WorldWideScience

Sample records for magnetic rotation bands

  1. Broad-band linear polarization and magnetic intensification in rotating magnetic stars

    Degl'Innocenti, M.L.; Calamai, G.; Degl'Innocenti, E.L.; Patriarchi, P.

    1981-01-01

    Magnetic intensification is proposed as a mechanism to explain the general features of the variable broad-band linear polarization emerging from rotating magnetic stars. This mechanism is studied in detail, and some efforts are made to investigate the wide variety of polarization diagrams that can result from it. Theoretical results are compared with direct observations of the variable magnetic star 53 Cam to determine its geometric and magnetic configuration

  2. A brief review of intruder rotational bands and magnetic rotation in the A = 110 mass region

    Banerjee, P.

    2018-05-01

    Nuclei in the A ∼ 110 mass region exhibit interesting structural features. One of these relates to the process by which specific configurations, built on the excitation of one or more protons across the Z = 50 shell-gap, manifest as collective rotational bands at intermediate spins and gradually lose their collectivity with increase in spin and terminate in a non-collective state at the maximum spin which the configuration can support. These bands are called terminating bands that co-exist with spherical states. Some of these bands are said to terminate smoothly underlining the continuous character of the process by which the band evolves from significant collectivity at low spin to a pure particle-hole non-collective state at the highest spin. The neutron-deficient A ∼ 110 mass region provides the best examples of smoothly terminating bands. The present experimental and theoretical status of such bands in several nuclei with 48 ≤ Z ≤ 52 spanning the 106 ≤ A ≤ 119 mass region have been reviewed in this article. The other noteworthy feature of nuclei in the A ∼ 110 mass region is the observation of regular rotation-like sequences of strongly enhanced magnetic dipole transitions in near-spherical nuclei. These bands, unlike the well-studied rotational sequences in deformed nuclei, arise from a spontaneous symmetry breaking by the anisotropic currents of a few high-j excited particles and holes. This mode of excitation is called magnetic rotation and was first reported in the Pb region. Evidence in favor of the existence of such structures, also called shears bands, are reported in the literature for a large number of Cd, In, Sn and Sb isotope with A ∼ 110. The present article provides a general overview of these reported structures across this mass region. The review also discusses antimagnetic rotation bands and a few cases of octupole correlations in the A = 110 mass region.

  3. Test of Magnetic Rotation near the band head in ^197,198Pb

    Krücken, R.; Clark, R. M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Macchiavelli, A. O.; Lee, I. Y.; Schmid, G. J.; Stephens, F. S.; Vetter, K.; Dewald, A.; Peusquens, R.; von Brentano, P.; Baldsiefen, G.; Chmel, S.; Hübel, H.; Becker, J. A.; Bernstein, L. A.; Hauschild, K.

    1998-04-01

    The concept of magnetic rotation is tested near the band head of shears-bands in ^197,198Pb by means of a lifetime experiment with the recoil distance method (RDM). The experiment was performed using the Gammasphere array in conjunction with the Cologne Plunger. The B(M1) values extracted from the measured lifetimes can prove the applicability of the concept of magnetic rotation for the states near the band head of these shears bands. The RDM results are compared with tilted axis cranking and shell model calculations. Furthermore the results will be used to test earlier DSAM lifetime measurements for states at higher spins. Preliminary results of this topic will be presented. This work is supported by DOE grant numbers DE-AC03-76SF00098 (LBNL), DE-FG02-91ER40609 (Yale), W-7405-ENG-48 (LLNL) and by the German BMBF for Cologne (No. 06 OK 668) and Bonn.

  4. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193

    Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.

    2011-01-01

    The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  5. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb

    Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S

    2011-01-01

    The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  6. Evidence for {open_quotes}magnetic rotation{close_quotes} in nuclei: New results on the M1-bands of {sup 198,199}Pb

    Clark, R.M. [Lawrence Berkeley National Lab., CA (United States)

    1996-12-31

    Lifetimes of states in four of the M1-bands in {sup 198,199}Pb have been determined through a Doppler Shift Attenuation Method measurement performed using the Gammasphere array. The deduced B(M1) values, which are a sensitive probe of the underlying mechanism for generating these sequences, show remarkable agreement with Tilted Axis Cranking (TAC) calculations. Evidence is also presented for the possible termination of the bands. The results represent clear evidence for a new concept in nuclear excitations: {open_quote}magnetic rotation{close_quote}.

  7. Study of rotational band in 111Sn

    Ganguly, S.; Banerjee, P.; Ray, I.; Kshetri, R.; Raut, R.; Goswami, A.; Saha Sarkar, M.; Bhattacharya, S.; Mukherjee, A.; Mukherjee, G.; Basu, S.K.; Mukhopadhyay, S.

    2006-01-01

    The motivation of the present work is to study the negative-parity rotational band in 111 Sn. Study of the lifetimes of the states of the rotational band is expected to provide information on their structures as well as the band termination phenomenon

  8. Energy correlations for mixed rotational bands

    Doessing, T.

    1985-01-01

    A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)

  9. Signature effects in 2-qp rotational bands

    Jain, A.K.; Goel, A.

    1992-01-01

    The authors briefly review the progress in understanding the 2-qp rotational bands in odd-odd nuclei. Signature effects and the phenomenon of signature inversion are discussed. The Coriolis coupling appears to have all the ingredients to explain the inversion. Some recent work on signature dependence in 2-qp bands of even-even nuclei is also discussed; interesting features are pointed out

  10. Study on electromagnetic constants of rotational bands

    Abdurazakov, A.A.; Adib, Yu.Sh.; Karakhodzhaev, A.K.

    1991-01-01

    Values of electromagnetic constant S and rotation bands of odd nuclei with Z=64-70 within the mass number change interval A=153-173 are determined. Values of γ-transition mixing parameter with M1+E2 multipolarity are presented. ρ parameter dependence on mass number A is discussed

  11. Faraday Rotation and L Band Oceanographic Measurements

    Skou, Niels

    2003-01-01

    Spaceborne radiometric measurements of the L band brightness temperature over the oceans make it possible to estimate sea surface salinity. However, Faraday rotation in the ionosphere disturbs the signals and must be corrected. Two different ways of assessing the disturbance directly from...

  12. Differential rotation in magnetic stars

    Moss, D.

    1981-01-01

    The possibility that large-scale magnetic fields in stars are the product of a contemporary dynamo situated in the convective stellar core, rather than being a fossil from an earlier stage in the history of the star, is investigated. It is demonstrated that then the envelope will almost inevitably be in a state of differential rotation. Some simple models are constructed to illustrate the magnitude of the effects on the structure of the envelope and magnetic field. It is found that, for models which are relatively rapidly rotating, a modest differential rotation at the surface of the core may increase considerably the ratio of internal to surface field, but only give rise to a small surface differential rotation. (author)

  13. Rotational band structure in 132La

    Oliveira, J.R.B.; Emediato, L.G.R.; Rizzutto, M.A.; Ribas, R.V.; Seale, W.A.; Rao, M.N.; Medina, N.H.; Botelho, S.; Cybulska, E.W.

    1989-01-01

    '3'2La was studied using on-line gamma-spectroscopy through the reactions '1 24,126 Te( 11,10 B, 3, 4n) 132 La. The excitation function was obtained with 10 B(E lab =41.4; 45.4 and 48 MeV) in order to identify 132 La gamma-transitions. Gamma-gamma coincidences and angular distributions were performed for the 126 Te( 10 B, 4n) 132 La reaction. From the experimental results a rotational band with strongest M1 transitions and less intense 'cross-overs' E2 transitions was constructed. Using the methods of Bengtsson and Frauendorf the alignment (ix) and the Routhian (e') as a function of the angular velocity (ω) were also obtained from the experimental data. It was observed a constant alignment up to ω≅0.4 MeV, and a signature-splitting Δe'=25keV. Preliminary triaxial Cranking-Shell Model calculations indicate that a γ=-8deg deformation is consistent with the signature-splitting value of 25 keV experimentally observed. (Author) [es

  14. Collective dipole rotational bands in the A {approx} 200 region

    Clark, R M; Wadsworth, R; Regan, P H [York Univ. (United Kingdom). Dept. of Physics; Paul, E S; Beausang, C W; Ali, I; Cullen, D M; Dagnall, P J; Fallon, P; Joyce, M J; Sharpey-Schafer, J F [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Astier, A; Meyer, M; Redon, N [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Nazakewicz, W; Wyss, R [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)

    1992-08-01

    Rotational oblate bands consisting of regular sequences of magnetic dipole transitions have recently been identified in {sup 196-200}Pb. Their observation indicates a drastic change in the high-spin configurations between the Hg, Tl and {sup 194}Pb nuclei, in which SD bands are clearly observed, and the heavier Pb isotopes, where these weakly deformed oblate structures see to dominate. Angular correlation ratios show the transitions to be dipoles. Their magnetic nature can be deduced from intensity measurements, and they are characterized by small dynamic moments of inertia. Several of the bands have been interpreted as being built on high-K two-proton configurations coupled to an aligned pair of i{sub 13/2} neutrons in the even A nuclei, and to either one or three i{sub 13/2} neutrons in the odd A nuclei. Cranked shell model calculations predict the alignment of a pair of i{sub 13/2} neutrons (the AB crossing) at {omega} {approx} 0.18 MeV{Dirac_h}{sub -1}. The higher frequency crossing at {omega} {approx} 0.4 MeV{Dirac_h}{sub -1} may be due to the alignment of f{sub 5/2} neutrons, h{sub 11/2} protons, or both. 17 refs., 4 figs.

  15. α+12C rotational bands in 16O

    Katsuma M.

    2014-03-01

    Full Text Available The total quantum number N of the α+12C rotational bands in 16O is determined by a study of α+12C elastic scattering. The 8+ and 9− states are found around the excitation energy Ex = 30 MeV and they are the member of the known rotational bands. At the same time, the 02+ state (Ex = 6.05 MeV is found to be dominated by N = 8.

  16. Spins of superdeformed rotational bands in Tl isotopes

    Dadwal, Anshul; Mittal, H.M. [Dr. B.R. Ambedkar National Institute of Technology, Jalandhar (India)

    2017-01-15

    The two-parameter model defined for even-even nuclei viz. soft-rotor formula is used to assign the band-head spin of the 17 rotational bands in Tl isotopes. The least-squares fitting method is employed to obtain the spins of these bands in the A ∝ 190 mass region. The calculated transition energies are found to depend sensitively on the proposed spin. Whenever a correct spin assignment is made, the calculated and experimental transition energies coincide very well. The dynamic moment of inertia is also calculated and its variation with rotational frequency is explored. (orig.)

  17. High spin rotational bands in Zn

    We present here some preliminary results from our studies in the. ~ ¼ region in which we have observed an yrast band structure in Zn extending to spin (41/2 ). ... gaps implies that nuclei may exhibit different shapes at different excitation energies. .... uration, identifying previously unobserved states up to an excitation energy ...

  18. Hydromagnetic rotational braking of magnetic stars

    Fleck, R.C. Jr.

    1980-01-01

    It is suggested that the magnetic Ap stars can be rotationally decelerated to long periods by the braking action of the associated magnetic field on time scales of order 10 7 --10 10 years depending on whether the star's dipole field is aligned perpendicular or parallel to the rotation axis. Rotation includes a toroidal magnetic field in the plasma surrounding a star, and the accompanying magnetic stresses produce a net torque acting to despin the star. These results indicate that it is not necessary to postulate mass loss or mass accretion for this purely hydromagnetic braking effect

  19. Enhancement of Faraday rotation at photonic-band-gap edge in garnet-based magnetophotonic crystals

    Zhdanov, A.G.; Fedyanin, A.A.; Aktsipetrov, O.A.; Kobayashi, D.; Uchida, H.; Inoue, M.

    2006-01-01

    Spectral dependences of Faraday rotation angle in one-dimensional garnet-based magnetophotonic crystals are considered. The enhancement of Faraday angle is demonstrated at the photonic band gap (PBG) edge both theoretically and experimentally. It is shown to be associated with the optical field localization in the magnetic layers of the structure. The advantages of magnetophotonic crystals in comparison with traditional magnetic microcavities are discussed. The specially designed microcavity structures optimized for the Faraday effect enhancement at the PBG edge are suggested

  20. Identical high- K three-quasiparticle rotational bands

    Kaur, Harjeet; Singh, Pardeep [Guru Nanak Dev University, Department of Physics, Amritsar (India)

    2016-12-15

    A comprehensive study of high-K three-quasiparticle rotational bands in odd-A nuclei indicates the similarity in γ-ray energies and dynamic moment of inertia I{sup (2)}. The extent of the identicality between the rotational bands is evaluated by using the energy factor method. For nuclei pairs exhibiting identical bands, the average relative change in the dynamic moment of inertia I{sup (2)} is also determined. The identical behaviour shown by these bands is attributed to the interplay of nuclear structure parameters: deformation and the pairing correlations. Also, experimental trend of the I(ℎ) vs. ℎω (MeV) plot for these nuclei pairs is shown to be in agreement with Tilted-Axis Cranking (TAC) model calculations. (orig.)

  1. Optical model with multiple band couplings using soft rotator structure

    Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi

    2017-09-01

    A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.

  2. Pair correlation of super-deformed rotation band

    Shimizu, Yoshio

    1989-01-01

    The effect of pair correlation, one of the most important residual interactions associated with the super-deformed rotation band, is discussed in terms of the characteristics of the rotation band (its effect on the moment of inertia in particular), and the tunneling into an normal deformed state in relation to its effect on the angular momentum dependence of the potential energy plane as a function of the deformation. The characteristics of the rotation band is discussed in terms of the kinematic and dynamic momenta of inertia. It is shown that the pair correlation in a super-deformed rotation band acts to decrease the former and increase the latter momentum mainly due to dynamic pair correlation. A theoretical approach that takes this effect into account can provide results that are consistent with measured momenta, although large differences can occur in some cases. Major conflicts include a large measured kinetic momentum of inertia compared to the theoretical value, and the absence of the abnormality (shape increase) generally seen in low-spin experiments. The former seems likely to be associated with the method of measuring the angular momentum. (N.K.)

  3. The structure of rotational bands in alpha-cluster nuclei

    Bijker Roelof

    2015-01-01

    Full Text Available In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.

  4. Magnetic nanofluids and magnetic composite fluids in rotating seal systems

    Borbath, T; Borbath, I; Boros, T; Bica, D; Vekas, L; Potencz, I

    2010-01-01

    Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. The behavior of different types of magnetizable fluids in the rotating sealing systems is analyzed. Design concepts, some constructive details and testing procedures of magnetofluidic rotating seals are presented such as the testing equipment. The main characteristics of several magnetofluidic sealing systems and their applications will be presented: vacuum deposition systems and liquefied gas pumps applications, mechanical and magnetic nanofluid combined seals, gas valves up to 40 bar equipped by rotating seal with magnetic nanofluids and magnetic composite fluids.

  5. Microscopic study of superdeformed rotational bands in {sup 151} Tb

    El Aouad, N.; Dudek, J.; Li, X.; Luo, W.D.; Molique, H.; Bouguettoucha, A.; Byrski, TH.; Beck, F.; Finck, C.; Kharraja, B. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Dobaczewski, J. [Warsaw Univ. (Poland); Kharraja, B. [Notre Dame Univ., IN (United States). Dept. of Physics

    1996-12-31

    Structure of eight superdeformed bands in the nucleus {sup 151}Tb is analyzed using the results of the Hartree-Fock and Woods-Saxon cranking approaches. It is demonstrated that far going similarities between the two approaches exit and predictions related to the structure of rotational bands calculated within the two models are nearly parallel. An interpretation scenario for the structure of the superdeformed bands is presented and predictions related to the exit spins are made. Small but systematic discrepancies between experiment and theory, analyzed in terms of the dynamical moments, J{sup (2)}, are shown to exist. The pairing correlations taken into account by using the particle-number-projection technique are shown to increase the disagreement. Sources of these systematic discrepancies are discussed - they are most likely related to the yet not optimal parametrization of the nuclear interactions used. (authors). 60 refs.

  6. Electromagnetic fields of rotating magnetized NUT stars

    Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.

    2004-01-01

    Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit

  7. ΔI = 2 Nuclear Staggering in Superdeformed Rotational Bands

    Okasha M. D.

    2014-01-01

    Full Text Available A four parameters model including collective rotational en ergies to fourth order is ap- plied to reproduce the ∆ I = 2 staggering in transition energies in four selected super deformed rotational bands, namely, 148 Gd (SD6, 194 Hg (SD1, SD2, SD3. The model parameters and the spin of the bandhead have been extracted a ssuming various val- ues to the lowest spin of the bandhead at nearest integer, in o rder to obtain a minimum root mean square deviation between calculated and the exper imental transition energies. This allows us to suggest the spin values for the energy level s which are experimentally unknown. For each band a staggering parameter represent the deviation of the transition energies from a smooth reference has been determined by calc ulating the fourth order derivative of the transition energies at a given spin. The st aggering parameter contains five consecutive transition energies which is denoted here a s the five-point formula. In order to get information about the dynamical moment of ine rtia, the two point for- mula which contains only two consecutive transition energi es has been also considered. The dynamical moment of inertia decreasing with increasing rotational frequency for A ∼ 150, while increasing for A ∼ 190 mass regions.

  8. Modified small angle magnetization rotation method in multilayer magnetic microwires

    Torrejon, J.; Badini, G.; Pirota, K.; Vazquez, M.

    2007-01-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications

  9. Rotational bands terminating at maximal spin in the valence space

    Ragnarsson, I.; Afanasjev, A.V. [Lund Institute of Technology (Sweden)

    1996-12-31

    For nuclei with mass A {le} 120, the spin available in {open_quotes}normal deformation configurations{close_quotes} is experimentally accessible with present detector systems. Of special interest are the nuclei which show collective features at low or medium-high spin and where the corresponding rotational bands with increasing spin can be followed in a continuous way to or close to a non-collective terminating state. Some specific features in this context are discussed for nuclei in the A = 80 region and for {sup 117,118}Xe.

  10. Intrinsic states and rotational bands in 177Pt

    Dracoulis, G.D.; Fabricius, B.; Bark, R.A.; Stuchbery, A.E.; Popescu, D.G.; Kibedi, T.

    1989-11-01

    The 149 Sm ( 32 S,4n) 177 Pt reaction has been used to populate excited states in the neutron-deficient nucleus 177 Pt. Rotational bands based on intrinsic states assigned to the 1/2-[521], 5/2-[521] and (mixed) 7/2+ [633] Nilsson configurations have been observed. In contrast to the neighbou-ring even isotope 176 Pt, anomalies attributed to shape co-existence at low spin have not been observed. Implications for the deformation of 177 Pt are discussed together with the systematics of intrinsic states in this region, and alignments and other properties of N=99 nuclei. 37 refs., 15 figs., 3 tabs

  11. Dipolar vortex structures in magnetized rotating plasma

    Liu Jixing

    1990-01-01

    Dipolar solitary vortices of both electrostatic and electromagnetic character in low-β, in homogeneous rotating plasma confined in a constant external magnetic field were systematically presented. The main stimulus to this investigation is the expectation to apply this coherent structure as a candidate constituent of plasma turbulance to understand the anomalous transport phenomena in confined plasma. The electrostatic vortices have similar structure and properties as the Rossby vortices in rotating fluids, the electromagnetic vortices obtained here have no analogy in hydrodynamics and hence are intrinsic to magnetized plasma. It is valuably remarked that the intrinsic electromagnetic vortices presented here have no discontinuity of perturbed magnetic field δB and parallel current j(parallel) on the border of vortex core. The existence region of the new type of vortex is found much narrower than the Rossby type one. (M.T.)

  12. Rotating magnetizations in electrical machines: Measurements and modeling

    Andreas Thul

    2018-05-01

    Full Text Available This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  13. Rotating magnetizations in electrical machines: Measurements and modeling

    Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay

    2018-05-01

    This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  14. Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large-Caliber Projectiles

    2015-05-01

    process parameters used during the initial deposition of copper material, given the observation that these initial copper rotating bands tended to “ flake ...ARL-TR-7299 ● MAY 2015 US Army Research Laboratory Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large...Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large-Caliber Projectiles by Michael A Minnicino Weapons and Materials Research

  15. A study on stability of rotating magnets

    Higuchi, N.; Kaiho, K.; Ishii, I.

    1996-01-01

    Superconducting power generators are being developed in Japan, as a part of a R and D program on energy technology, the New Sunshine Project. In this development, national laboratories are taking a role of fundamental studies to contribute to the R and D being carried out mainly by the manufacturers involved in a research association, Super-GM. Stabilities of magnets in a high gravitational field up to 2,000 G are discussed, based upon the experimental results of forced quench tests in a set of rotating magnets, in order to establish the stability design criterion of field windings of superconducting generators. Relations of propagation velocities, recovery currents, minimum quench energy and heat transfer characteristics are studied, a good agreement between the experimental results and a theory confirmed the improvement of magnet stability in a high gravitational field because of the enhanced heat transfer characteristics

  16. Ultrasensitive magnetometers based on rotational magnetic excitation

    Hristoforou, E.; Svec, P. Sr.

    2014-01-01

    Three new types of fluxgate magnetometers are presented in this paper, able to monitor the three components of the ambient field, all of them based on the principle of rotational excitation field. The first type is based on Yttrium- Iron Garnet (YIG) single crystal film, magnetized with rotational field on its plane, where the 2"n"d, 4"t"h and 6"t"h harmonics offer the three components of the ambient field with sensitivity better than 1 pT at 0.2 Hz, its size being 25 cm"3. The second type is based on permalloy film, where the rotational excitation field on its plane offers change of magnetoresistance with sensitivity better than 10 pT at 1 Hz, uncertainty of 1 ppm and size ∼ 8 cm"3. The third type, is based on amorphous film, where the rotation field mode offer sensitivity better than 100 pT at 1 Hz, uncertainty of 10 ppm and size ∼ 10 mm"3. (authors)

  17. An Unusual Rotationally Modulated Attenuation Band in the Jovian Hectometric Radio Emission Spectrum

    Gurnett, D. A.; Kurth, W. S.; Menietti, J. D.; Persoon, A. M.

    1998-01-01

    A well-defined attenuation band modulated by the rotation of Jupiter has been found in the spectrum of Jovian hectometric radiation using data from the Galileo plasma wave instrument. The center frequency of this band usually occurs in the frequency range from about 1 to 3 MHz and the bandwidth is about 10 to 20 percent. The center frequency varies systematically with the rotation of Jupiter and has two peaks per rotation, the first at a system III longitude of about 50 deg, and the second at about 185 deg. It is now believed that the attenuation occurs as the ray path from a high-latitude cyclotron maser source passes approximately parallel to the magnetic field near the northern or southern edges of the Io L-shell. The peak at 50 deg system 3 longitude is attributed to radiation from a southern hemisphere source and the peak at 185 deg is from a northern hemisphere source. The attenuation is thought to be caused by coherent scattering or shallow angle reflection from field-aligned density irregularities near the Io L-shell. The narrow bandwidth indicates that the density irregularities are confined to a very narrow range of L values (Delta L = 0.2 to 0.4) near the Io L-shell.

  18. Heisenberg Model in a Rotating Magnetic Field

    LIN Qiong-Gui

    2005-01-01

    We study the Heisenberg model under the influence of a rotating magnetic field. By using a time-dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are calculated, and are expressed in terms of the solid angle subtended by the closed trace of the total spin vector, as well as in terms of those of the individual spins.

  19. Collective oblate dipole rotational bands in 198Pb

    Clark, R.M.; Wadsworth, R.; Paul, E.S.; Beausang, C.W.; Ali, I.; Astier, A.; Cullen, D.M.; Dagnall, P.J.; Fallon, P.; Joyce, M.J.; Meyer, M.; Redon, N.; Regan, P.H.; Sharpey-Schafer, J.F.; Nazarewicz, W.; Wyss, R.

    1993-01-01

    The nucleus 198 Pb was populated via the 186 W( 17 O, 5n) 198 Pb reaction at beam energies of 92 and 98 MeV. Five collective rotational cascades of ΔI=1 transitions have been found. Four are highly regular, one much more irregular. The structures are incorporated into a level scheme which extends up to approximately spin 32 h and an excitation energy of about 10 MeV. Angular correlation measurements confirm the dipole character of the interband transitions. Their M1 multipolarity is inferred, and from this supposition the experimental data are interpreted in terms of oblate high-K two quasiproton configurations coupled to aligned neutron excitations. This interpretation is extended to include other ΔI=1 oblate structures observed in 194-201 Pb. It is shown that the pattern of observed moments of inertia can be understood in the simple unpaired picture involving neutron i 13/2 excitations. The identical bands observed are interpreted in terms of the normal-parity weakly-coupled singlet orbital. (orig.)

  20. Magnetism and magnetostriction in a degenerate rigid band

    Kulakowski, K.; Barbara, B.

    1990-09-01

    We investigate the influence of the spin-orbit coupling on the magnetic and magnetoelastic phenomena in ferromagnetic band systems. The description is within the Stoner model of a degenerate rigid band, for temperature T = O. (author). 14 refs

  1. Band magnetism due to f-electrons

    Brodsky, M.B.; Trainor, R.J.

    1976-01-01

    Specific heat data illustrate several types of itinerant or band magnetism in actinide intermetallic compounds. The results show ferromagnetic spin fluctuations in UAl 2 with T/sub sf/ equals 25K, itinerant antiferromagnetism in NpSn 3 with T/sub N/ equals 9.5K and itinerant ferromagnetism in NpOs 2 with T/sub C/ equals 7.9K. Specific heat studies of dilute U/sub 1-x/Th/sub x/Al 2 show the theoretically predicted modifications due to impurity scattering in a spin fluctuation system. For NpSn 3 it is possible to show the BCS nature of the transition due to the gap formation

  2. Mechanism of viscosity effect on magnetic island rotation

    Mikhailovskii, A.B.; Konovalov, S.V. [Institute of Nuclear Fusion, Russian Research Centre ' Kurchatov Institute' , Kurchatov Sq., 1, Moscow (Russian Federation); Pustovitov, V.D. [National Inst. for Fusion Science, Toki, Gifu (Japan); Tsypin, V.S. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, SP (Brazil)

    2000-04-01

    It is shown that plasma viscosity does not influence the magnetic island rotation directly. Nevertheless, it leads to nonstationarity of the plasma velocity. This nonstationarity is the reason of the viscosity effect on island rotation. (author)

  3. Identicity in high-K three quasiparticle rotational bands: a theoretical approach

    Kaur, Harjeet; Singh, Pardeep; Malik, Sham S

    2015-01-01

    The systematics are studied for the identical band phenomenon in high-K three quasiparticle rotational bands. The identical rotational bands based on the same bandhead spin are analyzed on the basis of similarities in γ-ray energies, dynamic moment of inertia and kinematic moment of inertia in particular, which is a function of deformation degrees of freedom, pairing strengths and Nilsson orbitals in nuclei. It is established that a combined effect of all these parameters decides the identicity of the moment of inertia in high-K three quasiparticle rotational bands as the systematics are backed by the Tilted Axis Cranking model calculations. (paper)

  4. NMR system and method having a permanent magnet providing a rotating magnetic field

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  5. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    Melrose, D. B.

    2010-01-01

    The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ 2 , due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  6. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    Melrose, D B [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)

    2010-12-20

    The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  7. Rotational magnetization of anisotropic media: Lag angle, ellipticity and accommodation

    Kahler, G.R.; Della Torre, E.

    2006-01-01

    This paper discusses the change in the ellipticity of two-dimensional magnetization trajectories as the applied field rotates from the easy axis to the hard axis of a material. Furthermore, the impact that the reversible magnetization has on the ellipticity is discussed, including the relationship between the magnetization squareness and the reversible component of the magnetization

  8. Spin alignment and collective moment of inertia of the basic rotational band in the cranking model

    Tanaka, Yoshihide

    1982-01-01

    By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and are investigated by using a simple i sub(13/2) shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band. (author)

  9. β decays on the rotational levels of the 5/2+[642] 169Yb band

    Dzhelepov, B.S.; Zhukovskij, N.N.; Shestopalova, S.A.

    1993-01-01

    Competing 169 Lu β decays into rotational levels of 5/2 + [642] 169 Yb band are considered. Schemes of resolved β decay into 3 levels of deformed nucleus rotational bands, γ transitions linked with excitation and discharge of 169 Yb 5/2, 7/2, 9/2, 5/2 + [642] levels are presented. Matrix elements of axial-vector decay are determined. Data on 12 γ transitions in 169 Lu are presented

  10. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    Wang, Fenggong; Grinberg, Ilya; Rappe, Andrew M.

    2014-01-01

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics

  11. Structure of the lowest excited 0/sup +/ rotational band of /sup 16/O

    Ikebata, Yasuhiko; Suekane, Shota

    1983-10-01

    The structure of the lowest excited 0/sup +/ rotational band is investigated by using the extended Nilsson model wave functions with angular momentum projection and the B1 interaction, two-body LS-force of the Skyrme type and the Coulomb interaction. The results obtained show good agreement with energy interval in this band.

  12. Magnetic suspension of a rotating system. Application to inertial flywheels

    Lemarquand, Guy

    1984-01-01

    The various possible magnetic suspension configurations compatible with rotating mechanical systems are defined from studies of the characteristics of different types of magnetic bearings. The results obtained are used in the design and realization of a magnetic suspension for an inertial flywheel. (author) [fr

  13. Superparamagnetic beads in rotating magnetic fields: microfluidic experiments

    Den Toonder, J.M.J.; Bokdam, M.

    2008-01-01

    The effect of the Mason number, ratio of viscous and magnetic force, on suspended superparamagnetic micro sized beads was investigated experimentally. Microfluidic experiments were performed in a set-up that generates a rotating homogeneous magnetic field. In the presence of a magnetic field, the

  14. Electronic band structure of magnetic bilayer graphene superlattices

    Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien

    2014-01-01

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  15. Nuclear resonance apparatus including means for rotating a magnetic field

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  16. Magnetic phase diagrams from non-collinear canonical band theory

    Shallcross, Sam; Nordstrom, L.; Sharma, S.

    2007-01-01

    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...... hybridization, and on this basis we are able to analyze the microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets....... to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...

  17. The magnetic field generated by a rotating charged polygon

    Wan, Songlin; Chen, Xiangyu; Teng, Baohua; Fu, Hao; Li, Yefeng; Wu, Minghe; Wu, Shaoyi; Balfour, E A

    2014-01-01

    The magnetic field along the symmetry axis of a regular polygon carrying a uniform electric charge on its edges is calculated systematically when the polygon is rotated about this axis of symmetry. A group of circular current-carrying coils arranged concentrically about the axis of the polygon has been designed to simulate the magnetic field characteristics of the rotating charged polygon. The magnetic field of the simulated coils is measured using the PASCO magnetic field sensor. The results show that the theoretical calculation agrees well with the experimental results. (paper)

  18. Rotation of magnetic particles inside the polymer matrix of magnetoactive elastomers with a hard magnetic filler

    Stepanov, G.V., E-mail: gstepanov@mail.ru [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation); Borin, D.Yu. [TU Dresden, Magnetofluiddynamics, Measuring and Automation Technology, Dresden 01062 (Germany); Storozhenko, P.A. [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation)

    2017-06-01

    We propose the results of research on the magnetic properties of magnetoactive elastomers containing particles of a hard magnetic filler. According to our understanding, the mechanism of re-magnetizing of the composite is based on two competing processes, being the re-magnetizing of the magnetic filler and mechanical rotation of particles inside of the polymer matrix.

  19. Predicting superdeformed rotational band-head spin in A ∼ 190 mass region using variable moment of inertia model

    Uma, V.S.; Goel, Alpana; Yadav, Archana; Jain, A.K.

    2016-01-01

    The band-head spin (I 0 ) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin Eγ/ 2 I (RTEOS) vs. angular momentum (I) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands. (author)

  20. Possible relation between pulsar rotation and evolution of magnetic inclination

    Tian, Jun

    2018-05-01

    The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.

  1. Spontaneous formation of densely packed shear bands of rotating fragments.

    Åström, J A; Timonen, J

    2012-05-01

    Appearance of self-similar space-filling ball bearings has been suggested to provide the explanation for seismic gaps, shear weakness, and lack of detectable frictional heat formation in mature tectonic faults (shear zones). As the material in a shear zone fractures and grinds, it could be thought to eventually form a conformation that allows fragments to largely roll against each other without much sliding. This type of space-filling "ball bearing" can be constructed artificially, but so far how such delicate structures may appear spontaneously has remained unexplained. It is demonstrated here that first-principles simulations of granular packing with fragmenting grains indeed display spontaneous formation of shear bands with fragment conformations very similar to those of densely packed ball bearings.

  2. Rotating magnetic field current drive-theory and experiment

    Donnelly, I.J.

    1989-01-01

    Rotating magnetic fields have been used to drive plasma current and establish a range of compact torus configurations, named rotamaks. The current drive mechanism involves a ponderomotive force acting on the electron fluid. Recent extensions of the theory indicate that this method is most suitable for driving currents in directions perpendicular to the steady magnetic fields

  3. Magnetism of iron and nickel from rotationally invariant Hirsch-Fye quantum Monte Carlo calculations

    Belozerov, A. S.; Leonov, I.; Anisimov, V. I.

    2013-03-01

    We present a rotationally invariant Hirsch-Fye quantum Monte Carlo algorithm in which the spin rotational invariance of Hund's exchange is approximated by averaging over all possible directions of the spin quantization axis. We employ this technique to perform benchmark calculations for the two- and three-band Hubbard models on the infinite-dimensional Bethe lattice. Our results agree quantitatively well with those obtained using the continuous-time quantum Monte Carlo method with rotationally invariant Coulomb interaction. The proposed approach is employed to compute the electronic and magnetic properties of paramagnetic α iron and nickel. The obtained Curie temperatures agree well with experiment. Our results indicate that the magnetic transition temperature is significantly overestimated by using the density-density type of Coulomb interaction.

  4. Vibration-rotation band intensities in the IR spectra of polyatomic molecules

    El'kin, M.D.; Kosterina, E.K.; Berezin

    1995-01-01

    Using the curvilinear vibrational coordinates for a nuclear subsystem, expressions for the effective dipole-moment operators are derived in order to analyze the vibrational-rotational transitions in the IR spectra of polyatomic rigid molecules. The explicit expressions obtained for the intensities of hot bands allow one to estimate the influence of the vibration-rotation interaction within the framework of the adopted molecular-vibration model. The suggested method is shown to be suitable for Raman spectra analysis. 12 refs

  5. Comparison between the harris and ab expressions for the description of nuclear superdeformed rotational bands

    Hu Zuoxian; Zeng Jinyan

    1998-01-01

    The superdeformed rotational bands in the A ≅3D 190 region are systematically analyzed using the Harris two-parameter formula and the ab expression, respectively. Similar to the situations in normally deformed nuclei, there exist obvious and systematic deviation of Harris formula from the experiments. In contrast, the prediction of ab formula is very close to experiments, and can be conveniently used for the description of nuclear superdeformed bands

  6. Superconducting magnet for a Ku-band maser.

    Berwin, R.; Wiebe, E.; Dachel, P.

    1972-01-01

    A superconducting magnet to provide a uniform magnetic field of up to 8000 G in a 1.14-cm gap for the 15.3-GHz (Ku-band) traveling wave maser is described. The magnet operates in a persistent mode in the vacuum environment of a closed-cycle helium refrigerator (4.5 K). The features of a superconducting switch, which has both leads connected to 4.5 K heat stations and thereby does not receive heat generated by the magnet charging leads, are described.

  7. Strongly coupled rotational band in Mg33

    Richard, A. L.; Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Jones, M. D.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Rissanen, J.; Salathe, M.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.

    2017-07-01

    The “Island of Inversion” at N~20 for the neon, sodium, and magnesium isotopes has long been an area of interest both experimentally and theoretically due to the subtle competition between 0p-0h and np-nh configurations leading to deformed shapes. However, the presence of rotational band structures, which are fingerprints of deformed shapes, have only recently been observed in this region. In this work, we report on a measurement of the low-lying level structure of 33Mg populated by a two-stage projectile fragmentation reaction and studied with GRETINA. The experimental level energies, ground state magnetic moment, intrinsic quadrupole moment, and γ-ray intensities show good agreement with the strong-coupling limit of a rotational model.

  8. Strongly coupled rotational band in Mg33

    Richard, A. L. [Ohio Univ., Athens, OH (United States). Inst. for Nuclear and Particle Physics; Crawford, H. L. [Ohio Univ., Athens, OH (United States). Inst. for Nuclear and Particle Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Fallon, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Macchiavelli, A. O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Bader, V. M. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Bazin, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Bowry, M. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Campbell, C. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Carpenter, M. P. [Argonne National Lab. (ANL), Argonne, IL (United States). Physics Div.; Clark, R. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Cromaz, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Gade, A. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Ideguchi, E. [Osaka Univ. (Japan). RCNP; Iwasaki, H. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Jones, M. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Langer, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Lee, I. Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Loelius, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Lunderberg, E. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Morse, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Rissanen, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Salathe, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Smalley, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Stroberg, S. R. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Weisshaar, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Whitmore, K. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Wiens, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Williams, S. J. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Wimmer, K. [Univ. of Tokyo (Japan). Dept. of Physics; Yamamato, T. [Osaka Univ. (Japan). RCNP

    2017-07-01

    The “island of inversion” at N≈20 for the neon, sodium, and magnesium isotopes has long been an area of interest both experimentally and theoretically due to the subtle competition between 0p-0h and np-nh configurations leading to deformed shapes. However, the presence of rotational band structures, which are fingerprints of deformed shapes, have only recently been observed in this region. In this work, we report on a measurement of the low-lying level structure of Mg33 populated by a two-stage projectile fragmentation reaction and studied with the Gamma Ray Energy Tracking In-Beam Nuclear Array (GRETINA). The experimental level energies, ground-state magnetic moment, intrinsic quadrupole moment, and γ-ray intensities show good agreement with the strong-coupling limit of a rotational model.

  9. Rotational bands in the nuclear sup(168)Er and some remarks on their interpretation

    Davidson, W.F.; Dixon, W.R.; Storey, R.S.

    1984-01-01

    Further analysis of previously published data on sup(168)Er, together with results of new measurements of selected portions of the neutron capture γ-ray spectrum, has resulted in the construction of an improved level spectrum for this nucleus. Altogether 127 excited levels have now been established and grouped into 36 rotational bands. Some remarks on their interpretation are advanced

  10. Predicting superdeformed rotational band-head spin in A ∼ 190 ...

    PACS No. 21.60.−n. 1. Introduction. Superdeformed (SD) nuclei are one of the most challenging and ... like A ∼ 60, 80, 130, 150 and 190 [2,3]. ..... work and the research is progressing to give systematic features of rotational bands of SD.

  11. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  12. A novel rotating experimental platform in a superconducting magnet.

    Chen, Da; Cao, Hui-Ling; Ye, Ya-Jing; Dong, Chen; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2016-08-01

    This paper introduces a novel platform designed to be used in a strong static magnetic field (in a superconducting magnet). The platform is a sample holder that rotates in the strong magnetic field. Any samples placed in the platform will rotate due to the rotation of the sample holder. With this platform, a number of experiments such as material processing, culture of biological systems, chemical reactions, or other processes can be carried out. In this report, we present some preliminary experiments (protein crystallization, cell culture, and seed germination) conducted using this platform. The experimental results showed that the platform can affect the processes, indicating that it provides a novel environment that has not been investigated before and that the effects of such an environment on many different physical, chemical, or biological processes can be potentially useful for applications in many fields.

  13. Rotation of dust plasma crystals in an axial magnetic field

    Cheung, F.; Prior, N.; Mitchell, L.

    2000-01-01

    Full text: Micron-sized melamine formaldehyde particles were introduced into argon plasma. As a result, the particles were negatively charged due to collision with the electrons within the plasma. With the right conditions, these particles formed a stable macroscopic crystal lattice, known as dust plasma crystal. In our experiment we conduct at Flinders University, we apply an external axial magnetic field to various configurations of dust plasma crystal. These configurations include small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The magnetic field strength ranged from 0-32G and was uniform over the extent of the crystal. The crystals were observed to be rotating collectively in the left-handed direction under the influence of the axial magnetic field. In the case of the large crystals, the angular velocity was about 2 complete rotations per minute and was proportional to the applied magnetic field. The angular velocity changes only slightly depending on the plasma conditions. Neither radial variance in the angular velocity nor shear velocity in the vertical direction was observed in the crystal's rotational motion. In the case of the small crystals, we managed to rotate 2-6 particles (whether they are planar, 2 layers or tetrahedral). We discovered that the ease and the uniformity of the rotation of the different crystals increase as its rotational symmetry increases. Also an increase in the magnetic field strength will correspond to an increase in the angular velocity. Crystals in the shape of an annulus were also tested for theoretical reasons. The poster presentation will contain the experimental procedures, a detailed analysis and an explanation for such dust plasma crystal rotational motion

  14. Power and momentum relations in rotating magnetic field current drive

    Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences

    1984-01-01

    The use of rotating magnetic fields (RMF) to drive steady currents in plasmas involves a transfer of energy and angular momentum from the radio frequency source feeding the rotating field coils to the plasma. The power-torque relationships in RMF systems are discussed and the analogy between RMF current drive and the polyphase induction motor is explained. The general relationship between the energy and angular momentum transfer is utilized to calculate the efficiency of the RMF plasma current drive. It is found that relatively high efficiencies can be achieved in RMF current drive because of the low phase velocity and small slip between the rotating field and the electron fluid.

  15. Instabilities responsible for magnetic turbulence in laboratory rotating plasma

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Erokhin, N.N.; Pustovitov, V.D.; Konovalov, S.V.

    2008-01-01

    Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities

  16. Oscillating magnetic islands in a rotating plasma

    Persson, M.; Bondeson, A.

    1990-01-01

    The nonlinear evolution of tearing modes in the presence of sheared mass flow is studied as an initial value problem. It is shown that under certain conditions, when the mode is driven unstable primarily by the mass flow, the nonlinear evolution leads to a dynamic state in which the size and shape of the magnetic islands is oscillatory. 15 refs., 11 figs

  17. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-01-01

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field

  18. Emergent rotational symmetries in disordered magnetic domain patterns.

    Su, Run; Seu, Keoki A; Parks, Daniel; Kan, Jimmy J; Fullerton, Eric E; Roy, Sujoy; Kevan, Stephen D

    2011-12-16

    Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition. © 2011 American Physical Society

  19. Apparatus and method for materials processing utilizing a rotating magnetic field

    Muralidharan, Govindarajan; Angelini, Joseph A.; Murphy, Bart L.; Wilgen, John B.

    2017-04-11

    An apparatus for materials processing utilizing a rotating magnetic field comprises a platform for supporting a specimen, and a plurality of magnets underlying the platform. The plurality of magnets are configured for rotation about an axis of rotation intersecting the platform. A heat source is disposed above the platform for heating the specimen during the rotation of the plurality of magnets. A method for materials processing utilizing a rotating magnetic field comprises providing a specimen on a platform overlying a plurality of magnets; rotating the plurality of magnets about an axis of rotation intersecting the platform, thereby applying a rotating magnetic field to the specimen; and, while rotating the plurality of magnets, heating the specimen to a desired temperature.

  20. A multitude of rotational bands in {sup 163}Er and their mutual interaction

    Bosetti, P.; Leoni, S.; Bracco, A. [Univ. of Milan (Italy)] [and others

    1996-12-31

    Using the {sup 150}Nd({sup 18}O, 5n){sup 163}Er reaction a multitude of rotational bands have been established with firm spin and parity assignments in {sup 163}Er. In 16 out of {approximately} 23 band crossings E2 cross-band transitions have been observed. The interaction strength varies between {approximately} 1 and {approximately} 50 keV. These interactions sample a variety of the lowest (multi)-quasiparticle configurations. Some of the band configurations, in particular those with high K-values, can be rather well established. Quite complicated changes in the wavefunctions must occur at these crossings, and, to explain the observed interaction strengths, one may have to invoke coupling to various vibrational degrees of freedom, in addition to possible residual neutron-proton interactions.

  1. Gravitational convergence, shear deformation and rotation of magnetic forcelines

    Giantsos, Vangelis; Tsagas, Christos G.

    2017-11-01

    We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.

  2. Design Concepts for a Continuously Rotating Active Magnetic Regenerator

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus

    2010-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the AMR from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33-xSrxMn1.05O3, gives both a low pressure drop and allows grading of the Curie temperatu...

  3. KIC 9451096: Magnetic Activity, Flares and Differential Rotation

    Özdarcan, O.; Yoldaş, E.; Dal, H. A.

    2018-04-01

    We present a spectroscopic and photometric analysis of KIC 9451096. The combined spectroscopic and photometric modelling shows that the system is a detached eclipsing binary in a circular orbit and composed of F5V + K2V components. Subtracting the best-fitting light curve model from the whole long cadence data reveals additional low (mmag) amplitude light variations in time and occasional flares, suggesting a low, but still remarkable level of magnetic spot activity on the K2V component. Analyzing the rotational modulation of the light curve residuals enables us to estimate the differential rotation coefficient of the K2V component as k = 0.069 ± 0.008, which is 3 times weaker compared with the solar value of k = 0.19, assuming a solar type differential rotation. We find the stellar flare activity frequency for the K2V component as 0.000368411 h-1 indicating a low magnetic activity level.

  4. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  5. A comparison of the heating effect of magnetic fluid between the alternating and rotating magnetic field

    Beković, Miloš; Trlep, Mladen; Jesenik, Marko; Hamler, Anton

    2014-01-01

    Magnetic fluids are distinct magnetic materials that have recently been the subject of extensive research precisely because of their unique properties. One of them is the heating effect when exposed to alternating magnetic fields, wherein the objective is to use this property in medicine as an alternative method for the treatment of tumors in the body. In this paper, we focus on two methods of magnetizing magnetic fluids, firstly using the alternating magnetic field (AMF), and secondly with the rotational magnetic field (RMF). The effects of the first are scientifically well-established, whilst the impact of RMF has not as yet been investigated as presented in this article. So far the effects of RMF have only been studied at low frequencies and high amplitudes, or vice versa. This article presents the results of heating at high frequencies and high magnetic field amplitudes, and the results compared with AMF. This paper presents the construction and implementation of a measuring system which is suitable both types of magnetic field. - Highlights: • Development of a new measurement system for the characterization of magnetic fluids. • System enables pulsed magnetic field, or a rotary magnetic field. • Analysis of the conditions to create a rotational magnetic field by means of a double power supply. • Good agreement between the analytical and numerical calculation of magnetic field and measurements. • Increase of the heating power when sample is exposed to rotating field compared to pulsating field

  6. Electrodynamic Wireless Power Transmission to Rotating Magnet Receivers

    Garraud, A; Jimenez, J D; Garraud, N; Arnold, D P

    2014-01-01

    This paper presents an approach for electrodynamic wireless power transmission (EWPT) using a synchronously rotating magnet located in a 3.2 cm 3 receiver. We demonstrate wireless power transmission up to 99 mW (power density equal to 31 mW/cm 3 ) over a 5-cm distance and 5 mW over a 20-cm distance. The maximum operational frequency, and hence maximal output power, is constrained by the magnetic field amplitude. A quadratic relationship is found between the maximal output power and the magnetic field. We also demonstrate simultaneous, power transmission to multiple receivers positioned at different locations

  7. Design concepts for a continuously rotating active magnetic regenerator

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus

    2011-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the active magnetic regenerator (AMR) from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33−xSrxMn1.05O3, gives both a low pressure drop and allows....... Focus is on maximising the magnetic field in the high field regions but also, importantly, minimising the flux in the low field regions. The design is iteratively optimised through 3D finite element magnetostatic modelling....

  8. Towards age/rotation/magnetic activity relation with seismology

    Mathur Savita

    2015-01-01

    Full Text Available The knowledge of stellar ages directly impacts the characterization of a planetary system as it puts strong constraints on the moment when the system was born. Unfortunately, the determination of precise stellar ages is a very difficult task. Different methods can be used to do so (based on isochrones or chemical element abundances but they usually provide large uncertainties. During its evolution a star goes through processes leading to loss of angular momentum but also changes in its magnetic activity. Building rotation, magnetic, age relations would be an asset to infer stellar ages model independently. Several attempts to build empirical relations between rotation and age (namely gyrochronology were made with a focus on cluster stars where the age determination is easier and for young stars on the main sequence. For field stars, we can now take advantage of high-precision photometric observations where we can perform asteroseismic analyses to improve the accuracy of stellar ages. Furthermore, the variability in the light curves allow us to put strong constraints on the stellar rotation and magnetic activity. By combining these precise measurements, we are on the way of understanding and improving relations between magnetic activity, rotation, and age, in particular at different stages of stellar evolution. I will review the status on gyrochronology relationships based on observations of young cluster stars. Then I will focus on solar-like stars and describe the inferences on stellar ages, rotation, and magnetism that can be provided by high-quality photometric observations such as the ones of the Kepler mission, in particular through asteroseismic analyses.

  9. Faraday Rotation Measure Study of Cluster Magnetic Fields

    Frankel, M. M.; Clarke, T. E.

    2001-12-01

    Magnetic fields are thought to play an important role in galaxy cluster evolution. To this end in this study, we looked at polarized radio sources viewed at small impact parameters to the cores of non-cooling flow clusters. By looking at non-cooling flow clusters we hoped to establish what magnetic fields of clusters look like in the absence of the compressed central magnetic fields of the cooling-flow cores. Clarke, Kronberg and Boehringer (2001) examined Faraday rotation measures of radio probes at relatively large impact parameters to the cores of galaxy clusters. The current study is an extension of the Clarke et al. analysis to probe the magnetic fields in the cores of galaxy clusters. We looked at the Faraday rotation of electromagnetic waves from background or imbedded radio galaxies, which were observed with the VLA in A&B arrays. Our results are consistent with previous findings and exhibit a trend towards higher rotation measures and in turn higher magnetic fields at small impact parameters to cluster cores. This research was made possible through funding from the National Science Foundation.

  10. Rotating permanent magnet excitation for blood flow measurement.

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  11. The Stability of Magnetized Rotating Plasmas with Superthermal Fields

    Pessah, Martin Elias; Psaltis, Dimitrios

    2005-01-01

    be taken fully into account. We demonstrate that the presence of a strong toroidal component in the magnetic field plays a non-trivial role. When strong fields are considered, the strength of the toroidal magnetic field not only modifies the growth rates of the unstable modes but also determines which...... modes are subject to instabilities. We find that, for rotating configurations with Keplerian laws, the magnetorotational instability is stabilized at low wavenumbers for toroidal Alfven speeds exceeding the geometric mean of the sound speed and the rotational speed. We discuss the significance of our......During the last decade it has become evident that the magnetorotational instability is at the heart of the enhanced angular momentum transport in weakly magnetized accretion disks around neutron stars and black holes. In this paper, we investigate the local linear stability of differentially...

  12. Evidence for quantization of mechanical rotation of magnetic nanoparticles.

    Tejada, J; Zysler, R D; Molins, E; Chudnovsky, E M

    2010-01-15

    We report evidence of the quantization of the rotational motion of solid particles containing thousands of atoms. A system of CoFe2O4 nanoparticles confined inside polymeric cavities has been studied. The particles have been characterized by the x-ray diffraction, transmission electron microscopy, plasma mass spectroscopy, ferromagnetic resonance (FMR), and magnetization measurements. Magnetic and FMR data confirm the presence of particles that are free to rotate inside the cavities. Equidistant, temperature-independent jumps in the dependence of the microwave absorption on the magnetic field have been detected. This observation is in accordance with the expectation that orbital motion splits the low-field absorption line into multiple lines.

  13. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  14. First Spectropolarimetric Measurement of a Brown Dwarf Magnetic Field in Molecular Bands

    Kuzmychov, Oleksii; Berdyugina, Svetlana V. [Kiepenheuer-Institut für Sonnenphysik Schöneckstr, 6 D-79104 Freiburg (Germany); Harrington, David M., E-mail: oleksii@leibniz-kis.de [National Solar Observatory (Maui), 8 Kiopa’a Street Pukalani, HI 96768 (United States)

    2017-09-20

    We present the first measurements of the surface magnetic field of a late-M dwarf, LSR J1835+3259, with the help of the full-Stokes spectropolarimetry in the bands of diatomic molecules. Our measurements at different rotational phases of a dwarf yielded one 5 σ and two 3 σ magnetic field detections. The observational data have been obtained with the LRISp polarimeter at the Keck observatory on 2012 August 22 and 23. These data have been compared against synthetic full-Stokes spectra in the bands of the molecules CrH, FeH, and TiO, which have been calculated for a range of the stellar parameters and magnetic field strengths. Making use of χ {sup 2}-minimization and maximum likelihood estimation, we determine the net magnetic field strength B (and not flux Bf ) of LSR J1835+3259 to ∼5 kG with the help of the Paschen–Back effect in the CrH lines. Our measurements at different rotational phases suggest that the dwarf’s surface might be covered with strong small-scale magnetic fields. In addition, recent findings of the dwarf’s hydrogen emission and the Stokes V signal from the lower chromosphere indicate that its surface magnetic field might be changing rapidly giving rise to flare activity, similar to young dMe dwarfs. We substantiate the substellar origin of LSR J1835+3259 by making use of our own data as well as the photometric data from the all-sky surveys 2MASS and WISE .

  15. Opening and closing of band gaps in magnonic waveguide by rotating the triangular antidots - A micromagnetic study

    Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.

    2018-05-01

    Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.

  16. Rotational bands on few-particle excitations of very high spin

    Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.

    1980-01-01

    An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)

  17. Rotating magnetic shallow water waves and instabilities in a sphere

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  18. Signature splitting in nuclear rotational bands: Neutron i13/2 systematics

    Mueller, W.F.; Jensen, H.J.; Reviol, W.; Riedinger, L.L.; Yu, C.; Zhang, J.; Nazarewicz, W.; Wyss, R.

    1994-01-01

    Experimental values of signature splitting in νi 13/2 rotational bands in odd-N even-Z nuclei in the Z=62--78 region are collected and presented. A procedure is introduced to calculate signature splitting within the cranked deformed Woods-Saxon model. In the theoretical treatment, deformation parameters are obtained by minimizing the total Routhians of individual νi 13/2 bands, and the procedure accounts for the possibility that the two signatures have different deformations and pairing gaps. Experimental signature splitting data for νi 13/2 bands in Dy, Er, Yb, Hf, W, and Os nuclei are compared with calculated values. The sensitivity of calculated signature splitting to changes in deformation, pairing, and other model parameters is presented

  19. Nerve-muscle activation by rotating permanent magnet configurations.

    Watterson, Peter A; Nicholson, Graham M

    2016-04-01

    The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling. Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W). A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies. Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve. These results, employing the first prototype device, suggest the opportunity for a new class of small low-cost magnetic nerve and/or muscle stimulators. Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high-speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets' own magnetic field and three-phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m(-2) Hz(-1) near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad (Bufo marinus). Activation was

  20. Ion heating due to rotation and collision in magnetized plasma

    Anderegg, F.; Stern, R.A.; Skiff, F.; Hammel, B.A.; Tran, M.Q.; Paris, P.J.; Kohler, P.

    1986-01-01

    The E x B rotation and associated collisional ion heating of noble-gas magnetized plasmas are investigated with high resolution by means of laser-induced fluorescence and electrical probes. Plasma rotation results from a radial potential gradient which can be controlled by biasing of the discharge electrodes. The time and space evolution of the potential, the rotation velocity v/sub t//sub h//sub e//sub t//sub a/, and the ion perpendicular temperature indicate that heating is due to the randomization of v/sub t//sub h//sub e//sub t//sub a/ by ion-neutral collisions, and leads to temperature increases as high as a factor of 50 over initial values

  1. Rotational gait patterns in children and adolescents following tension band plating of idiopathic genua valga.

    Farr, Sebastian; Kranzl, Andreas; Hahne, Julia; Ganger, Rudolf

    2017-08-01

    Literature suggests that children and adolescents with idiopathic genua valga present with considerable gait deviations in frontal and transverse planes, including altered frontal knee moments, reduced external knee rotation, and increased external hip rotation. This study aimed to evaluate gait parameters in these patients after surgical correction using tension band plating (TBP). We prospectively evaluated 24 consecutive, skeletally immature patients, who received full-length standing radiographs and three-dimensional gait analysis before and after correction, and compared the results observed to a group of 11 typically developing peers. Prior to TBP the cohort showed significantly decreased (worse) internal frontal knee moments compared to the control group. After axis correction the mean and maximum knee moments changed significantly into normalized knee moments (p gait. In addition, the effect of transverse plane changes on knee moments in patients with restored, straight limb axis was calculated. Hence, patients with restored alignment but persistence of decreased external knee rotation demonstrated significantly greater knee moments than those without rotational abnormalities (p = 0.001). This study found that frontal knee moments during gait normalized in children with idiopathic genua valga after surgery. However, decreased external knee rotation and increased external hip rotation during gait persisted in the study cohort. Despite radiological correction, decreased external rotation during gait was associated with increases in medial knee loading. Surgical correction for children with genua valga but normal knee moments may be detrimental, due to redistribution of dynamic knee loading into the opposite joint compartment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1617-1624, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Nerve–muscle activation by rotating permanent magnet configurations

    Nicholson, Graham M.

    2016-01-01

    Key points The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling.Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W).A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies.Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve.These results, employing the first prototype device, suggest the opportunity for a new class of small low‐cost magnetic nerve and/or muscle stimulators. Abstract Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high‐speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets’ own magnetic field and three‐phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m−2 Hz−1 near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad

  3. Search for the characters of chiral rotation in excited bands for the idea chiral nuclei with A ∼ 130

    Chen Qibo; Yao Jiangming; Meng Jie; Zhang Shuangquan; Qi Bin

    2010-01-01

    Since the occurrence of chirality was originally suggested in 1997 by Frauendorf and Meng [1] and experimentally observed in 2001 [2] , the investigation of chiral symmetry in atomic nuclei becomes one of the most important topics in nuclear physics. More and more chiral doublet bands [3-7] in atomic nuclei [8] have been reported. There are also many discussions about the fingerprints of chirality. In the pioneer paper [1] , the two lowest near degenerate bands given by the particle-rotor model (PRM) are interpreted as chiral doublet bands. If the nucleus has chiral geometry with proper configuration, the character of chiral rotation may appear not only in the two lowest bands, but also in the other bands. Therefore, it is interesting to search for the character of chiral rotation, Based on the PRM model with configuration corresponding to A ∼ 130 mass region, we examine the theoretical spectroscopy of higher excited bands (band3, band4, band5 and band6) beyond the two lowest bands (bandl and band2), including energies, spin-alignments, projection of total angular momentum and electromagnetic transition probabilities. The results show that band3 and band4 have characters of chirality in some spin region. (authors)

  4. Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields

    Storozhenko, A.M. [Southwest State University, Kursk, 305040 (Russian Federation); Stannarius, R. [Otto von Guericke University Magdeburg, Magdeburg, 39016 Germany (Germany); Tantsyura, A.O.; Shabanova, I.A. [Southwest State University, Kursk, 305040 (Russian Federation)

    2017-06-01

    We study magnetic suspensions with different concentrations of ferromagnetic nanoparticles in a spherical container under the action of a rotating magnetic field. Experimental data on the concentration dependence of the rotational effect, viz. the torque exerted by the magnetic field, are presented. We explain the observed torque characteristics using a model that takes into account field-driven aggregation of the magnetic nanoparticles in stationary or slowly rotating fields. At sufficiently high rotation rates, the rotating magnetic field obviously destroys these aggregates, which results in a decreasing torque with increasing rotation frequency of the field. - Highlights: • The experimental study of the rotational effect in the magnetic fluids is presented. • The torque density non-monotonously depends on the magnetic field frequency. • Experimental data can be explained assuming aggregation of magnetic nanoparticles.

  5. Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields

    Storozhenko, A.M.; Stannarius, R.; Tantsyura, A.O.; Shabanova, I.A.

    2017-01-01

    We study magnetic suspensions with different concentrations of ferromagnetic nanoparticles in a spherical container under the action of a rotating magnetic field. Experimental data on the concentration dependence of the rotational effect, viz. the torque exerted by the magnetic field, are presented. We explain the observed torque characteristics using a model that takes into account field-driven aggregation of the magnetic nanoparticles in stationary or slowly rotating fields. At sufficiently high rotation rates, the rotating magnetic field obviously destroys these aggregates, which results in a decreasing torque with increasing rotation frequency of the field. - Highlights: • The experimental study of the rotational effect in the magnetic fluids is presented. • The torque density non-monotonously depends on the magnetic field frequency. • Experimental data can be explained assuming aggregation of magnetic nanoparticles.

  6. Band shape of IR-absorption of complex molecules and restricted rotational diffusion

    Ivanov, E.N.; Umidulaev, Sh.U.

    1989-01-01

    The development of the theory of band shape (and Breadth) IR-absorption of complex molecules (regarding the molecules inside motions) is considered. It is supposed that a molecule fragment being responsible for IR-absorption takes part in the restricted rotational diffusion (RRD) with respect to the frame, and the molecule itself in general makes rotational motion (RM). Both kinds of motions are discussed in accordance with the theory of group motions representations. On the basis of correlative functions calculations of dipole moment a simple expression for the IR-absorption band shape have been obtained, which in itself uses to be the super position of two Lorencians with the semibreadths 2D 1 and 2D 1 +ν 2 0 (ν 2 0 +1D R accordingly (here D 1 is the coefficient of RM, D 2 is the coefficient of RRD, ν 2 0 is the well known function of RRD-cone divergence angle) in case of symmetric rotary abrasive disc. Analysis of experimental band shape of IR-absorption on the basis of the expression obtained allows to get information of MR-molecule parameters in general and RRD. It is really possible to determine the RRD-cone divergency angle from experimental weights of Lorencians. In accordance with experimental semibreadths the coefficient of RM D 1 and the coefficient of RRD D 2 are obtained. In conclusion it is noted that D 1 →0 (in the expression for the band shape of IR-absorption obtained), one of the Lorencians turns to the δ-function and finally there is an expression which describes IR-absorption band shape of molecules in polymer-mats. (author)

  7. Band structures in a two-dimensional phononic crystal with rotational multiple scatterers

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele

    2017-03-01

    In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.

  8. Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings

    Zhang, Shunzu; Shi, Yang [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2017-03-26

    Considering the magneto-mechanical coupling of magnetostrictive material, the tunability of in-plane wave propagation in two-dimensional Terfenol-D/epoxy phononic crystal (PC) plate is investigated theoretically by the plane wave expansion method. Two Schemes, i.e. magnetic field is rotated in x–y plane and x–z plane, are studied, respectively. The effects of amplitude and direction of magnetic field, pre-stress and geometric parameters are discussed. For Scheme-I, band gap reaches the maximum at an optimal angle 45° of magnetic field. However, the optimal angle is 0° for Scheme-II, because band gap decreases monotonically until disappears with the increasing angle. For both cases, higher-order band gaps generate and become stronger as magnetic field amplitude increases, while increasing compressive pre-stress has the opposite effect. Meanwhile, filling fraction plays a key role in controlling band gaps. These results provide possibility for intelligent regulation and optimal design of PC plates. - Highlights: • The in-plane wave propagation in phononic crystal thin plate is tuned theoretically. • Magnetostrictive material is introduced in the study. • The effects of magnetic field and pre-stress are considered. • The variations of band gaps with external stimuli are discussed.

  9. Linear astrophysical dynamos in rotating spheres: Differential rotation, anisotropic turbulent magnetic diffusivity, and solar-stellar cycle magnetic parity

    Yoshimura, H.; Wang, Z.; Wu, F.

    1984-01-01

    Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles inn the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, an even parity is selected. Thus the equatorial migration of wings of the butterfly iagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudibnal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhancess the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields iss larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected

  10. Triaxial energy relation to describe rotational band in 98-112Ru nuclei

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Varshney, Mani; Singh, M.; Gupta, D.K.

    2010-01-01

    In a broader perspective rotation vibration coupling parameter (b) is considered changing with the change in excitation energy (ε 1 ) and is evaluated on fitting experimental energy for 98-112 Ru isotopes in the frame work of general asymmetric rotor model. The moment of inertia parameter (a), common to yrast and quasi-γ band, is calculated from deformation parameter (β) using general empirical relation. The present work is undertaken to suggest some suitable equation for the trajectories which are similar in shape in 98-112 Ru nuclei

  11. Three- and five-quasiparticle isomers, rotational bands and residual interactions in 175Hf

    Dracoulis, G.D.; Walker, P.M.

    1980-03-01

    Two 3-quasiparticle isomers with spins, parities and half lives of 19/2 + , 1.1 μ and 23/2 - , 1.2 ns have been identified at 1433 and 1766 keV in 175 Hf. A third isomer possibly 35/2 - with a 1.2 μs half-life is found at 3015 keV. The first two are characterised as a 7/2 + (633) neutron coupled to the known 6 + and 8 - 2-proton isomers of the core nuclei. Rotational bands based on the 3-qp isomers are highly perturbed, due to Coriolis mixing, and their structure is reproduced in a band mixing calculation. The energy depression of the 3-quasiparticle states relative to the 2-quasiproton core states is attributed mainly to the residual proton-neutron interaction, and possibly also to blocking effects through neutron admixtures

  12. g-Factors of magnetic-rotational states in {sup 85}Zr

    Yuan Daqing; Zheng Yongnan; Zhou Dongmei; Zuo Yi; Fan Ping; Liu Meng; Wu Xiaoguang; Zhu Lihua; Li Guangsheng; Xu Guoji; Fan Qiewen; Zhang Xizhen; Zhu Shengyun, E-mail: zhusy@ciae.ac.cn [China Institute of Atomic Energy (China)

    2007-11-15

    The g-factors of the magnetic-rotational intra-band states in {sup 85}Zr have been measured by the TMF-IMPAD method for the first time. The configuration {pi} (g{sub 9/2}){sub 8}{sup 2} x {nu} ( f{sub 7/2}) is established for the band. The measured g-factors are in good agreement with those calculated by the semi-classical model. The decrease of both g-factors and shears angles along the band shows that the total angular momentum is generated by the sheras effect of a step-by-step alignment of the valence protons and neutrons. The rapid neutron alignment leads to a decrease of g-factors along the band. The shears angle of the band-head is great than 90{sup o}, which implies that the spin-dependent interaction as well as the residul interaction might be involved in the shears mechanism in {sup 85}Zr.

  13. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma.

    Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S

    2016-02-10

    Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Rotation and magnetism in intermediate-mass stars

    Quentin, Léo G.; Tout, Christopher A.

    2018-06-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  15. In-beam γ-spectroscopic study of rotational bands in 103Rh

    Kuti, I.; Timar, J.; Sohler, D.; Koike, T.; Lee, I.Y.; Machiavelli, A.O.

    2012-01-01

    Complete text of publication follows. Earlier studies revealed the existence of chiral partner candidate bands in 103 Rh. In order to construct a more complex level scheme, and to collect more information on the band structure, we studied the experimental properties of the rotational bands of this nucleus. For this analysis, excited states of 103 Rh were populated through the 96 Zr( 11 B,4n) reaction at a beam energy of 40 MeV. The beam, provided by the 88-in. cyclotron of the Lawrence Berkeley National Laboratory (LBNL), impinged on a 500 μg/cm 2 self-supporting target foil. For detection of the emitted γ-rays, the GAMMASPHERE spectrometer was used. Out of a sum of 9x10 9 events, about the 65% could be assigned to 103 Rh. In the present phase of the study, the level scheme was constructed based on γγγ-coincidence relationships, as well as energy and intensity balances of the observed γ-rays. The analysis included the evaluation of 2- and 3-dimensional histograms, using the RADWARE software package. Three typical γγγ-coincidence spectra are shown in Figure 1. We doubled the number of transitions assigned to 103 Rh and we established five new bands to the formerly known six ones. In order to assign firm spin-parities to the states, we plan to make an angular correlation (DCO) analysis for the observed transitions.

  16. Study on a magnetic spiral-type wireless capsule endoscope controlled by rotational external permanent magnet

    Ye, Bo, E-mail: yebo@hubu.edu.cn [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Zhang, Wei [Department of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan 442002 (China); Sun, Zhen-jun [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Guo, Lin [School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Deng, Chao [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Chen, Ya-qi [Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Zhang, Hong-hai [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Liu, Sheng [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China)

    2015-12-01

    In this paper, the authors propose rotating an external permanent magnet (EPM) to manipulate the synchronous rotation of a magnetic spiral-type wireless capsule endoscope (WCE), and the synchronous rotation of the WCE is converted to its translational motion in intestinal tract. In order to preliminarily verify the feasibility of this method, a handheld actuator (HA) controlled by micro controller unit, a magnetic spiral-type WCE and a bracket were fabricated, theoretical analysis and simulations about the control distance of this method were performed, and in ex-vivo tests were examined in porcine small intestine to verify the control distance and control performances of this method. It was demonstrated that this method showed good performances in controlling the translational motion of the magnetic spiral-type WCE, and this method has great potential to be used in clinical application. - Highlights: • A new magnetic control method for spiral-type wireless capsule endoscope is proposed. • Wireless capsule endoscope rotates synchronously with external permanent magnet. • The method controls the wireless capsule endoscope well in porcine small intestine. • Long control distance makes the method may be used in future medical application. • Experimental setup has great advantages: high cost performance and easy operation.

  17. Properties of rotational bands at the spin limit in A {approximately} 50, A {approximately} 65 and A {approximately} 110 nuclei

    Janzen, V.P.; Andrews, H.R.; Ball, G.C. [Chalk River Labs., Ontario (Canada)] [and others

    1996-12-31

    There is now widespread evidence for the smooth termination of rotational bands in A {approx_equal} 110 nuclei at spins of 40-to-50{Dirac_h}s. The characteristics of these bands are compared to those of bands recently observed to high spin in {sup 64}Zn and {sup 48}Cr, studied with the 8{pi} {gamma}-ray spectrometer coupled to the Chalk River miniball charged-particle-detector array.

  18. Tissue discrimination in magnetic resonance imaging of the rotator cuff

    Meschino, G J; Comas, D S; González, M A; Ballarin, V L; Capiel, C

    2016-01-01

    Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health. (paper)

  19. Tissue discrimination in magnetic resonance imaging of the rotator cuff

    Meschino, G. J.; Comas, D. S.; González, M. A.; Capiel, C.; Ballarin, V. L.

    2016-04-01

    Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health.

  20. Spinning rate decay of levitated high-Tc superconductors in rotational magnetic field

    Terentiev, A.N.; Kutukova, E.O.; Kuznetsov, A.A. (Inst. of Chemical Physics, Academy of Sciences, Moscow (Russia)); Mozhaev, A.P. (Moscow State Univ., Dept. of Chemistry (Russia))

    1992-04-01

    The rotation damping of a levitated superconductor was examined in the static field of a ring-shaped magnet and in the rotating field of coils. It was demonstrated that the pinning force mainly contributed to magnetic friction while the influence of a viscous component was negligible. The rotating magnetic field created a torque, reducing the angular deceleration under relaxation. Dependence of the rotational field-induced torque on the field-intensity was step-like. A relationship between the step-like behavior of rotational field-induced torque and pinning center distribution is discussed. The origins of friction torque and rotational field-produced torque are discussed. (orig.).

  1. Band gaps in periodically magnetized homogeneous anisotropic media

    Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.

    2010-11-01

    In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.

  2. REFIR/BB initial observations in the water vapour rotational band: Results from a field campaign

    Esposito, F.; Grieco, G.; Leone, L.; Restieri, R.; Serio, C.; Bianchini, G.; Palchetti, L.; Pellegrini, M.; Cuomo, V.; Masiello, G.; Pavese, G.

    2007-01-01

    There is a growing interest in the far infrared spectral region 17-50 μm as a remote sensing tool in atmospheric sciences, since this portion of the spectrum contains the characteristic molecular rotational band for water vapour. Much of the Earth energy lost to space is radiated through this spectral region. The Radiation Explorer in the Far InfraRed Breadboard (REFIR/BB) spectrometer was born because of the quest to make observations in the far infrared. REFIR/BB is a Fourier Transform Spectrometer with a sampling resolution of 0.5 cm -1 and it was tested for the first time in the field to check its reliability and radiometric performance. The field campaign was held at Toppo di Castelgrande (40 o 49' N, 15 o 27' E, 1258 m a. s. l.), a mountain site in South Italy. The spectral and radiometric performance of the instrument and initial observations are shown in this paper. Comparisons to both (1) BOMEM MR100 Fourier Transform spectrometer observations and (2) line-by-line radiative transfer calculations for selected clear sky are presented and discussed. These comparisons (1) show a very nice agreement between radiance measured by REFIR/BB and by BOMEM MR100 and (2) demonstrate that REFIR/BB accurately observes the very fine spectral structure in the water vapour rotational band

  3. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  4. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence

    Bodo, G.; Rossi, P. [INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Cattaneo, F. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637 (United States); Mignone, A., E-mail: bodo@oato.inaf.it [Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy)

    2017-07-10

    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.

  5. Gamma spectroscopical studies of strongly deformed rotational bands in 73Br and 79Sr

    Heese, J.

    1989-01-01

    In the framework of this thesis the excitation structures of the nuclei 73 Br and 79 Sr were studied. For the population of high-spin states the reactions 40 Ca( 36 Ar,3p) 73 Br, -58 Ni( 24 Mg,2αp) 73 Br and 58 Ni( 24 Mg,2pn) 79 Sr were used. The level scheme of 73 Br could be extended by γγ coincidence measurements by 18 new states up to the spins 45/2 + respectively 45/2 - . DSA lifetime measurements yielded information about the deformations of the observed rotational bands. The conversion coefficients of the low-energetic transitions in the range of the excitation spectrum below 500 keV were determined and allowed the assignments of spins and parities. Furthermore the converted decay of the 27-keV state was observed for the first time, from the measured intensities of the electron line the lifetime of this state was estimated to 1.1 ≤ τ ≤ 9.1 μs. The measurement of the lifetime and the g factor of the isomeric 240-keV state confirmed the already known spin values and allowed statements on the particle structure. Lifetime measurements in 79 Sr were performed up to the states 21/2 + and 17/2 - . They yielded informations on E2 and M1 transition strengthened in the rotational bands. The transition strengths calculated from the lifetimes show that both nuclei are strongly prolate deformed. The sign of the deformation could be concluded in the case of 73 Br from the observed band structure, in 79 Sr it was calculated from E2/M1 mixing ratios. The E2-transition strengths show a reduction in both nuclei in the region of the g 9/2 proton alignment. Alignment effects in the rotational bands were discussed in the framework of the cranked shell model. Microscopical calculations in the Hartree-Fock-Bogolyubov cranking model with a deformed Woods-Saxon potential were performed. (orig./HSI) [de

  6. Validity of single term energy expression for ground state rotational band of even-even nuclei

    Sharma, S.; Kumar, R.; Gupta, J.B.

    2005-01-01

    Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei

  7. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion

    Zou, Hong-Xiang; Zhang, Wen-ming; Li, Wen-Bo; Wei, Ke-Xiang; Gao, Qiu-Hua; Peng, Zhi-Ke; Meng, Guang

    2017-01-01

    Highlights: • A magnetically coupled two-degree-of-freedom harvester for rotation is proposed. • The electromechanical coupling model is developed and validated experimentally. • The harvester can generate high voltage at low rotating speeds. • The harvester can harvest vibration energy in multiple frequency bands. - Abstract: Energy can be harvested from rotational motion for powering wireless autonomous electronic devices. The paper presents a magnetically coupled two-degree-of-freedom vibration energy harvester for rotary motion applications. The design consists of two inverted piezoelectric cantilever beams whose free ends point to the rotating shaft. The centrifugal force of the inverted cantilever beam is beneficial to producing large amplitude in a low speed range. The electromechanical coupling dynamical model is developed by the energy method from Hamilton’s principle and validated experimentally. The experimental results indicate that the presented harvester is suitable for low speed rotation and can harvest vibration energy in multiple frequency bands. The first and second resonant behaviors of voltage can be obtained at 420 r/min and 550 r/min, and the average output powers are 564 μW and 535.3 μW, respectively.

  8. Highly-distorted and doubly-decoupled rotational bands in odd-odd nuclei

    McHarris, W.C.; Olivier, W.A.; Rios, A.; Hampton, C.; Chou, Wentsae; Aryaeinejad, R.

    1991-01-01

    Heavy-ion reactions induce large amounts of angular momentum; hence, they selectively populate rotationally-aligned particle states in compound nuclei. Such states tend to deexcite through similar states connected by large coriolis matrix elements, resulting in relatively few - but highly distorted - bands in the lower-energy portions of odd-odd spectra. The extreme cases of this are doubly-decoupled, K ∼ 1 (π 1/2 x ν 1/2) bands, whose γ transitions are the most intense in spectra from many light Re and Ir nuclei. The authors made a two-pronged assault on such bands, studying them via different HI reactions at different laboratories and using interacting-boson (IBFFA) calculations to aid in sorting them out. The authors are beginning to understand the types of (primarily coriolis) distortions involved and hope to grasp a handle on aspects of the p-n residual interaction, although the coriolis distortions are large enough to mask much of the latter. They also discuss similar but complementary effects in the light Pr region

  9. Momentum transfer to rotating magnetized plasma from gun plasma injection

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-01-01

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented

  10. Muon spin rotation studies of electronic excitations and magnetism in the vortex cores of superconductors

    Sonier, J E

    2007-01-01

    The focus of this paper is on recent progress in muon spin rotation (μSR) studies of the vortex cores in type-II superconductors. By comparison of μSR measurements of the vortex core size in a variety of materials with results from techniques that directly probe electronic states, the effect of delocalized quasiparticles on the spatial variation of field in a lattice of interacting vortices has been determined for both single-band and multi-band superconductors. These studies demonstrate the remarkable accuracy of what some still consider an exotic technique. In recent years μSR has also been used to search for magnetism in and around the vortex cores of high-temperature superconductors. As a local probe μSR is specially suited for detecting static or quasistatic magnetism having short-range or random spatial correlations. As discussed in this review, μSR experiments support a generic phase diagram of competing superconducting and magnetic order parameters, characterized by a quantum phase transition to a state where the competing order is spatially nonuniform

  11. The rotational hysteresis losses in thin films with unidirectional magnetic anisotropy

    Mucha, J. M.; Vatskichev, L.; Vatskicheva, M.

    1992-03-01

    Using the Planar Hall Effect (PHE) the rotational hysteresis losses in NiFeGe thin magnetic films were measured. The calculation of the critical field for magnetization and rotational hysteresis losses based on extended Stoner-Wohlfarth theory including an exchange magnetic field is given.

  12. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  13. An Air Bearing Rotating Coil Magnetic Measurement System

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  14. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  15. Microscopic description of rotational spectra including band-mixing. 1. Formulation in a microscopic basis

    Brut, F.; Jang, S.

    1982-05-01

    Within the framework of the projection theory of collective motion, a microscopic description of the rotational energy with band-mixing is formulated using a method based on an inverse power perturbation expansion in a quantity related to the expectation value of the operator Jsub(y)sup(2). The reliability of the present formulation is discussed in relation to the difference between the individual wave functions obtained from the variational equations which are established before and after projection. In addition to the various familiar quantities which appear in the phenomenological energy formula, such as the moment of inertia parameter, the decoupling factor and the band-mixing matrix element for ΔK=1, other unfamiliar quantities having the factors with peculiar phases, (-1)sup(J+1)J(J+1), (-1)sup(J+3/2)(J-1/2)(J+1/2)(J+3/2), (-1)sup(J+1/2)(J+1/2)J(J+1), (-1)sup(J)J(J+1)(J-1)(J+2) and [J(J+1)] 2 are obtained. The band-mixing term for ΔK=2 is also new. All these quantities are expressed in terms of two-body interactions and expectation values of the operator Jsub(y)sup(m), where m is an integer, within the framework of particle-hole formalism. The difference between the moment of inertia of an even-even and a neighboring even-odd nucleus, as well as the effect of band-mixing on the moment of inertia are studied. All results are put into the forms so as to facilitate comparisons with the corresponding phenomenological terms and also for further application

  16. Correlated band magnetism of cerium and actinide materials

    Cooper, B.R.; Lin, Y.; Sheng, Q.G.

    1997-01-01

    We discuss (1) the effects to be expected by the introduction into the electronic structure of locally-based two-electron correlations between the f electrons and bonding electrons of p and d atomic origin centered off-site as well as f-f correlations, (2) the expected observable consequences of these two-electron correlations, and (3) how to perform electronic structure calculations including the two-electron correlations. We first review certain general features of the physics associated with capturing the dual energetically localized-delocalized nature of the f electron spectral density; and review model calculations involving a single on-site f electron and a single ligand p/d electron of off-site parentage which lead to the possibility of a narrow singlet and triplet (magnetic) band picture explaining heavy fermion phenomenology. We then show that the same singlet/magnetic state picture arises when we include two-electron f-l and f-f correlations for actinides, which have atomic f n configurations with n>1; and we describe a practical electronic structure scheme for real materials based on a sequence in which a conventional one-electron linearized combination of muffin-tin orbitals (LMTO) LDA+U calculation is followed by a calculation for the lattice with a helium like two-electron Hamiltonian at the f atom sites, i.e., two-electron atoms where initially for the core two electrons worth of charge are removed from the LMTO f-site atom. This procedure will reconstruct the LMTO bands to include two-electron texturing. copyright 1997 American Institute of Physics

  17. Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals

    Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui

    2002-11-01

    The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.

  18. Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals

    Zou Jibin; Li Xuehui; Lu Yongping; Hu Jianhui

    2002-01-01

    The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively

  19. Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics

    Krakov, M. S.; Nikiforov, I. V.

    2008-12-01

    Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.

  20. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Ivo Doležel

    2014-04-01

    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  1. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites

    Dobák, Samuel, E-mail: samuel.dobak@student.upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)

    2017-03-15

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials. - Highlights: • A first decomposition of complex permeability into domain wall and rotation parts in soft magnetic composites. • A pure relaxation nature of dynamic magnetization processes. • A complete loss separation in soft magnetic composites. • The domain walls activity is considerably suppressed in composites with smaller iron particles and higher matrix content. • The demagnetizing field acts as a significant factor at the dynamic magnetization process.

  2. Electromagnetic transition probabilities in the natural-parity rotational bands of 155,157Gd

    Kusakari, H.; Oshima, M.; Uchikura, A.; Sugawara, M.; Tomotani, A.; Ichikawa, S.; Iimura, H.; Morikawa, T.; Inamura, T.; Matsuzaki, M.

    1992-01-01

    The ground-state rotational bands of 155 Gd and 157 Gd have been investigated through multiple Coulomb excitation with beams of 240-MeV 58 Ni and 305-MeV 81 Br. Gamma-ray branchings and E2/M1 mixing ratios were determined by γ-ray angular-distribution measurement. Nuclear lifetimes of levels up to I=21/2 and 23/2 for 155,157 Gd, respectively, have been measured using the Doppler-shift recoil-distance method. The observed signature dependence of M1 transition rates was found to be inverted in relation to the quasiparticle energy splitting. The data are analyzed in terms of the cranking model

  3. Research on single-chip microcomputer controlled rotating magnetic field mineralization model

    Li, Yang; Qi, Yulin; Yang, Junxiao; Li, Na

    2017-08-01

    As one of the method of selecting ore, the magnetic separation method has the advantages of stable operation, simple process flow, high beneficiation efficiency and no chemical environment pollution. But the existing magnetic separator are more mechanical, the operation is not flexible, and can not change the magnetic field parameters according to the precision of the ore needed. Based on the existing magnetic separator is mechanical, the rotating magnetic field can be used for single chip microcomputer control as the research object, design and trial a rotating magnetic field processing prototype, and through the single-chip PWM pulse output to control the rotation of the magnetic field strength and rotating magnetic field speed. This method of using pure software to generate PWM pulse to control rotary magnetic field beneficiation, with higher flexibility, accuracy and lower cost, can give full play to the performance of single-chip.

  4. Magnetism, planetary rotation and convection in the solar system

    1985-01-01

    On the 6th, 7th' and 8th April 1983, a conference entitled "Magnetism, planetary rotation and convection in the Solar System" was held in the School of Physics at the University of Newcastle upon Tyne. The purpose of the meeting was to celebrate the 60th birthday of Prof. Stanley Keith Runcorn and his, and his students' and associates', several decades of scientific achievement. The social programme, which consisted of excursions in Northumberland and Durham with visits to ancient castles and churches, to Hexham Abbey and Durham Cathedral, and dinners in Newcastle and Durham, was greatly enjoyed by those attending the meeting and by their guests. The success ofthe scientific programme can be judged by this special edition of Geophysical Surveys which is derived mainly from the papers given at the meeting. The story starts in the late 1940s when the question of the origin of the magnetic field of the Earth and such other heavenly bodies as had at that time been discovered as having a magnetic field, was exerci...

  5. Role of Interaction between Magnetic Rossby Waves and Tachocline Differential Rotation in Producing Solar Seasons

    Dikpati, Mausumi; McIntosh, Scott W.; Bothun, Gregory; Cally, Paul S.; Ghosh, Siddhartha S.; Gilman, Peter A.; Umurhan, Orkan M.

    2018-02-01

    We present a nonlinear magnetohydrodynamic shallow-water model for the solar tachocline (MHD-SWT) that generates quasi-periodic tachocline nonlinear oscillations (TNOs) that can be identified with the recently discovered solar “seasons.” We discuss the properties of the hydrodynamic and magnetohydrodynamic Rossby waves that interact with the differential rotation and toroidal fields to sustain these oscillations, which occur due to back-and-forth energy exchanges among potential, kinetic, and magnetic energies. We perform model simulations for a few years, for selected example cases, in both hydrodynamic and magnetohydrodynamic regimes and show that the TNOs are robust features of the MHD-SWT model, occurring with periods of 2–20 months. We find that in certain cases multiple unstable shallow-water modes govern the dynamics, and TNO periods vary with time. In hydrodynamically governed TNOs, the energy exchange mechanism is simple, occurring between the Rossby waves and differential rotation. But in MHD cases, energy exchange becomes much more complex, involving energy flow among six energy reservoirs by means of eight different energy conversion processes. For toroidal magnetic bands of 5 and 35 kG peak amplitudes, both placed at 45° latitude and oppositely directed in north and south hemispheres, we show that the energy transfers responsible for TNO, as well as westward phase propagation, are evident in synoptic maps of the flow, magnetic field, and tachocline top-surface deformations. Nonlinear mode–mode interaction is particularly dramatic in the strong-field case. We also find that the TNO period increases with a decrease in rotation rate, implying that the younger Sun had more frequent seasons.

  6. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian

    2012-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators...

  7. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.

    2014-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at the Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators...

  8. A SCILAB Program for Computing Rotating Magnetic Compact Objects

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement the so-called ``complex-plane iterative technique'' (CIT) to the computation of classical differentially rotating magnetic white dwarf and neutron star models. The program has been written in SCILAB (© INRIA-ENPC), a matrix-oriented high-level programming language, which can be downloaded free of charge from the site http://www-rocq.inria.fr/scilab. Due to the advanced capabilities of this language, the code is short and understandable. Highlights of the program are: (a) time-saving character, (b) easy use due to the built-in graphics user interface, (c) easy interfacing with Fortran via online dynamic link. We interpret our numerical results in various ways by extensively using the graphics environment of SCILAB.

  9. Magnetic resonance imaging in acute and chronic rotator cuff tears

    Buirski, G.

    1990-01-01

    Magnetic resonance imaging has been assessed in patients with acute rotator cuff tears and normal radiographs (9 cases) and those with chronic tears and changes of cuff arthropathy (9 cases). All images were obtained using a low field strength system (FONAR 0.3 T). Particular attention was placed on the appearances of the tendon and the cuff muscles themselves. Six complete acute tears were clearly identified, but MRI failed to demonstrate two partial tears. Muscle bulk was preserved in all patients in this group. In contrast, all patients with cuff arthropathy had complete tears of the supraspinatus tendon with marked tendon retraction and associated muscle atrophy: These changes precluded primary surgical repair. MRI should be used to assess muscle atrophy preoperatively in those patients with acute tears. When plain radiographs demonstrate cuff arthropathy, the MRI appearances are predictable and primary repair is unlikely to be successful. Further imaging is therefore not indicated. (orig.)

  10. Structural looseness investigation in slow rotating permanent magnet generators

    Skrimpas, Georgios Alexandros; Mijatovic, Nenad; Sweeney, Christian Walsted

    2016-01-01

    Structural looseness in electric machines is a condition influencing the alignment of the machine and thus the overall bearing health. In this work, assessment of the above mentioned failure mode is tested on a slow rotating (running speed equal to 0.7Hz) permanent magnet generator (PMG), while...... collecting vibration and current data in order to cross-reference the indications from the two monitoring techniques. It is found that electric signature analysis shows no response even when two hold down bolts are untightened, whereas the analysis results from the vibration data exhibit superior performance....... The vibration-based condition indicators with the best response are the stator slot pass frequency, which can be directly related to the cogging torque in PMGs, and the 4th electric frequency harmonic, whose amplitudes increase due to the overall lower structure damping coefficient under looseness...

  11. Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field

    Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding

    2018-04-01

    In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.

  12. Acromial Findings Associated with Rotator cuff's Lesions in Magnetic Resonance

    Avila, Mercedes; Atencio, Elizabeth; Moreno, Franklin

    2008-01-01

    The objective is to evaluate by means of magnetic resonance the acromial alterations associated to rotator cuff (RC) lesions (MR). Materials and methods: A prospective, descriptive and cross-sectional type study was performed in 30 patients aged between 40 and 70 years who attended the Resomer imaging center during the period comprised between October-December 2007, with clinical diagnosis of RC lesion, using a 1.5 T magnet. Results: Most of the studied population were females (66.67%), the mean age being of 56.93 years with a typical deviation of 8.75, with partial lesions in 63.33%, Type II acromion was the dominant acromion in 50%, of anterior orientation (90%), with absent os acromiale (96.66%). Likewise, clavicular and acromial articular hypertrophy was demonstrated in 93.33% of cases. The glenoid-acromion distance had a mean value of 3.15 cm and a typical deviation of 0.55 while the glenoid-humeral distance was 4.65 cm with a typical deviation of 0.46 and the acromial index of 0.67. The humeral-acromion space exhibited a mean value of 6.3 mm with a typical deviation of 1.72. Conclusion: The predominantly degenerative acromial alterations are a conditioning factor of compression resulting from incarceration in the clamp form with a larger > supraspinous tendon wear-out with later affectation to the remaining tendons of the RC as the exposure evolves.

  13. Electrodeless plasma acceleration system using rotating magnetic field method

    T. Furukawa

    2017-11-01

    Full Text Available We have proposed Rotating Magnetic Field (RMF acceleration method as one of electrodeless plasma accelerations. In our experimental scheme, plasma generated by an rf (radio frequency antenna, is accelerated by RMF antennas, which consist of two-pair, opposed, facing coils, and these antennas are outside of a discharge tube. Therefore, there is no wear of electrodes, degrading the propulsion performance. Here, we will introduce our RMF acceleration system developed, including the experimental device, e.g., external antennas, a tapered quartz tube, a vacuum chamber, external magnets, and a pumping system. In addition, we can change RMF operation parameters (RMF applied current IRMF and RMF current phase difference ϕ, focusing on RMF current frequency fRMF by adjusting matching conditions of RMF, and investigate the dependencies on plasma parameters (electron density ne and ion velocity vi; e.g., higher increases of ne and vi (∼360 % and 55 %, respectively than previous experimental results were obtained by decreasing fRMF from 5 MHz to 0.7 MHz, whose RMF penetration condition was better according to Milroy’s expression. Moreover, time-varying component of RMF has been measured directly to survey the penetration condition experimentally.

  14. Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)

    Liu, Z. J.; Low, T. S.

    1996-04-01

    The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.

  15. Determining rotational temperatures from the OH(8-3 band, and a comparison with OH(6-2 rotational temperatures at Davis, Antarctica

    F. Phillips

    2004-04-01

    Full Text Available Rotational temperatures derived from the OH(8–3 band may vary by ~18K depending on the choice of transition probabilities. This is of concern when absolute temperatures or trends determined in combination with measurements of other hydroxyl bands are important. In this paper, measurements of the OH(8–3 temperature-insensitive Q/P and R/P line intensity ratios are used to select the most appropriate transition probabilities for use with this band. Aurora, airglow and solar and telluric absorption in the OH(8–3 band are also investigated. Water vapour absorption of P1(4, airglow or auroral contamination of P1(2 and solar absorption in the vicinity of P1(5 are concerns to be considered when deriving rotational temperatures from this band.

    A comparison is made of temperatures derived from OH(6–2 and OH(8–3 spectra collected alternately at Davis (69° S, 78° E in 1990. An average difference of ~4K is found, with OH(8–3 temperatures being warmer, but a difference of this magnitude is within the two sigma uncertainty limit of the measurements.

    Key words. Atmospheric composition and structure airglow and aurora; pressure, density, and temperature

  16. Response of plasma rotation to resonant magnetic perturbations in J-TEXT tokamak

    Yan, W.; Chen, Z. Y.; Huang, D. W.; Hu, Q. M.; Shi, Y. J.; Ding, Y. H.; Cheng, Z. F.; Yang, Z. J.; Pan, X. M.; Lee, S. G.; Tong, R. H.; Wei, Y. N.; Dong, Y. B.; J-TEXT Team

    2018-03-01

    The response of plasma toroidal rotation to the external resonant magnetic perturbations (RMP) has been investigated in Joint Texas Experimental Tokamak (J-TEXT) ohmic heating plasmas. For the J-TEXT’s plasmas without the application of RMP, the core toroidal rotation is in the counter-current direction while the edge rotation is near zero or slightly in the co-current direction. Both static RMP experiments and rotating RMP experiments have been applied to investigate the plasma toroidal rotation. The core toroidal rotation decreases to lower level with static RMP. At the same time, the edge rotation can spin to more than 20 km s-1 in co-current direction. On the other hand, the core plasma rotation can be slowed down or be accelerated with the rotating RMP. When the rotating RMP frequency is higher than mode frequency, the plasma rotation can be accelerated to the rotating RMP frequency. The plasma confinement is improved with high frequency rotating RMP. The plasma rotation is decelerated to the rotating RMP frequency when the rotating RMP frequency is lower than the mode frequency. The plasma confinement also degrades with low frequency rotating RMP.

  17. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  18. Liquid metal flow in a finite-length cylinder with a rotating magnetic field

    Gelfgat, Yu.M.; Gorbunov, L.A.; Kolevzon, V.

    1993-01-01

    A liquid metal flow induced by a rotating magnetic field in a cylindrical container of finite height was investigated experimentally. It was demonstrated that the flow in a rotating magnetic field is similar to geophysical flows: the fluid rotates uniformly with depth and the Ekman layer exists at the container bottom. Near the vertical wall the flow is depicted in the form of a confined jet whose thickness determines the instability onset in a rotating magnetic field. It was shown that the critical Reynolds number can be found by using the jet velocity u 0 for Re cr =u 2 0 /ν∂u/∂r. The effect of frequency of a magnetic field on the fluid flow was also studied. An approximate theoretical model is presented for describing the fluid flow in a uniform rotating magnetic field. (orig.)

  19. Planar rotational magnetic micromotors with integrated shaft encoder and magnetic rotor levitation

    Guckel, Henry; Christenson, T. R.; Skrobis, K. J.; Klein, J.; Karnowsky, M.

    1994-01-01

    Deep x-ray lithography and electroplating may be combined to form a fabrication tool for micromechanical devices with large structural heights, to 500 micron, and extreme edge acuities, less than 0.1 micron-run-out per 100 micron of height. This process concept which originated in Germany as LIGA may be further extended by adding surface micromachining. This extension permits the fabrication of precision metal and plastic parts which may be assembled into three-dimensional micromechanical components and systems. The processing tool may be used to fabricate devices from ferromagnetic material such as nickel and nickel-iron alloys. These materials when properly heat treated exhibit acceptable magnetic behavior for current to flux conversion and marginal behavior for permanent magnet applications. The tool and materials have been tested via planar, magnetic, rotational micromotor fabrication. Three phase reluctance machines of the 6:4 configuration with 280 micron diameter rotors have been tested and analyzed. Stable rotational speeds to 34,000 rpm with output torques above 10 x 10(exp -9) N-m have been obtained. The behavior is monitored with integrated shaft encoders which are photodiodes which measure the rotor response. Magnetic levitation of the rotor via reluctance forces has been achieved and has reduced frictional torque losses to less than 1 percent of the available torque. The results indicate that high speed limits of these actuators are related to torque ripple. Hysteresis motors with magnetic bearings are under consideration and will produce high speed rotational machines with excellent sensor application potential.

  20. Contribution to the projected Hartree-Fock method and microscopic theory of coupling between rotation bands

    Brut, F.

    1982-01-01

    The spectroscopy of odd-A nuclei, in the 1p and 2s-1d shells, is studied in the framework of the projected Hartree-Fock method and by the generator coordinate method. The nuclear effective interactions of Cohen and Kurath, on the one hand, and of Kuo or Preedom-Wildenthal, on the other hand, are used. The binding energies, the nuclear spectra, the static moments and the electromagnetic transitions obtained by these two approaches are compared to the same quantities given by a complete diagonalization in the shell model basis. This study of light nuclei gives some possibilities to put in order the energy levels by coupled rotational bands. In the microscopic approach, thus we find all the elements of the unified model of Bohr and Mottelson. To give evidence of such a relation, the functions of the angle β, in the integrals of the projection method of Peierls and Yoccoz, for a Slater determinant, are developed in the vicinity of the bounds β = O and β = π. The microscopic coefficients are evaluated in the Hartree-Fock approximation, using the particle-hole formalism. Calculations are made for 20 Ne and 21 Ne and the resulting microscopic coefficients are compared with the corresponding terms of the unified model of Bohr and Mottelson [fr

  1. The moments of inertia of a rotational band 3/2- [521] isotones odd nuclei

    Karahodjaev, A.K.; Kuyjonov, H.

    2003-01-01

    The moments of inertia are received from experimental data from the following expression for energy of a level with spin I: E I = E 0 +ℎ 2 /2j·I(I+1), K≠l/2. The characteristics of low statuses of a rotational band 3/2 - [521] and inertial parameters 1.75A 1 keV ( A-1=ℎ 2 /2j) for nuclei 155 Dy and 155 Gd are given. The values of inertial parameters 1.75A1 keV for odd nuclei with N = 89, 91, 93, 95, 97, 99, 101 and 103 are presented. At quantity of neutrons N = 89 with increase of mass number of a nucleus the moment of inertia rather quickly grows. In nuclei with quantity of neutrons equal 91 and 93, with increase of mass number the moment of inertia of nuclei slowly changes and since A=159 and A=163, accordingly, begins sharply to grow. In isotones with N = 95, 97 and 99 moments of inertia decrease with increase of quantity neutrons in a nucleus. The reason of various dependence of the moment of inertia from mass number is, the coriolis interaction of an odd particle with even-even kernel and change of parameter of pair correlation because of presence of an odd particle above a kernel

  2. Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.; Shibata, Masaru

    2006-01-01

    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can be formed in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both act on differentially rotating stars to redistribute angular momentum. Simulations of these stars are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. We consider stars with two different equations of state (EOS), a gamma-law EOS with Γ=2, and a more realistic hybrid EOS, and we evolve them adiabatically. Our simulations show that the fate of the star depends on its mass and spin. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Normal configurations have rest masses below the maximum achievable with uniform rotation, and angular momentum below the maximum for uniform rotation at the same rest mass. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along

  3. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    Kim, S H; Hashi, S; Ishiyama, K

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  4. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  5. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    Gerald, II, Rex E.; Vukovic, Lela [Westchester, IL; Rathke, Jerome W [Homer Glenn, IL

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  6. Comparison of muscle sizes and moment arms of two rotator cuff muscles measured by ultrasonography and magnetic resonance imaging

    Juul-Kristensen, B.; Bojsen-Møller, Finn; Holst, E.

    2000-01-01

    Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound......Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound...

  7. Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene.

    Wang, Xinquan; Wu, Zhigang

    2017-01-18

    It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unbonded electrons unpaired and localized to carry magnetic moments. These magnetic moments then couple ferromagnetically within each layer while antiferromagnetically across two layers, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. Furthermore, this unique magnetic ordering results in fundamental band gaps of 0.55 eV and 0.32 eV for bilayer silicene and germanene, respectively. The integration of intrinsic magnetism and spontaneous band gap opening makes bilayer silicene and germanene attractive for future nanoelectronics as well as spin-based computation and data storage.

  8. 3-D explosions: a meditation on rotation (and magnetic fields)

    Wheeler, J. C.

    This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welcome to the brave new world of three-dimensional explosions!

  9. From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field

    Azreg-Ainou, Mustapha [Baskent University, Department of Mathematics, Ankara (Turkey)

    2014-05-15

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)

  10. From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field

    Azreg-Ainou, Mustapha

    2014-01-01

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)

  11. Band structure of a three-dimensional topological insulator quantum wire in the presence of a magnetic field.

    Liu, Zhe; Jiang, Liwei; Zheng, Yisong

    2016-07-13

    By means of a numerical diagonalization approach, we calculate the electronic structure of a three-dimensional topological insulator (3DTI) quantum wire (QW) in the presence of a magnetic field. The QW can be viewed as a 3DTI film with lateral surfaces, when its rectangular cross section has a large aspect ratio. Our calculation indicates that nonchiral edge states emerge because of the confined states at the lateral surfaces. These states completely cover the valence band region among the Landau levels, which reasonably account for the absence of the [Formula: see text] quantum Hall effect in the relevant experimental works. In an ultrathin 3DTI film, inversion between the electron-type and hole-type bands occurs, which leads to the so-called pseudo-spin Hall effect. In a 3DTI QW with a square cross section, a tilting magnetic field can establish well-defined Landau levels in all four surfaces. In such a case, the quantum Hall edge states are localized at the square corners, characterized by the linearly crossing one-dimensional band profile. And they can be shifted between the adjacent corners by simply rotating the magnetic field.

  12. DARK MATTER, MAGNETIC FIELDS, AND THE ROTATION CURVE OF THE MILKY WAY

    Ruiz-Granados, B.; Battaner, E.; Florido, E.; Calvo, J.; Rubiño-Martín, J. A.

    2012-01-01

    The study of the disk rotation curve of our Galaxy at large distances provides an interesting scenario for us to test whether magnetic fields should be considered as a non-negligible dynamical ingredient. By assuming a bulge, an exponential disk for the stellar and gaseous distributions, and a dark halo and disk magnetic fields, we fit the rotation velocity of the Milky Way. In general, when the magnetic contribution is added to the dynamics, a better description of the rotation curve is obtained. Our main conclusion is that magnetic fields should be taken into account for the Milky Way dynamics. Azimuthal magnetic field strengths of B φ ∼ 2 μG at distances of ∼2 R 0 (16 kpc) are able to explain the rise-up for the rotation curve in the outer disk.

  13. Sustained turbulence and magnetic energy in non-rotating shear flows

    Nauman, Farrukh; Blackman, Eric G.

    2017-01-01

    From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....

  14. Metal artefacts severely hamper magnetic resonance imaging of the rotator cuff tendons after rotator cuff repair with titanium suture anchors.

    Schröder, Femke F; Huis In't Veld, Rianne; den Otter, Lydia A; van Raak, Sjoerd M; Ten Haken, Bennie; Vochteloo, Anne J H

    2018-04-01

    The rate of retear after rotator cuff surgery is 17%. Magnetic resonance imaging (MRI) scans are used for confirmative diagnosis of retear. However, because of the presence of titanium suture anchors, metal artefacts on the MRI are common. The present study evaluated the diagnostic value of MRI after rotator cuff tendon surgery with respect to assessing the integrity as well as the degeneration and atrophy of the rotator cuff tendons when titanium anchors are in place. Twenty patients who underwent revision surgery of the rotator cuff as a result of a clinically suspected retear between 2013 and 2015 were included. The MRI scans of these patients were retrospectively analyzed by four specialized shoulder surgeons and compared with intra-operative findings (gold standard). Sensitivity and interobserver agreement among the surgeons in assessing retears as well as the Goutallier and Warner classification were examined. In 36% (range 15% to 50%) of the pre-operative MRI scans, the observers could not review the rotator cuff tendons. When the rotator cuff tendons were assessable, a diagnostic accuracy with a mean sensitivity of 0.84 (0.70 to 1.0) across the surgeons was found, with poor interobserver agreement (kappa = 0.12). Metal artefacts prevented accurate diagnosis from MRI scans of rotator cuff retear in 36% of the patients studied.

  15. Investigation of Inertia Welding Process for Applying Gilding Metal Rotating Bands to Projectile, 155-mm, M483A1.

    1978-07-01

    AISI 4140 steel body, but additional work remains to be done because pure copper behaves differently than gilding metal when subjected to the inertia...bands to AISI 1340 steel bodies used with the 155-mm, M483A1 Projectile. As a result of the effort it was demon- strated that the process is practical...rotating bands to AISI 1340 steel bodies used with the 155-mm, M483A1 Projectile. As a result of the effort it was demonstrated that the process is

  16. Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.

    Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J

    2008-11-07

    We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.

  17. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  18. Rotational Evolution and Magnetic Field of AP Stars

    Xiaojun, C.; Matsuura, O. T.

    1990-11-01

    RESUMO. Prop6e- se qLie 0 campo de estrelas Ap pode ser 9cr ado pelo mecanismo de na base clo envelope c 0 fl V C C t V 0, C t r a ri S p 0 r t a d C) p a r a a S LI p e r f C 1 e p e I a Instabllidade de boiament 0 na ase de Haya hi. Campos cibservados permit em est imar uma perda de momento durante a ase pr -Seque%nC:ia P r ri C: p a I a ci ni p a t V C I C: C) m a s C) b s e r V a nT C 5. E S t r C I a S A normals, que ro t a ao , ria0 most ram camp Os :os superficia; importantes e isto pode ac:oriteaer C LIma protoestrela evolue para Sequencia Principal em passar pela fase de Hayashi. ABSTRACT: It 5 proposed that the ma9netic field o Ap stars may be enerated by the dynamo at the base of the convective envelope, arid transported to the surface b y t h C i ri s t a b iii t y C) f b LI 0 y a n c y i n t h C H a y a s hi p h a s e. Observed surface ma9netic fields allow to estimate a 1055 of an9ular momentum during the pre-Main Sequence phase compatible with the observations. apidIy rotating normal A stars do not shciw important surface magnetic fields and this may occur if a protostar evcilves to Main Sequence skipping the Hayashi phase. Key words: HYDROMAGNETICS - STARS-PECULIAR A

  19. The anisotropic magnetic property and Faraday rotation in Er3Ga5O12 under high magnetic field

    Wang Wei; Zhang Xijuan; Liu Gongqiang

    2005-01-01

    A theoretical investigation on the anisotropic magnetic property and Faraday rotation in Er 3 Ga 5 O 12 (ErGaG) is presented. With particular consideration of the anisotropy of the exchange interaction between rare-earth ions (Er 3+ ), the magnetization, based on the quantum theory, in ErGaG under high magnetic field (HMF) is calculated. Theoretical calculations show that the appropriate choice of the crystal field (CF) parameters is of great importance. A novel three-level model is presented, and in terms of this model the Faraday rotation under HMF is calculated. In addition, it is demonstrated that the Faraday rotation (θ) depends not only on the magnetization (M) but also on the magnetic field (H e ). The theory is in good agreement with the experiment

  20. Magnetic circular Dichroism and Faraday rotation of cesium-argon excimers and cesium dimers

    Islam, M.A.

    1981-01-01

    Magnetic Circular Dichroism (MCD) and Faraday Rotation (FR) of excimer absorption bands in gases are measured to obtain the first direct information about the angular momentum quantum numbers and the angular momentum coupling schemes of excimer molecules. So far, there has been no experimental method to obtain information about the axial angular momentum and the angular momentum coupling schemes of excimer molecules. In this experiment, the MCD and the FR of cesium-argon excimer and cesium dimer absorption bands between 5000 A and 10,000 A are measured for the range of temperature from 116 0 to 355 0 C. Of particular interest is the blue wing of D 2 line in cesium which has been the subject of vigorous investigation. The measured MCD data at the blue wing of D 2 line clearly shows that the assignment of 2 μ/sub 1/2/ to this excited state assuming Hund's case (b) is a poor approximation. By a simple inspection of the MCD data, it is found that the coupling scheme is more nearly Hund's case (c) than Hynd's case (b). Several other new and interesting results are obtained. The blue wing associated with 5D transition in atomic cesium is devoid of MCD and exhibits strong MCD in the red wings. Thus, the assignment of 2 μ/sub 1/2/ and 2 π to the blue and red wings, respectively, assuming Hund's case (a) and (b), is a very good approximation. Again the yellow-green band associated with 7s-6s transition in atomic cesium shows no MCD. It is therefore also a good approximation to assign 2 μ/sub 1/2/ to the upper state assuming Hund's case (b). Much more information can be obtained by a detailed analysis of the MCD data

  1. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  2. Kinetic theory of instabilities responsible for magnetic turbulence in laboratory rotating plasma

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Pustovitov, V.D.; Erokhin, N.N.; Konovalov, S.V.

    2008-01-01

    The problem of instabilities responsible for magnetic turbulence in collisionless laboratory rotating plasma is investigated. It is shown that the standard mechanism of driving the magnetorotational instability (MRI), due to negative rotation frequency gradient, disappears in such a plasma. Instead of it, a new driving mechanism due to plasma pressure gradient is predicted

  3. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    Sosenko, P.; Pierre, Th.; Zagorodny, A.

    2004-01-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  4. ROTATION RATE DIFFERENCES OF POSITIVE AND NEGATIVE SOLAR MAGNETIC FIELDS BETWEEN ±60° LATITUDES

    Shi, X. J.; Xie, J. L., E-mail: shixiangjun@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-04-15

    Based on a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotations Nos. 1625 to 2135 (from 1975 February to 2013 March), the sidereal rotation rates of the positive and negative magnetic fields in the latitude range of ±60° are obtained, and the rotation rate differences between them are investigated. The time–latitude distribution of the rate differences is shown, which looks like a butterfly diagram at the low and middle latitudes. For comparison, the time–latitude distribution of the longitudinally averaged photospheric magnetic fields is shown. We conclude that the magnetic fields having the same polarity as the leading sunspots at a given hemisphere rotate faster than those exhibiting the opposite polarity at low and middle latitudes. However, at higher latitudes, the magnetic fields having the same polarity as the leading sunspots at a given hemisphere do not always rotate faster than those with the opposite polarity. Furthermore, the relationship between the rotation rate differences and solar magnetic fields is studied through a correlation analysis. Our result shows that the correlation coefficients between them reach maximum values at 13° (14°) latitude in the northern (southern) hemisphere, and change sign at 28° latitude in both hemispheres, then reach their minimum values at 58° (53°) latitude in the northern (southern) hemisphere.

  5. Is the anomalous magnetic moment the consequence of a non-classical transformation for rotating frames?

    Gisin, B V

    2002-01-01

    We consider the anomalous magnetic moment from an 'optical viewpoint' using an analogy between the motion of a particle with a magnetic moment in a magnetic field and the propagation of an optical pulse through an electro-optical crystal in an electric field. We show that an optical experiment similar to electron magnetic resonance is possible in some electro-optical crystals possessing the Faraday effect. This phenomenon is described by an analogue of the Pauli equation extracted from the Maxwell equation in the slowly varied amplitude approximation. In such an experiment the modulation by rotating fields plays a significant role. From the optical viewpoint the modulation assumes introducing the concept of a point rotation frame with the rotation axis at every point originated from the concept of the optical indicatrix (index ellipsoid). We discuss the connection between the non-classical transformation by transition from one such frame to another and an anomalous magnetic moment

  6. Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry

    Takayama, S.; Koyanagi, K.; Miyazaki, H.; Takami, S.; Orikasa, T.; Ishii, Y.; Kurusu, T.; Iwata, Y.; Noda, K.; Obana, T.; Suzuki, K.; Ogitsu, T.; Amemiya, N.

    2017-07-01

    Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.

  7. Features of the mass transfer in magnetic cataclysmic variables with fast-rotating white dwarfs

    Isakova Polina

    2014-01-01

    Full Text Available The flow structure in magnetic cataclysmic variables was investigated taking into account the effects of strong magnetic field and fast rotation of the white dwarf. We modeled the AE Aqr system as a unique object that has the rotation period of the white dwarf is about 1000 times shorter than the orbital period of the binary system. Observations show that in spite of fast rotation of the white dwarf some part of the stream from the inner Lagrange point comes into the Roche lobe region. We analyzed possible mechanisms preventing material to outflow from the system.

  8. Wide Band Low Noise Love Wave Magnetic Field Sensor System.

    Kittmann, Anne; Durdaut, Phillip; Zabel, Sebastian; Reermann, Jens; Schmalz, Julius; Spetzler, Benjamin; Meyners, Dirk; Sun, Nian X; McCord, Jeffrey; Gerken, Martina; Schmidt, Gerhard; Höft, Michael; Knöchel, Reinhard; Faupel, Franz; Quandt, Eckhard

    2018-01-10

    We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

  9. The study on the magnetic filter using the rotation of permanent magnets for separation of radioactive corrosion products

    Song, M.C.; Lee, K.J.

    2004-01-01

    Most of the insoluble radioactive corrosion products have the characteristic of showing strong ferrimagnetism. Along with the new development and production of permanent magnets which generate much stronger magnetic field than conventional permanent magnets, new type of magnetic filter that can separate radioactive corrosion products efficiently and eventually reduce the radiation exposure of the personnel at a nuclear power plant is suggested. This new type of separator with novel geometry consists of an inner and an outer magnet assembly, a coolant channel and a container surrounding the outer magnet assembly. The particulates are separated from the coolant by the alternating magnetic fields that are generated by shift arrangement of permanent magnets. This study describes of experimental results performed with the different flow rates, rotation velocities of magnet assemblies, particle size and various materials. The efficiency of magnetic filter tends to increase as the flow rate is lower, and particle size is bigger. The rotating velocity of magnet assembly has also some influences on the separation efficiency. This new magnetic filter shows good performance results in filtering magnetite, cobalt ferrite and nickel ferrite except hematite, which is a kind of anti-ferromagnetic material, from aqueous coolant simulation. At the above 5 μm of particle size, the separation efficiencies are over than 90%. (author)

  10. A rotation/magnetism analogy for the quark–gluon plasma

    Brett McInnes

    2016-10-01

    Full Text Available In peripheral heavy ion collisions, the Quark–Gluon Plasma that may be formed often has a large angular momentum per unit energy. This angular momentum may take the form of (local rotation. In many physical systems, rotation can have effects analogous to those produced by a magnetic field; thus, there is a risk that the effects of local rotation in the QGP might be mistaken for those of the large genuine magnetic fields which are also known to arise in these systems. Here we use the gauge-gravity duality to investigate this, and we find indeed that, with realistic parameter values, local rotation has effects on the QGP (at high values of the baryonic chemical potential which are not only of the same kind as those produced by magnetic fields, but which can in fact be substantially larger. Furthermore, the combined effect of rotation and magnetism is to change the shape of the main quark matter phase transition line in an interesting way, reducing the magnitude of its curvature; again, local rotation contributes to this phenomenon at least as strongly as magnetism.

  11. A rotation/magnetism analogy for the quark–gluon plasma

    McInnes, Brett, E-mail: matmcinn@nus.edu.sg

    2016-10-15

    In peripheral heavy ion collisions, the Quark–Gluon Plasma that may be formed often has a large angular momentum per unit energy. This angular momentum may take the form of (local) rotation. In many physical systems, rotation can have effects analogous to those produced by a magnetic field; thus, there is a risk that the effects of local rotation in the QGP might be mistaken for those of the large genuine magnetic fields which are also known to arise in these systems. Here we use the gauge-gravity duality to investigate this, and we find indeed that, with realistic parameter values, local rotation has effects on the QGP (at high values of the baryonic chemical potential) which are not only of the same kind as those produced by magnetic fields, but which can in fact be substantially larger. Furthermore, the combined effect of rotation and magnetism is to change the shape of the main quark matter phase transition line in an interesting way, reducing the magnitude of its curvature; again, local rotation contributes to this phenomenon at least as strongly as magnetism.

  12. Effect of magnetic field on the Rayleigh Taylor instability of rotating and stratified plasma

    Sharma, PK; Tiwari, Anita; Argal, Shraddha

    2017-01-01

    In the present study the effect of magnetic field and rotation have been carried out on the Rayleigh Taylor instability of conducting and rotating plasma, which is assumed to be incompressible and confined between two rigid planes z = 0 and z = h. The dispersion relation of the problem is obtained by solving the basic MHD equations of the problem with the help normal mode technique and appropriate boundary conditions. The dispersion relation of the medium is analysed and the effect of magnetic field and angular velocity (rotation effect) have been examined on the growth rate of Rayleigh Taylor instability. It is found that the magnetic field and angular velocity (rotation effect) have stabilizing influence on the Rayleigh Taylor instability. (paper)

  13. Effect of rotation on Jeans instability of magnetized radiative quantum plasma

    Joshi, H.; Pensia, R. K.

    2017-03-01

    The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.

  14. Soft X-ray magnetic scattering study of rotational magnetisation processes in cobalt/copper multilayers

    Hase, T.P.A.; Fulthorpe, B.D.; Wilkins, S.B.; Tanner, B.K.; Marrows, C.H.; Hickey, B.J.

    2001-01-01

    We report the observation of magnetic viscosity in the intensity of resonant magnetic soft X-ray scattering during rotational magnetisation processes in antiferromagnetically coupled Co/Cu multilayers. The hysteretic time-dependent component of the signal can be fitted to a single-exponential function that varies as a function of magnetising field

  15. Faraday rotation and magneto-optical figure of merit for the magnetite magnetic fluids

    Kalandadze L.

    2011-05-01

    Full Text Available In the present paper, using magnetite magnetic fluids as examples, we consider the optical and magneto-optical properties of magnetic fluids based on particles of magnetic oxides, for the optical constants of the material of which, n and k , the relation k2 ≺≺ n2 holds. In this work the Faraday rotation is represented within the theoretical Maxwell-Garnett model. A theoretical analysis has shown that Faraday rotation for magnetic fluids is related to the Faraday rotation on the material of particles by the simple relation. According to this result  in specific experimental conditions the values of the Faraday rotation prorate to q , which is the occupancy of the volume of the magnetic fluid with magnetic particles and spectral dependences of effect in magnetic fluid and in the proper bulk magnetic are similar. We also show that the values of the magneto-optical figure of merit for ultrafine medium and for the bulk material are equal.

  16. The evaluation of supraspinatus muscle of patients with rotator cuff tear on magnetic resonance imaging

    Eto, Masao; Wada, Masahiro; Shindo, Hiroyuki

    2003-01-01

    We examined the intensity of the supraspinatus muscles of patients with a rotator cuff tear in Magnetic Resonance Imaging (MRI) findings. One hundred nine shoulders in patients with rotator cuff tears were preoperatively scanned by MRIs. Using MRIs, the linear bands of the supraspinatus muscle were classified into three grades. Between each grade the following were examined; the age, the disease contraction period, the distribution of large tears and reruptures, and those chosen for patch graft method, as well as the postoperative Japanese Orthopedic Association (JOA) scores. There were 46 cases in grade 1 (G-1), 28 in grade 2 (G-2), and 35 in grade 3 (G-3). The mean ages of patients in the three grades were 53.4 years old, 56.7 years old, 61.3 years old respectively. The age of G-3 was significantly higher than the other grades. The period from onset of the G-3 was shorter than the other grades, but there was no statistic significance. The ratio of massive tears were 2.2%, 27.0% and 46.2% respectively. Reruptures were observed only in grade 3 and there were none in G-2 and G-3. The patch graft method was performed on one shoulder in G-2 and three shoulders in G-3. The average JOA scores were 89.5 in G-1, 88.4 in G-2 and 85.0 in G-3. The JOA score of G-3 was significantly lower than G-1. Especially function of JOA score was lower than the other grades. The results of the present study suggest that high intensity on MRI is associated with poor clinical results in operative treatment. Some authors reports that these findings of MRI demonstrate a fatty degeneration of muscles. So we should select the best operation atid carefully rehabilitate patients with a high intensity of the supraspinatus muscle belly on MRI. (author)

  17. Staggering in signature partners of A∼190 mass region of superdeformed rotational bands

    Uma, V.S.; Goel, Alpana; Yadav, Archana

    2014-01-01

    This paper discuss about ΔI=1 signature splitting in signature partner pairs of A∼190 mass region. Around twenty signature partner pairs (usually called as two bands, each with a fixed signature) have been reported in this mass region. For these signature pairs, band head moment of inertia (J 0 ) and intrinsic structure of each pair of signature partners have been found as almost identical. Also, these signature partner pairs showed large amplitude signature splitting. As each of the two signature partner forms a regular spin sequence and signature bands are not equivalent in terms of energies. This difference in energies results in signature splitting

  18. Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2012-01-01

    We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.

  19. Tools and setups for experiments with AC and rotating magnetic fields

    Ponikvar, D

    2010-01-01

    A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several experiments and describes setups and tools which are easy to obtain and work with. Free software is offered to generate the required signals by a personal computer. The experiments can be implemented in introductory physics courses on electromagnetism for undergraduates or specialized courses at high schools.

  20. Competition/coexistence of magnetism and superconductivity in iron pnictides probed by muon spin rotation

    Takeshita, Soshi; Kadono, Ryosuke

    2009-01-01

    The presence of macroscopic phase separation into superconducting and magnetic phases in LaFeAsO 1-x F x and CaFe 1-x Co x AsF is demonstrated by muon spin rotation (μSR) measurement across their phase boundaries (x=0.06 for LaFeAsO 1-x F x and x=0.075-0.15 for CaFe 1-x Co x AsF). In LaFeAsO 0.94 F 0.06 , both magnetism and superconductivity develop simultaneously below a common critical temperature, T m ≅T c ≅18 K, where the magnetism is characterized by strong randomness. A similar, but more distinct segregation of these two phases is observed in CaFe 1-x Co x AsF, where the magnetic phase retains T m close to that of the parent compound (T c m ≅80-120 K) and the superconducting volume fraction is mostly proportional to the Co content x. The close relationship between magnetism and superconductivity is discussed based on these experimental observations. Concerning the superconducting phase, an assessment is made on the anisotropy of the order parameter in the superconducting state of LaFeAsO 1-x F x , CaFe 1-x Co x AsF and Ba 1-x K x Fe 2 As 2 (x=0.4) based on the temperature dependence of superfluid density [n s (T)] measured by μSR. The gap parameter, 2Δ/k B T c , determined from n s (T) exhibits a tendency that values in the hole-doped pnictides (Ba 1-x K x Fe 2 As 2 ) are much greater than those in electron-doped ones (LaFeAsO 1-x F x and CaFe 1-x Co x AsF), suggesting a difference in the coupling to bosons mediating the Cooper pairs between relevant d electron bands.

  1. NuSTAR AND SWIFT Observations of the Fast Rotating Magnetized White Dwarf AE Aquarii

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hayashi, Takayuki; Kaspi, Victoria M.; Rana, Vikram R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; hide

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P(sub spin) = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (LX (is) approximately 10(exp 31) erg per second). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(+0.18 / -0.45), 2.29(+0.96 / -0.82), and 9.33 (+6.07 / -2.18) keV, or an optically thin thermal plasma model with two temperatures of 1.00 (+0.34 / -0.23) and 4.64 (+1.58 / -0.84) keV plus a power-law component with photon index of 2.50 (+0.17 / -0.23). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.

  2. Precise position control of a helical magnetic robot in pulsatile flow using the rotating frequency of the external magnetic field

    Jongyul Kim

    2017-05-01

    Full Text Available We propose a position control method for a helical magnetic robot (HMR that uses the rotating frequency of the external rotating magnetic field (ERMF to minimize the position fluctuation of the HMR caused by pulsatile flow in human blood vessels. We prototyped the HMR and conducted several experiments in pseudo blood vessel environments with a peristaltic pump. We experimentally obtained the relation between the flow rate and the rotating frequency of the ERMF required to make the HMR stationary in a given pulsatile flow. Then we approximated the pulsatile flow by Fourier series and applied the required ERMF rotating frequency to the HMR in real time. Our proposed position control method drastically reduced the position fluctuation of the HMR under pulsatile flow.

  3. Interplay between intrinsic plasma rotation and magnetic island evolution in disruptive discharges

    Ronchi, G.; Severo, J. H. F. [Universidade de São Paulo, Instituto de Física (Brazil); Salzedas, F. [Universidade do Porto, Faculdade de Engenharia (Portugal); Galvão, R. M. O., E-mail: rgalvao@if.usp.br; Sanada, E. K. [Universidade de São Paulo, Instituto de Física (Brazil)

    2016-05-15

    The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventual saturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigated in disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at a speed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increases and that of the island decreases, following the expectation of synchronization. As the island saturates at a large size, just before a major disruption, the angular speed of the intrinsic rotation decreases quite rapidly, even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quite reproducible and can be considered as an indicative of disruption.

  4. Signature splitting in two quasiparticle rotational bands of 180, 182 Ta

    quasiparticle rotor model. The phase as well as magnitudeof the experimentally observed signature splitting in K π = 1 + band of 180 Ta, which could not be explained in earlier calculations, is successfully reproduced. The conflict regarding placement of ...

  5. Spectroscopy of 9Be and observation of neutron halo structure in the states of positive parity rotational band

    Demyanova A.S.

    2014-03-01

    Full Text Available The differential cross sections of the 9Be + α inelastic scattering at 30 MeV were measured at the tandem of Tsukuba University. All the known states of 9Be up to energies ~ 12 MeV were observed and decomposed into three rotational bands, each of them having a cluster structure consisting of a 8Be core plus a valence neutron in one of the sub-shells: p3/2−, s1/2+ and p1/2−. Existence of a neutron halo in the positive parity states was confirmed.

  6. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  7. Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation

    Otake, Yuji; Araya, Akito; Hidano, Kazuo

    2005-01-01

    We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet. Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10 -4 owing to this compensation. The thermal dependence of a magnetic field strength of about 10 -3 /K was also compensated by as much as 9x10 -5 /K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8 s, and was able to be changed from 5 to 8 s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were applied to the

  8. Performance of high power S-band klystrons focused with permanent magnet

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 percent of the longitudinal field in the entire RF interaction region of the klystron.

  9. Performance of high power S-band klystrons focused with permanent magnet

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 % of the longitudinal field in the entire rf interaction region of the klystron. (author)

  10. Kπ=1+ pairing interaction and moments of inertia of superdeformed rotational bands in atomic nuclei

    Hamamoto, I.; Nazarewicz, W.

    1994-01-01

    The effect of the pairing interaction coming from the rotationally induced K π =1 + pair-density on the nuclear moments of inertia is studied. It is pointed out that, contrary to the situation at normal deformations, the inclusion of the K π =1 + pairing may appreciably modify the frequency dependence of the moments of inertia at superdeformed shapes

  11. High-K rotational bands in {sup 174}Hf and {sup 175}Hf

    Gjoerup, N L; Sletten, G [The Niels Bohr Institute, Roskilbe (Denmark); Walker, P M [Surrey Univ., Guildford (United Kingdom). Dept. of Physics; Bentley, M A [Daresbury Lab. (United Kingdom); Cullen, D M; Sharpey-Schafer, J F; Fallon, P; Smith, G [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.

    1992-08-01

    High sensitivity experiments with {sup 48}Ca, {sup 18}O and {sup 9}Be induced reactions using the ESSA-30, TESSA-3 and NORDBALL arrays have provided extensive new information on the high spin level structures of {sup 174}Hf and {sup 175}Hf. During the series of experiments, several new bands have been found and most known bands have been extended considerably. Spin and excitation energy ranges for {sup 174}Hf are now {approx} 35 {Dirac_h} and {approx} 13 MeV, respectively, and for {sup 175}Hf ranges are {approx} 30 {Dirac_h} and {approx} 7 MeV. respectively. Several new high-K structures have been found in {sup 174}Hf and the structure of these and the already known high-K bands in both nuclei together with the new Tilted Axis Cranking approach might explain the small K-hindrances observed for K-isomers in this region. (author). 8 refs., 2 figs.

  12. Revisiting magnetism of capped Au and ZnO nanoparticles: Surface band structure and atomic orbital with giant magnetic moment

    Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)

    2011-10-15

    In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. ROTATION AND MAGNETIC ACTIVITY IN A SAMPLE OF M-DWARFS

    Browning, Matthew K.; Basri, Gibor; Marcy, Geoffrey W.; Zhang Jiahao; West, Andrew A.

    2010-01-01

    We have analyzed the rotational broadening and chromospheric activity in a sample of 123 M-dwarfs, using spectra taken at the W.M. Keck Observatory as part of the California Planet Search program. We find that only seven of these stars are rotating more rapidly than our detection threshold of v sin i ∼ 2.5 km s -1 . Rotation appears to be more common in stars later than M3 than in the M0-M2.5 mass range: we estimate that less than 10% of early-M stars are detectably rotating, whereas roughly a third of those later than M4 show signs of rotation. These findings lend support to the view that rotational braking becomes less effective in fully convective stars. By measuring the equivalent widths of the Ca II H and K lines for the stars in our sample, and converting these to approximate L Ca /L bol measurements, we also provide constraints on the connection between rotation and magnetic activity. Measurable rotation is a sufficient, but not necessary condition for activity in our sample: all the detectable rotators show strong Ca II emission, but so too do a small number of non-rotating stars, which we presume may lie at high inclination angles relative to our line of sight. Our data are consistent with a 'saturation-type' rotation-activity relationship, with activity roughly independent of rotation above a threshold velocity of less than 6 km s -1 . We also find weak evidence for a 'gap' in L Ca /L bol between a highly active population of stars, which typically are detected as rotators, and another much less active group.

  14. Drag and lift forces between a rotating conductive sphere and a cylindrical magnet

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2018-06-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  15. Damping and non-linearity of a levitating magnet in rotation above a superconductor

    Druge, J; Jean, C; Laurent, O; Méasson, M-A; Favero, I

    2014-01-01

    We study the dissipation of moving magnets in levitation above a superconductor. The rotation motion is analyzed using optical tracking techniques. It displays a remarkable regularity together with long damping time up to several hours. The magnetic contribution to the damping is investigated in detail by comparing 14 distinct magnetic configurations and points towards amplitude-dependent dissipation mechanisms. The non-linear dynamics of the mechanical rotation motion is also revealed and described with an effective Duffing model. The magnetic mechanical damping is consistent with measured hysteretic cycles M(H) that are discussed within a modified critical state model. The obtained picture of the coupling of levitating magnets to their environment sheds light on their potential as ultra-low dissipation mechanical oscillators for high precision physics. (paper)

  16. Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet

    Nurge, Mark A.; Youngquist, Robert C.

    2017-01-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  17. Generation of zonal flows in rotating fluids and magnetized plasmas

    Juul Rasmussen, J.; Garcia, O.E.; Naulin, V.

    2006-01-01

    The spontaneous generation of large-scale flows by the rectification of small-scale turbulent fluctuations is of great importance both in geophysical flows and in magnetically confined plasmas. These flows regulate the turbulence and may set up effective transport barriers. In the present....... The analogy to large-scale flow generation in drift-wave turbulence dynamics in magnetized plasma is briefly discussed....

  18. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  19. Power system stabilization by superconducting magnetic energystorage connected to rotating exciter

    Mitani, Yasunori; Tsuji, K

    1993-01-01

    The authors describe a combination of a rotating exciter and a superconducting magnetic energy storage (SMES) system for efficient power system stabilization. A SMES system connected to an exciter rotating with a turbine-rotor shaft is proposed. The exciter is installed exclusively to supply current for the SMES. Since electrical power output from the SMES is converted into a mechanical torque of the generator directly by the exciter, it is expected that power swings of the generator will be ...

  20. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, PB 58051-970 (Brazil)

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  1. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  2. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels

  3. Surface geometry of a rotating black hole in a magnetic field

    Kulkarni, R.; Dadhich, N.

    1986-01-01

    We study the intrinsic geometry of the surface of a rotating black hole in a uniform magnetic field, using a metric discovered by Ernst and Wild. Rotating black holes are analogous to material rotating bodies according to Smarr since black holes also tend to become more oblate on being spun up. Our study shows that the presence of a strong magnetic field ensures that a black hole actually becomes increasingly prolate on being spun up. Studying the intrinsic geometry of the black-hole surface also gives rise to an interesting embedding problem. Smarr shows that a Kerr black hole cannot be globally isometrically embedded in R 3 if its specific angular momentum a exceeds (√3 /2)mapprox.0.866. . .m. We show that in the presence of a magnetic field of strength B, satisfying 2- √3 2 m 2 3 for all values of the angular momentum

  4. Rigid-body rotation of an electron cloud in divergent magnetic fields

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-01-01

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets

  5. Rotation loss characteristics of superconducting magnetic bearings; Chodendo jikijikuju no kaiten sonshitsu tokusei

    Kameno, H.; Miyagawa, Y.; Takahata, R.; Ueyama, H. [Koyo Seiko Co., Ltd., Osaka (Japan)

    1999-11-25

    In order to clarify the rotation loss and levitation force reduction characteristics of two kinds of radial and axial-type superconducting magnetic bearings (SMB) consisting of a ring-shaped YBCO and a permanent magnet composite, we measured rotation losses and levitation forces of each SMB with a new rotation-loss measuring device using active magnetic bearings. The rotation loss of the SMB increased with increased initial load of the SMB. The levitation force of the SMB decreased remarkably just after activating the initial load to the SMB and during acceleration of the rotor suspended by the SMB. The reduction in levitation force was improved by means of applying a pre-load, that means a temporary load, before the initial load against the SMB. But the rotation loss of the SMB was increased as pre-load was increased. When the YBCO was cooled down from 77 to 66 K, the rotation loss of the SMB decreased as the temperature of the SC decreased. (author)

  6. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields

    Vanderbemden, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Hong, Z [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Coombs, T A [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ausloos, M [SUPRATECS and Department of Physics B5, Sart-Tilman, B-4000 Liege (Belgium); Babu, N Hari [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cardwell, D A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Campbell, A M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2007-09-15

    Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample.

  7. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields

    Vanderbemden, P; Hong, Z; Coombs, T A; Ausloos, M; Babu, N Hari; Cardwell, D A; Campbell, A M

    2007-01-01

    Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample

  8. Differential detection for measurements of Faraday rotation by means of ac magnetic fields

    Valev, V K; Wouters, J; Verbiest, T

    2008-01-01

    We demonstrate that by using a combination of a Wollaston prism and two photodiodes the accuracy in the measurements of Faraday rotation with ac magnetic fields can be greatly improved. Our experiments were performed on microscope cover glass plates with thicknesses between 0.13 and 0.16 mm. We show that our setup is capable of distinguishing between the Faraday rotation signals of glass plates having a difference in thickness of a few micrometers, corresponding to Faraday rotations of hundreds of microdegrees per Tesla only

  9. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    Frisch, J; Decker, V; Hendrickson, L; Markiewicz, T W; Partridge, R; Seryi, Andrei

    2004-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  10. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; SLAC

    2006-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system

  11. Magnetic rotational hysteresis study on spherical 85-160 nm Fe3O4 particles

    Schmidbauer, E.

    1988-05-01

    Rotational hysteresis losses Wr were determined as a function of magnetic field H for dispensed spherical Fe3O4 particles of mean grain sizes 85 nm, 127 nm and 162 nm between 78 K and 294 K. The observed Wr-H curves are compared with theoretical curves for single domain particles. The analysed particles reveal centers of high magnetic anisotropy. Such centers can be of importance during the generation of a thermoremanent magnetization, as they may be the origin of enhanced magnetic stability.

  12. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  13. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    Hegna, C. C. [Departments of Engineering Physics and Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  14. CALCULATING ROTATING HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC WAVES TO UNDERSTAND MAGNETIC EFFECTS ON DYNAMICAL TIDES

    Wei, Xing, E-mail: xing.wei@sjtu.edu.cn [Institute of Natural Sciences and Department of Physics and Astronomy, Shanghai Jiao Tong University (China); Princeton University Observatory, Princeton, NJ 08544 (United States)

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.

  15. Jeans instability of rotating magnetized quantum plasma: Influence of radiation

    Joshi, H., E-mail: hjoshi8525@yahoo.com [Department of Physics, Mewar University, Chittorgarh (Raj.) India (India); Pensia, R. K. [Department of Physics, Govt. Girls College, Neemuch (M.P.) India (India)

    2015-07-31

    The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.

  16. Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by Half-Filled One Dimensional Band

    Du, Yongping; Liu, Huimei; Xu, Bo; Sheng, Li; Yin, Jiang; Duan, Chun-Gang; Wan, Xiangang

    2015-01-01

    Phosphorene, as a novel two-dimensional material, has attracted a great interest due to its novel electronic structure. The pursuit of controlled magnetism in Phosphorene in particular has been persisting goal in this area. In this paper, an antiferromagnetic insulating state has been found in the zigzag phosphorene nanoribbons (ZPNRs) from the comprehensive density functional theory calculations. Comparing with other one-dimensional systems, the magnetism in ZPNRs display several surprising characteristics: (i) the magnetic moments are antiparallel arranged at each zigzag edge; (ii) the magnetism is quite stable in energy (about 29 meV/magnetic-ion) and the band gap is big (about 0.7 eV); (iii) the electronic and magnetic properties is almost independent on the width of nanoribbons; (iv) a moderate compressive strain will induce a magnetic to nonmagnetic as well as semiconductor to metal transition. All of these phenomena arise naturally due to one unique mechanism, namely the electronic instability induced by the half-filled one-dimensional bands which cross the Fermi level at around π/2a. The unusual electronic and magnetic properties in ZPNRs endow them possible potential for the applications in nanoelectronic devices. PMID:25747727

  17. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    Köster, Oliver, E-mail: oliver.koester@cern.ch; Fiscarelli, Lucio, E-mail: lucio.fiscarelli@cern.ch; Russenschuck, Stephan, E-mail: stephan.russenschuck@cern.ch

    2016-05-11

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  18. Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio

    Aliev, A.N.; Frolov, Valeri P.

    2004-01-01

    In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3

  19. Study on rotational bands in odd-odd nuclei 102,l04Nb by using PSM

    Dong Yongsheng; Hu Wentao; Feng Youliang; Wang Jinbao; Yu Shaoying; Shen Caiwan

    2012-01-01

    The Projected Shell Model (PSM) is used to study the low energy scheme of the neutron-rich normal-deformed isotopes of odd-odd nuclei 102,104 Nb. The quasiparticle configuration is assigned. The theoretical calculations of the energy band of 102,104 Nb could well reproduce the experimental data. It is shown that PSM is a valid method for studying the low energy scheme of heavy nuclei. (authors)

  20. The magnetic early B-type stars I: magnetometry and rotation

    Shultz, M. E.; Wade, G. A.; Rivinius, Th; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; MiMeS Collaboration; BinaMIcS Collaboration

    2018-04-01

    The rotational and magnetic properties of many magnetic hot stars are poorly characterized, therefore the Magnetism in Massive Stars and Binarity and Magnetic Interactions in various classes of Stars collaborations have collected extensive high-dispersion spectropolarimetric data sets of these targets. We present longitudinal magnetic field measurements for 52 early B-type stars (B5-B0), with which we attempt to determine their rotational periods Prot. Supplemented with high-resolution spectroscopy, low-resolution Dominion Astrophysical Observatory circular spectropolarimetry, and archival Hipparcos photometry, we determined Prot for 10 stars, leaving only five stars for which Prot could not be determined. Rotational ephemerides for 14 stars were refined via comparison of new to historical magnetic measurements. The distribution of Prot is very similar to that observed for the cooler Ap/Bp stars. We also measured v sin i and vmac for all stars. Comparison to non-magnetic stars shows that v sin i is much lower for magnetic stars, an expected consequence of magnetic braking. We also find evidence that vmac is lower for magnetic stars. Least-squares deconvolution profiles extracted using single-element masks revealed widespread, systematic discrepancies in between different elements: this effect is apparent only for chemically peculiar stars, suggesting it is a consequence of chemical spots. Sinusoidal fits to H line measurements (which should be minimally affected by chemical spots), yielded evidence of surface magnetic fields more complex than simple dipoles in six stars for which this has not previously been reported; however, in all six cases, the second- and third-order amplitudes are small relative to the first-order (dipolar) amplitudes.

  1. White-dwarf rotational equilibria in magnetic cataclysmic variable stars

    Warner, B. (Cape Town Univ. (South Africa). Dept. of Astronomy Australian National Univ., Canberra (Australia). Dept. of Mathematics); Wickramasinghe, D.T. (Australian National Univ., Canberra (Australia). Dept. of Mathematics)

    1991-02-01

    The magnetic cataclysmic variable stars (polars, intermediate polars and DQ Her stars) are grouped about three lines in the orbital period-spin period diagram. This segregation is shown to be the consequence of competition between braking and accretion torques when combined with the effects of cyclical variations in rate of mass transfer. (author).

  2. Magnetic layers and neutral points near a rotating black hole

    Karas, Vladimír; Kopáček, Ondřej

    2009-01-01

    Roč. 26, č. 2 (2009), s. 1-9 ISSN 0264-9381 R&D Projects: GA ČR GA205/07/0052 Institutional research plan: CEZ:AV0Z10030501 Keywords : black holes * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.029, year: 2009

  3. The behavior of the magnetic lines of a rotating system

    Evangelidis, E.

    1977-01-01

    The behaviour of a magnetic line has been studied under continuous injection of plasma. Under increasing density the existence of three zones of possible concentration has been shown. For values greater than a critical value D=0, with D suitably defined, one zone disappears, whilst the other two degenerate into one. (Auth.)

  4. Magnetic resonance described in the excitation dependent rotating frame of reference.

    Tahayori, Bahman; Johnston, Leigh A; Mareels, Iven M Y; Farrell, Peter M

    2008-01-01

    An excitation dependent rotating frame of reference to observe the magnetic resonance phenomenon is introduced in this paper that, to the best of our knowledge, has not been used previously in the nuclear magnetic resonance context. The mathematical framework for this new rotating frame of reference is presented based on time scaling the Bloch equation after transformation to the classical rotating frame of reference whose transverse plane is rotating at the Larmor frequency. To this end, the Bloch equation is rewritten in terms of a magnetisation vector observed from the excitation dependent rotating frame of reference. The resultant Bloch equation is referred to as the time scaled Bloch equation. In the excitation dependent rotating frame of reference whose coordinates are rotating at the instantaneous Rabi frequency the observed magnetisation vector is a much slower signal than the true magnetisation in the rotating frame of reference. As a result the ordinary differential equation solvers have the ability to solve the time scaled version of the Bloch equation with a larger step size resulting in a smaller number of samples for solving the equation to a desired level of accuracy. The simulation results for different types of excitation are presented in this paper. This method may be used in true Bloch simulators in order to reduce the simulation time or increase the accuracy of the numerical solution. Moreover, the time scaled Bloch equation may be employed to determine the optimal excitation pattern in magnetic resonance imaging as well as designing pulses with better slice selectivity which is an active area of research in this field.

  5. Temporal Variation of the Rotation of the Solar Mean Magnetic Field

    Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-04-01

    Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.

  6. MAGNETIC RESONANCE IMAGING EVALUATION OF ROTATOR CUFF IMPINGEMENT

    Chandrakanth K. S

    2017-06-01

    Full Text Available BACKGROUND Shoulder pain is a common clinical problem. Impingement syndrome of the shoulder is believed to be the most common cause of shoulder pain. The term ‘impingement syndrome’ was first used by Neer to describe a condition of shoulder pain associated with chronic bursitis and partial thickness tear of Rotator Cuff (RC. The incidence of Rotator Cuff (RC tear is estimated to be about 20.7% in the general population. This study is intended to analyse various extrinsic and intrinsic causes of shoulder impingement. MATERIALS AND METHODS 110 consecutive patients referred for MRI with clinical suspicion of shoulder impingement were prospectively studied. All the patients were evaluated for Rotator Cuff (RC degeneration and various extrinsic factors that lead to degeneration like acromial shape, down-sloping acromion, Acromioclavicular (AC joint degeneration and acromial enthesophyte. Intrinsic factors like degeneration and its correlation with age of the patients were evaluated. RESULTS Of the total 110 patients, 19 (17.3% patients had FT RC tear and 31 (28.2% had PT (both bursal and articular surface tears. There was no statistically significant correlation (p=0.76 between acromion types and RC tear. Down-sloping acromion and enthesophytes had statistically significant association with RC tear (p=0.008 and 0.008, respectively. Statistically significant (0.008 correlation between the severity of AC joint degeneration and RC tears was noted. AC joint degeneration and RC pathologies also showed a correlation with the age of the patients with p values of <0.001 and 0.001, respectively. CONCLUSION No statistically significant correlation between RC pathologies with hooked acromion was found, that makes the role played by hooked acromion in FT RC tear questionable. AC joint degeneration association with RC tear is due to the association of both RC tear and AC joint degeneration with age of the patient. Down-sloping acromion, AC joint degeneration

  7. X-ray tube incorporating a rotating anode with magnetic bearings

    1979-01-01

    This patent describes an X-ray tube incorporating a rotating anode. The rotor consists of a single, soft-magnetic dish which is fixed on the axis and which seals the magnetic yoke of the stator. Looking in the direction of the axis, one side is equipped with two circular pole surfaces, one at least of which is provided with circular pole-shoes, separated from one another by concentric grooves. (T.P.)

  8. Local instabilities in magnetized rotational flows: A short-wavelength approach

    Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide

    2014-01-01

    We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...

  9. A Rigidly Rotating Magnetosphere Model for the Circumstellar Environments of Magnetic OB Stars

    Townsend, R.; Owocki, S.; Groote, D.

    2005-11-01

    We report on a new model for the circumstellar environments of rotating, magnetic hot stars. This model predicts the channeling of wind plasma into a corotating magnetosphere, where -- supported against gravity by centrifugal forces -- it can steadily accumulate over time. We apply the model to the B2p star σ Ori E, demonstrating that it can simultaneously reproduce the spectroscopic, photometric and magnetic variations exhibited by the star.

  10. Design and development of permanent magnet based focusing lens for J-Band Klystron

    Singh, Kumud; Itteera, Janvin; Ukarde, Priti; Malhotra, Sanjay; Taly, Y.K., E-mail: kumuds@barc.gov.in [Control Instrumentation Division, Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhay, Ayan; Meena, Rakesh; Rawat, Vikram; Joshi, L.M [Microwave Tubes Division, Central Electronics Engineering Research Institute, Pilani (India)

    2014-07-01

    Applying permanent magnet technology to beam focusing in klystrons can reduce their power consumption and increase their reliability of operation. Electromagnetic design of the beam focusing elements, for high frequency travelling wave tubes, is very critical. The magnitude and profile of the magnetic field need to match the optics requirement from beam dynamics studies. The rise of the field from cathode gun region to the uniform field region (RF section) is important as the desired transition from zero to peak axial field must occur over a short axial distance. Confined flow regime is an optimum choice to minimize beam scalloping but demands an axial magnetic field greater than 2 - 3 times the Brillouin flow field. This necessitates optimization in the magnet design achieve high magnetic field within given spatial constraints. Electromagnetic design and simulations were done using 3D Finite element method (FEM) analysis software. A permanent magnet based focusing lens for a miniature J-Band klystron has been designed and developed at Control Instrumentation Division, BARC. This paper presents the design, simulation studies, beam transmission and RF tests results for J Band klystron with permanent magnet focusing lens. (author)

  11. Magnetic oscillations and quasiparticle band structure in the mixed state of type-II superconductors

    Norman, M.R.; MacDonald, A.H.; Akera, H.

    1995-01-01

    We consider magnetic oscillations due to Landau quantization in the mixed state of type-II superconductors. Our work is based on a previously developed formalism which allows the mean-field gap equations of the Abrikosov state to be conveniently solved in a Landau-level representation. We find that the quasiparticle band structure changes qualitatively when the pairing self-energy becomes comparable to the Landau-level separation. For small pairing self-energies, Landau-level mixing due to the superconducting order is weak and magnetic oscillations survive in the superconducting state although they are damped. We find that the width of the quasiparticle Landau levels in this regime varies approximately as Δ 0 n μ -1/4 where Δ 0 is proportional to the magnitude of the order parameter and n μ is the Landau-level index at the Fermi energy. For larger pairing self-energies, the lowest energy quasiparticle bands occur in pairs which are nearly equally spaced from each other and evolve with weakening magnetic field toward the bound states of an isolated vortex core. These bands have a weak magnetic field dependence and magnetic oscillations vanish rapidly in this regime. We discuss recent observations of the de Haas--van Alphen effect in the mixed state of several type-II superconductors in light of our results

  12. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.

  13. On averaging the Kubo-Hall conductivity of magnetic Bloch bands leading to Chern numbers

    Riess, J.

    1997-01-01

    The authors re-examine the topological approach to the integer quantum Hall effect in its original form where an average of the Kubo-Hall conductivity of a magnetic Bloch band has been considered. For the precise definition of this average it is crucial to make a sharp distinction between the discrete Bloch wave numbers k 1 , k 2 and the two continuous integration parameters α 1 , α 2 . The average over the parameter domain 0 ≤ α j 1 , k 2 . They show how this can be transformed into a single integral over the continuous magnetic Brillouin zone 0 ≤ α j j , j = 1, 2, n j = number of unit cells in j-direction, keeping k 1 , k 2 fixed. This average prescription for the Hall conductivity of a magnetic Bloch band is exactly the same as the one used for a many-body system in the presence of disorder

  14. Magnetic Chern bands and triplon Hall effect in an extended Shastry-Sutherland model

    Malki, M.; Schmidt, K. P.

    2017-05-01

    We study topological properties of one-triplon bands in an extended Shastry-Sutherland model relevant for the frustrated quantum magnet SrCu2(BO3)2 . To this end perturbative continuous unitary transformations are applied about the isolated dimer limit allowing us to calculate the one-triplon dispersion up to high order in various couplings including intra- and interdimer Dzyaloshinskii-Moriya interactions and a general uniform magnetic field. We determine the Berry curvature and the Chern number of the different one-triplon bands. We demonstrate the occurrence of Chern numbers ±1 and ±2 for the case that two components of the magnetic field are finite. Finally, we also calculate the triplon Hall effect arising at finite temperatures.

  15. Searching for resonances in the helicity conversion of neutrinos interacting with rotating magnetic fields

    Bellandi, Jose; Guzzo, Marcelo M.; Hollanda, Pedro C. de

    1997-01-01

    Assuming that neutrino magnetic moment is not null, we study the evolution of neutrinos submitted to rotating magnetic fields, and the way the evolution can convert 'left' helicity neutrinos (actives) into 'right' neutrinos (sterile). We use the fact that the 'right' neutrinos do not interact with the detectors to obtain information on the neutrino magnetic field magnitude. For solving the neutrino evolution equation, the expansion method was combined with steady phase approximation used for the expansion integrals solution. The possibility of 'left' conversion into 'right' neutrinos has been calculated as function of the evolution matrix parameters (neutrino magnetic moment, electron density of the medium, the magnetic field magnitude and phase, etc). We made an attempt to obtain fitting of the parameter conditions in order to occur resonances in the neutrino transition probability, and therefore to obtain information on the limits for neutrino magnetic moments from the controlled beam helicity

  16. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    Farengo, R.; Arista, N.R.; Lifschitz, A.F.; Clemente, R.A.

    2003-01-01

    The use of neutral beams (NB) for current drive and heating in spheromaks, the relaxed states of flux core spheromaks (FCS) sustained by helicity injection and the effect of ion dynamics on rotating magnetic field (RMF) current drive in spherical tokamaks (ST) are studied. (author)

  17. Toroidal rotation braking with n = 1 magnetic perturbation field on JET

    Sun, Y; Liang, Y; Koslowski, H R

    2010-01-01

    A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field on the JET tokamak. Calculation results from the momentum transport analysis show that the torque induced by the n = 1 perturbation field has a global profile. The maximal value...

  18. The Use of Faraday Rotation Sign Maps as a Diagnostic for Helical Jet Magnetic Fields

    Reichstein, Andrea; Gabuzda, Denise

    2012-01-01

    We present maps of the sign of the Faraday Rotation measure obtained from multi-frequency radio observations made with the Very Long Baseline Array (VLBA). The Active Galactic Nuclei (AGN) considered have B-field structures with a central 'spine' of B-field orthogonal to the jet and/or a longitudinal B-field near one or both edges of the jet. This structure can plausibly be interpreted as being caused by a helical/toroidal jet magnetic field. Faraday Rotation is a rotation of the plane of polarization that occurs when the polarized radiation passes through a magnetized plasma. The sign of the RM is determined by the direction of the line-of-sight B-field in the region causing the Faraday Rotation, and an ordered toroidal or helical magnetic field associated with an AGN jet will thus produce a distinctive bilateral distribution of the RMs across the jet. We present and discuss RM-sign maps and their possible interpretation regarding the magnetic field geometries for several sources.

  19. Rotating structures in low temperature magnetized plasmas - Insight from particle simulations

    Jean-Pierre eBoeuf

    2014-12-01

    Full Text Available The EXB configuration of various low temperature plasma devices is often responsible for the formation of rotating structures and instabilities leading to anomalous electron transport across the magnetic field. In these devices, electrons are strongly magnetized while ions are weakly or not magnetized and this leads to specific physical phenomena that are not present in fusion plasmas where both electrons and ions are strongly magnetized. In this paper we describe basic phenomena involving rotating plasma structures in simple configurations of low temperature EXB plasma devices on the basis of PIC-MCC (Particle-In-Cell Monte Carlo Collisions simulations. We focus on three examples: rotating electron vortices and rotating spokes in cylindrical magnetrons, and azimuthal electron-cyclotron drift instability in Hall thrusters. The simulations are not intended to give definite answers to the many physics issues related to low temperature EXB plasma devices but are used to illustrate and discuss some of the basic questions that need further studies.

  20. Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons

    Wang, J; Chan, K S

    2010-01-01

    We study electron spin resonance in zigzag graphene nanoribbons by applying a rotating magnetic field on the system without any bias. By using the nonequilibrium Green's function technique, the spin-resolved pumped current is explicitly derived in a rotating reference frame. The pumped spin current density increases with the system size and the intensity of the transverse rotating magnetic field. For graphene nanoribbons with an even number of zigzag chains, there is a nonzero pumped charge current in addition to the pumped spin current owing to the broken spatial inversion symmetry of the system, but its magnitude is much smaller than the spin current. The short-ranged static disorder from either impurities or defects in the ribbon can depress the spin current greatly due to the localization effect, whereas the long-ranged disorder from charge impurities can avoid inter-valley scattering so that the spin current can survive in the strong disorder for the single-energy mode.

  1. Inelastic neutron excitation of the ground state rotational band of 238U

    Guenther, P.; Smith, A.

    1975-01-01

    Cross sections for the neutron excitation of the 2+(45 keV), 4+(148 keV) and 6+(308 keV) states in 238 U were measured to incident energies of approximately 3.0 MeV. The experimental resolution was sufficient to resolve these components throughout the measured energy range. Particular attention was given to energies near threshold and in the few MeV range where direct reaction contributions were appreciable. The experimental results were compared with theoretical estimates based upon statistical and coupled-channel models deduced from comprehensive studies of neutron scattering from heavy-rotational-deformed nuclei. An evaluated inelastic scattering data set was derived from the present experimental and calculational results and previously reported experimental values and compared with respective values from the ENDF-IV file. 4 figures

  2. THE ROLE OF TURBULENT MAGNETIC RECONNECTION IN THE FORMATION OF ROTATIONALLY SUPPORTED PROTOSTELLAR DISKS

    Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)

    2012-03-01

    The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star

  3. Faraday rotation, stochastic magnetic fields and CMB maps

    Giovannini, Massimo

    2008-01-01

    The high- and low-frequency descriptions of the pre-decoupling plasma are deduced from the Vlasov-Landau treatment generalized to curved space-times and in the presence of the relativistic fluctuations of the geometry. It is demonstrated that the interplay between one-fluid and two-fluid treatments is mandatory for a complete and reliable calculation of the polarization observables. The Einstein-Boltzmann hierarchy is generalized to handle the dispersive propagation of the electromagnetic disturbances in the pre-decoupling plasma. Given the improved physical and numerical framework, the polarization observables are computed within the magnetized $\\Lambda$CDM paradigm (m$\\Lambda$CDM). In particular, the Faraday-induced B-mode is consistently estimated by taking into account the effects of the magnetic fields on the initial conditions of the Boltzmann hierarchy, on the dynamical equations and on the dispersion relations. The complete calculations of the angular power spectra constitutes the first step for the d...

  4. An analysis of the rotational, fine and hyperfine effects in the (0, 0) band of the A7Π- X7Σ + transition of manganese monohydride, MnH

    Gengler, Jamie J.; Steimle, Timothy C.; Harrison, Jeremy J.; Brown, John M.

    2007-02-01

    High-resolution (±0.003 cm -1), laser induced fluorescence (LIF) spectra of a supersonic molecular beam sample of manganese monohydride, MnH, have been recorded in the 17500-17800 cm -1 region of the (0, 0) band of the A7Π- X7Σ + system. The low- N branch features were modeled successfully by inclusion of the magnetic hyperfine mixings of spin components within a given low- N rotational level using a traditional 'effective' Hamiltonian approach. An improved set of spectroscopic constants has been extracted and compared with those from previous analyses. The optimum optical features for future optical Stark and Zeeman measurements are identified.

  5. Reentrant high-magnetic field superconductivity in a clean two-dimensional superconductor with shallow band

    Koshelev, Alexei E.; Song, Kok Wee

    We investigate the superconducting instability in the magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to a small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature Tc 2 (H) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to full occupancy of the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level. As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the chemical potential matches the Landau levels. These regions may be disconnected from the main low-field superconducting region. The specific behavior depends on the relative strength of the intraband and interband coupling constants and the effect is most pronounced when the interband coupling dominates. The Zeeman spin splitting reduces sizes of the reentrant regions and changes their location in the parameter space. The predicted behavior may realize in the gate-tuned FeSe monolayer. This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Science, under Award No. DEAC0298CH1088.

  6. Evaluation of post-exercise magnetic resonance images of the rotator cuff

    Cahoy, P.M.; Orwin, J.F.; Tuite, M.J.

    1996-01-01

    Objective. To examine the effect of strenuous exercise on the magnetic resonance imaging (MRI) characteristics of the rotator cuff tendon. A second objective was to define an optimal time to image the rotator cuff and possibly eliminate exercise-induced false positives. Design and patients. Five male subjects from 24 to 38 years old with normal rotator cuffs by history, physical examination, and screening MRI underwent a rotator cuff exercise session on the Biodex System 2 (Biodex, Shirley, New York). The exercise sessions were followed by sequential MRI scans of the exercised shoulder. These were performed immediately and at 8 h and 24 h after exercise. Results and conclusions. The rotator cuff tendon and subacromial-subdeltoid bursal signal remained unchanged from the pre-exercise through the 24-h post-exercise scans. The rotator cuff muscle signal was increased in five of five subjects on the immediate post-exercise fat-suppressed T2-weighted images. This signal returned to baseline by the 8-h scan. Positive findings of rotator cuff pathology on MRI after strenuous athletic activity should not be discounted as normal exercise-induced changes. Also, diagnostic MRI scanning may take place after a practice session without an increased risk of false positives. (orig.). With 1 fig

  7. Evaluation of post-exercise magnetic resonance images of the rotator cuff

    Cahoy, P M [Division of Orthopedic Surgery G5/358, University of Wisconsin Hospital and Clinics, Madison, WI (United States); Orwin, J F [Division of Orthopedic Surgery G5/358, University of Wisconsin Hospital and Clinics, Madison, WI (United States); Tuite, M J [Department of Radiology, University of Wisconsin Hospital and Clinics, Madison, WI (United States)

    1996-11-01

    Objective. To examine the effect of strenuous exercise on the magnetic resonance imaging (MRI) characteristics of the rotator cuff tendon. A second objective was to define an optimal time to image the rotator cuff and possibly eliminate exercise-induced false positives. Design and patients. Five male subjects from 24 to 38 years old with normal rotator cuffs by history, physical examination, and screening MRI underwent a rotator cuff exercise session on the Biodex System 2 (Biodex, Shirley, New York). The exercise sessions were followed by sequential MRI scans of the exercised shoulder. These were performed immediately and at 8 h and 24 h after exercise. Results and conclusions. The rotator cuff tendon and subacromial-subdeltoid bursal signal remained unchanged from the pre-exercise through the 24-h post-exercise scans. The rotator cuff muscle signal was increased in five of five subjects on the immediate post-exercise fat-suppressed T2-weighted images. This signal returned to baseline by the 8-h scan. Positive findings of rotator cuff pathology on MRI after strenuous athletic activity should not be discounted as normal exercise-induced changes. Also, diagnostic MRI scanning may take place after a practice session without an increased risk of false positives. (orig.). With 1 fig.

  8. Application of bonded NdFeB magnet for C-Band circulator component

    Kristiantoro, T.; Idayanti, N.; Sudrajat, N.; Septiani, A.; Dedi

    2016-11-01

    In this paper bonded NdFeB permanent magnets of the crashed-ribbon type were made as an alternative for circulator magnet to improve their magnetic performance. The fabrication process is also easier than the sintered NdFeB because there had no shrinkage of product (such as sintered barium ferrite magnet), with the others advantages as follows; large freeness of product shapes, high precision of dimension and good corrosion resistance. The dimension of the samples was measured to calculate its bulk densities and the magnetic properties were characterized by Permagraph to obtain values such as; Remanence induction (Br) in kG, Coercivity value (Hcj) in kOe, the Maximum energy product (BH max) in MGOe. Whereas the surface magnetic field strength (B) was observed by the Gauss-meter. The bonded NdFeB permanent magnets revealed 6.39 kG of Br, 6.974 kOe of Hcj and 7.13 MGOe of BHmax. The circulator performance was measured using Vector Network Analyzer (VNA). The optimum values of the circulator measurement at a frequency of 5 GHz show a VSWR value of 1.062 and insertion loss of -0.463 dB. The bonded magnet could be used as component of permanent magnets on the circulator that working on C-Band at a frequency range of 4 GHz - 8 GHz.

  9. Electron transport in the plasma edge with rotating resonant magnetic perturbations at the TEXTOR tokamak

    Stoschus, Henning

    2011-01-01

    Small three-dimensional (3D) magnetic perturbations can be used as a tool to control the edge plasma parameters in magnetically confined plasmas in high confinement mode (''H-mode'') to suppress edge instabilities inherent to this regime, the Edge Localized Modes (ELMs). In this work, the impact of rotating 3D resonant magnetic perturbation (RMP) fields on the edge plasma structure characterized by electron density and temperature fields is investigated. We study a low confinement (L-mode) edge plasma (r/a>0.9) with high resistivity (edge electron collisionality ν * e >4) at the TEXTOR tokamak. The plasma structure in the plasma edge is measured by a set of high resolution diagnostics: a fast CCD camera (Δt=20 μs) is set up in order to visualize the plasma structure in terms of electron density variations. A supersonic helium beam diagnostic is established as standard diagnostic at TEXTOR to measure electron density n e and temperature T e with high spatial (Δr=2 mm) and temporal resolution (Δt=20 μs). The measured plasma structure is compared to modeling results from the fluid plasma and kinetic neutral transport code EMC3-EIRENE. A sequence of five new observations is discussed: (1) Imaging of electron density variations in the plasma edge shows that a fast rotating RMP field imposes an edge plasma structure, which rotates with the external RMP rotation frequency of vertical stroke ν RMP vertical stroke =1 kHz. (2) Measurements of the electron density and temperature provide strong experimental evidence that in the far edge a rotating 3D scrape-off layer (SOL) exists with helical exhaust channels to the plasma wall components. (3) Radially inward, the plasma structure at the next rational flux surface is found to depend on the relative rotation between external RMP field and intrinsic plasma rotation. For low relative rotation the plasma structure is dominated by a particle and energy loss along open magnetic field lines to the wall components. For high

  10. Electron transport in the plasma edge with rotating resonant magnetic perturbations at the TEXTOR tokamak

    Stoschus, Henning

    2011-10-13

    Small three-dimensional (3D) magnetic perturbations can be used as a tool to control the edge plasma parameters in magnetically confined plasmas in high confinement mode (''H-mode'') to suppress edge instabilities inherent to this regime, the Edge Localized Modes (ELMs). In this work, the impact of rotating 3D resonant magnetic perturbation (RMP) fields on the edge plasma structure characterized by electron density and temperature fields is investigated. We study a low confinement (L-mode) edge plasma (r/a>0.9) with high resistivity (edge electron collisionality {nu}{sup *}{sub e}>4) at the TEXTOR tokamak. The plasma structure in the plasma edge is measured by a set of high resolution diagnostics: a fast CCD camera ({delta}t=20 {mu}s) is set up in order to visualize the plasma structure in terms of electron density variations. A supersonic helium beam diagnostic is established as standard diagnostic at TEXTOR to measure electron density n{sub e} and temperature T{sub e} with high spatial ({delta}r=2 mm) and temporal resolution ({delta}t=20 {mu}s). The measured plasma structure is compared to modeling results from the fluid plasma and kinetic neutral transport code EMC3-EIRENE. A sequence of five new observations is discussed: (1) Imaging of electron density variations in the plasma edge shows that a fast rotating RMP field imposes an edge plasma structure, which rotates with the external RMP rotation frequency of vertical stroke {nu}{sub RMP} vertical stroke =1 kHz. (2) Measurements of the electron density and temperature provide strong experimental evidence that in the far edge a rotating 3D scrape-off layer (SOL) exists with helical exhaust channels to the plasma wall components. (3) Radially inward, the plasma structure at the next rational flux surface is found to depend on the relative rotation between external RMP field and intrinsic plasma rotation. For low relative rotation the plasma structure is dominated by a particle and energy loss

  11. Combining rotating-coil measurements of large-aperture accelerator magnets

    AUTHOR|(CDS)2089510

    2016-10-05

    The rotating coil is a widely used tool to measure the magnetic field and the field errors in accelerator magnets. The coil has a length that exceeds the entire magnetic field along the longitudinal dimension of the magnet and gives therefore a two-dimensional representation of the integrated field. Having a very good precision, the rotating coil lacks in versatility. The fixed dimensions make it impractical and inapplicable in situations, when the radial coil dimension is much smaller than the aperture or when the aperture is only little covered by the coil. That being the case for rectangular apertures with large aspect ratio, where a basic measurement by the rotating coil describes the field only in a small area of the magnet. A combination of several measurements at different positions is the topic of this work. Very important for a combination is the error distribution on the measured field harmonics. To preserve the good precision of the higher-order harmonics, the combination must not rely on the main ...

  12. Topological spin excitations induced by an external magnetic field coupled to a surface with rotational symmetry

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2013-01-01

    We study the Heisenberg model in an external magnetic field on curved surfaces with rotational symmetry. The Euler-Lagrange static equations, derived from the Hamiltonian, lead to the inhomogeneous double sine-Gordon equation. Nonetheless, if the magnetic field is coupled to the metric elements of the surface, and consequently to its curvature, the homogeneous double sine-Gordon equation emerges and a 2π-soliton solution is obtained. In order to satisfy the self-dual equations, surface deformations are predicted to appear at the sector where the spin direction is opposite to the magnetic field. On the basis of the model, we find the characteristic length of the 2π-soliton for three specific rotationally symmetric surfaces: the cylinder, the catenoid, and the hyperboloid. On finite surfaces, such as the sphere, torus, and barrels, fractional 2π-solitons are predicted to appear. (author)

  13. SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS

    Walborn, Nolan R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Morrell, Nidia I. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Nazé, Yaël [GAPHE, Département AGO, Université de Liège, Allée du 6 Août 19c, Bat. B5C, B-4000-Liège (Belgium); Wade, Gregg A. [Department of Physics, Royal Military College of Canada, P.O. Box 17000 Station Forces, Kingston, ON, Canada K7K 7B4 (Canada); Bagnulo, Stefano [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Barbá, Rodolfo H. [Departamento de Física y Astronomía, Universidad de La Serena, Cisternas 1200 Norte, La Serena (Chile); Apellániz, Jesús Maíz [Centro de Astrobiología, CSIC-INTA, Campus ESAC, Apartado Postal 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Howarth, Ian D. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Evans, Christopher J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Sota, Alfredo, E-mail: walborn@stsci.edu, E-mail: nmorrell@lco.cl, E-mail: naze@astro.ulg.ac.be, E-mail: wade-g@rmc.ca, E-mail: sba@arm.ac.uk, E-mail: rbarba@dfuls.cl, E-mail: jmaiz@cab.inta-csic.es, E-mail: idh@star.ucl.ac.uk [Instituto de Astrofísica de Andalucía—CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2015-10-15

    Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circular spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses.

  14. SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS

    Walborn, Nolan R.; Morrell, Nidia I.; Nazé, Yaël; Wade, Gregg A.; Bagnulo, Stefano; Barbá, Rodolfo H.; Apellániz, Jesús Maíz; Howarth, Ian D.; Evans, Christopher J.; Sota, Alfredo

    2015-01-01

    Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circular spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses

  15. Dielectric tensor elements for the description of waves in rotating inhomogeneous magnetized plasma spheroids

    Abdoli-Arani, A.; Ramezani-Arani, R.

    2012-11-01

    The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.

  16. Design of Rotating Moving-Magnet-Type VCM Actuator for Miniaturized Mobile Robot

    Shin, Bu Hyun [Hanbat Nat' l Univ., Daejeon (Korea, Republic of); Lee, Seungyop [Sogana Univ., Seoul (Korea, Republic of); Lee, Kyungmin [Korean Intellectual Property Office, Seoul (Korea, Republic of); Oh, Dongho [Chungnam Nat' l Univ., Daejeon (Korea, Republic of)

    2013-12-15

    A voice coil actuator with a rotating moving magnet has been developed for a miniaturized mobile robot. The actuator has simple structure comprising a magnet, a coil, and a yoke. Actuator performance is predicted using a linearized theoretical model, and dynamic performance based on the air-gap between the magnet and the coil is predicted using motor constant and restoring constant obtained through finite element simulations. The theoretical model was verified using a prototype with 60 Hz resonance and 80 Hz bandwidth. We found that an input of 1.5 V can make the actuator rotate by 20 .deg. statically. The driving configuration of the proposed actuator can be simplified because of its implementation of open-loop control.

  17. Magnetization rotation or generation of incoherent spin waves? Suggestions for a spin-transfer effect experiment

    Bazaliy, Y. B.; Jones, B. A.

    2002-01-01

    ''Spin-transfer'' torque is created when electric current is passed through metallic ferromagnets and may have interesting applications in spintronics. So far it was experimentally studied in ''collinear'' geometries, where it is difficult to predict whether magnetization will coherently rotate or spin-waves will be generated. Here we propose an easy modification of existing experiment in which the spin-polarization of incoming current will no longer be collinear with magnetization and recalculate the switching behavior of the device. We expect that a better agreement with the magnetization rotation theory will be achieved. That can be an important step in reconciling alternative points of view on the effect of spin-transfer torque

  18. Dynamic Chiral Magnetic Effect and Faraday Rotation in Macroscopically Disordered Helical Metals.

    Ma, J; Pesin, D A

    2017-03-10

    We develop an effective medium theory for electromagnetic wave propagation through gapless nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macroscopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the system parameters, but yields the leading frequency dependence of the polarization rotation and circular dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not expected to be present in single-crystal samples.

  19. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr [Laboratoire AIM Paris-Saclay CEA/DSM—CNRS—Université Paris Diderot, IRFU/DAp CEA Paris-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2017-09-01

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing a seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.

  20. Design and implementation of low profile antenna for dual-band applications using rotated e-shaped conductor-backed plane.

    Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin

    2014-01-01

    A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S11 WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.

  1. EXPERIMENTATION OF THREE PHASE OUTER ROTATING SWITCHED RELUCTANCE MOTOR WITH SOFT MAGNETIC COMPOSITE MATERIALS

    N. C. LENIN

    2017-01-01

    Full Text Available This paper presents the application of Soft Magnetic Composite (SMC material in Outer Rotating Switched Reluctance Motor (ORSRM. The presented stator core of the Switched Reluctance Motor was made of two types of material, the classical laminated silicon steel sheet and the soft magnetic composite material. First, the stator core made of laminated steel has been analysed. The next step is to analyse the identical geometry SRM with the soft magnetic composite material, SOMALOY for its stator core. The comparisons of both cores include the calculated torque and torque ripple, magnetic conditions, simplicity of fabrication and cost. The finite element method has been used to analyse the magnetic conditions and the calculated torque. Finally, tested results shows that SMC is a better choice for SRM in terms of torque ripple and power density.

  2. Controlling the structure of forced convective flow by means of rotating magnetic-field inductors

    Sorkin, M.Z.; Mozgirs, O.Kh.

    1993-01-01

    The forced convective flow generated by a rotating magnetic-field inductor is used in a melt as a means of controlling the transfer of mass and heat in the case of directed crystallization. An obvious advantage in using a rotating field is the generation of azimuthal twisting of the fluid, this providing for an evening out of the crystallization conditions in the azimuthal direction under nonsymmetrical boundary conditions in an actual technological process. From the standpoint of affecting the crystallization processes it would be preferable to use an inductor which would allow alteration of the intensity and of the direction of the meridional flow. Mixing in the form of velocity pulsations generated by the inductor within the melt would be if interest from the standpoint of affecting the crystallization processes, in particular to intensify the crystallization purification. The authors propose the use of a double magnetohydrodynmic rotator which consists of two rotating magnetic-field inductors, separated in altitude, with separate power supplies. The supply of power to the inductors with various current loads allows the generation of a controllable nonuniformity in field distribution and in the azimuthal velocity through the altitude and thus allows control of both the intensity and configuration of the meridional flows. The dual rotator makes it possible to purposefully control the structure of the meridional flows and the pulsation component of velocity and can be recommended for use in processes of directed crystallization as well as in crystallization purification. 4 refs., 3 figs

  3. Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment

    Yongle Mao

    2016-12-01

    Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

  4. A MODEL OF MAGNETIC BRAKING OF SOLAR ROTATION THAT SATISFIES OBSERVATIONAL CONSTRAINTS

    Denissenkov, Pavel A.

    2010-01-01

    The model of magnetic braking of solar rotation considered by Charbonneau and MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.

  5. Superconducting magnets for induction linac phase-rotation in a neutrino factory

    Green, M.A.; Yu, S.

    2001-01-01

    The neutrino factory[1-3] consists of a target section where pions are produced and captured in a solenoidal magnetic field. Pions in a range of energies from 100 Mev to 400 MeV decay into muons in an 18-meter long channel of 1.25 T superconducting solenoids. The warm bore diameter of these solenoids is about 600 mm. The phase rotation section slows down the high-energy muon and speeds up the low energy muons to an average momentum of 200 MeV/c. The phase-rotation channel consists of three induction linac channels with a short cooling section and a magnetic flux reversal section between the first and second induction linacs and a drift space between the second and third induction linacs. The length of the phase rotation channel will be about 320 meters. The superconducting coils in the channel are 0.36 m long with a gap of 0.14 m between the coils. The magnetic induction within the channel will be 1.25. For 260 meters of the 320-meter long channel, the solenoids are inside the induction linac. This paper discusses the design parameters for the superconducting solenoids in the neutrino factory phase-rotation channel

  6. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  7. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-05-18

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  8. Magnetic dichroism in UV photoemission at off-normal emission: Study of the valence bands

    Venus, D.; Kuch, W.; Lin, M.; Schneider, C.M.; Ebert, H.; Kirschner, J.

    1997-01-01

    Magnetic dichroism of angle-resolved UV photoemission from fcc Co/Cu(001) thin films has been measured using linearly p-polarized light, and a coplanar geometry where the light and photoelectron wave vectors are antiparallel, and both are perpendicular to the in-plane sample magnetization. This geometry emphasizes information about state dispersion due to the crystalline symmetry. An orderly dispersion of the features in the magnetic dichroism over a wide range of off-normal angles of electron emission is related in detail to the bulk band structure of fcc Co. The measurements confirm the practical utility of magnetic dichroism experiments as a relatively simple complement to spin-resolved photoemission. copyright 1997 The American Physical Society

  9. Analysis on the Viscous Pumping in a Magnetic Fluid Seal Under a Rotating Load and the Seal Design

    長屋, 幸助; 大沼, 浩身; 佐藤, 淳

    1990-01-01

    This paper discusses effects of viscous pumping in a magnetic fluid seal under a rotating load. The Reynolds equation was presented for the seal based on magnetic fluid mechanics, and the expressions for obtaining pressures in the seal, eccentricities of the rotating shaft due to the viscous pumping and seal pressures were given. Numerical Calculations were carried out for some sample problems, and the effect of magnetic flux densities on the pressure in the seal and the seal pressures were c...

  10. Control strategy for permanent magnet synchronous motor with contra-rotating rotors under unbalanced loads condition

    Cheng, Shuangyin; Luo, Derong; Huang, Shoudao

    2015-01-01

    This study presents an investigation into the control of an axial-flux permanent magnet synchronous machine (PMSM) with contra-rotating rotors fed by a single inverter, which corresponds to two PMSM connected in series. In this study, the mathematic model of the PMSM with contra-rotating rotors...... water vehicle propulsions. The control strategy is implemented on a DSP 28335 processor featured hardware platform and is tested on a 1.2 kW prototype machine. Experimental results validate the correctness of the analysis and control strategy....

  11. Design of band pass filter in a modulated magnetic graphene superlattice

    Lu, Wei-Tao; Li, Wen

    2015-01-01

    Electronic transport of graphene through a modulated magnetic superlattice where the barrier heights present Gaussian profile is studied. It is found that the incident electron could be completely transmitted in the miniband regions and be completely reflected in the bandgap regions. The results suggest an application of the structure as an effectively band pass filter, which can be controlled by the structural parameters. It is concluded that the positions of miniband and bandgap are robust to the Gaussian variation of barrier heights. The effect of this modulated magnetic superlattice is also available for the conventional electrons described by Schrödinger equation

  12. Energy band and transport properties in magnetic aperiodic graphene superlattices of Thue-Morse sequence

    Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue

    2016-02-01

    Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.

  13. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    Chou, W.; Tajima, C.T.; Shibata, K.

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented

  14. A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars

    Leone, Francesco; Scalia, Cesare; Gangi, Manuele; Giarrusso, Marina [Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, I-95123 Catania (Italy); Munari, Matteo; Scuderi, Salvatore; Trigilio, Corrado [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Stift, Martin J. [Armagh Observatory, College Hill, Armagh BT61 9DG. Northern Ireland (United Kingdom)

    2017-10-20

    Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transverse component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.

  15. Cooling achieved by rotating an anisotropic superconductor in a constant magnetic field: A new perspective

    Manh-Huong Phan

    2016-12-01

    Full Text Available A new type of rotary coolers based on the temperature change (ΔTrot of an anisotropic superconductor when rotated in a constant magnetic field is proposed. We show that at low temperature the Sommerfeld coefficient γ(B,Θ of a single crystalline superconductor, such as MgB2 and NbS2, sensitively depends on the applied magnetic field (B and the orientation of the crystal axis (Θ, which is related to the electronic entropy (SE and temperature (T via the expression: SE=γT. A simple rotation of the crystal from one axis to one another in a constant magnetic field results in a change in γ and hence SE: ΔSE=ΔγT. A temperature change −ΔTrot ∼ 0.94 K from a bath temperature of 2.5 K is achieved by simply rotating the single crystal MgB2 by 90° with respect to the c-axis direction in a fixed field of 2 T. ΔTrot can be tuned by adjusting the strength of B within a wide magnetic field range. Our study paves the way for development of new materials and cryogenic refrigerators that are potentially more energy-efficient, simplified, and compact.

  16. Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction

    Egolf, Peter W.; Pawlowski, Anne-Gabrielle; Tsague, Paulin; Marco, Bastien de; Bovy, William; Tucev, Sinisa [Institute of Thermal Sciences and Engineering, University of Applied Sciences of Western Switzerland, CH 1401 Yverdon-les-Bains (Switzerland); Shamsudhin, Naveen, E-mail: snaveen@ethz.ch; Pané, Salvador; Pokki, Juho; Ansari, M. H. D.; Nelson, Bradley J. [Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, CH 8092 Zurich (Switzerland); Vuarnoz, Didier [Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL Fribourg, CH 1701 Fribourg (Switzerland)

    2016-08-14

    A magnetic hyperthermia cancer treatment strategy that does not operate by means of conventional heating mechanisms is presented. The proposed approach consists of injecting a gel with homogeneously distributed magnetic nanowires into a tumor. Upon the application of a low-frequency rotating or circularly polarized magnetic field, nanowires spin around their center of viscous drag due to torque generated by shape anisotropy. As a result of external rotational forcing and fluid friction in the nanoparticle's boundary layer, heating occurs. The nanowire dynamics is theoretically and experimentally investigated, and different feasibility proofs of the principle by physical modeling, which adhere to medical guidelines, are presented. The magnetic nanorotors exhibit rotations and oscillations with quite a steady center of gravity, which proves an immobile behavior and guarantees a time-independent homogeneity of the spatial particle distribution in the tumor. Furthermore, a fluid dynamic and thermodynamic heating model is briefly introduced. This model is a generalization of Penne's model that for this method reveals theoretic heating rates that are sufficiently high, and fits well into medical limits defined by present standards.

  17. Optical band gap and magnetic properties of unstrained EuTiO3 films

    Lee, J. H.; Ke, X.; Schiffer, P.; Podraza, N. J.; Kourkoutis, L. Fitting; Fennie, C. J.; Muller, D. A.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.; Freeland, J. W.

    2009-01-01

    Phase-pure, stoichiometric, unstrained, epitaxial (001)-oriented EuTiO 3 thin films have been grown on (001) SrTiO 3 substrates by reactive molecular-beam epitaxy. Magnetization measurements show antiferromagnetic behavior with T N =5.5 K, similar to bulk EuTiO 3 . Spectroscopic ellipsometry measurements reveal that EuTiO 3 films have a direct optical band gap of 0.93±0.07 eV.

  18. Rotational magnetic pulses enhance the magnetofection efficiency in vitro in adherent and suspension cells

    Dahmani, Ch.; Mykhaylyk, O.; Helling, Fl.; Götz, St.; Weyh, Th.; Herzog, H.-G.; Plank, Ch.

    2013-01-01

    The association of magnetic nanoparticles with gene delivery vectors in combination with the use of gradient magnetic fields (magnetofection) enables improved and synchronised gene delivery to cells. In this paper, we report a system comprising rotating permanent magnets to generate defined magnetic field pulses with frequencies from 2.66 to 133 Hz and a field amplitude of 190 or 310 mT at the location of the cells. Low-frequency pulses of 2.66–10 Hz with a magnetic flux density of 190 mT were applied to the examined cells for 30–120 s after magnetofection. These pulses resulted in a 1.5–1.9-fold enhancement in the transfection efficiency compared with magnetofection with only a static magnetic field in both adherent and suspension cells. The magnetic field amplitudes of 190 and 310 mT had similar effects on the transfection efficacy. No increase in the percentage of transgene-expressing suspension cells and no cytotoxic effects (based on the results of the MTT assay) were observed after applying alternating magnetic fields. - Highlights: ► We developed a magnetic system capable of generating defined magnetic pulses based on permanent magnets. ► The main advantage of the system is the lack of heat-induced fluctuations in the working parameters. ► Our system succeeded in enhancing the transfection of adherent human lung epithelial cells and human suspension cells. ► The enhancement in the transfection efficiency compared with static magnetic field is due to the magnetic field pulses. ► The approach could be used as a complementary method for drug targeting

  19. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    Abo-Dahab, S. M. [Taif University, Taif (Saudi Arabia); Abd-Alla, A. M. [SVU, Qena (Egypt); Khan, Aftab [Sohag University, Sohag (Egypt)

    2015-08-15

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  20. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    Abo-Dahab, S. M.; Abd-Alla, A. M.; Khan, Aftab

    2015-01-01

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  1. Do Magnetic Resonance Imaging Characteristics of Full-Thickness Rotator Cuff Tears Correlate With Sleep Disturbance?

    Reyes, Bryan A; Hull, Brandon R; Kurth, Alexander B; Kukowski, Nathan R; Mulligan, Edward P; Khazzam, Michael S

    2017-11-01

    Many patients with rotator cuff tears suffer from nocturnal shoulder pain, resulting in sleep disturbance. To determine whether rotator cuff tear size correlated with sleep disturbance in patients with full-thickness rotator cuff tears. Cross-sectional study; Level of evidence, 3. Patients with a diagnosis of unilateral full-thickness rotator cuff tears (diagnosed via magnetic resonance imaging [MRI]) completed the Pittsburgh Sleep Quality Index (PSQI), a visual analog scale (VAS) quantifying their shoulder pain, and the American Shoulder and Elbow Surgeons (ASES) questionnaire. Shoulder MRI scans were analyzed for anterior-posterior tear size (mm), tendon retraction (mm), Goutallier grade (0-4), number of tendons involved (1-4), muscle atrophy (none, mild, moderate, or severe), and humeral head rise (present or absent). Bivariate correlations were calculated between the MRI characteristics and baseline survey results. A total of 209 patients with unilateral full-thickness rotator cuff tears were included in this study: 112 (54%) female and 97 (46%) male (mean age, 64.1 years). On average, shoulder pain had been present for 24 months. The mean PSQI score was 9.8, and the mean VAS score was 5.0. No significant correlations were found between any of the rotator cuff tear characteristics and sleep quality. Only tendon retraction had a significant correlation with pain. Although rotator cuff tears are frequently associated with nocturnal pain and sleep disruption, this study demonstrated that morphological characteristics of full-thickness rotator cuff tears, such as size and tendon retraction, do not correlate with sleep disturbance and have little to no correlation with pain levels.

  2. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    Zhaoying Zhou

    2009-04-01

    Full Text Available In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  3. Measurements of plasma rotation in an axially magnetized MPD arc-jet

    Tobari, Hiroyuki; Ashino, Masashi; Yoshino, Kyohei; Sagi, Yukiko; Yoshinuma, Mikirou; Hattori, Kunihiko; Ando, Akira; Inutake, Masaaki [Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi (Japan)

    2001-01-24

    Characteristics of an axially magnetized MPD (magneto-plasma-dynamic) arcjet plasma are investigated by spectroscopy on the HITOP (High density of Tohoku Plasma) device in Tohoku University. Plasma flow and rotational velocity and temperature of He ion and atom near the muzzle region of MPD arcjet are measured by Doppler shift and broadening of the HeI ({lambda}=578.56 nm) and HeII ({lambda}=468.58 nm) lines. From the measured radial profile of rotational velocity and temperature of He ion, the radial profiles of electrical field and space potential are calculated and it has been found that the potential profile in the core region is parabolic, which shows the plasma rotates as a rigid body. (author)

  4. Rotating and propagating LIB stabilized by self-induced magnetic field

    Murakami, H.; Aoki, T.; Kawata, S.; Niu, K.

    1984-01-01

    Rotating motion of a propagating LIB is analyzed in order to suppress the mixed mode of the Kelvin-Helmholtz instability, the tearing instability and the sausage instability by the action of a self-induced magnetic field in the axial direction. The beams are assumed to be charge-neutralized but not current-neutralized. The steady-state solutions of a propagating LIB with rotation are first obtained numerically. Through the dispersion relation with respect to the ikonal type of perturbations, which are added to the steady-state solutions, the growth rates of instabilities appearing in an LIB are obtained. It is concluded that if the mean rotating velocity of an LIB is comparable to the propagation velocity, the instability disappears in the propagating ion beam. (author)

  5. Functional and magnetic resonance imaging evaluation after single-tendon rotator cuff reconstruction

    Knudsen, H B; Gelineck, J; Søjbjerg, Jens Ole

    1999-01-01

    The aim of this study was to investigate tendon integrity after surgical repair of single-tendon rotator cuff lesions. In 31 patients, 31 single-tendon repairs were evaluated. Thirty-one patients were available for clinical assessment and magnetic resonance imaging (MRI) at follow-up. A standard...... series of MR images was obtained for each. The results of functional assessment were scored according to the system of Constant. According to MRI evaluation, 21 (68%) patients had an intact or thinned rotator cuff and 10 (32%) had recurrence of a full-thickness cuff defect at follow-up. Patients...... with an intact or thinned rotator cuff had a median Constant score of 75.5 points; patients with a full-thickness cuff defect had a median score of 62 points. There was no correlation between tendon integrity on postoperative MR images and functional outcome. Patients with intact or thinned cuffs did not have...

  6. The influence of magnetic field on the inertial deposition of a particle on a rotating disk

    Tsatsin, P O; Beskachko, V P

    2008-01-01

    The problem of inertial deposition attracts considerable attention in the connection with the separating of detrimental impurities and the refining of liquid metals. In the present investigation the deposition of particles suspended in a conducting melt on the rotating disk in the presence of axial uniform magnetic field is considered. The field of the fluid velocities is computed by means of the MHD-analogue of Karman reduction, which makes possible to reduce initial governing nonlinear partial differential equations to a two-point boundary value problem for the set of ordinary differential equations. The influence of magnetic field on dia-and paramagnetic particle deposition effect was estimated. The results reveal that magnetic field has significant effect on particle parameters, especially for magnetic particles

  7. North–South Asymmetry of the Rotation of the Solar Magnetic Field

    Xie, Jinglan; Shi, Xiangjun; Qu, Zhining

    2018-03-01

    Using the rotation rates of the solar magnetic field during solar cycles 21 to 23 obtained by Chu et al. by analyzing the synoptic magnetic maps produced by the NSO/Kitt Peak and SOHO/MDI during the years 1975 to 2008, the temporal variation of the equatorial rotation rate (A) and the latitude gradient of rotation (B) in the northern and southern hemispheres are studied separately. The results indicate that the rotation is more differential (about 4.3%) in the southern hemisphere in the considered time frame. It is found that the north–south asymmetry of A and the asymmetry of B show increasing trends in the considered time frame, while the north–south asymmetry of the solar activity shows a decreasing trend. There exists a significant negative correlation (at 95% confidence level) between the asymmetry of B and the asymmetry of the solar activity, and this may be due to stronger magnetic activity in a certain hemisphere that may suppress the differential rotation to some extent. The periodicities in the variation of A and B are also studied, and periods of about 5.0 and 10.5 yr (5.5 and 10.4 yr) can be found for the variation of the northern (southern) hemisphere B. Moreover, the north–south asymmetry of A and the asymmetry of B have similar periods of about 2.6–2.7 and 5.2–5.3 yr. Further, cross-correlation analysis indicates that there exists a phase difference (about eight months) between the northern and southern hemisphere B, and this means that the northern hemisphere B generally leads by about eight months.

  8. Impact of rotating resonant magnetic perturbation fields on plasma edge electron density and temperature

    Stoschus, H.; Schmitz, O.; Frerichs, H.; Reiser, D.; Unterberg, B.; Lehnen, M.; Reiter, D.; Samm, U.; Jakubowski, M.W.

    2012-01-01

    Rotating resonant magnetic perturbation (RMP) fields impose a characteristic modulation to the edge electron density n e (r, t) and temperature T e (r, t) fields, which depends on the relative rotation f rel between external RMP field and plasma fluid. The n e (r, t) and T e (r, t) fields measured in the edge (r/a = 0.9–1.05) of TEXTOR L-mode plasmas are in close correlation with the local magnetic vacuum topology for low relative rotation f rel = −0.2 kHz. In comparison with the 3D neutral and plasma transport code EMC3-Eirene, this provides substantial experimental evidence that for low relative rotation level and high resonant field amplitudes (normalized radial field strength B r 4/1 /B t =2×10 -3 ), a stochastic edge with a remnant island chain dominated by diffusive transport exists. Radially outside a helical scrape-off layer, the so-called laminar zone embedded into a stochastic domain is found to exist. In contrast for high relative rotation of f rel = 1.8 kHz, the measured modulation of n e is shifted by π/2 toroidally with respect to the modelled vacuum topology. A pronounced flattening in T e (r) and a reduction in n e (r) is measured at the resonant flux surface and represents a clear signature for a magnetic island, which is phase shifted with respect to the vacuum island position. A correlated shift of the laminar zone radially outwards at the very plasma edge is observed suggesting that the actual near-field structure at the perturbation source is determined by the plasma response as well. (paper)

  9. Gyrokinetic simulations with external resonant magnetic perturbations: Island torque and nonambipolar transport with plasma rotation

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.

  10. Magnetic Field Studies in BL Lacertae through Faraday Rotation and a Novel Astrometric Technique

    Sol N. Molina

    2017-12-01

    Full Text Available It is thought that dynamically important helical magnetic fields twisted by the differential rotation of the black hole’s accretion disk or ergosphere play an important role in the launching, acceleration, and collimation of active galactic nuclei (AGN jets. We present multi-frequency astrometric and polarimetric Very Long Baseline Array (VLBA images at 15, 22, and 43 GHz, as well as Faraday rotation analyses of the jet in BL Lacertae as part of a sample of AGN jets aimed to probe the magnetic field structure at the innermost scales to test jet formation models. The novel astrometric technique applied allows us to obtain the absolute position at mm wavelengths without any external calibrator.

  11. Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo

    Takahashi, F.

    2011-12-01

    Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.

  12. Demonstrating multibit magnetic memory in the Fe8 high-spin molecule by muon spin rotation

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-09-01

    We develop a method to detect the quantum nature of high-spin molecules using muon spin rotation and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember six (possibly eight) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for multibit magnetic memory. Our experiment also paves the way for magnetic quantum tunneling detection in films.

  13. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  14. Improved Imaging of Magnetically Labeled Cells Using Rotational Magnetomotive Optical Coherence Tomography

    Peter Cimalla

    2017-04-01

    Full Text Available In this paper, we present a reliable and robust method for magnetomotive optical coherence tomography (MM-OCT imaging of single cells labeled with iron oxide particles. This method employs modulated longitudinal and transverse magnetic fields to evoke alignment and rotation of anisotropic magnetic structures in the sample volume. Experimental evidence suggests that magnetic particles assemble themselves in elongated chains when exposed to a permanent magnetic field. Magnetomotion in the intracellular space was detected and visualized by means of 3D OCT as well as laser speckle reflectometry as a 2D reference imaging method. Our experiments on mesenchymal stem cells embedded in agar scaffolds show that the magnetomotive signal in rotational MM-OCT is significantly increased by a factor of ~3 compared to previous pulsed MM-OCT, although the solenoid’s power consumption was 16 times lower. Finally, we use our novel method to image ARPE-19 cells, a human retinal pigment epithelium cell line. Our results permit magnetomotive imaging with higher sensitivity and the use of low power magnetic fields or larger working distances for future three-dimensional cell tracking in target tissues and organs.

  15. Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density

    Espejel-Morales, R; Murguía-Romero, G; Calles, A; Cabrera-Bravo, E; Morán-López, J L

    2016-01-01

    We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell -like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder. (paper)

  16. Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma

    Awasthi, Suneet Kumar; Panda, Ranjita; Chauhan, Prashant Kumar; Shiveshwari, Laxmi

    2018-05-01

    By using the transfer matrix method, theoretical investigations have been carried out in the microwave region to study the reflection properties of multichannel tunable omnidirectional photonic bandgaps (OPBGs) based on the magneto-optic Faraday effect. The proposed one dimensional ternary plasma photonic crystal consists of alternate layers of quartz, magnetized cold plasma (MCP), and air. In the absence of an external magnetic field, the proposed structure possesses two OPBGs induced by Bragg scattering and is strongly dependent on the incident angle, the polarization of the incident light, and the lattice constant unlike to the single-negative gap and zero- n ¯ gap. Next, the reflection properties of OPBGs have been made tunable by the application of external magnetic field under right hand and left hand polarization configurations. The results of this manuscript may be utilized for the development of a new kind of tunable omnidirectional band stop filter with ability to completely stop single to multiple bands (called channels) of microwave frequencies in the presence of external static magnetic field under left-hand polarization and right-hand polarization configurations, respectively. Moreover, outcomes of this study open a promising way to design tunable magneto-optical devices, omnidirectional total reflectors, and planar waveguides of high Q microcavities as a result of evanescent fields in the MCP layer to allow propagation of light.

  17. SOLAR MAGNETIZED TORNADOES: ROTATIONAL MOTION IN A TORNADO-LIKE PROMINENCE

    Su, Yang; Veronig, Astrid; Temmer, Manuela; Vanninathan, Kamalam; Gömöry, Peter; Wang, Tongjiang; Gan, Weiqun; Li, YouPing

    2014-01-01

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ∼5 km s –1

  18. Solar Magnetized Tornadoes: Rotational Motion in a Tornado-like Prominence

    Su, Yang; Gömöry, Peter; Veronig, Astrid; Temmer, Manuela; Wang, Tongjiang; Vanninathan, Kamalam; Gan, Weiqun; Li, YouPing

    2014-04-01

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ~5 km s-1.

  19. SOLAR MAGNETIZED TORNADOES: ROTATIONAL MOTION IN A TORNADO-LIKE PROMINENCE

    Su, Yang; Veronig, Astrid; Temmer, Manuela; Vanninathan, Kamalam [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Gömöry, Peter [Astronomical Institute of the Slovak Academy of Sciences, SK-05960 Tatranská Lomnica (Slovakia); Wang, Tongjiang [Department of Physics, the Catholic University of America, Washington, DC 20064 (United States); Gan, Weiqun; Li, YouPing, E-mail: yang.su@uni-graz.at [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-04-10

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ∼5 km s{sup –1}.

  20. Calorimetric method of ac loss measurement in a rotating magnetic field

    Ghoshal, P. K. [Oxford Instruments NanoScience, Abingdon, Oxfordshire OX13 5QX (United Kingdom); Coombs, T. A.; Campbell, A. M. [Department of Engineering, Electrical Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  1. Magnetic cycles and rotation periods of late-type stars from photometric time series

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  2. Magnetic resonance imaging findings associated with surgically proven rotator interval lesions

    Vinson, Emily N.; Major, Nancy M. [Duke University Medical Center, Department of Radiology, P.O. Box 3808, Durham, NC (United States); Higgins, Laurence D. [Brigham and Women' s Hospital, Department of Orthopedic Surgery, Boston, MA (United States)

    2007-05-15

    To identify shoulder magnetic resonance imaging (MRI) findings associated with surgically proven rotator interval abnormalities. The preoperative MRI examinations of five patients with surgically proven rotator interval (RI) lesions requiring closure were retrospectively evaluated by three musculoskeletal-trained radiologists in consensus. We assessed the structures in the RI, including the coracohumeral ligament, superior glenohumeral ligament, fat tissue, biceps tendon, and capsule for variations in size and signal alteration. In addition, we noted associated findings of rotator cuff and labral pathology. Three of three of the MR arthrogram studies demonstrated extension of gadolinium to the cortex of the undersurface of the coracoid process compared with the control images, seen best on the sagittal oblique images. Four of five of the studies demonstrated subjective thickening of the coracohumeral ligament, and three of five of the studies demonstrated subjective thickening of the superior glenohumeral ligament. Five of five of the studies demonstrated a labral tear. The MRI arthrogram finding of gadolinium extending to the cortex of the undersurface of the coracoid process was noted on the studies of those patients with rotator interval lesions at surgery in this series. Noting this finding - especially in the presence of a labral tear and/or thickening of the coracohumeral ligament or superior glenohumeral ligament - may be helpful in the preoperative diagnosis of rotator interval lesions. (orig.)

  3. Staircase bands in 105,107,109Ag: fingerprint of interplay between shears mechanism and collective rotation

    Das, B.; Rather, Niyaz; Datta, P.

    2015-01-01

    Shears mechanism in weakly deformed nuclei has been firmly established by numerous experimental observations since its inception by S. Fruaendorf in early nineties. On the contrary, the scope of Shears mode of excitation in moderately deformed nuclei is a less explored territory. The Shears mechanism is primarily identified in bands having strong M1 transitions with increasing energies as well as falling B(M1) rates as a function of angular momentum. On the other hand, the presence of M1 energy staggering in odd and odd-odd nuclei indicates that the signature is a good quantum number which corresponds to collective rotation. It is interesting to note that nuclei near Z=50 shell closure are moderately deformed as well as Shears structure develop at higher excitation with quasi-particles alignment. To be specific, the moderately deformed Ag nuclei are good candidates for such study as the high spin states are predominantly generated by the valance neutrons in low-Ω orbitals of h 11/2 and the valance protons in high-Ω orbitals of g 9/2 which forms a Shears structure

  4. 4 K to 20 K rotational-cooling magnetic refrigerator capable of 1-mW to >1-W operation

    Barclay, J.A.

    1980-02-01

    The low-temperature, magnetic entropy of certain single-crystal paramagnetic materials, such as DyPO 4 , changes dramatically as the crystal rotates in a magnetic field. A new magnetic refrigerator design based on the anisotropic nature of such materials is presented. The key advantages of the rotational-cooling concept are (1) a single, rotary motion is required, (2) magnetic field shaping is not a problem because the entire working material is in a constant field, and (3) the refrigerator can be smaller than comparable magnetic refrigerators because the working material is entirely inside the magnet at all times. The main disadvantage of the rotational-cooling concept is that small-dimension single crystals are required

  5. Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields

    Azimi, Neda; Rahimi, Masoud, E-mail: masoudrahimi@yahoo.com

    2017-01-15

    Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe{sub 3}O{sub 4} nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (K{sub L}a) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of K{sub L}a and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002–0.01 (w/v) on K{sub L}a and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of K{sub L}a (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008–0.01 (w/v). - Highlights: • Magnetic nanoparticles used for mixing of two immiscible liquids in a micromixer. • Extraction efficiency of rotating magnetic field (RMF) is compared with static one. • In RMF, the effect of the angular speed on KLa and E enhancement is reported. • In RMF, at a selected magnet distance effect of nanoparticle concentration is reported.

  6. Determination of band-structure parameters of Pbsub(1-x)Snsub(x)Te narrow-gap semiconductor from infrared Faraday rotation

    Sizov, F.F.; Lashkarev, G.V.; Martynchuk, E.K.

    1977-01-01

    The temeprature dependences of Faraday rotation in Pbsub(1-x)Snsub(x)Te of p type with the hole density 3x10 16 -2.2x10 18 cm -3 are studied in the range 40-370 K and in the spectral interval 4-16 μm. The analysis of interband Faraday rotation confirms a conclusion made by the authors earlier that the g factor for the c band (gsub(c)) is positive, for the v band (gsub(v))-negative and that [gsub(c)] > [gsub(v)]. The temperature dependences of carrier effective masses are investigated on the basis of the two-band model. It is demonstrated that for T < 200 K the Faraday effective mass of holes near the ceiling of the valency band varies in direct proportion to the width of the forbidden band. The temperature increase of the Faraday effective mass of current carriers, which is faster than that of the effective electron mass, is discovered, and this is related to the effect of the heavy hole band

  7. Silicon transport under rotating and combined magnetic fields in liquid phase diffusion growth of SiGe

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-04-15

    The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. A magnetic levitation rotating plate model based on high-Tc superconducting technology

    Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang

    2017-09-01

    With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.

  9. Single-core magnetic markers in rotating magnetic field based homogeneous bioassays and the law of mass action

    Dieckhoff, Jan, E-mail: j.dieckhoff@tu-bs.de [Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Schrittwieser, Stefan; Schotter, Joerg [Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna (Austria); Remmer, Hilke; Schilling, Meinhard; Ludwig, Frank [Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany)

    2015-04-15

    In this work, we report on the effect of the magnetic nanoparticle (MNP) concentration on the quantitative detection of proteins in solution with a rotating magnetic field (RMF) based homogeneous bioassay. Here, the phase lag between 30 nm iron oxide single-core particles and the RMF is analyzed with a fluxgate-based measurement system. As a test analyte anti-human IgG is applied which binds to the protein G functionalized MNP shell and causes a change of the phase lag. The measured phase lag changes for a fixed MNP and a varying analyte concentration are modeled with logistic functions. A change of the MNP concentration results in a nonlinear shift of the logistic function with the analyte concentration. This effect results from the law of mass action. Furthermore, the bioassay results are used to determine the association constant of the binding reaction. - Highlights: • A rotating magnetic field based homogeneous bioassay concept was presented. • Here, single-core iron oxide nanoparticles are applied as markers. • The impact of the particle concentration on the bioassay results is investigated. • The relation between particle concentration and bioassay sensitivity is nonlinear. • This finding can be reasonably explained by the law of mass action.

  10. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke, E-mail: k145676@kansai-u.ac.jp

    2013-11-15

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T{sub c} bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  11. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke

    2013-01-01

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T c bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one

  12. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.

    2015-01-01

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence

  13. CONSTRAINING THE SOLAR CORONAL MAGNETIC FIELD STRENGTH USING SPLIT-BAND TYPE II RADIO BURST OBSERVATIONS

    Kishore, P.; Ramesh, R.; Hariharan, K.; Kathiravan, C. [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore—560034 (India); Gopalswamy, N., E-mail: kishore@iiap.res.in [Code 671, Solar Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2016-11-20

    We report on low-frequency radio (85–35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the location of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.

  14. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  15. Proposal of a novel compact P-band magnetically insulated transmission line oscillator with inclined vanes

    Zhang, Xiaoping; Dang, Fangchao; Li, Yangmei; Jin, Zhenxing

    2015-06-01

    In this paper, we present a novel compact P-band magnetically insulated transmission line oscillator (MILO) with specially inclined slow-wave-structure (SWS) vanes to decrease its total dimension and weight. The dispersion characteristics of the inclined SWS are investigated in detail and made comparisons with that of the traditional straight SWS. The results show that the inclined SWS is more advantageous in operating on a steady frequency in a wide voltage range and has a better asymmetric mode segregation and a relatively large band-gap between the TM00 and TM01 modes which are in favor of avoiding the asymmetric and transverse mode competition. Besides, the transverse dimension of the proposed novel inclined SWS with the same operation frequency is decreased by about 50%, and correspondingly the device volume shrinks remarkably to its 0.35 times. In particle-in-cell simulation, the electron bunching spokes are obviously formed in the inclined SWS, and a P-band high-power microwave with a power of 5.8 GW, frequency of 645 MHz, and efficiency of 17.2% is generated by the proposed device, which indicates the feasibility of the compact design with the inclined vanes at the P-band.

  16. Electronic and transport properties of noncollinear magnetic monatomic Mn chains: Fano resonances in the superlattice of noncollinear magnetic barriers and magnetic anisotropic bands

    Dai, C.J.; Yan, X.H.; Xiao, Y.; Guo, Y.D.

    2015-01-01

    By means of the density functional theory combined with non-equilibrium Green's function method, ballistic transport properties of one-dimensional noncollinear magnetic monatomic chains were investigated using the single-atomic Mn chains as a model system. Fano resonances are found to exist in the monatomic Mn chains with spin-spiral structure. Furthermore, in the monatomic Mn chains with magnetic soliton lattice, Fano resonances are enhanced and cause the conductance splitting in the transmission spectra. The Fano resonances in the noncollinear magnetic single-atomic Mn chains are arising from the coupling of the localized d-states and the extended states of the quantum channels. By constructing a theoretical model and calculating its conductance, it is found that the phenomena of Fano resonances and the accompanying conductance splitting exist universally in the superlattice of one-dimensional noncollinear magnetic barriers, due to the interference of the incident waves and reflected waves by the interfaces between the neighboring barriers. Moreover, the band structures of the ferromagnetic and spin-spiral monatomic Mn chains exhibit a strong dependence on the spatial arrangement of the magnetic moments of Mn atoms when spin–orbit coupling is considered. - Highlights: • Transport properties of noncollinear magnetic monatomic Mn chains are studied. • Fano resonances are found in the noncollinear magnetic monatomic Mn chains. • Magnetic soliton lattice leads to conductance splitting in the transmission curve. • Fano resonances exist in the superlattice of noncollinear magnetic barriers. • Effect of SOC on the band structure of FM and spin-spiral Mn chains are studied

  17. Magnetic fields of AM band radio broadcast signals at the Richmond Field Station

    Becker, Alex; Frangos, William

    1998-01-01

    Non-invasive sensing of the shallow subsurface is necessary for detection and delineation of buried hazardous wastes, monitoring of the condition of clay containment caps, and a variety of other purposes. Electromagnetic methods have proven to be effective in environmental site characterization where there is a need for increased resolution in subsurface characterization. Two considerations strongly suggest the use of frequencies between 100 kHz and 100 MHz for such applications: 1) the induction response of many targets is small due to small size, and 2) a need to determine both the electrical conductivity and dielectric permittivity which are related to chemistry and hydrology. Modeling and physical parameter studies confirm that measurements at frequencies between 1 and 100 MHz can resolve variations in subsurface conductivity and permittivity. To provide the necessary technology for shallow subsurface investigations, we propose to exploit the concept of electromagnetic impedance, the ratio of orthogonal horizontal electric and magnetic fields. Prior to assembling the equipment for measuring surface impedance using controlled, local source it was felt prudent to measure the surface impedance of geological materials at the University of California at Berkeley's Richmond Field (RFS) using ambient energy in the broadcast band. As a first step toward this intermediate goal, we have examined and characterized local AM band radio signals in terms of both signal strength and polarization of the magnetic component as received at RFS. In addition, we have established the viability of a commercial radio-frequency magnetic sensor

  18. A numerical study of the generation of an azimuthal current in a plasma cylinder using a transverse rotating magnetic field

    Hugrass, W.N.; Grimm, R.C.

    1980-07-01

    The generation of a steady azimuthal current in a cylindrical plasma column using a rotating magnetic field is numerically investigated. The mixed initial-boundary-value problem is solved using a finite difference method. It is shown that substantial azimuthal current can be driven provided that the amplitude of the rotating magnetic field is greater than a certain threshold value which depends on the plasma resistivity

  19. Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields

    Pustelny, S.; Gawlik, W.; Rochester, S. M.; Kimball, D. F. Jackson; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field

  20. Microscopic magnetic nature of layered cobalt dioxides investigated by muon-spin rotation and relaxation

    Sugiyama, Jun; Ikedo, Yutaka; Mukai, Kazuhiko; Nozaki, Hiroshi; Russo, Peter L.; Ansaldo, Eduardo J.; Brewer, Jess H.; Andreica, Daniel; Amato, Alex

    2009-01-01

    In order to elucidate the nature of layered cobalt dioxides A x CoO 2 , we have investigated their microscopic magnetism by means of positive muon-spin rotation and relaxation (μ + SR) spectroscopy, in particular for A=Li, Na, and K. The dome-shaped magnetic phase diagram for Na x CoO 2 with x≥0.75 suggests the competition between the spin concentration and geometrical frustration on the two-dimensional triangular lattice of the CoO 2 plane. The additional experiment on Li x CoO 2 and K x CoO 2 indicates both a weakly coupled regime for the d electrons in the CoO 2 plane and an ignorable weak effect of the inter-plane interaction on their magnetic order at low T.

  1. Dynamics of simple magnetorheological suspensions under rotating magnetic fields with modulated Mason number

    Calderon, Oscar G; Melle, Sonia

    2002-01-01

    We study theoretically the dynamics of a system of two magnetizable particles suspended in a non-magnetic fluid subject to a rotating magnetic field when a modulation on the Mason number (ratio of viscous to magnetic forces) is applied. We find, using a periodic modulation, that a resonant-like phenomenon between the periodic modulation of the Mason number and the intrinsic radial oscillation of the system without modulation occurs. For a random perturbation of the Mason number, we obtain an optimum noise strength at which the average interparticle distance reaches the lowest value. When a weak periodic modulation and a noise source are included in the Mason number, stochastic resonance (SR) is found for different frequencies and amplitudes of the modulation. An interpretation of this SR phenomenon is made by means of a threshold crossing mechanism

  2. Compact torus equilibria set up in the rotamak by rotating magnetic fields

    Storer, R.G.

    1983-01-01

    In the Rotamak, a rotating magnetic field is used to drive a steady toroidal current in a compact torus device. High power, short duration (approx.=80 μs) and low power, long duration experiments (approx.=3 ms) have been studied. In both of these experiments a steady phase exists which is well described by the assumption that the plasma is in an averaged magnetohydrodynamic pressure balance situation. Using a model based on this assumption, self-consistency imposes conditions relating the temperature and density of the plasma to the steady components of the internal magnetic fields. In the high power experiment, this steady phase evolves into a second steady phase, with lower toroidal current, which has a #betta#=1, mirror-like configuration which also appears to satisfy local pressure balance but with the magnetic axis (minimum of the poloidal flux) at the centre of the spherical vessel. (orig.)

  3. Experimental research on Ku-band magnetically insulated transmission line oscillator

    Jiang, Tao; Zhang, Jiande; He, Juntao; Li, Zhiqiang; Ling, Junpu [College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

    2015-10-15

    An improved Ku-band magnetically insulated transmission line oscillator is proposed and investigated experimentally. In the particle-in-cell simulation, the Ku-band MILO generates the microwave with a power of 1.62 GW and a frequency of 13 GHz at the input voltage of 474 kV. The device is fabricated based on the simulation results, and an experiment system is designed. In the preliminary experiments, output microwave with frequency of 13.02 GHz, power of 150 MW, and pulse width of 17 ns is generated, under the diode voltage of 450 kV. Analysis on the experiment results shows that plasma produced due to the large current hitting to the outside of the collection tank is the essential cause for the low amplitude of the microwave power and short pulse width.

  4. 360° deterministic magnetization rotation in a three-ellipse magnetoelectric heterostructure

    Kundu, Auni A.; Chavez, Andres C.; Keller, Scott M.; Carman, Gregory P.; Lynch, Christopher S.

    2018-03-01

    A magnetic dipole-coupled magnetoelectric heterostructure comprised of three closely spaced ellipse shapes was designed and shown to be capable of achieving deterministic in-plane magnetization rotation. The design approach used a combination of conventional micromagnetic simulations to obtain preliminary configurations followed by simulations using a fully strain-coupled, time domain micromagnetic code for a detailed assessment of performance. The conventional micromagnetic code has short run times and was used to refine the ellipse shape and orientation, but it does not accurately capture the effects of the strain gradients present in the piezoelectric and magnetostrictive layers that contribute to magnetization reorientation. The fully coupled code was used to assess the effects of strain and magnetic field gradients on precessional switching in the side ellipses and on the resulting dipole-field driven magnetization reorientation in the center ellipse. The work led to a geometry with a CoFeB ellipse (125 nm × 95 nm × 4 nm) positioned between two smaller CoFeB ellipses (75 nm × 50 nm × 4 nm) on a 500 nm PZT-5H film substrate clamped at its bottom surface. The smaller ellipses were oriented at 45° and positioned at 70° and 250° about the central ellipse due to the film deposition on a thick substrate. A 7.3 V pulse applied to the PZT for 0.22 ns produced 180° switching of the magnetization in the outer ellipses that then drove switching in the center ellipse through dipole-dipole coupling. Full 360° deterministic rotation was achieved with a second pulse. The temporal response of the resulting design is discussed.

  5. Dynamics of isolated magnetic bright points derived from Hinode/SOT G-band observations

    Utz, D.; Hanslmeier, A.; Muller, R.; Veronig, A.; Rybák, J.; Muthsam, H.

    2010-02-01

    Context. Small-scale magnetic fields in the solar photosphere can be identified in high-resolution magnetograms or in the G-band as magnetic bright points (MBPs). Rapid motions of these fields can cause magneto-hydrodynamical waves and can also lead to nanoflares by magnetic field braiding and twisting. The MBP velocity distribution is a crucial parameter for estimating the amplitudes of those waves and the amount of energy they can contribute to coronal heating. Aims: The velocity and lifetime distributions of MBPs are derived from solar G-band images of a quiet sun region acquired by the Hinode/SOT instrument with different temporal and spatial sampling rates. Methods: We developed an automatic segmentation, identification and tracking algorithm to analyse G-Band image sequences to obtain the lifetime and velocity distributions of MBPs. The influence of temporal/spatial sampling rates on these distributions is studied and used to correct the obtained lifetimes and velocity distributions for these digitalisation effects. Results: After the correction of algorithm effects, we obtained a mean MBP lifetime of (2.50 ± 0.05) min and mean MBP velocities, depending on smoothing processes, in the range of (1-2) km~s-1. Corrected for temporal sampling effects, we obtained for the effective velocity distribution a Rayleigh function with a coefficient of (1.62 ± 0.05) km~s-1. The x- and y-components of the velocity distributions are Gaussians. The lifetime distribution can be fitted by an exponential function.

  6. Plasma rotation by electric and magnetic fields in a discharge cylinder

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  7. Twin Rotating Coils for Cold Magnetic Measurements of 15 m Long LHC Dipoles

    Billan, J; Buzio, M; D'Angelo, G; Deferne, G; Dunkel, O; Legrand, P; Rijllart, A; Siemko, A; Sievers, P; Schloss, S; Walckiers, L

    2000-01-01

    We describe here a new harmonic coil system for the field measurement of the superconducting, twin aperture LHC dipoles and the associated corrector magnets. Besides field measurements the system can be used as an antenna to localize the quench origin. The main component is a 16 m long rotating shaft, made up of 13 ceramic segments, each carrying two tangential coils plus a central radial coil, all working in parallel. The segments are connected with flexible Ti-alloy bellows, allowing the piecewise straight shaft to follow the curvature of the dipole while maintaining high torsional rigidity. At each interconnection the structure is supported by rollers and ball bearings, necessary for the axial movement for installation and for the rotation of the coil during measurement. Two such shafts are simultaneously driven by a twin-rotating unit, thus measuring both apertures of a dipole at the same time. This arrangement allows very short measurement times (typically 10 s) and is essential to perform cold magnetic ...

  8. Stark Interference of Electric and Magnetic Dipole Transitions in the A-X Band of OH.

    Schewe, H Christian; Zhang, Dongdong; Meijer, Gerard; Field, Robert W; Sartakov, Boris G; Groenenboom, Gerrit C; van der Avoird, Ad; Vanhaecke, Nicolas

    2016-04-15

    An experimental method is demonstrated that allows determination of the ratio between the electric (E1) and magnetic (M1) transition dipole moments in the A-X band of OH, including their relative sign. Although the transition strengths differ by more than 3 orders of magnitude, the measured M1-to-E1 ratio agrees with the ratio of the ab initio calculated values to within 3%. The relative sign is found to be negative, also in agreement with theory.

  9. Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel

    Abd-Alla, A.M.; Abo-Dahab, S.M.

    2015-01-01

    In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel is studied. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, streamlines, axial velocity and shear stress on the channel walls have been computed numerically. Effects of Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle on the pressure gradient, pressure rise, streamline, axial velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle are very pronounced in the phenomena. Comparison was made with the results obtained in the asymmetric channel and symmetric channel. - Highlights: • The peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel with magnetic field. • Mathematical modeling for long wavelength and low Reynolds number assumptions. • Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity and shear stress

  10. Asynchronous Magnetic Bead Rotation (AMBR Microviscometer for Label-Free DNA Analysis

    Yunzi Li

    2014-03-01

    Full Text Available We have developed a label-free viscosity-based DNA detection system, using paramagnetic beads as an asynchronous magnetic bead rotation (AMBR microviscometer. We have demonstrated experimentally that the bead rotation period is linearly proportional to the viscosity of a DNA solution surrounding the paramagnetic bead, as expected theoretically. Simple optical measurement of asynchronous microbead motion determines solution viscosity precisely in microscale volumes, thus allowing an estimate of DNA concentration or average fragment length. The response of the AMBR microviscometer yields reproducible measurement of DNA solutions, enzymatic digestion reactions, and PCR systems at template concentrations across a 5000-fold range. The results demonstrate the feasibility of viscosity-based DNA detection using AMBR in microscale aqueous volumes.

  11. Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

    Fishman, Randy S.

    2018-01-01

    Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.

  12. Magnetic Resonance Imaging of Rotator Cuff Tears in Shoulder Impingement Syndrome

    Freygant, Magdalena; Dziurzyńska-Białek, Ewa; Guz, Wiesław; Samojedny, Antoni; Gołofit, Andrzej; Kostkiewicz, Agnieszka; Terpin, Krzysztof

    2014-01-01

    Shoulder joint is a common site of musculoskeletal pain caused, among other things, by rotator cuff tears due to narrowing of subacromial space, acute trauma or chronic shoulder overload. Magnetic resonance imaging (MRI) is an excellent modality for imaging of soft tissues of the shoulder joint considering a possibility of multiplanar image acquisition and non-invasive nature of the study. The aim of this study was to evaluate the prevalence of partial and complete rotator cuff tears in magnetic resonance images of patients with shoulder impingement syndrome and to review the literature on the causes and classification of rotator cuff tears. We retrospectively analyzed the results of 137 shoulder MRI examinations performed in 57 women and 72 men in Magnetic Resonance facility of the Department of Radiology and Diagnostic Imaging at the St. Jadwiga the Queen Regional Hospital No. 2 in Rzeszow between June 2010 and February 2013. Examinations were performed using Philips Achieva 1.5T device, including spin echo and gradient echo sequences with T1-, T2- and PD-weighted as well as fat saturation sequences in transverse, frontal and sagittal oblique planes. Patients were referred from hospital wards as well as from outpatient clinics of the subcarpathian province. The most frequently reported injuries included partial supraspinatus tendon tear and complete tearing most commonly involved the supraspinatus muscle tendon. The smallest group comprised patients with complete tear of subscapularis muscle tendon. Among 137 patients in the study population, 129 patients suffered from shoulder pain, including 57 patients who reported a history of trauma. There was 44% women and 56% men in a group of patients with shoulder pain. Posttraumatic shoulder pain was predominantly reported by men, while women comprised a larger group of patients with shoulder pain not preceded by injury. Rotator cuff injury is a very common pathology in patients with shoulder impingement syndrome

  13. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Misguich, J.H.

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation

  14. Adjustable Permanent Quadrupoles Using Rotating Magnet Material Rods for the Next Linear Collider

    Spencer, Cherrill M

    2002-01-01

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0 -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use either Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype. See High Reliability Prototype Quadrupole for the Next Linear Collider by C.E Rago, C.M SPENCER, Z. Wolf submitted to this conference

  15. Adjustable Permanent Quadrupoles Using Rotating Magnet Material Rods for the Next Linear Collider.

    Spencer, C M

    2002-01-01

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0 -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use either Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype. See High Reliability Prototype Quadrupole for the Next Linear Collider by C.E Rago, C.M SPENC...

  16. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Misguich, J.H

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.

  17. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  18. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    C. W. Su

    2013-07-01

    Full Text Available An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001 single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  19. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    Llera, María [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Codnia, Jorge [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF-CONICET, Buenos Aires (Argentina); Jorge, Guillermo A., E-mail: gjorge@ungs.edu.ar [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina)

    2015-06-15

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized.

  20. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    Llera, María; Codnia, Jorge; Jorge, Guillermo A.

    2015-01-01

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized

  1. A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field

    Ling, Junpu, E-mail: lingjunpu@163.com; Zhang, Jiande; He, Juntao; Jiang, Tao [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-02-15

    A novel coaxial transit radiation oscillator without external guiding magnetic field is designed to generate high power microwave at Ku-band. By using a coaxial structure, the space-charge potential energy is suppressed significantly, that is good for enhancing efficient beam-wave interaction. In order to improve the transmission stability of the unmagnetized intense relativistic electron beam, a Pierce-like cathode is employed in the novel device. By contrast with conventional relativistic microwave generators, this kind of device has the advantages of high stability, non-guiding magnetic field, and high efficiency. Moreover, with the coaxial design, it is possible to improve the power-handing capacity by increasing the radial dimension of the Ku-band device. With a 550 keV and 7.5 kA electron beam, a 1.25 GW microwave pulse at 12.08 GHz has been obtained in the simulation. The power conversion efficiency is about 30%.

  2. On the Magnetic Properties of the K=1 Rotational Band in {sup 188}Re

    Malmskog, S G; Hoejeberg, M

    1967-05-15

    The transitions in the decay of the 18.6 min {sup 188}Re isomer have been studied with a Ge(Li) detector. Two new weak gamma ray transitions of 156 and 169 keV were found and interpreted as cross-over transitions. From a delayed coincidence experiment using a double lens electron-electron coincidence spectrometer the half-life of the first excited 63.6 keV level in Re was determined as T{sub 1/2} = 56 {+-} 7 psec. The half lives of the first excited 2{sup +} levels in {sup 186}Os and {sup 188}Os were also measured and found to be 0.81 {+-} 0.03 nsec and 0.68 {+-} 0.03 nsec respectively.

  3. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging.

    Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre

    2017-12-01

    We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.

  4. Introduction to modeling convection in planets and stars magnetic field, density stratification, rotation

    Glatzmaier, Gary

    2013-01-01

    This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accura

  5. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    Matsuyama, Shoichiro; Shinohara, Shunjiro

    2001-01-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  6. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    Matsuyama, Shoichiro; Shinohara, Shunjiro [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Fukuoka (Japan)

    2001-07-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  7. Measurement of magnetic properties of grain-oriented silicon steel using round rotational single sheet tester (RRSST)

    Gorican, Viktor; Hamler, Anton; Jesenik, Marko; Stumberger, Bojan; Trlep, Mladen

    2004-01-01

    The magnetic properties of grain-oriented material under rotational magnetic flux condition were measured, using two different pairs of B coils with different angle with respect to the rolling direction. It is known that induced voltages in two perpendicularly positioned B coils do not represent the actual amplitude and the angular speed of vector B in the measuring region. Consequently, the control of the induced voltages in the B coils at different positions means that the sample is measured under different magnetic flux condition. This leads to a difference between the results of vector H and the rotational loss

  8. The concept of a plasma centrifuge with a high frequency rotating magnetic field and axial circulation

    Borisevich, V. D.; Potanin, E. P.

    2017-07-01

    The possibility of using a rotating magnetic field (RMF) in a plasma centrifuge (PC), with axial circulation to multiply the radial separation effect in an axial direction, is considered. For the first time, a traveling magnetic field (TMF) is proposed to drive an axial circulation flow in a PC. The longitudinal separation effect is calculated for a notional model, using specified operational parameters and the properties of a plasma, comprising an isotopic mixture of 20Ne-22Ne and generated by a high frequency discharge. The optimal intensity of a circulation flow, in which the longitudinal separation effect reaches its maximum value, is studied. The optimal parameters of the RMF and TMF for effective separation, as well as the centrifuge performance, are calculated.

  9. Toroidal rotation braking with n = 1 magnetic perturbation field on JET

    Sun, Y; Liang, Y; Koslowski, H R; Harting, D; Wiegmann, C; Wiesen, S; Jachmich, S; Alfier, A; Asunta, O; Corrigan, G; Giroud, C; Gryaznevich, M P; Hender, T; Nardon, E; Parail, V; Naulin, V; Tala, T

    2010-01-01

    A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field on the JET tokamak. Calculation results from the momentum transport analysis show that the torque induced by the n = 1 perturbation field has a global profile. The maximal value of this torque is at the plasma core region (ρ - √ν regime in the plasma core, but it is close to the transition between the 1/ν and ν - √ν regimes. The neoclassical toroidal viscosity (NTV) torque in the 1/ν and ν - √ν regimes is calculated. The observed torque is of a magnitude in between that of the NTV torque in the 1/ν and ν - √ν regimes. The NTV torque in the ν - √ν regimes is enhanced using the Lagrangian variation of the magnetic field strength. However, it is still smaller than the observed torque by one order of magnitude.

  10. Shielding of External Magnetic Perturbations By Torque In Rotating Tokamak Plasmas

    Park, Jong-Kyu; Boozer, Allen H.; Menard, Jonathan E.; Gerhardt, Stefan P.; Sabbagh, Steve A.

    2009-01-01

    The imposition of a nonaxisymmetric magnetic perturbation on a rotating tokamak plasma requires energy and toroidal torque. Fundamental electrodynamics implies that the torque is essentially limited and must be consistent with the external response of a plasma equilibrium (rvec f) = (rvec j) x (rvec B). Here magnetic measurements on National Spherical Torus eXperiment (NSTX) device are used to derive the energy and the torque, and these empirical evaluations are compared with theoretical calculations based on perturbed scalar pressure equilibria (rvec f) = (rvec (del))p coupled with the theory of nonambipolar transport. The measurement and the theory are consistent within acceptable uncertainties, but can be largely inconsistent when the torque is comparable to the energy. This is expected since the currents associated with the torque are ignored in scalar pressure equilibria, but these currents tend to shield the perturbation.

  11. Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field

    Fijałkowski Karol

    2017-06-01

    Full Text Available The aim of the present study was to evaluate the impact of a rotating magnetic field (RMF on cellular and biochemical properties of Gluconacetobacter xylinus during the process of cellulose synthesis by these bacteria. The application of the RMF during bacterial cellulose (BC production intensified the biochemical processes in G. xylinus as compared to the RMF-unexposed cultures. Moreover, the RMF had a positive impact on the growth of cellulose-producing bacteria. Furthermore, the application of RMF did not increase the number of mutants unable to produce cellulose. In terms of BC production efficacy, the most favorable properties were found in the setting where RMF generator was switched off for the first 72 h of cultivation and switched on for the further 72 h. The results obtained can be used in subsequent studies concerning the optimization of BC production using different types of magnetic fields including RMF, especially.

  12. Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields

    Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com; Zou, Wei-Ke [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Chen, Qiao [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2014-09-07

    We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factor is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.

  13. Does successful rotator cuff repair improve muscle atrophy and fatty infiltration of the rotator cuff? A retrospective magnetic resonance imaging study performed shortly after surgery as a reference.

    Hamano, Noritaka; Yamamoto, Atsushi; Shitara, Hitoshi; Ichinose, Tsuyoshi; Shimoyama, Daisuke; Sasaki, Tsuyoshi; Kobayashi, Tsutomu; Kakuta, Yohei; Osawa, Toshihisa; Takagishi, Kenji

    2017-06-01

    Muscle atrophy and fatty infiltration in the rotator cuff muscles are often observed in patients with chronic rotator cuff tears. The recovery from these conditions has not been clarified. Ninety-four patients were included in this study. The improvement in muscle atrophy and fatty infiltration in successfully repaired rotator cuff tears was evaluated by magnetic resonance imaging at 1 year and 2 years after surgery and was compared with muscle atrophy and fatty infiltration observed on magnetic resonance imaging at 2 weeks after surgery to discount any changes due to the medial retraction of the torn tendon. The patients' muscle strength was evaluated in abduction and external rotation. Muscle atrophy and fatty infiltration of the supraspinatus were significantly improved at 2 years after surgery in comparison to 2 weeks after surgery. The subjects' abduction and external rotation strength was also significantly improved at 2 years after surgery in comparison to the preoperative values. Patients whose occupation ratio was improved had a better abduction range of motion, stronger abduction strength, and higher Constant score. Patients whose fatty infiltration was improved had a better range of motion in flexion and abduction, whereas the improvements of muscle strength and the Constant score were similar in the group that showed an improvement of fatty infiltration and the group that did not. Muscle atrophy and fatty infiltration can improve after rotator cuff repair. The strengths of abduction and external rotation were also improved at 2 years after surgery. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Theoretical study on rotational bands and shape coexistence of 183,185,187Tl in the particle-triaxial-rotor model

    Chen Guojie; Cao Hui; Liu Yuxin; Song Huichao

    2006-01-01

    By taking the particle-triaxial-rotor model with variable moment of inertia, we systematically investigate the energy spectra, deformations, and single-particle configurations of the nuclei 183,185,187 Tl. The calculated energy spectra agree quite well with experimental data. The obtained results indicate that the rotation-aligned bands observed in 183,185,187 Tl originate from one of the [530](1/2) - ,[532](3/2) - ,[660](1/2) + proton configurations coupled to a prolate deformed core. Furthermore, the negative parity bands built upon the (9/2) - isomeric states in 183,185,187 Tl are formed by a proton with the [505](9/2) - configuration coupled to a core with triaxial oblate deformation, and the positive parity band on the (13/2) + isomeric state in 187 Tl is generated by a proton with configuration [606](13/2) + coupled to a triaxial oblate core

  15. Long pulse FRC sustainment with enhanced edge driven rotating magnetic field current drive

    Hoffman, A.L.; Guo, H.Y.; Miller, K.E.; Milroy, R.D.

    2005-01-01

    FRCs have been formed and sustained for up to 50 normal flux decay times by Rotating Magnetic Fields (RMF) in the TCS experiment. For these longer pulse times a new phenomenon has been observed: switching to a higher performance mode delineated by shallower RMF penetration, higher ratios of generated poloidal to RMF drive field, and lower overall plasma resistivity. This global data is not explainable by previous RMF theory based on uniform electron rotational velocities or by numerical calculations based on uniform plasma resistivity, but agrees in many respects with new calculations made using strongly varying resistivity profiles. In order to more realistically model RMF driven FRCs with such non-uniform resistivity profiles, a double rigid rotor model has been developed with separate inner and outer electron rotational velocities and resistivities. The results of this modeling suggest that the RMF drive results in very high resistivity in a narrow edge layer, and that the higher performance mode is characterized by a sharp reduction in resistivity over the bulk of the FRC. (author)

  16. THE FORMATION AND ERUPTION OF A SMALL CIRCULAR FILAMENT DRIVEN BY ROTATING MAGNETIC STRUCTURES IN THE QUIET SUN

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Xu, Zhe, E-mail: boyang@ynao.ac.cn, E-mail: yjy@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)

    2015-04-20

    We present the first observation of the formation and eruption of a small circular filament driven by a rotating network magnetic field (RNF) in the quiet Sun. In the negative footpoint region of an inverse J-shaped dextral filament, the RNF was formed by the convergence to supergranular junctions of several magnetic flux patches of the same polarity, and it then rotated counterclockwise (CCW) for approximately 11 hr and showed up as a CCW rotating EUV cyclone, during which time the filament gradually evolved into a circular filament that surrounded the cyclone. When the calculated convergence and vortex flows appeared around the RNF during its formation and rotation phases, the injected magnetic helicity calculation also showed negative helicity accumulation during the RNF rotation that was consistent with the dextral chirality of the filament. Finally, the RNF rotation stopped and the cyclone disappeared, and, probably due to an emerging bipole and its forced cancellation with the RNF, the closure filament underwent an eruption along its axis in the (clockwise) direction opposite to the rotation directions of the RNF and cyclone. These observations suggest that the RNFs might play an important role in the formation of nearby small-scale circular filaments as they transport and inject magnetic energy and helicity, and the formation of the EUV cyclones may be a further manifestation of the helicity injected into the corona by the rotation of the RNFs in the photosphere. In addition, the new emerging bipole observed before the filament eruption might be responsible for destabilizing the system and triggering the magnetic reconnection which proves useful for the filament eruption.

  17. Radial modes of slowly rotating compact stars in the presence of magnetic field

    Panda, N.R. [Institute of Physics, Bhubaneswar (India); Siksha ' O' Anusandhan University, Bhubaneswar (India); Mohanta, K.K. [Rairangpur College, Rairangpur, Odisha (India); Sahu, P.K. [Institute of Physics, Bhubaneswar (India)

    2016-09-15

    Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field. (orig.)

  18. Magnetization distribution of single-particle states and 2/sup +/ rotational states from muonic atoms

    Backe, H; Engfer, R; Kankeleit, E; Link, R; Michaelsen, R; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Vuilleumier, J L; Walter, H K; Zehnder, A

    1973-01-01

    The lowest states in muonic atoms are rather sensitive to the spatial distribution of the nuclear magnetization density, and several results were deduced from the broadening of the muonic 2p/sub 1/2/-1s/sub 1/2/ and 3d/sub 3/2/-2p/sub 1/2/ transitions. By measuring low energetic transitions such as the 2s/sub 1/2/-2p/sub 1/2/ transition or nuclear gamma -transitions, it is possible to resolve the magnetic hyperfine splittings. The magnetic hf splitting of the 2s/sub 1/2/-2p/sub 1/2/ transition in mu /sup 115/In and of the 3/2/sup +/-1/2/sup +/ nuclear gamma -transitions in mu /sup 203/Tl at 279 keV, and in mu /sup 205/Tl at 204 keV, have been resolved. For the 2/sup +/-0/sup +/ nuclear gamma -transition in mu /sup 190,192/Os at 187 keV and 206 keV, respectively, the magnetic hf splitting of the 2/sup +/ rotational levels and the intensities of the hf components were determined from a nearly resolved doublet splitting. (7 refs).

  19. Linear and nonlinear stability of a thermally stratified magnetically driven rotating flow in a cylinder.

    Grants, Ilmars; Gerbeth, Gunter

    2010-07-01

    The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.

  20. Gyrokinetic Simulations with External Resonant Magnetic Perturbations: Island Torque and Nonambipolar Transport with Rotation

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic perturbations (RMPs) have been added to the δf gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr and the corresponding plasma torque (density) R[jrBθ/c], induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced q=m/n=6/3 islands with widths 5% of the minor radius. The island torque scales with the radial electric field Er the island width w, and the intensity I of the high-n micro-turbulence, as wErI^1/2. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero Er which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening. 6pt[1] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007). [2] R.E. Waltz, et al., Phys. Plasmas 18, 042504 (2011).

  1. Evidence of magnetic field in plasma focus by means of Faraday rotation measurements

    Fischfeld, G.

    1982-01-01

    Preliminary results of Faraday rotation measurements on a beam of laser light crossing the plasma column in the axial direction. are repacted. The presence of intense axial magnetic field Bsup(z) in the column both before and during the pinch phase is demonstrated. The experiments were performed on the Mather type Frascati 1 MJ plasma Focus, operated at 250 KJ 3 torr D 2 filling pressure. Is is used in the measurements a Quantel YG 49 YAG laser, frecuency doubled by means of KD*P crystal, which delivers about 60 mJ in 3 ns at = 530 nm. The beam polarization is analized by Wollaston prism. The electronic density is determined by Mach-Zender insterferometry. Two measurements are taken at time close to the end of the radial collapse phase, yielding Faraday rotation angles of 0.25 +- 0.05 rd and 0.56 +- o.05 rd which correspond to values, of axial magnetic fields of b(sup z) = 500 KG and B(sub z) = 400 KG. (Author) [pt

  2. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  3. Study on the properties of tunable prohibited band gaps for one-dimensional ternary magnetized plasma photonic crystals

    Zhang Haifeng; Zheng Jianping; Zhu Rongjun

    2012-01-01

    The transfer matrix method was applied to study on the properties of tunable prohibited band gaps for one-dimensional ternary magnetized plasma photonic crystals with TE wave arbitrary incident under ideal conditions. TE wave would be divided into left-handed circularly polarized wave and right-handed circularly polarized wave after propagation through one-dimensional ternary magnetized plasma photonic crystals. The calculated transmission coefficients were used to analyze the effects of parameter of plasma, plasma filling factor, incident angle and relative dielectric constant for dielectric layer on the properties of tunable prohibited band gap. The results illustrate that the width of band gaps can not be broadened by increasing plasma collision frequency, the numbers and width of band gaps can be tuned by changing plasma frequency, plasma filling factor and relative dielectric constant for dielectric layer. The band gaps for right-handed circularly polarized wave can be tuned by the plasma gyro frequency, but band gaps for the left-handed circularly polarized wave can't influenced. Low-frequency region of band gaps will be broadened, while high-frequency region of band gaps will be firstly narrow and then broaden with increasing incident angle. (authors)

  4. The Radius and Entropy of a Magnetized, Rotating, Fully Convective Star: Analysis with Depth-dependent Mixing Length Theories

    Ireland, Lewis G.; Browning, Matthew K.

    2018-04-01

    Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.

  5. Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields.

    Assaf Rotem

    Full Text Available Transcranial Magnetic Stimulation (TMS is a promising technology for both neurology and psychiatry. Positive treatment outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time. Rotating field TMS (rfTMS efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g., via motor feedback and will enable stimulation in brain regions where a preferred axonal orientation does not exist.

  6. Effect of rotating magnetic field on thermocapillary flow stability and the FZ crystal growth on the ground and in space

    Feonychev, A. I.

    It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of

  7. Conversion of the magnetic field measured in three components on the magnetic sensor body's random coordinate system into three components on geographical coordinate system through quaternion rotation.

    LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.

    2017-12-01

    To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for

  8. The influence of band Jahn-Teller effect and magnetic order on the magneto-resistance in manganite systems

    Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, Department of Applied Physics and Ballistics, F.M. University, Balasore, Orissa 756019 (India); Parhi, Nilima [Department of Physics, M.P.C. (Autonomous) College, Baripada, Orissa 757001 (India); Behera, S.N. [Institute of Material Science, Bhubaneswar 751004 (India)

    2009-08-01

    A model calculation is presented in order to study the magneto-resistivity through the interplay between magnetic and structural transitions for the manganite systems. The model consists of an orbitally doubly degenerate conduction band and a periodic array of local moments of the t{sub 2g} electrons. The band electrons interact with the local t{sub 2g} electrons via the s-f hybridization. The phonons interact with the band electrons through static and dynamic band Jahn-Teller (J-T) interaction. The model Hamiltonian including the above terms is solved for the single particle Green's functions and the imaginary part of the self-energy gives the electron relaxation time. Thus the magneto-resistivity (MR) is calculated from the Drude formula. The MR effect is explained near the magnetic and structural transition temperatures.

  9. Magnetic structure of deformation-induced shear bands in amorphous Fe{sub 80}B{sub 16}Si{sub 4} observed by magnetic force microscopy

    Brown, G.W. [Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hawley, M.E. [Materials Science and Technology Division, (MST-8), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Markiewicz, D.J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Spaepen, F.; Barth, E.P. [Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    1999-04-01

    Processing-induced magnetic structures in amorphous metallic alloys are of interest because of their impact on the performance of materials used in electric device applications. Plastic deformation associated with cutting or bending the material to the desired shape occurs through the formation of shear bands. The stress associated with these shear bands induces magnetic domains that can lead to power losses through interaction with the fields and currents involved in normal device operation. These domains have been studied previously using a variety of techniques capable of imaging magnetic domain structures. In an effort to better characterize and understand these issues, we have applied atomic and magnetic force microscopy to these materials to provide three-dimensional nanometer-scale topographic resolution and micrometer-scale magnetic resolution. {copyright} {ital 1999 American Institute of Physics.}

  10. Magnetization and spin-polarized conductance of asymmetrically hydrogenated graphene nanoribbons: significance of sigma bands

    Honda, Syuta; Inuzuka, Kouhei; Inoshita, Takeshi; Ota, Norio; Sano, Nobuyuki

    2014-01-01

    The magnetization and spin transport of asymmetric zigzag-edge graphene nanoribbons, terminated by hydrogen on one edge while unterminated on the other edge, were investigated by a combination of first-principles calculations and a tight-binding approach. At the unterminated edge, a spin-polarized σ edge state of minority spin appears near the Fermi level and contributes to spin transport. This state enters the band gap for ribbon widths of less than 15 chains, dominating the spin-polarized current. This indicates the importance of the σ edge states in the design of spintronic devices using graphene nanoribbons. We also examined the case where the ‘unterminated’ edge is partially terminated by hydrogen. (paper)

  11. Effect of rotation and magnetic field on free vibrations in a spherical non-homogeneous embedded in an elastic medium

    Bayones, F. S.; Abd-Alla, A. M.

    2018-06-01

    The prime objective of the present paper is to analyze the effect of magnetic field and rotation on the free vibrations of an elastic hollow sphere. The one-dimensional equation of motion is solved in terms of radial displacement. The frequency equation is obtained when the boundaries are free and fixed boundary conditions. The determination is concerned with the eigenvalues of the natural frequency of the free vibrations in the case of harmonic vibrations. The natural frequencies and the mode shapes are calculated numericall and the effects of rotation and magnetic field are discussed. It was shown that the dispersion curves of waves were significantly influenced by the magnetic field and rotation of the elastic sphere.

  12. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes

    Fang, Yun-tuan; Ni, Zhi-yao; Zhu, Na; Zhou, Jun

    2016-01-01

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively. (paper)

  13. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes.

    Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun

    2016-01-13

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.

  14. Kinetic equilibrium for an asymmetric tangential layer with rotation of the magnetic field

    Belmont, Gérard; Dorville, Nicolas; Aunai, Nicolas; Rezeau, Laurence

    2015-04-01

    Finding kinetic equilibria for tangential current layers is a key issue for modeling plasma phenomena such as magnetic reconnection instabilities, for which theoretical and numerical studies have to start from steady-state current layers. Until 2012, all theoretical models -starting with the most famous "Harris" one- relied on distribution functions built as mono-valued functions of the trajectories invariants. For a coplanar anti-symmetric magnetic field and in absence of electric field, these models were only able to model symmetric variations of the plasma, so precluding any modeling of "magnetopause-like'' layers, which separate two plasmas of different densities and temperatures. Recently, the "BAS" model was presented (Belmont et al., 2012), where multi-valued functions were taken into account. This new tool is made necessary each time the magnetic field reversal occurs on scales larger than the particle Larmor radii, and therefore guaranties a logical transition with the MHD modeling of large scales. The BAS model so provides a new asymmetric equilibrium. It has been validated in a hybrid simulation by Aunai et al (2013), and more recently in a fully kinetic simulation as well. For this original equilibrium to be computed, the magnetic field had to stay coplanar inside the layer. We present here an important generalization, where the magnetic field rotates inside the layer (although restricted to a 180° rotation hitherto). The tangential layers so obtained are thus closer to those encountered at the real magnetopause. This will be necessary, in the future, for comparing directly the theoretical profiles with the experimental ones for the various physical parameters. As it was done previously, the equilibrium is presently tested with a hybrid simulation. Belmont, G.; Aunai, N.; Smets, R., Kinetic equilibrium for an asymmetric tangential layer, Physics of Plasmas, Volume 19, Issue 2, pp. 022108-022118-10, 2012 Aunai, N.; Belmont, G.; Smets, R., First

  15. Quasi-particle and collective magnetism: Rotation, pairing and blocking in high-K isomers

    Stone, N.J.; Stone, J.R.; Walker, P.M.; Bingham, C.R.

    2013-01-01

    For the first time, a wide range of collective magnetic g-factors g R , obtained from a novel analysis of experimental data for multi-quasi-particle configurations in high-K isomers, is shown to exhibit a striking systematic variation with the relative number of proton and neutron quasi-particles, N p −N n . Using the principle of additivity, the quasi-particle contribution to magnetism in high-K isomers of Lu–Re, Z=71–75, has been estimated. Based on these estimates, band-structure branching ratio data are used to explore the behavior of the collective contribution as the number and proton/neutron nature (N p , N n ), of the quasi-particle excitations, change. Basic ideas of pairing, its quenching by quasi-particle excitation and the consequent changes to moment of inertia and collective magnetism are discussed. Existing model calculations do not reproduce the observed g R variation adequately. The paired superfluid system of nucleons in these nuclei, and their excitations, present properties of general physics interest. The new-found systematic behavior of g R in multi-quasi-particle excitations of this unique system, showing variation from close to zero for multi-neutron states to above 0.5 for multi-proton states, opens a fresh window on these effects and raises the important question of just which nucleons contribute to the ‘collective’ properties of these nuclei

  16. NuSTAR and swift observations of the fast rotating magnetized white dwarf AE Aquarii

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P-spin = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (L-X similar to 10(31) erg s(-1)). We have analyzed overlapping observations...... of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(-0.45)(+0.18), 2.29(-0.82)(+0.96), and 9.33(-2.18)(+6.07) keV, or an optically thin thermal plasma...

  17. Femtosecond single electron bunch generation by rotating longitudinal bunch phase space in magnetic field

    Yang, J.; Kondoh, T.; Kan, K.; Kozawa, T.; Yoshida, Y.; Tagawa, S.

    2006-01-01

    A femtosecond (fs) electron bunching was observed in a photoinjector with a magnetic compressor by rotating the bunch in longitudinal phase space. The bunch length was obtained by measuring Cherenkov radiation of the electron beam with a femtosecond streak camera technique. A single electron bunch with rms bunch length of 98 fs was observed for a 32 MeV electron beam at a charge of 0.17 nC. The relative energy spread and the normalized transverse emittance of the electron beam were 0.2% and 3.8 mm-mrad, respectively. The effect of space charge on the bunch compression was investigated experimentally for charges from 0.17 to 1.25 nC. The dependences of the relative energy spread and the normalized beam transverse emittance on the bunch charge were measured

  18. Use of an arc plasma rotating in a magnetic field for metal coating glass substrates

    Vukanovic, V.; Butler, S.; Kapur, S.; Krakower, E.; Allston, T.; Belfield, K.; Gibson, G.

    1983-01-01

    First results are reported about deposition of metals on glass substrate using a low current arc plasma source at atmospheric pressure. The arc source consists of a graphite cathode rod placed on the axis of a graphite anode cylinder aligned in a magnetic field. The carrier gas is argon. The deposition material, zinc or gold, is evaporated from a reservoir in the cathode. Depositions on flat substrates positioned on the periphery of the rotating plasma within the anode tube and in a jet outside the anode have been investigated. The investigations are planned to lead towards laser fusion target pusher layer fabrication. This fabrication would be facilitated by a high pressure deposition process where target levitation is readily performed

  19. THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS

    Morgan, Dylan P.; West, Andrew A.; Dhital, Saurav; Fuchs, Miriam; Garcés, Ane; Catalán, Silvia; Silvestri, Nicole M.

    2012-01-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types ≤ M7. Our results show that early-type M dwarfs (≤M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  20. Doppler-Zeeman Mapping of the Rapidly Rotating Magnetic CP Star HD37776

    Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Romanyuk, I. I.

    2000-03-01

    We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping (Vasilchenko et al. 1996), has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right- and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N > 200 (Romanyuk et al. 1999). The profile width of winged spectral lines (reaching 5 A) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, OII, AlIII, SiIII, and FeIII averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30 deg < i < 50 deg, beta = 40 deg, and a maximum surface field strength H_s = 60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum

  1. Static magnetic Faraday rotation spectroscopy combined with a differential scheme for OH detection

    Zhao, Weixiong; Deng, Lunhua; Qian, Xiaodong; Fang, Bo; Gai, Yanbo; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    The hydroxyl (OH) radical plays a critical role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and other trace gaseous species. Because of its very short life time and very low concentration in the atmosphere, interference-free high sensitivity in-situ OH monitoring by laser spectroscopy represents a real challenge. Faraday rotation spectroscopy (FRS) relies on the particular magneto-optic effect observed for paramagnetic species, which makes it capable of enhancing the detection sensitivity and mitigation of spectral interferences from diamagnetic species in the atmosphere. When an AC magnetic field is used, the Zeeman splitting of the molecular absorption line (and thus the magnetic circular birefringence) is modulated. This provides an 'internal modulation' of the sample, which permits to suppress the external noise like interference fringes. An alternative FRS detection scheme is to use a static magnetic field (DC-field) associated with laser wavelength modulation to effectively modulate the Zeeman splitting of the absorption lines. In the DC field case, wavelength modulation of the laser frequency can provide excellent performance compared to most of the sensing systems based on direct absorption and wavelength modulation spectroscopy. The dimension of the DC solenoid is not limited by the resonant frequency of the RLC circuit, which makes large dimension solenoid coil achievable and the absorption base length could be further increased. By employing a combination of the environmental photochemical reactor or smog chamber with multipass absorption cell, one can lower the minimum detection limit for high accuracy atmospheric chemistry studies. In this paper, we report on the development of a DC field based FRS in conjunction with a balanced detection scheme for OH radical detection at 2.8 μm and the construction of OH chemistry research platform which combined a large dimension superconducting magnetic coil with the

  2. Characterization of magnetic field profiles at RFX-mod by Faraday rotation measurements

    Auriemma, Fulvio; Brombin, Matteo; Canton, Alessandra; Giudicotti, Leonardo; Innocente, Paolo; Zilli, Enrico

    2009-11-01

    A multichannel far-infrared (FIR, λ=118.8 μm) polarimeter has been recently upgraded and re-installed on RFX-mod to measure the Faraday rotation angle along five vertical chords. Polarimetric data, associated with electron density profile, allow the reconstruction of the poloidal magnetic field profile. In this work the setup of the diagnostic is presented and the first Faraday rotation measurements are analyzed. The measurements have been performed at plasma current above 1.2 MA and electron density between 2 and 6x10^19 m-3. The actual S/N ratio is slightly lower than the expected one, due to electromagnetic coupling of the detectors with the saddle coils close to the polarimeter position. Due to this limit, only average information in the flat-top phase of the discharge could be so far obtained. The experimental data have been compared with the result of the μ&p equilibrium model [1], showing a good agreement between experiment and model, whereas the main differences are in the external region of the plasma. A different parameterization of the μ=μ0 J.B/B^2 profile has been proposed to enhance the agreement between model and experiment. [0pt] [1] Ortolani and Snack, World Scientific (1993) Singapore

  3. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  4. Mehanizam trenja i trošenja vodećeg prstena projektila / Friction and wear mechanism of the projectile rotating band

    Zoran Ristić

    2005-09-01

    Full Text Available U radu je opisan mehanizam trenja i trošenja vodećeg prstena projektila usled zagrevanja i topljenja kontaktne površine projektila. Primenjen je model hidrodinamičkog klizanja vodećeg prstena i postavljena Rejnoldsova jednačina za "fluid" (otopljeni film. Pretpostavlja se da je temperatura fluida konstantna i jednaka temperaturi topljenja na kontaktnim površinama. Na osnovu ukupnog prelaza toplote sa filma koji je stvoren između topljive i netopljive površine (model Landan određeni su rezultati za debljinu filma, koeficijent trenja i trošenje materijala. U raduje određena veličina trošenja vodećeg prstena i uticaj nekih parametara na silu trenja i debljinu filma otopljenog materijala prstena. Dobijeni rezultati ilustrovani su na odabranom primeru. / Friction and wear model of rotating band, due to, heating and melting material between the contact surface of a bore and projectile is described in this paper. The hydrodynamic slider-bearing model of the metal rotating band is applied and the Reynold's equation for the "fluid" (melting film has been used in this work. The fluid temperature was assumed to be constant and equal to the melting temperature on the contact surface. Based on the total heat transfer from the film, which is made, between the melting on the non-melting surface (Landan model and certain results of the film thickness, the coefficient of melt friction and the material wear were achieve. The size wears of the projectile rotating band and influence of certain parameters on the friction force and the film thickness are given in this paper. The achieved results have been illustrated by chosen example.

  5. Muon spin rotation studies of magnetic order and strong magnetic correlations in magnetic and superconducting systems based on the high Tc copper oxide structures

    Rudnick, J.J.; Filipkowski, M.E.; Tan, Z.; Chamberland, B.; Niedermayer, C.; Weidinger, A.; Golnik, A.; Simon, R.; Rauer, M.; Recknagel, E.; Gluckler, H.; Baines, C.

    1990-01-01

    In this paper the authors review results of a series of muon spin rotation (μSR) studies extending down to milli Kelvin temperatures in order to explore the existence of magnetic correlations below T C in the La 2-x Sr x CuO 4 system. Evidence is presented for the existence of local magnetic fields thought to originate from Cu electronic moments in both superconducting La 2-x Sr x CuO 4 and in superconducting oxygen deficient YBa 2 Cu 3 O 6.6 . μSR results are also presented for oxygen deficient and superconducting GdBa 2 Cu 3 O 6+x samples. Some discussion of the relevance of these results to recent proposals for pairing mechanisms is presented

  6. Magnetism of unconventional nanoscaled materials. An X-ray circular dichroism and muon spin rotation study

    Tietze, Thomas Hermann

    2014-01-01

    significant shape dependence was observed. This part of the thesis provides a microscopic understanding of the electronic and magnetic properties of Ni nanocluster on graphene and the cluster/graphene interaction. The resulting strong change in the Ni d states is very important concerning the choice of suitable materials for graphene based spintronic devices. The second part of this thesis is dedicated to the indirect influence of the nanoparticle size on the magnetic properties of an oxide system. In particular the origin of ferromagnetism in actual nonmagnetic ZnO is discussed. The reason for ferromagnetism in ZnO depends strongly on its microscopic properties. Nanocrystalline samples with adequate small grains are mandatory. The key parameter is the so called specific grain boundary area which is defined as ratio of grain surface to grain volume. If this value exceeds a certain threshold limit, ZnO can become ferromagnetic even without doping atoms. Here the ferromagnetic coupling is suggested to occur within the grain boundaries itself. A direct proof of this hypothesis is difficult. Measurement methods like SQUID do not provide information on the microscopic origin of the sample magnetization. Therefore, this problem was addressed using low energy muon spin rotation (μSR). Here, the magnetic moment of the muon is utilized as a local magnetic probe. Three different sample systems were investigated, varying the respective grain size. Two nanograined samples with an average grain size of 31 nm and 65 nm were compared to a nonmagnetic reference ZnO single crystal. A detailed TEM analysis of the grain size distribution showed that in both nanograined samples a significant fraction of grains is smaller than the threshold condition. SQUID and μSR measurements show a clear relation between magnetization respectively magnetic volume fraction and the sample volume occupied by grain boundaries. For larger grain boundary volume a larger saturation magnetization and μSR related

  7. Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

    Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg

    2018-06-01

    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.

  8. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    Abd-Alla, A.M.; Abo-Dahab, S.M.; Al-Simery, R.D.

    2013-01-01

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient

  9. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)

    2013-12-15

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.

  10. Can Preoperative Magnetic Resonance Imaging Predict the Reparability of Massive Rotator Cuff Tears?

    Kim, Jung Youn; Park, Ji Seon; Rhee, Yong Girl

    2017-06-01

    Numerous studies have shown preoperative fatty infiltration of rotator cuff muscles to be strongly negatively correlated with the successful repair of massive rotator cuff tears (RCTs). To assess the association between factors identified on preoperative magnetic resonance imaging (MRI), especially infraspinatus fatty infiltration, and the reparability of massive RCTs. Case-control study; Level of evidence, 3. We analyzed a total of 105 patients with massive RCTs for whom MRI was performed ≤6 months before arthroscopic procedures. The mean age of the patients was 62.7 years (range, 46-83 years), and 46 were men. Among them, complete repair was possible in 50 patients (48%) and not possible in 55 patients (52%). The tangent sign, fatty infiltration of the rotator cuff, and Patte classification were evaluated as predictors of reparability. Using the receiver operating characteristic curve and the area under the curve (AUC), the prediction accuracy of each variable and combinations of variables were measured. Reparability was associated with fatty infiltration of the supraspinatus ( P = .0045) and infraspinatus ( P 3 and grade >2, respectively. The examination of single variables revealed that infraspinatus fatty infiltration showed the highest AUC value (0.812; sensitivity: 0.86; specificity: 0.76), while the tangent sign showed the lowest AUC value (0.626; sensitivity: 0.38; specificity: 0.87). Among 2-variable combinations, the combination of infraspinatus fatty infiltration and the Patte classification showed the highest AUC value (0.874; sensitivity: 0.54; specificity: 0.96). The combination of 4 variables, that is, infraspinatus and supraspinatus fatty infiltration, the tangent sign, and the Patte classification, had an AUC of 0.866 (sensitivity: 0.28; specificity: 0.98), which was lower than the highest AUC value (0.874; sensitivity: 0.54; specificity: 0.96) among the 2-variable combinations. The tangent sign or Patte classification alone was not a predictive

  11. Transient rotation of photospheric vector magnetic fields associated with a solar flare.

    Xu, Yan; Cao, Wenda; Ahn, Kwangsu; Jing, Ju; Liu, Chang; Chae, Jongchul; Huang, Nengyi; Deng, Na; Gary, Dale E; Wang, Haimin

    2018-01-03

    As one of the most violent eruptions on the Sun, flares are believed to be powered by magnetic reconnection. The fundamental physics involving the release, transfer, and deposition of energy have been studied extensively. Taking advantage of the unprecedented resolution provided by the 1.6 m Goode Solar Telescope, here, we show a sudden rotation of vector magnetic fields, about 12-20° counterclockwise, associated with a flare. Unlike the permanent changes reported previously, the azimuth-angle change is transient and cospatial/temporal with Hα emission. The measured azimuth angle becomes closer to that in potential fields suggesting untwist of flare loops. The magnetograms were obtained in the near infrared at 1.56 μm, which is minimally affected by flare emission and no intensity profile change was detected. We believe that these transient changes are real and discuss the possible explanations in which the high-energy electron beams or Alfve'n waves play a crucial role.

  12. Jeans Instability of the Self-Gravitating Viscoelastic Ferromagnetic Cylinder with Axial Nonuniform Rotation and Magnetic Field

    Dhiman, Joginder Singh; Sharma, Rajni

    2017-12-01

    The effects of nonuniform rotation and magnetic field on the instability of a self gravitating infinitely extending axisymmetric cylinder of viscoelastic ferromagnetic medium have been studied using the Generalised Hydrodynamic (GH) model. The non-uniform magnetic field and rotation are acting along the axial direction of the cylinder and the propagation of the wave is considered along the radial direction, while the ferrofluid magnetization is taken collinear with the magnetic field. A general dispersion relation representing magnetization, magnetic permeability and viscoelastic relaxation time parameters is obtained using the normal mode analysis method in the linearized perturbation equation system. Jeans criteria which represent the onset of instability of self gravitating medium are obtained under the limits; when the medium behaves like a viscous liquid (strongly coupled limit) and a Newtonian liquid (weakly coupled limit). The effects of various parameters on the Jeans instability criteria and on the growth rate of self gravitating viscoelastic ferromagnetic medium have been discussed. It is found that the magnetic polarizability due to ferromagnetization of medium marginalizes the effect of non-uniform magnetic field on the Jeans instability, whereas the viscoelasticity of the medium has the usual stabilizing effect on the instability of the system. Further, it is found that the cylindrical geometry is more stable than the Cartesian one. The variation of growth rate against the wave number and radial distance has been depicted graphically.

  13. Elution of Artificial Sputum from Swab by Rotating Magnetic Field-Induced Mechanical Impingement

    Shubham Banik

    2017-12-01

    Full Text Available Cotton-tipped applicator swabs are used as a collection device for many biological samples and its complete elution is a desired step for clinical and forensic diagnostics. Swabs are used to collect infectious body fluids, where the concentration of pathogens can range from 1 × 104 CFU/mL (colony forming units/mL in respiratory-tract infections and 1 × 105 in urinary-tract infections, to up to 1 × 109 CFU/mL in salivary samples. These samples are then eluted and lysed, prior to DNA (De-oxy Ribonucleic Acid analysis. The recovery of micro-organisms from a matrix of swab fibres depends on the nature of the body fluid, the type of the swab fibres, and the process of elution. Various methods to elute samples from swab include chemical digestion of fibres (~20% recovery, centrifugation (~58% recovery, piezoelectric vibration, or pressurized fluid-flow (~60% recovery. This study reports a magnetically-actuated physical impingement method for elution and recovery of artificial sputum samples from cotton fibres. A device has been fabricated to induce a rotating magnetic field on smaller magnetic particles in a vial that strikes the swab within a confined gap. Elution from the swab in this device was characterized using 2% Methyl cellulose in deionised water, loaded with fluorescent-tagged polystyrene beads and E. coli at various concentrations. The recovery efficiency was found to increase with both rotational speed and elution time, but plateaus after 400 RPM (Revolutions per minute and 120 s, respectively. At a higher concentration of polystyrene beads (5 × 108 particles/mL, a maximum recovery of ~85% was achieved. With lower concentration, (1 × 105 particles/mL the maximum efficiency (~92.8% was found to be almost twice of passive elution (46.7%. In the case of E. coli, the corresponding recovery efficiency at 3.35 × 105 CFU/mL is 90.4% at 500 RPM and 120 s. This elution method is expected to have a wide applicability in clinical diagnostics.

  14. RPC Calculations for K-forbidden Transitions in {sup 183}W, Evidence for Large Inertial Parameter Connected with High-lying Rotational Bands

    Malmskog, S G [AB Atomenergi, Nykoeping (Sweden); Wahlborn, S [Div. of Theore tical Physics, Royal Inst. of Technology Stockholm (Sweden)

    1967-09-15

    Recent measurements have shown that the transitions deexciting the 453 keV 7/2{sup -} level in {sup 183}W to the K = 1/2{sup -} and 3/2{sup -} bands are strongly retarded. The data for B(M1) and B(E2) are analyzed in terms of the RPC model (rotation + particle motion + coupling). With the {delta}K = 1 (Coriolis) coupling, the K-forbidden M1-transitions proceed via admixtures of high-lying 5/2{sup -} bands. A reasonable and unambiguous fit to the data is obtained by varying the strength of the coupling. Allowing for various uncertainties and corrections, one finds that the inertial parameter (the inverse of the coupling constant, i. e. 2J(2{pi}){sup 2}/({Dirac_h}){sup 2} may have values between roughly 1 and 3 times the rigid rotator value of 2J(2{pi}){sup 2}/({Dirac_h}){sup 2}, thus being unexpectedly large. Calculations with the {delta}K=2 coupling were also performed and turn out not to give better agreement with experiment.

  15. Investigation of level energies and B(E2) values for rotation-aligned bands in Hg isotopes

    Mertin, D.; Tischler, R.; Kleinrahm, A.; Kroth, R.; Huebel, H.; Guenther, C.

    1978-01-01

    High spin states in 191 192 193 195 197 199 Hg were investigated by observing γ-rays and conversion electrons in the compound reactions 192 194 198 Pt(α,xn) and 192 Pt ( 3 He,4n). In 197 Hg the decoupled band built on the 13/2 + state and the semi-decoupled negative-parity band are observed up to Isup(π)=41/2 + and 33/2 - , respectively. A careful investigation of 199 Hg revealed no new high spin states above the previously known levels with Isup(π)=25/2 + and 31/2 - . Half-lives were determined for the 10 + , 7 - , 8 - and 16 - states in 192 Hg, the 33/2 states in 191 193 Hg and the 25/2 - states in 191 193 195 197 Hg. The systematics of the level energies and B(E2) values for the positive parity ground and 13/2 + bands and the negative-parity semi-decoupled bands in 190-200 Hg is discussed. (Auth.)

  16. Magnetic rotation spectra of Co/Pt and Co/Cu multilayers in 50-90 eV region

    Saito, K.; Igeta, M.; Ejima, T.; Hatano, T.; Arai, A.; Watanabe, M.

    2005-01-01

    Faraday rotation spectra of Co/Pt multilayers were obtained in the region including Co M 2,3 and Pt N 6,7 absorption edges by using multilayer polarizers, and were transformed to magnetic circular dichroism (MCD) spectra by Kramers-Kronig analysis (KKA). From the dependence of the rotation angle on the layer thickness, it was suggested that the magnetization of Co tends to be uniform in Co layers and that of Pt is localized at Co/Pt interfaces. The orbital magnetic moment of Co was estimated to be about 0.17 μ B /Co. The similarity of electronic states around magnetized Pt site between Co/Pt multilayers and CoPt 3 alloy is suggested by the resemblance of the MCD spectra of both materials around Pt N 6,7 edges. In addition, magnetic Kerr rotation of Co/Cu multilayer was measured and was observed around Co M 2,3 and Cu M 2,3 absorption edges

  17. Electron Acceleration in the Field-reversed Configuration (FRC) by Slowly Rotation Odd-parity Magnetic Fields (RMFo)

    Glasser, A.H.; Cohen, S.A.

    2001-01-01

    The trajectories of individual electrons are studied numerically in a 3D, prolate, FRC [field-reversed configuration] equilibrium magnetic geometry with added small-amplitude, slowly rotating, odd-parity magnetic fields (RMFos). RMFos cause electron heating by toroidal acceleration near the O-point line and by field-parallel acceleration away from it, both followed by scattering from magnetic-field inhomogeneities. Electrons accelerated along the O-point line move antiparallel to the FRC's current and attain average toroidal angular speeds near that of the RMFo, independent of the sense of RMFo rotation. A conserved transformed Hamiltonian, dependent on electron energy and RMFo sense, controls electron flux-surface coordinate

  18. Numerical simulation of the combination effect of external magnetic field and rotating workpiece on abrasive flow finishing

    Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A. [Malek-Ashtar University of Technology (MUT), Isfahan (Iran, Islamic Republic of)

    2017-04-15

    Finishing of a workpiece is a main process in the production. This affects the quality and lifetime. Finishing in order of nanometer, nowadays, is a main demand of the industries. Thus, some new finishing process, such as abrasive flow finishing, is introduced to respond this demand. This may be aided by rotating workpiece and imposing a magnetic field. Numerical simulation of this process can be beneficial to reduce the expense and predict the result in a minimum time. Accordingly, in this study, magnetorheological fluid finishing is numerically simulated. The working medium contains magnetic and abrasive particles, blended in a base fluid. Some hydrodynamic parameters and surface roughness variations are studied. It is found that combination of rotating a workpiece and imposing a magnetic field can improve the surface roughness up to 15 percent.

  19. A Computer Assisted Procedure of Assignments of Vibration-Rotation Bands of Asymmetric and Symmetric Top Molecules

    Urban, Štěpán; Behrend, J.; Pracna, Petr

    2004-01-01

    Roč. 690, - (2004), s. 105-114 ISSN 0022-2860 R&D Projects: GA MŠk ME 445; GA ČR GA203/01/1274 Institutional research plan: CEZ:AV0Z4040901 Keywords : assigments of vibration-rotation spectra * combination differences * Loomis-Wood algorithm Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.200, year: 2004

  20. HoYbBIG epitaxial thick films used for Faraday rotator in the 1.55μm band

    Zhong, Z.W.; Xu, X.W.; Chong, T.C.; Yuan, S.N.; Li, M.H.; Zhang, G.Y.; Freeman, B.

    2005-01-01

    Ho 3-x-y Yb y Bi x Fe 5 O 12 (HoYbBIG) garnet thick films with Bi content of x=0.9-1.5 were prepared by the liquid phase epitaxy (LPE) method. Optical properties and magneto-optical properties were characterized. The LPE-grown HoYbBIG thick films exhibited large Faraday rotation coefficients up to 1540 o /cm at 1.55μm, and good wavelength and temperature stability

  1. A compounded rare-earth iron garnet single crystal exhibiting stable Faraday rotation against wavelength and temperature variation in the 1.55 μm band

    Xu, Z.C.; Huang, M.; Li Miao

    2006-01-01

    The Bi, Tb and Yb partially substituted iron garnet bulk single crystals of Tb 3- x - y Yb y Bi x Fe 5 O 12 were grown by using Bi 2 O 3 /B 2 O 3 as flux and accelerated crucible rotation technique for single-crystal growth. Faraday rotation (FR) spectra showed that the specific FR of the (Tb 0.91 Yb 1.38 Bi 0.71 )Fe 5 O 12 crystal under magnetic field at saturation was measured to be about -1617 o /cm at λ=1.55 μm, Faraday rotation wavelength coefficient (FWC, 0.009%/nm) in the wavelength range of 1.50-1.62 μm and Faraday rotation temperature coefficient (FTC, 3.92x10 -5 /K) at λ=1.55 μm were even smaller than that of YIG. It is proven that through combining two types of Bi-substituted rare-earth iron garnets with opposite FWC and FTC signs, the compound rare-earth iron garnets with low FWC and FTC may be obtained due to the compensation effect. The saturation magnetization of (Tb 0.91 Yb 1.38 Bi 0.71 ) Fe 5 O 12 crystal is 0.48x10 6 A/M and is also much smaller than that of YIG. We have found empirically that there is a simple relationship between the FR θ f (x) and Bi content x for Tb 3- x - y Yb y Bi x Fe 5 O 12 , which is given by θ f (x)=(-2759x+400) o /cm

  2. HST ROTATIONAL SPECTRAL MAPPING OF TWO L-TYPE BROWN DWARFS: VARIABILITY IN AND OUT OF WATER BANDS INDICATES HIGH-ALTITUDE HAZE LAYERS

    Yang, Hao; Apai, Dániel; Karalidi, Theodora [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Saumon, Didier [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Morley, Caroline V. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Buenzli, Esther [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Metchev, Stanimir [Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, ON N6A 3K7 (Canada); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Mohanty, Subhanjoy [Imperial College London, 1010 Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Showman, Adam P.; Flateau, Davin [Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Heinze, Aren N., E-mail: haoyang@email.arizona.edu [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States)

    2015-01-01

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759–1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon and Marley and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers—the driver of the variability—must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.

  3. Reliability of magnetic resonance imaging assessment of rotator cuff: the ROW study.

    Jain, Nitin B; Collins, Jamie; Newman, Joel S; Katz, Jeffrey N; Losina, Elena; Higgins, Laurence D

    2015-03-01

    Physiatrists encounter patients with rotator cuff disorders, and imaging is frequently an important component of their diagnostic assessment. However, there is a paucity of literature on the reliability of magnetic resonance imaging (MRI) assessment between shoulder specialists and musculoskeletal radiologists. We assessed inter- and intrarater reliability of MRI characteristics of the rotator cuff. Cross-sectional secondary analyses in a prospective cohort study. Academic tertiary care centers. Subjects with shoulder pain were recruited from orthopedic and physiatry clinics. Two shoulder-fellowship-trained physicians (a physiatrist and a shoulder surgeon) jointly performed a blinded composite MRI review by consensus of 31 subjects with shoulder pain. Subsequently, MRI was reviewed by one fellowship-trained musculoskeletal radiologist. We calculated the Cohen kappa coefficients and percentage agreement among the 2 reviews (composite review of 2 shoulder specialists versus that of the musculoskeletal radiologist). Intrarater reliability was assessed among the shoulder specialists by performing a repeated blinded composite MRI review. In addition to this repeated composite review, only one of the physiatry shoulder specialists performed an additional review. Interrater reliability (shoulder specialists versus musculoskeletal radiologist) was substantial for the presence or absence of tear (kappa 0.90 [95% confidence interval {CI}, 0.72-1.00]), tear thickness (kappa 0.84 [95% CI, 0.70-0.99]), longitudinal size of tear (kappa 0.75 [95% CI, 0.44-1.00]), fatty infiltration (kappa 0.62 [95% CI, 0.45-0.79]), and muscle atrophy (kappa 0.68 [95% CI, 0.50-0.86]). There was only fair interrater reliability of the transverse size of tear (kappa 0.20 [95% CI, 0.00-0.51]). The kappa for intrarater reliability was high for tear thickness (0.88 [95% CI, 0.72-1.00]), longitudinal tear size (0.61 [95% CI, 0.22-0.99]), fatty infiltration (0.89 [95% CI, 0.80,-0.98]), and muscle atrophy

  4. A Comparison of the Valence Band Structure of Bulk and Epitaxial GeTe-based Diluted Magnetic Semiconductors

    Pietrzyk, M.A.; Kowalski, B.J.; Orlowski, B.A.; Knoff, W.; Story, T.; Dobrowolski, W.; Slynko, V.E.; Slynko, E.I.; Johnson, R.L.

    2010-01-01

    In this work we present a comparison of the experimental results, which have been obtained by the resonant photoelectron spectroscopy for a set of selected diluted magnetic semiconductors based on GeTe, doped with manganese. The photoemission spectra are acquired for the photon energy range of 40-60 eV, corresponding to the Mn 3p → 3d resonances. The spectral features related to Mn 3d states are revealed in the emission from the valence band. The Mn 3d states contribution manifests itself in the whole valence band with a maximum at the binding energy of 3.8 eV. (authors)

  5. Mixing of ground-state rotational and gamma and beta vibrational bands in the region A>=228

    Mittal, R; Sahota, H S [Punjabi Univ., Patiala (India). Dept. of Physics

    1983-06-21

    The mixing of beta, gamma and ground-state bands has been investigated through the experimental determination of mixing parameters Zsub(..gamma..) and Zsub(..beta gamma..). These Zsub(..gamma..) values have been compared with the theoretical calculations of this parameter from the solutions of time-dependent HFB equations on the adiabatic and nonadiabatic assumptions. The experimental values are in better agreement with the results obtained under the nonadiabatic assumption, valid for small deviations from the spherical symmetry.

  6. Reanalysis and extension of the MnH A7Π- X7Σ + (0, 0) band: Fine structure and hyperfine-induced rotational branches

    Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.

    1992-12-01

    The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.

  7. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    EOz, E.; Myers, C.E.; Edwards, M.R.; Berlinger, B.; Brooks, A.; Cohen, S.A.

    2011-01-01

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMF o from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τ fc ) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with τ fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 10 3 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  8. Mitigation of rotational instability of high-beta field-reversed configuration by double-sided magnetized plasmoid injection

    Itagaki, H.; Inomoto, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Asai, T.; Takahashi, Ts. [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2014-03-15

    Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.

  9. Analysis of photonic band gap in dispersive properties of tunable three-dimensional photonic crystals doped by magnetized plasma

    Zhang HaiFeng; Liu Shaobin; Yang Huan; Kong Xiangkun

    2013-01-01

    In this paper, the magnetooptical effects in dispersive properties for two types of three-dimensional magnetized plasma photonic crystals (MPPCs) containing homogeneous dielectric and magnetized plasma with diamond lattices are theoretically investigated for electromagnetic (EM) wave based on plane wave expansion (PWE) method, as incidence EM wave vector is parallel to the external magnetic field. The equations for two types of MPPCs with diamond lattices (dielectric spheres immersed in magnetized plasma background or vice versa) are theoretically deduced. The influences of dielectric constant, plasma collision frequency, filling factor, the external magnetic field, and plasma frequency on the dispersive properties for both types of structures are studied in detail, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that the photonic band gaps (PBGs) for both types of MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field, and the relative dielectric constant of dielectric, respectively. Especially, the external magnetic field can enlarge the PBG for type-2 structure (plasma spheres immersed in dielectric background). However, the plasma collision frequency has no effect on the dispersive properties of two types of three-dimensional MPPCs. The locations of flatbands regions for both types of structures cannot be tuned by any parameters except for plasma frequency and the external magnetic field. The analytical results may be informative and of technical use to design the MPPCs devices.

  10. Investigation on the optimal magnetic field of a cusp electron gun for a W-band gyro-TWA

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2018-05-01

    High efficiency and broadband operation of a gyrotron traveling wave amplifier (gyro-TWA) require a high-quality electron beam with low-velocity spreads. The beam velocity spreads are mainly due to the differences of the electric and magnetic fields that the electrons withstand the electron gun. This paper investigates the possibility to decouple the design of electron gun geometry and the magnet system while still achieving optimal results, through a case study of designing a cusp electron gun for a W-band gyro-TWA. A global multiple-objective optimization routing was used to optimize the electron gun geometry for different predefined magnetic field profiles individually. Their results were compared and the properties of the required magnetic field profile are summarized.

  11. Evaluation of Iron Loss in Interior Permanent Magnet Synchronous Motor with Consideration of Rotational Field

    Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki

    Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.

  12. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    Farengo, R.

    2002-01-01

    A Monte-Carlo code is used to study neutral beam current drive in Spheromaks. The exact particle trajectories are followed in the self-consistent equilibria calculated including the beam current. Reducing Z(eff) does not increase the current drive efficiency because the reduction of the stopping cross section is compensated by an increase in the electron canceling current. Significant changes in the safety factor profile can be produced with relatively low beam currents. Minimum dissipation states of a flux core spheromak sustained by helicity injection are presented. Helicity balance is used as a constraint and the resistivity is considered to be non-uniform. Two types of relaxed states are found; one has a central core of open flux surrounded by a toroidal region of closed flux surfaces and the other has the open flux wrapped around the closed flux surfaces. Non-uniform resistivity effects can be very important due to the changes they produce in the safety factor profile. A hybrid, fluid electrons particle ions, code is employed to study ion dynamics in FRCs sustained by rotating magnetic fields. (author)

  13. Rotation and magnetic activity of the Hertzsprung-gap giant 31 Comae

    Strassmeier, K. G.; Granzer, T.; Kopf, M.; Weber, M.; Küker, M.; Reegen, P.; Rice, J. B.; Matthews, J. M.; Kuschnig, R.; Rowe, J. F.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2010-09-01

    Context. The single rapidly-rotating G0 giant 31 Comae has been a puzzle because of the absence of photometric variability despite its strong chromospheric and coronal emissions. As a Hertzsprung-gap giant, it is expected to be at the stage of rearranging its moment of inertia, hence likely also its dynamo action, which could possibly be linked with its missing photospheric activity. Aims: Our aim is to detect photospheric activity, obtain the rotation period, and use it for a first Doppler image of the star's surface. Its morphology could be related to the evolutionary status. Methods: We carried out high-precision, white-light photometry with the MOST satellite, ground-based Strömgren photometry with automated telescopes, and high-resolution optical echelle spectroscopy with the new STELLA robotic facility. Results: The MOST data reveal, for the first time, light variations with a full amplitude of 5 mmag and an average photometric period of 6.80 ± 0.06 days. Radial-velocity variations with a full amplitude of 270 m s-1 and a period of 6.76 ± 0.02 days were detected from our STELLA spectra, which we also interpret as due to stellar rotation. The two-year constancy of the average radial velocity of +0.10 ± 0.33 km s-1 confirms the star's single status, as well as the membership in the cluster Melotte 111. A spectrum synthesis gives Teff = 5660 ± 42 K, log g = 3.51 ± 0.09, and [Fe/H] = -0.15 ± 0.03, which together with the revised Hipparcos distance, suggests a mass of 2.6 ± 0.1 M_⊙ and an age of ≈540 Myr. The surface lithium abundance is measured to be nearly primordial. A detection of a strong He i absorption line indicates nonradiative heating processes in the atmosphere. Our Doppler images show a large, asymmetric polar spot, cooler than Teff by ≈1600 K, and several small low-to-mid latitude features that are warmer by ≈300-400 K and are possibly of chromospheric origin. We computed the convective turnover time for 31 Com as a function of depth

  14. Torsion-rotation structure and quasi-symmetric-rotor behaviour for the CH3SH asymmetric CH3-bending and C-H stretching bands of E parentage

    Lees, R. M.; Xu, Li-Hong; Guislain, B. G.; Reid, E. M.; Twagirayezu, S.; Perry, D. S.; Dawadi, M. B.; Thapaliya, B. P.; Billinghurst, B. E.

    2018-01-01

    High-resolution Fourier transform spectra of the asymmetric methyl-bending and methyl-stretching bands of CH3SH have been recorded employing synchrotron radiation at the FIR beamline of the Canadian Light Source. Analysis of the torsion-rotation structure and relative intensities has revealed the novel feature that for both bend and stretch the in-plane and out-of-plane modes behave much like a Coriolis-coupled l-doublet pair originating from degenerate E modes of a symmetric top. As the axial angular momentum K increases, the energies of the coupled "l = ±1" modes diverge linearly, with effective Coriolis ζ constants typical for symmetric tops. For the methyl-stretching states, separated at K = 0 by only about 1 cm-1, the assigned sub-bands follow a symmetric top Δ(K - l) = 0 selection rule, with only ΔK = -1 transitions observed to the upper l = -1 in-plane A‧ component and only ΔK = +1 transitions to the lower l = +1 out-of-plane A″ component. The K = 0 separation of the CH3-bending states is larger at 9.1 cm-1 with the l-ordering reversed. Here, both ΔK = +1 and ΔK = -1 transitions are seen for each l-component but with a large difference in relative intensity. Term values for the excited state levels have been fitted to J(J + 1) power-series expansions to obtain substate origins. These have then been fitted to a Fourier model to characterize the torsion-K-rotation energy patterns. For both pairs of vibrational states, the torsional energies display the customary oscillatory behaviour as a function of K and have inverted torsional splittings relative to the ground state. The spectra show numerous perturbations, indicating local resonances with the underlying bath of high torsional levels and vibrational combination and overtone states. The overall structure of the two pairs of bands represents a new regime in which the vibrational energy separations, torsional splittings and shifts due to molecular asymmetry are all of the same order, creating a

  15. Cannon Wear and Erosion Science and Technology Objective Program (STO) 155-mm Projectile Rotating Band/Obturation for Extended Range

    2015-06-01

    refractory metal coatings such as chrome plating have slowed the erosion at the origin but have not prevented down bore wear. Down bore wear is due...in the current projectile inventory: the M107, M864/M549A1, and the M483A1 types (fig. 1). The band material is either copper or a copper/ zinc alloy... ductility and sufficient tensile (shear) strength in order to engrave and survive 300 in. of tube travel. In the materials, these properties are

  16. Ferrofluid spiral formations and continuous-to-discrete phase transitions under simultaneously applied DC axial and AC in-plane rotating magnetic fields

    Rhodes, Scott; Perez, Juan; Elborai, Shihab; Lee, Se-Hee; Zahn, Markus

    2005-01-01

    New flows and instabilities are presented for a ferrofluid drop contained in glass Hele-Shaw cells with simultaneously applied in-plane clockwise rotating and DC axial uniform magnetic fields. When a ferrofluid drop is stressed by a uniform DC axial magnetic field, up to ∼250 G in 0.9-1.4 mm gap Hele-Shaw cells, the drop forms a labyrinth pattern. With subsequent application of an in-plane uniform rotating magnetic field, up to ∼100 G rms at frequency 20-40 Hz, smooth spirals form from viscous shear due to ferrofluid flow. If the rotating magnetic field is applied first, the drop is held together without a labyrinth. Gradual increase of the DC axial magnetic field, to a critical magnetic field value, results in an abrupt phase transformation from a large drop to many small discrete droplets. A preliminary minimum magnetization and surface energy analysis is presented to model the phase transformation

  17. Current-induced rotational torques in the skyrmion lattice phase of chiral magnets

    Everschor, K.; Garst, M.; Duine, R.A.|info:eu-repo/dai/nl/304830127; Rosch, A.

    2011-01-01

    In chiral magnets without inversion symmetry, the magnetic structure can form a lattice of magnetic whirl lines, a two-dimensional skyrmion lattice, stabilized by spin-orbit interactions in a small range of temperatures and magnetic fields. The twist of the magnetization within this phase gives rise

  18. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-η i mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the η i mode suggests that the large core E x B flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low Β N < 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity

  19. Parameterization of rotational spectra

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  20. Effect of a high-frequency magnetic field on the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field

    Casado-Pascual, Jesus

    2010-01-01

    Graphical abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. - Abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. The analytical results achieved by applying these two methods are compared with those obtained from the numerical solution of the Schroedinger equation. This comparison leads to the conclusion that the multiple scale method provides a better understanding of the system dynamics than the averaging method. In particular, the averaging method predicts the complete destruction of the resonant behavior by an appropriate choice of the parameter values of the high-frequency magnetic field. This conclusion is disproved both by the numerical results, and also by the results obtained from the multiple scale method.

  1. Magnetic resonance appearance of posterosuperior labral peel back during humeral abduction and external rotation

    Borrero, Camilo G.; Casagranda, Bethany U.; Towers, Jeffrey D. [Department of Radiology, Pittsburgh, PA (United States); Bradley, James P. [Department of Orthopedics, Pittsburgh, PA (United States)

    2010-01-15

    To describe the magnetic resonance appearance of posterosuperior labral peel back and determine the reliability of MR in the abducted and externally rotated (ABER) position for the prospective diagnosis of arthroscopically proven cases of posterosuperior labral peel back. After approval by the institutional review board (IRB) of the University of Pittsburgh Medical Center, USA, databases of patients who underwent arthroscopy over a 2-year period for one of three clinical diagnoses [suspected type 2 superior labrum anterior to posterior (SLAP) tears, posterior instability, or multidirectional instability] were reviewed after anonymization by an honest broker. Sixty-three cases were selected by the following inclusion criteria: operative report documenting labral peel back in the ABER position, age <40 years, and preceding MR arthrogram evaluations with images in the ABER position (n = 34). Inclusion criteria for the control group differed from those for the case group insofar as the operative note documented the absence of posterosuperior labral peel back (n = 29). Cases and controls were randomized in one list and evaluated independently by two fellowship-trained musculoskeletal radiologists unaware of the surgical results and using a three-point grading system (0 = posterosuperior labrum normally positioned lateral/craniad to glenoid articular plane in ABER; 1 = posterosuperior labral tissue flush with the glenoid articular plane in ABER; 2 = posterosuperior labral tissue identified medial/caudal to glenoid articular plane in ABER). Only one image in ABER showing abnormal posterosuperior labral position was required for a grade of 1 or 2 to be assigned. Sensitivity, specificity, and positive and negative predictive value were calculated as well as the level of agreement between readers (kappa). Both readers assigned a grade of 2 to 25 of 34 patients with surgically proven labral peel back. Of the patients with surgically proven SLAP tears with peel back in ABER

  2. Magnetic resonance appearance of posterosuperior labral peel back during humeral abduction and external rotation.

    Borrero, Camilo G; Casagranda, Bethany U; Towers, Jeffrey D; Bradley, James P

    2010-01-01

    To describe the magnetic resonance appearance of posterosuperior labral peel back and determine the reliability of MR in the abducted and externally rotated (ABER) position for the prospective diagnosis of arthroscopically proven cases of posterosuperior labral peel back. After approval by the institutional review board (IRB) of the University of Pittsburgh Medical Center, USA, databases of patients who underwent arthroscopy over a 2-year period for one of three clinical diagnoses [suspected type 2 superior labrum anterior to posterior (SLAP) tears, posterior instability, or multidirectional instability] were reviewed after anonymization by an honest broker. Sixty-three cases were selected by the following inclusion criteria: operative report documenting labral peel back in the ABER position, age position (n=34). Inclusion criteria for the control group differed from those for the case group insofar as the operative note documented the absence of posterosuperior labral peel back (n=29). Cases and controls were randomized in one list and evaluated independently by two fellowship-trained musculoskeletal radiologists unaware of the surgical results and using a three-point grading system (0 = posterosuperior labrum normally positioned lateral/craniad to glenoid articular plane in ABER; 1 = posterosuperior labral tissue flush with the glenoid articular plane in ABER; 2 = posterosuperior labral tissue identified medial/caudal to glenoid articular plane in ABER). Only one image in ABER showing abnormal posterosuperior labral position was required for a grade of 1 or 2 to be assigned. Sensitivity, specificity, and positive and negative predictive value were calculated as well as the level of agreement between readers (kappa). Both readers assigned a grade of 2 to 25 of 34 patients with surgically proven labral peel back. Of the patients with surgically proven SLAP tears with peel back in ABER, reader A assigned a grade of 1 to seven patients and a grade of 0 to two

  3. Magnetic resonance appearance of posterosuperior labral peel back during humeral abduction and external rotation

    Borrero, Camilo G.; Casagranda, Bethany U.; Towers, Jeffrey D.; Bradley, James P.

    2010-01-01

    To describe the magnetic resonance appearance of posterosuperior labral peel back and determine the reliability of MR in the abducted and externally rotated (ABER) position for the prospective diagnosis of arthroscopically proven cases of posterosuperior labral peel back. After approval by the institutional review board (IRB) of the University of Pittsburgh Medical Center, USA, databases of patients who underwent arthroscopy over a 2-year period for one of three clinical diagnoses [suspected type 2 superior labrum anterior to posterior (SLAP) tears, posterior instability, or multidirectional instability] were reviewed after anonymization by an honest broker. Sixty-three cases were selected by the following inclusion criteria: operative report documenting labral peel back in the ABER position, age <40 years, and preceding MR arthrogram evaluations with images in the ABER position (n = 34). Inclusion criteria for the control group differed from those for the case group insofar as the operative note documented the absence of posterosuperior labral peel back (n = 29). Cases and controls were randomized in one list and evaluated independently by two fellowship-trained musculoskeletal radiologists unaware of the surgical results and using a three-point grading system (0 = posterosuperior labrum normally positioned lateral/craniad to glenoid articular plane in ABER; 1 = posterosuperior labral tissue flush with the glenoid articular plane in ABER; 2 = posterosuperior labral tissue identified medial/caudal to glenoid articular plane in ABER). Only one image in ABER showing abnormal posterosuperior labral position was required for a grade of 1 or 2 to be assigned. Sensitivity, specificity, and positive and negative predictive value were calculated as well as the level of agreement between readers (kappa). Both readers assigned a grade of 2 to 25 of 34 patients with surgically proven labral peel back. Of the patients with surgically proven SLAP tears with peel back in ABER

  4. Numerical modeling and design of a disk-type rotating permanent magnet induction pump

    Koroteeva, E., E-mail: koroteeva@physics.msu.ru [Institute of Physics of University of Latvia, Salaspils 2169 (Latvia); Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Ščepanskis, M. [Laboratory for Mathematical Modelling of Environmental and Technological Processes, University of Latvia, Rīga 1002 (Latvia); Bucenieks, I.; Platacis, E. [Institute of Physics of University of Latvia, Salaspils 2169 (Latvia)

    2016-05-15

    Highlights: • The design and performance of a disk-type induction pump are described. • A 3D numerical model based on an iterative coupling between EM and hydrodynamic solvers is developed. • The model is verified by comparing with the experiments in a Pb-Bi loop facility. • The suggestions are given to estimate the pump performance in a Pb-Li loop at high pressures. - Abstract: Electromagnetic induction pumps with rotating permanent magnets appear to be the most promising devices to transport liquid metals in high-temperature applications. Here we present a numerical methodology to simulate the operation of one particular modification of these types of pumps: a disk-type induction pump. The numerical model allows for the calculation and analysis of the flow parameters, including the pressure–flow rate characteristics of the pump. The simulations are based on an iterative fully coupled scheme for electromagnetic and hydrodynamic solvers. The developed model is verified by comparing with experimental data obtained using a Pb-Bi loop test facility, for pressures up to 4 bar and flow rates up to 9 kg/s. The verified model is then expanded to higher pressures, beyond the limits of the experimental loop. Based on the numerical simulations, suggestions are given to extrapolate experimental data to higher (industrially important) pressure ranges. Using the numerical model and analytical estimation, the pump performance for the Pb-Li loop is also examined, and the ability of the designed pump to develop pressure heads over 6 bar and to provide flow rates over 15 kg/s is shown.

  5. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.

    Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu

    2015-11-11

    The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.

  6. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging.

    Schmidt, Rita; Webb, Andrew

    2017-10-11

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.

  7. Absorption lines, Faraday rotation, and magnetic field estimates for QSO absorption-line clouds

    Kronberg, P.P.; Perry, J.J.

    1982-01-01

    We have estimated the extragalactic component of Faraday rotation for a sample of 37 QSOs for which there is good absorption line data, which we have also analyzed. Statistical evidence is presented which suggests that we have isolated a component of Faraday rotation which is occurring in the absorption clouds of some QSOs

  8. Magnetic field topology and chemical abundance distributions of the young, rapidly rotating, chemically peculiar star HR 5624

    Kochukhov, O.; Silvester, J.; Bailey, J. D.; Landstreet, J. D.; Wade, G. A.

    2017-09-01

    Context. The young, rapidly rotating Bp star HR 5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry. Aims: We studied the magnetic field structure and chemical abundance distributions of HR 5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods: We analysed high-resolution, time series Stokes parameter spectra of HR 5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles. Results: We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR 5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR 5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations. Conclusions: We conclude that the surface magnetic field topology of HR 5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that

  9. Predictions of toroidal rotation and torque sources arising in non-axisymmetric perturbed magnetic fields in tokamaks

    Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.

    2017-11-01

    Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.

  10. Interaction of z component of magnetic field between two samples of GO material in the round rotational single sheet tester (RRSST)

    Gorican, Viktor; Hamler, Anton; Jesenik, Marko; Stumberger, Bojan; Trlep, Mladen

    2006-01-01

    The magnetic properties of two grain-oriented (GO) samples of the same grade were measured under alternating and rotational magnetic flux conditions. Two samples were measured separately and then together in different arrangement to each other. The interaction of magnetic field between two samples were measured by using a coil, which was placed in between. The results show that the H z component influence measured magnetic properties in the x-y plane

  11. A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear

    Mantica, P.; Challis, C.; Peeters, A.G.

    2011-01-01

    New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implicatio...

  12. A key to improved ion core confinement in the JET tokamak : ion stiffness mitigation due to combined plasma rotation and low magnetic Shear

    Mantica, P.; Angioni, C.; Challis, C.; Colyer, G.; Frassinetti, L.; Hawkes, N.C.; Johnson, T.; Tsalas, M.; de Vries, P.C.; Weiland, J.; Baiocchi, B.; Beurskens, M.N.A.; Figueiredo, A.C.A.; Giroud, C.; Hobirk, J.; Joffrin, E.; Lerche, E.; Naulin, V.; Peeters, A.G.; Salmi, A.; Sozzi, C.; Strintzi, D.; Staebler, G.; Tala, T.; Van Eester, D.; Versloot, T.W.

    2011-01-01

    New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications

  13. Decrease of motor cortex excitability following exposure to a 20 Hz magnetic field as generated by a rotating permanent magnet.

    Gallasch, Eugen; Rafolt, Dietmar; Postruznik, Magdalena; Fresnoza, Shane; Christova, Monica

    2018-04-19

    Rotation of a static magnet over the motor cortex (MC) generates a transcranial alternating magnetic field (tAMF), and a linked alternating electrical field. The aim of this transcranial magnetic stimulation (TMS) study is to investigate whether such fields are able to influence MC excitability, and whether there are parallels to tACS induced effects. Fourteen healthy volunteers received 20 Hz tAMF stimulation over the MC, over the vertex, and 20 Hz tACS over the MC, each with a duration of 15 min. TMS assessments were performed before and after the interventions. Changes in motor evoked potentials (MEP), short interval intra-cortical inhibition (SICI) and intra-cortical facilitation (ICF) were evaluated. The tACS and the tAMF stimulation over the MC affected cortical excitability in a different way. After tAMF stimulation MEP amplitudes and ICF decreased and the effect of SICI increased. After tACS MEP amplitudes increased and there were no effects on SICI and ICF. The recorded single and paired pulse MEPs indicate a general decrease of MC excitability following 15 min of tAMF stimulation. The effects demonstrate that devices based on rotating magnets are potentially suited to become a novel brain stimulation tool in clinical neurophysiology. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  14. Hypertrophic changes of the teres minor muscle in rotator cuff tears: quantitative evaluation by magnetic resonance imaging.

    Kikukawa, Kenshi; Ide, Junji; Kikuchi, Ken; Morita, Makoto; Mizuta, Hiroshi; Ogata, Hiroomi

    2014-12-01

    Few reports have assessed the teres minor (TM) muscle in rotator cuff tears. This study aimed to quantitatively analyze the morphologic changes of the TM muscle in patients with or without rotator cuff tears by magnetic resonance imaging (MRI). This retrospective study consisted of 279 subjects classified on the basis of interpretations of conventional MRI observations into 6 groups: no cuff tear; partial-thickness supraspinatus (SSP) tear; full-thickness SSP tear; SSP and subscapularis tears; SSP and infraspinatus (ISP) tears; and SSP, ISP, and subscapularis tears. With use of ImageJ software (National Institutes of Health, Bethesda, MD, USA) for oblique sagittal MRI, we measured the areas of ISP, TM, and anatomic external rotation (ISP + TM) muscles on the most lateral side in which the scapular spine was in contact with the scapular body. The occupational ratios of the TM muscle area to the anatomic external rotation muscle area were calculated. Ratios above the maximum of the 95% confidence intervals of the occupational ratio in the no-tear group were defined as hypertrophy of the TM muscle. Occupational ratios of the TM muscle in the no-tear group followed a normal distribution, and ratios >0.288 were defined as hypertrophic. Hypertrophic changes of the TM muscle were confirmed in rotator cuff tears involving the ISP tendon. A negative correlation was found between the occupational ratios of TM and ISP (P muscle appeared hypertrophic in rotator cuff tears involving the ISP, and the progression of ISP muscle atrophy seemed to induce the development of this compensatory hypertrophy. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Muon-Spin Rotation Measurements of the Magnetic Field Dependence of the Vortex-Core Radius and Magnetic Penetration Depth in NbSe2

    Sonier, J.E.; Kiefl, R.F.; Brewer, J.H.; Chakhalian, J.; Dunsiger, S.R.; MacFarlane, W.A.; Miller, R.I.; Wong, A.; Luke, G.M.; Brill, J.W.

    1997-01-01

    Muon-spin rotation spectroscopy (μSR) has been used to measure the internal magnetic field distribution in NbSe 2 for H c1 c2 . The deduced profiles of the supercurrent density J s indicate that the vortex-core radius ρ 0 in the bulk decreases sharply with increasing magnetic field. This effect, which is attributed to increased vortex-vortex interactions, does not agree with the dirty-limit microscopic theory. A simple phenomenological equation in which ρ 0 depends on the intervortex spacing is used to model this behavior. In addition, we find for the first time that the in-plane magnetic penetration depth λ ab increases linearly with H in the vortex state of a conventional superconductor. copyright 1997 The American Physical Society

  16. SPATIAL GROWTH OF CURRENT-DRIVEN INSTABILITY IN RELATIVISTIC ROTATING JETS AND THE SEARCH FOR MAGNETIC RECONNECTION

    Singh, Chandra B.; Pino, Elisabete M. de Gouveia Dal [Department of Astronomy (IAG-USP), University of São Paulo, São Paulo (Brazil); Mizuno, Yosuke, E-mail: csingh@iag.usp.br, E-mail: dalpino@iag.usp.br, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University, D-60438, Frankfurt am Main (Germany)

    2016-06-10

    Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of the radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purposes of our study, we used a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light and heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and a relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field, and the flow is accelerated owing to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated with the kink-unstable regions and correlated with the decrease of the sigma parameter of the flow. We discuss the implications of our findings for Poynting-flux-dominated jets in connection with magnetic reconnection processes. We find that fast magnetic reconnection may be driven by the kink-instability turbulence and govern the transformation of magnetic into kinetic energy, thus providing an efficient way to power and accelerate particles in active galactic nucleus and gamma-ray-burst relativistic jets.

  17. Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources

    Ghosh, P.; Lamb, F.K.

    1979-01-01

    We use the solutions of the two-dimensional hydromagnetic equations obtained previously to calculate the torque on a magnetic neutron star accreting from a Keplerian disk. We find that the magnetic coupling between the star and the plasma outside the inner edge of the disk is appreciable. As a result of this coupling the spin-up torque on fast rotators is substantially less than that on slow rotators; for sufficiently high stellar angular velocities or sufficiently low accretion rates this coupling dominates that de to the plasma and the magnetic field at the inner edge of the disk, braking the star's rotation even while accretion, and hence X-ray emission, continues.We apply these results to pulsating X-ray sources, and show that the observed secular spin-up rates of all the sources in which this rate has been measured can be accounted for quantitatively if one assumes that these sources are accreting from Keplerian disks and have magnetic moments approx.10 29 --10 32 gauss cm 3 . The reduction of the torque on fast rotators provides a natural explanation of the spin-up rate of Her X-1, which is much below that expected for slow rotators. We show further that a simple relation between the secular spin-up rate : P and the quantity PL/sup 3/7/ adequately represents almost all the observational data, P and L being the pulse period and the luminosity of the source, respectively. This ''universal'' relation enables one to estimate any one of the parameters P, P, and L for a given source if the other two are known. We show that the short-term period fluctuations observed in Her X-1, Cen X-3, Vela X-1, and X Per can be accounted for quite naturally as consequences of torque variations caused by fluctuations in the mass transfer rate. We also indicate how the spin-down torque at low luminosities found here may account for the paradoxical existence of a large number of long-period sources with short spin-up time scales

  18. MHD Mixed Convection Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field with the Hall Effect

    Mishra, A.; Sharma, B. K.

    2017-11-01

    A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.

  19. Magnetic Fields In NGC 6946 Using Wide-Band Radio Polarimetry

    Williams, Anna; Heald, George; Wilcots, Eric M.; Gould Zweibel, Ellen

    Magnetic fields are important ingredients in the interstellar medium of galaxies. They accelerate cosmic rays, affect star formation, and regulate the redistribution of matter and energy. Despite their ubiquitous presence, the growth and coevolution of magnetic fields with galactic processes are not

  20. Location of Rotator Cuff Tear Initiation: A Magnetic Resonance Imaging Study of 191 Shoulders.

    Jeong, Jeung Yeol; Min, Seul Ki; Park, Keun Min; Park, Yong Bok; Han, Kwang Joon; Yoo, Jae Chul

    2018-03-01

    Degenerative rotator cuff tears (RCTs) are generally thought to originate at the anterior margin of the supraspinatus tendon. However, a recent ultrasonography study suggested that they might originate more posteriorly than originally thought, perhaps even from the isolated infraspinatus (ISP) tendon, and propagate toward the anterior supraspinatus. Hypothesis/Purpose: It was hypothesized that this finding could be reproduced with magnetic resonance imaging (MRI). The purpose was to determine the most common location of degenerative RCTs by using 3-dimensional multiplanar MRI reconstruction. It was assumed that the location of the partial-thickness tears would identify the area of the initiation of full-thickness tears. Cross-sectional study; Level of evidence, 3. A retrospective analysis was conducted including 245 patients who had RCTs (nearly full- or partial-thickness tears) at the outpatient department between January 2011 and December 2013. RCTs were measured on 3-dimensional multiplanar reconstruction MRI with OsiriX software. The width and distance from the biceps tendon to the anterior margin of the tear were measured on T2-weighted sagittal images. In a spreadsheet, columns of consecutive numbers represented the size of each tear (anteroposterior width) and their locations with respect to the biceps brachii tendon. Data were pooled to graphically represent the width and location of all tears. Frequency histograms of the columns were made to visualize the distribution of tears. The tears were divided into 2 groups based on width (group A, location related to size. The mean width of all RCTs was 11.9 ± 4.1 mm, and the mean length was 11.1 ± 5.0 mm. Histograms showed the most common location of origin to be 9 to 10 mm posterior to the biceps tendon. The histograms of groups A and B showed similar tear location distributions, indicating that the region approximately 10 mm posterior to the biceps tendon is the most common site of tear initiation. These

  1. Instability of electromagnetic waves in a self-gravitating rotating magnetized dusty plasma with opposite polarity grains

    Shukla, Nitin; Moslem, W. M.; Shukla, P. K.

    2007-01-01

    By using the two fluid and Maxwell equations, the properties of electromagnetic waves in a rotating positive-negative dusty magnetoplasmas are investigated. It is found that the cross-coupling between the equilibrium dust flows and the perturbed magnetic field produces a Lorentz force that separates positive and negative dust grains. A new dispersion relation is derived and analyzed numerically. The effects of the dust grain radius, the equilibrium streaming speed, Jeans frequency, and the rotational frequency on the behavior of the real and imaginary parts of the wave frequency are examined. It is found that for small dust grain radius, the growth rate (the real frequency) increases (decreases) with the increase of the streaming dust speed and Jeans frequency. However, the dust rotational frequency does not have an important role in this case. For large dust grain radius, only the imaginary part of the wave frequency is presented. It is found that the rotational frequency (Jeans frequency and dust streaming speed) decreases (increase) the growth rate

  2. Magnetic Resonance Imaging of the Rotator Cuff in Destroyed Rheumatoid Shoulder: Comparison with Findings during Shoulder Replacement

    Soini, I.; Belt, E.A.; Niemitukia, L.; Maeenpaeae, H.M.; Kautiainen, H.J.

    2004-01-01

    Purpose: To evaluate the predictive value of preoperative magnetic resonance imaging (MRI) with respect to rotator cuff ruptures. Material and Methods: Thirty-one patients with rheumatic disease underwent preoperative MRI before shoulder arthroplasty. The scans were reviewed independently by two experienced radiologists. Three surgeons performed all the replacements (hemiarthroplasties), and the condition of the rotator cuff was assessed. Complete and massive tears of the rotator cuff were recorded and compared at surgery and on MRI. Results: With MRI, 21 shoulders (68%) were classified as having complete or massive tears of the rotator cuff and at surgery 14 shoulders (45%). Cohen's kappa coefficient was 0.44 (95% CI: 0.16 to 0.72) and accuracy 0.71 (95% CI: 0.52 to 0.86). Conclusion: In severely destroyed rheumatoid shoulder, the findings of soft tissues were incoherent both with MRI and at surgery. The integrity of tendons could not readily be elucidated with MRI because of an inflammatory process and scarred tissues; in surgery, too, changes were frequently difficult to categorize. Preoperative MRI of severely destroyed rheumatoid shoulder before arthroplasty turned out to be of only minor importance

  3. Magnetic properties of deformed dipole bands in 110,112Te

    Evans, A O; Paul, E S; Boston, A J; Chantler, H J; Chiara, C J; Devlin, M; Fletcher, A M; Fossan, D B; LaFosse, D R; Lane, G J; Lee, I Y; Macchiavelli, A O; Nolan, P J; Sarantites, D G; Sears, J M; Semple, A T; Smith, J F; Starosta, K; Vaman, C; Ragnarsson, I; Afanasjev, A V

    2006-01-01

    A lifetime analysis using the Doppler-shift attenuation method has been performed on the Tellurium isotopes 110,112 Te. The experiment was performed using the Gammasphere array in conjunction with the MICROBALL charged-particle detector. Three strongly coupled bands were previously established in 110,112 Te which were observed up to unusually high spins. In the current experiment, it has been possible to extract lifetime measurements using a Doppler broadened lineshape analysis on one of the ΔI=1 band structures in 110 Te. In contrast to similar ΔI=1 structures in other nuclei in this mass region, the extracted B(M1) values did not rapidly decrease with increasing angular momentum. Instead, the strongly coupled band in 110 Te represents a deformed 1p-1h structure, rather than a weakly deformed structure showing the shears mechanism

  4. Defect-induced magnetism in undoped and Mn-doped wide band gapzinc oxide grown by aerosol spray pyrolysis

    Motaung, DE

    2014-08-01

    Full Text Available Surface Science Vol. 311, pp 14-26 Defect-induced magnetism in undoped and Mn-doped wide band gapzinc oxide grown by aerosol spray pyrolysis D.E. Motaunga,∗, I. Kortidise, D. Papadakie, S.S. Nkosib,∗∗, G.H. Mhlongoa,J. Wesley-Smitha, G.F. Malgasc, B....W. Mwakikungaa, E. Coetseed, H.C. Swartd,G. Kiriakidise,f, S.S. Raya aDST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395,Pretoria 0001, South Africa b...

  5. Transient Simulation of a Rotating Conducting Cylinder in a Transverse Magnetic Field

    2016-09-01

    the boundary conditions and magnetic field excitation. The balloon (no fringing at infinity ) boundary condition is used for the model. Two magnetic...cylinder to study the effects of the magnetic responses of the cylinder in the time history . Table 1 summarizes the electromagnetic properties of the...and phase shift angles of the magnetic flux density in the time history , at the center of the structural steel, aluminum, and copper cylinder

  6. A Faraday rotation search for magnetic fields in quasar damped Ly alpha absorption systems

    Oren, Abraham L.; Wolfe, Arthur M.

    1995-01-01

    We present the results of a Faraday rotation survey of 61 radio-bright QSOs conducted at the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The Galactic contribution to the Faraday rotation is estimated and subtracted to determine the extragalactic rotation measure (RRM) for each source. Eleven of these QSOs are known to exhibit damped Ly alpha absorption. The rate of incidence of significant Faraday rotation of these 11 sources is compared to the remaining 50 and is found to be higher at the 99.8% confidence level. However, as this is based upon only two detections of Faraday rotation in the damped Ly alpha sample, the result is only tentative. If the two detections in the damped Ly alpha sample are dug to the absorbing systems, then the inferred rotation measure induced by these systems is roughly 250 rad/sq m. The two detections were for the two lowest redshift absorbers in the sample. We find that a rotation measure of 250 rad/sq m would have gone undetected for any other absorber in the damped Ly alpha sample due to the 1/(1 + 2) squared dilution of the observed RRM with redshift. Thus the data are consistent with, but do not prove, the hypothesis that Faraday rotation is a generic property of damped Ly alpha absorbers. We do not confirm the suggestion that the amplitude of RRMs increases with redshift. Rather, the data are consistent with no redshift evolution. We find that the uncertainty in the estimation of the Galactic rotation measure (GRM) is a more serious problem than previously realized for extra-galactic Faraday rotation studies of QSO absorbers. A careful analysis of current methods for estimating GRM indicate that it can be determined to an accuracy of about 15 - 20 rad/sq m. Previous studies underestimated this uncertainty by more than a factor of 2. Due to this uncertainty, rotation measures such as we suspect are associated with damped Ly alpha absorption systems can only be detected at redshifts less than z approximately

  7. Magnetic Fluid-Based Squeeze Film Behaviour in Curved Porous-Rotating Rough Annular Plates and Elastic Deformation Effect

    M. E. Shimpi

    2012-01-01

    Full Text Available Efforts have been directed to study and analyze the squeeze film performance between rotating transversely rough curved porous annular plates in the presence of a magnetic fluid lubricant considering the effect of elastic deformation. A stochastic random variable with nonzero mean, variance, and skewness characterizes the random roughness of the bearing surfaces. With the aid of suitable boundary conditions, the associated stochastically averaged Reynolds' equation is solved to obtain the pressure distribution in turn, which results in the calculation of the load-carrying capacity. The graphical representations establish that the transverse roughness, in general, adversely affects the performance characteristics. However, the magnetization registers a relatively improved performance. It is found that the deformation causes reduced load-carrying capacity which gets further decreased by the porosity. This investigation tends to indicate that the adverse effect of porosity, standard deviation and deformation can be compensated to certain extent by the positive effect of the magnetic fluid lubricant in the case of negatively skewed roughness by choosing the rotational inertia and the aspect ratio, especially for suitable ratio of curvature parameters.

  8. Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy

    Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon

    We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.

  9. On the gravitational instability of an ionized magnetized rotating plasma flowing through a porous medium with other transport processes and the suspended particles

    Vyas, M.K.; Chhajlani, R.K.

    1989-01-01

    The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion. (author)

  10. Rotationally resolved pulsed-field ionization photoelectron bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) in the energy range of 17.0-18.2 eV

    Song, Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Evans, M. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Ng, C. Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Hsu, C.-W. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Jarvis, G. K. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2000-01-15

    We have obtained rotationally resolved pulsed-field ionization photoelectron (PFI-PE) spectra for O{sub 2} in the energy range of 17.05-18.13 eV, covering the ionization transitions O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12,N{sup +})(<-)O{sub 2}(X {sup 3}{sigma}{sub g}{sup -},v{sup ''}=0,N{sup ''}). Although these O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}) PFI-PE bands have significant overlaps with vibrational bands for O{sub 2}{sup +}(a {sup 4}{pi}{sub u}) and O{sub 2}{sup +}(X {sup 2}{pi}{sub g}), we have identified all the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) bands by simulation of spectra obtained using supersonically cooled O{sub 2} samples with rotational temperatures {approx_equal}20 and 220 K. While these v{sup +}=0-12 PFI-PE bands represent the first rotationally resolved photoelectron data for O{sub 2}{sup +}(A {sup 2}{pi}{sub u}), the PFI-PE bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) are the first rotationally resolved spectroscopic data for these levels. The simulation also allows the determination of accurate ionization energies, vibrational constants, and rotational constants for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12). The analysis of the PFI-PE spectra supports the conclusion of the previous emission study that the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) states are strongly perturbed by a nearby electronic state. (c) 2000 American Institute of Physics.

  11. Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices.

    Zhai, Xiaofang; Cheng, Long; Liu, Yang; Schlepütz, Christian M; Dong, Shuai; Li, Hui; Zhang, Xiaoqiang; Chu, Shengqi; Zheng, Lirong; Zhang, Jing; Zhao, Aidi; Hong, Hawoong; Bhattacharya, Anand; Eckstein, James N; Zeng, Changgan

    2014-07-09

    Lattice distortion due to oxygen octahedral rotations have a significant role in mediating the magnetism in oxides, and recently attracts a lot of interests in the study of complex oxides interface. However, the direct experimental evidence for the interrelation between octahedral rotation and magnetism at interface is scarce. Here we demonstrate that interfacial octahedral rotation are closely linked to the strongly modified ferromagnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices. The maximized ferromagnetic moment in the N=6 superlattice is accompanied by a metastable structure (space group Imcm) featuring minimal octahedral rotations (a(-)a(-)c(-), α~4.2°, γ~0.5°). Quenched ferromagnetism for Nmagnetism. Our study demonstrates that engineering superlattices with controllable interfacial structures can be a feasible new route in realizing functional magnetic materials.

  12. Demonstrating Multi-bit Magnetic Memory in the Fe8 High Spin Molecule by Muon Spin Rotation

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-01-01

    We developed a method to detect the quantum nature of high spin molecules using muon spin rotation, and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember 6 (possibly 8) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for Multi-bit Magnetic Memory. Our experiment also paves the w...

  13. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. I. Effects of Line Coupling on Self-Broadened v (sub 1) and Pure Rotational Bands of NH3

    Ma, Q.; Boulet, C.

    2016-01-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of selfbroadened NH3. The half-widths and shifts in the ?1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  14. Improved foilless Ku-band transit-time oscillator for generating gigawatt level microwave with low guiding magnetic field

    Ling, Junpu; He, Juntao, E-mail: hejuntao12@163.com; Zhang, Jiande; Jiang, Tao; Hu, Yi [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-09-15

    An improved foilless Ku-band transit-time oscillator with low guiding magnetic field is proposed and investigated in this paper. With a non-uniform buncher and a coaxial TM{sub 02} mode dual-resonant reflector, this improved device can output gigawatt level Ku-band microwave with relatively compact radial dimensions. Besides the above virtue, this novel reflector also has the merits of high TEM reflectance, being more suitable for pre-modulating the electron beam and enhancing the conversion efficiency. Moreover, in order to further increase the conversion efficiency and lower the power saturation time, a depth-tunable coaxial collector and a resonant cavity located before the extractor are employed in our device. Main structure parameters of the device are optimized by particle in cell simulations. The typical simulation result is that, with a 380 kV, 8.2 kA beam guided by a magnetic field of about 0.6 T, 1.15 GW microwave pulse at 14.25 GHz is generated, yielding a conversion efficiency of about 37%.

  15. Transition metal atoms absorbed on MoS2/h-BN heterostructure: stable geometries, band structures and magnetic properties.

    Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin

    2018-06-15

    We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.

  16. Single pulsed-field magnetization on Gd-Ba-Cu-O Bulk HTS assembled for axial-gap type rotating machines

    Morita, E; Matsuzaki, H; Kimura, Y; Ohtani, I; Izumi, M; Nonaka, Y; Murakami, M; Ida, T; Sugimoto, H; Miki, M; Kitano, M

    2006-01-01

    We employed Gd-bulk HTS magnets as rotating poles for a smaller and lighter axial-gap type rotating machine. The bulk was placed between two vortex-type armature coils and cooled down to 77 K under zero-field. Pulsed current was applied to the vortex-type magnetizing coils. The trapped field distribution and transient flux behaviour strongly depend on the radial dimension of the armature vortex-type coil. In the present study, we show that there is an optimal radial dimension of magnetizing coils to the given bulk disk size to give a homogeneously conical distribution of the trapped flux

  17. Cryogenic STM in 3D vector magnetic fields realized through a rotatable insert.

    Trainer, C; Yim, C M; McLaren, M; Wahl, P

    2017-09-01

    Spin-polarized scanning tunneling microscopy (SP-STM) performed in vector magnetic fields promises atomic scale imaging of magnetic structure, providing complete information on the local spin texture of a sample in three dimensions. Here, we have designed and constructed a turntable system for a low temperature STM which in combination with a 2D vector magnet provides magnetic fields of up to 5 T in any direction relative to the tip-sample geometry. This enables STM imaging and spectroscopy to be performed at the same atomic-scale location and field-of-view on the sample, and most importantly, without experiencing any change on the tip apex before and after field switching. Combined with a ferromagnetic tip, this enables us to study the magnetization of complex magnetic orders in all three spatial directions.

  18. Mechanically induced demagnetization and remanent magnetization rotation in Ni-Mn-Ga (-B) magnetic shape memory alloy

    Straka, L.; Soroka, A.; Heczko, Oleg; Hänninen, H.; Sozinov, A.

    2014-01-01

    Roč. 87, SEP (2014), s. 25-28 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GAP107/11/0391 Grant - others:AV ČR(CZ) M100101241 Institutional support: RVO:68378271 Keywords : heusler phases * ferromagnetic shape memory * magnetic properties * coercivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.224, year: 2014 http://www.sciencedirect.com/science/article/pii/S1359646214002176

  19. Nonsimilar Solution for Shock Waves in a Rotational Axisymmetric Perfect Gas with a Magnetic Field and Exponentially Varying Density

    Nath, G.; Sinha, A. K.

    2017-01-01

    The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.

  20. Band metamagnetism and peculiarities of magnetic structure of (Er1-xYx)Co2 compounds

    Baranov, N.V.; Kozlov, A.I.; Pirogov, A.N.; Sinitsyn, E.V.

    1989-01-01

    A study of the magnetization, electric resistance, and thermal expansion as well as neutron diffraction data are used to show that in Er 1-x Y x Co 2 compounds the splitting of the d=zone of cobalt disappears as yttrium concentration grows up to x=0.4 and that simultaneously disordering of the Er subssystem sets in due to a phase transition of the first kind. It is discovered that at x∼0.45 the introduction of a weak external magnetic field with μ 0 H∼0.4 T causes the magnetization of the partially disordered Er subsystem to grow, which is accompanied by an irreversible splitting of the d-zone and an increase in the magnetic moment of cobalt from 0.3μ B to 0.9μ B . The presence of minima on the temperature curves for the electric resistance, observed in Er 1-x Y x Co 2 compounds (.2≤x≤0.6) at temperatures above the magnetic ordering temperature, is related to spin density fluctuations in the Co subsystem

  1. Stationary Magnetohydrodynamic Models of Three-Dimensional Rigidly Rotating Magnetized Coronae

    Al-Salti, Nasser; Neukirch, Thomas

    2009-01-01

    Example solutions of a theory for stationary 3D non-potential solutions of the MHD equations (in the co-rotating frame of reference) are presented. As a first step we present solutions for the mathematically simpler case of a massive central cylinder, but the theory can also be applied to spherical bodies. The fundamental equation of the theory is linear and in the cylindrical case it can be solved using standard methods. Possible application is the structure of coronae of (fast) rotating stars.

  2. [Some aspects of use of rotating magnetic field for medical treatment].

    Aleksandrov, V V; Ozornin, Iu I; Maslov, D G; Shchegoleva, S A

    2007-01-01

    The experience in the clinical use of the ALMA apparatus for general magnetic therapy is described. Recommendations are given for further scientific research into the applicability of general magnetic therapy for treatment of various diseases, including sociogenic pathologies (overweight, chronic intoxication, immunodeficiency).

  3. High-resolution magnetic resonance imaging of rotator cuff tears using a microscopy coil. Noninvasive detection without intraarticular contrast material

    Hitachi, Shin; Takase, Kei; Higano, Shuichi; Takahashi, Shoki; Tanaka, Minoru; Tojo, Yuichi; Tabata, Shiro; Majima, Kazuhiro

    2011-01-01

    The aim of this study was to evaluate the feasibility of high-resolution magnetic resonance imaging (MRI) using a microscopy coil for the diagnosis of rotator cuff tears by comparing the method to conventional MRI and MRI arthrography. A total of 68 shoulders were prospectively studied using a 1.5-T MRI unit. Conventional MRI scans were obtained with a surface coil and high-resolution MRI scans with a microscopy coil. MRI arthrography was performed in 28 shoulders using a surface coil. MRI evaluation of tears of rotator cuff tendons was compared with arthroscopic findings and surgical results. The surgery revealed 40 full-thickness tears, 13 partial-thickness tears, and 15 intact cuffs. In all, 35 (88%) full-thickness tears were correctly diagnosed on conventional MRI and 40 (100%) on high-resolution MRI. MR arthrography delineated 11 of 12 (92%) full-thickness tears. Altogether, 5 (38%) of the partial-thickness tears were detected on conventional MRI, and 12 (92%) were clearly demonstrated on high-resolution MRI. MRI arthrography depicted three (60%) of five partial-thickness tears. High-resolution MRI showed higher sensitivity than conventional MRI (P<0.05) and had values equivalent to those of MRI arthrography for diagnosing partial-thickness tears. High-resolution MRI with a microscopy coil is a feasible, noninvasive technique for diagnosing rotator cuff tears. (author)

  4. Remapping HELENA to incompressible plasma rotation parallel to the magnetic field

    Poulipoulis, G.; Throumoulopoulos, G. N. [Physics Department, University of Ioannina, Ioannina 451 10 (Greece); Konz, C. [Max-Planck Institut für Plasma Physics, 85748 Garching bei München (Germany)

    2016-07-15

    Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.

  5. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-01-01

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100°-117°, within 30° of the Galactic plane. For |b| –2 and –62 ± 5 rad m –2 in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 μG (7 μG) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  6. Large-Scale Flows and Magnetic Fields Produced by Rotating Convection in a Quasi-Geostrophic Model of Planetary Cores

    Guervilly, C.; Cardin, P.

    2017-12-01

    Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.

  7. Untangling the magnetic fields in spiral galaxy NGC 6946 with wide-band polarimetry

    Williams, Anna; Heald, George; Wilcots, Eric M.; Gould Zweibel, Ellen

    We present 13 cm polarization observations of nearby spiral galaxy NGC 6946. These data provide a new perspective into the magnetic field structure of this galaxy. Previous observations show strong depolarization between 6 cm and 22 cm, and we show that the morphology of the 13 cm polarization

  8. Multiband Gutzwiller theory of the band magnetism of LaO iron arsenide

    Schickling, Tobias

    2012-01-01

    In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T c = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T c superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.

  9. Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices

    Pedersen, Jesper Goor; Pedersen, Thomas Garm

    2013-01-01

    We study graphene antidot lattices (GALs) in magnetic fields. Using a tight-binding model and a recursive Green's function technique that we extend to deal with periodic structures, we calculate Hofstadter butterflies of GALs. We compare the results to those obtained in a simpler gapped graphene ...

  10. Texture analysis of torn rotator cuff on preoperative magnetic resonance arthrography as a predictor of postoperative tendon status

    Kang, Yeon Ah; Lee, Guen Young; Lee, Joon Woo; Lee, Eugene; Kim, Boh Young; Kim, Su Jin; Ahn, Joong Mo; Kang, Heung Sik [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2017-08-01

    To evaluate texture data of the torn supraspinatus tendon (SST) on preoperative T2-weighted magnetic resonance arthrography (MRA) using the gray-level co-occurrence matrix (GLCM) for prediction of post-operative tendon state. Fifty patients who underwent arthroscopic rotator cuff repair for full-thickness tears of the SST were included in this retrospective study. Based on 1-year follow-up, magnetic resonance imaging showed that 30 patients had intact SSTs, and 20 had rotator cuff retears. Using GLCM, two radiologists measured independently the highest signal intensity area of the distal end of the torn SST on preoperative T2-weighted MRA, which were compared between two groups.The relationships with other well-known prognostic factors, including age, tear size (anteroposterior dimension), retraction size (mediolateral tear length), grade of fatty degeneration of the SST and infraspinatus tendon, and arthroscopic fixation technique (single or double row), also were evaluated. Of all the GLCM features, the retear group showed significantly higher entropy (p < 0.001 and p = 0.001), variance (p = 0.030 and 0.011), and contrast (p = 0.033 and 0.012), but lower angular second moment (p < 0.001 and p = 0.002) and inverse difference moment (p = 0.027 and 0.027), as well as larger tear size (p = 0.001) and retraction size (p = 0.002) than the intact group. Retraction size (odds ratio [OR] = 3.053) and entropy (OR = 17.095) were significant predictors. Texture analysis of torn SSTs on preoperative T2-weighted MRA using the GLCM may be helpful to predict postoperative tendon state after rotator cuff repair.

  11. Texture analysis of torn rotator cuff on preoperative magnetic resonance arthrography as a predictor of postoperative tendon status

    Kang, Yeon Ah; Lee, Guen Young; Lee, Joon Woo; Lee, Eugene; Kim, Boh Young; Kim, Su Jin; Ahn, Joong Mo; Kang, Heung Sik

    2017-01-01

    To evaluate texture data of the torn supraspinatus tendon (SST) on preoperative T2-weighted magnetic resonance arthrography (MRA) using the gray-level co-occurrence matrix (GLCM) for prediction of post-operative tendon state. Fifty patients who underwent arthroscopic rotator cuff repair for full-thickness tears of the SST were included in this retrospective study. Based on 1-year follow-up, magnetic resonance imaging showed that 30 patients had intact SSTs, and 20 had rotator cuff retears. Using GLCM, two radiologists measured independently the highest signal intensity area of the distal end of the torn SST on preoperative T2-weighted MRA, which were compared between two groups.The relationships with other well-known prognostic factors, including age, tear size (anteroposterior dimension), retraction size (mediolateral tear length), grade of fatty degeneration of the SST and infraspinatus tendon, and arthroscopic fixation technique (single or double row), also were evaluated. Of all the GLCM features, the retear group showed significantly higher entropy (p < 0.001 and p = 0.001), variance (p = 0.030 and 0.011), and contrast (p = 0.033 and 0.012), but lower angular second moment (p < 0.001 and p = 0.002) and inverse difference moment (p = 0.027 and 0.027), as well as larger tear size (p = 0.001) and retraction size (p = 0.002) than the intact group. Retraction size (odds ratio [OR] = 3.053) and entropy (OR = 17.095) were significant predictors. Texture analysis of torn SSTs on preoperative T2-weighted MRA using the GLCM may be helpful to predict postoperative tendon state after rotator cuff repair

  12. Magnetic properties of smooth terminating dipole bands in 110,112Te

    Evans, A.O.; Paul, E.S.; Boston, A.J.; Chantler, H.J.; Chiara, C.J.; Devlin, M.; Fletcher, A.M.; Fossan, D.B.; LaFosse, D.R.; Lane, G.J.; Lee, I.Y.; Macchiavelli, A.O.; Nolan, P.J.; Sarantites, D.G.; Sears, J.M.; Semple, A.T.; Smith, J.F.; Starosta, K.; Vaman, C.; Afanasjev, A.V.; Ragnarsson, I.

    2006-01-01

    Three strongly coupled sequences have been established in 110,112 Te up to high spins. They are interpreted in terms of deformed structures built on proton 1-particle-1-hole excitations that reach termination at I∼40-bar . This is the first observation of smooth terminating dipole structures in this mass region. Lifetime measurements have allowed the extraction of experimental B(M1;I->I-1) and B(E2;I->I-2) reduced transition rates for one of the dipole bands in 110 Te. The results support the deformed interpretation

  13. TWO-DIMENSIONAL STELLAR EVOLUTION CODE INCLUDING ARBITRARY MAGNETIC FIELDS. II. PRECISION IMPROVEMENT AND INCLUSION OF TURBULENCE AND ROTATION

    Li Linghuai; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre; Ventura, Paolo; Penza, Valentina; Bi Shaolan

    2009-01-01

    In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the nonradial effects are considered in the solution of the Poisson equation. Following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields, and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.

  14. Asymmetric kinetic equilibria: Generalization of the BAS model for rotating magnetic profile and non-zero electric field

    Dorville, Nicolas; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence

    2015-09-01

    , 110702 (2013)], and more recently in a fully kinetic simulation as well [J. Dargent and N. Aunai, Phys. Plasmas (submitted)]. Nevertheless, in most asymmetric layers like the terrestrial magnetopause, one would indeed expect a magnetic field rotation from one direction to another without going through zero [J. Berchem and C. T. Russell, J. Geophys. Res. 87, 8139-8148 (1982)], and a non-zero normal electric field. In this paper, we propose the corresponding generalization: in the model presented, the profiles can be freely imposed for the magnetic field rotation (although restricted to a 180 rotation hitherto) and for the normal electric field. As it was done previously, the equilibrium is tested with a hybrid simulation.

  15. Asymmetric kinetic equilibria: Generalization of the BAS model for rotating magnetic profile and non-zero electric field

    Dorville, Nicolas; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence

    2015-01-01

    ) 20, 110702 (2013)], and more recently in a fully kinetic simulation as well [J. Dargent and N. Aunai, Phys. Plasmas (submitted)]. Nevertheless, in most asymmetric layers like the terrestrial magnetopause, one would indeed expect a magnetic field rotation from one direction to another without going through zero [J. Berchem and C. T. Russell, J. Geophys. Res. 87, 8139–8148 (1982)], and a non-zero normal electric field. In this paper, we propose the corresponding generalization: in the model presented, the profiles can be freely imposed for the magnetic field rotation (although restricted to a 180 rotation hitherto) and for the normal electric field. As it was done previously, the equilibrium is tested with a hybrid simulation

  16. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J., E-mail: mscott@hao.ucar.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  17. Fully automated measurement of anisotropy of magnetic susceptibility using 3D rotator

    Studýnka, J.; Chadima, Martin; Suza, P.

    2014-01-01

    Roč. 629, 26 August (2014), s. 6-13 ISSN 0040-1951 Institutional support: RVO:67985831 Keywords : AMS * Kappabridge * susceptibility tensor Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.872, year: 2014

  18. Influence of Rotational Transform and Magnetic Shear on the Energy Content of TJ-II Plasmas

    Estrada, T.; Ascasibar, E.; Castejon, F.; Jimenez, J. A.; Lopez-Bruna, D.; Pastor, I.

    2002-01-01

    In the magnetic configuration scans performed in TJ-II stellarator, low plasma energy content is found to be related to the presence of low order rational surfaces within the confinement region in low plasma density experiments. Plasma currents of about-1 kA (mainly bootstrap driven) can substantially increase the magnetic shear in TJ-II and under these conditions the confinement is no longer deteriorated by low order rational surfaces. Experiments with higher plasma currents (OH induced currents up to +/-10 kA) show a non-symmetric dependence on the sign of the magnetic shear. Preliminary results show a substantial improvement of the confinement in the case of negative plasma current, while minor changes are observed in the plasma energy content when positive current is induced in magnetic configurations that in vacuum exclude low order rational surfaces. (Author) 12 refs

  19. Influence of Rotational Transform and Magnetic Shear on the Energy Content of TJ-II Plasmas

    Estrada, T.; Ascasibar, E.; Castejon, F.; Jimenez, J. A.; Lopez-Bruna, D.; Pastor, I.

    2002-07-01

    In the magnetic configuration scans performed in TJ-II stellarator, low plasma energy content is found to be related to the presence of low order rational surfaces within the confinement region in low plasma density experiments. Plasma currents of about-1 kA (mainly bootstrap driven) can substantially increase the magnetic shear in TJ-II and under these conditions the confinement is no longer deteriorated by low order rational surfaces. Experiments with higher plasma currents (OH induced currents up to +/-10 kA) show a non-symmetric dependence on the sign of the magnetic shear. Preliminary results show a substantial improvement of the confinement in the case of negative plasma current, while minor changes are observed in the plasma energy content when positive current is induced in magnetic configurations that in vacuum exclude low order rational surfaces. (Author) 12 refs.

  20. Vertical Gradient Freezing Using Submerged Heater Growth With Rotation and With Weak Magnetic and Electric Fields

    Bliss, D. F; Holmes, A. M; Wang, X; Ma, N; Iseler, G. W

    2005-01-01

    ...) method utilizing a submerged heater. Electromagnetic stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by applying a weak radial electric current in the melt together with a weak axial magnetic field...