposed scheme the calculation of the forces and the generation of neighbor lists is divided into small tasks. The tasks are then executed by a thread pool according to a dependent task schedule. This schedule is constructed in such a way that a particle is never accessed by two threads at the same time. Results from benchmark simulations show that the described algorithm achieves excellent parallel speedups above 80 % per processor core for different kinds of systems and all numbers of cores. For inhomogeneous systems the speedups are strongly superior to those obtained with spatial decomposition.
A discrete dynamical system for the short-range optimization strategy at collective Parrondo games
Ethier, S N
2010-01-01
We consider a collective version of Parrondo's games with probabilities parametrized by rho in (0,1) in which a fraction phi in (0,1] of an infinite number of players collectively choose and individually play at each turn the game that yields the maximum average profit at that turn. Din\\'is and Parrondo (2003) and Van den Broeck and Cleuren (2004) studied the asymptotic behavior of this short-range optimization strategy, which corresponds to a piecewise-linear discrete dynamical system in a subset of the plane, for rho=1/3 and three choices of phi. We study its asymptotic behavior for all (rho,phi) in (0,1)x(0,1], finding that there is a globally asymptotically stable equilibrium if phi2/3 ("typically" because there are rare cases with two limit cycles). Results for phi>2/3 are partly conjectural.
OTDM Networking for Short Range High-Capacity Highly Dynamic Networks
DEFF Research Database (Denmark)
Medhin, Ashenafi Kiros
This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra......-fast optical packet switching, with the constraint that there must be potential energy savings, which is also evaluated. A survey of the current trends in data centers is given and state-of-the-art research approaches are mentioned. Optical time-division multiplexing is proposed and demonstrated to generate...
CRLB analysis of wireless cognitive location with different short-range measurements
Institute of Scientific and Technical Information of China (English)
CUI Qi-mei; LIU Jun; TAO Xiao-feng; ZHANG Ping
2008-01-01
Because of the wide application and great market potential of location-aware services, the research of wireless location techniques for the fourth generation (4G) mobile communications is being paid more attention. Wireless cognitive location (WCL) techniques for next generation wireless networks have been proposed in recent years. This article investigates the changes of the positioning accuracy of WCL algorithm when different methods are adopted to measure the short-range (SR) information. By first completing Cramér-Rao lower bound (CRLB) analysis of the WCL algorithm with SR measurements based on time of arrival (TOA) and received signal strength (RSS), it is discovered that TOA-based or time difference of arrival (TDOA) -based SR measurement can make WCL algorithms achieve higher accuracy than RSS mode, which is also verified by numerical simulation in the article. The conclusions can instruct the design of novel WCL-based location algorithms.
Latini; Satta; Guidoni; Piccirillo; Speranza
2000-03-17
One- and two-color, mass-selected R2PI spectra of the S13-pentanol, were recorded after a supersonic molecular beam expansion. Spectral analysis, coupled with theoretical calculations, indicate that several hydrogen-bonded [R.solv] conformers are present in the beam. The R2PI excitation spectra of [R.solv] are characterized by significant shifts of their band origin relative to that of bare R. The extent and direction of these spectral shifts depend on the structure and configuration of solv and are attributed to different short-range interactions in the ground and excited [R.solv] complexes. Measurement of the binding energies of [R.solv] in their neutral and ionic states points to a subtle balance between attractive (electrostatic and dispersive) and repulsive (steric) forces, which control the spectral features of the complexes and allow enantiomeric discrimination of chiral solv molecules.
KKR-DCA Thermodynamics for Cluster Short-Range Order with Full Charge Self-Consistency
Biava, Dominic A.; Johnson, Duane D.
The Dynamical Cluster Approximation (DCA) implemented in the Korringa-Kohn-Rostoker (KKR) electronic-structure method gives a systematically exact, course-grained theory of the electronic states of substitutionally disordered alloys, including the effects of chemical short-ranged order (SRO). We implement the KKR-DCA within density functional theory (DFT) to calculate directly the charge self-consistent electronic contributions to the alloy grand potential. The KKR-DCA is combined with the chemical entropy from the Cluster Variation Method (CVM), which when minimized predicts the SRO directly. The calculated SRO has been tested in several metallic systems with agreement to measured values. For very large clusters, the KKR-DCA can be sampled, as done within Quantum Monte Carlo, and provides the charge self-consistent thermodynamic grand potential in complex alloys with SRO at finite temperature, at the same level as done for perfect ordered alloys in other electronic-structure methods at zero Kelvin.
Skuza, J. R.; Clavero, C.; Yang, K.; Wincheski, B.; Lukaszew, R. A.
2009-01-01
L1(sub 0)-ordered FePd epitaxial thin films were prepared using dc magnetron sputter deposition on MgO (001) substrates. The films were grown with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy.
DEFF Research Database (Denmark)
Fromager, Emmanuel; Réal, Florent; Wåhlin, Pernilla
2009-01-01
-range density-functional theory (MC-srDFT) methods. For general modeling with MC-srDFT methods, it is clearly desirable that the same universal value of mu can be used for any molecule. Their calculations on neutral light element compounds all yielded μ(opt)=0.4 a.u. In this work the authors investigate......+ where static correlation is significant; bending is preferred at the MC-srDFT (μ=0.3 a.u.) level, whereas the molecule is known to be linear. This clearly shows the need for better short-range functionals, especially for the description of the short-range exchange. It also suggests that the bending...
Probing short-range nucleon-nucleon interactions with an electron-ion collider
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-01
We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of "pointlike" and "geometric" Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J /ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN˜12 GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such "knockout" exclusive reactions in light and heavy nuclei.
Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games
Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon
2016-04-01
The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.
Stebbins, Jonathan F; McCarty, Ryan J; Palke, Aaron C
2017-03-01
Most applications of high-resolution NMR to questions of short-range order/disorder in inorganic materials have been made in systems where ions with unpaired electron spins are of negligible concentration, with structural information extracted primarily from chemical shifts, quadrupolar coupling parameters, and nuclear dipolar couplings. In some cases, however, the often-large additional resonance shifts caused by interactions between unpaired electron and nuclear spins can provide unique new structural information in materials with contents of paramagnetic cations ranging from hundreds of ppm to several per cent and even higher. In this brief review we focus on recent work on silicate, phosphate, and oxide materials with relatively low concentrations of paramagnetic ions, where spectral resolution can remain high enough to distinguish interactions between NMR-observed nuclides and one or more magnetic neighbors in different bonding configurations in the first, second, and even farther cation shells. We illustrate the types of information available, some of the limitations of this approach, and the great prospects for future experimental and theoretical work in this field. We give examples for the effects of paramagnetic transition metal, lanthanide, and actinide cation substitutions in simple oxides, pyrochlore, zircon, monazite, olivine, garnet, pyrochlores, and olivine structures.
Energy spectrum for a strongly correlated network and local magnetism
Institute of Scientific and Technical Information of China (English)
Li-li LIU; Qiao BI
2009-01-01
In this work, we consider a quantum strongly correlated network described by an Anderson s-d mixing model. By introducing the Green function on the projected formalism of the Schrieffer and Wolf transformation, the energy spectrum of the system can be obtained. Using this result we calculate the survivability distribution of the network and discuss the local magnetism in the network, which shows that the survivability is an important statistical characteristic quantity not just to reflect the network topological property but also dynamics.
Short-range Ferromagnetism in Alloy Ribbons of Fe-Cr-Si-Nb-(Ag, Cu)
DEFF Research Database (Denmark)
Thanh, P. Q.; Hoa, N. Q.; Chau, N.
2014-01-01
We have studied the magnetic properties of two amorphous alloy ribbons Fe72Cr6Si4Nb5B12Ag1 (FCSNB-Ag) and Fe72Cr6Si4Nb5B12Cu1 (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic...
Middle cerebellar peduncles:Magnetic resonance imaging and pathophysiologic correlate
Institute of Scientific and Technical Information of China (English)
Humberto Morales; Thomas Tomsick
2015-01-01
We describe common and less common diseases that can cause magnetic resonance signal abnormalities of middle cerebellar peduncles(MCP), offering a systematicapproach correlating imaging findings with clinical clues and pathologic mechanisms. Myelin abnormalities, different types of edema or neurodegenerative processes, can cause areas of abnormal T2 signal, variable enhancement, and patterns of diffusivity of MCP. Pathologies such as demyelinating disorders or certain neurodegenerative entities(e.g., multiple system atrophy or fragile X-associated tremor-ataxia syndrome) appear to have predilection for MCP. Careful evaluation of concomitant imaging findings in the brain or brainstem; and focused correlation with key clinical findings such as immunosuppression for progressive multifocal leukoencephalopahty; hypertension, post-transplant status or high dose chemotherapy for posterior reversible encephalopathy; electrolyte disorders for myelinolysis or suspected toxic-drug related encephalopathy; would yield an appropriate and accurate differential diagnosis in the majority of cases.
Meta-heuristic CRPS minimization for the calibration of short-range probabilistic forecasts
Mohammadi, Seyedeh Atefeh; Rahmani, Morteza; Azadi, Majid
2016-08-01
This paper deals with the probabilistic short-range temperature forecasts over synoptic meteorological stations across Iran using non-homogeneous Gaussian regression (NGR). NGR creates a Gaussian forecast probability density function (PDF) from the ensemble output. The mean of the normal predictive PDF is a bias-corrected weighted average of the ensemble members and its variance is a linear function of the raw ensemble variance. The coefficients for the mean and variance are estimated by minimizing the continuous ranked probability score (CRPS) during a training period. CRPS is a scoring rule for distributional forecasts. In the paper of Gneiting et al. (Mon Weather Rev 133:1098-1118, 2005), Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used to minimize the CRPS. Since BFGS is a conventional optimization method with its own limitations, we suggest using the particle swarm optimization (PSO), a robust meta-heuristic method, to minimize the CRPS. The ensemble prediction system used in this study consists of nine different configurations of the weather research and forecasting model for 48-h forecasts of temperature during autumn and winter 2011 and 2012. The probabilistic forecasts were evaluated using several common verification scores including Brier score, attribute diagram and rank histogram. Results show that both BFGS and PSO find the optimal solution and show the same evaluation scores, but PSO can do this with a feasible random first guess and much less computational complexity.
Short Range Photoassociation of Rb2 by a high power fiber laser
Passagem, Henry; Rodriguez, Ricardo; Ventura, Paulo; Bouloufa, Nadia; Dulieu, Olivier; Marcassa, Luis
2016-05-01
Photoassociation has been studied using cold trapped atomic samples for the last 20 years. Due to poor Franck-Condon overlap, a free-to-bound transition followed by spontaneous decay results in a small production of electronic ground state molecules. If the photoassociation is done at short range, deeply bound ground state molecules can be formed. Optical pumping schemes can be used to populate a single state. In our experiment, we have performed trap loss spectroscopy on trapped 85 Rb atoms in a MOT using a high power fiber laser. Our single mode fiber laser (linewidth < 1 MHz) produces about 50 W, which can be tuned in the 1060-1070 nm range. Two vibrational bound states of the 0u+ potential were observed (ν = 137 and 138). The frequency positions as well as the rotational constants of these states are in good agreement with theoretical predictions. We have also measured the lifetime of a crossed optical dipole trap using such fiber laser. The lifetime on resonance is shorter than off resonance as expected. A simple theoretical model indicates that the molecules decay to deeply bound vibrational levels in the ground state. This work was supported by Fapesp and INCT-IQ.
A Novel Short-Range Prediction Model for Railway Track Irregularity
Directory of Open Access Journals (Sweden)
Peng Xu
2012-01-01
Full Text Available In recent years, with axle loads, train loads, transport volume, and travel speed constantly increasing and railway network steadily lengthening, shortcomings of current maintenance strategies are getting to be noticed from an economical and safety perspective. To overcome the shortcomings, permanent-of-way departments throughout the world have given a considerable attention to an ideal maintenance strategy which is to carry out appropriate maintenances just in time on track locations really requiring maintenance. This strategy is simplified as the condition-based maintenance (CBM which has attracted attentions of engineers of many industries in the recent 70 years. To implement CBM for track irregularity, there are many issues which need to be addressed. One of them focuses on predicting track irregularity of each day in a future short period. In this paper, based on track irregularity evolution characteristics, a Short-Range Prediction Model was developed to this aim and is abbreviated to TI-SRPM. Performance analysis results for TI-SRPM illustrate that track irregularity amplitude predictions on sampling points by TI-SRPM are very close to their measurements by Track Geometry Car.
An Energy-Harvesting Wireless-Interface SoC for Short-Range Data Communication
Mikami, Shinji; Matsuno, Tetsuro; Miyama, Masayuki; Kawaguchi, Hiroshi; Yoshimoto, Masahiko; Ono, Hiroaki
This paper describes design and verification of a wireless-interface SoC (system-on-a-chip) for a wireless battery-less mouse with short-range data-communication capability. The SoC comprises an RF transmitter and microcontroller. The SoC, which is powered by an electric generator that exploits gyration energy by dragging the mouse, was fabricated using a TSMC 0.18-um CMOS process. The features of the SoC are the adoption of a simple FSK modulation scheme, single-end configuration on the RF transmitter, and specific microcontroller design for mouse operation. We verified that the RF transmitter can make data communication within a 1-m range at 2.17 mW, and the microcontroller consumes 0.03 mW at 1 MHz, which exhibits that the total power consumption is 2.2 mW. This is sufficiently low for the SoC to operate with energy harvesting.
Hubert, Mickaël; Hedegård, Erik D; Jensen, Hans Jørgen Aa
2016-05-10
Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become inadequate when the molecule has near-degeneracies and/or low-lying double-excited states. To address these issues we have recently proposed multiconfiguration short-range density-functional theory-MC-srDFT-as a new tool in the toolbox. While initial applications for systems with multireference character and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2, NEVPT2, and the coupled cluster based CC2 and CC3.
Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants
Burgos-Mármol, J. Javier; Solans, Conxita; Patti, Alessandro
2016-06-01
We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2+ CH3SO4-, which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.
Short-range navigation: does it contribute to understanding navigation over longer distances?
Collett
1996-01-01
A major reason for analysing short-range navigation is that it is relatively easy to record on video tape the details of an animal's behaviour over an area of about a square metre. Frequently, the orientation of the animal's body is revealed in addition to its trajectory through space. This is particularly useful in the study of insect navigation, the subject of the four contributions to this section. An insect's eyes are fixed in its head, and there are often no significant head movements during flight. Consequently, reasonable assumptions can be made about where the insect looks while it navigates and how the image of its surroundings moves over its retina. All four contributions depend to a large degree upon being able to freeze behaviour on video tape and to infer what the animal sees. To what extent do the conclusions using the abundant information that can be collected in this way extrapolate to navigation on a larger scale? Clearly, the coded information that instructs the monarch butterfly on its migrations from wide areas of North America to northern Michoacan in Mexico contains elements unique to long-distance travel. But there may be many similarities in the mechanisms available to an orchid bee as it travels over its 20 km foraging route from orchid to orchid and a wasp negotiating the last few metres through a complex environment to reach its nest.
Diagnosis of Short Range Forecast Errors Using Piecewise Inversion of Potential Vorticity
Klinker, E.
Under the assumption of balanced flow dynamics the evolution of atmospheric sy stems such as cyclones are investigated in the single parameter environment of poten- tial vorticity (PV). Based on the property of invertibility, it is then possible to calculate the distribution of the balanced flow from a knowledge o f the 3-dimensional distribu- tion of Ertel's PV. The diagnosis of atmospheric model errors has to take into account the effects of all di- abatic and adiabatic processes. The difficulty of a comprehensive di agnostic approach arises from the fact that different processes produce tenden cies for different model parameters. A diabatic process may produce tendencies for temperature alone (like radiation); other processes may produce tendencie s for momentum, temperature and humidity (like vertical diffusion or cumulus c onvection). However, a one-parameter diagnosis has been achieved by combining temperature and momentum increments to appropriate increments of Ertel's PV. The advantage of using PV in the frame work of quasi-balanced dynamics is that the flow associated with diabatic PV perturbations can be obtained from the p iecewise in- version technique. The method provides a basis to identify atmosphe ric developments that are noticeably influenced by diabatic processes. For the diagnosis of ECMWF short range forecast tendencies and ultimately for an esti mate of model errors, a di- agnostic system has been set up that calculates the flow perturbations associated with all diabatic and adiabatic processes.
A Nonminimal Coupling Model and its Short-Range Solar System Impact
Castel-Branco, Nuno
2014-01-01
The objective of this work is to present the effects of a nonminimally coupled model of gravity on a Solar System short range regime. For this reason, this study is only valid when the cosmological contribution is considered irrelevant. The action functional of the model involves two functions $f^1(R)$ and $f^2(R)$ of the Ricci scalar curvature $R$, where the last one multiplies the matter Lagrangian. Using a Taylor expansion around $R=0$ for both functions $f^1(R)$ and $f^2(R)$, it was found that the metric around a spherical object is a perturbation of the weak-field Schwarzschild metric. The $tt$ component of the metric, a Newtonian plus a Yukawa perturbation term, is constrained using the available observational results. First it is shown that this effect is null when the characteristic mass scales of each function $f^1(R)$ and $f^2(R)$ are identical. Besides, the conclusion is that the nonminimal coupling only affects the Yukawa contribution strength and not its range and that the Starobinsky model for i...
Gazzillo, Domenico; Giacometti, Achille; Fantoni, Riccardo; Sollich, Peter
2006-11-01
We investigate the dependence of the stickiness parameters tij=1/(12tauij)--where the tauij are the conventional Baxter parameters--on the solute diameters sigmai and sigmaj in multicomponent sticky hard sphere (SHS) models for fluid mixtures of mesoscopic neutral particles. A variety of simple but realistic interaction potentials, utilized in the literature to model short-ranged attractions present in real solutions of colloids or reverse micelles, is reviewed. We consider: (i) van der Waals attractions, (ii) hard-sphere-depletion forces, (iii) polymer-coated colloids, and (iv) solvation effects (in particular hydrophobic bonding and attractions between reverse micelles of water-in-oil microemulsions). We map each of these potentials onto an equivalent SHS model by requiring the equality of the second virial coefficients. The main finding is that, for most of the potentials considered, the size-dependence of tij(T,sigmai,sigmaj) can be approximated by essentially the same expression, i.e., a simple polynomial in the variable sigmaisigmaj/sigmaij2, with coefficients depending on the temperature T, or--for depletion interactions--on the packing fraction eta0 of the depletant particles.
Long-ranged contributions to solvation free energies from theory and short-ranged models
Remsing, Richard C.; Liu, Shule; Weeks, John D.
2016-03-01
Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object.
Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar
Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan
2016-09-01
A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.
Moschidis, Georgios
2016-01-01
The wave equation $\\square_{g_{M,a}}\\psi=0$ on subextremal Kerr spacetimes $(\\mathcal{M}_{M,a},g_{M,a})$, $0<|a|
Cluster formation in fluids with competing short-range and long-range interactions
Energy Technology Data Exchange (ETDEWEB)
Sweatman, Martin B., E-mail: martin.sweatman@ed.ac.uk; Fartaria, Rui [Institute of Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom); Lue, Leo [Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)
2014-03-28
We investigate the low density behaviour of fluids that interact through a short-ranged attraction together with a long-ranged repulsion (SALR potential) by developing a molecular thermodynamic model. The SALR potential is a model of effective solute interactions where the solvent degrees of freedom are integrated-out. For this system, we find that clusters form for a range of interaction parameters where attractive and repulsive interactions nearly balance, similar to micelle formation in aqueous surfactant solutions. We focus on systems for which equilibrium behaviour and liquid-like clusters (i.e., droplets) are expected, and find in addition a novel coexistence between a low density cluster phase and a high density cluster phase within a very narrow range of parameters. Moreover, a simple formula for the average cluster size is developed. Based on this formula, we propose a non-classical crystal nucleation pathway whereby macroscopic crystals are formed via crystal nucleation within microscopic precursor droplets. We also perform large-scale Monte Carlo simulations, which demonstrate that the cluster fluid phase is thermodynamically stable for this system.
Cluster formation in fluids with competing short-range and long-range interactions.
Sweatman, Martin B; Fartaria, Rui; Lue, Leo
2014-03-28
We investigate the low density behaviour of fluids that interact through a short-ranged attraction together with a long-ranged repulsion (SALR potential) by developing a molecular thermodynamic model. The SALR potential is a model of effective solute interactions where the solvent degrees of freedom are integrated-out. For this system, we find that clusters form for a range of interaction parameters where attractive and repulsive interactions nearly balance, similar to micelle formation in aqueous surfactant solutions. We focus on systems for which equilibrium behaviour and liquid-like clusters (i.e., droplets) are expected, and find in addition a novel coexistence between a low density cluster phase and a high density cluster phase within a very narrow range of parameters. Moreover, a simple formula for the average cluster size is developed. Based on this formula, we propose a non-classical crystal nucleation pathway whereby macroscopic crystals are formed via crystal nucleation within microscopic precursor droplets. We also perform large-scale Monte Carlo simulations, which demonstrate that the cluster fluid phase is thermodynamically stable for this system.
Evaluation of NCEP TIGGE short-range forecast for Indian summer monsoon intraseasonal oscillation
Tirkey, Snehlata; Mukhopadhyay, P.
2017-08-01
This study focuses on the short-range prediction of Monsoon Intraseasonal Oscillations (MISOs) using the National Centers for Environmental Prediction(NCEP) Ensemble Prediction System (EPS) data from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive. The Indian Summer Monsoon Rainfall (ISMR), which plays an important role in the socio-economic growth of the country, is highly variable and is mostly governed by the MISOs. In addition to this, deterministic forecasts of ISMR are not very reliable. Hence, a probabilistic approach at daily scale is required. Keeping this in mind, the present analysis is done by using daily forecast data for up to 7-day lead time and compared with observations. The analysis shows that the ensemble forecast well captures the variability as compared to observations even up to 7 days. The spatial characteristics and the northward propagation of MISO are observed thoroughly in the EPS. The evolution of dynamical and thermodynamical parameters such as specific humidity, moist static energy, moisture divergence, and vorticity is also captured well but show deviation from the observation from 96 h lead time onwards. The tropospheric temperature forecast captures the observed gradient but with certain bias in magnitude whereas the wind shear is simulated quite well both in pattern and magnitude. These analyses bring out the biases in TIGGE EPS forecast and also point out the possible moist processes which needs to be improved.
Probing short-range nucleon-nucleon interactions with an Electron-Ion Collider
Miller, Gerald A; Venugopalan, Raju
2015-01-01
We derive the cross-section for exclusive vector meson production in high energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross-section can be expressed in terms of a novel gluon Transition Generalized Parton Distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial and final state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: in particular, we discuss the relative role of "point-like" and "geometric" Fock configurations that control the parton dynamics of short range nucleon-nucleon scattering. With the aid of exclusive $J/\\Psi$ production data at HERA, as well as elastic nucleon-nucleon cross-sections, w...
Directory of Open Access Journals (Sweden)
Y. Xuan
2009-03-01
Full Text Available Advances in mesoscale numerical weather predication make it possible to provide rainfall forecasts along with many other data fields at increasingly higher spatial resolutions. It is currently possible to incorporate high-resolution NWPs directly into flood forecasting systems in order to obtain an extended lead time. It is recognised, however, that direct application of rainfall outputs from the NWP model can contribute considerable uncertainty to the final river flow forecasts as the uncertainties inherent in the NWP are propagated into hydrological domains and can also be magnified by the scaling process. As the ensemble weather forecast has become operationally available, it is of particular interest to the hydrologist to investigate both the potential and implication of ensemble rainfall inputs to the hydrological modelling systems in terms of uncertainty propagation. In this paper, we employ a distributed hydrological model to analyse the performance of the ensemble flow forecasts based on the ensemble rainfall inputs from a short-range high-resolution mesoscale weather model. The results show that: (1 The hydrological model driven by QPF can produce forecasts comparable with those from a raingauge-driven one; (2 The ensemble hydrological forecast is able to disseminate abundant information with regard to the nature of the weather system and the confidence of the forecast itself; and (3 the uncertainties as well as systematic biases are sometimes significant and, as such, extra effort needs to be made to improve the quality of such a system.
The Evolutionary Modeling and Short-range Climatic Prediction for Meteorological Element Time Series
Institute of Scientific and Technical Information of China (English)
YU Kangqing; ZHOU Yuehua; YANG Jing'an; KANG Zhuo
2005-01-01
The time series of precipitation in flood season (May-September) at Wuhan Station, which is set as an example of the kind of time series with chaos characters, is split into two parts: One includes macro climatic timescale period waves that are affected by some relatively steady climatic factors such as astronomical factors (sunspot, etc.), some other known and/or unknown factors, and the other includes micro climatic timescale period waves superimposed on the macro one. The evolutionary modeling (EM), which develops from genetic programming (GP), is supposed to be adept at simulating the former part because it creates the nonlinear ordinary differential equation (NODE) based upon the data series. The natural fractals (NF)are used to simulate the latter part. The final prediction is the sum of results from both methods, thus the model can reflect multi-time scale effects of forcing factors in the climate system. The results of this example for 2002 and 2003 are satisfactory for climatic prediction operation. The NODE can suggest that the data vary with time, which is beneficial to think over short-range climatic analysis and prediction. Comparison in principle between evolutionary modeling and linear modeling indicates that the evolutionary one is a better way to simulate the complex time series with nonlinear characteristics.
Energy Technology Data Exchange (ETDEWEB)
Suber, L., E-mail: lorenza.suber@ism.cnr.it [ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Marchegiani, G. [ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Olivetti, E.S.; Celegato, F.; Coïsson, M.; Tiberto, P. [INRIM, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy); Allia, P. [DISAT Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Barrera, G. [Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy); Pilloni, L. [UTTMAT-CHI, Via Anguillarese 10, 00123 S. Maria di Galeria, Roma (Italy); Barba, L. [IC-CNR, Area Science Park, SS 14 Km 163.5 Basovizza, 34149 Trieste (Italy); Padella, F. [UTTMAT-CHI, Via Anguillarese 10, 00123 S. Maria di Galeria, Roma (Italy); Cossari, P. [IGAG-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM (Italy); Chiolerio, A. [Istituto Italiano di Tecnologia, Center for Space Human Robotics, Corso Trento 21, 10129 Torino (Italy)
2014-03-01
FePt nanoparticles, containing a near-equal atomic percentage of Fe and Pt, with a face centered tetragonal structure (fct), are challenging for potential applications in high performance permanent magnets and high density data storage. In this study, we report on the chemical synthesis, carried out both solvothermally and hydrothermally in autoclave reacting iron (III) acetylacetonate and platinum (II) acetylacetonate with tri- or tetra-ethylene glycol, these employed as solvents, reducers and particle surface protecting agents as well. In both methods, a subsequent thermal treatment at high temperatures is necessary to transform the magnetic soft face centered cubic (fcc) phase to the hard fct one. Organic low-weight molecules, generally used to protect the nanoparticle surface and avoid particle aggregation, are decomposed by the thermal treatment resulting in particle aggregation and coalescence phenomena; on the contrary, in this case, a polymer matrix is formed as particle protecting agent and, by thermally treating the hydrothermally prepared nanoparticles up to 750 °C for 1 h, the pure magnetic hard fct phase is obtained while preserving the nanostructure. A detailed study is carried out on FePt nanoparticle structure (fcc and fct phases) and correlated to the magnetic properties of the system. - Highlights: • fct FePt nanoparticles for hard magnetic nanotechnology applications. • Influence of synthesis parameters on the precursor fcc FePt nanoparticle structure. • Easy hydrothermal method for preparing pure fct FePt nanoparticles. • Monitoring the role of temperature and time on the FePt fcc–fct phase transformation. • Correlation between FePt nanoparticle structural and magnetic properties.
Atomic and magnetic correlations in a copper - 5% manganese alloy
Energy Technology Data Exchange (ETDEWEB)
Murani, A.P.; Schaerpf, O.; Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Raphel, R. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)
1997-04-01
Interest in magnetism of Cu-Mn alloys has been revived and sustained by a number of very interesting neutron investigations on single-crystal samples which show `spin-density wave` (SDW) peaks at incommensurate wave-vectors. Recently such peaks have been observed even in very dilute samples with Mn concentration as low as {approx} 0.5 at.%. The proposed interpretation by the authors that these peaks represent incommensurate antiferromagnetic ordering, therefore, questions the widely-held view that at low enough temperatures the solute spins in this and similar alloys freeze with random or quasi-random orientations, forming a spin-glass state. Atomic and magnetic correlations have been investigated in a single crystal of Cu-5 at.% Mn within the first Brillouin zone using polarised neutrons and making use of the multi-angle three-dimensional polarisation analysis capability of the D7 spectrometer as a firs step in our aim to shed further light on the phenomenon. (author). 6 refs.
Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization
Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.
2015-12-01
Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.
Implementation of Polar WRF for short range prediction of weather over Maitri region in Antarctica
Indian Academy of Sciences (India)
Anupam Kumar; S K Roy Bhowmik; Ananda K Das
2012-10-01
India Meteorological Department has implemented Polar WRF model for the Maitri (lat. 70° 45′S, long. 11° 44′E) region at the horizontal resolution of 15 km using initial and boundary conditions of the Global Forecast System (GFS T-382) operational at the India Meteorological Department (IMD). Main objective of this paper is to examine the performance skill of the model in the short-range time scale over the Maitri region. An inter-comparison of the time series of daily mean sea level pressure and surface winds of Maitri for the 24 hours and 48 hours forecast against the corresponding observed fields has been made using 90 days data for the period from 1 December 2010 to 28 February 2011. The result reveals that the performance of the Polar WRF is reasonable, good and superior to that of IMD GFS forecasts. GFS shows an underestimation of mean sea level pressure of the order of 16–17 hPa with root mean square errors (RMSE) of order 21 hPa, whereas Polar WRF shows an overestimation of the order of 3–4 hPa with RMSE of 4 hPa. For the surface wind, GFS shows an overestimation of 1.9 knots at 24 hours forecast and an underestimation of 3.7 knots at 48 hours forecast with RMSE ranging between 8 and 11 knots. Whereas Polar WRF shows underestimation of 1.4 knots and 1.2 knots at 24 hours and 48 hours forecast with RMSE of 5 knots. The results of a case study illustrated in this paper, reveal that the model is capable of capturing synoptic weather features of Antarctic region. The performance of the model is found to be comparable with that of Antarctic Meso-scale Prediction System (AMPS) products.
Short-range effect at the semi-coherent metal/its native oxide interface
Yin, Deqiang; Wu, Mingxia; Cen, Wanglai; Li, Hongping; Yang, Yi; Fang, Hui
2016-08-01
Fundamentally understanding the variations of atomistic and electronic properties at the interface of metal/its native oxide systems plays a critical role in many important technological processes and applications, such as oxidization, corrosion, chemical catalysis, fuel reactions, and thin-film process. Here, we have adopted the representatively semi-coherent Cu2O(111)/Cu(100) interface and demonstrated, by first-principles calculations on energetic and electronic structures of a total 9 candidate interfacial models, that the preferred geometries (i.e., that having the largest adhesion energy) are those possess the shortest interfacial distance between O terminated Cu2O and substrate Cu. Using several analytic methods, we have thoroughly characterized the variation of electronic states from the interface to Cu2O constituent, and determined that the large degree of charge accumulation at the interface is at the expense of depletion of charge in both substrate Cu and neighboring Cu (Cu2O) to the interfacial O atoms. Strikingly, in Cu2O the conducting states appear only in monolayer proximal to Cu2O/Cu interface, as well, the second layer remains in semi-conducting state as its bulk, indicating a short-range effect in electronic properties induced by Cu substrate. The theoretical calculations provide insight into the complex electronic properties of the functional Cu2O/Cu interface, which was quite difficult to observe by experimental methods alone. The unique properties are of practical importance for further understanding and improvement of such a promising class of metal/native oxide interface at the atomic scale.
Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates
Hiramatsu, Chihiro; Melin, Amanda D.; Aureli, Filippo; Schaffner, Colleen M.; Vorobyev, Misha; Matsumoto, Yoshifumi; Kawamura, Shoji
2008-01-01
Trichromatic primates have a ‘red-green’ chromatic channel in addition to luminance and ‘blue-yellow’ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations. PMID:18836576
Correlation Between Domain Behavior and Magnetic Properties of Materials
Energy Technology Data Exchange (ETDEWEB)
Leib, Jeffrey Scott [Iowa State Univ., Ames, IA (United States)
2003-01-01
Correlation between length scales in the field of magnetism has long been a topic of intensive study. The long-term desire is simple: to determine one theory that completely describes the magnetic behavior of matter from an individual atomic particle all the way up to large masses of material. One key piece to this puzzle is connecting the behavior of a material's domains on the nanometer scale with the magnetic properties of an entire large sample or device on the centimeter scale. In the first case study involving the FeSiAl thin films, contrast and spacing of domain patterns are clearly related to microstructure and stress. Case study 2 most clearly demonstrates localized, incoherent domain wall motion switching with field applied along an easy axis for a square hysteresis loop. In case study 3, axis-specific images of the complex Gd-Si-Ge material clearly show the influence of uniaxial anisotropy. Case study 4, the only study with the sole intent of creating domain structures for imaging, also demonstrated in fairly simple terms the effects of increasing stress on domain patterns. In case study 5, it was proven that the width of magnetoresistance loops could be quantitatively predicted using only MFM. When all of the case studies are considered together, a dominating factor seems to be that of anisotropy, both magneticrostaylline and stress induced. Any quantitative bulk measurements heavily reliant on K coefficients, such as the saturation fields for the FeSiAl films, H_{c} in cases 1, 3, and 5, and the uniaxial character of the Gd_{5}(Si_{2}Ge_{2}), transferred to and from the domain scale quite well. In-situ measurements of domain rotation and switching, could also be strongly correlated with bulk magnetic properties, including coercivity, M_{s}, and hysteresis loop shape. In most cases, the qualitative nature of the domain structures, when properly considered, matched quite well to what might have been expected
Correlation Between Domain Behavior and Magnetic Properties of Materials
Energy Technology Data Exchange (ETDEWEB)
Jeffrey Scott Leib
2003-05-31
Correlation between length scales in the field of magnetism has long been a topic of intensive study. The long-term desire is simple: to determine one theory that completely describes the magnetic behavior of matter from an individual atomic particle all the way up to large masses of material. One key piece to this puzzle is connecting the behavior of a material's domains on the nanometer scale with the magnetic properties of an entire large sample or device on the centimeter scale. In the first case study involving the FeSiAl thin films, contrast and spacing of domain patterns are clearly related to microstructure and stress. Case study 2 most clearly demonstrates localized, incoherent domain wall motion switching with field applied along an easy axis for a square hysteresis loop. In case study 3, axis-specific images of the complex Gd-Si-Ge material clearly show the influence of uniaxial anisotropy. Case study 4, the only study with the sole intent of creating domain structures for imaging, also demonstrated in fairly simple terms the effects of increasing stress on domain patterns. In case study 5, it was proven that the width of magnetoresistance loops could be quantitatively predicted using only MFM. When all of the case studies are considered together, a dominating factor seems to be that of anisotropy, both magneticrostaylline and stress induced. Any quantitative bulk measurements heavily reliant on K coefficients, such as the saturation fields for the FeSiAl films, H{sub c} in cases 1, 3, and 5, and the uniaxial character of the Gd{sub 5}(Si{sub 2}Ge{sub 2}), transferred to and from the domain scale quite well. In-situ measurements of domain rotation and switching, could also be strongly correlated with bulk magnetic properties, including coercivity, M{sub s}, and hysteresis loop shape. In most cases, the qualitative nature of the domain structures, when properly considered, matched quite well to what might have been expected from theory and
Correlations in rare-earth transition-metal permanent magnets
Energy Technology Data Exchange (ETDEWEB)
Skomski, R., E-mail: rskomski@neb.rr.com; Manchanda, P. [Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, Nebraska 68508 (United States); Kashyap, A. [School of Basic Science, IIT Mandi, Mandi, Himachal Pradesh (India)
2015-05-07
It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo{sub 5}. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.
UHECR correlations taking account of composition and Galactic magnetic deflections
Roberts, J
2013-01-01
We predict the arrival direction distribution of cosmic rays including their deflection in the Galactic magnetic field, for several combinations of source and composition hypotheses: the sources are hard X-ray AGNs or uniformly sample the matter distribution of galaxies, and the composition at the source is pure proton or is the Galactic cosmic ray composition measured by CREAM. We use the regular component of the Jansson-Farrar 2012 model for the GMF and allow for rigidities as low as 2 EeV. We report the correlations of published UHECRs, rescaling event energies so as to reconcile the spectra of the different experiments and taking the overall energy uncertainty into account; different composition hypotheses are considered. This work demonstrates the feasibility of calculating GMF deflections to low enough rigidities to allow for heavy composition in correlation studies, and that non-trivial arrival direction structure should be expected even for mixed or heavy composition, as long as UHECRs come from the l...
Atlantoaxial subluxation. Radiography and magnetic resonance imaging correlated to myelopathy
Energy Technology Data Exchange (ETDEWEB)
Yamashita, Y.; Takahashi, M.; Sakamoto, Y.; Kojima, R.
Twenty-nine patients with atlantoaxial subluxation (18 with rheumatoid arthritis, 2 due to trauma, 4 with os odontoideum, and one each with polyarteritis nodosa, rheumatic fever, Klippel-Feil syndrome, achondroplasia, and cause unknown) were evaluated using a 0.22 tesla resistive MRI unit. Cord compression was classified into four grades according to the degree on magnetic resonance imaging. There were 7 patients with no thecal sac compression (grade 0), 10 with a minimal degree of subarachnoid space compression without cord compression (grade 1), 7 with mild cord compression (grade 2), and 5 with severe cord compression or cord atrophy (grade 3). Although the severity of myelopathy showed poor correlation with the atlantodental interval on conventional radiography, high correlation was observed between MR grading and the degree of myelopathy. The high signal intensity foci were observed in 7 or 12 patients with cord compression (grades 2 and 3) on T2 weighted images. Other frequently observed findings in rheumatoid arthritis included soft tissue masses of low to intermediate signal intensity in the paraodontoid space, erosions of the odontoid processes, and atlanto-axial impaction on T1 and T2 weighted images.
Experimental nowcasting and short-range forecasting of severe storms at the ESSL Testbed
Groenemeijer, Pieter; Holzer, Alois M.; Pistotnik, Georg; Riemann-Campe, Kathrin
2013-04-01
From 4 June to 6 July 2012, the first ESSL Testbed has taken place at the Research and Training Centre of the European Severe Storms Laboratory in Wiener Neustadt, Austria. During this time, researchers and forecasters worked closely together putting new forecast supporting products to the test. The Testbed's main activity is to prepare experimental forecasts for severe weather, of which short-range forecasts and nowcasts for the following 2 hours form an important part. These nowcasts are made using new tools based on NWP, radar and satellite, as well as surface and upper-air observations. Subsequently, a verification of the forecasts is performed using the European Severe Weather Database, followed by an evaluation of forecasting tools and techniques. Inspired by the annual Spring Program at NOAA's Hazardous Weather Testbed (HWT), the ESSL Testbed has a stronger focus on forecaster training than the HWT. Given the various backgrounds of the participants, an important Testbed goal is to acquaint its participants with severe weather forecasting methods and techniques that work universally. Among the tools that were evaluated at the 2012 Testbed were visualizations of high-resolution ensemble NWP (DWD's COSMO-DE-EPS), satellite-based cloud top cooling and overshooting top detection algorithms, lightning detection, and satellite and radar-based cell-tracking algorithms (DLR's Cb-TRAM and RadTRAM, and DWD's NowcastMix). In daily "Expert Lectures", that were broadcast online to remote participants, researchers provided background information on their products and internationally renowned experts in forecasting presented their viewpoints on storm forecasting and its scientific roots. Organized by ESSL in close cooperation with the Austrian Central Institute for Meteorology and Geodynamics (ZAMG), the Testbed was supported - among others - by the German Weather Service (DWD), EUMETSAT, WMO, ECMWF, VAISALA, and the GOES-R programme, providing products for evaluation and
A Confidence Index Approach Based on ERA-40 Data for Numerical Short Range Forecasts
Directory of Open Access Journals (Sweden)
Thomas Prenosil
2014-09-01
Full Text Available Critical weather related missions increasingly rely on highly automated numerical products, even if only limited computer capacities are available to generate them. This holds true especially for military tactical decision aids but also for civil requirements from firebrigades, the Red Cross or technical relief organizations. With respect to inherent atmospheric indeterminateness, a systematic quality control of numerical input turns out to become more and more essential for the users. As an economical alternative to the complex and expensive ensemble prediction method, the German Bundeswehr Geoinformation Centre has decided in favour of an analogue approach called similar synoptic situations (3s, which is based on ECMWF's ERA-40 re-analysis archive. Similarity is defined by a special distance measure for synoptic fields. The typical range of interest is 2500km×2500km$2500\\,\\text{km}\\times2500\\,\\text{km}$ in space with approximately one degree of horizontal resolution and up to 36 hours of forecast time. Historical 12, 24 and 36 hours ERA-40 forecast qualities are merged by 3s into a confidence index, indicating current anomalies of numerical quality versus monthly means in special areas of interest. As the results from the ERA-40 archive are used without any statistical adaption, this assessment is exclusively valid for trouble-free synoptic model runs in the short range. For a better understanding of the estimated anomalies in numerical forecast quality, the involved synoptic conditions are classified by a well established weather type classification. The overall method has been verified from 45 years of ERA-40 data and 10 years of GME forecasts from the Deutscher Wetterdienst. The 3s technique is highly flexible all over the globe with the exception of the tropics, because the present version includes the geostrophic approximation. At present, 3s runs operationally within four geographic areas: (1 Central Europe, (2 Kosovo with
Research of Short-range Missile Motion in Terms of Different Wind Loads
Directory of Open Access Journals (Sweden)
A. N. Klishin
2015-01-01
Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the
Improvement of RAMS precipitation forecast at the short-range through lightning data assimilation
Federico, Stefano; Petracca, Marco; Panegrossi, Giulia; Dietrich, Stefano
2017-01-01
This study shows the application of a total lightning data assimilation technique to the RAMS (Regional Atmospheric Modeling System) forecast. The method, which can be used at high horizontal resolution, helps to initiate convection whenever flashes are observed by adding water vapour to the model grid column. The water vapour is added as a function of the flash rate, local temperature, and graupel mixing ratio. The methodology is set up to improve the short-term (3 h) precipitation forecast and can be used in real-time forecasting applications. However, results are also presented for the daily precipitation for comparison with other studies. The methodology is applied to 20 cases that occurred in fall 2012, which were characterized by widespread convection and lightning activity. For these cases a detailed dataset of hourly precipitation containing thousands of rain gauges over Italy, which is the target area of this study, is available through the HyMeX (HYdrological cycle in the Mediterranean Experiment) initiative. This dataset gives the unique opportunity to verify the precipitation forecast at the short range (3 h) and over a wide area (Italy). Results for the 27 October case study show how the methodology works and its positive impact on the 3 h precipitation forecast. In particular, the model represents better convection over the sea using the lightning data assimilation and, when convection is advected over the land, the precipitation forecast improves over the land. It is also shown that the precise location of convection by lightning data assimilation improves the precipitation forecast at fine scales (meso-β). The application of the methodology to 20 cases gives a statistically robust evaluation of the impact of the total lightning data assimilation on the model performance. Results show an improvement of all statistical scores, with the exception of the bias. The probability of detection (POD) increases by 3-5 % for the 3 h forecast and by more than 5
Thermodynamically self-consistent theories of fluids interacting through short-range forces.
Caccamo, C; Pellicane, G; Costa, D; Pini, D; Stell, G
1999-11-01
either the SCOZA or the MHNC; the GMSA prediction for the freezing line at lambda=7 and 9 is instead able to follow in a qualitative manner the pattern of the solid-vapor coexistence line as determined through computer simulation studies. The necessity of further assessments of the freezing predictions is also discussed. Finally, versions of the GMSA, SCOZA, and HRT that can be expected to be more accurate for interactions with extremely short-ranged attractions are identified.
Fromager, Emmanuel; Réal, Florent; Wâhlin, Pernilla; Wahlgren, Ulf; Jensen, Hans Jørgen Aa.
2009-08-01
In a previous paper [Fromager et al., J. Chem. Phys. 126, 074111 (2007)], some of the authors proposed a recipe for choosing the optimal value of the μ parameter that controls the long-range/short-range separation of the two-electron interaction in hybrid multiconfigurational self-consistent field short-range density-functional theory (MC-srDFT) methods. For general modeling with MC-srDFT methods, it is clearly desirable that the same universal value of μ can be used for any molecule. Their calculations on neutral light element compounds all yielded μopt=0.4 a.u. In this work the authors investigate the universality of this value by considering "extreme" study cases, namely, neutral and charged isoelectronic f0 actinide compounds (ThO2, PaO2+, UO22+, UN2, CUO, and NpO23+). We find for these compounds that μopt=0.3 a.u. but show that 0.4 a.u. is still acceptable. This is a promising result in the investigation of a universal range separation. The accuracy of the currently best MC-srDFT (μ =0.3 a.u.) approach has also been tested for equilibrium geometries. Though it performs as well as wave function theory and DFT for static-correlation-free systems, it fails in describing the neptunyl (VII) ion NpO23+ where static correlation is significant; bending is preferred at the MC-srDFT (μ =0.3 a.u.) level, whereas the molecule is known to be linear. This clearly shows the need for better short-range functionals, especially for the description of the short-range exchange. It also suggests that the bending tendencies observed in DFT for NpO23+ cannot be fully explained by the bad description of static correlation effects by standard functionals. A better description of the exchange seems to be essential too.
Microstrain and short-range ordering of Ca and Mg cations in pyrope-grossular garnet system
DU, W.; Clark, S. M.; Walker, D.
2016-12-01
Synchrotron X-ray diffraction (XRD) was used to measure the unit cell parameters of synthetic pyrope (Mg3Al2Si3O12), grossular (Ca3Al2Si3O12) and four intermediate garnet solid solutions at the Advanced Light Source, Lawrence Berkeley National Laboratory (ALS on beamline 12.2.2 at room temperature and pressure). Analysis of X-ray diffraction profiles by using Williamson-Hall plots shows that XRD peak width getting broadened with diffraction angle and the degree of the XRD peak broadening changes with garnet composition. Microstrain in the garnet structure, rather than grain size variation, is the principal reason for the observed XRD peak broadening. Garnets with compositions Py80Gr20 and Py20Gr80, close to the negligibly strained end members pyrope (Py100) and grossular (Gr100), have large microstrains, which is contrast to garnet with intermediate composition Py40Gr60, which almost has no microstrain. This compositional dependent elastic structural strain shows a complex correlation with other nonideal mixing properties along the pyrope-grossular binary, for example, excess volume, mixing enthalpy, thermal expansion etc. The observation that the two end member garnets carry almost zero microstrain indicates that the microstrain calculated from XRD peak broadening is related to the Mg-Ca substitution. A different degree of short-range ordering of Ca-Mg in dodecahedral site that develops during annealing after MA crystallization may be partly responsible for these nonideal-mixing phenomena along the pyrope-grossular join.
Scaling Properties of the D-Short Range Order in PdDx for Higher D Concentrations
DEFF Research Database (Denmark)
Krexner, G.; Ernst, G; Fratzl, P.
1984-01-01
New measurements of D-short range order (SRO) in PdDx and Pd1−yAgyDx−y are presented. A scaling behaviour of the complicated SRO- features with temperature and electronic concentration is proposed and discussed with respect to the Clapp-Moss-de Fontaine theory of ordering.......New measurements of D-short range order (SRO) in PdDx and Pd1−yAgyDx−y are presented. A scaling behaviour of the complicated SRO- features with temperature and electronic concentration is proposed and discussed with respect to the Clapp-Moss-de Fontaine theory of ordering....
Short- and long-range magnetic order in LaMnAsO
McGuire, Michael A.; Garlea, V. Ovidiu
2016-02-01
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the Néel temperature TN=360 (1 ) K. Below TN the critical exponent describing the magnetic order parameter is β =0.33 -0.35 , consistent with a three-dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to TSRO=650 (10 ) K. The magnetic susceptibility shows a weak anomaly at TSRO and no anomaly at TN. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that above TN nearly two-dimensional, short-range magnetic order is present with a correlation length of 9.3(3) Å within the Mn layers at 400 K. The inelastic scattering data reveal a spin gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasielastic) magnetic excitations emerging in the short-range ordered state. Comparison with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above TN is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.
Posterolateral Complex Knee Injuries: Magnetic Resonance Imaging with Surgical Correlation
Energy Technology Data Exchange (ETDEWEB)
Theodorou, D.J. [Univ. of California, San Diego, CA (United States). Dept. of Radiology; Theodorou, S.J.; Fithian, D.C.; Garelick, D.H. [Southern California Permanente Medical Group, San Diego, CA (United States). Dept. of Orthopedic Surgery; Paxton, L.; Resnick, D. [Midwest Orthopedics, Chicago, IL (United States)
2005-05-01
Purpose: To describe the magnetic resonance imaging (MRI) findings of injuries of the posterolateral aspect of the knee and to evaluate the diagnostic capabilities of MRI in the assessment of these injuries. Material and Methods: The MRI studies of 14 patients (mean age 33 years) with trauma to the posterolateral aspect of the knee were retrospectively reviewed, and the imaging findings were correlated with those of surgery. Results: In all patients, MRI showed an intact iliotibial (ITB) band. MRI showed injury to the biceps tendon in 11 (79%), the gastrocnemius tendon in (7%), the popliteus tendon in 5 (36%), and the lateral collateral ligament (LCL) in 14 (100%) patients. Tear of the anterior cruciate ligament (ACL) was seen in1 (79%) patients and tear of the posterior cruciate ligament (PCL) in 4 (29%) patients. With routine MRI, visualization of the popliteofibular or fabellofibular ligaments was incomplete. On MRI, the lateral meniscus and the medial meniscus were torn with equal frequency ( n {approx} 4; 29%). Osteochondral defects were seen in 5 (36%) cases and joint effusion in all 14 (100%) cases on MRI. Using surgical findings as the standard for diagnosis, MRI proved 86% accurate in the detection of injury to the ITB band, the biceps tendon (93%),, the gastrocnemius tendon (100%), the popliteus tendon (86%), the LCL (100%), the ACL (79%), the PCL (86%), the lateral meniscus (90%), the medial meniscus (82%), and the osteochondral structures (79%). Surgical correlation confirmed the MRI findings of joint effusion in all cases. Conclusion: MRI is well suited for demonstrating the presence and extent of injuries of the major structures of the posterolateral complex of the knee, allowing characterization of the severity of injury.
Magnetic resonance imaging and histology correlation in Cushing's disease.
Masopust, Václav; Netuka, David; Beneš, Vladimír; Májovský, Martin; Belšán, Tomáš; Bradáč, Ondřej; Hořínek, Daniel; Kosák, Mikuláš; Hána, Václav; Kršek, Michal
We continuously look for new techniques to improve the radicality of resection and to eliminate the negative effects of surgery. One of the methods that has been implemented in the perioperative management of Cushing's disease was the combination of three magnetic resonance imaging (MRI) sequences: SE, SPGR and fSPGR. We enrolled 41 patients (11 males, 30 females) diagnosed with Cushing's disease. A 3D tumour model with a navigation console was developed using each SPGR, fSPGR and SE sequence. The largest model was then used. In all cases, a standard four-handed, bi-nostril endoscopic endonasal technique was used. Endocrinological follow-up evaluation using morning cortisol sampling was performed for 6-34 months in our study. In total, 36 patients (88%) were disease-free following surgery. Our results indicate we achieved 100% sensitivity of MR. Overall, the conformity of at least one donor site, as compared with the places designated on MR, was in 78% of patients. We searched the place of compliance in individual locations. There is a consensus in individual locations in 63 of the 123 cases (or 56%). The correlation gamma function at a 5% significance level was then 0.27. The combination of MR sequences (SE, SPGR, fSPGR), neuronavigation system and iMRI led to increased sensitivity of up to 100%. Specificity reached 56% in our study. We found a high success rate in surgical procedure in terms of the correlation between MR findings and histology, which leads to remission of Cushing's disease. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
Takeda, Y.; Kobayashi, M.; Okane, T.; Ohkochi, T.; Okamoto, J.; Saitoh, Y; Kobayashi, K.; Yamagami, H.; Fujimori, A.; Tanaka, A.; Okabayashi, J.; Oshima, M.; Ohya, S; Hai, P.N.; Tanaka, M.
2008-01-01
The magnetic properties of as-grown Ga$_{1-x}$Mn$_{x}$As have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The {\\it intrinsic} XMCD intensity at high temperatures obeys the Curie-Weiss law, but residual spin magnetic moment appears already around 100 K, significantly above Curie temperature ($T_C$), suggesting that short-range ferromagnetic correlations are developed above $T_C$. The present results...
Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts
Directory of Open Access Journals (Sweden)
S. R. Kolusu
2015-11-01
Full Text Available The direct radiative impacts of biomass burning aerosols (BBA on meteorology are investigated using short-range forecasts from the Met Office Unified Model (MetUM over South America during the South American Biomass Burning Analysis (SAMBBA. The impacts are evaluated using a set of three simulations: (i no aerosols, (ii with monthly mean aerosol climatologies and (iii with prognostic aerosols modelled using the Coupled Large-scale Aerosol Simulator for Studies In Climate (CLASSIC scheme. Comparison with observations show that the prognostic CLASSIC scheme provides the best representation of BBA. The impacts of BBA are quantified over central and southern Amazonia from the first and second day of 2-day forecasts during 14 September–3 October 2012. On average, during the first day of the forecast, including prognostic BBA reduces the clear-sky net radiation at the surface by 15 ± 1 W m−2 and reduces net top-of-atmosphere (TOA radiation by 8 ± 1 W m−2, with a direct atmospheric warming of 7 ± 1 W m−2. BBA-induced reductions in all-sky radiation are smaller in magnitude: 9.0 ± 1 W m−2 at the surface and 4.0 ± 1 W m−2 at TOA. In this modelling study the BBA therefore exert an overall cooling influence on the Earth–atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation. Due to the reduction of net radiative flux at the surface, the mean 2 m air temperature is reduced by around 0.1 ± 0.02 °C. The BBA also cools the boundary layer (BL but warms air above by around 0.2 °C due to the absorption of shortwave radiation. The overall impact is to reduce the BL depth by around 19 ± 8 m. These differences in heating lead to a more anticyclonic circulation at 700 hPa, with winds changing by around 0.6 m s−1. Inclusion of climatological or prognostic BBA in the MetUM makes a small but significant improvement in forecasts of temperature and relative humidity, but improvements were
Determinant representations for correlation functions of spin-1/2 Heisenberg XXZ magnets
Essler, F H L; Izergin, A G; Korepin, V E
1994-01-01
We consider correlation functions of the spin-\\half XXX and XXZ Heisenberg chains in a magnetic field. Starting from the algebraic Bethe Ansatz we derive representations for various correlation functions in terms of determinants of Fredholm integral operators.
Spin-orbital short-range order on a honeycomb-based lattice.
Nakatsuji, S; Kuga, K; Kimura, K; Satake, R; Katayama, N; Nishibori, E; Sawa, H; Ishii, R; Hagiwara, M; Bridges, F; Ito, T U; Higemoto, W; Karaki, Y; Halim, M; Nugroho, A A; Rodriguez-Rivera, J A; Green, M A; Broholm, C
2012-05-04
Frustrated magnetic materials, in which local conditions for energy minimization are incompatible because of the lattice structure, can remain disordered to the lowest temperatures. Such is the case for Ba(3)CuSb(2)O(9), which is magnetically anisotropic at the atomic scale but curiously isotropic on mesoscopic length and time scales. We find that the frustration of Wannier's Ising model on the triangular lattice is imprinted in a nanostructured honeycomb lattice of Cu(2+) ions that resists a coherent static Jahn-Teller distortion. The resulting two-dimensional random-bond spin-1/2 system on the honeycomb lattice has a broad spectrum of spin-dimer-like excitations and low-energy spin degrees of freedom that retain overall hexagonal symmetry.
New measurements of high-momentum nucleons and short-range structures in nuclei
Fomin, N; Asaturyan, R; Benmokhtar, F; Boeglin, W; Bosted, P; Bruell, A; Bukhari, M H S; Chudakov, E; Clasie, B; Connell, S H; Dalton, M M; Daniel, A; Day, D B; Dutta, D; Ent, R; Fassi, L El; Fenker, H; Filippone, B W; Garrow, K; Gaskell, D; Hill, C; Holt, R J; Horn, T; Jones, M K; Jourdan, J; Kalantarians, N; Keppel, C E; Kiselev, D; Kotulla, M; Lindgren, R; Lung, A F; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Mkrtchyan, H; Navasardyan, T; Niculescu, G; Opper, A K; Perdrisat, C; Potterveld, D H; Punjabi, V; Qian, X; Reimer, P E; Roche, J; Rodriguez, V M; Rondon, O; Schulte, E; Seely, J; Segbefia, E; Slifer, K; Smith, G R; Solvignon, P; Tadevosyan, V; Tajima, S; Tang, L; Testa, G; Trojer, R; Tvaskis, V; Vulcan, W F; Wasko, C; Wesselmann, F R; Wood, S A; Wright, J; Zheng, X
2011-01-01
We present new, high-Q^2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.
Koelling, S; Krebs, H; Meißner, U -G
2011-01-01
We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.
Guigue, M; Petukhov, A K; Pignol, G
2015-01-01
We have searched for a short-range spin-dependent interaction mediated by a hypothetical light scalar boson with CP-violating couplings to the neutron using the spin relaxation of hyperpolarized $^3$He. The walls of the $^3$He cell would generate a depolarizing pseudomagnetic field.
2012-09-10
... Property Master Plan for Fort Belvoir, VA AGENCY: Department of the Army, DoD. ACTION: Notice of Intent... proposed short-range improvement projects and the proposed update of the Real Property Master Plan (RPMP... Master Plan (as amended in the 2007 BRAC EIS) would remain in effect. Other reasonable...
Short-range order and its effect on the electronic structure of binary alloys: CuZn - a case study
Indian Academy of Sciences (India)
Abhijit Mookerjee; Kartick Tarafder; Atisdipankar Chakrabarti; Kamal Krishna Saha
2008-02-01
We discuss an application of the generalized augmented space method introduced by one of us combined with the recursion method of Haydock et al (GASR) to the study of electronic structure and optical properties of random binary alloys. As an example, we have taken the 50-50 CuZn alloy, where neutron scattering indicates the existence of short-range order.
Effects of laser frequency chirp on modal noise in short-range radio over multimode fiber links
DEFF Research Database (Denmark)
Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal;
2010-01-01
An important effect of the frequency chirp of the optical transmitter in radio over multimode fiber links is put into evidence experimentally and modeled theoretically for the first time, to our knowledge. This effect can have an important impact in short-range connections, where, although...
3D imaging by fast deconvolution algorithm in short-range UWB radar for concealed weapon detection
Savelyev, T.; Yarovoy, A.
2013-01-01
A fast imaging algorithm for real-time use in short-range (ultra-wideband) radar with synthetic or real-array aperture is proposed. The reflected field is presented here as a convolution of the target reflectivity and point spread function (PSF) of the imaging system. To obtain a focused 3D image, t
3D imaging by fast deconvolution algorithm in short-range UWB radar for concealed weapon detection
Savelyev, T.; Yarovoy, A.
2013-01-01
A fast imaging algorithm for real-time use in short-range (ultra-wideband) radar with synthetic or real-array aperture is proposed. The reflected field is presented here as a convolution of the target reflectivity and point spread function (PSF) of the imaging system. To obtain a focused 3D image,
Superconducting, magnetic, and charge correlations in the doped two-chain Hubbard model
Asai, Y
1995-01-01
Superconducting, magnetic, and charge correlation functions and dynamic spin correlation functions of the doped two-chain Hubbard model is studied with the projector Quantum Monte carlo method and Lanczos recursion method. Of the three correlation functions, the interchain singlet superconducting correlation function is the most long range. Our data is not consistent with the Luther-Emery picture.
2012-02-01
AFRL-RZ-WP-TP-2012-0100 CORRELATION OF AC LOSS DATA FROM MAGNETIC SUSCEPTIBILITY MEASUREMENTS WITH YBCO FILM QUALITY (POSTPRINT) Paul N...CORRELATION OF AC LOSS DATA FROM MAGNETIC SUSCEPTIBILITY MEASUREMENTS WITH YBCO FILM QUALITY (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT...spreading of the temperature-dependent ac susceptibility curves with increasing applied magnetic field, the quality of the YBCO film generally
Zhang, Qiang; Ye, Feng; Tian, Wei; Cao, Huibo; Chi, Songxue; Hu, Biao; Diao, Zhenyu; Tennant, David A.; Jin, Rongying; Zhang, Jiandi; Plummer, Ward
2017-06-01
Bilayered S r3R u2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in S r3(Ru1-xM nx) 2O7 . Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in S r3(Ru1-xM nx) 2O7 (x =0.06 and 0.12). With the increase of Mn doping (x ) from 0.06 to 0.12 or the decrease of temperatures for x =0.12 , an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C4 v crystal lattice to a C2 v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.
Liu, Jian; Allen, Philip B
2016-01-01
This paper studies short-range order (SRO) in the semiconductor alloy (GaN)$_{1-x}$(ZnO)$_x$. Monte Carlo simulations performed on a density functional theory (DFT)-based cluster expansion model show that the heterovalent alloys exhibit strong SRO because of the energetic preference for the valence-matched nearest-neighbor Ga-N and Zn-O pairs. To represent the SRO-related structural correlations, we introduce the concept of Special Quasi-ordered Structure (SQoS). Subsequent DFT calculations reveal dramatic influence of SRO on the atomic, electronic and vibrational properties of the (GaN)$_{1-x}$(ZnO)$_x$ alloy. Due to the enhanced statistical presence of the energetically unfavored Zn-N bonds with the strong Zn3$d$-N2$p$ repulsion, the disordered alloys exhibit much larger lattice bowing and band-gap reduction than those of the short-range ordered alloys. Inclusion of lattice vibrations stabilizes the disordered alloy.
DEFF Research Database (Denmark)
Winkelmann, M.; Graf, H.A.; Andersen, N.H.
1994-01-01
The magnetic properties of undoped and Li-doped MgCu2O3 single crystals have been studied by magnetic-susceptibility and neutron-diffraction measurements. The pure compound is a semiconductor with an antiferromagnetic ground state (T(N) = 95 K). Above T(N), short-range magnetic correlations within...
Directory of Open Access Journals (Sweden)
Yuanxin Lin
2013-03-01
Full Text Available As the continuous development of Internet of Things (IOT, life intelligent gradually. Therefore, home devices of remote/short-range monitoring become the inevitable trend of development. Based on this background, the smart home monitoring system is presented based on the STM32 and ZigBee technology. The system uses a low-power-cost STM32 processor as the main controller and porting of µC/OS-II and µC/GUI on the system is achieved. The system uses a resistive touch screen as the human-computer interaction interface, combined with the ZigBee technology to achieve a short-range monitoring of home devices. The system transplanted and modified the procedures of UIP network protocol. The master controller is connected to the Ethernet and erected a WEB server, achieved the remote monitoring of home devices. And finally give the implementation details of the prototype system and functional testing.
Short Range Order Signature in Crystalline and Amorphous GeSbTe Xanes Spectra
Raty, Jean-Yves; Otjacques, C. Éline; Pekoz, Rengin; Bichara, Christophe; Lordi, Vince
2011-03-01
A new implementation of XANES spectra calculations within DFT and PAW potentials is used to compute the XANES spectra of various amorphous and crystalline GeSbTe structures. A clear correlation between the local order, either tetrahedral or distorted octahedral, and the shape of the XANES signal is observed. These calculations provide a new interpretation of past XANES measurements, relating essentially the phase change mechanism to a moderate modification of the local environment of the Ge atoms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the Belgian PAI 3/42 program and the FNRS-FRFC.
Formation of ultracold metastable RbCs molecules by short-range photoassociation
Gabbanini, C
2011-01-01
Ultracold metastable RbCs molecules are observed in a double species MOT through photoassociation near the Rb(5S$_{1/2}$)+Cs(6P$_{3/2}$) dissociation limit followed by radiative stabilization. The molecules are formed in their lowest triplet electronic state and are detected by resonant enhanced two-photon ionization through the previously unobserved $(3)^{3}\\Pi \\leftarrow a^{3}\\Sigma^{+}$ band. The large rotational structure of the observed photoassociation lines is assigned to the lowest vibrational levels of the $0^+,0^-$ excited states correlated to the Rb(5P$_{1/2}$)+Cs(6S$_{1/2}$) dissociation limit. This demonstrates the possibility to induce direct photoassociation in heteronuclear alkali-metal molecules at short internuclear distance, as pointed out in [J. Deiglmayr \\textit{et al.}, Phys. Rev. Lett. \\textbf{101}, 13304 (2008)].
Coupled Hamiltonians and three-dimensional short-range wetting transitions
Parry, A. O.; Swain, P. S.
We address three problems faced by effective interfacial Hamiltonian models of wetting based on a single collective coordinate ℓ( y) representing the position of the unbinding fluid interface. Problems (P1) and (P2) refer to the predictions of non-universality at the upper critical dimension d=3 at critical and complete wetting, respectively, which are not borne out by Ising model simulation studies. (P3) relates to mean-field correlation function structure in the underlying continuum Landau model. Building on earlier work by Parry and Boulter we investigate the hypothesis that these concerns arise due to the coupling of order parameter fluctuations near the unbinding interface and wall. For quite general choices of collective coordinates X i( y) we show that arbitrary two-field models H[ X1, X2] can recover the required anomalous structure of mean-field correlation functions (P3). To go beyond mean-field theory we introduce a set H of Hamiltonians based on proper collective coordinates s( y) near the wall which have both interfacial and spin-like components. We argue that an optimum model H[s,ℓ]∈ H, in which the degree of coupling is controlled by an angle like variable δ ∗, best describes the non-universality of the Ising model and investigate its critical behaviour. For critical wetting the appropriate Ginzburg criterion shows that the true asymptotic critical regime for the local susceptibility χ1 is dramatically reduced consistent with observations of mean-field behaviour in simulations (P1). For complete wetting the model yields a precise expression for the temperature dependence of the renormalised critical amplitude θ in good agreement with simulations (P2). We highlight the importance of a new wetting parameter which describes the physics that emerges due to the coupling effects.
Energy Technology Data Exchange (ETDEWEB)
Marceau, R.K.W., E-mail: r.marceau@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ceguerra, A.V.; Breen, A.J. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Raabe, D. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ringer, S.P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia)
2015-10-15
Short-range-order (SRO) has been quantitatively evaluated in an Fe–18Al (at%) alloy using atom probe tomography (APT) data and by calculation of the generalised multicomponent short-range order (GM-SRO) parameters, which have been determined by shell-based analysis of the three-dimensional atomic positions. The accuracy of this method with respect to limited detector efficiency and spatial resolution is tested against simulated D0{sub 3} ordered data. Whilst there is minimal adverse effect from limited atom probe instrument detector efficiency, the combination of this with imperfect spatial resolution has the effect of making the data appear more randomised. The value of lattice rectification of the experimental APT data prior to GM-SRO analysis is demonstrated through improved information sensitivity. - Highlights: • Short-range-order (SRO) is quantitatively evaluated using atom probe tomography data. • Chemical species-specific SRO parameters have been calculated. • The accuracy of this method is tested against simulated D0{sub 3} ordered data. • Imperfect spatial resolution combined with finite detector efficiency causes a randomising effect. • Lattice rectification of the data prior to GM-SRO analysis is demonstrated to improve information sensitivity.
Energy Technology Data Exchange (ETDEWEB)
Lin, Po-Yu; Gandhi, Ashish Chhaganlal; Wu, Sheng Yun, E-mail: sywu@mail.ndhu.edu.tw [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China)
2015-05-07
We report the influence of the nanosized effect on the superconducting properties of bimetallic In{sub 2}Bi nanoparticles. In this study, the temperature- and applied magnetic field-dependence of the magnetization were utilized to investigate the electron-phonon coupling effect while controlling particle sizes 〈d〉 from 21(2) to 42(5) nm. As the particle size decreases, the electron-phonon constant λ{sub EP} decreases rapidly, signaling the short-range electron-phonon coupling effect which acts to confine the electrons within a smaller volume, thereby giving rise to a higher superconducting transition temperature T{sub C}. An enhanced superconducting transition was observed from the temperature dependence of magnetization, revealing a main diamagnetic Meissner state below T{sub C} ∼ 5.72(5) K for 〈d〉 = 31(1) nm In{sub 2}Bi nanoparticles. The variation of the T{sub C} is very sensitive to the particle size, which might be due to crystallinity and size uniformity of the samples. The electron-phonon coupling to low lying phonons is found to be the leading mechanism for the observed strong-coupling superconductivity in the In{sub 2}Bi system.
Directory of Open Access Journals (Sweden)
Arcady Zhukov
2017-02-01
Full Text Available We overviewed the correlation between the structure, magnetic and transport properties of magnetic microwires prepared by the Taylor-Ulitovsky method involving rapid quenching from the melt and drawing of the composite (metallic core, glass coated wire. We showed that this method can be useful for the preparation of different families of magnetic microwires: soft magnetic microwires displaying Giant magnetoimpedance (GMI effect, semi-hard magnetic microwires, microwires with granular structure exhibiting Giant Magnetoresistance (GMR effect and Heusler-type microwires. Magnetic and transport properties of magnetic microwires depend on the chemical composition of metallic nucleus and on the structural features (grain size, precipitating phases of prepared microwires. In all families of crystalline microwires, their structure, magnetic and transport properties are affected by internal stresses induced by the glass coating, depending on the quenching rate. Therefore, properties of glass-coated microwires are considerably different from conventional bulk crystalline alloys.
Holographic description of strongly correlated electrons in external magnetic fields
Gubankova, E; Cubrovic, M; Schalm, K; Schijven, P; Zaanen, J
2013-01-01
We study the Fermi level structure of (2+1)-dimensional strongly interacting electron systems in external magnetic field using the AdS/CFT correspondence. The gravity dual of a finite density fermion system is a Dirac field in the background of the dyonic AdS-Reissner-Nordstrom black hole. In the probe limit the magnetic system can be reduced to the non-magnetic one, with Landau-quantized momenta and rescaled thermodynamical variables. We find that at strong enough magnetic fields, the Fermi surface vanishes and the quasiparticle is lost either through a crossover to conformal regime or through a phase transition to an unstable Fermi surface. In the latter case, the vanishing Fermi velocity at the critical magnetic field triggers the non-Fermi liquid regime with unstable quasiparticles and a change in transport properties of the system. We associate it with a metal-"strange metal" phase transition. We compute the DC Hall and longitudinal conductivities using the gravity-dressed fermion propagators. As expecte...
Correlation effects and orbital magnetism of Co clusters
Di Marco, L Peters I; Şaşıoğlu, E; Altun, A; Rossen, S; Friedrich, C; Blügel, S; Katsnelson, M I; Kirilyuk, A; Eriksson, O
2016-01-01
Recent experiments on isolated Co clusters have shown huge orbital magnetic moments in comparison with their bulk and surface counterparts. These clusters hence provide the unique possibility to study the evolution of the orbital magnetic moment with respect to the cluster size and how competing interactions contribute to the quenching of orbital magnetism. We investigate here different theoretical methods to calculate the spin and orbital moments of Co clusters, and assess the performances of the methods in comparison with experiments. It is shown that density functional theory in conventional local density or generalized gradient approximations, or even with a hybrid functional, severely underestimates the orbital moment. As natural extensions/corrections we considered the orbital polarization correction, the LDA+U approximation as well as the LDA+DMFT method. Our theory shows that of the considered methods, only the LDA+DMFT method provides orbital moments in agreement with experiment, thus emphasizing the...
Institute of Scientific and Technical Information of China (English)
XIA Dunsheng; J. Bloemendal; R. C. Chiverrell; J. A. Dearing; JIN Ming
2004-01-01
A set of environmental magnetic parameters (i.e. magnetic susceptibility, χARM, IRMs, hysteresis loops and thermomagnetic curves) has been applied to two soil sections from SE Iceland. Results demonstrate that the main magnetic minerals in the tephras are ferrimagnetic minerals (e.g. magnetite) and canted antiferromagnetic minerals (e.g. haematite), with abundant paramagnetic material also present. Cross plots of Mrs/Ms vs. (B0)cr/(B0)c and χfd% vs. χARM/SIRM indicate that the main magnetic grain sizes in tephras are pseudo single domain (PSD) and multidomain (MD). Initial correlation of tephra layers was achieved, using all the measured magnetic parameters, by use of the multivariate statistical measures of Similarity Coefficient (SC) and Euclidean Distance (ED). This demonstrates that magnetic techniques can potentially assist in the identification and correlation of distal tephra.
correlation of magnetic resonance imaging findings with arthroscopy ...
African Journals Online (AJOL)
clinically diagnosed rotator cuff disease based upon the radiologist's interpretation with actual intra- operative arthroscopic ... invasively display high definition anatomy images ... surgical correlation (4) enough to guide on the treatment ..... Sex. Pearson. Correlation. 0.251. -0.182. -0.182. 0.156. -0.289. 0.061. 0.156. -0.052.
Correlation of thickness and magnetization in LCMO ﬁlm
Indian Academy of Sciences (India)
Sanghamitra Khatua; P K Mishra; J John; V C Sahni
2003-03-01
High quality thin ﬁlms of La0.67Ca0.33MnO3 (LCMO) of different thickness were grown on LAO substrates by pulsed laser deposition (KrF, = 278 nm). The AFM images suggest a two-dimensional step-growth. DC magnetization measurements of the ﬁlms in a ﬁeld of 500 Oe show that the magnetic ordering temperature is the same for all the ﬁlms in both FC and ZFC conditions and is the same as that for the bulk. However, a difference is seen between the FC and ZFC magnetization of the ﬁlms. There seems to be a systematic in this difference with respect to the thickness of the ﬁlm, with the difference decreasing with thickness. We suggest that the difference in the magnetization under FC and ZFC conditions may be due to strain-induced anisotropy arising from the lattice mismatch between the substrate and the ﬁlm or due to the shape anisotropy due to epitaxial growth.
Spin-spin correlations of magnetic adatoms on graphene
Güçlü, A. D.; Bulut, Nejat
2015-03-01
We study the interaction between two magnetic adatom impurities in graphene using the Anderson model. The two-impurity Anderson Hamiltonian is solved numerically by using the quantum Monte Carlo technique. We find that the interimpurity spin susceptibility is strongly enhanced at low temperatures, significantly diverging from the well-known Ruderman-Kittel-Kasuya-Yoshida result which decays as R-3.
Yu, Chen-Chieh; Lin, Keng-Te; Su, Pao-Yun; Wang, En-Yun; Yen, Yu-Ting; Chen, Hsuen-Li
2016-02-01
In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this
Westphal, Alexander; Abele, Hartmut; Baessler, Stefan
2007-01-01
Recently, quantum states of ultra-cold neutrons in the Earth's gravitational field have been observed for the first time. From the fact that they are consistent with Newtonian gravity on the 10 %-level, analytical limits on alpha and lambda of short-range Yukawa-like additional interactions are derived between lambda = 1 micrometer and 1 mm. We arrive for lambda > 10 micrometer at alpha < 2 \\cdot 10^11 at 90 % confidence level. This translates into a limit g_s g_p / (\\hbar c) < 2 \\cdot 10^{-1...
Westphal, A; Baessler, S; Abele, Hartmut; Baessler, Stefan; Westphal, Alexander
2007-01-01
Recently, quantum states of ultra-cold neutrons in the Earth's gravitational field have been observed for the first time. From the fact that they are consistent with Newtonian gravity on the 10 %-level, analytical limits on alpha and lambda of short-range Yukawa-like additional interactions are derived between lambda = 1 micrometer and 1 mm. We arrive for lambda > 10 micrometer at alpha < 2 \\cdot 10^11 at 90 % confidence level. This translates into a limit g_s g_p / (\\hbar c) < 2 \\cdot 10^{-15} on the pseudo-scalar coupling of axions in the previously experimentally unaccessible astrophysical axion window.
DEFF Research Database (Denmark)
Hedegård, Erik Donovan
2017-01-01
considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...
Assembly of magnetic spheres in strong homogeneous magnetic field
Messina, René; Stanković, Igor
2017-01-01
The assembly in two dimensions of spherical magnets in strong magnetic field is addressed theoretically. It is shown that the attraction and assembly of parallel magnetic chains is the result of a delicate interplay of dipole-dipole interactions and short ranged excluded volume correlations. Minimal energy structures are obtained by numerical optimization procedure as well as analytical considerations. For a small number of constitutive magnets Ntot ≤ 26, a straight chain is found to be the ground state. In the regime of larger Ntot ≥ 27, the magnets form two touching chains with equally long tails at both ends. We succeed to identify the transition from two to three touching chains at Ntot = 129. Overall, this study sheds light on the mechanisms of the recently experimentally observed ribbon formation of superparamagnetic colloids via lateral aggregation of magnetic chains in magnetic field (Darras et al., 2016).
Correlation imaging method based on local wavenumber for interpreting magnetic data
Ma, Guoqing; Liu, Cai; Xu, Jiashu; Meng, Qingfa
2017-03-01
Depth estimation is a general task in the interpretation of magnetic data, and local wavenumber is an effective tool to accomplish this task, but this method requires the structural index of causative source when applies it to compute the depth of the source, which is hard to obtain for an unknown area. In this paper, we suggested a correlation imaging method to interpret magnetic data, which uses the correlation coefficient of local wavenumber of real magnetic data and transformative local wavenumber of synthetic magnetic data generated by assumed source to estimate the location of the source, and this method does not require any priori information of the source and does not require solving any matrix. The computation steps as follows, first, we assume that the causative sources are distributed regularly as a rectangular grid, and then separately compute the correlation coefficient of the local wavenumber of real data and local wavenumber of the anomaly generated by each assumed source, and the correlation coefficient gets maximum when the location parameters of the assumed source are in accord with the true locations of real sources. The synthetic tested results show that this method can obtain the location of magnetic source effectively and correctly, and is insensitive to magnetization direction and noise. This method is also applied to measured magnetic data, and get the location parameters of the source.
Antiferromagnetic spin ordering and interlayer magnetic correlations in MnTe/CdTe superlattices
Giebultowicz, T. M.; Faschinger, W.; Nunez, V.; Klosowski, P.; Bauer, G.; Sitter, H.; Furdyna, J. K.
1994-04-01
Results of neutron scattering studies on MnTe/CdTe superlattices with ultrathin non-magnetic CdTe "barriers" are presented and compared with data from earlier studies on MnSe/ZnSe, MnTe/ZnTe, and MnSe/ZnTe multilayers with thick non-magnetic spacers. The experiments revealed two qualitatively new effects—namely, (i) the existence of pronounced interlayer magnetic correlations in the case of the CdTe thickness corresponding to two single monolayers and (ii) the coexistence of two magnetic phases that never occurred simultaneously in the previously studied systems.
Institute of Scientific and Technical Information of China (English)
HUI; Xidong(惠希东); YAO; Kefu(姚可夫); KOU; Hongchao(寇宏超); CHEN; Guoliang(陈国良)
2003-01-01
Short-range order domains of face central cubic Zr2Ni (F-Zr2Ni) and tetragonal Zr2Ni (T-Zr2Ni) type structure with a size about 1-3 nanometers were observed in bulk amorphous Zr52.5Cu17.9Ni14.6Al10Ti5 alloy by using HREM and nano-beam electron diffraction technique. A new thermodynamic model was formulated based on the concept of chemical short-range order (SCRO). The molar fractions of CSRO and thermodynamic properties in Ni-Zr, Cu-Zr, Al-Zr, Al-Ni, Zr-Ni-Al and Zr-Ni-Cu were calculated. According to the principle of maximum the optimum glass forming ability (GFA) compositions were predicted in binary and ternary alloys. These results were proved to be valid by the experimental data of crystallizing activation energy, ΔTx and XRD patterns. The TTT curves of Zr-Ni-Cu alloys calculated based on CSRO model shows that the lowest critical cooling rate GFA is in the order of 100 K/s, which is close to the practical cooling rate for the preparation of Zr-based BMG alloys.
Short-range photoassociation from the inner wall of the lowest triplet potential of 85Rb2
Carollo, R. A.; Carini, J. L.; Eyler, E. E.; Gould, P. L.; Stwalley, W. C.
2016-10-01
Ultracold photoassociation is typically performed at large internuclear separations, where the scattering wavefunction amplitude is large and Franck-Condon overlap is maximized. Recently, work by this group and others on alkali-metal diatomics has shown that photoassociation can efficiently form molecules at short internuclear distance in both homonuclear and heteronuclear dimers. We propose that this short-range photoassociation is due to excitation near the wavefunction amplitude maximum at the inner wall of the lowest triplet potential. We show that Franck-Condon factors (FCFs) from the highest-energy bound state can almost precisely reproduce FCFs from a low-energy scattering state, and that both calculations match experimental data from the near-zero positive-energy scattering state with reasonable accuracy. We also show that the corresponding photoassociation from the inner wall of the ground-state singlet potential at much shorter internuclear distance is weaker and undetectable under our current experimental conditions. We predict from FCFs that the strongest of these weaker short-range photoassociation transitions are one order of magnitude below our current sensitivity.
Schramm, C A; Reiter, R S; Solursh, M
1994-06-01
In the embryonic limb bud, chondrogenic and myogenic regions arise by segregation from a mixture of chondrogenic and myogenic precursor cells (Schramm and Solursh, 1990). In in vitro micromass cultures, dissociated limb bud cells also segregate into chondrogenic and myogenic tissues. The process of segregation was studied using transfilter micromass cultures to determine the role of short-range interactions in the formation of these two tissue masses. Limb bud cells were plated on both sides of large and small Nucleopore filters. Pore size was chosen to permit cell-cell or cell-extracellular matrix contact across large pore filters but permit only interactions via diffusible molecules across small pore filters. Cultures were plated at high density on one surface to allow formation of chondrogenic nodules and at high or low density on the opposing surface to observe any segregation effect on chondrogenic and myogenic cells, respectively. Spatially organized extracellular matrix of micromass cultures was fixed by cold ethanol precipitation onto filters. The fixed micromass cultures lost the ability to affect segregation across the filter. These results suggest that chondrogenic aggregates enlarge in an autocrine manner dependent on direct cell-cell or cell-extracellular matrix contact provided by living cells. Myogenic segregation likely occurs in a paracrine manner that also requires short-range interactions.
Carrier, Benjamin; MacKinnon, David; Cournoyer, Luc; Beraldin, J.-Angelo
2011-03-01
The National Research Council of Canada (NRC) is currently evaluating and designing artifacts and methods to completely characterize 3-D imaging systems. We have gathered a set of artifacts to form a low-cost portable case and provide a clearly-defined set of procedures for generating characteristic values using these artifacts. In its current version, this case is specifically designed for the characterization of short-range (standoff distance of 1 centimeter to 3 meters) triangulation-based 3-D imaging systems. The case is known as the "NRC Portable Target Case for Short-Range Triangulation-based 3-D Imaging Systems" (NRC-PTC). The artifacts in the case have been carefully chosen for their geometric, thermal, and optical properties. A set of characterization procedures are provided with these artifacts based on procedures either already in use or are based on knowledge acquired from various tests carried out by the NRC. Geometric dimensioning and tolerancing (GD&T), a well-known terminology in the industrial field, was used to define the set of tests. The following parameters of a system are characterized: dimensional properties, form properties, orientation properties, localization properties, profile properties, repeatability, intermediate precision, and reproducibility. A number of tests were performed in a special dimensional metrology laboratory to validate the capability of the NRC-PTC. The NRC-PTC will soon be subjected to reproducibility testing using an intercomparison evaluation to validate its use in different laboratories.
Institute of Scientific and Technical Information of China (English)
YU De-shuang; PENG Yong-zhen; ZHANG Kui
2004-01-01
The effect of seawater salinity on nitrite accumulation in short-range nitrification to nitrite as the end productwas studied by using a SBR. Experimental results indicated that the growth of nitrobacteria was inhibited and veryhigh levels of nitrite accumulation at different salinities were achieved under the conditions of 25-28 ℃, pH 7.5-8.0, and the influent ammonia nitrogen of 40-70 mg/L when seawater flow used to flush toilet was less than 35%(salinity 12393 mg/L, Cl- 6778 mg/L) of total domestic wastewater flow, which is mainly ascribed to much highchlorine concentration of seawater. Results showed that high seawater salinity is available for short-range nitrificationto nitrite as the end product. When the seawater flow used to flush toilet accounting for above 70% of the totaldomestic wastewater flow, the removal efficiency of ammonia was still above 80% despite the removal of organicsdeclined obviously(less than 60% ). It was found that the effect of seawater salinity on the removal of organics wasnegative rather than positive one as shown for ammonia removal.
Mao, Xiao-Yuan; Tokay, Tursonjan; Zhou, Hong-Hao; Jin, Wei-Lin
2016-05-31
Epileptic seizures are frequently caused by brain tumors. Traditional anti-epileptic treatments do not acquire satisfactory responses. Preoperative and postoperative seizures seriously influence the quality of life of patients. Thus, tumor-associated epilepsy (TAE) is an important subject of the current research. The delineation of the etiology of epileptogenesis in patients with primary brain tumor may help to find the novel and effective drug targets for treating this disease. In this review, we describe the current status of treatment of TAE. More importantly, we focus on the factors that are involved in the functional connectivity between tumors and stromal cells. We propose that there exist two modes, namely, long-range and short-range modes, which likely trigger neuronal hyperexcitation and subsequent epileptic seizures. The long-range mode is referred to as factors released by tumors including glutamate and GABA, binding to the corresponding receptor on the cellular membrane and causing neuronal hyperactivity, while the short-range mode is considered to involve direct intracellular communication between tumor cells and stromas. Gap junctions and tunneling nanotube network are involved in cellular interconnections. Future investigations focused on those two modes may find a potential novel therapeutic target for treating TAE.
Norman, Joseph; Hock, Howard; Schöner, Gregor
2014-07-01
It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers' ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.
Ultra-low-power and ultra-low-cost short-range wireless receivers in nanoscale CMOS
Lin, Zhicheng; Martins, Rui Paulo
2016-01-01
This book provides readers with a description of state-of-the-art techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which specially focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascoding of RF and BB circuits in current domain for current reuse, and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee. · Summarizes the state-of-the-art i...
Stasyszyn, F; Dolag, K; Beck, R; Donnert, J
2010-01-01
Using cosmological MHD simulations of the magnetic field in galaxy clusters and filaments we evaluate the possibility to infer the magnetic field strength in filaments by measuring cross-correlation functions between Faraday Rotation Measures (RM) and the galaxy density field. We also test the reliability of recent estimates considering the problem of data quality and Galactic foreground (GF) removal in current datasets. Besides the two self-consistent simulations of cosmological magnetic fields based on primordial seed fields and galactic outflows analyzed here, we also explore a larger range of models scaling up the resulting magnetic fields of one of the simulations. We find that, if an unnormalized estimator for the cross-correlation functions and a GF removal procedure is used, the detectability of the cosmological signal is only possible for future instruments (e.g. SKA and ASKAP). However, mapping of the observed RM signal to the underlying magnetization of the Universe (both in space and time) is an e...
Myxoid Adrenocortical Adenoma: Magnetic resonance imaging and pathology correlation
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae Un [Dept. of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Suk; Lee, Jun Woo; Lee, Nam Kyung; Ha, Hong Koo; Park, Won Young [Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of)
2014-04-15
We report a case of a 74-year-old female with myxoid adrenocortical adenoma which showed different magnetic resonance imaging findings compared to those of a typical adrenocortical adenoma. The myxoid change in the adrenocortical adenoma is a rare form of degeneration. It presents a considerable diagnostic challenge to both radiologists and clinicians because it can mimic other adrenal tumor types on imaging. The MRI findings of the presented case included a high signal intensity on T2-weighted images similar to that of fluid and delayed progressive enhancement.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The gyrosynchrotron spectra are computed in a nonuniform magnetic field case,taking into account the self- and gyroresonance absorption. It is found that the peak frequency vp of the gyrosynchrotron spectrum systematically increases with the increasing photosphere magnetic field strength B0 and increasing viewing angle θ. It is also found for the first time that there are good positive linear correlations between vp and B0, and between log vp and log θ, with linear correlation coefficient 0.99 between vp and B0 and 0.95 between log vp and log θ. We apply the correlations to analyze two burst events observed with OVSA and find that the evolution tendencies of the photosphere magnetic field strength B0 estimated from the above expression are comparable with the observational results of SOHO/MDI. We also give a comparison of the diagnostic results of coronal magnetic field strength in both uniform and nonuniform source models.
Smari, M.; Felhi, H.; Hamdi, R.; Nouri, K.; Dhahri, E.; Bessais, L.
2017-09-01
The structural, magnetic and electric properties of the sample have been investigated. The crystal structure estimated via X-ray powder diffraction indicates that this system is characterized by a single phase and crystallizes in the orthorhombic structure with space group Pnma. The results of Hirshfeld surface indicate that the intermolecular electrostatic interactions are in short range verifying so that the magnetic interactions have been still in short range. The values of critical exponents obtained from the resistivity and from magnetic measurements are very close to those predicted based on the mean field tri-critical model.
Correlating properties and microstructure of YBCO thin films by magnetic X-ray microscopy
Energy Technology Data Exchange (ETDEWEB)
Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Zahn, Patrick; Bayer, Jonas [Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Research Institute for Innovative Surfaces, FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany)
2016-07-01
The magnetic flux distribution in high-temperature superconductors namely YBCO has been observed using a novel high-resolution technique based on the X-ray magnetic circular dichroism (XMCD). Therefore, a CoFeB layer is deposited on the superconductor which exhibits a strong XMCD-effect. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the soft-magnetic sensor layer [3,4]. In the total electron yield (TEY) mode of the scanning X-ray microscope (SXM) the surface structure and the magnetic domains can be imaged at the same time. Having obtained such high resolution images, the correlation of magnetic flux penetration and defect structure of YBCO thin films can be analyzed. The measurements have been performed at the scanning X-ray microscope MAXYMUS at Bessy II, HZB Berlin.
On the correlation of light polarization in uncorrelated disordered magnetic media
Kozhaev, M A; Belotelov, V I
2016-01-01
Light scattering in a magnetic medium with uncorrelated inclusions is theoretically studied in the approximation of ladder diagram. Correlation between polarizations of electromagnetic waves that are produced by infinitely-distant dipole source is considered. Here white noise disorder model with Gaussian distribution is taken into account. In such a medium the magneto-optical interaction leads to correlation between perpendicular light polarizations. Spatial field correlation matrix with nonzero nondiagonal elements is obtained in the first order on gyration.
The correlation between expansion speed and magnetic field in solar flare ribbons
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper, we study the correlation between the expansion speed of two-ribbon flares and the magnetic field measured in the ribbon location, and compare such correlation for two events with different magnetic configurations. These two events are: an M1.0 flare in the quiet sun on September 12, 2000 and an X2.3 flare in Active Region NOAA 9415 on April 10, 2001. The magnetic configuration of the M1.0 flare is simple, while that of X2.3 event is complex. We have derived a power-law correlation between the ribbon expansion speed (V r) and the longitudinal magnetic field (Bz) with an empirical relationship V r = A×Bz-δ, where A is a constant and δ is the index of the power-law correlation. We have found that δ for the M1.0 flare in the simple magnetic configuration is larger than that for the X2.3 flare in the complex magnetic configuration.
The correlation between expansion speed and magnetic field in solar flare ribbons
Institute of Scientific and Technical Information of China (English)
XIE WenBin; WANG HaiMin; JING Ju; BAO XingMing; ZHANG HongQi
2009-01-01
In this paper, we study the correlation between the expansion speed of two-ribbon flares and the mag-netic field measured in the ribbon location, and compare such correlation for two events with different magnetic configurations. These two events are: an M1.0 flare in the quiet sun on September 12, 2000 and an X2.3 flare in Active Region NOAA 9415 on April 10, 2001. The magnetic configuration of the M1.0 flare is simple, while that of X2.3 event is complex. We have derived a power-law correlation between the ribbon expansion speed (V_r) and the longitudinal magnetic field (B_z) with an empirical relationship V_r=A×B_(z~(-δ)), where A is a constant and δ is the index of the power-law correlation. We have found that δ for the M1.0 flare in the simple magnetic configuration is larger than that for the X2.3 flare in the complex magnetic configuration.
Energy Technology Data Exchange (ETDEWEB)
Hemmati, I. [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of); Madaah Hosseini, H.R. [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)]. E-mail: madaah@sharif.edu; Kianvash, A. [Department of Ceramic Engineering, Faculty of Engineering, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of)
2006-10-15
In this study, internal microstrain of an iron-resin composite produced by powder metallurgy has been calculated using the Williamson-Hall method. The effects of microstrain evolution during different processing conditions on magnetic properties such as coercive force and hysteresis loss have been investigated. The results show that there are regular and similar changes of coercivity and hysteresis loss. Both of these properties are directly dependant on the pinning effect of the internal microstrain against the movement of magnetic domain walls during magnetization process.
Thomas, KJ; Grenier, S; Kim, YJ; Abbamonte, P; Rusydi, A; Tomioka, Y; Tokura, Y; McMorrow, DF; Sawatzky, G; van Veenendaal, M; Hill, J.P.; Venema, L.C.
2004-01-01
We have utilized resonant x-ray diffraction at the Mn L(II,III) edges in order to directly compare magnetic and orbital correlations in Pr(0.6)Ca(0.4)MnO(3). Comparing the widths of the magnetic and orbital diffraction peaks, we find that the magnetic correlation length exceeds that of the orbital o
Parry, A O; Rascón, C; Bernardino, N R; Romero-Enrique, J M
2006-07-19
We derive a non-local effective interfacial Hamiltonian model for short-ranged wetting phenomena using a Green's function method. The Hamiltonian is characterized by a binding potential functional and is accurate to exponentially small order in the radii of curvature of the interface and the bounding wall. The functional has an elegant diagrammatic representation in terms of planar graphs which represent different classes of tube-like fluctuations connecting the interface and wall. For the particular cases of planar, spherical and cylindrical interfacial (and wall) configurations, the binding potential functional can be evaluated exactly. More generally, the non-local functional naturally explains the origin of the effective position-dependent stiffness coefficient in the small-gradient limit.
Li, Congling; Wei, Yujie; Shi, Xinghua
2015-07-01
Metallic glasses (MGs) typically have high yield strength while low ductility, and the latter is commonly considered as the Achilles’ heel of MGs. Elucidate the mechanism for such low ductility becomes the research focus of this field. With molecular level simulations, we show the degree of short-range order (SRO) of atomic structure for brittle Fe-based glass decreases dramatically during the stretch, while mild change occurs in ductile Zr-based glass. The reformation capability for SRO and their medium-range connections is found to be the primary characteristics to differentiate the deformability between the two metallic glasses. We suspect that, in addition to the strength of networks formed by SRO structure, the reformation capability to reform SRO networks also plays the key role in regulating the ductility in metallic glasses. Our study provides important insights into the understanding about the mechanisms accounting for ductility or brittleness of bulk metallic glasses.
Narumi, Takayuki; Tokuyama, Michio
2017-03-01
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.
Zhao, Ying; Deng, Lei; Pang, Xiaodan; Yu, Xianbin; Zheng, Xiaoping; Zhang, Hanyi; Monroy, Idelfonso Tafur
2011-12-12
We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can be effectively pre-compensated. Without using costly W-band components, a transmission system with 26 km fiber and 4 m wireless transmission operating at 99.6 GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems.
Parry, A. O.; Rascón, C.; Bernardino, N. R.; Romero-Enrique, J. M.
2007-10-01
In our first paper, we showed how a non-local effective Hamiltonian for short-ranged wetting may be derived from an underlying Landau-Ginzburg-Wilson model. Here, we combine the Green's function method with standard perturbation theory to determine the general diagrammatic form of the binding potential functional beyond the double-parabola approximation for the Landau-Ginzburg-Wilson bulk potential. The main influence of cubic and quartic interactions is simply to alter the coefficients of the double parabola-like zigzag diagrams and also to introduce curvature and tube-interaction corrections (also represented diagrammatically), which are of minor importance. Non-locality generates effective long-ranged many-body interfacial interactions due to the reflection of tube-like fluctuations from the wall. Alternative wall boundary conditions (with a surface field and enhancement) and the diagrammatic description of tricritical wetting are also discussed.
Short-range photoassociation from the inner wall of the lowest triplet potential of $^{85}$Rb$_2$
Carollo, R A; Eyler, E E; Gould, P L; Stwalley, W C
2016-01-01
Ultracold photoassociation is typically performed at large internuclear separations, where the scattering wavefunction amplitude is large and Franck-Condon overlap is maximized. Recently, work by this group and others on alkali-metal diatomics has shown that photoassociation can efficiently form molecules at short internuclear distance in both homonuclear and heteronuclear dimers. We propose that this short-range photoassociation is due to excitation near the wavefunction amplitude maximum at the inner wall of the lowest triplet potential. We show that Franck-Condon factors from the highest-energy bound state can almost precisely reproduce Franck-Condon factors from a low-energy scattering state, and that both calculations match experimental data from the near-zero positive-energy scattering state with reasonable accuracy. We also show that the corresponding photoassociation from the inner wall of the ground-state singlet potential at much shorter internuclear distance is weaker and undetectable under our exp...
Energy Technology Data Exchange (ETDEWEB)
Parry, A O [Department of Mathematics, Imperial College London, London SW7 2BZ (United Kingdom); Rascon, C [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, 28911 Leganes (Madrid) (Spain); Bernardino, N R [Department of Mathematics, Imperial College London, London SW7 2BZ (United Kingdom); Romero-Enrique, J M [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Apartado de Correos 1065, 41080 Seville (Spain)
2007-10-17
In our first paper, we showed how a non-local effective Hamiltonian for short-ranged wetting may be derived from an underlying Landau-Ginzburg-Wilson model. Here, we combine the Green's function method with standard perturbation theory to determine the general diagrammatic form of the binding potential functional beyond the double-parabola approximation for the Landau-Ginzburg-Wilson bulk potential. The main influence of cubic and quartic interactions is simply to alter the coefficients of the double parabola-like zigzag diagrams and also to introduce curvature and tube-interaction corrections (also represented diagrammatically), which are of minor importance. Non-locality generates effective long-ranged many-body interfacial interactions due to the reflection of tube-like fluctuations from the wall. Alternative wall boundary conditions (with a surface field and enhancement) and the diagrammatic description of tricritical wetting are also discussed.
van Schooneveld, Matti M; de Villeneuve, Volkert W A; Dullens, Roel P A; Aarts, Dirk G A L; Leunissen, Mirjam E; Kegel, Willem K
2009-04-09
We study colloidal gels formed upon centrifugation of dilute suspensions of spherical colloids (radius 446 nm) that interact through a long-range electrostatic repulsion (Debye length approximately 850 nm) and a short-range depletion attraction (approximately 12.5 nm), by means of confocal scanning laser microscopy (CSLM). In these systems, at low colloid densities, colloidal clusters are stable. Upon increasing the density by centrifugation, at different stages of cluster formation, we show that colloidal gels are formed that significantly differ in structure. While significant single-particle displacements do not occur on the hour time scale, the different gels slowly evolve within several weeks to a similar structure that is at least stable for over a year. Furthermore, while reference systems without long-range repulsion collapse into dense glassy states, the repulsive colloidal gels are able to support external stress in the form of a centrifugal field of at least 9g.
Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach
Energy Technology Data Exchange (ETDEWEB)
Galván-Colín, Jonathan, E-mail: jgcolin@ciencias.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Ariel A., E-mail: valladar@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Renela M.; Valladares, Alexander [Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, México, D.F. 04510, México (Mexico)
2015-10-15
Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu{sub x}Zr{sub 100−x} (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature.
Institute of Scientific and Technical Information of China (English)
Ashutosh Vatsyayan; Apurba Kumar Adhyapok; Subhas Chandra Debnath; Kapil Malik
2016-01-01
Gunshot injuries are always known to cause severe morbidity and mortality when head and neck are involved.They vary in morbidity,which can occur in civilian surroundings.The wound largely depends on the type of weapon,mass and velocity of the bullet,and the distance from where it has been shot.Close-range gunshot wounds in the head and neck region can result in devastating aesthetic and functional impairment.The complexity in facial skeletal anatomy cause multiple medical and surgical challenges to an operating surgeon,demanding elaborate soft and hard tissue reconstruction.Here we presented the successful management of three patients shot by short-range pistol with basic life support measures,wound management,reconstruction and rehabilitation.
Pal, Anirban; Raha, Soumyendu; Bhattacharya, Baidurya
2015-01-01
We discuss the computational bottlenecks in molecular dynamics (MD) and describe the challenges in parallelizing the computation intensive tasks. We present a hybrid algorithm using MPI (Message Passing Interface) with OpenMP threads for parallelizing a generalized MD computation scheme for systems with short range interatomic interactions. The algorithm is discussed in the context of nanoindentation of Chromium films with carbon indenters using the Embedded Atom Method potential for Cr Cr interaction and the Morse potential for Cr C interactions. We study the performance of our algorithm for a range of MPIthread combinations and find the performance to depend strongly on the computational task and load sharing in the multicore processor. The algorithm scaled poorly with MPI and our hybrid schemes were observed to outperform the pure message passing scheme, despite utilizing the same number of processors or cores in the cluster. Speed-up achieved by our algorithm compared favourably with that achieved by stan...
DEFF Research Database (Denmark)
Zhao, Ying; Deng, Lei; Pang, Xiaodan
2011-01-01
We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can...... be effectively pre-compensated. Without using costly W-band components, a transmission system with 26km fiber and 4m wireless transmission operating at 99.6GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission...... performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems....
Energy Technology Data Exchange (ETDEWEB)
Parry, A O [Department of Mathematics, Imperial College London, London SW7 2BZ (United Kingdom); Rascon, C [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, 28911 Leganes, Madrid (Spain); Bernardino, N R [Department of Mathematics, Imperial College London, London SW7 2BZ (United Kingdom); Romero-Enrique, J M [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Apartado de Correos 1065, 41080 Seville (Spain)
2006-07-19
We derive a non-local effective interfacial Hamiltonian model for short-ranged wetting phenomena using a Green's function method. The Hamiltonian is characterized by a binding potential functional and is accurate to exponentially small order in the radii of curvature of the interface and the bounding wall. The functional has an elegant diagrammatic representation in terms of planar graphs which represent different classes of tube-like fluctuations connecting the interface and wall. For the particular cases of planar, spherical and cylindrical interfacial (and wall) configurations, the binding potential functional can be evaluated exactly. More generally, the non-local functional naturally explains the origin of the effective position-dependent stiffness coefficient in the small-gradient limit.
GHz measurements of correlated electron systems in high magnetic fields
Edwards, R S
2002-01-01
This Thesis presents experiments performed on the high-frequency conductivity of materials in high magnetic fields. The angle dependence of resonances measured in the millimetre-wave absorption is studied using a rotating resonant cavity system, and the frequency dependence is measured using transmission techniques and a tuneable resonant cavity. Chapter 1 introduces the materials. These include the crystalline organic metals, the layered superconductor Sr sub 2 RUO sub 4 and the quantum Ising ferromagnet LiHoF sub 4. In Chapters 2 and 3, the necessary physics and experimental techniques for their investigation are outlined. Chapters 4 to 6 present measurements of cyclotron resonance in layered materials. Chapter 4 describes several models for the origin of cyclotron resonance harmonics, and describes the first definite measurement of the harmonics of a cyclotron resonance in an organic molecular metal, namely beta sup - (BEDT-TTF) sub 2 SF sub 5 CH sub 2 CF sub 2 SO sub 3. The angle dependence of the field p...
Tseng, Yu-heng; Lin, Yen-heng; Lo, Min-hui; Yang, Shu-chih
2016-11-01
The actual dynamics and physical mechanisms affecting the Sahel precipitation pattern and amplitude in the climate models remain under debate due to the inconsistent drying and rainfall variability/pattern among them. We diagnose the boreal summer rainfall pattern in the Sahel and its possible causes using short-range ensemble hindcasts based on NCAR community atmospheric model with the local ensemble transform Kalman filter (CAM-LETKF) data assimilation. The CAM-LETKF assimilation was conducted using 64 ensemble members with an assimilation cycle of 6-h. By comparing the superior and inferior groups within these 64 ensembles, we confirmed the influence of the Atlantic in the West Sahel rainfall (a robust feature in the ensembles) and a severe model bias resulting from erroneously modeled locations and magnitudes of low-level Sahara heat low (SHL) and African easterly jet (AEJ). This bias is highly related to atmospheric jet dynamics as shown in recent studies and local wave instability triggered mainly by the boundary-layer temperature gradient and amplified by land-atmosphere interactions. In particular, our results demonstrated that more accurate divergence and convergence fields resulting from improved SHL and AEJ in the superior groups enabled more accurate rainbelt patterns to be discerned, thus improving the ensemble mean model hindcast prediction by more than 25 % in precipitation and 16 % in temperature. We concluded that the use of low-resolution climate models to project future rainfall in the Sahel requires caution because the model hindcasts may quickly diverge even the same boundary conditions and forcings are applied. The model bias may easily grow up within a few months in the short-range CAM-LETKF hindcast, let along the free model centennial simulations. Unconstrained future climate model projections for the Sahel must more effectively capture the short-term key boundary-layer dynamics in the boreal summer to be credible regardless model dynamics
Ge, Liming; Xu, Yongbin; Liang, Weijie; Li, Xinying; Li, Defu; Mu, Changdao
2016-11-01
Genipin is an ideal cross-linking agent in biomedical applications, which can undergo ring-opening polymerization in alkaline condition. The polygenipin can create short-range and long-range intermolecular cross-linking between protein chains. In this article, the polygenipin with different degree of polymerization was successfully prepared and used to fix gelatin composite materials. The short-range and long-range cross-linking effects of polygenipin were systematically studied. The results show that the composite materials present porous structure with tunable pore sizes in the gel state, which can be easily controlled by adjusting the degree of polymerization of polygenipin. Long-range cross-linking can increase the pore size of the gel. However, during the drying process, the composite films cross-linked by polygenipin with higher degree of polymerization shrank to smaller size to create more compact structure, resulting in the improvement of water resistance properties, thermal stability, tensile strength, and darker color for the composite films. It is interesting that the composite films can partly swell to the original gel structure when in contact with water and saturated water vapor. All the composite films have excellent barrier properties against UV light. However, the compatibility of gelatin and polygenipin is reduced when the degree of polymerization of polygenipin increases to a certain extent, which will result in the formation of phase separation structure. The obtained composite films are ideal candidates for food and pharmaceutical packaging materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2712-2722, 2016.
Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao
2016-03-01
From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.
Tseng, Yu-heng; Lin, Yen-heng; Lo, Min-hui; Yang, Shu-chih
2016-01-01
The actual dynamics and physical mechanisms affecting the Sahel precipitation pattern and amplitude in the climate models remain under debate due to the inconsistent drying and rainfall variability/pattern among them. We diagnose the boreal summer rainfall pattern in the Sahel and its possible causes using short-range ensemble hindcasts based on NCAR community atmospheric model with the local ensemble transform Kalman filter (CAM-LETKF) data assimilation. The CAM-LETKF assimilation was conducted using 64 ensemble members with an assimilation cycle of 6-h. By comparing the superior and inferior groups within these 64 ensembles, we confirmed the influence of the Atlantic in the West Sahel rainfall (a robust feature in the ensembles) and a severe model bias resulting from erroneously modeled locations and magnitudes of low-level Sahara heat low (SHL) and African easterly jet (AEJ). This bias is highly related to atmospheric jet dynamics as shown in recent studies and local wave instability triggered mainly by the boundary-layer temperature gradient and amplified by land-atmosphere interactions. In particular, our results demonstrated that more accurate divergence and convergence fields resulting from improved SHL and AEJ in the superior groups enabled more accurate rainbelt patterns to be discerned, thus improving the ensemble mean model hindcast prediction by more than 25 % in precipitation and 16 % in temperature. We concluded that the use of low-resolution climate models to project future rainfall in the Sahel requires caution because the model hindcasts may quickly diverge even the same boundary conditions and forcings are applied. The model bias may easily grow up within a few months in the short-range CAM-LETKF hindcast, let along the free model centennial simulations. Unconstrained future climate model projections for the Sahel must more effectively capture the short-term key boundary-layer dynamics in the boreal summer to be credible regardless model dynamics
Magnetic dynamo action in random flows with zero and finite correlation times
Mason, Joanne; Boldyrev, Stanislav; Cattaneo, Fausto
2011-01-01
Hydromagnetic dynamo theory provides the prevailing theoretical description for the origin of magnetic fields in the universe. Here we consider the problem of kinematic, small-scale dynamo action driven by a random, incompressible, non-helical, homogeneous and isotropic flow. In the Kazantsev dynamo model the statistics of the driving flow are assumed to be instantaneously correlated in time. Here we compare the results of the model with the dynamo properties of a simulated flow that has equivalent spatial characteristics as the Kazantsev flow but different temporal statistics. In particular, the simulated flow is a solution of the forced Navier-Stokes equations and hence has a finite correlation time. We find that the Kazantsev model typically predicts a larger magnetic growth rate and a magnetic spectrum that peaks at smaller scales. However, we show that by filtering the diffusivity spectrum at small scales it is possible to bring the growth rates into agreement and simultaneously align the magnetic spectr...
Mesenchymal hamartoma of liver: Magnetic resonance imaging and histopathologic correlation
Institute of Scientific and Technical Information of China (English)
Bin-Bin Ye; Bing Hu; Li-Jun Wang; Hong-Sheng Liu; Yan Zou; Yu-Bin Zhou; Zhuang Kang
2005-01-01
AIM: To describe the imaging features of hepatic mesenchymal hamartoma with emphasis on magnetic resonance imaging (MRI) compared to histopathologic results.METHODS: Spin-echo sequence(SE),fast spin-echo sequence(FSE) were detected in 12 children (7 males, 5 females) with mesenchymal hamartoma of the liver (MHL), aged 1.2 months to 12 years,( mean age, 6.3 years) by axial, saggital, coronary plain imaging with an Elscint 2.0T MR equipment. Their main symptoms were abdominal mass (5 cases), enlarged liver (8 cases), abdominal pain (1 case) and anemia (2 cases),and negative alpha-fetoprotein. Dynamic enhancement examination was added in 2 cases.RESULTS: Six cases had single mass type of MHL, in which 3 cases had solid masses showing slight low-signal-intensity in T1WI, and irregular high-signal-intensity in T2WI, 1 case had a cystic-solid mixed mass showing several border-clear cysts in a solid mass, 2 cases had cystic masses with multi-septa. Five cases had diffuse and multifocal lesions type of MHL with its signal intensity being similar to that of the solid mass. One case had a combined diffuse and single cystic mass. In the early dynamic enhancement examination, the lesions were slightly circum-enhanced, and the center was enhanced in the later scan images. Inner hepatic vessels were compressed in 5 cases, vena cava and abdominal aortae were compressed in 3 cases. Pathological findings included fiber hyperplasia, hyaline degeneration, biliary duct hyperplasia, lobule-like array.CONCLUSION: MR imaging is a better way to differentiate and diagnose MHL. MHL may be recognized by its characteristic occurrence in infancy and MR imaging features.
Incommensurate short-range multipolar order parameter of phase II in Ce3Pd20Si6
Portnichenko, P. Y.; Paschen, S.; Prokofiev, A.; Vojta, M.; Cameron, A. S.; Mignot, J.-M.; Ivanov, A.; Inosov, D. S.
2016-01-01
The clathrate compound Ce3Pd20Si6 is a heavy-fermion metal that exhibits magnetically hidden order at low temperatures. Reputedly, this exotic type of magnetic ground state, known as "phase II", could be associated with the ordering of Ce 4f quadrupolar moments. In contrast to conventional (dipolar) order, it has vanishing Bragg intensity in zero magnetic field and, as a result, has escaped direct observation by neutron scattering until now. Here we report the observation of diffuse magnetic ...
Kleeorin, N; Sokoloff, D D
2002-01-01
Magnetic fluctuations with a zero mean field in a random flow with a finite correlation time and a small yet finite magnetic diffusion are studied. Equation for the second-order correlation function of a magnetic field is derived. This equation comprises spatial derivatives of high orders due to a non-local nature of magnetic field transport in a random velocity field with a finite correlation time. For a random Gaussian velocity field with a small correlation time the equation for the second-order correlation function of the magnetic field is a third-order partial differential equation. For this velocity field and a small magnetic diffusion with large magnetic Prandtl numbers the growth rate of the second moment of magnetic field is estimated. The finite correlation time of a turbulent velocity field causes an increase of the growth rate of magnetic fluctuations. It is demonstrated that the results obtained for the cases of a small yet finite magnetic diffusion and a zero magnetic diffusion are different. As...
DEFF Research Database (Denmark)
Madsen, Daniel Esmarch; Hansen, Mikkel Fougt; Mørup, Steen
2008-01-01
We study the correlation between the superparamagnetic blocking temperature TB and the peak positions Tp observed in ac magnetization measurements for nanoparticles of different classes of magnetic materials. In general, Tp=α+βTB . The parameters α and β are different for the in-phase (χ') and out......-of-phase (χ") components and depend on the width σv of the log-normal volume distribution and the class of magnetic material (ferromagnetic/antiferromagnetic). Consequently, knowledge of both α and β is required if the anisotropy energy barrier KV and the attempt time To are to be reliably obtained from...
Stepanovs, Deniss
2016-01-01
We investigate the accretion-ejection process of jets from magnetized accretion disks. We apply a novel approach to the jet-launching problem in order to obtain correlations between the physical properties of the jet and the underlying disk. We extend and confirm the previous works of \\citet{2009MNRAS.400..820T} and \\citet{2010A&A...512A..82M} by scanning a large parameter range for the disk magnetization, $\\mu_{\\rm D} = 10^{-3.5} ... 10^{-0.7}$. We disentangle the disk magnetization at the foot point of the outflow as the main parameter that governs the properties of the outflow. We show how the four jet integrals known from steady-state MHD are correlated to the disk magnetization at the jet foot point. This agrees with the usual findings of the steady-state theory, however, here we obtain these correlations from time-dependent simulations that include the dynamical evolution of the disk in the treatment. In particular, we obtain robust correlations between the local disk magnetization and (i)the outflo...
Study of cross correlation coefficients of temperature fluctuations in a longitudinal magnetic field
Energy Technology Data Exchange (ETDEWEB)
Genin, L.G.; Manchkha, S.P.; Sviridov, V.G.
1977-01-01
An experimental study was made of the effect that a longitudinal magnetic field has on correlation coefficients of temperature fluctuations in a transverse direction. This effect on those fluctuations was shown to be small in comparison to its effect on the coefficients of longitudinal correlation. This indicates that the structure of the temperature field becomes more anisotropic so that there is an increase in the scale of turbulent disturbances in the direction of the magnetic field's force lines. 1 figure, 2 references.
Magnetic Resonance Imaging of Cerebral Aspergillosis: Imaging and Pathological Correlations
Sabou, Marcela; Lannes, Béatrice; Cotton, François; Meyronet, David; Galanaud, Damien; Cottier, Jean-Philippe; Grand, Sylvie; Desal, Hubert; Kreutz, Julie; Schenck, Maleka; Meyer, Nicolas; Schneider, Francis; Dietemann, Jean-Louis; Koob, Meriam
2016-01-01
Cerebral aspergillosis is associated with a significant morbidity and mortality rate. The imaging data present different patterns and no full consensus exists on typical imaging characteristics of the cerebral lesions. We reviewed MRI findings in 21 patients with cerebral aspergillosis and correlated them to the immune status of the patients and to neuropathological findings when tissue was available. The lesions were characterized by their number, topography, and MRI signal. Dissemination to the brain resulted from direct spread from paranasal sinuses in 8 patients, 6 of them being immunocompetent. Hematogenous dissemination was observed in 13 patients, all were immunosuppressed. In this later group we identified a total of 329 parenchymal abscesses involving the whole brain with a predilection for the corticomedullary junction. More than half the patients had a corpus callosum lesion. Hemorrhagic lesions accounted for 13% and contrast enhancement was observed in 61% of the lesions. Patients with hematogenous dissemination were younger (p = 0.003), had more intracranial lesions (p = 0.0004) and had a higher 12-week mortality rate (p = 0.046) than patients with direct spread from paranasal sinuses. Analysis of 12 aneurysms allowed us to highlight two distinct situations. In case of direct spread from the paranasal sinuses, aneurysms are saccular and located on the proximal artery portions, while the hematogenous dissemination in immunocompromised patients is more frequently associated with distal and fusiform aneurysms. MRI is the exam of choice for cerebral aspergillosis. Number and type of lesions are different according to the mode of dissemination of the infection. PMID:27097323
Farberovich, Oleg V.; Bazhanov, Dmitry I.
2017-10-01
A general study of [Tb2] molecular magnet is presented using the general spin Hamiltonian formalism. A spin-spin correlators determined for a spin wave functions in [Tb2] are analyzed numerically and compared in details with the results obtained by means of conventional quantum mechanics. It is shown that the various expectation values of the spin operators and a study of their corresponding probability distributions allow to have a novel understanding in spin dynamics of entangled qubits in quantum [Tb2] system. The obtained results reveal that the properties of spin-spin correlators are responsible for the entanglement of the spin qubit under a pulse magnetic field. It allows us to present some quantum circuits determined for quantum computing within SSNQ based on [Tb2] molecule, including the CNOT and SWAP gates.
Indian Academy of Sciences (India)
Tulika Gupta; Gopalan Rajaraman
2014-09-01
Ab initio CASSCF+RASSI-SO investigations on a series of lanthanide complexes [LnIII = Dy(1), Tb(2), Ce(3), Nd(4), Pr(5) and Sm(6)] have been undertaken and in selected cases (for 1, 2, 3 and 4) coordination number (C.N.) around the LnIII ion has been gradually varied to ascertain the effect of C.N. on the magnetic anisotropy. Our calculations reveal that complex 3 possesses the highest barrier height for reorientation of magnetisation (Ueff) and predict that 3 is likely to exhibit Single Molecule Magnet (SMM) behaviour. Complex 5 on the other hand is predicted to preclude any SMM behaviour as there is no intrinsic barrier for reorientation of magnetization. Ground state anisotropy of all the complexes show mixed behaviour ranging from pure Ising type to fully rhombic behaviour. Coordination number around the lanthanide ion is found to alter the magnetic behaviour of all the lanthanide complexes studied and this is contrary to the general belief that the lanthanide ions are inert and exert small ligand field interaction.High symmetric low-coordinate LnIII complexes are found to yield large Ueff values and thus should be the natural targets for achieving very large blocking temperatures.
Lifetime of rho meson in correlation with magnetic-dimensional reduction
Energy Technology Data Exchange (ETDEWEB)
Kawaguchi, Mamiya [Nagoya University, Department of Physics, Nagoya (Japan); Matsuzaki, Shinya [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Institute for Advanced Research, Nagoya (Japan)
2017-04-15
It is naively expected that in a strong magnetic configuration, the Landau quantization ceases the neutral rho meson to decay to the charged pion pair, so the neutral rho meson will be long-lived. To closely access this naive observation, we explicitly compute the charged pion loop in the magnetic field at the one-loop level, to evaluate the magnetic dependence of the lifetime for the neutral rho meson as well as its mass. Due to the dimensional reduction induced by the magnetic field (violation of the Lorentz invariance), the polarization (spin s{sub z} = 0, ±1) modes of the rho meson, as well as the corresponding pole mass and width, are decomposed in a nontrivial manner compared to the vacuum case. To see the significance of the reduction effect, we simply take the lowest Landau level approximation to analyze the spin-dependent rho masses and widths. We find that the ''fate'' of the rho meson may be more complicated because of the magnetic-dimensional reduction: as the magnetic field increases, the rho width for the spin s{sub z} = 0 starts to develop, reaches a peak, then vanishes at the critical magnetic field to which the folklore refers. On the other side, the decay rates of the other rhos for s{sub z} = ±1 monotonically increase as the magnetic field develops. The correlation between the polarization dependence and the Landau level truncation is also addressed. (orig.)
Lifetime of rho meson in correlation with magnetic-dimensional reduction
Kawaguchi, Mamiya; Matsuzaki, Shinya
2017-04-01
It is naively expected that in a strong magnetic configuration, the Landau quantization ceases the neutral rho meson to decay to the charged pion pair, so the neutral rho meson will be long-lived. To closely access this naive observation, we explicitly compute the charged pion loop in the magnetic field at the one-loop level, to evaluate the magnetic dependence of the lifetime for the neutral rho meson as well as its mass. Due to the dimensional reduction induced by the magnetic field (violation of the Lorentz invariance), the polarization (spin sz=0,± 1 modes of the rho meson, as well as the corresponding pole mass and width, are decomposed in a nontrivial manner compared to the vacuum case. To see the significance of the reduction effect, we simply take the lowest Landau level approximation to analyze the spin-dependent rho masses and widths. We find that the "fate" of the rho meson may be more complicated because of the magnetic-dimensional reduction: as the magnetic field increases, the rho width for the spin sz=0 starts to develop, reaches a peak, then vanishes at the critical magnetic field to which the folklore refers. On the other side, the decay rates of the other rhos for sz = ± 1 monotonically increase as the magnetic field develops. The correlation between the polarization dependence and the Landau level truncation is also addressed.
Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations.
Li, Tianqi; Patz, Aaron; Mouchliadis, Leonidas; Yan, Jiaqiang; Lograsso, Thomas A; Perakis, Ilias E; Wang, Jigang
2013-04-04
The technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications. Here we show femtosecond (10(-15) seconds) photo-induced switching from antiferromagnetic to ferromagnetic ordering in Pr0.7Ca0.3MnO3, by observing the establishment (within about 120 femtoseconds) of a huge temperature-dependent magnetization with photo-excitation threshold behaviour absent in the optical reflectivity. The development of ferromagnetic correlations during the femtosecond laser pulse reveals an initial quantum coherent regime of magnetism, distinguished from the picosecond (10(-12) seconds) lattice-heating regime characterized by phase separation without threshold behaviour. Our simulations reproduce the nonlinear femtosecond spin generation and underpin fast quantum spin-flip fluctuations correlated with coherent superpositions of electronic states to initiate local ferromagnetic correlations. These results merge two fields, femtosecond magnetism in metals and band insulators, and non-equilibrium phase transitions of strongly correlated electrons, in which local interactions exceeding the kinetic energy produce a complex balance of competing orders.
Kim, Se Hee; Kim, Ki-Se; Char, Kookheon; Yoo, Seong Il; Sohn, Byeong-Hyeok
2016-05-01
Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence enhancement, which also has a direct relevance to the development of fluorescence sensors or detectors. The enhancement mechanism was found to be interconnected with the excitation process rather than the alternation of the decay kinetics. In particular, we demonstrate that randomly oriented, but regular grains of lamellae of polystyrene-block-polyisoprene, PS-b-PI, diblock copolymers and their blend with PS homopolymers can behave as Bragg mirrors to induce multiple reflections of the excitation source inside the photonic structures. This process in turn significantly increases the effective absorption of the given fluorophores inside the polymeric photonic structures to amplify the fluorescence signal.Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence
Emata, K N; Hedin, M
2016-05-01
The harvestmen genus Calicina is represented by 25 short-range endemic species occurring in the western Sierra Nevada, Transverse and Coast Ranges of California. Our principal aim was to reconstruct the temporal and spatial biogeographic history of this arachnid lineage. We inferred a time-calibrated species tree for 21 of 25 described Calicina species using multiple genes and multilocus coalescent-based methods. This species tree was used as a framework for algorithmic biogeographic and divergence time analyses, and a phylogenetic canonical correlation analysis (CCA) was used to examine the relationship between morphological evolution and environmental variables. Species tree and biogeographic analyses indicate that high-elevation Sierran taxa are early-diverging in Calicina, with subsequent biogeographic "criss-crossing" of lineages from the Sierra Nevada to the Coast Ranges, back to the Sierra Nevada, then back to Coast Ranges. In both the Sierra Nevada and Coast Ranges, distantly-related parapatric lineages essentially never occur in sympatry. CCA reveals that in both the Coast Ranges and the Sierra Nevada, distant phylogenetic relatives evolve convergent morphologies. Our evidence shows that Calicina is clearly dispersal-limited, with an ancient biogeographic history that provides unique insight into the complex geologic evolution of California since the mid-Paleogene.
Muangma, I Korover N; Shneor, R; Sulkosky, V; Kelleher, A; Gilad, S; Higinbotham, D W; Watson, E Piasetzky J; Wood, S; Rakhman, Abdurahim; Aguilera, P; Ahmed, Z; Albataineh, H; Allada, K; Anderson, B; Anez, D; Aniol, K; Annand, J; Armstrong, W; Arrington, J; Averett, T; Badman, T; Baghdasaryan, H; Bai, X; Beck, A; Beck, S; Bellini, V; Benmokhtar, F; Bertozzi, W; Bittner, J; Boeglin, W; Camsonne, A; Chen, C; Chen, J -P; Chirapatpimol, K; Cisbani, E; Dalton, M; Daniel, A; Day, D; de Jager, C W; De Leo, R; Deconinck, W; Defurne, M; Flay, D; Fomin, N; Friend, M; Frullani, S; Fuchey, E; Garibaldi, F; Gaskell, D; Gilman, R; Glamazdin, O; Gu, C; Gueye, P; Hamilton, D; Hanretty, C; Hansen, O; Shabestari, M Hashemi; Holmstrom, T; Huang, M; Iqbal, S; Jin, G; Kalantarians, N; Kang, H; Khandaker, M; LeRose, J; Leckey, J; Lindgren, R; Long, E; Mammei, J; Margaziotis, D J; Markowitz, P; Jimenez-Arguello, A Marti; Meekins, D; Meziani, Z; Michaels, R; Mihovilovic, M; Monaghan, P; Camacho, C Munoz; Norum, B; Nuruzzaman,; Pan, K; Phillips, S; Pomerantz, I; Posik, M; Punjabi, V; Qian, X; Qiang, Y; Qiu, X; Reimer, P E; Riordan, S; Ron, G; Rondon-Aramayo, O; Saha, A; Schulte, E; Selvy, L; Shahinyan, A; Sirca, S; Sjoegren, J; Slifer, K; Solvignon, P; Sparveris, N; Subedi, R; Tireman, W; Wang, D; Weinstein, L B; Wojtsekhowski, B; Yan, W; Yaron, I; Ye, Z; Zhan, X; Zhang, J; Zhang, Y; Zhao, B; Zhao, Z; Zheng, X; Zhu, P; Zielinski, R
2014-01-01
We measured simultaneously the 4He(eep), 4He(eepp), and 4He(e,e'pn) reactions at Q^2=2 [GeV/c]2 and x_B>1, for a (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Neutron-proton pairs dominate the high-momentum tail of the nucleon momentum distributions, but their abundance is reduced as the nucleon momentum increases beyond ~500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum in the range we studied. Our data are compared with ab-initio calculations of two-nucleon momentum distributions in 4He.
Temperature dependence of the short-range order parameter for Fe0.90Cr0.10 and Fe0.88Cr0.12 alloys
Directory of Open Access Journals (Sweden)
Idczak Rafał
2015-03-01
Full Text Available The 57Fe Mössbauer spectra for the iron-based solid solutions Fe0.90Cr0.10 and Fe0.88Cr0.12 were measured at different temperatures ranging from 300 K to 900 K. Analysis of the obtained spectra shows that the distribution of impurity atoms in the two first coordination shells of 57Fe nuclei is not random and it cannot be described by the binomial distribution. Quantitatively, the effects were described in terms of the atomic short-range order (SRO parameters and the pair-wise interaction energy with the help of a quasi-chemical type formulation introduced by Cohen and Fine. The obtained results reveal strong clustering-type correlations in the studied samples (a predominance of Fe-Fe and Cr-Cr bonds. Moreover, the changes in SRO values observed during thermal processing suggest that the distribution of Cr atoms in an α-iron matrix is strongly temperature dependent.
Magnetic anisotropic effects and electronic correlations in MnBi ferromagnet
Energy Technology Data Exchange (ETDEWEB)
Antropov, VP; Antonov, VN; Bekenov, LV; Kutepov, A; Kotliar, G
2014-08-07
The electronic structure and numerous magnetic properties of MnBi magnetic systems are investigated using local spin density approximation (LSDA) with on-cite Coulomb correlations (LSDA+U) included. We show that the inclusion of Coulomb correlations provides a much better description of equilibrium magnetic moments on Mn atoms as well as the magnetic anisotropy energy behavior with temperature and magneto-optical effects. We found that the inversion of the anisotropic pairwise exchange interaction between Bi atoms is responsible for the observed spin reorientation transition at 90 K. This interaction appears as a result of strong spin orbit coupling on Bi atoms, large magnetic moments on Mn atoms, significant p-d hybridization between Mn and Bi atoms, and it depends strongly on lattice constants (anisotropic Bi-Bi exchange striction). A better agreement with the magneto-optical Kerr measurements at higher energies is obtained. We also present the detailed investigation of the Fermi surface, the de Haas-van Alphen effect, and the x-ray magnetic circular dichroism in MnBi.
Magnetic anisotropic effects and electronic correlations in MnBi ferromagnet
Energy Technology Data Exchange (ETDEWEB)
Antropov, V P [Ames Laboratory; Antonov, V N [Ames Laboratory; Bekenov, L V [Institute of metal Physics; Kutepov, A [Ames Laboratory; Kotliar, G [Rutgers University
2014-08-01
The electronic structure and numerous magnetic properties of MnBi magnetic systems are investigated using local spin density approximation (LSDA) with on-cite Coulomb correlations (LSDA+U) included. We show that the inclusion of Coulomb correlations provides a much better description of equilibrium magnetic moments on Mn atoms as well as the magnetic anisotropy energy behavior with temperature and magneto-optical effects. We found that the inversion of the anisotropic pairwise exchange interaction between Bi atoms is responsible for the observed spin reorientation transition at 90 K. This interaction appears as a result of strong spin orbit coupling on Bi atoms, large magnetic moments on Mn atoms, significant p-d hybridization between Mn and Bi atoms, and it depends strongly on lattice constants (anisotropic Bi-Bi exchange striction). A better agreement with the magneto-optical Kerr measurements at higher energies is obtained. We also present the detailed investigation of the Fermi surface, the de Haas–van Alphen effect, and the x-ray magnetic circular dichroism in MnBi.
A scaling theory for the long-range to short-range crossover and an infrared duality arXiv
Behan, Connor; Rychkov, Slava; Zan, Bernardo
We study the second-order phase transition in the $d$-dimensional Ising model with long-range interactions decreasing as a power of the distance $1/r^{d+s}$. For $s$ below some known value $s_*$, the transition is described by a conformal field theory without a local stress tensor operator, with critical exponents varying continuously as functions of $s$. At $s=s_*$, the phase transition crosses over to the short-range universality class. While the location $s_*$ of this crossover has been known for 40 years, its physics has not been fully understood, the main difficulty being that the standard description of the long-range critical point is strongly coupled at the crossover. In this paper we propose another field-theoretic description which, on the contrary, is weakly coupled near the crossover. We use this description to clarify the nature of the crossover and make predictions about the critical exponents. That the same long-range critical point can be reached from two different UV descriptions provides a n...
On the short-range order of the SiO{sub x} (0 {<=} x {<=} 2) surface
Energy Technology Data Exchange (ETDEWEB)
Bondarchuk, O., E-mail: bobon@fhi-berlin.mpg.de [Department of RadioPhysics, University of Kiev, Volodymerska Str. 64, Kiev (Ukraine); Goysa, S.; Koval, I.; Melnik, P.; Nakhodkin, M. [Department of RadioPhysics, University of Kiev, Volodymerska Str. 64, Kiev (Ukraine)
2009-04-01
Fine (oscillating) structure (FS) in the elastically scattered electron spectra (ESES) [O. Bondarchuk, S. Goysa, I. Koval, P. Melnik, M. Nakhodkin, Surf. Sci. 258 (1991) 239; O. Bondarchuk, S. Goysa, I. Koval, P. Melnik, M. Nakhodkin, Surf. Rev. Lett. 4 (1997) 965] was used to investigate surface structure of the SiO{sub x} (0 {<=} x {<=} 2). SiO{sub x} surface with different stoichiometry was prepared by implantation of 500 eV oxygen ions into a silicon wafer. Fourier transformation of the FS ESES contains one peak at 2.32 A for Si, two peaks at 1.62 A and 2.65 A for a-SiO{sub 2} and three peaks centered at 1.6-1.7 A, 2.1-2.2 A and 2.65-3.04 A for SiO{sub x}. Peaks at 1.62 A and 2.65 A are assigned to Si-O and O-O nearest distances correspondently. Ratio of the area under the peak at 2.65 A to the area under the peak at 1.62 A turned out to be not constant but grows linearly with the composition parameter x. The latter is considered to prove validity of the Random Bond Model to describe short-range order on the surface of non-stoichiometric silicon oxide.
Ran, Ying; Jiang, Shenghan
Phases of matter are sharply defined in the thermodynamic limit. One major challenge of accurately simulating quantum phase diagrams of interacting quantum systems is due to the fact that numerical simulations usually deal with the energy density, a local property of quantum wavefunctions, while identifying different quantum phases generally rely on long-range physics. In this paper we construct generic fully symmetric quantum wavefunctions under certain assumptions using a type of tensor networks: projected entangled pair states, and provide practical simulation algorithms based on them. We find that quantum phases can be organized into crude classes distinguished by short-range physics, which is related to the fractionalization of both on-site symmetries and space-group symmetries. Consequently, our simulation algorithms, which are useful to study long-range physics as well, are expected to be able to sharply determine crude classes in interacting quantum systems efficiently. Examples of these crude classes are demonstrated in half-integer quantum spin systems on the kagome lattice. Limitations and generalizations of our results are discussed. The Alfred P. Sloan fellowship and National Science Foundation under Grant No. DMR-1151440.
Thermal ageing and short-range ordering of Alloy 690 between 350 and 550 °C
Mouginot, Roman; Sarikka, Teemu; Heikkilä, Mikko; Ivanchenko, Mykola; Ehrnstén, Ulla; Kim, Young Suk; Kim, Sung Soo; Hänninen, Hannu
2017-03-01
Thermal ageing of Alloy 690 triggers an intergranular (IG) carbide precipitation and is known to promote an ordering reaction causing lattice contraction. It may affect the long-term primary water stress corrosion cracking (PWSCC) resistance of pressurized water reactor (PWR) components. Four conditions of Alloy 690 (solution annealed, cold-rolled and/or heat-treated) were aged between 350 and 550 °C for 10 000 h and characterized. Although no direct observation of ordering was made, variations in hardness and lattice parameter were attributed to the formation of short-range ordering (SRO) in all conditions with a peak level at 420 °C, consistent with the literature. Prior heat treatment induced ordering before thermal ageing. At higher temperatures, stress relaxation, recrystallization and α-Cr precipitation were observed in the cold-worked samples, while a disordering reaction was inferred in all samples based on a decrease in hardness. IG precipitation of M23C6 carbides increased with increasing ageing temperature in all conditions, as well as diffusion-induced grain boundary migration (DIGM).
Energy Technology Data Exchange (ETDEWEB)
Zhu, Z.W. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gu, L. [WPI, Advance Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Xie, G.Q. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Zhang, W., E-mail: wzhang@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, A. [WPI, Advance Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Zhang, H.F., E-mail: hfzhang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)
2011-04-15
The relation between icosahedral short-range ordering (ISRO) and plastic deformation was investigated in Zr{sub 70-x}Nb{sub x}Cu{sub 13.5}Ni{sub 8.5}Al{sub 8} (at.%, x = 0, 2, 4, 6, 7, 8, 10) bulk metallic glasses (BMG). The formation of icosahedral quasicrystal (I-phase) during the annealing process implies that ISRO widely exists in these materials. The degree of ISRO is thermodynamically evaluated to show that ISRO increases with increasing Nb content. Compression tests indicate that BMG with 0-7 at.% Nb possess similar unusual plastic deformability, which is attributed to ISRO-mediated local distribution of free volume (FV) and ISRO prompted deformation-induced crystallization. A proposed core-shell model coupled with transmission electron microscopy analysis demonstrates that the FV is distributed more heterogeneously with increasing ISRO, which is beneficial for multiplying the shear bands. Deformation-induced crystallization is facilitated, owing to the low interfacial energy of the nucleation and growth of the crystals attributed to ISRO in the amorphous matrix, which improves plasticity by consuming energy and the product altering the stress field in the amorphous matrix. Design of new ductile BMG is discussed in these strategies.
Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket
Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin
2015-01-01
The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.
Accurate classical short-range forces for the study of collision cascades in Fe-Ni-Cr
Béland, Laurent Karim; Tamm, Artur; Mu, Sai; Samolyuk, German D.; Osetsky, Yuri N.; Aabloo, Alvo; Klintenberg, Mattias; Caro, Alfredo; Stoller, Roger E.
2017-10-01
The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed. The pairwise terms and the embedding terms of the potential are modified in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni50Fe50, Ni80Cr20 and Ni33Fe33Cr33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.
Institute of Scientific and Technical Information of China (English)
ZHAIXuping; BIGuangguo; XUPingping
2005-01-01
In high-rate short-range wireless networks,CAC (Call admission control) scheme plays an important role in quality of service provisioning for adaptive multimedia services. Three functions, namely bandwidth satisfaction function, revenue rate function and bandwidth reallocation cost function, are firstly introduced. Based on these functions, an efficient CAC scheme, the Rev-RT-BRA (Reservation-based and Revenue test with Bandwidth reallocation) CAC scheme is proposed. The main idea is that it reserves some bandwidth for service classes with higher admission priority. The performance of the Rev-RT-BRA CAC scheme is analyzed by solving a multidimension Markov process. Both the numerical and simulation results are given. The advantages of the proposedRev-RT-BRA CAC scheme are as follows. (1) It maximizes the overall bandwidth satisfaction function at any system state. (2) It solves the unfairness problem in admitting multiple classes of services with different bandwidth requirenlents. (3) The required admission priority level can be guaranteed for various classes of services.
Ninomiya, K.; Akiyama, T.; Hata, M.; Hatori, M.; Iguri, T.; Ikeda, Y.; Inaba, S.; Kawamura, H.; Kishi, R.; Murakami, H.; Nakaya, Y.; Nishio, H.; Ogawa, N.; Onishi, J.; Saiba, S.; Sakuta, T.; Tanaka, S.; Tanuma, R.; Totsuka, Y.; Tsutsui, R.; Watanabe, K.; Murata, J.
2017-09-01
The composition dependence of gravitational constant G is measured at the millimeter scale to test the weak equivalence principle, which may be violated at short range through new Yukawa interactions such as the dilaton exchange force. A torsion balance on a turning table with two identical tungsten targets surrounded by two different attractor materials (copper and aluminum) is used to measure gravitational torque by means of digital measurements of a position sensor. Values of the ratios \\tilde{G}_Al-W/\\tilde{G}_Cu-W -1 and \\tilde{G}_Cu-W/GN -1 were (0.9 +/- 1.1sta +/- 4.8sys) × 10-2 and (0.2 +/- 0.9sta +/- 2.1sys) × 10-2 , respectively; these were obtained at a center to center separation of 1.7 cm and surface to surface separation of 4.5 mm between target and attractor, which is consistent with the universality of G. A weak equivalence principle (WEP) violation parameter of η_Al-Cu(r∼ 1 cm)=(0.9 +/- 1.1sta +/- 4.9sys) × 10-2 at the shortest range of around 1 cm was also obtained.
A scaling theory for the long-range to short-range crossover and an infrared duality
Behan, Connor; Rastelli, Leonardo; Rychkov, Slava; Zan, Bernardo
2017-09-01
We study the second-order phase transition in the d-dimensional Ising model with long-range interactions decreasing as a power of the distance 1/rd+s . For s below some known value s* , the transition is described by a conformal field theory without a local stress tensor operator, with critical exponents varying continuously as functions of s. At s=s* , the phase transition crosses over to the short-range universality class. While the location s* of this crossover has been known for 40 years, its physics has not been fully understood, the main difficulty being that the standard description of the long-range critical point is strongly coupled at the crossover. In this paper we propose another field-theoretic description which, on the contrary, is weakly coupled near the crossover. We use this description to clarify the nature of the crossover and make predictions about the critical exponents. That the same long-range critical point can be reached from two different UV descriptions provides a new example of infrared duality. Dedicated to John Cardy on the occasion of his 70th birthday.
Institute of Scientific and Technical Information of China (English)
Guoliang Chen; Xidong Hui; Kefu Yao; Huaiyu Hou; Xiongjun Liu; Meiling Wang; Guang Chen
2005-01-01
The atomic configuration of chemical short-range order (CSRO) for the Zr-base metallic glasses was investigated by using nano-diffraction and high resolution transmission electronic microscopy (HRTEM) technology with a beam size of 0.5 nm. It is illustrated that the pattern of atomic configuration of CSRO might have various compound counterparts because of the chemical interaction of bonding atoms. Some atomic configuration of MCSRO is similar to the icosahedral structure with 10-fold symmetry of very weak spots. In deed, the nano-beam technology could clearly detect the evolution of atomic configuration in nanometer scale during the transformation from the metallic melt to the primary crystallization. The local atomic configuration of CSRO is also investigated by molecular dynamics simulation (MD) for the Zr2Ni compound in a wider temperature range. The CSRO in the melt could be pictorially demonstrated as distorted coordination polyhedron of the compound structure and/or the structure similar to cubo-octahedron analogs. The MD simulation illustrates that the atomic packing of long-range order disappears just above the melting point, but the chemical interaction of bonding atoms still exists that leads to form the various CSRO with the atomic configuration similar to stable or metastable unit cell of Zr2Ni compound. The icosahedral polyhedron became more abundance as the overheating temperature was raised.
Hoffmann, M.; Marmodoro, A.; Ernst, A.; Hergert, W.; Dahl, J.; Lång, J.; Laukkanen, P.; Punkkinen, M. P. J.; Kokko, K.
2016-08-01
We investigate the effect of short-range order (SRO) on the electronic structure in alloys from the theoretical point of view using density of states (DOS) data. In particular, the interaction between the atoms at different lattice sites is affected by chemical disorder, which in turn is reflected in the fine structure of the DOS and, hence, in the outcome of spectroscopic measurements. We aim at quantifying the degree of potential SRO with a proper parameter. The theoretical modeling is done with the Korringa-Kohn-Rostoker Green’s function method. Therein, the extended multi-sublattice non-local coherent potential approximation is used to include SRO. As a model system, we use the binary solid solution Ag c Pd1-c at three representative concentrations c = 0.25, 0.5 and 0.75. The degree of SRO is varied from local ordering to local segregation through an intermediate completely uncorrelated state. We observe some pronounced features, which change over the whole energy range of the valence bands as a function of SRO in the alloy. These spectral variations should be traceable in modern photoemission experiments.
Hinrichs, Ruth; Frank, Paulo Ricardo Ost; Vasconcellos, M A Z
2017-03-01
Modifications of cotton and polyester textiles due to shots fired at short range were analyzed with a variable pressure scanning electron microscope (VP-SEM). Different mechanisms of fiber rupture as a function of fiber type and shooting distance were detected, namely fusing, melting, scorching, and mechanical breakage. To estimate the firing distance, the approximately exponential decay of GSR coverage as a function of radial distance from the entrance hole was determined from image analysis, instead of relying on chemical analysis with EDX, which is problematic in the VP-SEM. A set of backscattered electron images, with sufficient magnification to discriminate micrometer wide GSR particles, was acquired at different radial distances from the entrance hole. The atomic number contrast between the GSR particles and the organic fibers allowed to find a robust procedure to segment the micrographs into binary images, in which the white pixel count was attributed to GSR coverage. The decrease of the white pixel count followed an exponential decay, and it was found that the reciprocal of the decay constant, obtained from the least-square fitting of the coverage data, showed a linear dependence on the shooting distance.
Asscher, Yotam; Dal Sasso, Gregorio; Nodari, Luca; Angelini, Ivana; Boffa Ballaran, Tiziana; Artioli, Gilberto
2017-08-16
Local atomic disorder and crystallinity are structural properties that influence greatly the resulting chemical and mechanical properties of inorganic solids, and are used as indicators for different pathways of material formation. Here, these structural properties are assessed in the crystals of quartz based on particle-size-related scattering processes in transmission infra-red spectroscopy. Independent determinations of particle size distributions in the range 2-100 μm of a single crystal of quartz and defective quartz with highly anisotropic micro-crystallites show that particle sizes below the employed wavelength (approx 10 μm) exhibit asymmetric narrowing of absorption peak widths, due to scattering processes that depend on the intra-particle structural defects and long range crystallinity. In particular, we observe that the 1079 cm(-1) peak could be used to assess crystallinity, because it shows an asymmetric peak shape shift toward a higher wavelength, depending on the crystallite size. We observe that the 694 cm(-1) peak could be used to assess local atomic disorder as it does not show scattering and peak shape changes when absorption effects dominate, below 2 μm. We propose coupling particle size assessments with infra-red peak shape analysis as a method to characterize crystallinity and short range order for studying recrystallization in natural silica, as well as defectivity in many different types of silicas used for industrial and technological applications.
Modular organization of directionally tuned cells in the motor cortex: Is there a short-range order?
Amirikian, Bagrat; Georgopoulos, Apostolos P.
2003-10-01
We investigated the presence of short-range order (<600 μm) in the directional properties of neurons in the motor cortex of the monkey. For that purpose, we developed a quantitative method for the detection of functional cortical modules and used it to examine such potential modules formed by directionally tuned cells. In the functional domain, we labeled each cell by its preferred direction (PD) vector in 3D movement space; in the spatial domain, we used the position of the tip of the recording microelectrode as the cell's coordinate. The images produced by this method represented two orthogonal dimensions in the cortex; one was parallel ("horizontal") and the other perpendicular ("vertical") to the cortical layers. The distribution of directionally tuned cells in these dimensions was nonuniform and highly structured. Specifically, cells with similar PDs tended to segregate into vertically oriented minicolumns 50-100 μm wide and at least 500 μm high. Such minicolumns aggregated across the horizontal dimension in a secondary structure of higher order. In this structure, minicolumns with similar PDs were 200 μm apart and were interleaved with minicolumns representing nearly orthogonal PDs; in addition, nonoverlapping columns representing nearly opposite PDs were 350 μm apart.
Indian Academy of Sciences (India)
Prashant Kumar; Randhir Singh; P C Joshi; P K Pal
2011-02-01
The three dimensional variational data assimilation scheme (3D-Var) is employed in the recently developed Weather Research and Forecasting (WRF) model. Assimilation experiments have been conducted to assess the impact of Indian Space Research Organisation’s (ISRO) Automatic Weather Stations (AWS) surface observations (temperature and moisture) on the short range forecast over the Indian region. In this study, two experiments, CNT (without AWS observations) and EXP (with AWS observations) were made for 24-h forecast starting daily at 0000 UTC during July 2008. The impact of assimilation of AWS surface observations were assessed in comparison to the CNT experiment. The spatial distribution of the improvement parameter for temperature, relative humidity and wind speed from one month assimilation experiments demonstrated that for 24-h forecast, AWS observations provide valuable information. Assimilation of AWS observed temperature and relative humidity improved the analysis as well as 24-h forecast. The rainfall prediction has been improved due to the assimilation of AWS data, with the largest improvement seen over the Western Ghat and eastern India.
Roermund, Arthur; Baschirotto, Andrea
2012-01-01
The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.
Canfora, Fabrizio
2016-10-01
I analyze the quantum mechanical scattering off a topological defect (such as a Dirac monopole) as well as a Yukawa-like potential(s) representing the typical effects of strong interactions. This system, due to the presence of a short-range potential, can be analyzed using the powerful technique of the complex angular momenta which, so far, has not been employed in the presence of monopoles (nor of other topological solitons). Due to the fact that spatial spherical symmetry is achieved only up to internal rotations, the partial wave expansion becomes very similar to the Jacob-Wick helicity amplitudes for particles with spin. However, since the angular-momentum operator has an extra "internal" contribution, fixed cuts in the complex angular momentum plane appear. Correspondingly, the background integral in the Regge formula does not decrease for large values of |cos θ | (namely, large values of the Mandelstam variable s ). Hence, the experimental observation of this kind of behavior could be a direct signal of nontrivial topological structures in strong interactions. The possible relations of these results with the soft Pomeron are shortly analyzed.
Canfora, Fabrizio
2016-01-01
It is analyzed the quantum mechanical scattering off a topological defect (such as a Dirac monopole) as well as a Yukawa-like potential(s) representing the typical effects of strong interactions. This system, due to the presence of a short-range potential, can be analyzed using the powerful technique of the complex angular momenta which, so far, has not been employed in the presence of monopoles (nor of other topological solitons). Due to the fact that spatial spherical symmetry is achieved only up to internal rotations, the partial wave expansion becomes very similar to the Jacob-Wick helicity amplitudes for particles with spin. However, since the angular-momentum operator has an extra "internal" contribution, fixed cuts in the complex angular momentum plane appear. Correspondingly, the background integral in the Regge formula does not decrease for large values of cos(Theta) (namely, large values of the Mandelstam variable s). Hence, the experimental observation of this kind of behavior could be a direct sig...
Darby, Desmond; Gonzalez, J. Javier; Lesage, Philippe
1984-04-01
The short-range geodetic data from northern Baja California, Mexico, for the period 1974-1982 are carefully analyzed. These data contribute to an understanding of the complex pattern of faulting associated with the Pacific-North American plate boundary in this region. Survey precisions are evaluated and significant systematic errors are found to exist. A technique of studying a scale-free displacement solution is developed as an aid to interpreting the data. We conclude that (1) the motion on the San Miguel-Vallecitos fault system is presently in a right-lateral sense and at a level that warrants trilateration surveys at least annually, (2) present geodetic data permit no statement about movement on the Agua Bianca fault, and (3) the mesa, whose flank delineates the Cerro Prieto fault in the Valle de Mexicali, lies in a zone which has undergone significant horizontal areal compression, at a rate of 14±5 ppm/yr, in addition to a right-lateral tensor shear at a rate of 4±1 ppm/yr, oriented N(;33°±9°)W, between 1980 and 1982.
Furuichi, Mikito; Nishiura, Daisuke
2017-10-01
We developed dynamic load-balancing algorithms for Particle Simulation Methods (PSM) involving short-range interactions, such as Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-implicit method (MPS), and Discrete Element method (DEM). These are needed to handle billions of particles modeled in large distributed-memory computer systems. Our method utilizes flexible orthogonal domain decomposition, allowing the sub-domain boundaries in the column to be different for each row. The imbalances in the execution time between parallel logical processes are treated as a nonlinear residual. Load-balancing is achieved by minimizing the residual within the framework of an iterative nonlinear solver, combined with a multigrid technique in the local smoother. Our iterative method is suitable for adjusting the sub-domain frequently by monitoring the performance of each computational process because it is computationally cheaper in terms of communication and memory costs than non-iterative methods. Numerical tests demonstrated the ability of our approach to handle workload imbalances arising from a non-uniform particle distribution, differences in particle types, or heterogeneous computer architecture which was difficult with previously proposed methods. We analyzed the parallel efficiency and scalability of our method using Earth simulator and K-computer supercomputer systems.
Correlation functions of small-scale fluctuations of the interplanetary magnetic field
Németh, Z; Lucek, E A
2010-01-01
The Interplanetary Magnetic Field shows complex spatial and temporal variations. Single spacecraft measurements reveal only a one dimensional section of this rich four dimensional phenomenon. Multi-point measurements of the four Cluster spacecraft provide a unique tool to study the spatiotemporal structure of the field. Using Cluster data we determined three dimensional correlation functions of the fluctuations. By means of the correlation function one can describe and measure field variations. Our results can be used to verify theoretical predictions, to understand the formation and nature of solar wind turbulence. We found that the correlation length varies over almost six orders of magnitude. The IMF turbulence shows significant anisotropy with two distinct populations. In certain time intervals the ratio of the three axes of the correlation ellipse is 1/2.2/6 while in the remaining time we found extremely high correlation along one axis. We found favoured directions in the orientation of the correlation e...
Dimensional evolution of spin correlations in the magnetic pyrochlore Yb2Ti2O7
DEFF Research Database (Denmark)
Ross, K.A.; Yaraskavitch, L.R.; Laver, Mark
2011-01-01
The pyrochlore material Yb2Ti2O7 displays unexpected quasi-two-dimensional (2D) magnetic correlations within a cubic lattice environment at low temperatures, before entering an exotic disordered ground state below T=265 mK. We report neutron scattering measurements of the thermal evolution of the 2...
LENUS (Irish Health Repository)
Kok, Hong Kuan
2013-08-01
Chondromalacia patellae is a common cause of anterior knee pain in young patients and can be detected noninvasively with magnetic resonance imaging (MRI). The purpose of our study was to evaluate the correlation between subcutaneous fat thickness around the knee joint on axial MRIs as a surrogate marker of obesity, with the presence or absence of chondromalacia patellae.
Correlating signs and symptoms with pubovisceral muscle avulsions on magnetic resonance imaging
Lammers, K.; Futterer, J.J.; Hout, J. in't; Prokop, M.; Vierhout, M.E.; Kluivers, K.B.
2013-01-01
OBJECTIVE: We sought to correlate signs and symptoms of pelvic organ prolapse (POP) with pubovisceral muscle avulsions on magnetic resonance imaging (MRI). STUDY DESIGN: In this retrospective cohort study of 189 women with recurrent POP or unexplained symptoms of pelvic floor dysfunction, we reviewe
XPCS study of dynamic correlation in polyurethane gel-carbonyl iron composite under magnetic field
Energy Technology Data Exchange (ETDEWEB)
Grigoriew, Helena [Institute of Nuclear Chemistry and Technology, Warsaw 03195 (Poland); Wiegart, Lutz [ESRF, Grenoble, 38043 Cedex 9 (France); Boczkowska, Anna [Faculty of Materials Science, Warsaw University of Technology (Poland); Mirkowska, Monika, E-mail: haga311@hotmail.co [Institute of Electronic Materials Technology, Warsaw (Poland)
2010-10-01
An X-ray photon correlation spectroscopy (XPCS) study of composite-type material consisting of polyurethane gel and carbonyl iron micrometric spheres was performed under magnetic fields of 0, 300 and 600 mT. The onion-like spheres structure was destroyed during the composite processing. The following conclusions were obtained from the study: -The polyurethane matrix is preferred as a source for the observed dynamic effects. -Below 300mT the material dynamics in direction of the outer magnetic field are very clear. -For 600 mT the dependence of the dynamics on magnetic field direction disappears, but the correlation rate is much higher. These findings may be caused by a disturbance of the polymer mesostructure by larger strain leading to its cross-linking.
Exact spectra of strong coulomb correlations of 3-D 2-e harmonic dots in magnetic field
Aggarwal, Priyanka; Sharma, Shivalika; Kaur, Harsimran; Singh, Sunny; Hazra, Ram Kuntal
2017-01-01
Applications of 3-D 2-e systems have proliferated very fast due to technological advancements in wide range of phenomena from atomic landscape to mesoscopic scale. The unusual properties of atomic/mesoscopic systems are the results of interplaying charge interactions among different bound states. The non-trivial e-e correlations in electrically and/or magnetically confined systems improvise wealth of intriguing challenges at fundamental level due to lack of exact solution of Schrödinger equations. For the first time, a novel methodology of exactly finite summed coulomb correlations invented by us is so handy that even usual programmable calculator can be used to examine the electronic structures of 3-D 2-e harmonic dots in perpendicular magnetic field (symmetric gauge). Statistics of electronic levels, heat capacity measurements and magnetization (T∼1 K) are also investigated in brief to probe the degree of disorderedness.
Decamp, Jean; Jünemann, Johannes; Albert, Mathias; Rizzi, Matteo; Minguzzi, Anna; Vignolo, Patrizia
2016-11-01
A universal k-4 decay of the large-momentum tails of the momentum distribution, fixed by Tan's contact coefficients, constitutes a direct signature of strong correlations in a short-range interacting quantum gas. Here we consider a repulsive multicomponent Fermi gas under harmonic confinement, as in the experiment of G. Pagano et al. [Nat. Phys. 10, 198 (2014), 10.1038/nphys2878], realizing a gas with tunable SU(κ ) symmetry. We exploit an exact solution at infinite repulsion to show a direct correspondence between the value of the Tan's contact for each of the κ components of the gas and the Young tableaux for the SN permutation symmetry group identifying the magnetic structure of the ground state. This opens a route for the experimental determination of magnetic configurations in cold atomic gases, employing only standard (spin-resolved) time-of-flight techniques. Combining the exact result with matrix-product-state simulations, we obtain the Tan's contact at all values of repulsive interactions. We show that a local-density approximation (LDA) on the Bethe-ansatz equation of state for the homogeneous mixture is in excellent agreement with the results for the harmonically confined gas. At strong interactions, the LDA predicts a scaling behavior of the Tan's contact. This provides a useful analytical expression for the dependence on the number of fermions, number of components, and interaction strength. Moreover, using a virial approach, we study the Tan's contact behavior at high temperature and in the limit of infinite interactions, and we show that it increases with the temperature and the number of components. At zero temperature, we predict that the weight of the momentum distribution tails increases with interaction strength and the number of components if the population per component is kept constant. This latter property was experimentally observed in G. Pagano et al. [Nat. Phys. 10, 198 (2014), 10.1038/nphys2878].
Sharma, Amit; Chhangani, Sumit; Madhavan, R.; Suwas, Satyam
2017-07-01
This paper reports the evolution of microstructure and texture in Nickel-Cobalt electrodeposits fabricated by pulse electrodeposition (PED) technique and the correlation of these attributes with the magnetic properties. The structural and microstructural investigation using X-ray diffraction and transmission electron microscopic studies indicate the presence of nanocrystalline grains and nano-twins in the electrodeposits. Convoluted Multiple Whole profile fitting reveals an increase in dislocation density and twin density with increasing cobalt content in the as-deposited samples. Strengthening of fibre texture and weakening of fibre texture with increasing cobalt concentration has been observed with X-ray texture analysis. A corresponding significant increase in the saturation magnetization and coercivity observed with increasing cobalt content. A significant improvement in the soft magnetic character in the electrodeposits in terms of increase in saturation magnetization and decrease in coercivity has been observed with thermal annealing.
Correlation between bulk magnetoelectricity and boundary magnetization in Cr2O3
Wang, Junlei; Binek, Christian
2014-03-01
Boundary magnetization is a roughness insensitive net magnetization. It emerges at the surface or interface of a magnetoelectric antiferromagnet in a single-domain state and has been utilized in voltage controlled spintronic system for potential ultra-low power application based on exchange bias system with Cr2O3. Previous work has lacked to demonstrate the direct relation between the bulk spin structure and the boundary magnetization. In this work, we use magneto-optical Faraday effect to observe boundary magnetization and correlate it with the bulk magnetoelectric response of a Cr2O3 single crystal on an applied electric field, E. Our method discriminates the E- dependent bulk Faraday rotation, θ, from the stationary boundary magnetization. To this end we investigate θ vs. E in two distinct antiferromagnetic single-domain states which are prepared via magnetoelectric annealing. Temperature dependence of the boundary magnetization, mBM ~ Θ(E = 0), as well as the corresponding bulk magnetoelectric susceptibility, α ~ d Θ/d E, is obtained from separate investigations of θ vs. Efor the two single domain states. Our magneto-optical setup uses a near-infrared laser so that transmission loss is admissible for our sample of 500 μm thickness. We utilize lock-in and compensation techniques to maximize measurement precision and to enable absolute Faraday rotation measurement which is gauged with respect to magnetization.
Correlation of Magnetic Properties of Co/Cr Bilayer Thin Films with Grain Boundary Diffusion
Institute of Scientific and Technical Information of China (English)
Gaowu Qin; Bo Yang; Wenli Pei; Yuping Ren
2009-01-01
The microstructure and magnetic properties of Co/Cr bilayer films were examined before and after post-deposition annealing by using transmission electron microscopy (TEM), X-ray diffraction (XRD) technique and vibrating sample magnetometer (VSM). A model of grain boundary (GB) Cr-rich phase growth involving GB diffusion derived from the Cr underlayer was proposed to elucidate the kinetics of the paramagnetic Cr-rich phase growth along Co GBs within the Co layer. The correlation of the GB Cr-rich phase formation with the magnetic Co grain isolation and accordingly, improvement of magnetic properties was experimentally investigated and discussed in detail. Our analysis results are well consistent with previous micromagnetic simulations on the improvement of magnetic properties by the magnetic grain isolation. The results provide some insights into the processing-structure-property relationships of the Co/Cr bilayer films, and thus suggest that the magnetic grain isolation be feasible not only in longitudinal recording media, but also be effective in tuning the exchange coupling of magnetic grains in perpendicular recording media via the GB diffusion from underlayer and/or overlayer.
Cross-correlation analysis of the AE index and the interplanetary magnetic field Bz component.
Meng, C.-I.; Tsurutani, B.; Kawasaki, K.; Akasofu, S.-I.
1973-01-01
A cross-correlation study between magnetospheric activity (the AE index) and the southward-directed component of the interplanetary magnetic field (IMF) is made for a total of 792 hours (33 days) with a time resolution of about 5.5 min. The peak correlation tends to occur when the interplanetary data are shifted approximately 40 min later with respect to the AE index data. Cross-correlation analysis is conducted on some idealized wave forms to illustrate that this delay between southward turning of the IMF and the AE index should not be interpreted as being the duration of the growth phase.
Correlation between magnon and magnetic symmetries of hexagonal RMnO3 (R = Er, Ho, Lu)
Nguyen, Thi Minh Hien; Nguyen, Thi Huyen; Chen, Xiang-Bai; Park, Yeonju; Jung, Young Mee; Lee, D.; Noh, T. W.; Cheong, Sang-Wook; Yang, In-Sang
2016-11-01
The correlation between the magnon scattering and the magnetic symmetries of hexagonal RMnO3 (R = Er, Ho) thin films and LuMnO3 single crystal was studied through the 2D Correlation Spectroscopy (2D COS) and Perturbation-Correlation Moving Window 2D (PCMW2D) Correlation Spectroscopy which were performed on the temperature-dependent Raman spectra of RMnO3 (R = Er, Ho, Lu). From the Raman spectra, we observed much stronger intensity and more asymmetrical magnon peak in LuMnO3 single crystal than in ErMnO3 and HoMnO3 thin films. While the ratio between magnon and phonon's linewidth of LuMnO3 and HoMnO3 display an anomalous behavior, that ratio of ErMnO3 is almost stable. The result from PCMW2D also supports these results. In addition, our 2D COS analysis showed that there are more overlap peaks in broad four-spin flipping magnon peak in LuMnO3 than that in ErMnO3 and HoMnO3. The differences of hexagonal RMnO3 (R = Er, Ho, Lu) in magnon scattering are very similar to the actual differences of the magnetic symmetries of these compounds. Therefore, we suggest that the magnon scattering of hexagonal RMnO3 is strongly correlated with the magnetic symmetries of these materials.
Energy Technology Data Exchange (ETDEWEB)
Pisane, K.L. [Department of Physics & Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Despeaux, E.C. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Seehra, M.S., E-mail: mseehra@wvu.edu [Department of Physics & Astronomy, West Virginia University, Morgantown, WV 26506 (United States)
2015-06-15
The role of particle size distribution inherently present in magnetic nanoparticles (NPs) is examined in considerable detail in relation to the measured magnetic properties of oleic acid-coated maghemite (γ-Fe{sub 2}O{sub 3}) NPs. Transmission electron microscopy (TEM) of the sol–gel synthesized γ-Fe{sub 2}O{sub 3} NPs showed a log-normal distribution of sizes with average diameter 〈D〉=7.04 nm and standard deviation σ=0.78 nm. Magnetization, M, vs. temperature (2–350 K) of the NPs was measured in an applied magnetic field H up to 90 kOe along with the temperature dependence of the ac susceptibilities, χ′ and χ″, at various frequencies, f{sub m}, from 10 Hz to 10 kHz. From the shift of the blocking temperature from T{sub B}=35 K at 10 Hz to T{sub B}=48 K at 10 kHz, the absence of any significant interparticle interaction is inferred and the relaxation frequency f{sub o}=2.6×10{sup 10} Hz and anisotropy constant K{sub a}=5.48×10{sup 5} erg/cm{sup 3} are determined. For T
Energy Technology Data Exchange (ETDEWEB)
Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia
2008-11-15
To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)
Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies
Energy Technology Data Exchange (ETDEWEB)
Babilas, Rafał, E-mail: rafal.babilas@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice (Poland); Hawełek, Łukasz [Institute of Non-Ferrous Metals, Gliwice (Poland); A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Burian, Andrzej [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland)
2014-11-15
The local atomic structure of the Fe{sub 80}B{sub 20}, Fe{sub 70}Nb{sub 10}B{sub 20} and Fe{sub 62}Nb{sub 8}B{sub 30} glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe{sub 3}B, Fe{sub 23}B{sub 6} and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe{sub 80}B{sub 20} (b), Fe{sub 70}Nb{sub 10}B{sub 20} (c) and Fe{sub 62}Nb{sub 8}B{sub 30} (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed.
The short range anion-H interaction is the driving force for crystal formation of ions in water.
Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre
2009-05-07
The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.
Kelkar, Aniruddha V; Franses, Elias I; Corti, David S
2014-04-08
Brownian aggregation in concentrated hard-sphere dispersions is studied using models and Brownian dynamics (BD) simulations. Two new theoretical models are presented and compared to several existing approaches and BD simulation results, which serve as benchmarks. The first new model is an improvement over an existing local density approximation (LDA)-based model. The other is based on the more rigorous Fundamental measure theory (FMT) applied to the "liquid-state" dynamic density-functional theory (DDFT). Both models provide significant improvements over the classical Smoluchowski model. The predictions of the new FM-DDFT-based model for aggregation kinetics are in excellent agreement with BD simulation results for dispersions with initial particle volume fractions, ϕ, up to 0.35 (close to the hard-sphere freezing transition at ϕ = 0.494). In contrast to previous approaches, the nonideal particle diffusion effects and the initial and time-dependent short-range ordering in concentrated dispersions due to entropic packing effects are explicitly considered here, in addition to the unsteady-state effects. The greater accuracy of the FM-DDFT-based model compared to that of the LDA-based models indicates that nonlocal contributions to particle diffusion (only accounted for in the former) play important roles in aggregation. At high concentrations, the FM-DDFT-based model predicts aggregation half-times and gelation times that are up to 2 orders of magnitude shorter than those of the Smoluchowski model. Moreover, the FM-DDFT-based model predicts asymmetric cluster-cluster aggregation rate constants, at least for short times. Overall, a rigorous mechanistic understanding of the enhancement of aggregation kinetics in concentrated dispersions is provided.
Directory of Open Access Journals (Sweden)
Sajid Shah
2015-05-01
Full Text Available Rain nowcasting is an essential part of weather monitoring. It plays a vital role in human life, ranging from advanced warning systems to scheduling open air events and tourism. A nowcasting system can be divided into three fundamental steps, i.e., storm identification, tracking and nowcasting. The main contribution of this work is to propose procedures for each step of the rain nowcasting tool and to objectively evaluate the performances of every step, focusing on two-dimension data collected from short-range X-band radars installed in different parts of Italy. This work presents the solution of previously unsolved problems in storm identification: first, the selection of suitable thresholds for storm identification; second, the isolation of false merger (loosely-connected storms; and third, the identification of a high reflectivity sub-storm within a large storm. The storm tracking step of the existing tools, such as TITANand SCIT, use only up to two storm attributes, i.e., center of mass and area. It is possible to use more attributes for tracking. Furthermore, the contribution of each attribute in storm tracking is yet to be investigated. This paper presents a novel procedure called SALdEdA (structure, amplitude, location, eccentricity difference and areal difference for storm tracking. This work also presents the contribution of each component of SALdEdA in storm tracking. The second order exponential smoothing strategy is used for storm nowcasting, where the growth and decay of each variable of interest is considered to be linear. We evaluated the major steps of our method. The adopted techniques for automatic threshold calculation are assessed with a 97% goodness. False merger and sub-storms within a cluster of storms are successfully handled. Furthermore, the storm tracking procedure produced good results with an accuracy of 99.34% for convective events and 100% for stratiform events.
Directory of Open Access Journals (Sweden)
M. Jamal Deen
2013-08-01
Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.
Directory of Open Access Journals (Sweden)
R. R. Ilma
2012-01-01
Full Text Available A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by ∂B/∂t was too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.
Carpio, J A
2016-01-01
We use the Jansson-Farrar JF12 magnetic field configuration in the context of point source searches by correlating the Telescope Array ultra-high energy cosmic ray data and the IceCube-40 neutrino candidates. As expected, we have found no correlations, thus, we devote this paper to the study of the effect of different magnetic field hypotheses on the minimum neutrino source flux strength required for a $5\\sigma$ discovery and the derived $90\\%$ CL upper limits. In this study we present a comparison between the JF12 field, that includes a combination of regular and random field components, and the standard turbulent magnetic field used in previous correlation analyses. For a wider perspective, we also incorporate in our comparison the cases of no magnetic field and the JF12 regular component alone and consider different power law indices $\\alpha=2,\\alpha=2.3$ for the neutrino point source flux. Collaterally, a novel parameterisation of the JF12 random component is introduced. We have observed that the discover...
The Effect of Correlations on the Heat Transport in a Magnetized Plasma
Ott, Torben; Donko, Zoltan
2015-01-01
In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure or/and low temperature, a magnetic field reduces the perpendicular heat transport much less and even {\\it enhances} the parallel transport. These surprising observations are explained by the competition of kinetic, potential and collisional contributions to the heat conductivity. Our results are based on first principle molecular dynamics simulations of a one-component plasma.
Metal-Insulator Transition in the Hubbard Model: Correlations and Spiral Magnetic Structures
Timirgazin, Marat A.; Igoshev, Petr A.; Arzhnikov, Anatoly K.; Irkhin, Valentin Yu.
2016-12-01
The metal-insulator transition (MIT) for the square, simple cubic, and body-centered cubic lattices is investigated within the t-t^' Hubbard model at half-filling by using both the generalized for the case of spiral order Hartree-Fock approximation (HFA) and Kotliar-Ruckenstein slave-boson approach. It turns out that the magnetic scenario of MIT becomes superior over the non-magnetic one. The electron correlations lead to some suppression of the spiral phases in comparison with HFA. We found the presence of a metallic antiferromagnetic (spiral) phase in the case of three-dimensional lattices.
Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.
2016-09-01
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
Sehgal, C M; Greenleaf, J F
1986-12-01
Ultrasonic and nuclear magnetic resonance properties of media rich in water are investigated. The chemical shift of the water proton in pure water, aqueous solutions of tertiary butanol, and sodium chloride is shown to be linearly correlated to the reciprocal of sound speed in these media. A new method of determining the self-diffusion coefficient of water by using acoustic nonlinearity and sound speed is proposed. The method is tested on a variety of media that include pure water, aqueous solutions of glycerol, serum albumin, egg constituents, plant tissues, frog muscle and liver, and excised human tissues. In all the cases the results are found to compare closely to diffusion coefficients measured by magnetic resonance. The results presented here indicate that the acoustic and magnetic resonance modalities, though inherently different in their origin, can provide closely related information on the properties of water.
Gayazova, Anna; Abdullaev, Sanjar
2014-05-01
Short-range forecasting of algal blooms in drinking water reservoirs and other waterbodies is an actual element of water treatment system. Particularly, Shershnevskoie reservoir - the source of drinking water for Chelyabinsk city (South Ural region of Russia) - is exposed to interannual, seasonal and short-range fluctuations of blue-green alga Aphanizomenon flos-aquae and other dominant species abundance, which lead to technological problems and economic costs and adversely affect the water treatment quality. Whereas the composition, intensity and the period of blooms affected not only by meteorological seasonal conditions but also by ecological specificity of waterbody, that's important to develop object-oriented forecasting, particularly, search for an optimal number of predictors for such forecasting. Thereby, firstly fuzzy logic and fuzzy artificial neural network patterns for blue-green alga Microcystis aeruginosa (M. aeruginosa) blooms prediction in nearby undrained Smolino lake were developed. These results subsequently served as the base to derive membership functions for Shernevskoie reservoir forecasting patterns. Time series with the total lenght about 138-159 days of dominant species seasonal abundance, water temperature, cloud cover, wind speed, mineralization, phosphate and nitrate concentrations were obtained through field observations held at Lake Smolino (Chelyabinsk) in the warm season of 2009 and 2011 with time resolution of 2-7 days. The cross-correlation analysis of the data revealed the potential predictors of M. aeruginosa abundance quasi-periodic oscillations: green alga Pediastrum duplex (P. duplex) abundance and mineralization for 2009, P. duplex abundance, water temperature and concentration of nitrates for 2011. According to the results of cross-correlation analysis one membership function "P. duplex abundance" and one rule linking M. aeruginosa and P. duplex abundances were set up for database of 2009. Analogically, for database of 2011
Magnetic states, correlation effects and metal-insulator transition in FCC lattice
Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu
2016-12-01
The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.
Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey
2012-07-01
A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0lungs, tissue-air interfaces, surgical implants, etc., lead to fluctuations and losses of local homogeneity. A new method dubbed “long-lived-coherence correlation spectroscopy” (LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.
Laggner, F. M.; Wolfrum, E.; Cavedon, M.; Mink, F.; Viezzer, E.; Dunne, M. G.; Manz, P.; Doerk, H.; Birkenmeier, G.; Fischer, R.; Fietz, S.; Maraschek, M.; Willensdorfer, M.; Aumayr, F.; the EUROfusion MST1 Team; the ASDEX Upgrade Team
2016-06-01
In order to understand the mechanisms that determine the structure of the high confinement mode (H-mode) pedestal, the evolution of the plasma edge electron density and temperature profiles between edge localised modes (ELMs) is investigated. The onset of radial magnetic fluctuations with frequencies above 200 kHz is found to correlate with the stagnation of the electron temperature pedestal gradient. During the presence of these magnetic fluctuations the gradients of the edge electron density and temperature are clamped and stable against the ELM onset. The detected magnetic fluctuation frequency is analysed for a variety of plasma discharges with different electron pressure pedestals. It is shown that the magnetic fluctuation frequency scales with the neoclassically estimated \\text{E} × \\text{B} velocity at the plasma edge. This points to a location of the underlying instability in the gradient region. Furthermore, the magnetic signature of these fluctuations indicates a global mode structure with toroidal mode numbers of approximately 10. The fluctuations are also observed on the high field side with significant amplitude, indicating a mode structure that is symmetric on the low field side and high field side. The associated fluctuations in the current on the high field side might be attributed to either a strong peeling part or the presence of non-adiabatic electron response.
Correlation between radiation damage and magnetic properties in reactor vessel steels
Energy Technology Data Exchange (ETDEWEB)
Kempf, R.A., E-mail: kempf@cnea.gov.ar [División Caracterización, GCCN, CAC-CNEA (Argentina); Sacanell, J. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Milano, J. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Guerra Méndez, N. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Winkler, E.; Butera, A. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Troiani, H. [División Física de Metales, CAB-CNEA and Instituto Balseiro (UNCU), CONICET (Argentina); Saleta, M.E. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Fortis, A.M. [Departamento Estructura y Comportamiento. Gerencia Materiales-GAEN, CAC-CNEA (Argentina)
2014-02-01
Since reactor pressure vessel steels are ferromagnetic, provide a convenient means to monitor changes in the mechanical properties of the material upon irradiation with high energy particles, by measuring their magnetic properties. Here, we discuss the correlation between mechanical and magnetic properties and microstructure, by studying the flux effect on the nuclear pressure vessel steel used in reactors currently under construction in Argentina. Charpy-V notched specimens of this steel were irradiated in the RA1 experimental reactor at 275 °C with two lead factors (LFs), 93 and 183. The magnetic properties were studied by means of DC magnetometry and ferromagnetic resonance. The results show that the coercive field and magnetic anisotropy spatial distribution are sensitive to the LF and can be explained by taking into account the evolution of the microstructure with this parameter. The saturation magnetization shows a dominant dependence on the accumulated damage. Consequently, the mentioned techniques are suitable to estimate the degradation of the reactor vessel steel.
Magnetic nanoscopic correlations in the crossover between a superspin glass and a superferromagnet
Energy Technology Data Exchange (ETDEWEB)
Alba Venero, D., E-mail: diego.alba-venero@stfc.ac.uk; Rogers, S. E.; Langridge, S. [ISIS, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Alonso, J. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Fdez-Gubieda, M. L.; Svalov, A. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), Apartado 644, 48080 Bilbao (Spain); Fernández Barquín, L. [CITIMAC, Universidad de Cantabria, 39005 Santander (Spain)
2016-04-14
Collective behaviors in which the magnetic response depends not only on the individual constituents but also on their interactions are an area of active research. We have produced a paradigmatic system where DC magnetron sputtered Fe{sub x}Ag{sub 100–x} (x = 15, 35) nanogranular films exhibit a crossover between a superspin glass (SSG) state and a superferromagnetism (SFM), where direct exchange interactions overcome the frustration. The systems have been studied by non-linear susceptibility (NLS) and small angle neutron scattering (SANS). The NLS measurements were carried out between 2 and 300 K, in the absence of a biasing magnetic field, with frequencies spanning two decades. These measurements shed light on the complex nature of the interactions and the intricate relationship between direct exchange and long range magnetic interactions. The use of SANS allows us to estimate qualitatively the lengthscale of the magnetic correlations, and therefore identify a clear difference between the collective “supermagnetic” states (i.e., SSG and SFM) while establishing links between the structure and the magnetic interactions.
IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE?
Energy Technology Data Exchange (ETDEWEB)
Karak, Bidya Binay; Brandenburg, Axel, E-mail: bbkarak@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)
2016-01-01
The small-scale magnetic field is ubiquitous at the solar surface—even at high latitudes. From observations we know that this field is uncorrelated (or perhaps even weakly anticorrelated) with the global sunspot cycle. Our aim is to explore the origin, and particularly the cycle dependence, of such a phenomenon using three-dimensional dynamo simulations. We adopt a simple model of a turbulent dynamo in a shearing box driven by helically forced turbulence. Depending on the dynamo parameters, large-scale (global) and small-scale (local) dynamos can be excited independently in this model. Based on simulations in different parameter regimes, we find that, when only the large-scale dynamo is operating in the system, the small-scale magnetic field generated through shredding and tangling of the large-scale magnetic field is positively correlated with the global magnetic cycle. However, when both dynamos are operating, the small-scale field is produced from both the small-scale dynamo and the tangling of the large-scale field. In this situation, when the large-scale field is weaker than the equipartition value of the turbulence, the small-scale field is almost uncorrelated with the large-scale magnetic cycle. On the other hand, when the large-scale field is stronger than the equipartition value, we observe an anticorrelation between the small-scale field and the large-scale magnetic cycle. This anticorrelation can be interpreted as a suppression of the small-scale dynamo. Based on our studies we conclude that the observed small-scale magnetic field in the Sun is generated by the combined mechanisms of a small-scale dynamo and tangling of the large-scale field.
High field magnetic behavior in Boron doped Fe2VAl Heusler alloys
Venkatesh, Ch.; Vasundhara, M.; Srinivas, V.; Rao, V. V.
2016-11-01
We have investigated the magnetic behavior of Fe2VAl1-xBx (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the Tc, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (MS) for the x=0 alloy at higher magnetic fields which is absent at lower fields (magnetic heterogeneous phases which are not detected from the X-ray diffraction method.
Takami, Hajime
2009-01-01
The propagation trajectories of the highest energy cosmic rays can be deflected by Galactic magnetic field (GMF) and expected correlation between their arrival directions and the positions of their sources can be disturbed. In order to explore whether the possible correlation is disturbed or not, we simulate the arrival distribution of the highest energy protons (HEPs) with energies above $6 \\times 10^{19}$ eV taking 4 different GMF models into account and investigate the cross-correlation between the protons and sources assumed in the simulation. We show that the error of cross-correlation function adopted in this study is sufficiently small by accumulating 200 events. We also find that the correlation is not disturbed largely in many cases after 200 events accumulation and positive signals of the correlation are significantly expected at angular scale of 3-5$^{\\circ}$. Only in the cases of the northern sky with axisymmetric spiral structures of GMF, the cross-correlation functions are consistent with no cor...
Knee joint examinations by magnetic resonance imaging: The correlation of pathology, age, and sex
Directory of Open Access Journals (Sweden)
Serhat Avcu
2010-01-01
Full Text Available Aims: The aim of our study was to investigate the incidence and coexistence of multiple knee joint pathologies and the distribution of knee joint pathologies according to age and sex. Patients and Methods: A retrospective analysis was performed using the clinical data of patients evaluated with magnetic resonance imaging (MRI of the knee joint. Data from 308 patients examined between August 2002 and July 2003 were included into this study. A Pearson correlation analysis was performed to examine the relationship between the pathological findings and the age and sex of the patients. Results: The ages of the patients ranged between 1 and 74 years (mean: 43.3 years. Age was significantly correlated with meniscal degeneration and tears, medial collateral ligament degeneration, parameniscal cyst, and chondromalacia patellae. There was a significant correlation between male gender and anterior cruciate ligament injury. Meniscal injury was significantly correlated with bursitis, as well as medial collateral ligament injury. Bone bruise was significantly correlated with medial collateral ligament injury, lateral collateral ligament injury, Baker′s cyst, and anterior cruciate ligament injury. Chondromalacia patellae was significantly correlated with anterior cruciate ligament injury, patellae alta, and osteochondral lesion. Bursitis (in 53.2% of the patients followed by grade-II meniscal degeneration (in 43% of the patients were the most common knee pathologies observed by MRI. Conclusions: MRI findings of select knee pathologies are significantly correlated with each other and the age and sex of the patient.
Knee joint examinations by magnetic resonance imaging: The correlation of pathology, age, and sex
Directory of Open Access Journals (Sweden)
Serhat Avcu
2010-04-01
Full Text Available Aims: The aim of our study was to investigate the incidence and coexistence of multiple knee joint pathologies and the distribution of knee joint pathologies according to age and sex. Patients and Methods: A retrospective analysis was performed using the clinical data of patients evaluated with magnetic resonance imaging (MRI of the knee joint. Data from 308 patients examined between August 2002 and July 2003 were included into this study. A Pearson correlation analysis was performed to examine the relationship between the pathological findings and the age and sex of the patients. Results: The ages of the patients ranged between 1 and 74 years (mean: 43.3 years. Age was significantly correlated with meniscal degeneration and tears, medial collateral ligament degeneration, parameniscal cyst, and chondromalacia patellae. There was a significant correlation between male gender and anterior cruciate ligament injury. Meniscal injury was significantly correlated with bursitis, as well as medial collateral ligament injury. Bone bruise was significantly correlated with medial collateral ligament injury, lateral collateral ligament injury, Baker’s cyst, and anterior cruciate ligament injury. Chondromalacia patellae was significantly correlated with anterior cruciate ligament injury, patellae alta, and osteochondral lesion. Bursitis (in 53.2% of the patients followed by grade-II meniscal degeneration (in 43% of the patients were the most common knee pathologies observed by MRI. Conclusions: MRI findings of select knee pathologies are significantly correlated with each other and the age and sex of the patient.
Guterstam, Arvid; Zeberg, Hugo; Özçiftci, Vedat Menderes; Ehrsson, H Henrik
2016-10-01
To accurately localize our limbs and guide movements toward external objects, the brain must represent the body and its surrounding (peripersonal) visual space. Specific multisensory neurons encode peripersonal space in the monkey brain, and neurobehavioral studies have suggested the existence of a similar representation in humans. However, because peripersonal space lacks a distinct perceptual correlate, its involvement in spatial and bodily perception remains unclear. Here, we show that applying brushstrokes in mid-air at some distance above a rubber hand-without touching it-in synchrony with brushstrokes applied to a participant's hidden real hand results in the illusory sensation of a "magnetic force" between the brush and the rubber hand, which strongly correlates with the perception of the rubber hand as one's own. In eight experiments, we characterized this "magnetic touch illusion" by using quantitative subjective reports, motion tracking, and behavioral data consisting of pointing errors toward the rubber hand in an intermanual pointing task. We found that the illusion depends on visuo-tactile synchrony and exhibits similarities with the visuo-tactile receptive field properties of peripersonal space neurons, featuring a non-linear decay at 40cm that is independent of gaze direction and follows changes in the rubber hand position. Moreover, the "magnetic force" does not penetrate physical barriers, thus further linking this phenomenon to body-specific visuo-tactile integration processes. These findings provide strong support for the notion that multisensory integration within peripersonal space underlies bodily self-attribution. Furthermore, we propose that the magnetic touch illusion constitutes a perceptual correlate of visuo-tactile integration in peripersonal space.
Kirwan, Gemma M; Fernandez, David I; Niere, Julie O; Adams, Michael J
2012-10-01
Generalized two-dimensional (Gen2D) correlation analysis and hybrid correlation analysis have been applied to a series of dynamic (31)P nuclear magnetic resonance (NMR) spectra to monitor the in vivo metabolic changes of the plant pathogen Phytophthora palmivora in the presence and absence of phosphonate over an 18-h period. Results indicate that phosphonate exposure causes cleavage in organism polyphosphate chains as well as an increase in total sugar phosphates. In the presence of phosphonate, the NMR resonances attributed to terminal polyphosphate phosphorus reduced at a lower rate than those of middle polyphosphate phosphorus, indicating a change in average chain length and suggesting cleavage in the middle of the chain as well as at the ends. The correlation analysis techniques serve to identify and confirm spectral regions undergoing major change in the time-series data and facilitate the analysis of these dynamic changes.
Tuniz, Alessandro; Chemnitz, Mario; Dellith, Jan; Weidlich, Stefan; Schmidt, Markus A
2017-02-08
We propose and experimentally demonstrate a monolithic nanowire-enhanced fiber-based nanoprobe for the broadband delivery of light (550-730 nm) to a deep subwavelength scale using short-range surface plasmons. The geometry is formed by a step index fiber with an integrated gold nanowire in its core and a protruding gold nanotip with sub-10 nm apex radius. We present a novel coupling scheme to excite short-range surface plasmons, whereby the radially polarized hybrid mode propagating inside the nanowire section excites the plasmonic mode close to the fiber endface, which is in turn superfocused down to nanoscale dimensions at the tip apex. We show that in this all-integrated fiber-plasmonic coupling scheme the wire length can be orders of magnitude longer than the attenuation length of short-range plasmon polaritons, yielding a broadband plasmon excitation and reducing demands in fabrication. We observe that the scattered light in the far-field from the nanotip is axially polarized and preferentially excited by a radially polarized input, unambiguously revealing that it originates from a short-range plasmon propagating on the nanotip, in agreement with simulations. This novel excitation scheme will have important applications in near-field microscopy and nanophotonics and potentially offers significantly improved resolution compared to current delivery near-field probes.
Wang, Rui; Zhang, Bo; Liu, Yunlong; Wang, Xiaoyong; Xiao, Min
2015-01-01
Singlet fission (SF) can potentially break the Shockley-Queisser efficiency limit in single-junction solar cells by splitting one photo-excited singlet exciton (S1) into two triplets (2T1) in organic semiconductors. A dark multi-exciton (ME) state has been proposed as the intermediate connecting S1 to 2T1. However, the exact nature of this ME state, especially how the doubly-excited triplets interact, remains elusive. Here, we report a quantitative study on the magnetic dipolar interaction between SF-induced correlated triplets in tetracene crystals by monitoring quantum beats relevant to the ME sublevels at room temperature. The resonances of ME sublevels approached by tuning an external magnetic field are observed to be avoided, which agrees well with the theoretical predictions considering a magnetic dipolar interaction of ~ 0.008 GHz. Our work paves a way to quantify the magnetic dipolar interaction in organic materials and marks an important step towards understanding the underlying physics of the ME sta...
Correlated Networks of Magnetic and Inertial Sensors to Study Transient Phenomena
Zhivun, Elena; Gnome Collaboration; Nose Collaboration; Urban Magnetometer Network Collaboration
2016-05-01
We describe several new collaborative efforts to develop networks of magnetometers (the GNOME and Urban Magnetometer Network collaborations), atom interferometers (NOSE), and other precision sensors. These networks use geographically separated, time-synchronized sensors to search for correlated transient signals. The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) searches for nuclear and electron spin couplings to various exotic fields generated by astrophysical sources. The UC Network Of Sensors for Exotic physics (NOSE) searches for dark matter and dark energy by detecting the influence of a background field of ultra-light particles with a network of various sensors such as atom interferometers, novel solid-state acceleration sensors, and GNOME magnetometers. The Urban Magnetometer Network project characterizes and determines the origin of the ambient field fluctuations, in order to to improve magnetic anomalies detection and extract maximal information from magnetic signals in the city environment. Global Network of Optical Magnetometers.
Lipofibromatosis: magnetic resonance imaging features and pathological correlation in three cases
Energy Technology Data Exchange (ETDEWEB)
Vogel, Daniela; Righi, Alberto; Kreshak, Jennifer; Dei Tos, Angelo Paolo [Istituto Ortopedico Rizzoli, Bologna (Italy); Merlino, Biagio [Universita Cattolica del Sacro Cuore Policlinico ' ' A. Gemelli' ' , Dipartimento di Scienze Radiologiche, Roma (Italy); Brunocilla, Eugenio [U.O. di UROLOGIA, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Bologna (Italy); Vanel, Daniel [Istituto Ortopedico Rizzoli, Anatomia Patologica, Bologna (Italy)
2014-05-15
Lipofibromatosis is a rare, benign, but infiltrative, soft tissue tumor seen in children. We present three cases of lipofibromatosis, each with different magnetic resonance imaging features and correlate this with the histological findings. The patients comprised two males and one female who presented in infancy; at birth, 5 months, and 7 months of age. Clinically, the masses were painless and slow-growing. The masses ranged in size from 2 to 6 cm and involved the distal extremities in two cases (one foot, one wrist) and the trunk. Magnetic resonance imaging showed lipomatous lesions with varying amounts of adipose and solid components in each case. There were no capsules at the periphery of the lesions. One case showed a fat-predominant lesion, another an equal mixture of fat and solid tissue, and the third was predominantly solid. This was reflected in the histology, which showed corresponding features. Radiological and histopathological differential diagnoses are reviewed. (orig.)
Esquivel, A; Pogosyan, D; Cho, J; Esquivel, Alejandro; Cho, Jungyeon
2003-01-01
In a previous work Lazarian and Pogosyan suggested a technique to extract velocity and density statistics, of interstellar turbulence, by means of analysing statistics of spectral line data cubes. In this paper we test that technique, by studying the effect of correlation between velocity and density fields, providing a systematic analysis of the noise, and exploring the effect of a linear shear. We make use of both compressible MHD simulations and synthetic data to emulate spectroscopic observations. With such synthetic spectroscopic data, we studied anisotropies of the two point statistics and related those anisotropies with the magnetic field direction. This presents a new technique for magnetic field studies. The results show that the velocity and density spectral indices measured are consistent with the analytical predictions. We identified the dominant source of error with the limited number of data points along a given line of sight. We argue that in real observations the number of emmiting elements is...
Directory of Open Access Journals (Sweden)
Mohamed Mehana
2016-06-01
Full Text Available The development of shale reservoirs has brought a paradigm shift in the worldwide energy equation. This entails developing robust techniques to properly evaluate and unlock the potential of those reservoirs. The application of Nuclear Magnetic Resonance techniques in fluid typing and properties estimation is well-developed in conventional reservoirs. However, Shale reservoirs characteristics like pore size, organic matter, clay content, wettability, adsorption, and mineralogy would limit the applicability of the used interpretation methods and correlation. Some of these limitations include the inapplicability of the controlling equations that were derived assuming fast relaxation regime, the overlap of different fluids peaks and the lack of robust correlation to estimate fluid properties in shale. This study presents a state-of-the-art review of the main contributions presented on fluid typing methods and correlations in both experimental and theoretical side. The study involves Dual Tw, Dual Te, and doping agent's application, T1-T2, D-T2 and T2sec vs. T1/T2 methods. In addition, fluid properties estimation such as density, viscosity and the gas-oil ratio is discussed. This study investigates the applicability of these methods along with a study of the current fluid properties correlations and their limitations. Moreover, it recommends the appropriate method and correlation which are capable of tackling shale heterogeneity.
Roberts, D. A.
1990-01-01
The Helios, IMP 8, ISEE 3, ad Voyager 2 spacecraft are used to examine the solar cycle and heliocentric distance dependence of the correlation between density n and magnetic field magnitude B in the solar wind. Previous work had suggested that this correlation becomes progressively more negative with heliocentric distance out to 9.5 AU. Here it is shown that this evolution is not a solar cycle effect, and that the correlations become even more strongly negative at heliocentric distance larger than 9.5 AU. There is considerable variability in the distributions of the correlations at a given heliocentric distance, but this is not simply related to the solar cycle. Examination of the evolution of correlations between density and speed suggest that most of the structures responsible for evolution in the anticorrelation between n and B are not slow-mode waves, but rather pressure balance structures. The latter consist of both coherent structures such as tangential discontinuities and the more generally pervasive 'pseudosound' which may include the coherent structures as a subset.
Institute of Scientific and Technical Information of China (English)
Sushant; K; Das; Li-Chuan; Zeng; Bing; Li; Xiang-Ke; Niu; Jing-Liang; Wang; Anup; Bhetuwal; Han-Feng; Yang
2014-01-01
Occasionally systemic complications with high risk of death,such as multiple organ dysfunction syndrome(MODS),can occur following multiple bee stings.This case study reports a patient who presented with MODS,i.e.,acute kidney injury,hepatic and cardiac dysfunc-tion,after multiple bee stings.The standard clinical findings were then correlated with magnetic resonance imaging(MRI)findings,which demonstrates that MRI may be utilized as a simpler tool to use than other mul-tiple diagnostics.
NMR measurement of the magnetic field correlation function in porous media.
Cho, H; Song, Yi-Qiao
2008-01-18
The structure factor provides a fundamental characterization of porous and granular materials as it is the key for solid crystals via measurements of x-ray and neutron scattering. Here, we demonstrate that the structure factor of the granular and porous media can be approximated by the pair correlation function of the inhomogeneous internal magnetic field, which arises from the susceptibility difference between the pore filling liquid and the solid matrix. In-depth understanding of the internal field is likely to contribute to further development of techniques to study porous and granular media.
Short range DFT combined with long-range local RPA within a range-separated hybrid DFT framework
Chermak, E; Mussard, Bastien; Angyan, Janos
2015-01-01
Selecting excitations in localized orbitals to calculate long-range correlation contributions to range-separated density-functional theory can reduce the overall computational effort significantly. Beyond simple selection schemes of excited determinants, the dispersion-only approximation, which avoids counterpoise-corrected monomer calculations, is shown to be particularly interesting in this context, which we apply to the random-phase approximation. The approach has been tested on dimers of formamide, water, methane and benzene.
Energy Technology Data Exchange (ETDEWEB)
Chan, L.S.; Yeung, C.H.; Yim, W.W.S.; Or, O.L. [Hong Kong Univ. (China). Dept. of Earth Sciences
1998-11-01
Magnetic susceptibility measurements were conducted on 24 vibrocores obtained from an area located off the northeastern coast of Lantau Island in Hong Kong. High intensities of magnetic susceptibility were detected in the uppermost sections of the majority of the cores. Several magnetic parameters measured for one of the cores suggest that the variations in the magnetic characteristics over depth are mainly due to varying concentrations of the magnetic minerals. Since a strong correlation has been found between magnetic susceptibility and the heavy metals Pb, Cu, Zn and Cr, an anthropogenic contamination origin is thought to be the cause. The present study shows that magnetic susceptibility is a fast, inexpensive and non-destructive method for the detection and mapping of contaminated sediments. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Onufrieva, F.
1994-12-31
Spin dynamics in cuprates is analysed in the framework of a new theory (based on the t-t`-J model and the diagrammatic technique for Hubbard operators) developed to treat correctly strong electron correlations within CuO{sub 2} plane. The dynamic magnetic susceptibility is determined by two contributions different in nature, the ``localized`` and ``itinerant`` ones. The ``itinerant`` contribution reflects a response in the spin susceptibility on Cu related to the propagating carrier quasiparticles. The ``localized`` contribution reflects the existence of short-range correlations between localized spins. As a result of their competition, the spin dynamics evolves continuously within the metallic state from a normal-metal behaviour at high doping (overdoped regime) to a quantum spin-liquid-type dynamics with magnon-like excitations at low doping through a non-Fermi-liquid behaviour in all intermediate regimes. The picture of the spin dynamics in the metallic state of cuprates as a whole and in details in concern to INS and NMR experimental data is presented. Many exotic features of {chi}({Kappa},{omega}) revealed by these experiments find a natural explanation within the proposed scenario. (author). 64 refs., 17 figs.
Dhital, Chetan
The work performed within this thesis is divided into two parts, each focusing primarily on the study of magnetic phase behavior using neutron scattering techniques. In first part, I present transport, magnetization, and neutron scattering studies of materials within the iridium oxide-based Ruddelsden-Popper series [Srn+1IrnO3n+1] compounds Sr 3Ir2O7 (n=2) and Sr2IrO4 (n=1). This includes a comprehensive study of the doped bilayer system Sr 3(Ir1-xRux )2O7. In second part, I present my studies of the effect of uniaxial pressure on magnetic and structural phase behavior of the iron-based high temperature superconductor Ba(Fe1-xCox)2As2. Iridium-based 5d transition metal oxides host rather unusual electronic/magnetic ground states due to strong interplay between electronic correlation, lattice structure and spin-orbit effects. Out of the many oxides containing iridium, the Ruddelsden-Popper series [Srn+1IrnO 3n+1] oxides are some of the most interesting systems to study both from the point of view of physics as well as from potential applications. My work is focused on two members of this series Sr3Ir2O 7 (n=2) and Sr2IrO4 (n=1). In particular, our combined transport, magnetization and neutron scattering studies of Sr 3Ir2O7 (n=2) showed that this system exhibits a complex coupling between charge transport and magnetism. The spin magnetic moments form a G-type antiferromagnetic structure with moments oriented along the c-axis, with an ordered moment of 0.35+/-0.06 muB/Ir. I also performed experiments doping holes in this bilayer Sr3(Ir1-xRu x)2O7 system in order to study the role of electronic correlation in these materials. Our results show that the ruthenium-doped holes remain localized within the Jeff=1/2 Mott insulating background of Sr3Ir2O7, suggestive of 'Mott blocking' and the presence of strong electronic correlation in these materials. Antiferromagnetic order however survives deep into the metallic regime with the same ordering q-vector, suggesting an
Güven, Can; Hinczewski, Michael; Berker, A. Nihat
2011-03-01
The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.
Güven, Can; Hinczewski, Michael; Berker, A Nihat
2010-11-01
The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.
Directory of Open Access Journals (Sweden)
Maksimović Vesna M.
2015-01-01
Full Text Available Cobalt 3D powder particles were successfully prepared by the galvanostatic electrodeposition. Electrodeposited cobalt powder were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, Energy Dispersive Spectroscopy (EDS analysis and SQUID magnetometry. It has been shown that morphology, structure and magnetic properties of cobalt particles are closely associated and can be easily controlled by adjusting process parameters of electrodeposition. Morphology of cobalt powder particles is strongly affected by hydrogen evolution reaction as a parallel reaction to cobalt electrodeposition. Depending on the applied current density, the two types of powder particles were formed: dendrites at lower and spongy-like particles at higher current densities. Morphologies and structures of powder particles are correlated with their magnetic properties, and compared with those of the bulk cobalt. In comparison with the properties of bulk cobalt, the obtained 3D structures exhibited a decreased saturation magnetization (MS, but an enhanced coercivity (HC which is explained by their peculiar morphology. [Projekat Ministarstva nauke Republike Srbije, br. III 45012
Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi
2003-06-01
Experts of abacus operation demonstrate extraordinary ability in mental calculation. There is psychological evidence that abacus experts utilize a mental image of an abacus to remember and manipulate large numbers in solving problems; however, the neural correlates underlying this expertise are unknown. Using functional magnetic resonance imaging, we compared the neural correlates associated with three mental-operation tasks (numeral, spatial, verbal) among six experts in abacus operations and eight nonexperts. In general, there was more involvement of neural correlates for visuospatial processing (e.g., right premotor and parietal areas) for abacus experts during the numeral mental-operation task. Activity of these areas and the fusiform cortex was correlated with the size of numerals used in the numeral mental-operation task. Particularly, the posterior superior parietal cortex revealed significantly enhanced activity for experts compared with controls during the numeral mental-operation task. Comparison with the other mental-operation tasks indicated that activity in the posterior superior parietal cortex was relatively specific to computation in 2-dimensional space. In conclusion, mental calculation of abacus experts is likely associated with enhanced involvement of the neural resources for visuospatial information processing in 2-dimensional space.
A self-constrained inversion of magnetic data based on correlation method
Sun, Shida; Chen, Chao
2016-12-01
Geologically-constrained inversion is a powerful method for producing geologically reasonable solutions in geophysical exploration problems. But in many cases, except the observed geophysical data to be inverted, the geological information is insufficiently available for improving reliability of recovered models. To deal with these situations, self-constraints extracted from preprocessing observed data have been applied to constrain the inversion. In this paper, we present a self-constrained inversion method based on correlation method. In our approach the correlation results are first obtained by calculating the cross-correlation between theoretical data and horizontal gradients of the observed data. Subsequently, we propose two specific strategies to extract the spatial variation from the correlation results and then translate them into spatial weighting functions. Incorporating the spatial weighting functions into the model objective function, we obtain self-constrained solutions with higher reliability. We presented two synthetic and one field magnetic data example to test the validity. All results demonstrate that the solution from our self-constrained inversion can delineate the geological bodies with clearer boundaries and much more concentrated physical property.
Directory of Open Access Journals (Sweden)
Xinpeng Zhou
2016-03-01
Full Text Available This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile’s rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.
Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei
2016-03-11
This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile's rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.
Troiani, N.; Yerazunis, S. W.
1978-01-01
An autonomous roving science vehicle that relies on terrain data acquired by a hierarchy of sensors for navigation was one method of carrying out such a mission. The hierarchy of sensors included a short range sensor with sufficient resolution to detect every possible obstacle and with the ability to make fast and reliable terrain characterizations. A multilaser, multidetector triangulation system was proposed as a short range sensor. The general system was studied to determine its perception capabilities and limitations. A specific rover and low resolution sensor system was then considered. After studying the data obtained, a hazard detection algorithm was developed that accounts for all possible terrains given the sensor resolution. Computer simulation of the rover on various terrains was used to test the entire hazard detection system.
Chavanis, P H
2011-01-01
We develop the suggestion that dark matter could be a Bose-Einstein condensate. We determine the mass-radius relation of a Newtonian self-gravitating Bose-Einstein condensate with short-range interactions described by the Gross-Pitaevskii-Poisson system. We numerically solve the equation of hydrostatic equilibrium describing the balance between the gravitational attraction and the pressure due to quantum effects (Heisenberg's uncertainty principle) and short-range interactions (scattering). We connect the non-interacting limit to the Thomas-Fermi limit. We also consider the case of attractive self-interaction. We compare the exact mass-radius relation obtained numerically with the approximate analytical relation obtained with a Gaussian ansatz. An overall good agreement is found.
Correlation of magnetic moments and angular momenta for stars and planets
Dolginov, A
2016-01-01
The observed correlation of the angular momenta $L^{ik}$ and magnetic moments $\\mu_{lm}$ of celestial bodies (the Sun, planets and stars) was discussed by many authors but without any explanation. In this paper a possible explanation of this phenomenon is suggested. It is shown that the function $\\Phi_{lm} =(\\eta/r_g)L^{ik}R_{iklm}$ satisfy Maxwell equations and can be considered as a function which determine the electro-magnetic properties of rotating heavy bodies. The $R_{iklm}$ is the Riemann tensor, which determines the gravitational field of the body, $r_g$ is the gravitational radius of the body, and $\\eta$ is the constant which has to be determined by observations. The field $\\Phi_{lm}$ describe the observed $\\mu \\leftrightarrow L$ correlation. In particular the function $\\Phi_{l0}$ describe the electric field created by rotating heavy bodies. It is possible that the observed electric field of the Earth is created by the Earth rotation
Correlative multi-scale characterization of a fine grained Nd–Fe–B sintered magnet
Energy Technology Data Exchange (ETDEWEB)
Sasaki, T.T., E-mail: sasaki.taisuke@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Ohkubo, T.; Hono, K. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Une, Y.; Sagawa, M. [Intermetallics Co., Ltd., 1-36 Goryo Ohara, Nishikyo-Ku, Kyoto 615-8245 (Japan)
2013-09-15
The Nd-rich phases in pressless processed fine grained Nd–Fe–B sintered magnets have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three dimensional atom probe tomography (3DAP). The combination of the backscattered electron (BSE) and in-lens secondary electron (IL-SE) images in SEM led to an unambiguous identification of four types of Nd-rich phases, NdO{sub x}, Ia3{sup ¯} type phase, which is isostructural to Nd{sub 2}O{sub 3}, dhcp-Nd and Nd{sub 1}Fe{sub 4}B{sub 4}. In addition, the 3DAP analysis of thin Nd-rich grain boundary layer indicate that the coercivity has a close correlation with the chemistry of the grain boundary phase. - Highlights: ► Multi-scale characterization of Nd–Fe–B sintered magnet by SEM/TEM/3DAP. ► Phase/chemistry identification of Nd-rich phases at grain boundary triple junctions. ► Identification of micron-scale distribution of Nd-rich phases by IL-SE and BSE SEM. ► Correlative SEM/3DAP analysis from a specific thin grain boundary phase.
Energy Technology Data Exchange (ETDEWEB)
Radaelli, P. G.; Dhesi, S. S.
2015-01-26
We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007–2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.
Radaelli, P G; Dhesi, S S
2015-03-06
We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.
Correlation between subjective and objective assessment of magnetic resonance (MR) images.
Chow, Li Sze; Rajagopal, Heshalini; Paramesran, Raveendran
2016-07-01
Medical Image Quality Assessment (IQA) plays an important role in assisting and evaluating the development of any new hardware, imaging sequences, pre-processing or post-processing algorithms. We have performed a quantitative analysis of the correlation between subjective and objective Full Reference - IQA (FR-IQA) on Magnetic Resonance (MR) images of the human brain, spine, knee and abdomen. We have created a MR image database that consists of 25 original reference images and 750 distorted images. The reference images were distorted with six types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur, DCT compression, JPEG compression and JPEG2000 compression, at various levels of distortion. Twenty eight subjects were chosen to evaluate the images resulting in a total of 21,700 human evaluations. The raw scores were then converted to Difference Mean Opinion Score (DMOS). Thirteen objective FR-IQA metrics were used to determine the validity of the subjective DMOS. The results indicate a high correlation between the subjective and objective assessment of the MR images. The Noise Quality Measurement (NQM) has the highest correlation with DMOS, where the mean Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are 0.936 and 0.938 respectively. The Universal Quality Index (UQI) has the lowest correlation with DMOS, where the mean PLCC and SROCC are 0.807 and 0.815 respectively. Student's T-test was used to find the difference in performance of FR-IQA across different types of distortion. The superior IQAs tested statistically are UQI for Rician noise images, Visual Information Fidelity (VIF) for Gaussian blur images, NQM for both DCT and JPEG compressed images, Peak Signal-to-Noise Ratio (PSNR) for JPEG2000 compressed images.
Finn, David R.; Coe, Robert S.; Kelly, Henry; Branney, Michael; Knott, Thomas; Reichow, Marc
2015-06-01
Individual ignimbrite cooling units in southern Idaho display significant variation of magnetic remanence directions and other magnetic properties. This complicates paleomagnetic correlation. The ignimbrites are intensely welded and exhibit mylonite-like flow banding produced by rheomorphic ductile shear during emplacement, prior to cooling below magnetic blocking temperatures. Glassy vitrophyric lithologies commonly have discrepantly shallow remanence directions rotated closer to the orientation of the subhorizontal shear fabric when compared to the microcrystalline center of the same cooling unit. To investigate this problem, we conducted a detailed paleomagnetic and rock magnetic study of a vertical profile through a single ignimbrite cooling unit and its underlying baked soil. The results demonstrate that large anisotropy of thermal remanent magnetization correlates with large (up to 38°) deflections of the stable remanence direction. Anisotropy of magnetic susceptibility revealed no strong anisotropy. A strong lineation and deflection of the remanence declination suggest that rheomorphic shear above magnetic blocking temperatures is the dominant mechanism controlling the formation of the magnetic fabric, with compaction contributing to a lesser extent. Nucleation and growth of anisotropic fine-grained magnetite in volcanic glass at high temperatures after, and perhaps also during, emplacement is indicated by systematic variation of magnetic properties from the quickly chilled ignimbrite base to the interior. These properties include remanence directions, anisotropy, coercivity, susceptibility, strength of natural remanent magnetization, and dominant unblocking temperature. The microcrystalline ignimbrite center has a magnetic direction that is the same as the underlying baked soil and, therefore, is a more reliable recorder of the paleofield direction than the glassy margins of highly welded ignimbrites.
A short range, low data rate, 7.2 GHz-7.7 GHz FM-UWB receiver front-end
Zhao, Y.; Dong, Y.; Gerrits, J.F.M.; Van Veenendaal, G.; Ling, J.R.; Farserotu, J.R.
2009-01-01
A 9 mW FM-UWB receiver front-end for low data rate (<50 kbps), short range (<10 m) applications operating in the ultra-wideband (UWB) band centered at 7.45 GHz is described in this paper. A single-ended-to-differential preamplifier with 30 dB voltage gain, a 1 GHz bandwidth FM demodulator, and a com
Crystal structure and short-range oxygen defects in La- and Nd-modified ZrO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Loong, C.K.; Richardson, J.W. Jr. [Argonne National Lab., IL (United States); Ozawa, M. [Nagoya Inst. of Tech. (Japan); Kimura, M. [Toyota Central Research and Development Labs., Inc., Nagoya (Japan)
1993-09-01
The crystal structure of rare-earth modified zirconia and the associated oxygen defects were studied by neutron diffraction. A Rietveld analysis of the neutron powder patterns of heat treated samples of La- and Nd- 10mol%-ZrO{sub 2} revealed the composition of a major tetragonal phase (space group P4{sub 2}/nmc) and a minor cubic phase (space group Fm3m). The sort-range oxygen defects structure was examined by a Fourier-filtering technique. A real-space correlation function, obtained from a Fourier transform of the filtered residual diffuse scattering, showed evidence of static, oxygen-vacancy induced atomic displacements along the <111> and other directions of the pseudocubic cell.
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.
2016-01-01
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.
Boromand, Arman; Jamali, Safa; Maia, Joao
2014-11-01
Colloidal Gels i.e. disordered arrested systems has been studied extensively during the past decades both experimentally and computationally. Despite their widespread applications in various industries e.g. cosmetic, food, their physical principals are still far beyond being understood. The interplay between different types of interactions e.g. quantum scale, short-ranged, and long-ranged turned dynamics and thermodynamics of the colloidal systems to one the most intriguing areas in Physics. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation in colloidal system with short-ranged attractive force e.g. colloid-polymer mixtures. However, BD neglects multi-body hydrodynamic interactions (HI) and MD is limited considering the time and length scale of gel formation and long-time dynamics. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal systems. Due to the possibility to study short- and long-ranged HI separately in this method we studied the effect of each of those interactions on the final morphology and report on one of the controversial question in this field. In the second part of the presentation, we include colloidal-polymer interactions to extend/modify the Asakura-Oosawa potential model to semi-dilute region of polymer solution.
Kinetic theory of time correlation functions for a dense one-component plasma in a magnetic field
Schoolderman, A.J.; Suttorp, L.G.
1988-01-01
The time-dependent correlations of a one-component plasma in a uniform magnetic field are studied with the help of kinetic theory. The time correlation functions of the particle density, the momentum density, and the kinetic energy density are evaluated for large time intervals. In the collision-dom
Directory of Open Access Journals (Sweden)
Alireza Rasekh
2016-11-01
Full Text Available In this paper, a set of correlations for the windage power losses in a 4 kW axial flux permanent magnet synchronous machine (AFPMSM is presented. In order to have an efficient machine, it is necessary to optimize the total electromagnetic and mechanical losses. Therefore, fast equations are needed to estimate the windage power losses of the machine. The geometry consists of an open rotor–stator with sixteen magnets at the periphery of the rotor with an annular opening in the entire disk. Air can flow in a channel being formed between the magnets and in a small gap region between the magnets and the stator surface. To construct the correlations, computational fluid dynamics (CFD simulations through the frozen rotor (FR method are performed at the practical ranges of the geometrical parameters, namely the gap size distance, the rotational speed of the rotor, the magnet thickness and the magnet angle. Thereafter, two categories of formulations are defined to make the windage losses dimensionless based on whether the losses are mainly due to the viscous forces or the pressure forces. At the end, the correlations can be achieved via curve fittings from the numerical data. The results reveal that the pressure forces are responsible for the windage losses for the side surfaces in the air-channel, whereas for the surfaces facing the stator surface in the gap, the viscous forces mainly contribute to the windage losses. Additionally, the results of the parametric study demonstrate that the overall windage losses in the machine escalate with an increase in either the rotational Reynolds number or the magnet thickness ratio. By contrast, the windage losses decrease once the magnet angle ratio enlarges. Moreover, it can be concluded that the proposed correlations are very useful tools in the design and optimizations of this type of electrical machine.
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
Directory of Open Access Journals (Sweden)
Stefan Koelsch
Full Text Available Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM and structural (voxel-based morphometry, VBM neuroimaging data. Functional magnetic resonance imaging (fMRI data were obtained from 22 individuals (12 females while listening to music (joy, fear, or neutral music. ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens. Individuals with higher E κ values (indexing higher tender emotionality showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ correlates with both function (increased network centrality and structure (grey matter volume of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for
Bijaksana, S.; Huliselan, E. K.
2009-05-01
In this work, we obtained landfill leachate sludge samples from two municipal solid waste disposal sites (Jelekong and Sarimukti) near Bandung, West Java, Indonesia and measured their magnetic properties and heavy metal content. The objective is to test whether there is a correlation between magnetic properties and heavy metal content that would allow the use of magnetic properties as proxy parameters for heavy metal content. The leachate was found to be sufficiently magnetic with mass-specific magnetic susceptibility that averaging 262.09 x 10-8 m3 kg-1 for Jelekong and 155.29 x 10-8 m3 kg-1 for Sarimukti, In both sites the magnetic minerals are predominantly pseudo-single domain (PSD) magnetite. Leachate samples from the older but inactive disposal site, Jelekong, are found to be more magnetic than that from, Sarimukti, the younger and active site. The enhancement of leachate due to the soil-derived ferrimagnetic particles is possibly the same for both Sarimukti and Jelekong. Based on AAS analyses, leachate samples from Jelekong were found to have higher heavy metal content than that from Sarimukti. Higher concentrations of heavy metals at Jelekong could be caused simply by the accumulation of heavy metal over prolonged period of time. The low frequency magnetic susceptibility correlates well with almost all heavy metals, with the exception of Cr, As, and Pb. These correlations suggested that the heavy metals have strong affinity with the ferrimagnetic minerals. Moreover, they also suggested that both heavy metals and ferrimagnetic minerals share the same origin, i.e., the waste instead of the soil. In contrast, the correlations between magnetic parameters and heavy metals in leachate samples from Sarimukti are much poorer. The fact that strong correlation between magnetic parameters and heavy metals is observed in Jelekong but is absent in Sarimukti suggests that the use of magnetic measurement as a proxy measurement for heavy metal content in leachate is
Directory of Open Access Journals (Sweden)
Elsa Siggiridou
2014-07-01
Full Text Available The occurrence of epileptiform discharges (ED in electroencephalographic (EEG recordings of patients with epilepsy signifies a change in brain dynamics and particularly brain connectivity. Transcranial magnetic stimulation (TMS has been recently acknowledged as a non-invasive brain stimulation technique that can be used in focal epilepsy for therapeutic purposes. In this case study, it is investigated whether simple time-domain connectivity measures, namely cross-correlation and partial cross-correlation, can detect alterations in the connectivity structure estimated from selected EEG channels before and during ED, as well as how this changes with the application of TMS. The correlation for each channel pair is computed on non-overlapping windows of 1 s duration forming weighted networks. Further, binary networks are derived by thresholding or statistical significance tests (parametric and randomization tests. The information for the binary networks is summarized by statistical network measures, such as the average degree and the average path length. Alterations of brain connectivity before, during and after ED with or without TMS are identified by statistical analysis of the network measures at each state.
Energy Technology Data Exchange (ETDEWEB)
Amaral, Ruana de Oliveira, E-mail: ruana.amaral@hotmail.com [Faculty of Dentistry, Federal University of Juiz de Fora, Minas Gerais (Brazil); Damasceno, Naiana Nolasco de Lima, E-mail: naiananolasketi@yahoo.com.br [Faculty of Dentistry, Federal University of Juiz de Fora, Minas Gerais (Brazil); Azevedo de Souza, Lílian, E-mail: lilianazevedo@msn.com [Faculty of Dentistry, Federal University of Juiz de Fora, Minas Gerais (Brazil); Devito, Karina Lopes, E-mail: karina.devito@ufjf.edu.br [Faculty of Dentistry, Federal University of Juiz de Fora, Minas Gerais (Brazil)
2013-06-15
Using magnetic resonance imaging (MRI), this study aimed to evaluate the morphology of the articular disc of the temporomandibular joint (TMJ) in patients with temporomandibular disorder (TMD). There were 218 TMJ of 109 assessed patients; 88 were females and 21 males, and all were diagnosed as symptomatic for temporomandibular disorder. The articular disc positions were classified in the normal position and with anterior disc displacement with and without reduction. Regarding the morphology, the discs were classified as follows: biconcave (normal), biplanar, rounded, biconvex, folded, thickening in the posterior band, thickening in the anterior band and hemiconvex. The results indicated that females were the most affected by morphological changes of the articular disc (p = 0.008/Cramer's V = 0.295). There was no statistical significance when correlating the disc morphology with the sides (right and left). There was a significant correlation between the position and morphology of the articular disc (p < 0.001/Cramer's V = 0.609), and in the normal position of the discs presenting biplanar and biconcave morphologies. In TMJ with anterior displacement of the disc with reduction (ADDR), there was a greater correlation with rounded, hemiconvex and biconvex morphologies. Already in the TMJ with displacement without reduction (ADDWR), there was a higher prevalence of folded discs. It can be concluded that morphological changes in the disc are influenced by the type of displacement, and more serious deformations are associated with ADDWR cases.
Lin, Tingting; Zhang, Siyuan; Zhang, Yang; Wan, Ling; Lin, Jun
2017-01-01
Compared with the other geophysical approaches, magnetic resonance sounding (MRS) technique is direct and nondestructive in subsurface water exploration. It provides water content distribution and estimates hydrogeological properties. The biggest challenge is that MRS measurement always suffers bad signal-to-noise ratio, and it can be carried out only far from sources of noise. To solve this problem, a series of de-noising methods are developed. However, most of them are post-processing, leading the data quality uncontrolled for in situ measurements. In the present study, a new approach that removal of correlated noise online is found to overcome the restriction. Based on LabVIEW, a method is provided to enable online data quality control by the way of realizing signal acquisition and noise filtering simultaneously. Using one or more reference coils, adaptive noise cancellation based on LabVIEW to eliminate the correlated noise is available for in situ measurements. The approach was examined through numerical simulation and field measurements. The correlated noise is mitigated effectively and the application of MRS measurements is feasible in high-level noise environment. The method shortens the measurement time and improves the measurement efficiency.