The Magnetic Rayleigh-Taylor Instability in Astrophysical Discs
Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.
2016-01-01
This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.
Effect of magnetic field on Rayleigh-Taylor instability of two superposed fluids
International Nuclear Information System (INIS)
Sharma, P K; Tiwari, Anita; Chhajlani, R K
2012-01-01
The effect of two dimensional magnetic field on the Rayleigh-Taylor (R-T) instability in an incompressible plasma is investigated to include simultaneously the effects of suspended particles and the porosity of the medium. The relevant linearized perturbation equations have been solved. The explicit expression of the linear growth rate is obtained in the presence of fixed boundary conditions. A stability criterion for the medium is derived and discussed the Rayleigh Taylor instabilities in different configurations. It is found that the basic Rayleigh-Taylor instability condition is modified by the presence of magnetic field, suspended particles and porosity of the medium. In case of an unstable R-T configuration, the magnetic field has a stabilizing effect on the system. It is also found that the growth rate of an unstable R-T mode decreases with increasing relaxation frequency thereby showing a stabilizing influence on the R-T configuration.
Effect of magnetic field on the Rayleigh Taylor instability of rotating and stratified plasma
International Nuclear Information System (INIS)
Sharma, PK; Tiwari, Anita; Argal, Shraddha
2017-01-01
In the present study the effect of magnetic field and rotation have been carried out on the Rayleigh Taylor instability of conducting and rotating plasma, which is assumed to be incompressible and confined between two rigid planes z = 0 and z = h. The dispersion relation of the problem is obtained by solving the basic MHD equations of the problem with the help normal mode technique and appropriate boundary conditions. The dispersion relation of the medium is analysed and the effect of magnetic field and angular velocity (rotation effect) have been examined on the growth rate of Rayleigh Taylor instability. It is found that the magnetic field and angular velocity (rotation effect) have stabilizing influence on the Rayleigh Taylor instability. (paper)
Energy Technology Data Exchange (ETDEWEB)
Adams, Colin Stuart [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Univ. of Washington, Seattle, WA (United States)
2015-01-15
The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.
Theoretical and numerical study of Rayleigh-Taylor instabilities in magnetized plasmas
International Nuclear Information System (INIS)
Andrei, A. Ivanov
2001-06-01
In this thesis we're studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words - two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability. These results can be applied to a wide range of systems, starting from classic hydrodynamics and up to astrophysical plasmas. The scheme of wire arrays has become recently a very popular method to obtain a high power X-radiation or for a high quality implosion in Z-pinches. The experimental studies have demonstrated that the results of implosion are much better for the case of multiple thin wires situated cylindrically than in a usual liner scheme. We have examined the problem modeling the stabilization of Rayleigh-Taylor instability for a wire array system. The reason for instability suppression is the regular spatial modulation of the surface plasma-magnetic
Theoretical and numerical studies of Rayleigh-Taylor instabilities in magnetized plasmas
International Nuclear Information System (INIS)
Ivanov, A.A.
2001-06-01
The instabilities of Rayleigh-Taylor type are considered in the thesis. The topic of the thesis was inspired by recent advances in the physics of plasma compression, especially with the aid of systems like Z-pinch. Rayleigh-Taylor instability (RTI) plays an important role in the evolution of magnetized plasmas in these experiments, as well as in stellar plasmas and classic fluids. For the phenomena concerning the nuclear fusion the RTI is very often the factor limiting the possibility of compression. In the current work we try to examine in detail the characteristic features of the instabilities of this type in order to eliminate their detrimental influence. In this thesis we are studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words, two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability
Energy Technology Data Exchange (ETDEWEB)
Andrei, A. Ivanov
2001-06-15
In this thesis we're studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words - two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability. These results can be applied to a wide range of systems, starting from classic hydrodynamics and up to astrophysical plasmas. The scheme of wire arrays has become recently a very popular method to obtain a high power X-radiation or for a high quality implosion in Z-pinches. The experimental studies have demonstrated that the results of implosion are much better for the case of multiple thin wires situated cylindrically than in a usual liner scheme. We have examined the problem modeling the stabilization of Rayleigh-Taylor instability for a wire array system. The reason for instability suppression is the regular spatial modulation of
Energy Technology Data Exchange (ETDEWEB)
Ivanov, A.A
2001-06-01
The instabilities of Rayleigh-Taylor type are considered in the thesis. The topic of the thesis was inspired by recent advances in the physics of plasma compression, especially with the aid of systems like Z-pinch. Rayleigh-Taylor instability (RTI) plays an important role in the evolution of magnetized plasmas in these experiments, as well as in stellar plasmas and classic fluids. For the phenomena concerning the nuclear fusion the RTI is very often the factor limiting the possibility of compression. In the current work we try to examine in detail the characteristic features of the instabilities of this type in order to eliminate their detrimental influence. In this thesis we are studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words, two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external &apos
Rayleigh Taylor instability of two superposed compressible fluids in un-magnetized plasma
International Nuclear Information System (INIS)
Sharma, P K; Tiwari, A; Argal, S; Chhajlani, R K
2014-01-01
The linear Rayleigh Taylor instability of two superposed compressible Newtonian fluids is discussed with the effect of surface tension which can play important roles in space plasma. As in both the superposed Newtonian fluids, the system is stable for potentially stable case and unstable for potentially unstable case in the present problem also. The equations of the problem are solved by normal mode method and a dispersion relation is obtained for such a system. The behaviour of growth rate is examined in the presence of surface tension and it is found that the surface tension has stabilizing influence on the Rayleigh Taylor instability of two superposed compressible fluids. Numerical analysis is performed to show the effect of sound velocity and surface tension on the growth rate of Rayleigh Taylor instability. It is found that both parameters have stabilizing influence on the growth rate of Rayleigh Taylor instability.
Development of Richtmyer-Meshkov and Rayleigh-Taylor instability in the presence of magnetic field
International Nuclear Information System (INIS)
Khan, Manoranjan; Mandal, Labakanta; Banerjee, Rahul; Roy, Sourav; Gupta, M.R.
2011-01-01
Fluid instabilities like Rayleigh-Taylor (R-T), Richtmyer-Meshkov (R-M) and Kelvin-Helmholtz (K-H) instability can occur in a wide range of physical phenomenon from astrophysical context to Inertial Confinement Fusion (ICF). Using Layzer's potential flow model, we derive the analytical expressions of growth rate of bubble and spike for ideal magnetized fluid in R-T and R-M cases. In the presence of transverse magnetic field, the R-M and R-T instabilities are suppressed or enhanced depending on the direction of magnetic pressure and hydrodynamic pressure. Again the interface of two fluid may oscillate if both the fluids are conducting. However, it is observed that the magnetic field has no effect in linear case.
Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field
Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding
2018-04-01
In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.
International Nuclear Information System (INIS)
Sharma, P.K.; Tiwari, Anita; Argal, Shraddha; Chhajlani, R.K.
2013-01-01
This paper is devoted to an investigation of Quantum effects and magnetic field effects on the Rayleigh Taylor instability of two superposed incompressible fluids in bounded porous medium. The Quantum magneto hydrodynamic equations are solved by using normal mode method and a dispersion relation is obtained. The dispersion relation is derived for the case where plasma is bounded by two rigid planes z = 0 and z = h. The Rayleigh Taylor instability growth rate and stability condition of the medium is discussed in the presence of quantum effect, magnetic field, porosity and permeability. It is found that the magnetic field and medium porosity have stabilizing influence while permeability has destabilizing influence on the Rayleigh Taylor instability. (author)
RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES
International Nuclear Information System (INIS)
Jacquet, Emmanuel; Krumholz, Mark R.
2011-01-01
We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick a diabaticregime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.
International Nuclear Information System (INIS)
Ogasawara, Masatada; Takita, Masami.
1981-08-01
Spontaneous magnetic fields due to the temperature gradient nabla T 0 produced by a focussed laser beam on one point of a pellet are taken into account in deriving the dispersion relation of Rayleigh-Taylor instability. Growth rate γ decreases with time. Density fluctuation with wavelength shorter than 1.5(R/L sub(T)) x (n sub(s)/n 0 )sup(1/2) μm is remarkably stabilized, where R, L sub(T), n sub(s) and n 0 are the radius of a pellet, L sub(T)sup(-1) = + nabla T 0 /T 0 + , number densities of solid and the pellet. Validity condition of the theory is γt 0 >> 1 or in another form R >> L, where t 0 is the time of thermal expansion of a pellet and L -1 = + nabla n 0 /n 0 + . (author)
The non-linear growth of the magnetic Rayleigh-Taylor instability
Carlyle, Jack; Hillier, Andrew
2017-09-01
This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensions. Numerical experiments are conducted in a domain sufficiently large so as to allow the predicted critical modes to develop in a physically realistic manner. The ratio between gravity, which drives the instability in this case (as well as in several of the corresponding observations), and magnetic field strength is taken up to a ratio which accurately reflects that of observed astrophysical plasma, in order to allow comparison between the results of the simulations and the observational data which served as inspiration for this work. This study finds reduced non-linear growth of the rising bubbles of the RTI for stronger magnetic fields, and that this is directly due to the change in magnetic field strength, rather than the indirect effect of altering characteristic length scales with respect to domain size. By examining the growth of the falling spikes, the growth rate appears to be enhanced for the strongest magnetic field strengths, suggesting that rather than affecting the development of the system as a whole, increased magnetic field strengths in fact introduce an asymmetry to the system. Further investigation of this effect also revealed that the greater this asymmetry, the less efficiently the gravitational energy is released. By better understanding the under-studied regime of such a major phenomenon in astrophysics, deeper explanations for observations may be sought, and this work illustrates that the strength of magnetic fields in astrophysical plasmas influences observed RTI in subtle and complex ways.
International Nuclear Information System (INIS)
Das, Amita; Sen, Abhijit; Kaw, Predhiman; Benkadda, S.; Beyer, Peter
2005-01-01
Three-dimensional electromagnetic fluid simulations of the magnetic-curvature-driven Rayleigh-Taylor instability are presented. Issues related to the existence of nonlinear saturated states and the nature of the temporal evolution to such states from random initial conditions are addressed. It is found that nonlinear saturated states arising from generation of zonal shear flows continue to exist in certain parametric domains but their spectrum and spatial characteristics have important differences from earlier two-dimensional results reported in Phys. Plasmas 4, 1018 (1997) and Phys. Plasmas 8, 5104 (2001). In particular, the three-dimensional nonlinear states possess a significant power level in short scales and the spatial structures of the potential and density fluctuations appear not to develop any functional correlations. Electromagnetic effects are found to inhibit the formation of zonal flows and thereby to considerably restrict the parametric domain of nonlinear stabilization. The role of finite k parallel and the contribution of the unstable drift wave branch are also discussed and delineated through a number of simulation studies carried out in special simplified limits
Centrifugally Driven Rayleigh-Taylor Instability
Scase, Matthew; Hill, Richard
2017-11-01
The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.
Nonlinear saturation of the Rayleigh Taylor instability
International Nuclear Information System (INIS)
Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.
1997-01-01
The problem of the nonlinear saturation of the 2 dimensional Rayleigh Taylor instability is re-examined to put various earlier results in a proper perspective. The existence of a variety of final states can be attributed to the differences in the choice of boundary conditions and initial conditions in earlier numerical modeling studies. Our own numerical simulations indicate that the RT instability saturates by the self consistent generation of shear flow even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. Such final states can be achieved for suitable values of the Prandtl number. (author)
Predictability of Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Viecelli, J.A.
1986-01-01
Numerical experiments modeling the Rayleigh Taylor instability are carried out using a two-dimensional incompressible Eulerian hydrodynamic code VFTS. The method of integrating the Navier-Stokes equations including the viscous terms is similar to that described in Kim and Moin, except that Lagrange particles have been added and provision for body forces is given. The Eulerian method is 2nd order accurate in both space and time, and the Poisson equation for the effective pressure field is solved exactly at each time step using a cyclic reduction method. 3 refs., 3 figs
Effects of magnetic field, sheared flow and ablative velocity on the Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Li, D.; Zhang, W.L.; Wu, Z.W.
2005-01-01
It is found that magnetic field has a stabilization effect whereas the sheared flow has a destabilization effect on the RT instability in the presence of sharp interface. RT instability only occurs in the long wave region and can be completely suppressed if the stabilizing effect of magnetic field dominates. The RT instability increases with wave number and flow shear, and acts much like a Kelvin-Helmholtz instability when destabilizing effect of sheared flow dominates. It is shown that both of ablation velocity and magnetic filed have stabilization effect on RT instability in the presence of continued interface. The stabilization effect of magnetic field takes place for whole waveband and becomes more significant for the short wavelength. The RT instability can be completely suppressed by the cooperated effect of magnetic field and ablation velocity so that the ICF target shell may be unnecessary to be accelerated to very high speed. The growth rate decreases as the density scale length increases. The stabilization effect of magnetic field is more significant for the short density scale length. (author)
Kinetic simulations of Rayleigh-Taylor instabilities
International Nuclear Information System (INIS)
Sagert, Irina; Bauer, Wolfgang; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance
2014-01-01
We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is in the linear regime, we compare its position and shape to the analytic prediction. Despite the broadening of the fluid interface we see a good agreement with the analytic solution. At later times we observe the development of a mushroom like shape caused by secondary Kelvin-Helmholtz instabilities as seen in hydrodynamic simulations and consistent with experimental observations.
Quantum effects on the Rayleigh-Taylor instability in a horizontal inhomogeneous rotating plasma
International Nuclear Information System (INIS)
Hoshoudy, G. A.
2009-01-01
The Rayleigh-Taylor instability is studied analytically in inhomogeneous plasma rotating uniformly in an external transverse magnetic field. The influence of the quantum mechanism is considered. For a stratified layer the linear growth rate is obtained. Some special cases that isolate the effect of various parameters on the growth rate of the Rayleigh-Taylor instability are discussed. It is shown that for some cases, the presence of the external transverse magnetic field beside the quantum effect will bring about more stability on the Rayleigh-Taylor instability.
Effects of shock waves on Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Zhang Yongtao; Shu Chiwang; Zhou Ye
2006-01-01
A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process
Hydromagnetic Rayleigh-Taylor instability in cylindrical implosions
International Nuclear Information System (INIS)
Hwang, C.S.; Roderick, N.F.; Wu, M.W.
1986-01-01
Rayleigh-Taylor Instability in the (r,Θ) plane has been solved by the variational approach. Results are compared to the analytical solutions of two-region and three-region problems at the infinite radius. They show the magnetic stabilization effect. Growth rates in this plane are decreased by the effects of plasma shell thickness, plasma shell radius, magnetic tension, magnetic diffusion and finite density gradient of the plasma magnetic field interface. The most unstable mode number decreases when the radius of the plasma shell decreases
Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities
International Nuclear Information System (INIS)
Lau, Yue Ying; Gilgenbach, Ronald
2013-01-01
Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed
Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities
Energy Technology Data Exchange (ETDEWEB)
Lau, Yue Ying [University of Michigan, Ann Arbor, MI (United States); Gilgenbach, Ronald [University of Michigan, Ann Arbor, MI (United States)
2013-07-07
Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed.
The Rayleigh-Taylor instability in the spherical pinch
International Nuclear Information System (INIS)
Chen, H.B.; Hilko, B.; Panarella, E.
1994-01-01
The spherical pinch (SP) concept is an outgrowth of the inertial confinement model (ICF). Unlike the ICF where instabilities, especially the Rayleigh-Taylor instability, have been studied extensively, the instability study of the spherical pinch has just begun. The Raleigh-Taylor instability is investigated for the first time in the SP in the present work. By using the simple condition for the Rayleigh-Taylor instability ∇p · ∇p < O (density and pressure gradients have opposite direction), we have qualitatively identified the regions for development of instabilities in the SP. It is found that the explosion phase (central discharge) is stable and instabilities take place in the imploding phase. However, the growth rate for the instability is not in exponential form, and the appearance of the Rayleigh-Taylor instability does not prevent the main shock wave from converging to the center of the sphere
International Nuclear Information System (INIS)
Hillier, Andrew; Isobe, Hiroaki; Shibata, Kazunari; Berger, Thomas
2012-01-01
The launch of the Hinode satellite led to the discovery of rising plumes, dark in chromospheric lines, that propagate from large (∼10 Mm) bubbles that form at the base of quiescent prominences. The plumes move through a height of approximately 10 Mm while developing highly turbulent profiles. The magnetic Rayleigh-Taylor instability was hypothesized to be the mechanism that drives these flows. In this study, using three-dimensional (3D) MHD simulations, we investigate the nonlinear stability of the Kippenhahn-Schlüter prominence model for the interchange mode of the magnetic Rayleigh-Taylor instability. The model simulates the rise of a buoyant tube inside the quiescent prominence model, where the interchange of magnetic field lines becomes possible at the boundary between the buoyant tube and the prominence. Hillier et al. presented the initial results of this study, where upflows of constant velocity (maximum found 6 km s –1 ) and a maximum plume width ≈1.5 Mm which propagate through a height of approximately 6 Mm were found. Nonlinear interaction between plumes was found to be important for determining the plume dynamics. In this paper, using the results of ideal MHD simulations, we determine how the initial parameters for the model and buoyant tube affect the evolution of instability. We find that the 3D mode of the magnetic Rayleigh-Taylor instability grows, creating upflows aligned with the magnetic field of constant velocity (maximum found 7.3 km s –1 ). The width of the upflows is dependent on the initial conditions, with a range of 0.5-4 Mm which propagate through heights of 3-6 Mm. These results are in general agreement with the observations of the rising plumes.
Rayleigh-Taylor instability and mixing in SN 1987A
International Nuclear Information System (INIS)
Ebisuzaki, T.; Shigeyama, T.; Nomoto, K.
1989-01-01
The stability of the supernova ejecta is compared with the Rayleigh-Taylor instability for a realistic model of SN 1987A. A linear analysis indicates that the layers around the composition interface between the hydrogen-rich and helium zones, and become Rayleigh-Taylor unstable between the helium and metal zones. In these layers, the pressure increases outward because of deceleration due to the reverse shock which forms when the blast shock hits the massive hydrogen-rich envelope. On the contrary, the density steeply decreases outward because of the preexisting nuclear burning shell. Then, these layers undergo the Raleigh-Taylor instability because of the opposite signs of the pressure and density gradients. The estimated growth rate is larger than the expansion rate of the supernova. The Rayleigh-Taylor instability near the composition interface is likely to induce mixing, which has been strongly suggested from observations of SN 1987A. 25 refs
Rayleigh-Taylor instability in an equal mass plasma
Energy Technology Data Exchange (ETDEWEB)
Adak, Ashish, E-mail: ashish-adak@yahoo.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran, E-mail: sran-g@yahoo.com [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2014-09-15
The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.
Rayleigh-Taylor/gravitational instability in dense magnetoplasmas
Energy Technology Data Exchange (ETDEWEB)
Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)
2009-08-10
The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.
Rayleigh-Taylor instability of cylindrical jets with radial motion
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiang M. [GE Nuclear, Wilmington, NC (United States); Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)
1995-09-01
Rayleigh-Taylor instability of an interface between fluids with different densities subjected to accelleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed.
Rayleigh-Taylor/gravitational instability in dense magnetoplasmas
International Nuclear Information System (INIS)
Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.
2009-01-01
The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.
Rayleigh-Taylor instability in a visco-plastic fluid
International Nuclear Information System (INIS)
Demianov, A Yu; Doludenko, A N; Son, E E; Inogamov, N A
2010-01-01
The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.
Rayleigh-Taylor instability in a visco-plastic fluid
Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.
2010-12-01
The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.
Influence of velocity shear on the Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Guzdar, P.N.; Satyanarayana, P.; Huba, J.D.; Ossakow, S.L.
1982-01-01
The influence of a transverse velocity shear on the Rayleigh-Taylor instability is investigated. It is found that a sheared velocity flow can substantially reduce the growth rate of the Rayleigh-Taylor instability in short wavelength regime (i.e., kL>1 where L is the scale length of the density inhomogeneity), and causes the growth rate to maximize at kL<1.0. Applications of this result to ionospheric phenomena [equatorial spread F (ESF) and ionospheric plasma clouds] are discussed. In particular, the effect of shear could account for, at times, the 100's of km modulation observed on the bottomside of the ESF ionosphere and the km scale size wavelengths observed in barium cloud prompt striation phenomena
Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch
International Nuclear Information System (INIS)
He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming
2000-01-01
It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored
Rayleigh-Taylor instability in accelerated elastic-solid slabs
Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
2017-12-01
We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .
Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Garnier, J.; Masse, L.
2005-01-01
A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1λ for long wavelengths, but higher for short instable wavelengths in the ablative regime
Rayleigh-Taylor instability of cylindrical jets with radial motion
International Nuclear Information System (INIS)
Chen, X.M.; Schrock, V.E.; Peterson, P.F.
1997-01-01
Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)
Shear flow stabilization of the hydromagnetic Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Roderick, N.F.; Shumlak, U.; Douglas, M.; Peterkin, R.E. Jr.; Ruden, E.
1997-01-01
Numerical simulations have indicated that shear flow may help stabilize the hydromagnetic Rayleigh-Taylor instability in imploding plasma z-pinches. A simple extension to a model presented in Chandrasekhar has been developed to study the linear stability of incompressible plasma subjected to both a shear flow and acceleration. The model has been used to investigate the stability plasma implosion schemes using externally imposed velocity shear which develops from the plasma flow itself. Specific parameters were chosen to represent plasma implosions driven by the Saturn and PBFA-Z, pulsed power generators at Sandia National Laboratories. Results indicate a high shear is necessary to stabilize the z-pinch implosions studied
Rayleigh-Taylor instability in multi-structured spherical targets
International Nuclear Information System (INIS)
Gupta, N.K.; Lawande, S.V.
1986-01-01
An eigenvalue equation for the exponential growth rate of the Rayleigh-Taylor instability is derived in spherical geometry. The free surface and jump boundary conditions are obtained from the eigenvalue equation. The eigenvalue equation is solved in the cases where the initial fluid density profile has a step function or exponential variation in space and analytical formulae for growth rate of the instability are obtained. The solutions for the step function are generalized for any number N of spherical zones forming an arbitrary fluid density profile. The results of the numerical calculations for N spherical zones are compared with the exact analytical results for exponential fluid density profile with N=10 and a good agreement is observed. The formalism is further used to study the effects of density gradients on Rayleigh-Taylor instability in spherical geometry. Also analytical formulae are presented for a particular case of N=3 and shell targets. The formalism developed here can be used to study the growth of the instability in present day multi-structured shell targets. (author)
Nonlinear interaction of Rayleigh--Taylor and shear instabilities
International Nuclear Information System (INIS)
Finn, J.M.
1993-01-01
Results on the nonlinear behavior of the Rayleigh--Taylor instability and consequent development of shear flow by the shear instability [Phys. Fluids B 4, 488 (1992)] are presented. It is found that the shear flow is generated at sufficient amplitude to reduce greatly the convective transport. For high viscosity, the time-asymptotic state consists of an equilibrium with shear flow and vortex flow (with islands, or ''cat's eyes''), or a relaxation oscillation involving an interplay between the shear instability and the Rayleigh--Taylor instability in the presence of shear. For low viscosity, the dominant feature is a high-frequency nonlinear standing wave consisting of convective vortices localized near the top and bottom boundaries. The localization of these vortices is due to the smaller shear near the boundary regions. The convective transport is largest around these convective vortices near the boundary and there is a region of good confinement near the center. The possible relevance of this behavior to the H mode and edge-localized modes (ELM's) in the tokamak edge region is discussed
Earth's core formation due to the Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Ida, S.; Nakagawa, Y.; Nakazawa, K.
1987-01-01
A protoearth accretion stage configuration consisting of an undifferentiated solid core, an intermediate metal-melt layer, and an outer silicate-melt layer, is presently taken as the initial state in an investigation of Rayleigh-Taylor instability-induced core formation. The Ida et al. (to be published) quantitative results on the instability in a self-gravitating fluid sphere are used. The instability is found to occur through the translational mode on a time-scale of about 10 hr, in the case where the metal-melt layer is greater than about 1 km; this implies that the earth's core formed due to the undifferentiated solid core's translation upon the outer layer's melting. Differentiation would then have occurred in the late accretion stage. 17 references
Growth of Rayleigh-Taylor and bulk convective instabilities in dynamics of plasma liners and pinches
International Nuclear Information System (INIS)
Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.
1989-01-01
Perturbation growth is studied for the initial, linear stage of an instability development in the course of a cylindrically-symmetric compression and expansion of plasma liners and Z-pinches with a sharp boundary. The hydrodynamic instabilities are Rayleigh-Taylor and bulk convective ones, the former being the most dengerous. Classification of the instability modes developing in accelerated plasmas, inclusing the local and global Rayleigh-Taylor modes, is given. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The properties of the spectra appear to explain the filamentation and stratification of plasmas observed in the experiments with liners and Z-pinches. An axial magnetic field is shown to create a window of stability in the space of the flow parameters, where th Rayleigh-Taylor modes are fully suppressed by the magnetic shear, and the bulk convective ones - to a considerable extent. The axial magnetic field required to stabilize the implosion of a liner is estimated as B z0 =(10-30 kG)I(MA)/R 0 (cm), where I is the average current, R 0 - the initial radius of the liner
Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Wang Lifeng; Ye Wenhua; Li Yingjun
2010-01-01
The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)
Experimental investigation of turbulent mixing by Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Youngs, D.L.
1992-01-01
A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ 1 , and ρ 2 . (ρ 1 > ρ 2 ) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations
Mode coupling in nonlinear Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Ofer, D.; Shvarts, D.; Zinamon, Z.; Orszag, S.A.
1992-01-01
This paper studies the interaction of a small number of modes in the two-fluid Rayleigh--Taylor instability at relatively late stages of development, i.e., the nonlinear regime, using a two-dimensional hydrodynamic code incorporating a front-tracking scheme. It is found that the interaction of modes can greatly affect the amount of mixing and may even reduce the width of the mixing region. This interaction is both relatively long range in wave-number space and also acts in both directions, i.e., short wavelengths affect long wavelengths and vice versa. Three distinct stages of interaction have been identified, including substantial interaction among modes some of which may still be in their classical (single mode) ''linear'' phase
Size invariance of the granular Rayleigh-Taylor instability.
Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen
2010-04-01
The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.
International Nuclear Information System (INIS)
Douglas, M.; Deeney, C.; Roderick, N.
1999-01-01
Numerical simulations have been carried out to investigate the role that magnetic field diffusion and ohmic heating have on the magnetohydrodynamic Rayleigh-Taylor (RT) development in fast z-pinch implosions. Previous work has indicated these terms can strongly influence the evolution of RT growth, leading to a reduction in RT amplitude, and an improvement in pinch performance. Indeed, Roderick et al have suggested that magnetic smoothing is an important mechanism in linear RT growth. To examine this in more detail, simulations are presented for a 1.4 mg, 25.0 mm diameter tungsten wire array imploded in the Saturn long pulse mode. The 130 ns implosion time of this calculation should enhance any mitigating effects that may be attributed to nonideal MHD. Calculations were performed using the 2D MHD code Mach2. The wire array was approximated by a right cylindrical slab of 1.0 mm width. Both a random density perturbation and single mode density perturbations were incorporated to initiate the instability. In the former case, a 5% cell-to-cell random perturbation was used. This allowed a range of modes to be initially present. In the single mode case, a 1.25 mm wavelength, on the order of the shell thickness, was defined. To isolate the contributions due to field diffusion, joule heating, and equation of state, simulations were run with and without ohmic heating using both constant and material-dependent spitzer resistivities. This analysis was then extended to look at the effect of such parameters on the nested shell load configuration. Detailed analysis of the simulations will be presented
Effect of resistivity on the Rayleigh-Taylor instability in an accelerated plasma
International Nuclear Information System (INIS)
Castillo, J.L.; Huerta, M.A.
1993-01-01
We study the Rayleigh-Taylor instability in finite-conductivity accelerated plasma arcs of the type found in electromagnetic rail launchers. For a plasma of length l, acceleration a, and thermal speed v T we consider the case where v T 2 /al much-gt 1, which is valid when the projectile mass is large compared to the plasma mass. The conductivity σ enters via a magnetic Reynolds number R=σμ(al 3 ) 1/2 . The fourth-order mode equation is solved analytically using an asymptotic WKB expansion in 1/R. We find the first-order 1/R correction to the classical Rayleigh-Taylor dispersion relation for large wave number K but with K much-lt R 2 /l. The analytical results show good agreement with previous numerical calculations
New mitigation schemes of the ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Watari, T.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.; Ohnishi, N.
2005-01-01
The Rayleigh-Taylor (RT) instability with material ablation through the unstable interface is the key physics that determines success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high velocity fuel colliding with a preformed main fuel. (author)
Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability
Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott
2017-11-01
The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.
Effect of FLR correction on Rayleigh -Taylor instability of quantum and stratified plasma
International Nuclear Information System (INIS)
Sharma, P.K.; Tiwari, Anita; Argal, Shraddha; Chhajlani, R.K.
2013-01-01
The Rayleigh Taylor instability of stratified incompressible fluids is studied in presence of FLR Correction and quantum effects in bounded medium. The Quantum magneto hydrodynamic equations of the problem are solved by using normal mode analysis method. A dispersion relation is carried out for the case where plasma is bounded by two rigid planes z = 0 and z = h. The dispersion relation is obtained in dimensionless form to discuss the growth rate of Rayleigh Taylor instability in presence of FLR Correction and quantum effects. The stabilizing or destabilizing behavior of quantum effect and FLR correction on the Rayleigh Taylor instability is analyzed. (author)
Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method
International Nuclear Information System (INIS)
Zhang Xu; Tan Duowang
2009-01-01
A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)
International Nuclear Information System (INIS)
Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.
1989-01-01
A solution is derived for the problem of the initial, linear stage of the growth of small perturbations in the course of the cylindrically symmetric compression and expansion of a plasma liner and a Z-pinch with a sharp boundary. In these systems, Rayleigh-Taylor instabilities localized near the plasma boundaries are the most dangerous. Bulk convective instabilities develop in addition to these Rayleigh-Taylor instabilities. The various instability modes, including local and global Rayleigh-Taylor modes, which grown in an accelerated plasma with distributed profiles of hydrodynamic variables, are classified. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The shape of these spectra reveals an explanation of the stratification and filamentation of the plasma observed experimentally in pinches and liners. The imposition of a longitudinal magnetic field gives rise to a stability window in the space of the flow parameters. In this window, the Rayleigh-Taylor modes are suppressed completely by magnetic shear, while the bulk convective modes are suppressed to a significant extent
Effects of thermal conduction and compressibility on Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Takabe, Hideaki; Mima, Kunioki.
1980-01-01
In order to study the stability of the ablation front in laser driven implosion, the thermal conduction and compressibility effects on the Rayleigh-Taylor instability are considered. It is found that the thermal conduction effect cannot stabilize the Rayleigh-Taylor mode, but reduce the growth rate in the short wavelength case. But, the growth rate is found not to differ from the classical value √gk in the long wavelength limit, where the compressibility is essential. (author)
Search for Rayleigh-Taylor instability in laser irradiated layered thin foil targets
International Nuclear Information System (INIS)
Kilkenny, J.D.; Hares, J.D.; Rumsby, P.T.
1980-01-01
An experiment to measure the Rayleigh-Taylor instability at the vacuum-ablation surface of laser irradiated layered targets by time resolved x-ray spectroscopy is described. The time taken to burn through a layer of material is measured to be the same for massive targets as for thin foil accelerating targets. It is inferred that the thin foil targets might be Rayleigh-Taylor stable despite the values of γtauapproximately equal to15 calculated from classical theory. (author)
Model for the saturation of the hydromagnetic Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Roderick, N.F.; Hussey, T.W.
1984-01-01
The saturation of the hydromagnetic Rayleigh--Taylor instability is caused by the reduction of driving current in the bubble region between the spikes formed as the instability develops. For short wavelengths linear magnetic field diffusion provides the necessary smoothing of the magnetic field to reduce the driving force. For wavelengths longer than the magnetic field diffusion length, the current is shorted through material which expands into the bubble region. This initially low density accumulates in the bubble and eventually provides a source of sufficiently high conductivity plasma which reduces the magnetic field penetration to the front of the bubble. Simple analytic models have been developed to verify and and quantify these predictions. These models have been compared with two-dimensional magnetohydrodynamic calculations for imploding plasma shells and give good agreement with these more detailed simulations
International Nuclear Information System (INIS)
Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki; Akamatsu, Daisuke
2009-01-01
The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.
Suppression of the Rayleigh-Taylor instability due to self-radiation in a multiablation target
International Nuclear Information System (INIS)
Fujioka, Shinsuke; Sunahara, Atsushi; Nishihara, Katsunobu; Johzaki, Tomoyuki; Shiraga, Hiroyuki; Shigemori, Keisuke; Nakai, Mitsuo; Ikegawa, Tadashi; Murakami, Masakatsu; Nagai, Keiji; Norimatsu, Takayoshi; Azechi, Hiroshi; Yamanaka, Tatsuhiko; Ohnishi, Naofumi
2004-01-01
A scheme to suppress the Rayleigh-Taylor instability has been investigated for a direct-drive inertial fusion target. In a high-Z doped-plastic target, two ablation surfaces are formed separately--one driven by thermal radiation and the other driven by electron conduction. The growth of the Rayleigh-Taylor instability is significantly suppressed on the radiation-driven ablation surface inside the target due to the large ablation velocity and long density scale length. A significant reduction of the growth rate was observed in simulations and experiments using a brominated plastic target. A new direct-drive pellet was designed using this scheme
International Nuclear Information System (INIS)
Sharma, R.C.; Kumar, Pardeep
1998-01-01
The Rayleigh-Taylor instability of two superposed electrically conducting Walters elastico-viscous fluids (Model B') of uniform densities when the whole system is immersed in a uniform horizontal magnetic field has been studied. The stability analysis has been carried out, for mathematical simplicity, for two highly viscoelastic fluids of equal kinematic viscosities and equal kinematic viscoelasticities. For the stable configuration as in hydrodynamic case, the system is found to be stable or unstable for the wave-number range k (2v') -12 depending on kinematic viscoelasticity v'. For the unstable configuration, the magnetic field has got stabilizing effect and completely stabilizes certain wave-number range which was always unstable in the absence of magnetic field. The behaviour of growth rates with respect kinematic viscosity and kinematic viscoelasticity parameters are examined analytically. (author)
International Nuclear Information System (INIS)
Roderick, N.F.; Hussey, T.W.; Faehl, R.J.; Boyd, R.W.
1978-01-01
Two-dimensional (r-z) magnetohydrodynamic simulations of the electromagnetic implosion of metallic foil plasmas show, for certain initial configurations, a tendency to develop large-amplitude perturbations characteristic of the hydromagnetic Rayleigh-Taylor instability. These perturbations develop at the plasma magnetic field interface for plasma configurations where the density gradient scale length, the characteristic dimension for the instability, is short. The effects on the plasma dynamics of the implosion will be discussed for several initial foil configurations. In general, the growth rates and linear mode structure are found to be influenced by the plasma shell thickness and density gradient scale length, in agreement with theory. The most destructive modes are found to be those with wavelengths of the order of the plasma shell thickness
Nonlinear theory of the collisional Rayleigh-Taylor instability in equatorial spread F
International Nuclear Information System (INIS)
Chaturvedi, P.K.; Ossakow, S.L.
1977-01-01
The nonlinear behavior of the collisional Rayleigh-Taylor instability is studied in equatorial Spread F by including a dominant two-dimensional nonlinearity. It is found that on account of this nonlinearity the instability saturates by generating damped higher spatial harmonics. The saturated power spectrum for the density fluctuations is discussed. A comparison between experimental observations and theory is presented
Stability of an expanding cylindrical plasma envelope: Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Han, S.J.
1982-01-01
The stability of a cylindrically symmetric plasma envelope driven outward by blast waves is considered. The plasma fluid is assumed to be a compressible, isentropic gas describable as an ideal gas ( p = arho/sup γ/, γ>1). The stability problem of such an envelope undergoing self-similar motion is solved by considering the initial-value problem. It is shown that in the early phase of an expansion, the envelope is unstable to Rayleigh--Taylor modes which develop at the inner surface. In the later phase of the expansion, the Rayleigh--Taylor modes are weakened due to the geometrical divergence effect. The implications of the time-dependent behavior of the Rayleigh--Taylor instability for plasma switches are discussed
Measurement of the Rayleigh-Taylor instability in targets driven by optically smoothed laser beams
International Nuclear Information System (INIS)
Desselberger, M.; Willi, O.; Savage, M.; Lamb, M.J.
1990-01-01
Growth rates of the Rayleigh-Taylor instability were measured in targets with imposed sinusoidal modulations irradiated by optically smoothed 0.53-μm laser beams. A hybrid optical smoothing technique utilizing induced-spatial-incoherence and random-phase-plate technology was used for the first time. The wave-number dependence and the nonlinear behavior of Rayleigh-Taylor growth were investigated by using targets with a range of modulation periodicities and depths. The results are compared to 2D hydrodynamic-code simulations
A numerical and analytical investigation of Rayleigh-Taylor instability in a solid tungsten plate
International Nuclear Information System (INIS)
Robinson, A.C.; Swegle, J.W.
1987-07-01
The Rayleigh-Taylor instability response of an elastic-plastic tungsten plate is investigated by numerical experiments and an approximate modal analysis. The so-called ''minimum amplitude'' instability criteria derived from plasticity analyses is shown to be incomplete as a general indicator of instability or stability at very large driving pressures. Model equations are derived which are able to reproduce the basic qualitative features of the observed instability response given by the numerical calculations. 11 refs., 29 figs
Direct Numerical Simulations of Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Livescu, D; Wei, T; Petersen, M R
2011-01-01
The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096 2 × 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.
Prominence Bubble Shear Flows and the Coupled Kelvin-Helmholtz — Rayleigh-Taylor Instability
Berger, Thomas; Hillier, Andrew
2017-08-01
Prominence bubbles are large arched structures that rise from below into quiescent prominences, often growing to heights on the order of 10 Mm before going unstable and generating plume upflows. While there is general agreement that emerging flux below pre-existing prominences causes the structures, there is lack of agreement on the nature of the bubbles and the cause of the instability flows. One hypothesis is that the bubbles contain coronal temperature plasma and rise into the prominence above due to both magnetic and thermal buoyancy, eventually breaking down via a magnetic Rayleigh-Taylor (RT) instability to release hot plasma and magnetic flux and helicity into the overlying coronal flux rope. Another posits that the bubbles are actually just “arcades” in the prominence indicating a magnetic separator line between the bipole and the prominence fields with the observed upflows and downflows caused by reconnection along the separator. We analyze Hinode/SOT, SDO/AIA, and IRIS observations of prominence bubbles, focusing on characteristics of the bubble boundary layers that may discriminate between the two hypotheses. We find speeds on the order of 10 km/s in prominence plasma downflows and lateral shear flows along the bubble boundary. Inflows to the boundary gradually increase the thickness and brightness of the layer until plasma drains from there, apparently around the dome-like bubble domain. In one case, shear flow across the bubble boundary develops Kelvin-Helmholtz (KH) vortices that we use to infer flow speeds in the low-density bubble on the order of 100 km/sec. IRIS spectra indicate that plasma flows on the bubble boundary at transition region temperatures achieve Doppler speeds on the order of 50 km/s, consistent with this inference. Combined magnetic KH-RT instability analysis leads to flux density estimates of 10 G with a field angle of 30° to the prominence, consistent with vector magnetic field measurements. In contrast, we find no evidence
Numerical simulation of Rayleigh-Taylor instability in ablation driven systems
International Nuclear Information System (INIS)
Verdon, C.P.
1984-01-01
Two-dimensional numerical simulations of ablatively accelerated thin shells subject to Rayleigh-Taylor instability are presented. Results for both single wavelength and multiwavelength perturbations show that the nonlinear effects of the instability are evident mainly in the bubble rather than the spike. Approximate roles for predicting the dominant nonlinear mode-mode interactions, which limit shell performance, are also discussed. The work concludes with a discussion of recommendations for future work in this area
Evidence of Rayleigh-Taylor instabilities in tri-layer targets
International Nuclear Information System (INIS)
Galmiche, D.; Holstein, P.A.; Meyer, B.; Rostaing, M.; Wilke, N.
1988-01-01
The results of the experiments carried out on a laser system are reported. The work is performed in order to investigate the problem of target instability under ablative acceleration and to get direct evidence of Rayleigh-Taylor instabilities. Tri-layer experiments assert the validity of X-ray spectroscopy measurements as experimental method to investigate the problem. A mixing zone is evidenced and general trends of mixing development versus target acceleration are coherent with numerical simulations. Results obtained with optical smoothing demonstrate that the apparent mixing is not due to large scale illumination non uniformities. Numerical simulations confirm that Rayleigh-Taylor instability seems to be the dominant process responsible for the mixing. Benefit of time resolved spectroscopy appears attractive and gives a real knowledge of the mixing layer
Self-consistent model of the Rayleigh--Taylor instability in ablatively accelerated laser plasma
International Nuclear Information System (INIS)
Bychkov, V.V.; Golberg, S.M.; Liberman, M.A.
1994-01-01
A self-consistent approach to the problem of the growth rate of the Rayleigh--Taylor instability in laser accelerated targets is developed. The analytical solution of the problem is obtained by solving the complete system of the hydrodynamical equations which include both thermal conductivity and energy release due to absorption of the laser light. The developed theory provides a rigorous justification for the supplementary boundary condition in the limiting case of the discontinuity model. An analysis of the suppression of the Rayleigh--Taylor instability by the ablation flow is done and it is found that there is a good agreement between the obtained solution and the approximate formula σ = 0.9√gk - 3u 1 k, where g is the acceleration, u 1 is the ablation velocity. This paper discusses different regimes of the ablative stabilization and compares them with previous analytical and numerical works
Surfactants and the Rayleigh-Taylor instability of Couette type flows
Frenkel, A. L.; Halpern, D.; Schweiger, A. S.
2011-11-01
We study the Rayleigh-Taylor instability of slow Couette- type flows in the presence of insoluble surfactants. It is known that with zero gravity, the surfactant makes the flow unstable to longwave disturbances in certain regions of the parameter space; while in other parametric regions, it reinforces the flow stability (Frenkel and Halpern 2002). Here, we show that in the latter parametric sectors, and when the (gravity) Bond number Bo is below a certain threshold value, the Rayleigh-Taylor instability is completely stabilized for a finite interval of Ma, the (surfactant) Marangoni number: MaL Ma2. For Ma Ma2, and also for MaL Ma2 as functions of the Bond number. We note that (for an interval of the Bond number) there are two distinct criticalities with nonzero (and distinct) critical wavenumbers.
The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere
Mondal, Puskar; Korenaga, Jun
2018-03-01
The dispersion relation of the Rayleigh-Taylor instability in the spherical geometry is of profound importance in the context of the Earth's core formation. Here we present a complete derivation of this dispersion relation for a self-gravitating two-layer viscous sphere. Such relation is, however, obtained through the solution of a complex transcendental equation, and it is difficult to gain physical insights directly from the transcendental equation itself. We thus also derive an empirical formula to compute the growth rate, by combining the Monte Carlo sampling of the relevant model parameter space with linear regression. Our analysis indicates that the growth rate of Rayleigh-Taylor instability is most sensitive to the viscosity of inner layer in a physical setting that is most relevant to the core formation.
LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Mikaelian, K.O.
1990-01-01
We present the results of two-dimensional LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability. Our growth rates and eigenmodes for classical two- and three-fluid problems agree closely with the exact analytic expressions. We illustrate in several examples how perturbations feed through from one interface to another. For targets driven by a 1/4-μm laser at I=2x10 14 W/cm 2 our growth rates are 40--80 % of the classical case rates for wavelengths between 5 and 100 μm. We find that radiation transport has a stabilizing effect on the Rayleigh-Taylor instability, particularly at high intensities. A brief comparison with a laser-driven experiment is also presented
Energy balance in a Z pinch with suppressed Rayleigh-Taylor instability
Baksht, R. B.; Oreshkin, V. I.; Rousskikh, A. G.; Zhigalin, A. S.
2018-03-01
At present Z-pinch has evolved into a powerful plasma source of soft x-ray. This paper considers the energy balance in a radiating metallic gas-puff Z pinch. In this type of Z pinch, a power-law density distribution is realized, promoting suppression of Rayleigh-Taylor (RT) instabilities that occur in the pinch plasma during compression. The energy coupled into the pinch plasma, is determined as the difference between the total energy delivered to the load from the generator and the magnetic energy of the load inductance. A calibrated voltage divider and a Rogowski coil were used to determine the coupled energy and the load inductance. Time-gated optical imaging of the pinch plasma showed its stable compression up to the stagnation phase. The pinch implosion was simulated using a 1D two-temperature radiative magnetohydrodynamic code. Comparison of the experimental and simulation results has shown that the simulation adequately describes the pinch dynamics for conditions in which RT instability is suppressed. It has been found that the proportion of the Ohmic heating in the energy balance of a Z pinch with suppressed RT instability is determined by Spitzer resistance and makes no more than ten percent.
Steiner, Adam; Yager-Elorriaga, David; Patel, Sonal; Jordan, Nicholas; Gilgenbach, Ronald; Lau, Y. Y.
2015-11-01
The electrothermal instability (ETI) and magneto-Rayleigh Taylor instability (MRT) are important in the implosion of metallic liners, such as magnetized liner implosion fusion (MagLIF). The MAIZE linear transformer driver (LTD) at the University of Michigan generates 200 ns risetime-current pulses of 500 to 600 kA into Al foil liners to study plasma instabilities and implosion dynamics, most recently MRT growth on imploding cylindrical liners. A full circuit model of MAIZE, along with I-V measurements, yields time-resolved load inductance. This has enabled measurements of an effective current-carrying radius to determine implosion velocity and plasma-vacuum interface acceleration. Measurements are also compared to implosion data from 4-time-frame laser shadowgraphy. Improved resolution measurements on the laser shadowgraph system have been used to examine the liner interface early in the shot to examine surface perturbations resulting from ETI for various seeding conditions. Fourier analysis examines the growth rates of wavelength bands of these structures to examine the transition from ETI to MRT. This work was supported by the U.S. DoE through award DE-SC0012328. S.G. Patel is supported by Sandia National Labs. D.A. Yager is supported by NSF fellowship grant DGE 1256260.
Nonlinear spectrum of the ablative Rayleigh-Taylor instability in laser-accelerated planar plasmas
International Nuclear Information System (INIS)
Keskinen, M. J.; Schmitt, A.
2007-01-01
A model for the nonlinear spectrum of the ablative Rayleigh-Taylor instability in laser-accelerated planar plasmas has been developed for a wide range of Froude numbers and scale sizes. It is found that the spectrum can be characterized by an inverse power law with spectral index of approximately 2 in the limit of small-wavenumber spectrum cutoffs and small-scale density gradient scale lengths. Comparison of the model spectrum with recent experimental observations is made with good agreement
Three-dimensional, nonlinear evolution of the Rayleigh--Taylor instability of a thin layer
International Nuclear Information System (INIS)
Manheimer, W.; Colombant, D.; Ott, E.
1984-01-01
A numerical simulation scheme is developed to examine the nonlinear evolution of the Rayleigh--Taylor instability of a thin sheet in three dimensions. It is shown that the erosion of mass at the top of the bubble is approximately as described by two-dimensional simulations. However, mass is lost into spikes more slowly in three-dimensional than in two-dimensional simulations
Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth
International Nuclear Information System (INIS)
Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R.
2011-01-01
The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.
Breakup of an accelerated shell owing to Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Suydam, B.R.
1978-06-01
A simplified model for the Rayleigh-Taylor instability of an accelerated shell is examined, and it is found that the most dangerous wavelength to be about that of the shell thickness. The shell material is assumed to be an inviscid, incompressible fluid. Effects of finite compressibility and of surface tension are found to be negligible, but the effects of viscosity are shown to be very large. The need for better knowledge of viscosity at high pressure is pointed out
Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.
2004-01-01
A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition
Coherent structures in ablatively compressed ICF targets and Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Pant, H.C.; Desai, T.
1996-01-01
One of the major issues in laser induced inertial confinement fusion (ICF) is a stable ablative compression of spherical fusion pellets. The main impediment in achievement of this objective is Rayleigh-Taylor instability at the pellet's ablation front. Under sufficiently high acceleration this instability can grow out of noise. However, it can also arise either due to non-uniform laser intensity distribution over the pellet surface or due to pellet wall areal mass irregularity. Coherent structures in the dense target behind the ablation front can be effectively utilised for stabilisation of the Rayleigh-Taylor phenomenon. Such coherent structures in the form of a super lattice can be created by doping the pellet pusher with high atomic number (Z) micro particles. A compressed-cool pusher under laser irradiation behaves like a strongly correlated non ideal plasma when compressed to sufficiently high density such that the non ideality parameter exceeds unity. Moreover, the nonideality parameter for high Z microinclusions may exceed a critical value of 180 and as a consequence they remain in the form of intact clusters, maintaining the superlattice intact during ablative acceleration. Micro-hetrogeneity and its superlattice plays an important role in stabilization of Rayleigh-Taylor instability, through a variety of mechanisms. (orig.)
Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability
Delamere, P. A.; Stauffer, B. H.; Ma, X.
2017-12-01
Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.
Rayleigh-Taylor and wind-driven instabilities of the nighttime equatorial ionosphere
International Nuclear Information System (INIS)
Chiu, Y.T.; Straus, J.M.
1979-01-01
We have made a thorough re-examination of the Rayleigh-Taylor instability in the nighttime equatorial ionosphere from approx.100 km to the bottomside F region. We have taken into account explicitly the following effects which have been ignored by other workers in various combinations: (1) The eastward drift of the ionosphere caused by the nighttime polarization electric field, (2) the eastward nighttime neutral wind, and (3) recombination in the F and E regions. We found that, well below the bottomside F region, the Rayleigh-Taylor mode can be unstable and is driven by an eastward neutral wind rather than by gravitational drift. Formation of ionospheric bubbles below the bottomside F region is consistent with the observation of lower ionospheric ions in F region ionospheric holes; furthermore, seasonal and shorter term variations in spread-F occurrence may be associated with variations in the neutral wind and polarization electric field
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.
2016-01-01
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume
Potential flow model for the hydromagnetic Rayleigh--Taylor instability in cylindrical plasmas
International Nuclear Information System (INIS)
Hwang, C.S.; Roderick, N.F.
1987-01-01
A potential flow model has been developed to study the linear behavior of the hydromagnetic equivalent of the Rayleigh--Taylor instability in imploding cylindrical plasmas. Ordinary differential equations are obtained for both (r,z) and (r,θ) disturbances. The model allows the study of the dynamic effects of the moving plasma on the development of the instability. The perturbation equations separate into a geometric part associated with the motion of the interface and a nongeometric part associated with the stability of the interface. In both planes the geometric part shows growth of perturbations for imploding plasmas. The surface is also unstable in both planes for plasmas being imploded by magnetic fields. Analytic solutions are obtained for constant acceleration. These show that the short wavelength perturbations that are most damaging in the (r,z) plane are not affected by the motion of the interface. In the (r,θ) plane the growth of longer wavelength disturbances is affected by the interface motion
Linear theory of the Rayleigh-Taylor instability in the equatorial ionsophere
International Nuclear Information System (INIS)
Russel, D.A.; Ott, E.
1979-01-01
We present a liner theory of the Rayleigh-Taylor instability in the equatorial ionosphere. For a purely exponential density profile, we find that no unstable eigenmode solutions exist. For a particular model ionosphere with an F peak, unstable eigenmode solutions exist only for sufficiently small horizontal wave numbers. In the later case, purely exponential growth at a rate identical to that for the sharp boundary instability is found. To clarify the situation in the case that eigenmodes do not exist, we solve the initial value problem for the linearized ion equation of motion in the long time asymptotic limit. Ion inertia and ion-neutral collisions are included. Assuming straight magnetic field lines, we find that when eigenmodes do not exist the growth of the response to an impulse is slower than exponential viz, t=/sup -1/2/ exp (γ/sup t/) below the F peak and t/sup -3/2/ exp(γ/sup t/) above the peak; and we determine γ
Dynamic stabilization of the imploding-shell Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Boris, J.P.
1977-01-01
A method for dynamic stabilization of the Rayleigh-Taylor (R-T) instability on the surface of an imploding fusion pellet is discussed. The driving laser beams are modulated in intensity so the ablation layer is subject to a rapidly and strongly oscillating acceleration. A substantial band of the Rayleigh-Taylor instability spectrum can be stabilized by this oscillation even though the time average acceleration vector lies in the destabilizing direction. By adjusting the frequency, structure, and amplitude of the modulation, the band of dynamically stabilized modes can be made to include the most unstable and dangerous modes. Thus considerably higher aspect ratio shells (i.e., thinner shells) could implode successfully than had been previously considered stable enough. Both theory and numerical simulations support this conclusion for the case of laser-driven pellet implosions. Similar modulation via transverse beam oscillations or parallel bunching should also work to stabilize the most dangerous surface Rayleigh-Taylor modes in relativistic electron-, ion- and heavy ion-pellet fusion schemes. (U.K.)
Analytical and numerical analysis of finite amplitude Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Meiron, D.I.; Saffman, P.G.
1987-01-01
We summarize the results obtained in the last year. These include a simple model of bubble competition in Rayleigh-Taylor unstable flows which gives results which are in good agreement with experiment. In addition the model has been compared with two dimensional numerical simulations of inviscid Rayleigh-Taylor instability using the cloud-in-cell method. These simulations can now be run into the late time regime and can track the competition of as many as ten bubbles. The improvement in performance over previous applications of the cloud-in-cell approach is due to the application of finite difference techniques designed to handle shock-like structures in the vorticity of the interface which occur at late times. We propose to extend the research carried thus far to Rayleigh-Taylor problems in three dimensional and convergent geometries as well as to two-fluid instabilities in which interface roll-up is observed. Finally we present a budget for the fiscal year 1987-1988. 6 refs
Rayleigh-Taylor instability in inertial confinement fusion
International Nuclear Information System (INIS)
Gupta, N.K.
1987-01-01
This report summarises the main results of theoretical analysis on the problem of Rayleigh-Tylor instability in inertial confinement fusion (ICF). Work presented in this report essentially covers four basic problems. Firstly, an analytical formulation to analyse the effects of plasma density inhomogeneities on the growth of the instability in plane geometry is presented. As a result of this analysis it is concluded that, for minimizing the growth rate of the instability, it may be advantageous to use the driver laser beams of higher irradiance and an optimum wave length in an ICF experiment. Secondly, a new formulation for the analysis of the instability in curved (cylindrical and spherical) geometries is presented. A general eigenvalue equation for the growth rate of the instability which is applicable for both plane and curved geometries is derived. A comparative study is made between the plane, cylindrical and spherical geometries. Also analytical expressions for the growth rates are obtained in the cases of spherical and cylindrical shell targets and their variations with respect to the aspect ratios of the shells are discussed. Thirdly, a semi-analytical analysis of the instability where the growth rate is obtained by solving numerically a (2N-1)x(2N-1) determinantal equation is presented. The semi-analytical analysis developed is applicable for the study of the growth of the instability in the present day multi-structured spherical shell targets. Finally, a dynamic analysis of the growth of the instability for a representative spherical solid target driven by laser beams symmetrically from all the sides is carried out numerically using a computer code developed for this purpose. This study confirms analytical predictions. Further, it is observed that an approximate analytical analysis with time independent density profile gives conservative estimates for the growth rate. In passing, the computer code is also used to estimate the pellet gain for spin
Role of parallel flow curvature on the mitigation of Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Sarmah, D.; Sen, S.; Cairns, R.A.
2001-01-01
The effect of a radially varying parallel equilibrium flow on the stability of the Rayleigh-Taylor (RT) mode is studied analytically in the presence of a sheared magnetic field. It is shown that the parallel flow curvature can completely stabilize the RT mode. The flow curvature also has a robust effect on the radial structure of the mode. Possible implications of these theoretical findings to recent experiments are also discussed
Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma
Directory of Open Access Journals (Sweden)
N. Chakrabarti
2003-05-01
Full Text Available Collisional Rayleigh-Taylor (RT instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities
Rayleigh-Taylor and Kelvin-Helmholtz instabilities in targets accelerated by laser ablation
International Nuclear Information System (INIS)
Emery, M.H.; Gardner, J.H.; Boris, J.P.
1982-01-01
With use of the fast2d laser-shell model, the acceleration of a 20-μm-thick plastic foil up to 160 km/s has been simulated. It is possible to follow the Rayleigh-Taylor bubble-and-spike development far into the nonlinear regime and beyond the point of foil fragmentation. Strong shear flow develops which evolves into the Kelvin-Helmholtz instability. The Kelvin-Helmholtz instability causes the tips of the spikes to widen and as a result reduce their rate of ''fall.''
Ablative Rayleigh-Taylor instability in the limit of an infinitely large density ratio
International Nuclear Information System (INIS)
Clavin, P.; Almarcha, Ch.
2005-01-01
The instability of ablation fronts strongly accelerated toward the dense medium under the conditions of inertial confinement fusion (ICF) is addressed in the limit of an infinitely large density ratio. The analysis serves to demonstrate that the flow is irrotational to first order, reducing the nonlinear analysis to solve a two-potential flows problem. Vorticity appears at the following orders in the perturbation analysis. This result simplifies greatly the analysis. The possibility for using boundary integral methods opens new perspectives in the nonlinear theory of the ablative Rayleigh-Taylor instability in ICF. A few examples are given at the end of the paper. (authors)
Strong stabilization of the Rayleigh-Taylor instability by material strength at Mbar pressures
Energy Technology Data Exchange (ETDEWEB)
Park, H S; Lorenz, K T; Cavallo, R M; Pollaine, S M; Prisbrey, S T; Rudd, R E; Becker, R C; Bernier, J V; Remington, B A
2009-11-19
Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure effective lattice viscosity are presented. Using a laser created ramped drive, vanadium samples are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the sample in the solid-state. Comparisons with simulations and theory indicate that the high pressure, high strain rate conditions trigger a phonon drag mechanism, resulting in the observed high effective lattice viscosity and strong stabilization of the RT instability.
The Rayleigh-Taylor instability in inertial fusion, astrophysical plasma and flames
International Nuclear Information System (INIS)
Bychkov, V; Modestov, M; Akkerman, V; Eriksson, L-E
2007-01-01
Previous results are reviewed and new results are presented on the Rayleigh-Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus-Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer)
The Rayleigh-Taylor instability under electrical pulse discharge in water
International Nuclear Information System (INIS)
Kononov, A.V.; Porytskyy, P.V.; Starchyk, P.D.; Voitenko, L.M.
1999-01-01
The development of the Rayleigh-Taylor instability is studied on the interface between both the plasma channel and liquid medium under an electrical pulse discharge in water.It is shown that,growth of the irregularities of the contact interface leads to the increasing of heat flux from the discharge channel due to the growth of an interfacial area and the incoming of water matter into a discharge channel.As a result of these processes the characteristics of the discharge may be strongly varied
Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities
Stefan, V. Alexander
2011-04-01
The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.
The mitigation effect of sheared axial flow on the rayleigh-taylor instability in Z-pinch plasma
International Nuclear Information System (INIS)
Zhang Yang
2005-01-01
A magnetohydrodynamic formulation is derived to investigate the mitigation effects of the sheared axial flow on the Rayleigh-Taylor (RT) instability in Z-pinch plasma. The dispersion relation of the compressible model is given. The mitigation effects of sheared axial flow on the Rayleigh-Taylor instability of Z-pinch plasma in the compressible and incompressible models are compared respectively, and the effect of compressible on the instability of system with sheared axial flow is discussed. It is found that, compressibility effects can stabilize the Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability, and this allows the sheared axial flow mitigate the RT instability far more effectively. The authors also find that, at the early stage of the implosion, if the temperature of the plasma is not very high, the compressible model is much more suitable to describing the state of system than the incompressible one. (author)
Energy Technology Data Exchange (ETDEWEB)
Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.P.; Richard, A.; Liberatore, S.; Vandenboomgaerde, M. [CEA Bruyeres-le-Chatel, 91 (France)
2009-07-01
The mastering of the development of hydrodynamic instabilities like Rayleigh-Taylor instabilities is an important milestone on the way to perform efficient laser implosions. The complexity of these instabilities implies an experimental validation of the theoretical models and their computer simulations. An experimental platform involving the Omega laser has allowed us to perform indirect drive with rugby-shaped hohlraums. The experiments have validated the growth of 2- and 3-dimensional initial defects as predicted by theory. We have shown that the 3-dimensional defect saturates for an higher amplitude than the 2-dimensional one does. The experiments have been made by using a plastic shell doped with Germanium (CH:Ge). (A.C.)
Method of generalized coordinates and an application to Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Dienes, J.K.
1978-01-01
The method of generalized coordinates is extended to the analysis of continuous bodies for which the degrees of freedom are independent velocity distributions in the spatial coordinates. The corresponding Lagrange equations contain generalized convective terms as well as the usual generalized forces and masses. Since the existence of a potential is not assumed, the equations of motion can be applied to media with arbitrary (possible dissipative) constitutive laws. Material deformation is characterized by the rate of strain, which is taken as the symmetric part of the velocity gradient, making the approach valid for arbitrarily large deformations. As an example, infinitesimal Rayleigh-Taylor instability is considered by analytic methods. Then, large amplitude Rayleigh-Taylor instability is represented with a single-degree-of-freedom analysis that shows the development (by numerical integration) of the known spike-and-bubble configuration of the unstable interface. The infinitesimal stability of a plastically deforming solid and the growth of the instability to large amplitudes are also considered
International Nuclear Information System (INIS)
Kilkenny, J.D.
1994-01-01
As shown elsewhere an ablatively imploded shell is hydrodynamically unstable, the dominant instability being the well known Rayleigh-Taylor instability with growth rate γ = √Akg where k = 2π/λ is the wave number, g is the acceleration and A the Attwood number (ρ hi - ρ lo )/(ρ hi + ρ lo ) where ρ hi is the density of the heavier fluid and ρ lo is the density of the lighter fluid. A theoretical understanding of ablative stabilization has gradually evolved, confirmed over the last five years by experiments. The linear growth is very well understood with excellent agreement between experiment and simulation for planar geometry with wavelengths in the region of 30--100μm. There is an accurate, albeit phenomenological dispersion relation. The non-linear growth has been measured and agrees with calculations. In this lecture, the authors go into the fundamentals of the Rayleigh-Taylor instability and the experimental measurements that show it is stabilized sufficiently by ablation in regimes relevant to ICF
International Nuclear Information System (INIS)
Casner, A.; Masse, L.; Liberatore, S.; Delorme, B.; Jacquet, L.; Loiseau, P.; Smalyuk, V. A.; Martinez, D.; Remington, B. A.
2012-01-01
As the control of the development of Rayleigh-Taylor-type hydrodynamic instabilities is crucial to achieve efficient implosions on the Laser Megajoule, and as the complexity of these instabilities requires an experimental validation of theoretical models and of the associated numerical simulations, the authors briefly present a proposition of experiments aimed at studying the strongly non linear Rayleigh-Taylor instability on the National Ignition Facility (NIF). This should allow a regime of competition between bubbles to be achieved for the first time in direct attack. They evoke the first experiment performed in March 2013
International Nuclear Information System (INIS)
Wang, Y.M.; Nepveu, M.
1983-01-01
With a view toward applications to accreting X-ray sources, the Rayleigh-Taylor instability is followed numerically, using a 2-D magnetohydrodynamic code. The presence of a uniform magnetic field in the underlying medium is allowed for. The infalling plasma is found to develop elongated, trailing loops; at least when the initial perturbation is highly symmetric, a narrow neck also forms through the action of the surrounding ram pressure. It is suggested that the swirling motion present in the nonlinear phase could produce some effective large-scale mixing between accreting plasma and the magnetospheric field of a neutron star. Another potentially significant tendency is for the curvature of the infalling plasma pocket to sharpen as the instability develops: magnetic tension may therefore become increasingly effective as a stabilizing influence. (orig.)
International Nuclear Information System (INIS)
Bud'ko, A.B.; Liberman, M.A.
1992-01-01
In the framework of WKB approximation the problem is studied of stabilizing the Rayleigh - Taylor instability with unhomogeneous convective flow, developing in the ablation zone during the ablative acceleration of the laser target plasma. The eigenvalue (instability growth rates) problem is reduced to solving an algebraic equation with the coefficients depending on the unperturbed profile structure of hydrodynamic variables. For the important case of the incompressible plasma subsonic flow, the instability growth rates is shown to vanish at k=k 0 =max(2(g|∇ ln p|) 1/2 /ν). The consistency condition of the model consists in the smallness of the local Froude number in the region of instability development. However, as seen from the comparison with the numerical calculations, the model is well appicable also for the case of the sufficiently abrupt density gradient provided the Froude number is of order of unity
International Nuclear Information System (INIS)
Gordeev, Alexander V.
2002-01-01
The stabilization of the Rayleigh-Taylor instability for the imploding cylindrical liner in the limit of a low plasma density Π ω pi 2 δ2/c2 << 1 (δ -- the characteristic size of the current layer) is investigated, when the electron currents are much greater than the ion currents. The stabilization of the Rayleigh-Taylor instability for the parameter diapason νii/ωBi < (Z2M/m)1/2 is considered, when the plasma dissipation connected with the ion-ion collisions considerably superior the usual dissipation due to the electron-ion collisions. For the electric conductivity, caused by the ion-ion collisions and resulted in the minimum value σ ∼ enc/B, the effect of the partial stabilization of the Rayleigh-Taylor instability is demonstrated
Rayleigh-Taylor instabilities in indirect laser drive with rugby-shaped hohlraums
International Nuclear Information System (INIS)
Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.P.; Richard, A.; Liberatore, S.; Vandenboomgaerde, M.
2009-01-01
The mastering of the development of hydrodynamic instabilities like Rayleigh-Taylor instabilities is an important milestone on the way to perform efficient laser implosions. The complexity of these instabilities implies an experimental validation of the theoretical models and their computer simulations. An experimental platform involving the Omega laser has allowed us to perform indirect drive with rugby-shaped hohlraums. The experiments have validated the growth of 2- and 3-dimensional initial defects as predicted by theory. We have shown that the 3-dimensional defect saturates for an higher amplitude than the 2-dimensional one does. The experiments have been made by using a plastic shell doped with Germanium (CH:Ge). (A.C.)
A line driven Rayleigh-Taylor-type instability in hot stars
International Nuclear Information System (INIS)
Nelson, G.D.; Hearn, A.G.
1978-01-01
The existence of a Rayleigh-Taylor-type instability in the atmosphere of hot stars, driven by the radiative force associated with impurity ion resonance lines, is demonstrated. In a hot star with an effective temperature of 50 000 K, the instability will grow exponentially with a time scale of approximately 50 s in the layers where the stellar wind velocity is 5% of the thermal velocity of the ion. As a result, radially symmetric stellar winds driven by resonance line radiative forces will break up in small horizontal scale lengths. The energy fed into the instability provides a possible source of mechanical heating in the atmosphere for a chromosphere or corona. (orig.) [de
International Nuclear Information System (INIS)
Li, X.L.
1993-01-01
Computation of three-dimensional (3-D) Rayleigh--Taylor instability in compressible fluids is performed on a MIMD computer. A second-order TVD scheme is applied with a fully parallelized algorithm to the 3-D Euler equations. The computational program is implemented for a 3-D study of bubble evolution in the Rayleigh--Taylor instability with varying bubble aspect ratio and for large-scale simulation of a 3-D random fluid interface. The numerical solution is compared with the experimental results by Taylor
Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth
International Nuclear Information System (INIS)
Dunning, M.J.; Haan, S.W.
1995-01-01
Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil
The Rayleigh-Taylor instability in a self-gravitating two-layer fluid sphere
International Nuclear Information System (INIS)
Ida, Shigeru; Nakagawa, Yoshitsugu; Nakazawa, Kiyoshi
1989-01-01
The Rayleigh-Taylor instability is studied in a self-gravitating two-layer fluid sphere: an inner sphere and an outer layer. The density and the viscosity are assumed to be constant in each region. Analytic expressions of the dispersion relations are obtained in inviscid and viscid cases. This examination aims at the investigation of the Earth's core formation. The fluid sphere corresponds to the proto-Earth in the accretion stage. The instability is examined without rotation of the fluid sphere, while the proto-Earth is rotating. However, it is shown that the Coriolis force does not influence the conclusion in the Earth's core formation problem. 5 refs.; 10 figs
Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F
International Nuclear Information System (INIS)
Jain, R.K.; Das, A.C.
1978-01-01
The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)
Jet-like long spike in nonlinear evolution of ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Ye Wenhua; He Xiantu; Wang Lifeng
2010-01-01
We report the formation of jet-like long spike in the nonlinear evolution of the ablative Rayleigh-Taylor instability (ARTI) experiments by numerical simulations. A preheating model κ(T) = κ SH [1 + f(T)], where κ SH is the Spitzer-Haerm (SH) electron conductivity and f(T) interprets the preheating tongue effect in the cold plasma ahead of the ablative front [Phys. Rev. E 65 (2002) 57401], is introduced in simulations. The simulation results of the nonlinear evolution of the ARTI are in general agreement with the experiment results. It is found that two factors, i.e., the suppressing of ablative Kelvin-Helmholtz instability (AKHI) and the heat flow cone in the spike tips, contribute to the formation of jet-like long spike in the nonlinear evolution of the ARTI. (authors)
Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width
Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
2018-04-01
The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number AT=1 and for sufficiently small values of AT. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.
Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids
Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
2017-05-01
A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the elastic waves across the slab thickness. For Atwood number AT=1 , the asymptotic growth rate is found to be in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998), 10.1007/s000330050121], and a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner slabs. The feedthrough factor is also calculated.
Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number
International Nuclear Information System (INIS)
Ye Wenhua; He, X.T.; Zhang Weiyan
2002-01-01
Recent experiment [S.G. Glendinning et al., Phys. Rev. Lett. 78, 3318 (1997)] showed that the measured growth rate of laser ablative Rayleigh-Taylor (RT) instability with preheating is about 50% of the classic value and is reduced by about 18% compared with the simulated value obtained with the computer code LASNEX. By changing the temperature variation of the electron thermal conductivity at low temperatures, the density profile from the Bhatnagar-Gross-Krook approximation is recovered in the simulation, and the simulated RT growth rate is in good agreement with the experimental value from Glendinning et al. The preheated density profile on ablative RT stablization is studied numerically. A change of the Atwood number in the preheating case also leads to RT stabilization. The RT growth formula γ=√(Akg/(1+AkL))-2kV a agrees well with experiment and simulation, and is appropriate for the preheating case
Approximate evaluation of viscous effects in the Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Gratton, J.
1989-01-01
The effects of viscosity in the Rayleigh--Taylor instability are very important in many instances of interest but, although they have been investigated in some simple cases, the extensive algebraic complexities that are involved in the treatment of the problem tend to becloud the analysis and prevent generalizations of the results. In the paper a simple approximate method which improves a previous one by Plesset and Whipple is discussed. The viscous effects are accounted in an intuitive and transparent way, and can be easily estimated. The results are compared with exact calculations showing good agreement. For this purpose a method of analysis of the exact dispersion relation is developed, which circumvents most of the algebraic complications of the usual procedures. Both the approximate method and the novel treatment of the exact dispersion relation can be generalized to other problems of the same family
International Nuclear Information System (INIS)
Montierth, L.; Morse, R.
1984-01-01
This chapter discusses small amplitude growth of the outside surface instability and modes of failure resulting from nonlinear development of the inside surface instability. It is demonstrated that pellets with initial pellet aspect ratio, A /SUB p/ >5 may have difficulty with Rayleigh-Taylor instability and that shells with A /SUB p/ greater than or equal to10 will probably demand stringent smoothness specification in order not to experience failure in the final implosion. The linear amplification of the outside surface instability can easily exceed 10 3 for A /SUB p/ and resulting A values in the range of programmatic interest. Amplifications of this order, starting from attainable surface finishes, can then penetrate to the inside shell surface, producing perturbations there which approach the nonlinear development amplitude and at the start of the final deceleration. It is shown that such inside surface perturbations can be amplified to large amplitude by the inside instability and cause failure through reduction of the maximum fuel temperature achieved. Insight into the scaling of failure mechanisms is offered
Study of the Rayleigh-Taylor instability at the ablation front
International Nuclear Information System (INIS)
Salvatore, Patricia
2000-01-01
Inertial confinement fusion in indirect drive consists in irradiating with ultra powerful laser beams the internal wall of a heating cavity which contains a capsule enclosing the thermonuclear fuel. During laser-matter interaction, laser light is converted into x-rays onto the hohlraum walls. The x-rays capsule heating produces a matter expansion, this one induces a pressure accelerating the capsule wall which implodes and compresses the fuel. The limit between the expanded plasma and the accelerated one is named ablation front. A light fluid (the ablated plasma) accelerating a heavy one (the shell) seeds Rayleigh-Taylor instability. To perform experiments, we used the Phebus facility at Limeil-Valenton CEA (the most powerful laser in Europe). After frequency conversion, each laser beam can deliver onto a target an energy up to 3 kJ at 0.35μm wavelength. In the United States of America and in France, more powerful laser facilities are planned to deliver an energy about 1 MJ: the National Ignition Facility (Lawrence Livermore National Laboratory, California) and the Laser MegaJoule (CEA, Bordeaux). Hydrodynamic instabilities take an important part in the definition of these facilities. Two main experiments were carried out on the Phebus laser. We studied the Rayleigh-Taylor instability at the ablation front with a modulated CHBr plane target stuck on the gold hohlraum wall. During the september-october 1996 experiment, a x-ray device was used. We observed the temporal evolution of the target modulations by x-ray imaging cinematography which recorded face-on radiographs. The second experiment was performed with collaboration of the Imperial College of London. Two high spatial resolution devices (less than 5 μm) were used in order to study short wavelengths modulations. The first diagnostic recorded side-on observations of target acceleration, the second one was used to measure the instability growth with face-on radiography. We studied this growth in a modulation
International Nuclear Information System (INIS)
Bul'ko, A.B.; Liberman, M.A.
1992-01-01
The authors use the WKB-approximation to treat the problem of the stabilization by an inhomogeneous convective current of the Rayleigh-Taylor instability developing in the ablation zone when the plasma of laser targets is accelerated by ablation. The problem of the eigenvalues - the instability growth rates - is reduced to the solution of an algebraic equation with coefficients which depend on the structure of the unperturbed profiles of the hydrodynamic variables. They show for the practically important case of subsonic flow of an incompressible plasma that the instability growth rate vanishes for k = k o = max[2(g|∇lnρ|) 1/2 /v]. The condition for the self-consistency of the model is that the local Froude number be small in the region where the instability develops; however, comparison with numerical calculations shows that the model is also applicable in the case of rather steep density gradients when the Froude number is of order unity. 32 refs., 2 figs
Suppression of the Rayleigh Taylor instability and its implication for the impact ignition
Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.
2004-12-01
The Rayleigh Taylor (RT) instability with material ablation through an unstable interface is the key physics that determines the success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate a double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating with short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high-velocity fuel colliding with a preformed main fuel.
Suppression of the Rayleigh-Taylor instability and its implication for the impact ignition
International Nuclear Information System (INIS)
Azechi, H; Shiraga, H; Nakai, M; Shigemori, K; Fujioka, S; Sakaiya, T; Tamari, Y; Ohtani, K; Murakami, M; Sunahara, A; Nagatomo, H; Nishihara, K; Miyanaga, N; Izawa, Y
2004-01-01
The Rayleigh-Taylor (RT) instability with material ablation through an unstable interface is the key physics that determines the success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate a double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating with short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high-velocity fuel colliding with a preformed main fuel
The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator
Yamashita, Nicholas; Jacobs, Jeffrey
2009-11-01
The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.
Measurements of Magneto-Rayleigh-Taylor instability growth in solid liners on the 20 MA Z facility
International Nuclear Information System (INIS)
Bigman, Verle; Vesey, Roger Alan; Shores, Jonathon; Herrmann, Mark C.; Stamm, Robert; Killebrew, Korbie; Holt, Randy; Blue, Brent; Nakhleh, Charlie; McBride, Ryan D.; Leifeste, Gordon T.; Smith, Ian Craig; Stygar, William A.; Porter, John Larry Jr.; Cuneo, Michael Edward; Bennett, Guy R.; Schroen, Diana Grace; Sinars, Daniel Brian; Lopez, Mike R.; Slutz, Stephen A.; Atherton, Briggs W.; Tomlinson, Kurt; Edens, Aaron D.; Savage, Mark Edward; Peterson, Kyle J.
2010-01-01
The magneto-Rayleigh-Taylor (MRT) instability is the most important instability for determining whether a cylindrical liner can be compressed to its axis in a relatively intact form, a requirement for achieving the high pressures needed for inertial confinement fusion (ICF) and other high energy-density physics applications. While there are many published RT studies, there are a handful of well-characterized MRT experiments at time scales >1 (micro)s and none for 100 ns z-pinch implosions. Experiments used solid Al liners with outer radii of 3.16 mm and thicknesses of 292 (micro)m, dimensions similar to magnetically-driven ICF target designs (1). In most tests the MRT instability was seeded with sinusoidal perturbations (λ = 200, 400 (micro)m, peak-to-valley amplitudes of 10, 20 (micro)m, respectively), wavelengths similar to those predicted to dominate near stagnation. Radiographs show the evolution of the MRT instability and the effects of current-induced ablation of mass from the liner surface. Additional Al liner tests used 25-200 (micro)m wavelengths and flat surfaces. Codes being used to design magnetized liner ICF loads (1) match the features seen except at the smallest scales (<50 (micro)m). Recent experiments used Be liners to enable penetrating radiography using the same 6.151 keV diagnostics and provide an in-flight measurement of the liner density profile.
Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.
2018-05-01
The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].
Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities
International Nuclear Information System (INIS)
Riccardo Bonazza
2006-01-01
The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively (RMI and RTI), adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the ablated shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. Specifically, our work is articulated in three main directions: study of impulsively accelerated spherical gas inhomogeneities; study of impulsively accelerated 2-D interfaces; study of a liquid interface under the action of gravity. The objectives common to all three activities are to learn some physics directly from our experiments and calculations; and to develop a database at previously untested conditions to be used to calibrate and verify some of the computational tools being developed within the RTI/RMI community at the national laboratories and the ASCI centers
The internal waves and Rayleigh-Taylor instability in compressible quantum plasmas
International Nuclear Information System (INIS)
Lu, H. L.; Qiu, X. M.
2011-01-01
In this paper, we investigate the quantum effect on internal waves and Rayleigh-Taylor (RT) instability in compressible quantum plasmas. First of all, let us consider the case of the limit of short wavelength perturbations. In the case, the dispersion relation including quantum and compressibility effects and the RT instability growth rate can be derived using Wentzel-Kramers-Brillouin method. The results show that the internal waves can propagate along the transverse direction due to the quantum effect, which was first pointed out by Bychkov et al.[Phys. Lett. A 372, 3042 (2008)], and the coupling between it and compressibility effect, which is found out in this paper. Then, without making the approximation assumption of short wavelength limit, we examine the linearized perturbation equation following Qiu et al.'s solving process [Phys. Plasmas 10, 2956 (2003)]. It is found that the quantum effect always stabilizes the RT instability in either incompressible or compressible quantum plasmas. Moreover, in the latter case, the coupling between it and compressibility effect makes this stabilization further enhance.
International Nuclear Information System (INIS)
Sekar, R.; Kherani, E.A.
2002-01-01
An analytical method is presented for the nonlinear generalized Rayleigh-Taylor instability occurring over the night-time equatorial F region of the terrestrial ionosphere. The time and spatial domain characteristic methods are adopted to describe the evolutions of plasma density and particle flux, respectively. The analysis efficiently describes the known nonlinear features of instability as suggested by many numerical simulations. The existence of shock or steepened structures and their dynamics are discussed by studying the evolution of the characteristics
International Nuclear Information System (INIS)
Zhou Ye; Remington, B.A.; Robey, H.F.; Cook, A.W.; Glendinning, S.G.; Dimits, A.; Buckingham, A.C.; Zimmerman, G.B.; Burke, E.W.; Peyser, T.A.; Cabot, W.; Eliason, D.
2003-01-01
Turbulent hydrodynamic mixing induced by the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities occurs in settings as varied as exploding stars (supernovae), inertial confinement fusion (ICF) capsule implosions, and macroscopic flows in fluid dynamics facilities such as shock tubes. Turbulence theory and modeling have been applied to RT and RM induced flows and developed into a quantitative description of turbulence from the onset to the asymptotic end-state. The treatment, based on a combined approach of theory, direct numerical simulation (DNS), and experimental data analysis, has broad generality. Three areas of progress will be reported. First, a robust, easy to apply criteria will be reported for the mixing transition in a time-dependent flow. This allows an assessment of whether flows, be they from supernova explosions or ICF experiments, should be mixed down to the molecular scale or not. Second, through DNS, the structure, scaling, and spectral evolution of the RT instability induced flow will be inspected. Finally, using these new physical insights, a two-scale, dynamic mix model has been developed that can be applied to simulations of ICF experiments and astrophysics situations alike
Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials
Polavarapu, Rinosh; Banerjee, Arindam
2017-11-01
The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.
International Nuclear Information System (INIS)
Jacobs, H.
1984-08-01
Linear theory of Rayleigh-Taylor instability growth at a density profile which varies exponentially between regions of constant density is discussed in detail. The exact theory provides an approximate but conservative simple formula for the growth constant and it shows that a hitherto widely used theory erroneously underestimates the growth constant. A simple but effective ''synthetical model'' of nonlinear bubble growth is obtained from a synthesis of linear theory and constant terminal bubble speed. It is applied to pusher shell break-up in an inertial confinement fusion pellet to determine the maximum allowable initial perturbations and the most dangerous wavelength. In a situation typical of heavy ion drivers it is found that the allowable initial perturbations are increased by a few orders of magnitude by the gradual density transition and another order of magnitude by nonlinear saturation of the bubble speed. The gradual density transition also shifts the most dangerous wavelength from about once to about four times the minimum pusher shell thickness. The following topics are treated briefly: Reasons conflicting with use of the synthetical model to decide whether the pusher shell in a certain simulation will be broken up; other nonlinear theories available in the literature; further realistic effects that might aggravate instability growth. (orig.) [de
Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments
Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov
2017-10-01
Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Abarzhi, S.I.; Nishihara, K.; Rosner, R.
2006-01-01
We report nonlinear solutions for a system of conservation laws describing the dynamics of the large-scale coherent structure of bubbles and spikes in the Rayleigh-Taylor instability (RTI) for fluids with a finite density ratio. Three-dimensional flows are considered with general type of symmetry in the plane normal to the direction of gravity. The nonlocal properties of the interface evolution are accounted for on the basis of group theory. It is shown that isotropic coherent structures are stable. For anisotropic structures, secondary instabilities develop with the growth rate determined by the density ratio. For stable structures, the curvature and velocity of the nonlinear bubble have nontrivial dependencies on the density ratio, yet their mutual dependence on one another has an invariant form independent of the density ratio. The process of bubble merge is not considered. Based on the obtained results we argue that the large-scale coherent dynamics in RTI has a multiscale character and is governed by two length scales: the period of the coherent structure and the bubble (spike) position
Bubble velocity in the nonlinear Rayleigh-Taylor instability at a deflagration front
International Nuclear Information System (INIS)
Modestov, Mikhail; Bychkov, Vitaly; Betti, Riccardo; Eriksson, Lars-Erik
2008-01-01
The Rayleigh-Taylor instability at a deflagration front is studied systematically using extensive direct numerical simulations. It is shown that, for a sufficiently large gravitational field, the effects of bubble rising dominate the deflagration dynamics. It is demonstrated both analytically and numerically that the deflagration speed is described asymptotically by the Layzer theory in the limit of large acceleration. In the opposite limit of small and zero gravitational field, intrinsic properties of the deflagration front become important. In that case, the deflagration speed is determined by the velocity of a planar front and by the Darrieus-Landau instability. Because of these effects, the deflagration speed is larger than predicted by the Layzer theory. An analytical formula for the deflagration speed is suggested, which matches two asymptotic limits of large and small acceleration. The formula is in good agreement with the numerical data in a wide range of Froude numbers. The present results are also in agreement with previous numerical simulations on this problem
Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Gardiner, Thomas Anthony
2010-01-01
This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-01-01
We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant parameters before the fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of the mixing between two interpenetrating fluids to define the initial profiles for the turbulence model parameters. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted initial profiles for the turbulence model parameters and initial profiles of the parameters obtained from low Atwood number three dimensional simulations show reasonable agreement.
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-01-01
We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant variables before fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of mixing between two interpenetrating fluids to define the initial profiles for the turbulence model variables. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted profiles for the turbulence model variables and profiles of the variables obtained from low Atwood number three dimensional simulations show reasonable agreement.
International Nuclear Information System (INIS)
Fujioka, Shinsuke; Shiraga, Hiroyuki; Nishikino, Masaharu; Shigemori, Keisuke; Sunahara, Atsushi; Nakai, Mitsuo; Azechi, Hiroshi; Nishihara, Katsunobu; Yamanaka, Tatsuhiko
2003-01-01
The temporal evolution of the density profile of a directly laser-driven polystyrene target was observed for the first time using an x-ray penumbral imaging technique coupled with side-on x-ray backlighting at the GEKKO XII [C. Yamanaka et al., IEEE J. Quantum Electron. QE-17, 1639 (1981)]-High Intensity Plasma Experimental Research laser facility (I L =0.7x10 14 W/cm 2 , λ L =0.35 μm). This density measurement makes it possible to experimentally confirm all physical parameters [γ(k),k,g,m,ρ a ,L m ] appearing in the modified Takabe formula for the growth rate of the ablative Rayleigh-Taylor instability. The measured density profiles were well reproduced by a one-dimensional hydrodynamic simulation code. The density measurement contributes toward fully understanding the ablative Rayleigh-Taylor instability
Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P
2015-05-29
We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.
The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability
Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen
2017-10-01
In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.
Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability
Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.
2018-03-01
On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.
A heuristic model for the nonlinear Rayleigh--Taylor instability in fast Z pinches
International Nuclear Information System (INIS)
Hussey, T.W.; Roderick, N.F.; Shumlak, U.; Spielman, R.B.; Deeney, C.
1995-01-01
A simple, heuristic model for the early nonlinear phase of the Rayleigh--Taylor instability (RTI) in thin-cylindrical-shell Z-pinch implosions has been developed. This model is based on the fact that, as the field--plasma interface is deformed, there is a component of the applied force that acts to move mass from the low mass per unit area bubble region into the higher mass per unit area spike region. The resulting reduced mass per unit area of the bubble causes it to be preferentially accelerated ahead of the spike. The pinch begins to radiate as the bubble mass first reaches the axis, and it continues to radiate while the mass that is entrained within the spikes and within unperturbed parts of the shell also arrives on axis. This model relates the time at which the bubble arrives on axis to an initial wavelength and amplitude of a single mode of the RTI. Then, by comparing this to the time at which the unperturbed mass reaches the axis, one estimates pinch thermalization time, a quantity that is determined experimentally. Experimental data, together with analytic models, have been used to choose appropriate initial wavelength and amplitude both for foils and for certain gas puff implosions. By noting that thermalization time is a weak function of these parameters, it is argued that one may use the same values for an extrapolative study of qualitatively similar implosions
International Nuclear Information System (INIS)
Wang, L. F.; He, X. T.; Wu, J. F.; Zhang, W. Y.; Ye, W. H.
2013-01-01
A weakly nonlinear (WN) model has been developed for the incompressible Rayleigh-Taylor instability (RTI) in cylindrical geometry. The transition from linear to nonlinear growth is analytically investigated via a third-order solutions for the cylindrical RTI initiated by a single-mode velocity perturbation. The third-order solutions can depict the early stage of the interface asymmetry due to the bubble-spike formation, as well as the saturation of the linear (exponential) growth of the fundamental mode. The WN results in planar RTI [Wang et al., Phys. Plasmas 19, 112706 (2012)] are recovered in the limit of high-mode number perturbations. The difference between the WN growth of the RTI in cylindrical geometry and in planar geometry is discussed. It is found that the interface of the inward (outward) development spike/bubble is extruded (stretched) by the additional inertial force in cylindrical geometry compared with that in planar geometry. For interfaces with small density ratios, the inward growth bubble can grow fast than the outward growth spike in cylindrical RTI. Moreover, a reduced formula is proposed to describe the WN growth of the RTI in cylindrical geometry with an acceptable precision, especially for small-amplitude perturbations. Using the reduced formula, the nonlinear saturation amplitude of the fundamental mode and the phases of the Fourier harmonics are studied. Thus, it should be included in applications where converging geometry effects play an important role, such as the supernova explosions and inertial confinement fusion implosions.
Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis
Balestra, Gioele; Brun, P.-T.; Gallaire, François
2016-12-01
We investigate the stability of thin viscous films coated on the inside of a horizontal cylindrical substrate. In such a case, gravity acts both as a stabilizing force through the progressive drainage of the film and as a destabilizing force prone to form droplets via the Rayleigh-Taylor instability. The drainage solution, derived from lubrication equations, is found asymptotically stable with respect to infinitesimally small perturbations, although in reality, droplets often form. To resolve this paradox, we perform an optimal transient growth analysis for the first-order perturbations of the liquid's interface, generalizing the results of Trinh et al. [Phys. Fluids 26, 051704 (2014), 10.1063/1.4876476]. We find that the system displays a linear transient growth potential that gives rise to two different scenarios depending on the value of the Bond number (prescribing the relative importance of gravity and surface tension forces). At low Bond numbers, the optimal perturbation of the interface does not generate droplets. In contrast, for higher Bond numbers, perturbations on the upper hemicircle yield gains large enough to potentially form droplets. The gain increases exponentially with the Bond number. In particular, depending on the amplitude of the initial perturbation, we find a critical Bond number above which the short-time linear growth is sufficient to trigger the nonlinear effects required to form dripping droplets. We conclude that the transition to droplets detaching from the substrate is noise and perturbation dependent.
A numerical study of bubble interactions in Rayleigh--Taylor instability for compressible fluids
International Nuclear Information System (INIS)
Glimm, J.; Li, X.L.; Menikoff, R.; Sharp, D.H.; Zhang, Q.
1990-01-01
The late nonlinear and chaotic stage of Rayleigh--Taylor instability is characterized by the evolution of bubbles of the light fluid and spikes of the heavy fluid, each penetrating into the other phase. This paper is focused on the numerical study of bubble interactions and their effect on the statistical behavior and evolution of the bubble envelope. Compressible fluids described by the two-fluid Euler equations are considered and the front tracking method for numerical simulation of these equations is used. Two major phenomena are studied. One is the dynamics of the bubbles in a chaotic environment and the interaction among neighboring bubbles. Another one is the acceleration of the overall bubble envelope, which is a statistical consequence of the interactions of bubbles. The main result is a consistent analysis, at least in the approximately incompressible case of these two phenomena. The consistency encompasses the analysis of experiments, numerical simulation, simple theoretical models, and variation of parameters. Numerical simulation results that are in quantitative agreement with laboratory experiment for one-and-one-half (1 1/2) generations of bubble merger are presented. To the authors' knowledge, computations of this accuracy have not previously been obtained
Influence of real gas effects on ablative Rayleigh-Taylor instability in plastic target
International Nuclear Information System (INIS)
Fan Zhengfeng; Xue Chuang; Ye Wenhua; Zhu Shaoping; Wang Lifeng
2011-01-01
In this research, real gas effects on ablative Rayleigh-Taylor instability are investigated in a plastic target. The real gas effects are included by adopting the quotidian equation of state (QEOS) model. Theoretical solutions for both QEOS and ideal gas EOS are obtained and compared, based on a same set of ablation parameters. It is found that when real gas effects are considered, the density gradient becomes less steep than that of ideal gas assumption, even though this cannot be used directly to draw a stabilization conclusion for the real gas effects. Further analysis shows that when real gas effects are considered, lower ∂p/∂T in the dense shell region has the effect of stabilization, whereas the dependence of the internal energy on the density, lower specific heat (at constant volume) in the dense shell region, and higher specific heat in the low-density ablation region contribute to stronger destabilization effects. Overall, when real gas effects are considered, the destabilization effects are dominant for long wavelength perturbations, and the growth rates become much higher than the results of ideal gas assumption. In our specific case, the maximum relative error reaches 18%.
Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime
International Nuclear Information System (INIS)
Wang, L. F.; Ye, W. H.; Li, Y. J.
2010-01-01
In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces the nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1λ. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics.
Rayleigh-Taylor instability in the deceleration phase of spherical implosion experiments
International Nuclear Information System (INIS)
Smalyuk, V.A.; Delettrez, J.A.; Goncharov, V.N.; Marshall, F.J.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Town, R.P.J.; Yaakobi, B.
2002-01-01
The temporal evolution of inner-shell modulations, unstable during the deceleration phase of a laser-driven spherical implosion, has been measured through K-edge imaging [B. Yaakobi et al., Phys. Plasmas 7, 3727 (2000)] of shells with titanium-doped layers. The main study was based on the implosions of 1 mm diam, 20 μm thick shells filled with either 18 atm or 4 atm of D 3 He gas driven with 23 kJ, 1 ns square laser pulses on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. These targets have similar modulation levels at the beginning of the deceleration phase due to similar modulation growths in the acceleration phase, but different modulation growths throughout the deceleration phase due to different fill pressures (convergence ratios). At peak compression, the measured inner surface, areal-density nonuniformity σ rms levels were 23±5 % for more-stable 18 atm fill targets and 53±11 % for less-stable 4 atm fill targets. The inner-surface modulations grow throughout the deceleration phase due to Rayleigh-Taylor instability and Bell-Plesset convergence effects. The nonuniformity at peak compression is sensitive to the initial perturbation level as measured in implosions with different laser-smoothing conditions
Kelley, M. C.; Haerendel, G.; Kappler, H.; Valenzuela, A.; Balsley, B. B.; Carter, D. A.; Ecklund, W. L.; Carlson, C. W.; Haeusler, B.; Torbert, R.
1976-01-01
Recent rocket probe, barium cloud and radar measurements conducted during equatorial spread F conditions are interpreted in terms of a Rayleigh-Taylor gravitational instability operating on the bottomside of the F peak. The persistent theoretical problems associated with strong radar echoes typically observed in patch-like structures at high altitudes are explained in terms of regions of depleted plasma density which buoyantly rise against the gravitational field.
International Nuclear Information System (INIS)
Kelley, M.C.; Haerendel, G.; Kappler, H.; Valenzuela, A.; Balsley, B.B.; Carter, D.A.; Ecklund, W.L.; Carlson, C.W.; Hausler, B.; Torbert, R.
1976-01-01
Recent rocket probe, barium cloud and radar measurements conducted during equatorial spread F conditions are interpreted in terms of a Rayleigh-Taylor gravitational instability operating on the bottomside of the F peak. The persistent theoretical problems associated with strong radar echoes typically observed in patch-like structures at high altitudes are explained in terms of regions of depleted plasma density which bouyantly rise against the gravitational field
International Nuclear Information System (INIS)
Sturtevant, B.
1986-01-01
The purpose of this research program is to investigate fluid dynamic instabilities and mixing initiated by the interaction of shock waves with interfaces between light and heavy gases. In particular, the nonlinear stage of shock-initiated Rayleigh-Taylor instability (also known as the Richtmeyer-Meshkov instability), the secondary instabilities (e.g., the Kelvin-Helmholtz instability) arising therefrom and the resulting mixing of the two gases are of interest. This report describes activities during the performance period 1 October 1985 to 30 September 1986
International Nuclear Information System (INIS)
Abarzhi, S.I.
1996-01-01
The stationary solutions of the Rayleigh-Taylor instability for spatially periodic flows with general symmetry are investigated here for the first time. The existence of a set of stationary solutions is established. The question of its dimensionality in function space is resolved on the basis of an analysis of the symmetry of the initial perturbation. The interrelationship between the dimensionality of the solution set and the symmetry of the flow is found. The dimensionality of the solution set is established for flows invariant with respect to one of five symmorphic two-dimensional groups. The nonuniversal character of the set of stationary solutions of the Rayleigh-Taylor instability is demonstrated. For flows in a tube, on the contrary, universality of the solution set, along with its independence of the symmetry of the initial perturbation, is assumed. The problem of the free boundary in the Rayleigh-Taylor instability is solved in the first two approximations, and their convergence is investigated. The dependence of the velocity and Fourier harmonics on the parameters of the problem is found. Possible symmetry violations of the flow are analyzed. Limits to previously studied cases are investigated, and their accuracy is established. Questions of the stability of the solutions obtained and the possibility of a physically correct statement of the problem are discussed
International Nuclear Information System (INIS)
Hammouch, Z.
2012-01-01
The 'anelastic' approximation allows us to filter the acoustic waves thanks to an asymptotic development of the Navier-Stokes equations, so increasing the averaged time step, during the numerical simulation of hydrodynamic instabilities development. So, the anelastic equations for a two fluid mixture in case of Rayleigh-Taylor instability are established.The linear stability of Rayleigh-Taylor flow is studied, for the first time, for perfect fluids in the anelastic approximation. We define the Stokes problem resulting from Navier-Stokes equations without the non linear terms (a part of the buoyancy is considered); the ellipticity is demonstrated, the Eigenmodes and the invariance related to the pressure are detailed. The Uzawa's method is extended to the anelastic approximation and shows the decoupling speeds in 3D, the particular case k = 0 and the spurious modes of pressure. Passing to multi-domain allowed to establish the transmission conditions.The algorithms and the implementation in the existing program are validated by comparing the Uzawa's operator in Fortran and Mathematica languages, to an experiment with incompressible fluids and results from anelastic and compressible numerical simulations. The study of the influence of the initial stratification of both fluids on the development of the Rayleigh-Taylor instability is initiated. (author) [fr
Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner
International Nuclear Information System (INIS)
Weis, M. R.; Zhang, P.; Lau, Y. Y.; Gilgenbach, R. M.; Schmit, P. F.; Peterson, K. J.; Hess, M.
2015-01-01
This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value is included in each region: liner, its interior, and its exterior. The dispersion relation is solved exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (m), liner aspect ratio, and equilibrium quantities in each region. For small k, a positive g (inward radial acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode. For large k, a positive g destabilizes both the kink and sausage mode. Using the 1D-HYDRA simulation results for an equilibrium model that includes a pre-existing axial magnetic field and a preheated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the m = 1 kink-MRT mode has a higher growth rate at the initial stage and stagnation stage of the implosion, and that the m = 0 sausage-MRT mode dominates at the main part of implosion. This analysis also sheds light on a puzzling feature in Harris' classic paper of MRT [E. G. Harris, Phys. Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical structures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode
Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu
2004-09-01
Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.
International Nuclear Information System (INIS)
Jacobs, Jeffrey W.
2006-01-01
The objective of this three-year research program is to study the development of turbulence in Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. Incompressible RT and RM instabilities are studied in an apparatus in which a box containing two unequal density liquids is accelerated on a linear rail system either impulsively (by bouncing it off of a spring) to produce RM instability, or at a constant downward rate (using a weight and pulley system) to produce RT instability. These experiments are distinguished from others in the field in that they are initialized with well defined, measurable initial perturbations and are well visualized utilizing planar laser induced fluorescence imaging. New experiments are proposed aimed at generating fully turbulent RM and RT instabilities and quantifying the turbulent development once fully turbulent flows are achieved. The proposed experiments focus on the development and the subsequent application of techniques to accelerate the production of fully turbulent instabilities and the quantification of the turbulent instabilities once they are achieved. The proposed tasks include: the development of RM and RT experiments utilizing fluid combinations having larger density ratios than those previously used; the development of RM experiments with larger acceleration impulse than that previously used; and the investigation of the multi-mode and three-dimensional instabilities by the development of new techniques for generating short wavelength initial perturbations. Progress towards fulfilling these goals is currently well on track. Recent results have been obtained on experiments that utilize Faraday resonance for the production of a nearly single-mode three-dimensional perturbation with a short enough wavelength to yield a self-similar instability at late-times. Last year we reported that we can reliably generate Faraday internal waves on the interface in our experimental apparatus by oscillating the tank containing the
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I
Zhou, Ye
2017-12-01
Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. The objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin-Helmholtz (KH) instabilities. Historical efforts to study these instabilities are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion. Early experimental efforts are described, and analytical attempts to model the linear, and nonlinear regimes of these mixing layers are examined. These analytical efforts include models for both single-mode and multi-mode initial conditions, as well as multi-scale models to describe the evolution. Comparisons of these models and theories to experimental and simulation studies are then presented. Next, attention is paid to the issue of the influence of stabilizing mechanisms (e.g., viscosity, surface tension, and diffuse interface) on the evolution of these instabilities, as well as the limitations and successes of numerical methods. Efforts to study these instabilities and mixing layers using group-theoretic ideas, as well as more formal notions of turbulence cascade processes during the later stages of the induced mixing layers, are inspected. A key element of the review is the discussion of the late-time self-similar scaling for the RT and RM growth factors, α and θ. These parameters are influenced by the initial conditions and much of the observed variation can be explained by this. In some cases, these instabilities
Analytic theory of the Rayleigh-Taylor instability in a uniform density plasma-filled ion diode
International Nuclear Information System (INIS)
Hussey, T.W.; Payne, S.S.
1987-04-01
The J-vector x B-vector forces associated with the surface current of a plasma-filled ion diode will accelerate this plasma fill toward the anode surface. It is well known that such a configuration with a high I is susceptible to the hydromagnetic Rayleigh-Taylor instability in certain geometries. A number of ion diode plasma sources have been proposed, most of which have a falling density going away from the wall. A somewhat more unstable case, however, is that of uniform density. In this report we attempt to establish an upper limit on this effect with a simple analytic model in which a uniform-density plasma is accelerated by the magnetic field anticipated in a PBFA-II diode. We estimate the number of linear e-foldings experienced by an unstable surface as well as the most damaging wavelength initial perturbation. This model, which accounts approximately for stabilization due to field diffusion, suggests that even with a uniform fill, densities in excess of a few 10 15 are probably not damaged by the instability. In addition, even lower densities might be tolerated if perturbations near the most damaging wavelength can be kept very small
Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Experimental study
Binda, L.; Fernández, D.; El Hasi, C.; Zalts, A.; D'Onofrio, A.
2018-01-01
Lateral movements of the fingers in Rayleigh-Taylor hydrodynamic instabilities at the interface between two fluids are studied. We show that transverse movements appear when a physical boundary is present; these phenomena have not been explained until now. The boundary prevents one of the fluids from crossing it. Such frontiers can be buoyancy driven as, for example, the frontier to the passage of a less dense solution through a denser solution or when different aggregation states coexist (liquid and gaseous phases). An experimental study of the lateral movement velocity of the fingers was performed for different Rayleigh numbers (Ra), and when oscillations were detected, their amplitudes were studied. Liquid-liquid (L-L) and gas-liquid (G-L) systems were analysed. Aqueous HCl and Bromocresol Green (sodium salt, NaBCG) solutions were used in L-L experiments, and CO2 (gas) and aqueous NaOH, NaHCO3, and CaCl2 solutions were employed for the G-L studies. We observed that the lateral movement of the fingers and finger collapses near the interface are more notorious when Ra increases. The consequences of this, for each experience, are a decrease in the number of fingers and an increase in the velocity of the lateral finger movement close to the interface as time evolves. We found that the amplitude of the oscillations did not vary significantly within the considered Ra range. These results have an important implication when determining the wave number of instabilities in an evolving system. The wave number could be strongly diminished if there is a boundary.
Energy Technology Data Exchange (ETDEWEB)
Smalyuk, V A
2012-06-07
Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.
Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes
International Nuclear Information System (INIS)
Ikegawa, Tadashi; Nishihara, Katsunobu
2003-01-01
A weakly nonlinear theory has been developed for the classical Rayleigh-Taylor instability with a finite bandwidth taken into account self-consistently. The theory includes up to third order nonlinearity, which results in the saturation of linear growth and determines subsequent weakly nonlinear growth. Analytical results are shown to agree fairly well with two-dimensional hydrodynamic simulations. There are generally many local peaks of a perturbation with a finite bandwidth due to the interference of modes. Since a local amplitude is determined from phases among the modes as well as the bandwidth, we have investigated an onset of the linear growth saturation and the subsequent weakly nonlinear growth for different bandwidths and phases. It is shown that the saturation of the linear growth occurs locally, i.e., each of the local maximum amplitudes (LMAs) grows exponentially until it reaches almost the same saturation amplitude. In the random phase case, the root mean square amplitude thus saturates with almost the same amplitude as the LMA, after most of the LMAs have saturated. The saturation amplitude of the LMA is found to be independent of the bandwidth and depends on the Atwood number. We derive a formula of the saturation amplitude of modes based on the results obtained, and discuss its relation with Haan's formula [Phys. Rev. A 39, 5812 (1989)]. The LMAs grow linearly in time after the saturation and their speeds are approximated by the product of the linear growth rate and the saturation amplitude. We investigate the Atwood number dependence of both the saturation amplitude and the weakly nonlinear growth
Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime
International Nuclear Information System (INIS)
Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.
2010-01-01
The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model κ(T)=κ SH [1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where κ SH is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].
International Nuclear Information System (INIS)
Farkullin, M.N.; Nikitin, M.A.; Kashchenko, N.M.
1989-01-01
Calculations of linear increment of the Rayleigh-Taylor instability for various geophysical conditions are presented. It is shwn that space-time characteristics of increment depend strongly on conditions of solar activity and seasons. The calculation results are in a good agreement with statistical regularities of F-scattering observation in equatorial F-area, which points to the Rayleigh-Taylor natur of the penomena
Energy Technology Data Exchange (ETDEWEB)
Smitherman, D.P.
1998-04-01
Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.
International Nuclear Information System (INIS)
Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Oh, J.; Metzler, N.
2012-01-01
Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. At sub-megabar shock pressure, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed. As the shock pressure exceeds 1 Mbar, an oscillatory rippled expansion wave is observed, followed by the “feedout” of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.
Rayleigh-Taylor instability of a self-similar spherical expansion
International Nuclear Information System (INIS)
Bernstein, I.B.; Book, D.L.
1978-01-01
The self-similar motion of a spherically symmetric isentropic cloud of ideal gas driven outward by an expanding low-density medium (e.g., radiation pressure from a pulsar) is shown to be unstable to Rayleigh-Taylor modes which develop in the neighborhood of the interface. A complete solution of the linearized equations of motion is obtained. The implications for astrophysical phenomena are discussed
Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Wang, L. F.; Ye, W. H.; He, X. T.
2012-01-01
In this research, density gradient effects (i.e., finite thickness of ablation front effects) in ablative Rayleigh-Taylor instability (ARTI), in the presence of preheating within the weakly nonlinear regime, are investigated numerically. We analyze the weak, medium, and strong ablation surfaces which have different isodensity contours, respectively, to study the influences of finite thickness of ablation front on the weakly nonlinear behaviors of ARTI. Linear growth rates, generation coefficients of the second and the third harmonics, and coefficients of the third-order feedback to the fundamental mode are obtained. It is found that the linear growth rate which has a remarkable maximum, is reduced, especially when the perturbation wavelength λ is short and a cut-off perturbation wavelength λ c appears when the perturbation wavelength λ is sufficiently short, where no higher harmonics exists when λ c . The phenomenon of third-order positive feedback to the fundamental mode near the λ c [J. Sanz et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier et al., Phys. Rev. Lett. 90, 185003 (2003); J. Garnier and L. Masse, Phys. Plasmas 12, 062707 (2005)] is confirmed in numerical simulations, and the physical mechanism of the third-order positive feedback is qualitatively discussed. Moreover, it is found that generations and growths of the second and the third harmonics are stabilized (suppressed and reduced) by the ablation effect. Meanwhile, the third-order negative feedback to the fundamental mode is also reduced by the ablation effect, and hence, the linear saturation amplitude (typically ∼0.2λ in our simulations) is increased significantly and therefore exceeds the classical prediction 0.1λ, especially for the strong ablation surface with a small perturbation wavelength. Overall, the ablation effect stabilizes the ARTI in the weakly nonlinear regime. Numerical results obtained are in general agreement with the recent weakly nonlinear theories and simulations
Energy Technology Data Exchange (ETDEWEB)
Sengupta, Tapan K., E-mail: tksen@iitk.ac.in; Bhole, Ashish; Shruti, K. S. [HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Aditi [Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Sharma, Nidhi [Graduate Student, HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Soumyo [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)
2016-09-15
Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.
Initial value problem for Rayleigh--Taylor instability of viscous fluids
International Nuclear Information System (INIS)
Menikoff, R.; Mjolsness, R.C.; Sharp, D.H.; Zemach, C.; Doyle, B.J.
1978-01-01
The initial value problem associated with the development of small amplitude disturbances in Rayleigh--Taylor unstable, viscous, incompressible fluids is studied. Solutions to the linearized equations of motion which satisfy general initial conditions are obtained in terms of Fourier--Laplace transforms of the hydrodynamic variables, without restriction on the density or viscosity of either fluid. When the two fluids have equal kinematic viscosities, these transforms can be inverted explicitly to express the fluid variables as integrals of Green's functions multiplied by initial data. In addition to normal modes, a set of continuum modes, not treated explicitly in the literature, makes an important contribution to the development of the fluid motion
Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes
Manuel, Mario
2012-10-01
Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 μm, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Ma, W. J., E-mail: wenjun.ma@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Gu, Y. Q. [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yan, X. Q., E-mail: x.yan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)
2016-08-15
In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.
Energy Technology Data Exchange (ETDEWEB)
Henry de Frahan, M. T., E-mail: marchdf@umich.edu; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Belof, J. L.; Cavallo, R. M.; Ancheta, D. S.; El-dasher, B. S.; Florando, J. N.; Gallegos, G. F.; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808 (United States); Raevsky, V. A.; Ignatova, O. N.; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188 (Russian Federation)
2015-06-14
We present a set of high explosive driven Rayleigh-Taylor strength experiments for beryllium to produce data to distinguish predictions by various strength models. Design simulations using existing strength model parameterizations from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, suggests growth consistent with little material strength. We focus mostly on efforts to simulate the data using published strength models as well as the more recent RING relaxation model developed at VNIIEF. The results of the strength experiments indicate weak influence of strength in mitigating the growth with the RING model coming closest to predicting the material behavior. Finally, we present shock and ramp-loading recovery experiments.
Energy Technology Data Exchange (ETDEWEB)
Henry de Frahan, M. T. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; Belof, J. L. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Cavallo, R. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Raevsky, V. A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ignatova, O. N. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ancheta, D. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; El-dasher, B. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Florando, J. N. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Gallegos, G. F. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA
2015-06-14
A recent collaboration between LLNL and VNIIEF has produced a set of high explosive driven Rayleigh-Taylor strength data for beryllium. Design simulations using legacy strength models from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, shows close to classical growth. We characterize the material properties of the beryllium tested in the experiments. We also discuss recent efforts to simulate the data using the legacy strength models as well as the more recent RING relaxation model developed at VNIIEF. Finally, we present shock and ramp-loading recovery experiments conducted as part of the collaboration.
Observation of Self-Similar Behavior of the 3D, Nonlinear Rayleigh-Taylor Instability
International Nuclear Information System (INIS)
Sadot, O.; Smalyuk, V.A.; Delettrez, J.A.; Sangster, T.C.; Goncharov, V.N.; Meyerhofer, D.D.; Betti, R.; Shvarts, D.
2005-01-01
The Rayleigh-Taylor unstable growth of laser-seeded, 3D broadband perturbations was experimentally measured in the laser-accelerated, planar plastic foils. The first experimental observation showing the self-similar behavior of the bubble size and amplitude distributions under ablative conditions is presented. In the nonlinear regime, the modulation σ rms grows as α σ gt 2 , where g is the foil acceleration, t is the time, and α σ is constant. The number of bubbles evolves as N(t)∝(ωt√(g)+C) -4 and the average size evolves as (t)∝ω 2 gt 2 , where C is a constant and ω=0.83±0.1 is the measured scaled bubble-merging rate
International Nuclear Information System (INIS)
Roderick, N.F.; Cochrane, K.; Douglas, M.R.
1998-01-01
Previous investigations carried out to study various methods of seeding the hydromagnetic Rayleigh-Taylor instability in magnetohydrodynamic simulations showed features similar to those seen in hydrodynamic calculations. For periodic single-mode initiations the results showed the appearance of harmonics as the single modes became nonlinear. For periodic multi-mode initiations new modes developed that indicated the presence of mode coupling. The MHD simulations used parameters of the high velocity large radius z-pinch experiments performed in the Z-accelerator at Sandia National Laboratories. The cylindrical convergent geometry and variable acceleration of these configurations made comparison with analytic, developed for planar geometry with constant acceleration, difficult. A set of calculations in planar geometry using constant current to produce acceleration and parameters characteristic of the cylindrical implosions has been performed to allow a better comparison. Results of these calculations, comparison with analytic theory, and comparison with the cylindrical configuration calculations will be discussed
International Nuclear Information System (INIS)
Keskinen, M.J.; Ossakow, S.L.; Chaturvedi, P.K.
1980-01-01
Computer simulations of the intermediate wavelength (100--1000 m) collisional Rayleigh-Taylor instability in local unstable regions of the postsunset bottomside (300 km) equatorial F region ionosphere have been performed. For ambient electron density gradient scale lengths L=5, 10, 15 km we find that the linearly unstable horizontal modes saturate by nonlinear generation of linearly damped vertical modes with the result that in the nonlinear regime, power laws are observed in the horizontal P(k/sub x/) proportional k/sub x//sup -n/ and vertical P(k/sub y/) proportional k/sub y//sup -n/ one-dimensional power spectra with n=2--2.5. These results are consistent both with in situ experimental data and with theoretical prediction
International Nuclear Information System (INIS)
Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.
2000-01-01
The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at al Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h∼α.A.gt 2 with different values of α for the bubble and spike fronts. The RM mixing zone fronts evolve as h∼θ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3-D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments. (authors)
International Nuclear Information System (INIS)
Skupsky, S.; McCrory, R.L.; Verdon, C.P.
1984-01-01
The nonuniformity in laser energy deposition on a spherical target is calculated for multiple overlapping beams having small-scale fluctuations. Such nonuniformities can imprint themselves on the target surface and ''seed'' the Rayleigh-Taylor instability early in the pulse before an adequate, smoothing plasma-atmosphere has been established. The resulting growth of target deformation during the implosion is estimated
International Nuclear Information System (INIS)
Kilkenny, J.D.; Glendinning, S.G.; Haan, S.W.
1993-12-01
It has been recognized for many year's that the most significant limitation of ICF is the Rayleigh-Taylor (R-T) instability. It limits the distance an ablatively driven shell can be moved to several times its initial thickness. Fortunately material flow through the unstable region at velocity v A reduces the growth rate to √ 1+kL / kg -βkv A with β from 2-3. In recent years experiments using both x-ray drive and smoothed laser drive to accelerate foils have confirmed our understanding of the ablative R-T instability in planar geometry. The growth of small initial modulations on the foils is measured for growth factors up to 60 for direct drive and 80 for indirect drive. For x-ray drive large stabilization is evident. After some growth, the instability enters the non-linear phase when mode coupling and saturation are also seen and compare well with modeling. Normalized growth rates for direct drive are measured to be higher, but strategies for reduction by raising the isentrope are being investigated. For direct drive, high spatial frequencies are imprinted from the laser beam and amplified by the R-T instability. Modeling shows an understanding of this ''laser imprinting.''
A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to ICF
International Nuclear Information System (INIS)
Kilkenny, J.D.; Glendinning, S.G.; Haan, S.W.; Hammel, B.A.; Lindl, J.D.; Munro, D.; Remington, B.A.; Weber, S.V.; Knauer, J.P.; Verdon, C.P.
1993-12-01
It has been recognized for many years that the most significant limitation of ICF is the Rayleigh-Taylor (R-T) instability. It limits the distance an ablatively driven shell can be moved to several times its initial thickness. Fortunately material flow through the unstable region at velocity v A reduces the growth rate to √ 1+kL / kg -βkv A with β from 2-3. In recent years experiments using both x-ray drive and smoothed laser drive to accelerate foils have confirmed our understanding of the R-T instability. The growth of small initial modulations on the foils is measured for growth factors up to 60 for direct drive and 80 for indirect drive. For x-ray drive large stabilization is evident After some growth, the instability enters the non-linear phase when mode coupling and saturation are also seen and compare well with modeling. Normalized growth rates for direct drive are measured to be higher, but strategies for reduction by raising the isentrope are being investigated. For direct drive, high spatial frequencies are imprinted from the laser beam and amplified by the R-T instability. Modeling shows an understanding of this ''laser imprinting.''
International Nuclear Information System (INIS)
Rahul Banerjee; Khan, M.; Mandal, L.K.; Roy, S.; Gupta, M.R.
2010-01-01
Complete text of publication follows. The Rayleigh-Taylor (R-T) instability and Richtmyer-Meshkov (R-M) instability are well known problems in the formation of some astrophysical structures such as the supernova remnants in the Eagle and Crab nebula. A core collapse supernova is driven by an externally powerful shock, and strong shocks are the breeding ground of hydrodynamic instability such as Rayleigh-Taylor instability or Richtmyer-Meshkov instability. These instabilities are also important issues in the design of targets for inertial confinement fusion (ICF). In an ICF target, a high density fluid is frequently accelerated by the pressure of a low density fluid and after ablation the density quickly decays. So, small ripples at such an interface will grow. Under potential flow model, the perturbed interface between heavier fluid and lighter fluid form bubble and spike like structures. The bubbles are in the form of columns of lighter fluid interleaved by falling spike of heavy fluid. In this paper, we like to presented the effect of viscosity and surface tension on Rayleigh-Taylor instability and Richtmyer-Meshkov instability under the non-linear Layzer's approach and described the displacement curvature, growth and velocity of the tip of the bubble as well as spike. It is seen that, in absence of surface tension the lowering of the asymptotic velocity of the tip of the bubble which is formed when the lighter fluid penetrates into the denser fluid and thus encounters the viscous drag due to the denser fluid, which depends only on the denser fluid's viscosity coefficient. On the other hand the asymptotic velocity of the tip of the spike formed as the denser fluid penetrates into the lighter fluid is reduced by an amount which depends only on the viscosity coefficient of the lighter fluid and the spike is resisted by the viscous drag due to the lighter fluid. However, in presence of surface tension the asymptotic velocity of the tip of the bubble (spike) and
Guo, L.-J.; Huang, Y.-M.; Bhattacharjee, A.; Innes, D. E.
2014-12-01
Supra-arcade downflows (hereafter referred to as SADs) are low-emission, elongated, finger-like features observed in active region coronae above post-eruption flare arcades. Observations exhibit downward moving SADs intertwined with bright upward growing spikes. Whereas SADs are dark voids, spikes are brighter, denser structures. Although SADs have been observed for more than a decade, the mechanism of the formation of SADs remains an open issue. Using three-dimensional resistive magnetohydrodynamic simulations, we demonstrate that Rayleigh-Taylor-type instabilities develop in the downstream region of a reconnecting current sheet. The instabilities result in the formation of low-density coherent structures that resemble SADs, and high-density structures that appear to be spike-like. Comparison between the simulation results and observations suggests that Rayleigh-Taylor-type instabilities in the exhaust of reconnecting current sheets provide a plausible mechanism for observed SADs.
International Nuclear Information System (INIS)
Betti, R.; Umansky, M.; Lobatchev, V.; Goncharov, V.N.; McCrory, R.L.
2001-01-01
A model for the deceleration phase of imploding inertial confinement fusion capsules is derived by solving the conservation equations for the hot spot. It is found that heat flux leaving the hot spot goes back in the form of internal energy and pdV work of the material ablated off the inner shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For direct-drive National Ignition Facility-like capsules, the ablation velocity off the shell inner surface is of the order of tens μm/ns, the deceleration of the order of thousands μm/ns2, and the density-gradient scale length of the order a few μm. Using the well-established theory of the ablative Rayleigh-Taylor instability, it is shown that the growth rates of the deceleration phase instability are significantly reduced by the finite ablative flow and the unstable spectrum exhibits a cutoff for mode numbers of about l≅90
Rubin, Mark E.; Desch, Steven J.; Neveu, Marc
2014-07-01
Previous calculations of the internal structure and thermal evolution of Kuiper Belt Objects (KBOs) by Desch et al. (Desch, S.J., Cook, J.C., Doggett, T.C., Porter, S.B. [2009]. Icarus 202, 694-714) have predicted that KBOs should only partially differentiate, with rock and ice separating into a rocky core and icy mantle, below an undifferentiated crust of ice and rock. This crust is thermally insulating and enhances the ability of subsurface liquid to persist within KBOs. A dense rock/ice layer resting on an icy mantle is gravitationally unstable and prone to Rayleigh-Taylor (RT) instabilities, and may potentially overturn. Here we calculate the ability of RT instabilities to act in KBOs, and determine the thickness of undifferentiated crusts. We have used previously calculated growth rates of the RT instability to determine the critical viscosity of ice needed for the RT instability to operate. We calculate the viscosity of ice at the cold temperatures and long timescales relevant to KBOs. We find that crustal overturn is only possible where the temperature exceeds about 150 K, and that RT instabilities cannot act on geological timescales within about 60 km of the surfaces of a KBO like Charon. Although this crustal thickness is less than the 85 km previously calculated by Desch et al. (Desch, S.J., Cook, J.C., Doggett, T.C., Porter, S.B. [2009]. Icarus 202, 694-714), it is still significant, representing ≈25% of the mass of the KBO. We conclude that while RT instabilities may act in KBOs, they do not completely overturn their crusts. We calculate that Saturn’s moon Rhea should only partially differentiate, resulting in a moment of inertia C/MR2≈0.38.
Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.
2017-11-01
An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
International Nuclear Information System (INIS)
Oron, D.; Arazi, L.; Kartoon, D.; Rikanati, A.; Alon, U.; Shvarts, D.
2001-01-01
The late-time nonlinear evolution of the three-dimensional (3D) Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated. Using full 3D numerical simulations, a statistical mechanics bubble-competition model, and a Layzer-type drag-buoyancy model, it is shown that the RT scaling parameters, α B and α S , are similar in two and three dimensions, but the RM exponents, θ B and θ S are lower by a factor of 2 in three dimensions. The similarity parameter h B / is higher by a factor of 3 in the 3D case compared to the 2D case, in very good agreement with recent Linear Electric Motor (LEM) experiments. A simple drag-buoyancy model, similar to that proposed by Youngs [see J. C. V. Hanson et al., Laser Part. Beams 8, 51 (1990)], but using the coefficients from the A=1 Layzer model, rather than phenomenological ones, is introduced
Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.
2018-01-01
In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.
Energy Technology Data Exchange (ETDEWEB)
Egly, H
2007-10-15
This thesis deals with the dynamics of accelerated ablative front spreading in Inertial Confinement Fusion experiments. ICF is designed for the implosion of a deuterium-tritium spherical target. The outer shell, the ablator, is irradiated providing a high level pressure inside the target. During this first stage, the ablation front propagating inwards is perturbed by hydrodynamics instabilities, which can prevent the fusion reaction in the decelerated stage. We propose here a study on Rayleigh-Taylor instabilities during ablation process, in the two dimensional case. In order to obtain a numerical solution, we perform an asymptotic analysis in the limit of a high temperature ratio, between the remaining cold ablator and the hot ablated plasma. This study is divided in two steps. First, the thermo-diffusive part of the set of equations is approximated by a Hele-Shaw model, which is then perturbed by the hydrodynamics part. Using a vortex method, we have to solve the advection of a vortical sheet moving with the ablation front. We compute the numerical solution on an Eulerian mesh coupled with a marker method. The thermal part is computed by implementing the Fat Boundary Method, recently developed. The hydrodynamic part is obtained from a Finite Volume scheme. (author)
Rayleigh-Taylor mixing in supernova experiments
International Nuclear Information System (INIS)
Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.
2015-01-01
We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order
International Nuclear Information System (INIS)
Liu, Wanhai; Yu, Changping; Li, Xinliang
2014-01-01
Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radius of the interface (r 0 ) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r 0 /λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r 0 /λ is large enough (r 0 ≫λ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r 0 can reduce the NSA of the second harmonic for arbitrary A at r 0 ≲2λ while increase it for A ≲ 0.6 at r 0 ≳2λ. Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design
Ablative Rayleigh Taylor instability in the limit of an infinitely large density ratio
Clavin, Paul; Almarcha, Christophe
2005-05-01
The instability of ablation fronts strongly accelerated toward the dense medium under the conditions of inertial confinement fusion (ICF) is addressed in the limit of an infinitely large density ratio. The analysis serves to demonstrate that the flow is irrotational to first order, reducing the nonlinear analysis to solve a two-potential flows problem. Vorticity appears at the following orders in the perturbation analysis. This result simplifies greatly the analysis. The possibility for using boundary integral methods opens new perspectives in the nonlinear theory of the ablative RT instability in ICF. A few examples are given at the end of the Note. To cite this article: P. Clavin, C. Almarcha, C. R. Mecanique 333 (2005).
Simulating Rayleigh-Taylor (RT) instability using PPM hydrodynamics @scale on Roadrunner (u)
Energy Technology Data Exchange (ETDEWEB)
Woodward, Paul R [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Rockefeller, Gabriel M [Los Alamos National Laboratory; Fryer, Christopher L [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Dai, W [Los Alamos National Laboratory; Kares, R. J. [Los Alamos National Laboratory
2011-01-05
The effect of initial conditions on the self-similar growth of the RT instability is investigated using a hydrodynamics code based on the piecewise-parabolic-method (PPM). The PPM code was converted to the hybrid architecture of Roadrunner in order to perform the simulations at extremely high speed and spatial resolution. This paper describes the code conversion to the Cell processor, the scaling studies to 12 CU's on Roadrunner and results on the dependence of the RT growth rate on initial conditions. The relevance of the Roadrunner implementation of this PPM code to other existing and anticipated computer architectures is also discussed.
The Rayleigh-Taylor instability and the K-shell radiation yield for imploding liners
Energy Technology Data Exchange (ETDEWEB)
Baksht, R B; Datsko, I M; Labetskij, A Yu; Russkikh, A G; Fedyunin, A V [High Current Electronics Inst., Tomsk (Russian Federation)
1997-12-31
Experiments were carried out on the GIT-4 1.5 MA inductive generator with a 1.2 {mu}s current delivery to the inductive store. A single gas puff with an initial diameter of 28 mm was used as the load. Three different kinds of gas, Kr, Ar, and Ne, were used. The dependence of the X-ray yield on the gas liner mass was investigated. Experimental investigation of the RT-instability was carried out with the help of a streak camera. The RT wave amplitude and X-ray yield were correlated. (author). 4 figs., 5 refs.
The Rayleigh-Taylor instability and the K-shell radiation yield for imploding liners
International Nuclear Information System (INIS)
Baksht, R.B.; Datsko, I.M.; Labetskij, A.Yu.; Russkikh, A.G.; Fedyunin, A.V.
1996-01-01
Experiments were carried out on the GIT-4 1.5 MA inductive generator with a 1.2 μs current delivery to the inductive store. A single gas puff with an initial diameter of 28 mm was used as the load. Three different kinds of gas, Kr, Ar, and Ne, were used. The dependence of the X-ray yield on the gas liner mass was investigated. Experimental investigation of the RT-instability was carried out with the help of a streak camera. The RT wave amplitude and X-ray yield were correlated. (author). 4 figs., 5 refs
International Nuclear Information System (INIS)
Delorme, Barthelemy
2015-01-01
Numerous designs and experiments in the domain of Inertial Confinement Fusion (ICF) show that, in both direct and indirect drive approaches, one of the main limitations to reach the ignition is the Rayleigh-Taylor instability (RTI). It may lead to shell disruption and performance degradation of spherically imploding targets. Thus, the understanding and the control of the initial conditions of the RTI is of crucial importance for the ICF program. In this thesis, we present an experimental and theoretical study of the initial conditions of the ablative RTI in direct drive, by means of two experimental campaigns performed on the OMEGA laser facility (LLE, Rochester). The first campaign consisted in studying the laser-imprinted ablative Richtmyer-Meshkov instability (RMI) which starts at the beginning of the interaction and seeds the ablative RTI. We set up an experimental configuration that allowed to measure for the first time the temporal evolution of the laser-imprinted ablative RMI. The experimental results have been interpreted by a theoretical model and numerical simulations performed with the hydrodynamic code CHIC. We show that the best way to control the ablative RMI is to reduce the laser intensity inhomogeneities. This can be achieved with targets covered by a layer of a low density foam. Thus, in the second campaign, we studied for the first time the effect of underdense foams on the growth of the ablative RTI. A layer of low density foam was placed in front of a plastic foil, and the perturbation was imprinted by an intensity modulated laser beam. Experimental data are presented: backscattered laser energy, target dynamic obtained by side-on self emission measurement, and face-on radiographs showing the effect of the foams on the target areal density modulations. These data were interpreted using the CHIC code and the laser-plasma interaction code PARAX. We show that the foams noticeably reduce the amplitude of the laser intensity inhomogeneities and the
Nonlinear hydromagnetic Rayleigh-Taylor instability for strong viscous fluids in porous media
El-Dib, Y O
2003-01-01
In the present work a weakly nonlinear stability for magnetic fluid is discussed. The research of an interface between two strong viscous homogeneous incompressible fluids through porous medium is investigated theoretically and graphically. The effect of the vertical magnetic field has been demonstrated in this study. The linear form of equation of motion is solved in the light of the nonlinear boundary conditions. The boundary value problem leads to construct nonlinear characteristic equation having complex coefficients in elevation function. The nonlinearity is kept to third-order expansion. The nonlinear characteristic equation leads to derive the well-known nonlinear Schroedinger equation. This equation having complex coefficients of the disturbance amplitude varies in both space and time. Stability criteria have been performed for nonlinear Chanderasekhar dispersion relation including the porous effects. Stability conditions are discussed through the assumption of equal kinematic viscosity. The calculati...
International Nuclear Information System (INIS)
Gao Yitian; Tian Bo
2003-01-01
A variable-coefficient unstable nonlinear Schroedinger model is hereby investigated, which arises in such applications as the electron-beam plasma waves and Rayleigh-Taylor instability in nonuniform plasmas. With computerized symbolic computation, families of exact analytic dark- and bright-soliton-like solutions are found, of which some previously published solutions turn out to be the special cases. Similarity solutions also come out, which are expressible in terms of the elliptic functions and the second Painleve transcendent. Some observable effects caused by the variable coefficient are predicted, which may be detected in the future with the relevant space or laboratory plasma experiments with nonuniform background existing
Guo, L.; Bhattacharjee, A.; Huang, Y. M.; Innes, D.
2014-12-01
Supra-arcade downflows (hereafter referred to as SADs) are low-emission, elongated, finger-like features usually observed in active-region coronae above post-eruption flare arcades. Observations exhibit downward moving SADs intertwined with bright, upward moving spikes. Whereas SADs are dark voids, spikes are brighter, denser structures. Although SADs have been observed for decades, the mechanism for formation of SADs remains an open issue. Using high-Lundquist-number three-dimensional resistive MHD simulations, we demonstrate that secondary Rayleigh-Taylor type instabilities develop in the downstream region of a reconnecting current sheet. The instability results in the formation of low-density coherent structures that resemble SADs, intertwined with high-density structures that appear to be spike-like. Using SDO/AIA images, we highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with siumlations suggest that secondary Rayleigh-Taylor type instabilities in the exhaust of reconnecting current sheets provide a plausible mechanism for observed SADs and spikes. Although the plasma conditions are vastly different, analogous phenomena also occur in the Earth's magnetotail during reconnection.
Mondal, Puskar; Korenaga, Jun
2018-03-01
The dispersion relation of the Rayleigh-Taylor instability, a gravitational instability associated with unstable density stratification, is of profound importance in various geophysical contexts. When more than two layers are involved, a semi-analytical technique based on the biharmonic formulation of Stokes flow has been extensively used to obtain such dispersion relation. However, this technique may become cumbersome when applied to lithospheric dynamics, where a number of layers are necessary to represent the continuous variation of viscosity over many orders of magnitude. Here, we present an alternative and more efficient method based on the propagator matrix formulation of Stokes flow. With this approach, the original instability problem is reduced to a compact eigenvalue equation whose size is solely determined by the number of primary density contrasts. We apply this new technique to the stability of the early crust, and combined with the Monte Carlo sensitivity analysis, we derive an empirical formula to compute the growth rate of the Rayleigh-Taylor instability for this particular geophysical setting. Our analysis indicates that the likelihood of crustal delamination hinges critically on the effective viscosity of eclogite.
International Nuclear Information System (INIS)
Zhou Bin; Sun Qi; Huang Yaodong; Shen Jun; Wu Guangming; Wang Jue
2004-01-01
The developments of the surface perturbation target and the thin silicon foil target used to research Rayleigh-Taylor instability in the resolved experiments of Inertial Confinement Fusion (ICF) are carried out. Based on the laser interference process combined with the figure-transfer process, the surface perturbation target with sine modulated perturbation is gotten, the wavelength is in the range of 20-100 μm and the amplitude is several micrometers. The thin silicon foil within the thickness about 3-4 μm is prepared by semiconductor process together with heavy-doped self-stop etching. Combined with ion beam etching, the check or the stripe patterns are transferred to the surface of thin silicon foils, and then the silicon grating foil is obtained
International Nuclear Information System (INIS)
Coleman, P.; Rauch, J.; Rix, W.; Thompson, J.; Wilson, R.
1997-01-01
Hammer (1996) and Velikovich (1996) have discussed ways to mitigate the growth of the magneto-Rayleigh-Taylor (MRT) instability in z-pinch (PRS) implosions. They predict that initial mass distributions more complex than a simple annular shell will reduce instability development. Sanford (1996) reported experimental data showing a benefit for a uniform mass distribution compared to a shell; those tests used ''conventional'' load radii of 2.25 and 1.25 cm respectively, and implosion times under 100 ns. However, the instability problem is expected to grow exponentially as the implosion time, or alternatively the initial radius, increases. Thus we made a comparison of a uniform fill load with a shell but at larger radii, 3.6 and 2.5 cm respectively, and at implosion times well above 100 ns. We see nearly a factor of 10X improvement in peak K-shell power and 2X increase in K-shell yield for the uniform mass load. Hence it appears that suitable tailoring of the imploding mass distribution can significantly limit the instability growth
International Nuclear Information System (INIS)
Casner, A.; Masse, L.; Delorme, B.; Jacquet, L.; Liberatore, S.; Smalyuk, V.; Martinez, D.; Seugling, R.; Park, H.S.; Remington, B.A.; Moore, A.; Igumenshev, I.; Chicanne, C.
2013-01-01
In the context of National Ignition Facility Basic Science program we propose to study on the NIF ablative Rayleigh-Taylor (RT) instability in transition from weakly nonlinear to highly nonlinear regimes. Based on the analogy between flame front and ablation front, highly nonlinear RT instability measurements at the ablation front can provide important insights into the initial deflagration stage of thermonuclear supernovae of type Ia. NIF provides a unique platform to study the rich physics of nonlinear and turbulent mixing flows in High Energy Density plasmas because it can accelerate targets over much larger distances and longer time periods than previously achieved on the NOVA and OMEGA lasers. In one shot, growth of RT modulations can be measured from the weakly nonlinear stage near nonlinear saturation levels to the highly nonlinear bubble-competition, bubble-merger regimes and perhaps into a turbulent-like regime. The role of ablation on highly-nonlinear RT instability evolution will be comprehensively studied by varying ablation velocity using indirect and direct-drive platforms. We present a detailed hydro-code design of the indirect-drive platform and discuss the implementation plan for these experiments which only use NIF diagnostics already qualified. (authors)
Energy Technology Data Exchange (ETDEWEB)
Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Liberatore, S.; Loiseau, P.; Masson-Laborde, P. E.; Jacquet, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Martinez, D.; Moore, A. S.; Seugling, R.; Felker, S.; Haan, S. W.; Remington, B. A.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M.; Giraldez, E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States)
2015-05-15
Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.
International Nuclear Information System (INIS)
Miles, A.R.; Edwards, M.J.; Greenough, J.A.
2004-01-01
Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, the results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types is considered. Compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Certain aspects of the initial conditions, including the rms amplitude, are shown to have a strong effect on the time to transition to the quasi-self-similar regime
International Nuclear Information System (INIS)
Willi, O.; Pasley, J.; Iwase, A.; Nazarov, W.; Rose, S.J.
2000-01-01
The Rayleigh-Taylor instability was studied in the short wavelength regime using single mode targets that were driven by hohlraum radiation allowing the Takabe-Morse roll-over due to ablative stabilisation to be investigated. A temporally shaped soft x-ray drive was generated by focusing one of the PHEBUS laser beams into a gold hohlraum with a maximum radiation temperature of about 120 eV. Thin plastic foils with sinusoidal modulations with wavelengths between 12 and 50 μm, and a perturbation amplitude of about 10% of the wavelength, were used. A low density 50 mg/cc tri-acrylate foam 150 μm in length facing the hohlraum was attached to the modulated foam target. The targets were radiographed face-on at an x-ray energy of about 1.3 keV with a spatial resolution of about 5 μm using a Wolter-like x-ray microscope coupled to an x-ray streak camera with a temporal resolution of 50 ps. The acceleration was obtained from side-on radiography. 2-D hydrodynamic code simulations have been carried out to compare the experimental results with the simulations. (authors)
Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan
2017-06-01
Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.
Energy Technology Data Exchange (ETDEWEB)
Livescu, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wieland, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Colorado, Boulder, CO (United States); Reckinger, Scott [Montana State Univ., Bozeman, MT (United States)
2018-02-27
The simulations compare, for the first time, three practically important background stratifications under thermal equilibrium and out of equilibrium (isentropic, isopycnic) and show significant differences on the instability growth
International Nuclear Information System (INIS)
Bud'ko, A.B.; Liberman, M.A.; Bondarenko, E.A.
1992-01-01
Since development of the RT modes in the ablatively accelerated plasma of laser targets imposes crucial limitations on symmetry of spherical implosions and hence on energy cumulation, it has been the subject of intensive numerical and analytical analysis in the recent years, particularly in the context of inertial confinement fusion. Recent thin-foil ablative-acceleration experiments as well as the results of 2D numerical simulations demonstrated substantial reduction of the instability growth rates compared with the classical theory predictions up to the total stabilization in the short-wavelength limit. The numerical results indicated that the main stabilization mechanism is convection. To derive the scaling laws for the RT growth rates and cut-off wavenumbers in the wide range of flow parameters, analytical solutions attract special interest. The analytical approach based on the discontinuity model was developed to analyze the reduction of the RT growth rates by the plasma convective flow and the thermal conductivity effects. The following major problem arises in the discontinuity approximation, which leaves the solution undetermined: the number of the boundary conditions on the perturbed ablation surface is not sufficient to derive the dispersion equation. One needs additional boundary conditions not associated with the conservation laws on the discontinuity surface to close the system of linearized equations for small perturbations. The stabilization effect of highly structured hydrodynamic profiles was studied by Mikaelian and Munro for a stationary plasma. Nevertheless, no reasonable analytical model was constructed taking into account the combined convective, thermal conductivity and density gradient reduction of the RT growth rates. In this report we develop the analytical approach based on the WKB approximation to analyze the stabilization of the RT modes in plasma with smooth density and velocity gradients. (author) 9 refs., 1 fig
Numerical simulation of Rayleigh-Taylor turbulent mixing layers
International Nuclear Information System (INIS)
Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.
2009-01-01
Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)
Gvaramadze, Vasilii
1999-12-01
The nature of the Vela X-ray ``jet", recently discovered by Markwardt & Ögelman (1995), is examined. It is suggested that the ``jet" arises along the interface of domelike deformations of the Rayleigh-Taylor unstable shell of the Vela supernova remnant; thereby the ``jet" is interpreted as a part of the general shell of the remnant. The origin of deformations as well as the general structure of the remnant are discussed in the framework of a model based on a cavity explosion of a supernova star. It is suggested that the shell deformations viewed at various angles appear as filamentary structures visible throughout the Vela supernova remnant at radio, optical, and X-ray wavelengths. A possible origin of the nebula of hard X-ray emission detected by Willmore et al. (1992) around the Vela pulsar is proposed.
New phenomena in variable-density Rayleigh-Taylor turbulence
Energy Technology Data Exchange (ETDEWEB)
Livescu, D; Ristorcelli, J R; Petersen, M R; Gore, R A, E-mail: livescu@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2010-12-15
This paper presents several issues related to mixing and turbulence structure in buoyancy-driven turbulence at low to moderate Atwood numbers, A, found from direct numerical simulations in two configurations: classical Rayleigh-Taylor instability and an idealized triply periodic Rayleigh-Taylor flow. Simulations at A up to 0.5 are used to examine the turbulence characteristics and contrast them with those obtained close to the Boussinesq approximation. The data sets used represent the largest simulations to date in each configuration. One of the more remarkable issues explored, first reported in (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80), is the marked difference in mixing between different density fluids as opposed to the mixing that occurs between fluids of commensurate densities, corresponding to the Boussinesq approximation. Thus, in the triply periodic configuration and the non-Boussinesq case, an initially symmetric density probability density function becomes skewed, showing that the mixing is asymmetric, with pure heavy fluid mixing more slowly than pure light fluid. A mechanism producing the mixing asymmetry is proposed and the consequences for the classical Rayleigh-Taylor configuration are discussed. In addition, it is shown that anomalous small-scale anisotropy found in the homogeneous configuration (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80) and Rayleigh-Taylor turbulence at A=0.5 (Livescu et al 2008 J. Turbul. 10 1-32) also occurs near the Boussinesq limit. Results pertaining to the moment closure modelling of Rayleigh-Taylor turbulence are also presented. Although the Rayleigh-Taylor mixing layer width reaches self-similar growth relatively fast, the lower-order terms in the self-similar expressions for turbulence moments have long-lasting effects and derived quantities, such as the turbulent Reynolds number, are slow to follow the self-similar predictions. Since eddy diffusivity in the popular gradient transport hypothesis
Manipulating Rayleigh-Taylor Growth Using Adjoints
Kord, Ali; Capecelatro, Jesse
2017-11-01
It has been observed that initial interfacial perturbations affect the growth of Rayleigh-Taylor (RT) instabilities. However, it remains to be seen to what extent the perturbations alter the RT growth rate. Direct numerical simulations (DNS) provide a powerful means for studying the effects of initial conditions (IC) on the growth rate. However, a brute-force approach for identifying optimal initial perturbations is not practical via DNS. In addition, identifying sensitivity of the RT growth to the large number of parameters used in defining the IC is computationally expensive. A discrete adjoint is formulated to measure sensitivities of multi-mode RT growth to ICs in a high-order finite difference framework. The sensitivity is used as a search direction for adjusting the initial perturbations to both maximize and suppress the RT growth rate during its non-linear regime. The modes that contribute the greatest sensitivity are identified, and optimized perturbation energy spectrum are reported. PhD Student, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
Shvarts, Dov
2017-10-01
Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRT =αRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.
Observation of Rayleigh-Taylor-like structures in a laser-accelerated foil
International Nuclear Information System (INIS)
Whitlock, R.R.; Emery, M.H.; Stamper, J.A.; McLean, E.A.; Obenschain, S.P.; Peckerar, M.C.
1984-01-01
Laser-accelerated targets have been predicted to be subject to the Rayleigh-Taylor hydrodynamic instability. The development of the instability was studied by introducing mass thickness variations in foil targets and observing the development of the target nonuniformities by side-on flash x radiography. Observations were made of target structures and mass redistribution effects which resemble Rayleigh-Taylor bubbles and spikes, including not only advanced broadening of the spike tips on the laser-irradiated side of the foil but also projections of mass on the unirradiated side. The observations compare well with numerical simulations
Spread F bubbles - Nonlinear Rayleigh-Taylor mode in two dimensions
Hudson, M. K.
1978-01-01
The paper discusses long-wavelength developed bottomside spread F which has been attributed to the Rayleigh-Taylor instability. The nonlinear saturation amplitude and the k spectrum of the inertia-dominated Rayleigh-Taylor instability is found in two directions: east-west and vertical. As in the collisional case (Chaturvedi and Ossakow, 1977), the dominant nonlinearity is found to be two-dimensional. It is found that the linearly most unstable modes, which are primarily horizontal, saturate by the nonlinear generation of vertical spatial harmonics. The harmonics are damped by diffusion or recombination. The resulting amplitude spectrum indicates that bubbles are vertically elongated in both inertial and collisional regimes.
Rayleigh-Taylor analysis in a laser-induced plasma
International Nuclear Information System (INIS)
Marin, R A; Gonzales, C A; Riascos, H
2012-01-01
We report the conditions (plasma parameters) under which the Rayleigh-Taylor Instability (RTI) develops in an Al plasma produced by a Nd:Yag pulsed laser with a fluence range of 1 to 4 J/cm 2 , wavelength of 1064nm and 10Hz repetition rate. The used data correspond to different pressure values of the ambient N atmosphere. From previous works, we took the RTI growth rate form. From the perturbation theory the instability amplitude is proportional to e -ηt . Using the drag model, we calculated the plume dynamics equations integrating the instability term and plotted the instability growth profile with the delay time values to get critical numbers for it, in order to show under which conditions the RTI appears.
International Nuclear Information System (INIS)
Likhachev, A P; Medin, S A
2010-01-01
The simultaneous development of the MHD instabilities of Raylegh-Taylor and Kelvin-Helmholtz types at the interface between high-conducting plasmoid and surrounding non- or low-conducting gas is considered. The linear stage of the RTI development is studied analytically for incompressible and compressible fluids. The nonlinear stage of the individual development of the RTI and the coupled development of both instabilities has been investigated numerically. The time-dependent two-dimensional numerical model based on the solution of the Euler gasdynamic equations with body momentum and energy sources of MHD origin has been developed and used in calculations. A disturbance introducing in the background flow has been periodic with varied assignment type and wave length. Fundamental difference between the results of linear and nonlinear analysis has been revealed. In particular, the increment of the RTI development at nonlinear stage is one-two order of magnitude less than that predicted by linear theory and rather weakly depends on initial disturbance mode. In linear analysis the coupled development of the RTI and the KHI is determined by simple summing of the two effects in the expression of wave increment, whereas in nonlinear case the mutual influence of the instabilities leads to essential alterations in their development, main of which is the intensive 'layer-by-layer' destruction of the plasmoid surface.
Unstable Titan-generated Rayleigh-Taylor Lakes Impact Ice
Umurhan, O. M.; Korycansky, D. G.; Zahnle, K. J.
2014-12-01
The evolution of surface morphology on Titan, Triton, and other worlds is strongly influenced by the interplay of various fluid dynamical processes. Specifically, overturning instabilities can easily arise due to the special circumstances of landform evolution that probably occurred on these worlds. On Titan, large impacts that formed basins like Menrva crater (and possibly Hotei Regio) would have generated impact-melt ice lakes unstably arranged over less dense ice. Cantaloupe terrains, for example as seen on Triton, may be the result of condensation of volatiles (methane, nitrogen) leading to unstably stratified layers of different compositions and densities. In each of these cases, Rayleigh-Taylor instabilities leading to large scale diapirism may be at play. In addition to the dynamics of these instabilities, other physical effects (e.g. heat diffusion, freezing/melting, porosity, temperature dependent viscosity) likely play an important role in the evolution of these features. In this ongoing study, we examine the properties of unstably stratified fluids in which the lower less-dense ice has a temperature dependent viscosity. Surprisingly, we find that there exists an optimal disturbance length scale corresponding to the fastest growth of the Rayleigh-Taylor instability. For unstably stratified layers of water (low viscosity heavy liquid lying above an ice whose viscosity increases with depth) the fastest growing mode corresponds to 40-60 km scales with overturn times of approximately 100 days. We present a detailed numerical stability analysis in a corresponding Boussinessq model (in the creeping flow limit) incorporating thermal conduction and latent heat release and we examine the stability properties surveying a variety of parameters. We have also developed a two-dimensional numerical code (a hybrid spectral/compact-differencing scheme) to model the evolution of such systems for which we shall present preliminary numerical results depicting the outcome of
Simulation of Rayleigh--Taylor flows using vortex blobs
International Nuclear Information System (INIS)
Kerr, R.M.
1988-01-01
An inviscid boundary-integral method is modified in order to study the single-scale Rayleigh--Taylor instability for arbitrary Atwood number. The primary modification uses vortex blobs to smooth the Green's function and suppress a finite time singularity in the curvature. Additional modifications to earlier codes such as using second-order central differences along the interface to accommodate spikes in the vorticity and spreading the nodes evenly along the interface to suppress clustering of nodes are designed to maintain resolution and accuracy. To achieve second-order accuracy in time when the nodes are spread, an extra predictor step is needed that shifts the nodes before the variables are advanced. The method successfully follows the development of a single mode to states with asymptotic velocities for the bubble and spike that depend on the Atwood number and are independent of the blob size. Incipient droplet formation is observed. copyright 1988 Academic Press, Inc
Ablation front rayleigh taylor dispersion curve in indirect drive
International Nuclear Information System (INIS)
Budil, K.S.; Lasinski, B.; Edwards, M.J.; Wan, A.S.; Remington, B.A.; Weber, S.V.; Glendinning, S.G.; Suter, L.; Stry, P.
2000-01-01
The Rayleigh-Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wave-lengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. We present here the results of a series of laser experiments designed to probe the roll-over and cutoff region of the ablation-front RT dispersion curve in indirect drive. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 pm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an ∼2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths (ge) 20 (micro)m experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a 2-D radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. We performed numerical simulations to elucidate the influence of the rippled shock wave on the eventual growth of the perturbations, allowing comparisons to the analytic model developed by Betti et al. This combination of experiments, simulations and analytic modeling illustrates the qualitative simplicity yet quantitative complexity of the compressible RT instability. We have measured the Rayleigh-Taylor (RT) dispersion curve for a radiatively-driven sample in a series of experiments on the Nova laser facility. Planar aluminum foils were ablatively-accelerated and the subsequent perturbation growth was
Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility
International Nuclear Information System (INIS)
Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O.; Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A.; Igumenshchev, I.; Chicanne, C.
2012-01-01
We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.
Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility
Energy Technology Data Exchange (ETDEWEB)
Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O. [CEA, DAM, DIF, F-91297 Arpajon (France); Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Igumenshchev, I. [Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Chicanne, C. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)
2012-08-15
We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.
Hydrodynamic instabilities in inertial fusion
International Nuclear Information System (INIS)
Hoffman, N.M.
1994-01-01
This report discusses topics on hydrodynamics instabilities in inertial confinement: linear analysis of Rayleigh-Taylor instability; ablation-surface instability; bubble rise in late-stage Rayleigh-Taylor instability; and saturation and multimode interactions in intermediate-stage Rayleigh-Taylor instability
GRAVITATIONALLY UNSTABLE FLAMES: RAYLEIGH-TAYLOR STRETCHING VERSUS TURBULENT WRINKLING
International Nuclear Information System (INIS)
Hicks, E. P.; Rosner, R.
2013-01-01
In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.
Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.
2016-05-01
It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.
Electrothermal instability growth in magnetically driven pulsed power liners
International Nuclear Information System (INIS)
Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles
2012-01-01
This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.
Rayleigh-Taylor convective overturn in stellar collapse
International Nuclear Information System (INIS)
Bruenn, S.W.; Buchler, J.R.; Livio, M.
1979-01-01
Rayleigh--Taylor convective overturn in collapsing stellar cores is modeled with a one-dimensional parametrization. The results of a numerical hydrodynamic study are very encouraging and indicate that such an overturn could well be a dominant feature in the supernova explosion mechanism
Self-similarity in high Atwood number Rayleigh-Taylor experiments
Mikhaeil, Mark; Suchandra, Prasoon; Pathikonda, Gokul; Ranjan, Devesh
2017-11-01
Self-similarity is a critical concept in turbulent and mixing flows. In the Rayleigh-Taylor instability, theory and simulations have shown that the flow exhibits properties of self-similarity as the mixing Reynolds number exceeds 20000 and the flow enters the turbulent regime. Here, we present results from the first large Atwood number (0.7) Rayleigh-Taylor experimental campaign for mixing Reynolds number beyond 20000 in an effort to characterize the self-similar nature of the instability. Experiments are performed in a statistically steady gas tunnel facility, allowing for the evaluation of turbulence statistics. A visualization diagnostic is used to study the evolution of the mixing width as the instability grows. This allows for computation of the instability growth rate. For the first time in such a facility, stereoscopic particle image velocimetry is used to resolve three-component velocity information in a plane. Velocity means, fluctuations, and correlations are considered as well as their appropriate scaling. Probability density functions of velocity fields, energy spectra, and higher-order statistics are also presented. The energy budget of the flow is described, including the ratio of the kinetic energy to the released potential energy. This work was supported by the DOE-NNSA SSAA Grant DE-NA0002922.
Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor
Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.
2017-10-01
The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.
International Nuclear Information System (INIS)
Nuzhnyj, A.S.; Rozanov, V.B.; Stepanov, R.V.; Shumskij, S.A.
2005-01-01
Stability of target compression in the laser thermonuclear synthesis is discussed. The process is determined by developing the Rayleigh-Taylor instability (RNI). A program unit for description of the RNI evolution by its initial distributions is developed. The results of statistical analysis of the RT mixing calculations are given. The analysis is carried out by means of learning base system and is substantiated on the generalization of great number of data, fulfilled by means of the neural network methods [ru
Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium
Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei
2017-11-01
Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.
Stochastic model of Rayleigh-Taylor turbulent mixing
International Nuclear Information System (INIS)
Abarzhi, S.I.; Cadjan, M.; Fedotov, S.
2007-01-01
We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for
Rayleigh-Taylor growth measurements of three-dimensional modulations in a nonlinear regime
International Nuclear Information System (INIS)
Smalyuk, V.A.; Sadot, O.; Betti, R.; Goncharov, V.N.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Shvarts, D.
2006-01-01
An understanding of the nonlinear evolution of Rayleigh-Taylor (RT) instability is essential in inertial confinement fusion and astrophysics. The nonlinear RT growth of three-dimensional (3-D) broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial 3-D target modulations were seeded by laser nonuniformities and subsequently amplified by the RT instability. The measured modulation Fourier spectra and nonlinear growth velocities are in excellent agreement with those predicted by Haan's model [S. Haan, Phys. Rev. A 39, 5812 (1989)]. These spectra and growth velocities are insensitive to initial conditions. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions, in agreement with the Alon-Oron-Shvarts theoretical predictions [D. Oron et al. Phys. Plasmas 8, 2883 (2001)
Rayleigh-Taylor mixing with time-dependent acceleration
Abarzhi, Snezhana
2016-10-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.
Rayleigh-Taylor mixing with space-dependent acceleration
Abarzhi, Snezhana
2016-11-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.
Design for solid-state Rayleigh-Taylor experiments in tantalum at Omega
International Nuclear Information System (INIS)
Pollaine, S M; Remington, B A; Park, H S; Prisbrey, S T; Cavallo, R M
2010-01-01
We have designed an experiment for the Omega - EP laser facility to measure the Rayleigh-Taylor (RT) growth rate of solid-state Ta samples at ∼1 Mbar pressures and very high strain rates, 10 7 -10 8 s -1 . A thin walled, hohlraum based, ramp-wave, quasi-isentropic drive has been developed for this experiment. Thick samples (∼50 um) of Ta, with a pre-imposed sinusoidal rippled on the driven side, will be accelerated. The ripple growth due to the RT instability is greatly reduced due to the dynamic material strength. We will show detailed designs, and a thorough error analysis used to optimize the experiment and minimize uncertainty.
Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility
Energy Technology Data Exchange (ETDEWEB)
Wu, J. F.; Fan, Z. F.; Zheng, W. D.; Wang, M.; Pei, W. B.; Zhu, S. P.; Zhang, W. Y. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Miao, W. Y.; Yuan, Y. T.; Cao, Z. R.; Deng, B.; Jiang, S. E.; Liu, S. Y.; Ding, Y. K. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, L. F.; Ye, W. H., E-mail: ye-wenhua@iapcm.ac.cn; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)
2014-04-15
In this research, a series of single-mode, indirect-drive, ablative Rayleigh-Taylor (RT) instability experiments performed on the Shenguang-II laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007)] using planar target is reported. The simulation results from the one-dimensional hydrocode for the planar foil trajectory experiment indicate that the energy flux at the hohlraum wall is obviously less than that at the laser entrance hole. Furthermore, the non-Planckian spectra of x-ray source can strikingly affect the dynamics of the foil flight and the perturbation growth. Clear images recorded by an x-ray framing camera for the RT growth initiated by small- and large-amplitude perturbations are obtained. The observed onset of harmonic generation and transition from linear to nonlinear growth regime is well predicted by two-dimensional hydrocode simulations.
Observation of Rayleigh - Taylor growth to short wavelengths on Nike
International Nuclear Information System (INIS)
Pawley, C.J.; Bodner, S.E.; Dahlburg, J.P.; Obenschain, S.P.; Schmitt, A.J.; Sethian, J.D.; Sullivan, C.A.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Lehecka, T.
1999-01-01
The uniform and smooth focal profile of the Nike KrF laser [S. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to ablatively accelerate 40 μm thick polystyrene planar targets with pulse shaping to minimize shock heating of the compressed material. The foils had imposed small-amplitude sinusoidal wave perturbations of 60, 30, 20, and 12.5 μm wavelength. The shortest wavelength is near the ablative stabilization cutoff for Rayleigh - Taylor growth. Modification of the saturated wave structure due to random laser imprint was observed. Excellent agreement was found between the two-dimensional simulations and experimental data for most cases where the laser imprint was not dominant. copyright 1999 American Institute of Physics
Front propagation in Rayleigh-Taylor systems with reaction
International Nuclear Information System (INIS)
Scagliarini, A; Biferale, L; Sbragaglia, M; Mantovani, F; Pivanti, M; Schifano, S F; Tripiccione, R; Pozzati, F; Toschi, F
2011-01-01
A special feature of Rayleigh-Taylor systems with chemical reactions is the competition between turbulent mixing and the 'burning processes', which leads to a highly non-trivial dynamics. We studied the problem performing high resolution numerical simulations of a 2d system, using a thermal lattice Boltzmann (LB) model. We spanned the various regimes emerging at changing the relative chemical/turbulent time scales, from slow to fast reaction; in the former case we found numerical evidence of an enhancement of the front propagation speed (with respect to the laminar case), providing a phenomenological argument to explain the observed behaviour. When the reaction is very fast, instead, the formation of sharp fronts separating patches of pure phases, leads to an increase of intermittency in the small scale statistics of the temperature field.
Multimode modelling of the Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Town, R.P.J.; Findlay, J.D.; Bell, A.R.
1996-01-01
This paper presents a comparison of Haan's mode coupling model with two-dimensional hydrocode simulations. In the light of these results, a new saturation criterion is developed that is used in a new, extended mode coupling model. The new extended model accurately follows the mode development to amplitudes 2 to 3 times larger than Haan's model. (Author)
International Nuclear Information System (INIS)
Levy, Y.
2012-01-01
In the context of inertial confinement fusion we investigate effects of magnetic fields on the development in the linear regime of two hydrodynamic instabilities: Richtmyer-Meshkov instability using ideal magnetohydrodynamics and ablative Rayleigh-Taylor instability in both acceleration and deceleration stages. Direct numerical simulations with a linear perturbation code enable us to confirm the stabilizing effect of the component of the magnetic field along the perturbations wave vector. The amplitude doesn't grow linearly in time but experiences oscillations instead. The compressibility taken into account in the code does not affect predictions given by an already existing impulsive and incompressible model. As far as Rayleigh-Taylor instability is concerned we study the effects of self-generated magnetic fields that arise from the development of the instability itself. In the acceleration stage we perform two dimensional simulations in planar geometry. We show that magnetic fields of about 1 T can be generated and that the instability growth transits more rapidly into nonlinear growth with the enhancement of the development of the third harmonic. We also propose an adaptation of an existing model that aims at studying thermal conductivity anisotropy effects, to take into account the effects of the self-generated magnetic fields on the Rayleigh-Taylor instability growth rate. Finally, in the deceleration stage, we perform two dimensional simulations in cylindrical geometry that take into account self-generation of magnetic fields due to the instability development. It reveals magnetic fields of about several thousands of Teslas that are not strong enough though to affect the instability behavior. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Mueschke, N J; Andrews, M J; Schilling, O
2005-09-26
The initial multi-mode interfacial velocity and density perturbations present at the onset of a small Atwood number, incompressible, miscible, Rayleigh-Taylor instability-driven mixing layer have been quantified using a combination of experimental techniques. The streamwise interfacial and spanwise interfacial perturbations were measured using high-resolution thermocouples and planar laser-induced fluorescence (PLIF), respectively. The initial multi-mode streamwise velocity perturbations at the two-fluid density interface were measured using particle-image velocimetry (PIV). It was found that the measured initial conditions describe an initially anisotropic state, in which the perturbations in the streamwise and spanwise directions are independent of one another. The evolution of various fluctuating velocity and density statistics, together with velocity and density variance spectra, were measured using PIV and high-resolution thermocouple data. The evolution of the velocity and density statistics is used to investigate the early-time evolution and the onset of strongly-nonlinear, transitional dynamics within the mixing layer. The early-time evolution of the density and vertical velocity variance spectra indicate that velocity fluctuations are the dominant mechanism driving the instability development. The implications of the present experimental measurements on the initialization of Reynolds-averaged turbulent transport and mixing models and of direct and large-eddy simulations of Rayleigh-Taylor instability-induced turbulence are discussed.
Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system
International Nuclear Information System (INIS)
Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.; Boehly, T.R.; Bradley, D.K.; Smalyuk, V.A.; Ofer, D.; McKenty, P.W.; Glendinning, S.G.; Kalantar, D.H.; Watt, R.G.; Gobby, P.L.; Willi, O.; Taylor, R.J.
1997-01-01
The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%endash 7% over a 600-μm-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-μm and 60-μm wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-μm-thick polystyrene foam buffer layer resulted in reduced growth of the 31-μm perturbation and essentially unchanged growth for the 60-μm case when compared to targets without foam. copyright 1997 American Institute of Physics
Bakhsh, Abeer
2017-11-17
We investigate the linear stability of both positive and negative Atwood ratio interfaces accelerated either by a fast magnetosonic or hydrodynamic shock in cylindrical geometry. For the magnetohydrodynamic (MHD) case, we examine the role of an initial seed azimuthal magnetic field on the growth rate of the perturbation. In the absence of a magnetic field, the Richtmyer-Meshkov growth is followed by an exponentially increasing growth associated with the Rayleigh-Taylor instability. In the MHD case, the growth rate of the instability reduces in proportion to the strength of the applied magnetic field. The suppression mechanism is associated with the interference of two waves running parallel and anti-parallel to the interface that transport of vorticity and cause the growth rate to oscillate in time with nearly a zero mean value.
Bakhsh, Abeer; Samtaney, Ravindra
2017-01-01
We investigate the linear stability of both positive and negative Atwood ratio interfaces accelerated either by a fast magnetosonic or hydrodynamic shock in cylindrical geometry. For the magnetohydrodynamic (MHD) case, we examine the role of an initial seed azimuthal magnetic field on the growth rate of the perturbation. In the absence of a magnetic field, the Richtmyer-Meshkov growth is followed by an exponentially increasing growth associated with the Rayleigh-Taylor instability. In the MHD case, the growth rate of the instability reduces in proportion to the strength of the applied magnetic field. The suppression mechanism is associated with the interference of two waves running parallel and anti-parallel to the interface that transport of vorticity and cause the growth rate to oscillate in time with nearly a zero mean value.
Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA
International Nuclear Information System (INIS)
Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.
2009-01-01
Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MegaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ=35, 50, and 70 μm) and two-mode perturbations (wavelength λ=35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.
Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA
Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.
2009-09-01
Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MégaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ =35, 50, and 70 μm) and two-mode perturbations (wavelength λ =35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.
Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system
International Nuclear Information System (INIS)
Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.
2000-01-01
The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics
Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system
Energy Technology Data Exchange (ETDEWEB)
Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Bradley, D. K. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Collins, T. J. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Smalyuk, V. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Verdon, C. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] (and others)
2000-01-01
The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.
Analytical approach to the investigation of Rayleigh-Taylor structures of the equatorial F region
International Nuclear Information System (INIS)
Komarov, V.N.; Sazonov, S.V.
1991-01-01
On the basis of approximation of a strong vertical extension the nonlinear dynamics of Rayleigh-Taylor structures in the equatorial F region is analytically studied. The successive approximation method, proposed herein, is true for structures having longitudinal symmetry. Using this method it is managed to describe the mushroom-shaped bubble with a shock wave profile in its head part. The nonlinearity leads to bubble formation under conditions with aggravation, limiting the growth of positive disturbances at the same time
Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations
Zhou, Zhi-Rui; Zhang, You-Sheng; Tian, Bao-Lin
2018-03-01
Implicit large eddy simulations of two-dimensional Rayleigh-Taylor instability at different density ratios (i.e., Atwood number A =0.05 , 0.5, and 0.9) are conducted to investigate the late-time dynamics of bubbles. To produce a flow field full of bounded, semibounded, and chaotic bubbles, three problems with distinct perturbations are simulated: (I) periodic sinusoidal perturbation, (II) isolated W-shaped perturbation, and (III) random short-wave perturbations. The evolution of height h , velocity v , and diameter D of the (dominant) bubble with time t are formulated and analyzed. In problem I, during the quasisteady stage, the simulations confirm Goncharov's prediction of the terminal speed v∞=Fr√{A g λ /(1 +A ) } , where Fr=1 /√{3 π } . Moreover, the diameter D at this stage is found to be proportional to the initial perturbation wavelength λ as D ≈λ . This differed from Daly's simulation result of D =λ (1 +A )/2 . In problem II, a W-shaped perturbation is designed to produce a bubble environment similar to that of chaotic bubbles in problem III. We obtain a similar terminal speed relationship as above, but Fr is replaced by Frw≈0.63 . In problem III, the simulations show that h grows quadratically with the bubble acceleration constant α ≡h /(A g t2)≈0.05 , and D expands self-similarly with a steady aspect ratio β ≡D /h ≈(1 +A )/2 , which differs from existing theories. Therefore, following the mechanism of self-similar growth, we derive a relationship of β =4 α (1 +A ) /Frw2 to relate the evolution of chaotic bubbles in problem III to that of semibounded bubbles in problem II. The validity of this relationship highlights the fact that the dynamics of chaotic bubbles in problem III are similar to the semibounded isolated bubbles in problem II, but not to that of bounded periodic bubbles in problem I.
Analysis of plasma behavior in a magnetic nozzle of laser fusion rocket
International Nuclear Information System (INIS)
Nagamine, Yoshihiko; Yoshimi, Naofumi; Nakama, Yuji; Muranaka, Takanobu; Mayumi, Takao; Nakashima, Hideki
1997-01-01
A magnetic nozzle concept in a laser fusion rocket is suitable for controlling the fusion plasma flow and it has an advantage that thermalization with wall structures in a thrust chamber can be avoided. Rayleigh-Taylor instability would occur at the surface of expanding plasma and it would lead to the degradation of thrust efficiency, due to diffusion of the plasma through ambient decelerating magnetic field. A 3D hybrid particle-in-cell code has been developed to analyze the plasma instability in the magnetic nozzle. The resultant linear growth rate γ of the instability is found to be 2.96 x 10 6 and it is in good agreement with the theoretical value from conventional Rayleigh Taylor instability. (author)
International Nuclear Information System (INIS)
Labakanta Mandal; Banerjee, R.; Roy, S.; Khan, M.; Gupta, M.R.
2010-01-01
Complete text of publication follows. In an Inertial Confinement Fusion (ICF) situation, laser driven ablation front of an imploding capsule is subjected to the fluid instabilities like Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instability. In this case dense core is compressed and accelerated by low density ablating plasma. During this process laser driven shocks interact the interface and hence it becomes unstable due to the formation of nonlinear structure like bubble and spike. The nonlinear structure is called bubble if the lighter fluid pushes inside the heavier fluid and spike, if opposite takes place. R-M instability causes non-uniform compression of ICF fuel pellets and needs to be mitigated. Scientists and researchers are much more interested on RM instability both from theoretical and experimental points of view. In this article, we have presented the analytical expression for the growth rate and velocity for the nonlinear structures due to the effect of magnetic field of fluid using potential flow model. The magnetic field is assumed to be parallel to the plane of two fluid interfaces. If the magnetic field is restricted only to either side of interface the R-M instability can be stabilized or destabilized depending on whether the magnetic pressure on the interface opposes the instability driving shock pressure or acts in the same direction. An interesting result is that if both the fluids are magnetized, interface as well as velocity of bubble and spike will show oscillating stabilization and R-M instability is mitigated. All analytical results are also supported by numerical results. Numerically it is seen that magnetic field above certain minimum value reduces the instability for compression the target in ICF.
Territorial characteristics of low frequency electrostatic fluctuations in a simple magnetized torus
International Nuclear Information System (INIS)
Kaur, R.; Singh, R.; Sarada Sree, A.; Mattoo, S. K.; Singh, A. K.
2011-01-01
This paper presents an experimental investigation of turbulence in simple toroidal plasma devices without rotational transform. It is argued that Rayleigh-Taylor (flute interchange) mode may be one of the source mechanisms for the observed turbulence but is not sufficient to explain its observed global characteristics. Taking BETA device as an example, we show that pure Rayleigh-Taylor mode cannot explain (i) the observation of mode maximum at the location other than where density scale length is minimum, (ii) the comparable value of amplitude level of fluctuations in good curvature region, and (iii) the decrease in the mode amplitude with increasing magnetic field. Investigations have revealed that there exists not only poloidal plasma flow but also that it is sheared. Including this effect explains the first observation. However, modification brought about by velocity shear in the Rayleigh-Taylor mode still does not explain our second and third observations. We have taken an approach that since Rayleigh-Taylor is not excited in a good curvature region, it cannot be the source of turbulence there. Nor is it defensible to say that turbulence born in a bad curvature region is carried over through ExB rotation to the good curvature region. Consequently, we have invoked cross-field Simon-Hoh instability for this region. Experimental evidence supporting our proposal is presented. This paper concludes that toroidal devices have simultaneous existence of different self-consistent sources of turbulence in different regions of the device.
What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing?
International Nuclear Information System (INIS)
Anisimov, Sergei I.; Drake, R. Paul; Gauthier, Serge; Meshkov, Evgeny E.; Abarzhi, Snezhana I.
2013-01-01
Past decades significantly advanced our understanding of Rayleigh-Taylor (RT) mixing. We briefly review recent theoretical results and numerical modelling approaches and compare them with state of the art experiments focusing the reader's attention on qualitative properties of RT mixing. (authors)
International Nuclear Information System (INIS)
Goto, R.; Hatori, T.; Miura, H.; Ito, A.; Sato, M.
2015-01-01
Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. The formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability
Hydrodynamic instability of compressible fluid in porous medium
International Nuclear Information System (INIS)
Argal, Shraddha; Tiwari, Anita; Sharma, P K; Prajapati, R P
2014-01-01
The hydrodynamic Rayleigh -Taylor instability of two superposed compressible fluids in porous medium has been studied. The dispersion relation is derived for such a medium by using normal mode analysis. The RT instability is discussed for various simplified configuration. The effect of porosity and dynamic viscosity has been analyzed and it is observed that porosity and dynamic viscosity have stabilizing effect on the Rayleigh- Taylor instability of compressible fluids.
International Nuclear Information System (INIS)
Alon, U.; Hecht, J.; Ofer, D.; Shvarts, D.
1995-01-01
The nonlinear evolution of large structure in Rayleigh-Taylor and Richtmyer-Meshkov bubble and spike fronts is studied numerically and explained theoretically on the basis of single-mode and two-bubble interaction physics at Atwood numbers (A). Multimode Rayleigh-Taylor bubble (spike) fronts are found as h B =α B Agt 2 [h s =α s (A)gt 2 ] with α B =0.05, while Richtmyer-Meshkov bubble (spike) fronts are found as h B =a B t θ B (h s =a s t θ s (A) ) with θ B =0.4 at all A's. The dependence of these scaling laws and parameters on A and on initial conditions is explained
Spanwise homogeneous buoyancy-drag model for Rayleigh-Taylor mixing and experimental evaluation
International Nuclear Information System (INIS)
Dimonte, Guy
2000-01-01
A buoyancy-drag model for Rayleigh-Taylor (RT) mixing is developed on the premise that the bubble and spike regions behave as distinct and spanwise homogeneous fluids. Then, mass conservation is applied accross the mixing zone to obtain their average mixture densities dynamically. These are used to explicitly calculate the inertia and buoyancy terms in the evolutionary equation. The only unknown parameter in the model is the Newtonian drag constant C∼2.5±0.6, which is determined from turbulent RT experiments over various Atwood numbers A and acceleration histories g(t). The bubble (i=2) and spike (i=1) amplitudes are found to obey the familiar h i =α i Agt 2 for a constant g and h i ∼t θ i for an impulsive g. For bubbles, both α 2 and θ 2 are insensitive to A. For the spikes, both α 1 and θ 1 increase as a power law with the density ratio. However, θ 1 is not universal because it depends on the initial value of h 1 /h 2 . (c) 2000 American Institute of Physics
Planar Rayleigh-Taylor and Feed-through experiments with CH(Ge) on OMEGA
International Nuclear Information System (INIS)
Casner, A.; Huser, G.; Jadaud, J.P.; Liberatore, S.; Galmiche, D.; Vandenboomgaerde, M.
2006-01-01
Germanium-doped CH (CHGe) is one nominal ablator for the laser Megajoule (LMJ) target design. In order to investigate its properties we performed indirect drive planar Rayleigh-Taylor experiments on the OMEGA laser facility. An innovative hohlraum with an internal 'rugby-ball' shape has been experimentally characterized for the first time. On each shot foil motion and modulations growth were simultaneously measured by side-on and face-on radiography, while drive was assessed by measuring radiation escaping through the hohlraum laser-entrance-hole. Modulations growth and foil motion are fully consistent with each other, and also with hydro-code simulations accounting for the effective acceleration of the sample. This complete set of data allows a more stringent comparison between the hydro-code simulations and the experimental results. We compare CHGe perturbations growth with those acquired on CHBr in the same experimental configuration. These preliminary results are the first step toward a test-bed validation of CH(Ge) as an ablator on OMEGA and further on the laser integration line (LIL) at LMJ
3-D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing
Energy Technology Data Exchange (ETDEWEB)
Andrews, Malcolm J [Los Alamos National Laboratory
2008-01-01
The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An integrated large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters ({alpha}{sub b}, {alpha}{sub s}) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.
Prisbrey, Shon; Park, Hye-Sook; Huntington, Channing; McNaney, James; Smith, Raym; Wehrenberg, Christopher; Swift, Damian; Panas, Cynthia; Lord, Dawn; Arsenlis, Athanasios
2017-10-01
Strength can be inferred by the amount a Rayleigh-Taylor surface deviates from classical growth when subjected to acceleration. If the acceleration is great enough, even materials highly resistant to deformation will flow. We use the National Ignition Facility (NIF) to create an acceleration profile that will cause sample metals, such as Mo or Cu, to reach peak pressures of 10 Mbar without inducing shock melt. To create such a profile we shock release a stepped density reservoir across a large gap with the stagnation of the reservoir on the far side of the gap resulting in the desired pressure drive history. Low density steps (foams) are a necessary part of this design and have been studied in the last several years on the Omega and NIF facilities. We will present computational and experimental progress that has been made on the 10 Mbar drive designs - including recent drive shots carried out at the NIF. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734781.
Long-wave analysis and control of the viscous Rayleigh-Taylor instability with electric fields
Cimpeanu, Radu; Anderson, Thomas; Petropoulos, Peter; Papageorgiou, Demetrios
2016-11-01
We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a solid surface in the presence of a horizontally acting electric field. The competition between gravity, surface tension and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semi-spectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations and assess the accuracy of the obtained solutions when varying the electric field strength from zero up to the point when complete stabilization at the target finite wavelengths occurs. We employ DNS to examine the limitations of the asymptotically derived behavior in the context of increasing liquid film heights, with agreement found to be excellent even beyond the target lengthscales. Regimes in which the thin film assumption is no longer valid and droplet pinch-off occurs are then analyzed. Finally, the asymptotic and computational approaches are used in conjunction to identify efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.
Influence of nonlinear effects on the development of Rayleigh-Taylor instability of F layer
International Nuclear Information System (INIS)
Kolesnikov, A.F.; Krivorutskij, Eh.N.
1989-01-01
Within the framework of weak turbulence in the approximation of accidental phases the influence of different nonlinear effects on the level and anisotropy of the F layer inhomogeneities is considered. To describe the F layer plasma, approximation of two-liquid hydrodynamics is used. The inertia of electrons and ions, as well as temperature inhomogeneity are neglected. The considered processes are assumed to be isothermal
Rayleigh-Taylor instability in the presence of a density transition layer
International Nuclear Information System (INIS)
Tavakoli, A.; Tskhakaya, D.D.; Tsintsadze, N.L.
1999-01-01
A new type of symmetry for the Rayleigh equation is found. For small Atwood number an analytic solution is obtained for a smoothly varying density profile. The spectra of unstable modes are defined. It is shown that a transition layer with finite width can undergo stratification, and velocity shear between new-formed sublayers forms. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
International Nuclear Information System (INIS)
Metzler, N.; Velikovich, A.L.; Schmitt, A.J.; Karasik, M.; Serlin, V.; Mostovych, A.N.; Obenschain, S.P.; Gardner, J.H.; Aglitskiy, Y.
2003-01-01
A substantial reduction of the laser imprint with a short, low-energy 'shaping' laser pulse incident upon a foam-plastic sandwich target prior to the main laser pulse has been demonstrated to be possible [Metzler et al., Phys. Plasmas 9, 5050 (2002)]. Nonuniformity of this shaping pulse, however, produces standing sonic waves in the target. Laser-imprinted seeds for the Rayleigh-Taylor (RT) instability growth then emerge from the interaction of these waves with the strong shock wave launched by the drive laser pulse. Such coherent interaction between different waves and modes perturbed at the same wavelength is shown to be important in a variety of situations relevant to the inertial confinement fusion studies. As an example, an oscillatory transition from the classical Richtmyer-Meshkov shock-interface instability development to the RT growth exhibiting a characteristic phase reversal in a target of finite thickness is described. Another example refers to the feedout mechanism of seeding the perturbations that come from the nonuniformities of the rear (inner) surface of the laser target. The coherent interaction between the strong shock wave from the main laser pulse and the rippled rarefaction wave produced by a low-intensity foot of the pulse produces observable effects, such as an extra phase reversal compared to the case of no foot. Some of these predictions are shown to be consistent with our new experimental results obtained in the feedout geometry on the Nike laser facility [S. P. Obenschain et al. Phys. Plasmas 3, 2098 (1996)
Detailed Measurements of Rayleigh-Taylor Mixing at Large and Small Atwood Numbers
International Nuclear Information System (INIS)
Malcolm, J.; Andrews, Ph.D.
2004-01-01
This project has two major tasks: Task 1. The construction of a new air/helium facility to collect detailed measurements of Rayleigh-Taylor (RT) mixing at high Atwood number, and the distribution of these data to LLNL, LANL, and Alliance members for code validation and design purposes. Task 2. The collection of initial condition data from the new Air/Helium facility, for use with validation of RT simulation codes at LLNL and LANL. Also, studies of multi-layer mixing with the existing water channel facility. Over the last twelve (12) months there has been excellent progress, detailed in this report, with both tasks. As of December 10, 2004, the air/helium facility is now complete and extensive testing and validation of diagnostics has been performed. Currently experiments with air/helium up to Atwood numbers of 0.25 (the maximum is 0.75, but the highest Reynolds numbers are at 0.25) are being performed. The progress matches the project plan, as does the budget, and we expect this to continue for 2005. With interest expressed from LLNL we have continued with initial condition studies using the water channel. This work has also progressed well, with one of the graduate Research Assistants (Mr. Nick Mueschke) visiting LLNL the past two summers to work with Dr. O. Schilling. Several journal papers are in preparation that describe the work. Two MSc.'s have been completed (Mr. Nick Mueschke, and Mr. Wayne Kraft, 12/1/03). Nick and Wayne are both pursuing Ph.D.s' funded by this DOE Alliances project. Presently three (3) Ph.D. graduate Research Assistants are supported on the project, and two (2) undergraduate Research Assistants. During the year two (2) journal papers and two (2) conference papers have been published, ten (10) presentations made at conferences, and three (3) invited presentations
International Nuclear Information System (INIS)
Brochard, F.; Gravier, E.; Bonhomme, G.
2006-01-01
The spatiotemporal transition scenario of flute instabilities from a regular to a turbulent state is experimentally investigated in the low-β plasma column of a thermionic discharge. The same transition scenario, i.e., the Ruelle-Takens route to turbulence, is found for both the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. It is demonstrated that the transition can be more or less smooth, according to the discharge mode. In both cases, a strong radial dependence is observed, which is linked to the velocity shear layer in the case of the Kelvin-Helmholtz instability
Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries
Titarchuk, Lev
2002-01-01
Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the
Magnetic activity effect on equatorial spread-F under high and low solar activity conditions
Energy Technology Data Exchange (ETDEWEB)
Subbarao, K S.V.; Somayajulu, V V; Krishna Murthy, B V
1986-08-01
The effect of magnetic activity on spread-F at two equatorial stations, Trivandrum and Huancayo, separated in longitude by about 150 deg, under high and low solar activity conditions has been investigated. Magnetic activity produces strong inhibition effect on spread-F at Huancayo compared to that at Trivandrum especially during high solar activity period. This results in a decrease of spread-F with solar activity at Huancayo in contrast to Trivandrum. These findings are explained in terms of F-region electrodynamics and Rayleigh-Taylor instability mechanism for spread-F.
Spike morphology in blast-wave-driven instability experiments
International Nuclear Information System (INIS)
Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Fryxell, B.; Budde, A.; Hansen, J. F.; Miles, A. R.; Plewa, T.; Hearn, N.; Knauer, J.
2010-01-01
The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh-Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 μm thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 μm and a wavelength of 71 μm. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.
Nonlinear stage of a Z-pinch instability
International Nuclear Information System (INIS)
Garanin, S.F.; Chernyshev, Y.D.
1987-01-01
The nonlinear evolution of the sausage instability is analyzed for a Z-pinch with a fully developed skin effect in the current. Two-dimensional numerical calculations carried out on the sausage instability show that its occurrence leads to a stage describable by a self-similar solution when the length of the neck is fixed and the plasma compression is isentropic. At a perturbation wavelength small in comparison with the pinch radius, this stage is preceded by a stage which reduces to a nonlinear Rayleigh--Taylor instability. The dynamics of the motion of magnetic field ''bubbles'' and of plasma ''jets'' is analyzed in this case. The plasma jets emerging from the pinch do not block the pinch from the current source
Measurements of laser-imprinted perturbations and Rayleigh--Taylor growth with the Nike KrF laser
International Nuclear Information System (INIS)
Pawley, C.J.; Gerber, K.; Lehmberg, R.H.; McLean, E.A.; Mostovych, A.N.; Obenschain, S.P.; Sethian, J.D.; Serlin, V.; Stamper, J.A.; Sullivan, C.A.; Bodner, S.E.; Colombant, D.; Dahlburg, J.P.; Schmitt, A.J.; Gardner, J.H.; Brown, C.; Seely, J.F.; Lehecka, T.; Aglitskiy, Y.; Deniz, A.V.; Chan, Y.; Metzler, N.; Klapisch, M.
1997-01-01
Nike is a 56 beam Krypton Fluoride (KrF) laser system using Induced Spatial Incoherence (ISI) beam smoothing with a measured focal nonuniformity left-angle ΔI/I right-angle of 1% rms in a single beam [S. Obenschain et al., Phys. Plasmas 3, 1996 (2098)]. When 37 of these beams are overlapped on the target, we estimate that the beam nonuniformity is reduced by √(37), to (ΔI/I)congruent 0.15% (excluding short-wavelength beam-to-beam interference). The extraordinary uniformity of the laser drive, along with a newly developed x-ray framing diagnostic, has provided a unique facility for the accurate measurements of Rayleigh--Taylor amplified laser-imprinted mass perturbations under conditions relevant to direct-drive laser fusion. Data from targets with smooth surfaces as well as those with impressed sine wave perturbations agree with our two-dimensional (2-D) radiation hydrodynamics code that includes the time-dependent ISI beam modulations. A 2-D simulation of a target with a 100 Angstrom rms randomly rough surface finish driven by a completely uniform beam gives final perturbation amplitudes similar to the experimental data for the smoothest laser profile. These results are promising for direct-drive laser fusion
International Nuclear Information System (INIS)
Fletcher, D.F.
1984-03-01
A review of the literature on Rayleigh-Taylor, Kelvin-Helmholtz and capillary instability is presented. The concept of Weber breakup is examined and found to involve a combination of the above instabilities. Sample calculations are given which show how these instabilities may contribute to the mixing of melt and coolant in a molten fuel coolant interaction. It is concluded that Rayleigh-Taylor instability is likely to be important as the melt falls into the coolant and that Kelvin-Helmholtz instability is likely to develop when significant vapour velocities occur. (author)
Transition from flute modes to drift waves in a magnetized plasma column
International Nuclear Information System (INIS)
Brochard, F.; Gravier, E.; Bonhomme, G.
2005-01-01
Recent experiments performed on the low β plasma device Mirabelle [T. Pierre, G. Leclert, and F. Braun, Rev. Sci. Instrum. 58, 6 (1987)] using a limiter have shown that transitions between various gradient driven instabilities occurred on increasing the magnetic field strength. New thorough measurements allow to identify unambiguously three instability regimes. At low magnetic field the strong ExB velocity shear drives a Kelvin-Helmholtz instability, whereas at high magnetic field drift waves are only observed. A centrifugal (Rayleigh-Taylor) instability is also observed in between when the ExB velocity is shearless and strong enough. A close connection is made between the ratio ρ s /L perpendicular of the drift parameter to the radial density gradient length and each instability regime
Observations of Supra-arcade Fans: Instabilities at the Head of Reconnection Jets
Innes, D. E.; Guo, L.-J.; Bhattacharjee, A.; Huang, Y.-M.; Schmit, D.
2014-11-01
Supra-arcade fans are bright, irregular regions of emission that develop during eruptive flares above flare arcades. The underlying flare arcades are thought to be a consequence of magnetic reconnection along a current sheet in the corona. At the same time, theory predicts plasma jets from the reconnection sites which are extremely difficult to observe directly because of their low densities. It has been suggested that the dark supra-arcade downflows (SADs) seen falling through supra-arcade fans may be low-density jet plasma. The head of a low-density jet directed toward higher-density plasma would be Rayleigh-Taylor unstable, and lead to the development of rapidly growing low- and high-density fingers along the interface. Using Solar Dynamics Observatory/Atmospheric Imaging Assembly 131 Å images, we show details of SADs seen from three different orientations with respect to the flare arcade and current sheet, and highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with three-dimensional magnetohydrodynamic simulations suggests that SADs are the result of secondary instabilities of the Rayleigh-Taylor type in the exhaust of reconnection jets.
Observations of supra-arcade fans: instabilities at the head of reconnection jets
International Nuclear Information System (INIS)
Innes, D. E.; Guo, L.-J.; Schmit, D.; Bhattacharjee, A.; Huang, Y.-M.
2014-01-01
Supra-arcade fans are bright, irregular regions of emission that develop during eruptive flares above flare arcades. The underlying flare arcades are thought to be a consequence of magnetic reconnection along a current sheet in the corona. At the same time, theory predicts plasma jets from the reconnection sites which are extremely difficult to observe directly because of their low densities. It has been suggested that the dark supra-arcade downflows (SADs) seen falling through supra-arcade fans may be low-density jet plasma. The head of a low-density jet directed toward higher-density plasma would be Rayleigh-Taylor unstable, and lead to the development of rapidly growing low- and high-density fingers along the interface. Using Solar Dynamics Observatory/Atmospheric Imaging Assembly 131 Å images, we show details of SADs seen from three different orientations with respect to the flare arcade and current sheet, and highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with three-dimensional magnetohydrodynamic simulations suggests that SADs are the result of secondary instabilities of the Rayleigh-Taylor type in the exhaust of reconnection jets.
Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities
Directory of Open Access Journals (Sweden)
Olazabal-Loumé M.
2013-11-01
Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.
Dynamical Instability and Soliton Concept
International Nuclear Information System (INIS)
Kartavenko, V.G.
1994-01-01
The problem of dynamical instability and clustering (stable fragments formation) in a breakup of excited nuclear systems are considered from the points of view of the soliton concept. It is noted that the volume (spinodal) instability can be associated with nonlinear terms, and the surface (Rayleigh-Taylor type) instability, with the dispersion terms in the evolution equations. The spinodal instability and the Rayleigh-Taylor instability may compensate each other and lead to stable quasi-soliton type objects. The simple analytical model is presented to illustrate this physical picture. The time evolution of an initially compressed cold nuclear system is analysed in the framework of the inverse mean-field method. It is demonstrated that the nonlinearity and dispersion terms of the evolution equations can lead to clusterization in the final channel. 8 p
Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD
Gao, Song
2013-05-01
The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.
Li, Yuan
2018-04-13
The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics. Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces. The initial incident converging shock is generated from a Riemann problem upstream of the first interface. The effect of the magnetic field on the instabilities is studied through varying the field strength. It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field, however, the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations. The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.
Li, Yuan; Samtaney, Ravi; Wheatley, Vincent
2018-01-01
The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics. Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces. The initial incident converging shock is generated from a Riemann problem upstream of the first interface. The effect of the magnetic field on the instabilities is studied through varying the field strength. It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field, however, the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations. The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.
International Nuclear Information System (INIS)
Hata, Akiro; Mima, Kunioki; Nagatomo, Hideo; Sunahara, Atsushi; Nishiguchi, Akio
2006-01-01
The generalized temporal evolution equation of a magnetic field is derived for high density laser-fusion plasmas. Magnetic field generation and convection are simulated by using the 2D hydrodynamic code together with the magnetic field equation. It is found that magnetic fields are generated and compressed in association with the Rayleigh-Taylor instability of an imploding shell. In particular, the magnetic field convection by the Nernst effect is found to play an important role in the amplification of magnetic fields. The maximum magnetic field reaches 30 MG at maximum compression. This magnetic field may reduce the electron heat conduction around the hot spark. Therefore, it is concluded that the ignition condition for non-uniform implosion is influenced by self-generated magnetic fields. (author)
Ion-cyclotron instability in magnetic mirrors
International Nuclear Information System (INIS)
Pearlstein, L.D.
1987-01-01
This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits
Modeling hydrodynamic instabilities of double ablation fronts in inertial confinement fusion
International Nuclear Information System (INIS)
Yanez, C.; Sanz, J.; Olazabal-Loume, M.; Ibanez, L. F.
2013-01-01
A linear Rayleigh-Taylor instability theory of double ablation (DA) fronts is developed for direct-drive inertial confinement fusion. Two approaches are discussed: an analytical discontinuity model for the radiation dominated regime of very steep DA front structure, and a numerical self-consistent model that covers more general hydrodynamic profiles behaviours. Dispersion relation results are compared to 2D simulations. (authors)
Metals near a magnetic instability
Indian Academy of Sciences (India)
Non-Fermi liquid behavior and magnetic fluctuations in CeCu6−xAux. Pure CeCu6 shows no long-range magnetic order down to very low T due to the quench- ing of Ce 4 f magnetic moments by the Kondo effect [15,16]. Several groups have re- ported evidence for magnetic ordering (either electronic or nuclear) occurring ...
Pulsating jet-like structures in magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Goncharov, V. P. [A. M. Obukhov Institute of Atmospheric Physics RAS, 109017 Moscow (Russian Federation); Pavlov, V. I. [UFR des Mathématiques Pures et Appliquées, Univ. Lille, CNRS FRE 3723 - LML, F-59000 Lille (France)
2016-08-15
The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as “radio pulsars.” The estimates of their frequencies are made for conditions typical for the neutron star's ocean.
Dynamical instabilities in magnetohydrodynamic wind-cloud interactions
Banda-Barragan, Wladimir Eduardo; Parkin, Elliot Ross; Crocker, Roland M.; Federrath, Christoph; Bicknell, Geoffrey Vincent
2015-08-01
We report the results from a comprehensive numerical study that investigates the role of dynamical instabilities in magnetohydrodynamic interactions between winds and spherical clouds in the interstellar medium. The growth of Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities at interfaces between wind and cloud material is responsible for the disruption of clouds and the formation of filamentary tails. We show how different strengths and orientations of the initial magnetic field affect the development of unstable modes and the ultimate morphology of these filaments. In the weak field limit, for example, KH instabilities developing at the flanks of clouds are dominant, whilst they are suppressed when stronger fields are considered. On the other hand, perturbations that originate RT instabilities at the leading edge of clouds are enhanced when fields are locally stronger. The orientation of the field lines also plays an important role in the structure of filaments. Magnetic ropes are key features of systems in which fields are aligned with the wind velocity, whilst current sheets are favoured when the initial field is preferentially transverse to the wind velocity. We compare our findings with analytical predictions obtained from the linear theory of hydromagnetic stability and provide a classification of filamentary tails based on their morphology.
Magnetic field dynamos and magnetically triggered flow instabilities
Stefani, F.; Albrecht, T.; Arlt, R.; Christen, M.; Gailitis, A.; Gellert, M.; Giesecke, A.; Goepfert, O.; Herault, J.; Kirillov, O. N.; Mamatsashvili, G.; Priede, J.; Rüdiger, G.; Seilmayer, M.; Tilgner, A.; Vogt, T.
2017-07-01
The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flows with positive shear. In this survey paper, the main results of these two projects are summarized.
Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics
Bakhsh, Abeer
2016-03-09
Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability(RMI) is suppressed in ideal magnetohydrodynamics(MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β=2p/B^2_r) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.
Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement
International Nuclear Information System (INIS)
Furth, H.P.
1985-05-01
The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved
Lee, Bo Ram; Clark, S. E.; Hoffmann, D. H. H.; Niemann, C.
2014-10-01
The Raptor kJ class 1053 nm Nd:Glass laser in the Phoenix laser laboratory at University of California, Los Angeles, is used to ablate a dense debris plasma from a graphite or plastic target embedded in a tenuous, uniform, and quiescent ambient magnetized plasma in the Large Plasma Device (LAPD) which provides a peak plasma density of ni ~ 1013 cm-3. Its background magnetic field can vary between 200 and 1200 G. Debris ions from laser produced plasma expand out conically with super-Alfvénic speed (MA ~ 2) and expel the background magnetic field and ambient ions to form a diamagnetic bubble. The debris plasma interacts with the ambient plasma and the magnetic field and acts as a piston which can create collisionless shocks. Flute-type instabilities, which are probably large Larmor radius Rayleigh Taylor instabilities or lower hybrid drift instabilities, are developed at the bubble edge and also observed in the experiment. The amplitude and wavelength dependence of the instabilities, which might be a strong function of debris to ambient mass to charge ratio, is studied and the experimental results are compared to the two dimensional hybrid simulations. the Deutsche Forschungsgemeinschaft in the framework of the Excellence Initiative Darmstadt Graduate School of Energy Science and Engineering (GSC1070).
Modeling, measuring, and mitigating instability growth in liner implosions on Z
Peterson, Kyle
2015-11-01
Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under
Studies in the evolution of hydrodynamic instabilities and their role in inertial confinement fusion
International Nuclear Information System (INIS)
Shvarts, D.; Oron, D.; Sadot, O.
2001-01-01
Hydrodynamic instabilities, such as the Rayleigh-Taylor and Richtmyer-Meshkov instabilities, have a central role when trying to achieve net thermonuclear fusion energy via the method of Inertial Confinement Fusion. We shall review recent theoretical, numerical and experimental work that describes the evolution of two- and three-dimensional perturbations. Finally, the effects of these perturbation on the ignition conditions, using new self-similar solutions for perturbed burn wave propagation will be discussed. (author)
International Nuclear Information System (INIS)
Long, K.A.; Tahir, N.A.
1987-01-01
In this paper we present an analysis of the theory of the energy deposition of ions in cold materials and hot dense plasmas together with numerical calculations for heavy and light ions of interest to ion-beam fusion. We have used the gorgon computer code of Long, Moritz, and Tahir (which is an extension of the code originally written for protons by Nardi, Peleg, and Zinamon) to carry out these calculations. The energy-deposition data calculated in this manner has been used in the design of heavy-ion-beam-driven fusion targets suitable for a reactor, by its inclusion in the medusa code of Christiansen, Ashby, and Roberts as extended by Tahir and Long. A number of other improvements have been made in this code and these are also discussed. Various aspects of the theoretical analysis of such targets are discussed including the calculation of the hydrodynamic stability, the hydrodynamic efficiency, and the gain. Various different target designs have been used, some of them new. In general these targets are driven by Bi + ions of energy 8--12 GeV, with an input energy of 4--6.5 MJ, with output energies in the range 600--900 MJ, and with gains in the range 120--180. The peak powers are in the range of 500--750 TW. We present detailed calculations of the ablation, compression, ignition, and burn phases. By the application of a new stability analysis which includes ablation and density-gradient effects we show that these targets appear to implode in a stable manner. Thus the targets designed offer working examples suited for use in a future inertial-confinement fusion reactor
Gill, Ramandeep; Granot, Jonathan; Lyubarsky, Yuri
2018-03-01
We study the linear and non-linear development of the Kruskal-Schwarzchild instability in a relativisitically expanding striped wind. This instability is the generalization of Rayleigh-Taylor instability in the presence of a magnetic field. It has been suggested to produce a self-sustained acceleration mechanism in strongly magnetized outflows found in active galactic nuclei, gamma-ray bursts, and micro-quasars. The instability leads to magnetic reconnection, but in contrast with steady-state Sweet-Parker reconnection, the dissipation rate is not limited by the current layer's small aspect ratio. We performed two-dimensional (2D) relativistic magnetohydrodynamic (RMHD) simulations featuring two cold and highly magnetized (1 ≤ σ ≤ 103) plasma layers with an anti-parallel magnetic field separated by a thin layer of relativistically hot plasma with a local effective gravity induced by the outflow's acceleration. Our simulations show how the heavier relativistically hot plasma in the reconnecting layer drips out and allows oppositely oriented magnetic field lines to reconnect. The instability's growth rate in the linear regime matches the predictions of linear stability analysis. We find turbulence rather than an ordered bulk flow near the reconnection region, with turbulent velocities up to ˜0.1c, largely independent of model parameters. However, the magnetic energy dissipation rate is found to be much slower, corresponding to an effective ordered bulk velocity inflow into the reconnection region vin = βinc of 10-3 ≲ βin ≲ 5 × 10-3. This occurs due to the slow evacuation of hot plasma from the current layer, largely because of the Kelvin-Helmholtz instability experienced by the dripping plasma. 3D RMHD simulations are needed to further investigate the non-linear regime.
Hydrodynamic instabilities in inertial confinement fusion
International Nuclear Information System (INIS)
Hoffman, N.M.
1995-01-01
The focus of these (two) lectures is on buoyancy-driven instabilities of the Rayleigh-Taylor type, which are commonly regarded as the most important kind of hydrodynamic instability in inertial-confinement-fusion implosions. The paper is intended to be pedagogical rather than research-oriented, and so is by no means a comprehensive review of work in this field. Rather, it is hoped that the student will find here a foundation on which to build an understanding of current research, and the experienced researcher will find a compilation of useful results. (author)
Jeans instability of self-gravitating magnetized strongly coupled plasma
International Nuclear Information System (INIS)
Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K
2012-01-01
We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.
Development of the striation and filament form of the electrothermal instability
Yu, Edmund; Awe, T. J.; Yelton, W. G.; McKenzie, B. B.; Peterson, K. J.; Bauer, B. S.; Hutchinson, T. M.; Fuelling, S.; Yates, K. C.; Shipley, G.
2017-10-01
Magnetically imploded liners have broad application to ICF, dynamic material property studies, and flux compression. An important consideration in liner performance is the electrothermal instability (ETI), an Ohmic heating instability that manifests in 2 ways: assuming vertical current flow, ETI forms hot, horizontal bands (striations) in metals, and vertical filaments in plasmas. Striations are especially relevant in that they can develop into density perturbations, which then couple to the dangerous magneto Rayleigh-Taylor (MRT) instability during liner acceleration. Recent visible emission images of Ohmically heated rods show evidence of both the striation and filament form of ETI, suggesting several questions: (1) can simulation qualitatively reproduce the data? (2) If so, what seeds the striation ETI, and how does it transition to filaments? (3) Does the striation develop into a strong density perturbation, important for MRT? In this work, we use analytic theory and 3D MHD simulation to study how isolated resistive inclusions, embedded in a perfectly smooth rod and communicating through current redistribution, can be used to address the above questions. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DOE NNSA under contract DE-NA0003525.
Yager-Elorriaga, D. A.; Lau, Y. Y.; Zhang, P.; Campbell, P. C.; Steiner, A. M.; Jordan, N. M.; McBride, R. D.; Gilgenbach, R. M.
2018-05-01
In this paper, we present experimental results on axially magnetized (Bz = 0.5 - 2.0 T), thin-foil (400 nm-thick) cylindrical liner-plasmas driven with ˜600 kA by the Michigan Accelerator for Inductive Z-Pinch Experiments, which is a linear transformer driver at the University of Michigan. We show that: (1) the applied axial magnetic field, irrespective of its direction (e.g., parallel or anti-parallel to the flow of current), reduces the instability amplitude for pure magnetohydrodynamic (MHD) modes [defined as modes devoid of the acceleration-driven magneto-Rayleigh-Taylor (MRT) instability]; (2) axially magnetized, imploding liners (where MHD modes couple to MRT) generate m = 1 or m = 2 helical modes that persist from the implosion to the subsequent explosion stage; (3) the merging of instability structures is a mechanism that enables the appearance of an exponential instability growth rate for a longer than expected time-period; and (4) an inverse cascade in both the axial and azimuthal wavenumbers, k and m, may be responsible for the final m = 2 helical structure observed in our experiments. These experiments are particularly relevant to the magnetized liner inertial fusion program pursued at Sandia National Laboratories, where helical instabilities have been observed.
Application of high-speed photography to hydrodynamic instability research
International Nuclear Information System (INIS)
Chang Lihua; Li Zuoyou; Xiao Zhengfei; Zou Liyong; Liu Jinhong; Xiong Xueshi
2012-01-01
High-speed photography is used to study the Rayleigh-Taylor instability of air-water interface driven by high- pressure exploding gas. Clear images illustrating the instability are obtained, along with the air bubble peak speed and turbulent mixing speed. The RM (Richtmyer-Meshkov) instability of air/SF 6 interface driven by shock wave is also researched by using high-speed Schlieren technique on the horizontal shock tube and primary experimental results are obtained, which show the change of the turbulent mixing region clearly. (authors)
Accretion on to Magnetic White Dwarfs
Directory of Open Access Journals (Sweden)
Wickramasinghe Dayal
2014-01-01
The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.
Coronal rain in magnetic bipolar weak fields
Xia, C.; Keppens, R.; Fang, X.
2017-07-01
Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org
Modulational instability of electric helicons in a magnetized collisional plasma
International Nuclear Information System (INIS)
El-Ashry, M.Y.; Papuashvili, N.A.
1987-06-01
The interaction of a rf electromagnetic wave with a magnetized collisional plasma in the ultra-relativistic case has been investigated to show the effect of the collisions on the modulational instability growth rate. (author). 5 refs
The linear electric motor: Instability at 1,000 g's
International Nuclear Information System (INIS)
Hunter, S.
1997-01-01
When fluid of high density is supported against gravity by a less dense liquid, the system is unstable, and microscopic perturbations grow at the interface between the fluids. This phenomenon, called the Rayleigh-Taylor instability, also occurs when a bottle of oil-and-vinegar salad dressing is turned upside down. The instability causes spikes of the dense fluid to penetrate the light fluid, while bubbles of the lighter fluid rise into the dense fluid. The same phenomenon occurs when a light fluid is used to accelerate a dense fluid, causing the two fluids to mix at a very high rate. For example, during the implosion of an ICF capsule, this instability can cause enough mixing to contaminate, cool, and degrade the yield of the thermonuclear fuel. The LEM is an excellent tool for studying this instability, but what is it? Think of a miniature high-speed electric train (the container) hurtling down a track (the electrodes) while diagnostic equipment (optical and laser) photographs it. The LEM, consists of four linear electrodes, or rails, that carry an electrical current to a pair of sliding armatures on the container. A magnetic field is produced that works in concert with the rail-armature current to accelerate the container--just as in an electric motor, but in a linear fashion rather than in rotation. The magnetic field is augmented with elongated coils just as in a conventional electric motor. This configuration also helps hold the armatures against the electrodes to prevent arcing. The electrical energy (0.6 megajoules) is provided by 16 capacitor banks that can be triggered independently to produce different acceleration profiles (i.e., how the acceleration varies with time)
The thermo magnetic instability in hot viscose plasmas
Haghani, A.; Khosravi, A.; Khesali, A.
2017-10-01
Magnetic Rotational Instability (MRI) can not performed well in accretion disks with strong magnetic field. Studies have indicated a new type of instability called thermomagnetic instability (TMI) in systems where Nernst coefficient and gradient temperature were considered. Nernst coefficient would appear if Boltzman equation could be expanded through ω_{Be} (cyclotron frequency). However, the growth rate of this instability was two magnitude orders below MRI growth (Ωk), which could not act the same as MRI. Therefor, a higher growth rate of unstable modes was needed. In this paper, rotating viscid hot plasma with strong magnetic filed was studied. Firstly, a constant alpha viscosity was studied and then a temperature sensitive viscosity. The results showed that the temperature sensitive viscosity would be able to increase the growth rate of TMI modes significantly, hence capable of acting similar to MRI.
Impact of magnetic fields on the R-mode instability
International Nuclear Information System (INIS)
Rezzolla, L.
2001-01-01
The instability of r-mode oscillations in rapidly rotating neutron stars has attracted attention as a potential mechanism for producing high frequency, almost periodic gravitational waves. The analyses carried out so far have shown the existence of the instability and have considered damping by shear and bulk viscosity, as well as the interaction with a solid star crust. However, the magnetohydrodynamic coupling of the modes with a stellar magnetic field, which is likely to be present, has not been fully investigated yet. Here we discuss the relevance of a magnetic field, its modifications under the action of the r-mode instability, and how the interaction between r-mode oscillations and a magnetic field might limit the onset and duration of the instability. (author)
Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E. L.; Chatzakis, J.; Bakarezos, Μ; Nikolos, I. K.; Papadogiannis, N. A.; Tatarakis, M.
2018-01-01
This article addresses key features for the implementation of low current pulsed power plasma devices for the study of matter dynamics from the solid to the plasma phase. The renewed interest in such low current plasma devices lies in the need to investigate methods for the mitigation of prompt seeding mechanisms for the generation of plasma instabilities. The low current when driven into thick wires (skin effect mode) allows for the simultaneous existence of all phases of matter from solid to plasma. Such studies are important for the concept of inertial confinement fusion where the mitigation of the instability seeding mechanisms arising from the very early moments within the target’s heating is of crucial importance. Similarly, in the magnetized liner inertial fusion concept it is an open question as to how much surface non-uniformity correlates with the magneto-Rayleigh-Taylor instability, which develops during the implosion. This study presents experimental and simulation results, which demonstrate that the use of low current pulsed power devices in conjunction with appropriate diagnostics can be important for studying seeding mechanisms for the imminent generation of plasma instabilities in future research.
Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration.
Piriz, A R; Sun, Y B; Tahir, N A
2015-03-01
A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The model reproduces the behavior of the instability observed in former numerical simulation results and provides a relatively simpler physical picture than the currently existing one for this stage of the instability evolution.
Observations and modeling of magnetized plasma jets and bubbles launched into a transverse B-field
Fisher, Dustin M.; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward B., IV; van der Holst, Bart; Rogers, Barrett N.; Hsu, Scott C.
2017-10-01
Hot, dense, plasma structures launched from a coaxial plasma gun on the HelCat dual-source plasma device at the University of New Mexico drag frozen-in magnetic flux into the chamber's background magnetic field providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, shocks, as well as CME-like dynamics possibly relevant to the solar corona. Vector magnetic field data from an eleven-tipped B-dot rake probe and images from an ultra-fast camera will be presented in comparison with ongoing MHD modeling using the 3-D MHD BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid (AMR) that enables the capture and resolution of shock structures and current sheets and is uniquely suited for flux-rope expansion modeling. Recent experiments show a possible magnetic Rayleigh-Taylor (MRT) instability that appears asymmetrically at the interface between launched spheromaks (bubbles) and their entraining background magnetic field. Efforts to understand this instability using in situ measurements, new chamber boundary conditions, and ultra-fast camera data will be presented. Work supported by the Army Research Office Award No. W911NF1510480.
Instabilities and vortex dynamics in shear flow of magnetized plasmas
International Nuclear Information System (INIS)
Tajima, T.; Horton, W.; Morrison, P.J.; Schutkeker, J.; Kamimura, T.; Mima, K.; Abe, Y.
1990-03-01
Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in sheared E x B flows are investigated for magnetized plasmas with and without gravity (magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The presence of the shear flow can stabilize these instabilities. The dynamics of the K-H instability and the vortex dynamics can be uniformly described by the initial flow pattern with a vorticity localization parameter ε. The observed growth of the K-H modes is exponential in time for linearly unstable modes, secular for marginal mode, and absent until driven nonlinearly for linearly stable modes. The distance between two vortex centers experiences rapid merging while the angle θ between the axis of vortices and the external shear flow increases. These vortices proceed toward their overall coalescence, while shedding small-scale vortices and waves. The main features of vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities of vortices are shown to be given by using a low dimension Hamiltonian representation for interacting vortex cores in the shear flow. 24 refs., 19 figs., 1 tab
Masti, Robert; Srinivasan, Bhuvana; King, Jacob; Stoltz, Peter; Hansen, David; Held, Eric
2017-10-01
Recent results from experiments and simulations of magnetically driven pulsed power liners have explored the role of early-time electrothermal instability in the evolution of the MRT (magneto-Rayleigh-Taylor) instability. Understanding the development of these instabilities can lead to potential stabilization mechanisms; thereby providing a significant role in the success of fusion concepts such as MagLIF (Magnetized Liner Inertial Fusion). For MagLIF the MRT instability is the most detrimental instability toward achieving fusion energy production. Experiments of high-energy density plasmas from wire-array implosions have shown the requirement for more advanced physics modeling than that of ideal magnetohydrodynamics. The overall focus of this project is on using a multi-fluid extended-MHD model with kinetic closures for thermal conductivity, resistivity, and viscosity. The extended-MHD model has been updated to include the SESAME equation-of-state tables and numerical benchmarks with this implementation will be presented. Simulations of MRT growth and evolution for MagLIF-relevant parameters will be presented using this extended-MHD model with the SESAME equation-of-state tables. This work is supported by the Department of Energy Office of Science under Grant Number DE-SC0016515.
Hydrodynamick instabilities on ICF capsules
International Nuclear Information System (INIS)
Haan, S.W.
1991-01-01
This article summarizes our current understanding of hydrodynamic instabilities as relevant to ICF. First we discuss classical, single mode Rayleigh-Taylor instability, and nonlinear effects in the evolution of a single mode. Then we discuss multimode systems, considering: (1) the onset of nonlinearity; (2) a second order mode coupling theory for weakly nonlinear effects, and (3) the fully nonlinear regime. Two stabilization mechanisms relevant to ICF are described next: gradient scale length and convective stabilization. Then we describe a model which is meant to estimate the weakly nonlinear evolution of multi-mode systems as relevant to ICF, given the short-wavelength stabilization. Finally, we discuss the relevant code simulation capability, and experiments. At this time we are quite optimistic about our ability to estimate instability growth on ICF capsules, but further experiments and simulations are needed to verify the modeling. 52 refs
Convective instability of RCP modes for a magnetized chiral plasma
International Nuclear Information System (INIS)
Torres-Silva, Hector; Sakanaka, P.H.; Reggiani, N.
1998-01-01
Using the Maxwell's equations and the proposed constitutive relations for a chiral plasma medium, the dispersion relations for right circularly polarized waves, (RCP), depending on the characteristics of the distribution, a new mode conversion and instabilities are found due to the chiral effect. From the dispersion relations and considering that the chirowave magnetic field may be important when the condition of velocity isotropy is dropped, we find that growing modes (instabilities) can occur at resonance and for frequencies below the electron gyrofrequency. We study, in this paper, the convective instability of RCP waves in a two-component bi-Lorentzian chiroplasma which can model the solar wind particle distributions. (author)
Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma
Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.
2016-10-01
The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.
TANGLED MAGNETIC FIELDS IN SOLAR PROMINENCES
International Nuclear Information System (INIS)
Van Ballegooijen, A. A.; Cranmer, S. R.
2010-01-01
Solar prominences are an important tool for studying the structure and evolution of the coronal magnetic field. Here we consider so-called hedgerow prominences, which consist of thin vertical threads. We explore the possibility that such prominences are supported by tangled magnetic fields. A variety of different approaches are used. First, the dynamics of plasma within a tangled field is considered. We find that the contorted shape of the flux tubes significantly reduces the flow velocity compared to the supersonic free fall that would occur in a straight vertical tube. Second, linear force-free models of tangled fields are developed, and the elastic response of such fields to gravitational forces is considered. We demonstrate that the prominence plasma can be supported by the magnetic pressure of a tangled field that pervades not only the observed dense threads but also their local surroundings. Tangled fields with field strengths of about 10 G are able to support prominence threads with observed hydrogen density of the order of 10 11 cm -3 . Finally, we suggest that the observed vertical threads are the result of Rayleigh-Taylor instability. Simulations of the density distribution within a prominence thread indicate that the peak density is much larger than the average density. We conclude that tangled fields provide a viable mechanism for magnetic support of hedgerow prominences.
Instabilities responsible for magnetic turbulence in laboratory rotating plasma
International Nuclear Information System (INIS)
Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Erokhin, N.N.; Pustovitov, V.D.; Konovalov, S.V.
2008-01-01
Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities
Density-space potential phase difference in a Kelvin--Helmholtz instability
International Nuclear Information System (INIS)
Glowienka, J.C.; Jennings, W.C.; Hickok, R.L.
1974-01-01
The low-frequency instability found in a hollow cathode discharge in helium was studied using an ion beam probe as a primary diagnostic tool. Three aspects of the instability are discussed: the location and amplitude of the oscillation and its correlation with the shape of the space potential; the phase angle between density and space potential oscillations; and the comparison of the data with three known instability models: Kelvin--Helmholtz, Rayleigh--Taylor, and drift waves--for mode identification. (U.S.)
Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick
2016-10-01
The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.
The effect of internal magnetic structure on the fishbone instability
International Nuclear Information System (INIS)
Roberts, D.W.; Powell, E.; Kaita, R.; Bell, R.; Chance, M.; Hatcher, R.; Holland, A.; Kaye, S.; Kessel, C.; Kugel, H.; LeBlanc, B.; Manickam, J.; Okabayashi, M.; Paul, S.; Pomphrey, N.; Sauthoff, N.; Sesnic, S.; Takahashi, H.; White, R.; Asakura, N.; Duperrex, P.; Gammel, G.
1992-01-01
Plasmas exhibiting the ''fishbone'' instability studied on the PBX-M tokamak show a distinct relationship between the plasma shape, the internal magnetic structure, and the presence or absence of fast ion losses associated with the fishbone mode. We have, for the first time, carried out measurements of the magnetic safety factor profile in fishbone-unstable plasmas, and used the knowledge of the associated experimental equilibria to compare the stability and fast ion loss properties of these plasmas with experimental observations
Effect of magnetic shear on dissipative drift instabilities
International Nuclear Information System (INIS)
Guzdar, P.N.; Chen, L.; Kaw, P.K.; Oberman, C.
1978-03-01
In this letter we report the results of a linear radial eigenmode analysis of dissipative drift waves in a plasma with magnetic shear and spatially varying density gradient. The results of the analysis are shown to be consistent with a recent experiment on the study of dissipative drift instabilities in a toroidal stellarator
Rotating magnetic shallow water waves and instabilities in a sphere
Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.
2017-07-01
Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.
Rotation and toroidal magnetic field effects on the stability of two-component jets
Millas, Dimitrios; Keppens, Rony; Meliani, Zakaria
2017-09-01
Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of 'spine and sheath' models of jets. Most studies focus on a two-component jet consisting of a highly relativistic inner jet and a slower - but still relativistic - outer jet surrounded by an unmagnetized environment. These jets are believed to be susceptible to a relativistic Rayleigh-Taylor-type instability, depending on the effective inertia ratio of the two components. We extend previous studies by taking into account the presence of a non-zero toroidal magnetic field. Different values of magnetization are examined to detect possible differences in the evolution and stability of the jet. We find that the toroidal field, above a certain level of magnetization σ, roughly equal to 0.01, can stabilize the jet against the previously mentioned instabilities and that there is a clear trend in the behaviour of the average Lorentz factor and the effective radius of the jet when we continuously increase the magnetization. The simulations are performed using the relativistic MHD module from the open source, parallel, grid adaptive, mpi-amrvac code.
Experimental study of the Richtmyer-Meshkov instability induced by a Mach 3 shock wave
International Nuclear Information System (INIS)
BP Puranik; JG Oakley; MH Anderson; R Bonaazza
2003-01-01
OAK-B135 An experimental investigation of a shock-induced interfacial instability (Richtmyer-Meshkov instability) is undertaken in an effort to study temporal evolution of interfacial perturbations in the late stages of development. The experiments are performed in a vertical shock tube with a square cross-section. A membraneless interface is prepared by retracting a sinusoidally shaped metal plate initially separating carbon dioxide from air, with both gases initially at atmospheric pressure. With carbon dioxide above the plate, the Rayleigh-Taylor instability commences as the plate is retracted and the amplitude of the initial sinusoidal perturbation imposed on the interface begins to grow. The interface is accelerated by a strong shock wave (M=3.08) while its shape is still sinusoidal and before the Kelvin-Helmhotz instability distorts it into the well known mushroom-like structures; its initial amplitude to wavelength ratio is large enough that the interface evolution enters its nonlinear stage very shortly after shock acceleration. The pre-shock evolution of the interface due to the Rayleigh-Taylor instability and the post-shock evolution of the interface due to the Richtmyer-Meshkov instability are visualized using planar Mie scattering. The pre-shock evolution of the interface is carried out in an independent set of experiments. The initial conditions for the Richtmyer-Meshkov experiment are determined from the pre-shock Rayleigh-Taylor growth. One image of the post-shock interface is obtained per experiment and image sequences, showing the post-shock evolution of the interface, are constructed from several experiments. The growth rate of the perturbation amplitude is measured and compared with two recent analytical models of the Richtmyer-Meshkov instability
Linear Analyses of Magnetohydrodynamic Richtmyer-Meshkov Instability in Cylindrical Geometry
Bakhsh, Abeer
2018-05-13
We investigate the Richtmyer-Meshkov instability (RMI) that occurs when an incident shock impulsively accelerates the interface between two different fluids. RMI is important in many technological applications such as Inertial Confinement Fusion (ICF) and astrophysical phenomena such as supernovae. We consider RMI in the presence of the magnetic field in converging geometry through both simulations and analytical means in the framework of ideal magnetohydrodynamics (MHD). In this thesis, we perform linear stability analyses via simulations in the cylindrical geometry, which is of relevance to ICF. In converging geometry, RMI is usually followed by the Rayleigh-Taylor instability (RTI). We show that the presence of a magnetic field suppresses the instabilities. We study the influence of the strength of the magnetic field, perturbation wavenumbers and other relevant parameters on the evolution of the RM and RT instabilities. First, we perform linear stability simulations for a single interface between two different fluids in which the magnetic field is normal to the direction of the average motion of the density interface. The suppression of the instabilities is most evident for large wavenumbers and relatively strong magnetic fields strengths. The mechanism of suppression is the transport of vorticity away from the density interface by two Alfv ́en fronts. Second, we examine the case of an azimuthal magnetic field at the density interface. The most evident suppression of the instability at the interface is for large wavenumbers and relatively strong magnetic fields strengths. After the shock interacts with the interface, the emerging vorticity breaks up into waves traveling parallel and anti-parallel to the magnetic field. The interference as these waves propagate with alternating phase causing the perturbation growth rate of the interface to oscillate in time. Finally, we propose incompressible models for MHD RMI in the presence of normal or azimuthal magnetic
The Hall instability of unsteady inhomogeneous axially symmetric magnetized plasmas
International Nuclear Information System (INIS)
Shtemler, Yuri M.; Mond, Michael; Liverts, Edward
2004-01-01
The Hall instability in cylindrically symmetric resistive magnetized plasmas in vacuum is investigated. The unperturbed self-similar equilibrium solutions for imploding Z-pinches with time-dependent total current I t ∼t S ,S>1/3, are subjected by short-wave sausage perturbations. The instability criterion is derived in slow-time, frozen-radius approximation. In cylindrically symmetric configurations the instability is driven by the magnetic field curvature. The near-axis and near-edge branches of the neutral curve in the plane of the inverse Hall parameter and phase velocity with the frozen radial coordinate as a parameter are separated by the critical point, where the modified gradient from the unperturbed number density changes sign. The critical radius may be treated as a new characteristic size of the Z-pinch that emerges due to the instability: the pinch is envisaged restructured by the short-scale high-frequency Hall instability, in which a central stable core is surrounded by an outer shell. Such a modified equilibrium may explain the observed enhanced stability against magnetohydrodynamic modes
Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae
Energy Technology Data Exchange (ETDEWEB)
Cerda-Duran, P; Obergaulinger, M; Mueller, E [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-st. 1, 85748 Garching (Germany); Aloy, M A; Font, J A, E-mail: cerda@mpa-garching.mpg.de [Departamento de Astronomia y Astrofisica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain)
2011-09-22
Some of the most violent events in the universe, the gamma ray burst, could be related to the gravitational collapse of massive stellar cores. The recent association of long GRBs to some class of type Ic supernova seems to support this view. In such scenario fast rotation, strong magnetic fields and general relativistic effects are key ingredients. It is thus important to understand the mechanism that amplifies the magnetic field under that conditions. I present global simulations of the magneto-rotational collapse of stellar cores in general relativity and semi-global simulations of hydromagnetic instabilities under core collapse conditions. I discuss effect of the magneto-rotational instability and the magnetic field amplification during the collapse, the uncertainties in this process and the dynamical effects in the supernova explosion.
Rosenzweig instability in a thin layer of a magnetic fluid
Korovin, V. M.
2013-12-01
A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.
Two-dimensional simulations of magnetically-driven instabilities
International Nuclear Information System (INIS)
Peterson, D.; Bowers, R.; Greene, A.E.; Brownell, J.
1986-01-01
A two-dimensional Eulerian MHD code is used to study the evolution of magnetically-driven instabilities in cylindrical geometry. The code incorporates an equation of state, resistivity, and radiative cooling model appropriate for an aluminum plasma. The simulations explore the effects of initial perturbations, electrical resistivity, and radiative cooling on the growth and saturation of the instabilities. Comparisons are made between the 2-D simulations, previous 1-D simulations, and results from the Pioneer experiments of the Los Alamos foil implosion program
Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.
2018-05-01
Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.
EFFECTS OF DIFFERENT NUMERICAL INTERFACE METHODS ON HYDRODYNAMICS INSTABILITY
Energy Technology Data Exchange (ETDEWEB)
FRANCOIS, MARIANNE M. [Los Alamos National Laboratory; DENDY, EDWARD D. [Los Alamos National Laboratory; LOWRIE, ROBERT B. [Los Alamos National Laboratory; LIVESCU, DANIEL [Los Alamos National Laboratory; STEINKAMP, MICHAEL J. [Los Alamos National Laboratory
2007-01-11
The authors compare the effects of different numerical schemes for the advection and material interface treatments on the single-mode Rayleigh-Taylor instability, using the RAGE hydro-code. The interface growth and its surface density (interfacial area) versus time are investigated. The surface density metric shows to be better suited to characterize the difference in the flow, than the conventional interface growth metric. They have found that Van Leer's limiter combined to no interface treatment leads to the largest surface area. Finally, to quantify the difference between the numerical methods they have estimated the numerical viscosity in the linear-regime at different scales.
Instability of drift Alfven wave accompanying polar magnetic storm
International Nuclear Information System (INIS)
Higuchi, Yoshihiro
1974-01-01
As the micro plasma instability due to the plasma non-uniformity in magnetosphere, there is the instability of drift Alfven wave. With the data obtained with the network of multiple observation points for geomagnetism, attempt was made to prove the hypothesis that the instability of drift Alfven wave due to the electron temperature gradient at the inner boundary of plasma sheet may be one of the causes for the geomagnetic pulsation (Pi 1) accompanying polar magnetic storm. Up to date, final conclusion is yet impossible as to the problems in it due to the discussion based on the data from widely separated observation points. The installation of economically efficient multi-point observation network is necessary for the solution. (Mori, K.)
International Nuclear Information System (INIS)
Malcolm J. Andrews
2006-01-01
This project had two major tasks: Task 1. The construction of a new air/helium facility to collect detailed measurements of Rayleigh-Taylor (RT) mixing at high Atwood number, and the distribution of these data to LLNL, LANL, and Alliance members for code validation and design purposes. Task 2. The collection of initial condition data from the new Air/Helium facility, for use with validation of RT simulation codes at LLNL and LANL. This report describes work done in the last twelve (12) months of the project, and also contains a summary of the complete work done over the three (3) life of the project. As of April 1, 2006, the air/helium facility (Task 1) is now complete and extensive testing and validation of diagnostics has been performed. Initial condition studies (Task 2) is also complete. Detailed experiments with air/helium with Atwood numbers up to 0.1 have been completed, and Atwood numbers of 0.25. Within the last three (3) months we have been able to successfully run the facility at Atwood numbers of 0.5. The progress matches the project plan, as does the budget. We have finished the initial condition studies using the water channel, and this work has been accepted for publication on the Journal of Fluid Mechanics (the top fluid mechanics journal). Mr. Nick Mueschke and Mr. Wayne Kraft are continuing with their studies to obtain PhDs in the same field, and will also continue their collaboration visits to LANL and LLNL. Over its three (3) year life the project has supported two(2) Ph.D.'s and three (3) MS's, and produced nine (9) international journal publications, twenty four (24) conference publications, and numerous other reports. The highlight of the project has been our close collaboration with LLNL (Dr. Oleg Schilling) and LANL (Drs. Dimonte, Ristorcelli, Gore, and Harlow)
Fluid Instabilities of Magnetar-Powered Supernovae
Chen, Ke-Jung
2017-05-01
Magnetar-powered supernova explosions are competitive models for explaining very luminous optical transits. Until recently, these explosion models were mainly calculated in 1D. Radiation emitted from the magnetar snowplows into the previous supernovae ejecta and causes a nonphysical dense shell (spike) found in previous 1D studies. This suggests that strong fluid instabilities may have developed within the magnetar-powered supernovae. Such fluid instabilities emerge at the region where luminous transits later occur, so they can affect the consequent observational signatures. We examine the magnetar-powered supernovae with 2D hydrodynamics simulations and find that the 1D dense shell transforms into the development of Rayleigh-Taylor and thin shell instabilities in 2D. The resulting mixing is able to fragment the entire shell and break the spherical symmetry of supernovae ejecta.
Fire Hose Instability in the Multiple Magnetic Reconnection
Alexandrova, A.; Retino, A.; Divin, A. V.; Le Contel, O.; Matteini, L.; Breuillard, H.; Deca, J.; Catapano, F.; Cozzani, G.; Nakamura, R.; Panov, E. V.; Voros, Z.
2017-12-01
We present observations of multiple reconnection in the Earth's magnetotail. In particular, we observe an ion temperature anisotropy characterized by large temperature along the magnetic field, between the two active X-lines. The anisotropy is associated with right-hand polarized waves at frequencies lower than the ion cyclotron frequency and propagating obliquely to the background magnetic field. We show that the observed anisotropy and the wave properties are consistent with linear kinetic theory of fire hose instability. The observations are in agreement with the particle-in-cell simulations of multiple reconnection. The results suggest that the fire hose instability can develop during multiple reconnection as a consequence of the ion parallel anisotropy that is produced by counter-streaming ions trapped between the X-lines.
SATURATION OF MAGNETOROTATIONAL INSTABILITY THROUGH MAGNETIC FIELD GENERATION
International Nuclear Information System (INIS)
Ebrahimi, F.; Prager, S. C.; Schnack, D. D.
2009-01-01
The saturation mechanism of magnetorotational instability (MRI) is examined through analytical quasi-linear theory and through nonlinear computation of a single mode in a rotating disk. We find that large-scale magnetic field is generated through the α-effect (the correlated product of velocity and magnetic field fluctuations) and causes the MRI mode to saturate. If the large-scale plasma flow is allowed to evolve, the mode can also saturate through its flow relaxation. In astrophysical plasmas, for which the flow cannot relax because of gravitational constraints, the mode saturates through field generation only.
Electrostatic instabilities and turbulence in a toroidal magnetized plasma
International Nuclear Information System (INIS)
Poli, F. M.
2007-06-01
This Thesis aims at characterizing the linear properties of electrostatic drift instabilities arising in a toroidal plasma and the mechanisms leading to their development into turbulence. The experiments are performed on the TORoidal Plasma EXperiment (TORPEX) at CRPP-EPFL, Lausanne. The first part of the Thesis focuses on the identification of the nature of the instabilities observed in TORPEX, using a set of electrostatic probes, designed and built for this purpose. The global features of fluctuations, analyzed for different values of control parameters such as the magnetic field, the neutral gas pressure and the injected microwave power, are qualitatively similar in different experimental scenarios. The maximum of fluctuations is observed on the low field side, where the pressure gradient and the gradient of the magnetic field are co-linear, indicating that the curvature of the magnetic field lines has an important role in the destabilization of the waves. The power spectrum is dominated by electrostatic fluctuations with frequencies much lower than the ion cyclotron frequency. Taking advantage of the extended diagnostics coverage, the spectral properties of fluctuations are measured over the whole poloidal cross-section. Both drift and interchange instabilities develop and propagate on TORPEX, with the stability of both being affected by the curvature of the magnetic field. It is shown that modes of different nature are driven at separate locations over the plasma cross-section and that the wavenumber and frequency spectra, narrow at the location where the instabilities are generated, broaden during convection, suggesting an increase in the degree of turbulence. The transition from coherent to turbulent spectral features and the role of nonlinear coupling between modes in the development of turbulence are treated in the second part of this work. It is found that nonlinear mode-mode coupling is responsible for the redistribution of spectral energy from the
Field-induced magnetic instability within a superconducting condensate
DEFF Research Database (Denmark)
Mazzone, Daniel Gabriel; Raymond, Stephane; Gavilano, Jorge Luis
2017-01-01
The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a fieldinduced quantum phase transition, in superconducting Nd0.05Ce0.95Co...... that the magnetic instability is not magnetically driven, and we propose that it is driven by a modification of superconducting condensate at H*.......In5, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field mu H-0* = 8 T. For H > H*, a spin-density phase emerges and shares many properties with the Q phase in CeCoIn5. These results suggest...
Thermo-magnetic instabilities in Nb3Sn Superconducting Accelerator Magnets
International Nuclear Information System (INIS)
Bordini, Bernardo; Pisa U.
2006-01-01
The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb 3 Sn. Several laboratories in the US and Europe are currently working on developing Nb 3 Sn accelerator magnets, and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb 3 Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb 3 Sn; a description of the manufacturing process of Nb 3 Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb 3 Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis
International Nuclear Information System (INIS)
Kulsrud, Russell; Ji Hantao; Fox, William; Yamada, Masaaki
2005-01-01
The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma-field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (magnetic reconnection experiment) [M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bertz, F. Jobes, Y. Ono, and F. Perkins, Phys. Plasmas 4, 1936 (1997)] that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating lower hybrid drift instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasilinear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX, the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process
International Nuclear Information System (INIS)
Russell Kulsrud; Hantao Ji; Will Fox; Masaaki Yamada
2005-01-01
The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (Magnetic Reconnection Experiment) that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating Lower Hybrid Drift Instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasi-linear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process
Instability in the magnetic field penetration in type II superconductors
International Nuclear Information System (INIS)
Oliveira, Isaías G. de
2015-01-01
Under the view of the time-dependent Ginzburg–Landau theory we have investigated the penetration of the magnetic field in the type II superconductors. We show that the single vortices, situated along the borderline, between the normal region channel and the superconducting region, can escape to regions still empty of vortices. We show that the origin of this process is the repulsive nature of vortex–vortex interaction, in addition to the non-homogeneous distribution of the vortices along the normal region channel. Using London theory we explain the extra gain of kinetic energy by the vortices situated along this borderline. - Highlights: • TDGL is used to study the magnetic field penetration in type II superconductors. • Instability process is found during the magnetic field penetration. • Vortices along the front of the normal region escape to superconducting region. • We explain the extra-gain of kinetic energy by vortices along the borderline
Using Magnetic Fields to Create and Control High Energy Density Matter
Energy Technology Data Exchange (ETDEWEB)
Herrmann, Mark [Sandia National Laboratory
2012-05-09
The recently refurbished Z facility at Sandia National Laboratories is the world’s largest pulsed power driver. Z can efficiently deliver currents as large as 26 Million Amperes to centimeter scale loads. These large currents create large magnetic fields that, in turn, create very large pressures in conducting materials. These very large pressures have been used to create unique conditions for high energy density science experiments for a variety of applications. Recently, we have been exploring the use of very strong magnetic fields to significantly relax the requirements for achieving inertial confinement fusion self heating1. The magnetized liner inertial fusion (MagLIF) concept relies on a cylindrically imploding liner, an axial magnetic field, and a laser heated fuel region. We hope to achieve significant fusion yield on the Z facility with this concept. Initial experiments assessing the growth of the Magneto-Rayleigh Taylor instability are promising and recent calculational work has identified an approach to achieving high gain with this concept.
Stagnation morphology in Magnetized Liner Inertial Fusion experiments
Gomez, M. R.; Harding, E. C.; Ampleford, D. J.; Jennings, C. A.; Awe, T. J.; Chandler, G. A.; Glinsky, M. E.; Hahn, K. D.; Hansen, S. B.; Jones, B.; Knapp, P. F.; Martin, M. R.; Peterson, K. J.; Rochau, G. A.; Ruiz, C. L.; Schmit, P. F.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Yu, E. P.
2017-10-01
In Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility, an axial current of 15-20 MA is driven through a thick metal cylinder containing axially-magnetized, laser-heated deuterium fuel. The cylinder implodes, further heating the fuel and amplifying the axial B-field. Instabilities, such as magneto-Rayleigh-Taylor, develop on the exterior of the liner and may feed through to the inner surface during the implosion. Monochromatic x-ray emission at stagnation shows the stagnation column is quasi-helical with axial variations in intensity. Recent experiments demonstrated that the stagnation emission structure changed with modifications to the target wall thickness. Additionally, applying a thick dielectric coating to the exterior of the target modified the stagnation column. A new version of the x-ray self-emission diagnostic has been developed to investigate stagnation with higher resolution. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Instabilities in the flow past localized magnetic fields
International Nuclear Information System (INIS)
Beltran, Alberto; Cuevas, Sergio; Smolentsev, Sergey
2007-01-01
The flow in a shallow layer of an electrically conducting fluid past a localized magnetic field is analyzed numerically. The field occupies only a small fraction of the total flow domain and resemblances the magnetic field created by a permanent magnet located close to the fluid layer. Two different physical cases are considered. In the first one, the fluid layer is free from externally injected electric currents, therefore, only induced currents are present. In the second case, an external electric current is injected to the fluid layer, transversally to the main flow direction. It is shown that the Lorentz force created by the interaction of the electric currents with the non-uniform magnetic field acts as an obstacle for the flow and creates different flow patterns similar to those observed in the flow past bluff bodies. A quasi-two-dimensional model that takes into account the existence of the bottom wall through a linear Hartmann-Rayleigh friction term is considered. When inertial and magnetic forces are strong enough, the wake formed behind the zone of high magnetic field is destabilized and a periodic vortex shedding similar to the classical von Karman street is found. The effect of Hartmann-Rayleigh friction in the emergence of the instability is analyzed
Nonlinear evolution of the sausage instability
International Nuclear Information System (INIS)
Book, D.L.; Ott, E.; Lampe, M.
1976-01-01
Sausage instabilities of an incompressible, uniform, perfectly conducting Z pinch are studied in the nonlinear regime. In the long wavelength limit (analogous to the ''shallow water theory'' of hydrodynamics), a simplified set of universal fluid equations is derived, with no radial dependence, and with all parameters scaled out. Analytic and numerical solutions of these one-dimensional equations show that an initially sinusoidal perturbation grows into a ''spindle'' or cylindrical ''spike and bubble'' shape, with sharp radial maxima. In the short wavelength limit, the problem is shown to be mathematically equivalent to the planar semi-infinite Rayleigh--Taylor instability, which also grows into a spike-and-bubble shape. Since the spindle shape is common to both limits, it is concluded that it probably obtains in all cases. The results are in agreement with dense plasma focus experiments
Hydrodynamic instabilities in inertial confinement fusion
International Nuclear Information System (INIS)
Freeman, J.R.
1977-01-01
Inertial confinement fusion targets generally consist of hollow high-density spheres filled with low density thermonuclear fuel. Targets driven ablatively by electrons, ions, or lasers are potentially unstable during the initial acceleration phase. Later in time, the relatively low density fuel decelerates the dense inner portion of the sphere (termed the pusher), permitting unstable growth at the fuel-pusher interface. The instabilities are of the Rayleigh-Taylor variety, modified by thermal and viscous diffusion and convection. These problems have been analyzed by many in recent years using both linearized perturbation methods and direct numerical simulation. Examples of two-dimensional simulations of the fuel-pusher instability in electron beam fusion targets will be presented, along with a review of possible stabilization mechanisms
Thermal instabilities in magnetically confined plasmas: Solar coronal loops
International Nuclear Information System (INIS)
Habbal, S.R.; Rosner, R.
1979-01-01
The thermal stability of confined solar coronal structures (''loops'') is investigated, following both normal mode and a new, global instability analysis. We demonstrate that: (a) normal mode analysis shows modes with size scales comparable to that of loops to be unstable, but to be strongly affected by the loop boundary conditions; (b) a global analysis, based upon variation of the total loop energy losses and gains, yields loop stability conditions for global modes dependent upon the coronal loop heating process, with magnetically coupled heating processes giving marginal stability. The connection between the present analysis and the minimum flux corona of Hearn is also discussed
Flute instability growth on a magnetized plasma column
International Nuclear Information System (INIS)
Rose, D. V.; Genoni, T. C.; Welch, D. R.; Mehlhorn, T. A.; Porter, J. L.; Ditmire, T.
2006-01-01
The growth of the flute-type instability for a field-aligned plasma column immersed in a uniform magnetic field is studied. Particle-in-cell simulations are compared with a semi-analytic dispersion analysis of the drift cyclotron instability in cylindrical geometry with a Gaussian density profile in the radial direction. For the parameters considered here, the dispersion analysis gives a local maximum for the peak growth rates as a function of R/r i , where R is the Gaussian characteristic radius and r i is the ion gyroradius. The electrostatic and electromagnetic particle-in-cell simulation results give azimuthal and radial mode numbers that are in reasonable agreement with the dispersion analysis. The electrostatic simulations give linear growth rates that are in good agreement with the dispersion analysis results, while the electromagnetic simulations yield growth rate trends that are similar to the dispersion analysis but that are not in quantitative agreement. These differences are ascribed to higher initial field fluctuation levels in the electromagnetic field solver. Overall, the simulations allow the examination of both the linear and nonlinear evolution of the instability in this physical system up to and beyond the point of wave energy saturation
Relativistic centrifugal instability
Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.
2018-03-01
Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.
Velocity space ring-plasma instability, magnetized, Part I: Theory
International Nuclear Information System (INIS)
Lee, J.K.; Birdsall, C.K.
1979-01-01
The interaction of magnetized monoenergetic ions (a ring in velocity space) with a homogeneous Maxwellian target plasma is studied numerically using linear Vlasov theory. The ring may be produced when an energetic beam is injected perpendicular to a uniform magnetic field. In addition to yielding the previously known results, the present study classifies this flute-like instability into three distinct regimes based on the beam density relative to the plasma density, where many features such as physical mechanisms, dispersion diagrams, and maximum growth rates are quite different. The effects of electron dynamics, plasma or ring thermal spread, the ratio of ω/sub p//ω/sub c/ for plasma ions, and electromagnetic modifications are also considered
Instabilities, turbulence and transport in a magnetized plasma
International Nuclear Information System (INIS)
Garbet, X.
2001-06-01
The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)
International Nuclear Information System (INIS)
Shigemori, K.; Azechi, H.; Fujioka, S.
2003-01-01
We present recent results on the hydrodynamic instability experiments on the HIPER (High Intensity Plasma Experimental Research) laser facility at ILE, Osaka University. We measured the Rayleigh-Taylor growth rate on the HIPER laser. Also measured were all parameters that determine the RT growth rate. We focused on the measurements of the ablation density of laser-irradiated targets, which had not been experimentally measured. The experimental results were compared with calculations with one dimensional simulation coupled with Fokker-Planck equation for electron transport. (author)
Vlasov analysis of microbunching instability for magnetized beams
Directory of Open Access Journals (Sweden)
C.-Y. Tsai
2017-05-01
Full Text Available For a high-brightness electron beam with high bunch charge traversing a recirculation beam line, coherent synchrotron radiation and space charge effects may result in microbunching instability (MBI. Both tracking simulation and Vlasov analysis for an early design of a circulator cooler ring (CCR for the Jefferson Lab Electron Ion Collider (JLEIC reveal significant MBI [Ya. Derbenev and Y. Zhang, Proceedings of the Workshop on Beam Cooling and Related Topics, COOL’09, Lanzhou, China, 2009 (2009, FRM2MCCO01]. It is envisioned that the MBI could be substantially suppressed by using a magnetized beam. In this paper we have generalized the existing Vlasov analysis, originally developed for a nonmagnetized beam (or transversely uncoupled beam, to the description of transport of a magnetized beam including relevant collective effects. The new formulation is then employed to confirm prediction of microbunching suppression for a magnetized beam transport in the recirculation arc of a recent JLEIC energy recovery linac (ERL based cooler design for electron cooling. It is found that the smearing effect in the longitudinal beam phase space originates from the large transverse beam size as a nature of the magnetized beams and becomes effective through the x-z correlation when the correlated distance is larger than the microbunched scale. As a comparison, MBI analysis of the early design of JLEIC CCR is also presented in this paper.
Sedimentation and gravitational instability of Escherichia coli Suspension
Salin, Dominique; Douarche, Carine
2017-11-01
The successive runs and tumbles of Escherichia coli bacteria provide an active matter suspension of rod-like particles with a large swimming, Brownian like, diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering of the particles and hence instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analysing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume. Comparing these quantities to the ones of equivalent passive particles (ellipsoid, rod) we tentatively infer the effective shape and size of the bacteria involved in its buoyancy induced advection and diffusion. Laboratoire FAST University Paris Saclay France.
A diagnostic model for equatorial spread F. 2. The effect of magnetic activity
International Nuclear Information System (INIS)
Kelley, M.C.; Maruyama, Takashi
1992-01-01
By using a numerical model the authors have studied electric field effects on the generation of equatorial spread F (ESF) in the postmidnight hours. Equatorial electric fields are zonally westward during late evening and postmidnight hours on normal days, while they sometimes reverse to eastward in magnetically disturbed days. The quiet time westward configuration and typical low altitude of the layer results in stable bottomside gradient or at most one with a very low generalized Rayleigh-Taylor growth rate. The model calculation shows that the growth rate becomes significant when the electric field reverses to eastward and may remain so even when the electric field disturbance weakens due to the upward altitude excursion of the layer. These results account for the correlation of ESF occurrence penetration of magnetospheric electric fields during such magnetic activity. The results also show the crucial role of layer height in the physics. They have calculated the growth rates for specific nights in which perturbation of electric fields and plumes were observed at Jicamarca. These case studies suggest that a quantitative requirement for the generation of plumes is that about 10 e-folding times of the linear instability growth occur. They also suggest that a statistical study using ionosonde data could be very valuable in a testing whether a local version of this quantitative measure of event intensity could be useful in predicting plume activity
Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.
1993-05-01
A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.
The magnetized electron-acoustic instability driven by a warm, field-aligned electron beam
International Nuclear Information System (INIS)
Sooklal, A.; Mace, R.L.
2004-01-01
The electron-acoustic instability in a magnetized plasma having three electron components, one of which is a field-aligned beam of intermediate temperature, is investigated. When the plasma frequency of the cool electrons exceeds the electron gyrofrequency, the electron-acoustic instability 'bifurcates' at sufficiently large propagation angles with respect to the magnetic field to yield an obliquely propagating, low-frequency electron-acoustic instability and a higher frequency cyclotron-sound instability. Each of these instabilities retains certain wave features of its progenitor, the quasiparallel electron-acoustic instability, but displays also new magnetic qualities through its dependence on the electron gyrofrequency. The obliquely propagating electron-acoustic instability requires a lower threshold beam speed for its excitation than does the cyclotron-sound instability, and for low to intermediate beam speeds has the higher maximum growth rate. When the plasma is sufficiently strongly magnetized that the plasma frequency of the cool electrons is less than the electron gyrofrequency, the only instability in the electron-acoustic frequency range is the strongly magnetized electron-acoustic instability. Its growth rate and real frequency exhibit a monotonic decrease with wave propagation angle and it grows at small to intermediate wave numbers where its parallel phase speed is approximately constant. The relevance of the results to the interpretation of cusp auroral hiss and auroral broadband electrostatic noise is briefly discussed
Magnetic viscosity by localized shear flow instability in magnetized accretion disks
International Nuclear Information System (INIS)
Matsumoto, R.; Tajima, T.
1995-01-01
Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at ω d = ± ω A , where ω d is the Doppler-shifted wave frequency, and ω A = k parallel v A is the Alfven frequency. The radial width of the unstable eigenfunction is Δx ∼ ω A /(Ak y ), where A is the Oort's constant, and k y is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of k y /k z . The maximum growth rate when k y /k z ∼ 0.1 is ∼ 0.2Ω for the Keplerian disk with local angular velocity Ω. It is found that the purely growing mode disappears when k y /k z > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity η depends on the instability-induced turbulent magnetic fields δB as η([δB 2 ]), the marginal stability condition self-consistently determines the α parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter α B is between 0.001 and 1. The authors' three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the α parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller α in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop
Eccles, J. V.
2014-12-01
The electric field structure of the equatorial ionosphere near sunset has implications on the development of plasma irregularities. The details of the development of the electric fields are examined using a global ionosphere-electrodynamics model. The results of simulations of simplified conditions show the influence of the arrangement of the solar terminator with the magnetic meridian. The relationships of the Curl-Free mechanism, the Hall Current Divergence mechanism, and the role of the Equatorial Electorjet region control the magnitude and timing of the Prereversal Enhancement of the zonal electric field as well as its altitude profile above the F region bottomside. Realistic conditions for 'equinox' and 'solstice' solar terminator arrangments are presented. The stability of the low-latitude ionosphere has a demonstrated relationship with the solar terminator alignment [Tsunoda, JGR, 1981]. The profile of the vertical and zonal electric field below the bottomside is then examined using the global model to explore the controlling elements of the electric field structure and the growth rates of the Rayleigh-Taylor instability and Collisional Shear instability.Tsunoda, R. T. (1985), Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res., 90(A1),447-456, doi:10.1029/JA090iA01p00447.
Regimes of the magnetized Rayleigh endash Taylor instability
International Nuclear Information System (INIS)
Winske, D.
1996-01-01
Hybrid simulations with kinetic ions and massless fluid electrons are used to investigate the linear and nonlinear behavior of the magnetized Rayleigh endash Taylor instability in slab geometry with the plasma subject to a constant gravity. Three regimes are found, which are determined by the magnitude of the complex frequency ω=ω r +iγ. For |ω| i (Ω i = ion gyrofrequency), one finds the typical behavior of the usual fluid regime, namely the development of open-quote open-quote mushroom-head close-quote close-quote spikes and bubbles in the density and a strongly convoluted boundary between the plasma and magnetic field, where the initial gradient is not relaxed much. A second regime, where |ω|∼0.1Ω i , is characterized by the importance of the Hall term. Linearly, the developing flute modes are more finger-like and tilted along the interface; nonlinearly, clump-like structures form, leading to a significant broadening of the interface. The third regime is characterized by unmagnetized ion behavior, with |ω|∼Ω i . Density clumps, rather than flutes, form in the linear stage, while nonlinearly, longer-wavelength modes that resemble those in fluid regime dominate. Finite Larmor radius stabilization of short-wavelength modes is observed in each regime. copyright 1996 American Institute of Physics
No Escape from the Supernova! Magnetic Imprisonment of Dusty Pinballs by a Supernova Remnant arXiv
Fry, Brian J.; Ellis, John R.
Motivated by recent measurements of deposits of $^{60}$Fe on the ocean floor and the lunar surface, we model the transport of dust grains containing $^{60}$Fe from a near-Earth (i.e., within 100 pc) supernova (SN). We inject dust grains into the environment of a SN remnant (SNR) and trace their trajectories using a magnetohydrodynamic description. We assume the interstellar medium (ISM) magnetic fields are turbulent, and are amplified by the SNR shock, while the SN wind and ejecta fields are negligible. We examine the various influences on the dust grains within the SNR to determine when/if the dust decouples from the plasma, how much it is sputtered, and where within the SNR the dust grains are located. We find that Rayleigh-Taylor instabilities are important for dust survival, as they influence the location of the SN's reverse shock. We find that the presence of a magnetic field within the shocked ISM material limits the passage of SN dust grains, with the field either reflecting or trapping the grains with...
Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser
Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.
2008-04-01
In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.
International Nuclear Information System (INIS)
Sharma, Prerana; Chhajlani, R. K.
2014-01-01
The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In the case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to be modified due to the viscosity and quantum correction in which the Jeans condition of instability is influenced only by quantum parameter. The other non-gravitating Alfven mode in this direction is affected by finite electrical resistivity, spin induced magnetization, and viscosity. The numerical study for the growth rate of Jeans instability is carried out for both in the transverse and longitudinal direction of propagation to the magnetic field. The effect of various parameters on the growth rate of Jeans instability in quantum plasma is analysed
Awe, Thomas
2017-10-01
Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.
Comparative Study of Magnetic Instabilities in Cerium Compounds
International Nuclear Information System (INIS)
Pedrazzini, Pablo
2003-01-01
The variety of new phases and physical phenomena discovered in intermetallic compounds containing Rare Earths or Actinides has motivated, during the last four decades, the sustained study of their magnetic phase diagrams.The current interest is focused on the investigation of the region of the phase diagram where the magnetic order of Cerium, Ytterbium and Uranium based systems is destabilized.In this region different behaviours have been detected, such as non conventional superconductivity and the anomalous dependencies of the thermal, magnetic and transport properties at very low temperatures, associated to non-Fermi liquid behaviour.A simple model, the Doniach diagram, has guided the interpretation of the destabilization of the magnetic order in the previously mentioned systems.However, most of the systems that have been studied so far cannot be described within this model.This fact has motivated the development of a phenomenological classification of phase diagrams that has been mostly applied to cerium based compounds.This classification defines three types of phase diagrams, that can be distinguished by the way in which the magnetic transition is suppressed when a control parameter (such as doping or pressure) is driven towards its critical value.Within this scenario, we study the suppression of the antiferromagnetic order of the intermetallic compounds CeIn 3 , CeRh 2 Si 2 and CePd 2 Al 3 as a function of Ce-ligand alloying.The resulting systems, CeIn 3-x Sn x , Ce(Cu x Rh 1-x ) 2 Si 2 and CePd 2-x Ni x Al 3 , present different crystalline structures and the effects produced by the alloying process are different in each case.We analyse the resulting magnetic phase diagrams, and compare them with the above mentioned phenomenological classification.With such a purpose, we study in detail the region in which the magnetic instability takes place, in the proximity of the respective critical concentrations.Taking into account both our results and those reported in
International Nuclear Information System (INIS)
Cohen, B.I.
1987-01-01
The existence of compact dispersion relations for parametric instabilities of coherent electromagnetic waves in magnetized plasmas is addressed here. In general, comprehensive dispersion relations for parametric instabilities in unmagnetized plasmas become more complicated in the presence of an applied time-independent magnetic field. This is demonstrated with a fluid perturbation theory. A compact dispersion relation for parametric instabilities in unmagnetized plasma is heuristically extended here to the case of a magnetized plasma. This dispersion relation gives the correct results in a variety of circumstances of interest in considering electron cyclotron heating applications
Magnetic reconnection mediated by hyper-resistive plasmoid instability
Energy Technology Data Exchange (ETDEWEB)
Huang, Yi-Min; Bhattacharjee, A. [Center for Integrated Computation and Analysis of Reconnection and Turbulence, Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Max Planck-Princeton Center for Plasma Physics and Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Forbes, Terry G. [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States)
2013-08-15
Magnetic reconnection mediated by the hyper-resistive plasmoid instability is studied with both linear analysis and nonlinear simulations. The linear growth rate is found to scale as S{sub H}{sup 1/6} with respect to the hyper-resistive Lundquist number S{sub H}≡L{sup 3}V{sub A}/η{sub H}, where L is the system size, V{sub A} is the Alfvén velocity, and η{sub H} is the hyper-resistivity. In the nonlinear regime, reconnection rate becomes nearly independent of S{sub H}, the number of plasmoids scales as S{sub H}{sup 1/2}, and the secondary current sheet length and width both scale as S{sub H}{sup −1/2}. These scalings are consistent with a heuristic argument assuming secondary current sheets are close to marginal stability. The distribution of plasmoids as a function of the enclosed flux ψ is found to obey a ψ{sup −1} power law over an extended range, followed by a rapid fall off for large plasmoids. These results are compared with those from resistive magnetohydrodynamic studies.
Parametric instabilities in an electron beam-plasma system: magnetic field effects
International Nuclear Information System (INIS)
Gell, Y.; Levush, B.; Nakach, R.
1981-09-01
The effects of a magnetic field on the excitation of low-frequency parametric instabilities in a beam-plasma system are considered. The dispersion relation of the three-dimensional beamless configuration, is analytically evaluated for an electrostatic pump wave having a finite wave-vector parallel to the magnetic field. The results of this analysis serve as a guide to the numerical study of the stability of the involved system including the beam. As for the one-dimensional case, one finds that two low-frequency electrostatic instability branches having different growth rates may exist simultaneously. The effects of the magnetic field on these instabilities could be summarized as follows: the small growth rate instability is negligibly small when the electron gyrofrequency is about equal to the pump wave frequency. This instability is magnetic field independent for high enough values of the field. When the plasma electron Debye length is greater than the beam electron Debye length, a large growth rate instability is excited and appears to be weakly dependent on the magnetic field, while the two instability branches are quite sensitive to change of the magnetic field, when the two Debye lengths are equal. Other characteristics of this system are also discussed
Kinetic theory of instabilities responsible for magnetic turbulence in laboratory rotating plasma
International Nuclear Information System (INIS)
Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Pustovitov, V.D.; Erokhin, N.N.; Konovalov, S.V.
2008-01-01
The problem of instabilities responsible for magnetic turbulence in collisionless laboratory rotating plasma is investigated. It is shown that the standard mechanism of driving the magnetorotational instability (MRI), due to negative rotation frequency gradient, disappears in such a plasma. Instead of it, a new driving mechanism due to plasma pressure gradient is predicted
Alfven instability and micromagnetic islands in a plasma with sheared magnetic fields
International Nuclear Information System (INIS)
Hsu, J.; Kaw, P.; Chen, L.
1977-07-01
The normal mode equation for coupled drift and Alfven waves in a finite-β nonuniform plasma with a sheared magnetic field is solved, in the slab geometry, to investigate the instability of slow Alfven waves. It is shown, that, besides having an appreciable growth rate, the instability also produces microscopic ''tearing'' of the rational surfaces which has important implications for anomalous transport
International Nuclear Information System (INIS)
Huang Yimin; Hassam, A.B.
2003-01-01
The ideal magnetohydrodynamics stability of a Dean flow plasma supported against centrifugal forces by an axial magnetic field is studied. Only axisymmetric perturbations are allowed for simplicity. Two distinct but coupled destabilization mechanisms are present: flow shear (magnetorotational instability) and magnetic buoyancy (Parker instability). It is shown that the flow shear alone is likely insufficient to destabilize the plasma, but the magnetic buoyancy instability could occur. For a high Mach number (M S ), high Alfven Mach number (M A ) system with M S M A > or approx. πR/a (R/a is the aspect ratio), the Parker instability is unstable for long axial wavelength modes. Implications for the centrifugal confinement approach to magnetic fusion are also discussed
Local instabilities in magnetized rotational flows: A short-wavelength approach
Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide
2014-01-01
We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...
Influence of a magnetic field on the Taylor instability in magnetic fluids
International Nuclear Information System (INIS)
Vislovich, A.N.
1986-01-01
The influence of a magnetic field on the stability of Couette flow between rotating cylinders is investigated in the narrow gap approximation. The governing mechanism of the instability is the classical Taylor mechanism. It was shown that rotation of the outer cylinder in the same direction as the inner does not result in a qualitative change in the structure of the theshold perturbations. When the cylinders rotate in different directions in an ordinary fluid, the Taylor vortices develop in the domain of the gap between the inner cylinder and the fluid layer for which v 0 = 0
Low-frequency instabilities of a warm plasma in a magnetic field
International Nuclear Information System (INIS)
Smith, D.F.; Hollweg, J.V.
1977-01-01
The marginal stability of a plasma carrying current along the static magnetic field with isotropic Maxwellian ions and isotropic Maxwellian electrons drifting relative to the ions is investigated. The complete electromagnetic dispersion relation is studied using numerical techniques; the electron sums are restricted to three terms which limits the analysis to frequencies much less than the electron gyro-frequency, but includes frequencies somewhat above the ion gyro-frequency. A 'kink-like' instability and an instability of the Alfven mode are found to have the lowest threshold drift velocities in most cases. In fact the threshold drift for the kink-like instability can be significantly less than the ion thermal speed. Electrostatic and electromagnetic ion-cyclotron instabilities are also found as well as the electro-static ion-acoustic instability. No instability of the fast magnetosonic mode was found. The stability analysis provides only threshold drift velocities and gives no information about growth rates. (author)
Magnetically-Driven Convergent Instability Growth platform on Z.
Energy Technology Data Exchange (ETDEWEB)
Knapp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benage, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jenkins, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-01
Hydrodynamic instability growth is a fundamentally limiting process in many applications. In High Energy Density Physics (HEDP) systems such as inertial confinement fusion implosions and stellar explosions, hydro instabilities can dominate the evolution of the object and largely determine the final state achievable. Of particular interest is the process by which instabilities cause perturbations at a density or material interface to grow nonlinearly, introducing vorticity and eventually causing the two species to mix across the interface. Although quantifying instabilities has been the subject of many investigations in planar geometry, few have been done in converging geometry. During FY17, the team executed six convergent geometry instability experiments. Based on earlier results, the platform was redesigned and improved with respect to load centering at installation making the installation reproducible and development of a new 7.2 keV, Co He-a backlighter system to better penetrate the liner. Together, the improvements yielded significantly improved experimental results. The results in FY17 demonstrate the viability of using experiments on Z to quantify instability growth in cylindrically convergent geometry. Going forward, we will continue the partnership with staff and management at LANL to analyze the past experiments, compare to hydrodynamics growth models, and design future experiments.
Hydrodynamic instabilities in astrophysics and ICF
International Nuclear Information System (INIS)
Paul Drake, R.
2005-01-01
Inertial fusion systems and astrophysical systems both involve hydrodynamic effects, including sources of pressure, shock waves, rarefactions, and plasma flows. In the evolution of such systems, hydrodynamic instabilities naturally evolve. As a result, a fundamental understanding of hydrodynamic instabilities is necessary to understand their behavior. In addition, high-energy-density facilities designed for ICF purposes can be used to provide and experimental basis for understanding astrophysical processes. In this talk. I will discuss the instabilities that appear in astrophysics and ICF from the common perspective of the basic mechanisms at work. Examples will be taken from experiments aimed at ICF, from astrophysical systems, and from experiments using ICF systems to address issues in astrophysics. The high-energy-density research facilities of today can accelerate small but macroscopic amounts of material to velocities above 100 km/s, can heat such material to temperature above 100 eV, can produce pressures far above a million atmospheres (10''12 dybes/cm''2 or 0.1 TPascal), and can do experiments under these conditions that address basic physics issues. This enables on to devise experiments aimed directly at important process such as the Rayleigh Taylor instability at an ablating surface or at an embedded interface that is accelerating, the Richtmeyer Meshkov evolution of shocked interfaces, and the Kelvin-Helmholtz instability of shear flows. The talk will include examples of such phenomena from the laboratory and from astrophysics, and will discuss experiments to study them. (Author)
Experiments on helical modes in magnetized thin foil-plasmas
Yager-Elorriaga, David
2017-10-01
This paper gives an in-depth experimental study of helical features on magnetized, ultrathin foil-plasmas driven by the 1-MA linear transformer driver at University of Michigan. Three types of cylindrical liner loads were designed to produce: (a) pure magneto-hydrodynamic (MHD) modes (defined as being void of the acceleration-driven magneto-Rayleigh-Taylor instability, MRT) using a non-imploding geometry, (b) pure kink modes using a non-imploding, kink-seeded geometry, and (c) MRT-MHD coupled modes in an unseeded, imploding geometry. For each configuration, we applied relatively small axial magnetic fields of Bz = 0.2-2.0 T (compared to peak azimuthal fields of 30-40 T). The resulting liner-plasmas and instabilities were imaged using 12-frame laser shadowgraphy and visible self-emission on a fast framing camera. The azimuthal mode number was carefully identified with a tracking algorithm of self-emission minima. Our experiments show that the helical structures are a manifestation of discrete eigenmodes. The pitch angle of the helix is simply m / kR , from implosion to explosion, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Thus, the pitch angle increases (decreases) during implosion (explosion) as R becomes smaller (larger). We found that there are one, or at most two, discrete helical modes that arise for magnetized liners, with no apparent threshold on the applied Bz for the appearance of helical modes; increasing the axial magnetic field from zero to 0.5 T changes the relative weight between the m = 0 and m = 1 modes. Further increasing the applied axial magnetic fields yield higher m modes. Finally, the seeded kink instability overwhelms the intrinsic instability modes of the plasma. These results are corroborated with our analytic theory on the effects of radial acceleration on the classical sausage, kink, and higher m modes. Work supported by US DOE award DE-SC0012328, Sandia National Laboratories
3D modeling of instabilities in multi-wire Z pinches
International Nuclear Information System (INIS)
Haill, T.A.; Desjarlais, M.P.; Marder, B.M.; Robinson, A.C.
1998-01-01
Recent success in generating large x-ray energies and powers from large wire-number Z pinch arrays has revived a strong interest in MHD and magneto-Rayleigh-Taylor (RT) instabilities. Two-dimensional r-z simulations of Z pinches typically start calculations with a preformed plasma sheath and seed RT instabilities with a random density perturbation. The magnitude of the random density perturbation is tuned so that the calculated x-ray radiation pulse matches the amplitude and pulse-width of experimentally measured data. While these calculations have been extremely useful in understanding the effect of RT instabilities on experiments, they do not capture all of the three-dimension structure seen in experimental images and are not truly predictive in nature. To remedy this shortcoming Sandia is developing a 3D nature of Z pinch dynamics, namely the merger of arrays of wires into a plasma sheath
Possible parametric instabilities of beat waves in a transversely magnetized plasma
International Nuclear Information System (INIS)
Salimullah, M.
1988-05-01
The effect of an external magnetic field on the various possible parametric instabilities of the longitudinal beat wave at the difference frequency of two incident laser beams in a hot plasma has been thoeretically investigated. The kinetic equation is employed to obtain the nonlinear response of the magnetized electrons due to the nonlinear coupling of the beat wave with the low-frequency electrostatic plasma modes. It is noted that the growth rates of the three-wave and the four-wave parametric instabilities can be influenced by the external transverse magnetic field. (author). 20 refs, 3 figs
Jeans instability of rotating magnetized quantum plasma: Influence of radiation
Energy Technology Data Exchange (ETDEWEB)
Joshi, H., E-mail: hjoshi8525@yahoo.com [Department of Physics, Mewar University, Chittorgarh (Raj.) India (India); Pensia, R. K. [Department of Physics, Govt. Girls College, Neemuch (M.P.) India (India)
2015-07-31
The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.
Energy Technology Data Exchange (ETDEWEB)
Bashtovoi, V., E-mail: bashv@rambler.ru [Belarussian National Technical University, 65 Nezavisimosti Ave., Minsk 220013 (Belarus); Reks, A. [Belarussian National Technical University, 65 Nezavisimosti Ave., Minsk 220013 (Belarus); Baev, A. [Institute of Applied Physics of NAS of Belarus, 16 Akademicheskaya str., Minsk 220072 (Belarus); Mansoor, Al-Jhaish Taha Malik [Belarussian National Technical University, 65 Nezavisimosti Ave., Minsk 220013 (Belarus)
2017-06-01
Theoretical and experimental results on deformation and disintegration on parts (topological instability) of semi-bounded magnetic fluid drop placed on horizontal plate in the presence of gravity and vertical external uniform magnetic field, and the influence of acoustic wave on these processes, as well as an experimental results of acoustic fountain on free surface of magnetic fluid are presented. The role of individual mechanisms leading to disintegration is analyzed, and analytical relationships and experimental dependences for critical parameters are established.
International Nuclear Information System (INIS)
Shimizu, T.; Kondoh, K.
2013-01-01
The 3D instability of the spontaneous fast magnetic reconnection process is studied with magnetohydrodynamics (MHD) simulations, where the 2D model of the spontaneous fast magnetic reconnection is destabilized in three dimension. As well known in many 2D numerical MHD studies, when a 1D current sheet is destabilized with the current-driven anomalous resistivity, the 2D Petschek type fast magnetic reconnection is established. This paper shows that the 2D Petschek type fast magnetic reconnection can be destabilized in three dimension by an initial resistive disturbance which includes a weak fluctuation in the sheet current direction, i.e., along the magnetic neutral line. The resulting 3D fast magnetic reconnection finally becomes intermittent and random through a 3D instability. In addition, it is also shown that the 3D instability is suppressed by the uniform resistivity. It suggests that the 3D instability is caused in the Petschek-type reconnection process which is characterized by a strongly localized magnetic diffusion region and the slow shock acceleration of the plasma jets and is suppressed in the Sweet-Parker type reconnection process
Parametric instabilities in magnetized bi-ion and dusty plasmas
Indian Academy of Sciences (India)
-ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.
Suppression of Instabilities Generated by an Anti-Damper with a Nonlinear Magnetic Element in IOTA
Energy Technology Data Exchange (ETDEWEB)
Stern, E. [Fermilab
2018-04-01
The Integrable Optics Test Accelerator (IOTA) storage ring is being constructed at Fermilab as a testbed for new accelerator concepts. One important series of experiments tests the use of a novel nonlinear magnetic insert to damp coherent instabilities. To test the damping power of the element, an instability of desired strength may be intentionally excited with an anti-damper. We report on simulations of beam stabilization using the Synergia modeling framework over ranges of driving and damping strengths.
Energy Technology Data Exchange (ETDEWEB)
Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)
2013-10-15
The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism to generate shocks.
THE SATURATION OF SASI BY PARASITIC INSTABILITIES
International Nuclear Information System (INIS)
Guilet, Jerome; Sato, Jun'ichi; Foglizzo, Thierry
2010-01-01
The standing accretion shock instability (SASI) is commonly believed to be responsible for large amplitude dipolar oscillations of the stalled shock during core collapse, potentially leading to an asymmetric supernovae explosion. The degree of asymmetry depends on the amplitude of SASI, but the nonlinear saturation mechanism has never been elucidated. We investigate the role of parasitic instabilities as a possible cause of nonlinear SASI saturation. As the shock oscillations create both vorticity and entropy gradients, we show that both Kelvin-Helmholtz and Rayleigh-Taylor types of instabilities are able to grow on a SASI mode if its amplitude is large enough. We obtain simple estimates of their growth rates, taking into account the effects of advection and entropy stratification. In the context of the advective-acoustic cycle, we use numerical simulations to demonstrate how the acoustic feedback can be decreased if a parasitic instability distorts the advected structure. The amplitude of the shock deformation is estimated analytically in this scenario. When applied to the set up of Fernandez and Thompson, this saturation mechanism is able to explain the dramatic decrease of the SASI power when both the nuclear dissociation energy and the cooling rate are varied. Our results open new perspectives for anticipating the effect, on the SASI amplitude, of the physical ingredients involved in the modeling of the collapsing star.
Hydrodynamic instability experiments on the Nova laser
International Nuclear Information System (INIS)
Remington, B.A.; Glendinning, S.G.; Kalantar, D.H.
1996-08-01
Hydrodynamic instabilities in compressible plasmas play a critical role in the fields of inertial confinement fusion (ICF), astrophysics, and high energy-density physics. We are, investigating hydrodynamic instabilities such as the Rayleigh-Taylor (RT) instability, at high compression at the Nova laser in a series of experiments, both in planar and in spherical geometry. In the indirect drive approach, a thermal x-ray drive is generated by focusing the Nova laser beams into a Au cylindrical radiation cavity (hohlraum). Issues in the instability evolution that we are examining are shock propagation and foil compression, RT growth of 2D versus 3D single-mode perturbations, drive pulse shape, perturbation location at the ablation front versus at an embedded interface, and multimode perturbation growth and nonlinear saturation. The effects of convergence on RT growth are being investigated both with hemispherical implosions of packages mounted on the hohlraum wall and with spherical implosions of capsules at the center of the hohlraum. Single-mode perturbations are pre-imposed at the ablation front of these capsules as a seed for the RT growth. In our direct drive experiments, we are investigating the effect of laser imprinting and subsequent RT growth on planar foils, both at λ Laser = 1/3 μm and 1/2 μm. An overview is given describing recent progress in each of these areas
Global sawtooth instability measured by magnetic coils in the JET tokamak
International Nuclear Information System (INIS)
Duperrex, P.A.; Pochelon, A.; Edwards, A.; Snipes, J.
1992-05-01
This paper describes measurements of the sawtooth instability in JET, in which the instability wave function is shown to extend to the edge where it is measured using magnetic coils. The numerous magnetic probes in JET allow the time evolution of the (n=0,1,2,3) toroidal Fourier components to be analysed. The n=1 magnetic component is similar to the m=1 soft X-ray centroid motion. This fact indicates the potential of edge signals in retrieving the poloidal mode spectrum of the q=m/n=1 surface. The spectrum evolution of the instability is compared for normal sawteeth (NST) and quasi-stabilised 'monster' sawteeth (MST). The spectrum is slowly decreasing with n for NST and all the components belong to one ballooning-like deformation, whereas MST show a large n=1 kink-like motion with small and independent accompanying higher n modes. Important equilibrium changes occur already during the growth of the instability and the growth rate is much faster than exponential. Both these facts imply a non-linear nature of the instability growth. Parametric dependence of growthrates, amplitudes, toroidal spectrum shape, etc., are studied to characterize the NST and MST instabilities. (author) 20 figs., 2 tabs., 46 refs
Rao, Pooja; She, Dan; Lim, Hyunkyung; Glimm, James
2015-11-01
The qualitative and quantitative effect of initial conditions (linear and non-linear) and high Mach number (1.3 and 1.45) is studied on the turbulent mixing induced by the Richtmyer-Meshkov instability in idealized ICF conditions. The Richtmyer-Meshkov instability seeds Rayleigh-taylor instabilities in ICF experiments and is one of the factors that contributes to reduced performance of ICF experiments. Its also found in collapsing cores of stars and supersonic combustion. We use the Stony Brook University code, FronTier, which is verified via a code comparison study against the AMR multiphysics code FLASH, and validated against vertical shock tube experiments done by the LANL Extreme Fluids Team. These simulations are designed as a step towards simulating more realistic ICF conditions and quantifying the detrimental effects of mixing on the yield.
Predictions of the microstructural contribution to instability seeding in beryllium ICF capsules
International Nuclear Information System (INIS)
Hoffman, Nelson M.; Swift, Damian C.
2004-01-01
The constitutive properties of beryllium are anisotropic. During the implosion of an inertial confinement fusion capsule, it is possible for instabilities to be seeded from the microstructure. We are using experiment and theory to place constraints on the microstructure and loading history. The relation between surface roughness and amplitude of ablative Rayleigh-Taylor instabilities has been characterized well. Here we present a method of relating the microstructure to an equivalent surface roughness, using continuum mechanical simulations of shock waves in polycrystalline beryllium. Beryllium was treated using a single-crystal plasticity model developed using ab initio quantum mechanics for the equation of state and elasticity, and laser-driven shock wave measurements to calibrate representations of dislocation and disclination dynamics
A Computational Study of Richtmyer-Meshkov Instability with Surface Tension
Francois, Marianne; Velechovsky, Jan; Jibben, Zach; Masser, Thomas; LANL Collaboration
2017-11-01
We have added the capability to model surface tension in our adaptive mesh refinement compressible flow solver, xRage. Our surface tension capability employs the continuum surface force to model surface tension and the height function method to compute curvatures. We have verified our model implementation for the static and oscillating droplets test cases and the linear regime of the Rayleigh-Taylor instability. With this newly added capability, we have performed a numerical study of the effects of surface tension on single-mode and multi-mode Richtmyer-Meshkov instability. This work was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52 - 06NA25396.
International Nuclear Information System (INIS)
Wang Yansong; Kulsrud, Russell; Ji, Hantao
2008-01-01
A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients, and modest collisions as in the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of the cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough e-foldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (lower-hybrid-drift instability, modified two-stream instability, etc.) studied previously, we believe the instability we found is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross-current-layer direction.
International Nuclear Information System (INIS)
Prajapati, R.P.
2013-01-01
The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.
Mostert, W.; Wheatley, V.; Samtaney, Ravi; Pullin, D. I.
2015-01-01
The effects of seed magnetic fields on the Richtmyer-Meshkov instability driven by converging cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Two different seed field configurations at various strengths are applied over a cylindrical or spherical density interface which has a single-dominant-mode perturbation. The shocks that excite the instability are generated with appropriate Riemann problems in a numerical formulation and the effect of the seed field on the growth rate and symmetry of the perturbations on the density interface is examined. We find reduced perturbation growth for both field configurations and all tested strengths. The extent of growth suppression increases with seed field strength but varies with the angle of the field to interface. The seed field configuration does not significantly affect extent of suppression of the instability, allowing it to be chosen to minimize its effect on implosion distortion. However, stronger seed fields are required in three dimensions to suppress the instability effectively.
Mostert, W.
2015-10-06
The effects of seed magnetic fields on the Richtmyer-Meshkov instability driven by converging cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Two different seed field configurations at various strengths are applied over a cylindrical or spherical density interface which has a single-dominant-mode perturbation. The shocks that excite the instability are generated with appropriate Riemann problems in a numerical formulation and the effect of the seed field on the growth rate and symmetry of the perturbations on the density interface is examined. We find reduced perturbation growth for both field configurations and all tested strengths. The extent of growth suppression increases with seed field strength but varies with the angle of the field to interface. The seed field configuration does not significantly affect extent of suppression of the instability, allowing it to be chosen to minimize its effect on implosion distortion. However, stronger seed fields are required in three dimensions to suppress the instability effectively.
Temperature factor for magnetic instability conditions of type – II superconductors
International Nuclear Information System (INIS)
Romanovskii, V.
2014-01-01
Highlights: • Electrodynamics and thermal diffusion phenomena in superconductors have the fission-chain-reaction nature. • There exist nontrivial relations between stability conditions, allowable losses and stable superconductor’s overheating. • The magnetic stability conditions are direct consequence of the states when the heat releases exceeds the critical energy. • The critical energy of magnetic instability depends on the nature of an external disturbance. • The non-isothermal magnetic instability conditions of the critical state are formulated. - Abstract: The macroscopic development of interrelated electrodynamics and thermal states taking place both before and after instability onset in type-II superconductors are studied using the critical state and the flux creep concepts. The physical mechanisms of the non-isothermal formation of the critical state are discussed solving the set of unsteady thermo-electrodynamics equations taking into consideration the unknown moving penetration boundary of the magnetic flux. To make it, the numerical method, which allows to study diffusion phenomena with unknown moving phase-two boundary, is developed. The corresponding non-isothermal flux jump criteria are written. It is proved for the first time that, first, the diffusion phenomena in superconductors have the fission-chain-reaction nature, second, the stability conditions, losses in superconductor and its stable overheating before instability onset are mutually dependent. The results are compared with those following from the existing magnetic instability theory, which does not take into consideration the stable temperature increase of superconductor before the instability onset. It is shown that errors of isothermal approximation are significant for modes closed to adiabatic ones. Therefore, the well-known adiabatic flux jump criterion limits the range of possible stable superconducting states since a correct determination of their stability states must
International Nuclear Information System (INIS)
Mamun, A.A.; Russel, S.M.; Mendoza-Briceno, C.A.; Alam, M.N.; Datta, T.K.; Das, A.K.
1999-05-01
A rigorous theoretical investigation has been made of multi-dimensional instability of obliquely propagating electrostatic solitary structures in a hot magnetized nonthermal dusty plasma which consists of a negatively charged hot dust fluid, Boltzmann distributed electrons, and nonthermally distributed ions. The Zakharov-Kuznetsov equation for the electrostatic solitary structures that exist in such a dusty plasma system is derived by the reductive perturbation method. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation expansion method. The nature of these solitary structures, the instability criterion, and their growth rate depending on dust-temperature, external magnetic field, and obliqueness are discussed. The implications of these results to some space and astrophysical dusty plasma situations are briefly mentioned. (author)
Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere
Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.
2018-01-01
Aims: Twisted magnetic flux ropes (MFRs) in the solar atmosphere have been researched extensively because of their close connection to many solar eruptive phenomena, such as flares, filaments, and coronal mass ejections (CMEs). In this work, we performed a set of 3D isothermal magnetohydrodynamic (MHD) numerical simulations, which use analytical twisted MFR models and study dynamical processes parametrically inside and around current-carrying twisted loops. We aim to generalize earlier findings by applying finite plasma β conditions. Methods: Inside the MFR, approximate internal equilibrium is obtained by pressure from gas and toroidal magnetic fields to maintain balance with the poloidal magnetic field. We selected parameter values to isolate best either internal or external kink instability before studying complex evolutions with mixed characteristics. We studied kink instabilities and magnetic reconnection in MFRs with low and high twists. Results: The curvature of MFRs is responsible for a tire tube force due to its internal plasma pressure, which tends to expand the MFR. The curvature effect of toroidal field inside the MFR leads to a downward movement toward the photosphere. We obtain an approximate internal equilibrium using the opposing characteristics of these two forces. A typical external kink instability totally dominates the evolution of MFR with infinite twist turns. Because of line-tied conditions and the curvature, the central MFR region loses its external equilibrium and erupts outward. We emphasize the possible role of two different kink instabilities during the MFR evolution: internal and external kink. The external kink is due to the violation of the Kruskal-Shafranov condition, while the internal kink requires a safety factor q = 1 surface inside the MFR. We show that in mixed scenarios, where both instabilities compete, complex evolutions occur owing to reconnections around and within the MFR. The S-shaped structures in current distributions
Parametric instabilities in a magnetized and collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Phalswal, D R; Dube, A [Punjabi Univ., Patiala (India). Dept. of Physics
1980-09-01
The dispersion relation for a magnetized, collisional and hot plasma in the presence of a pump wave is developed for the case where the pump frequency ..omega../sub 0/ is large compared with the cyclotron frequency ..omega..sub(c) and the plasma frequency ..omega..sub(p). Formulae for the growth rate, the damping rate for the free electron plasma wave and the threshold power are derived and discussed numerically under different conditions. It is found that in a hot plasma (for magnetic fields with ..omega..sub(c)/..omega..sub(p) = 1 and 10) the threshold power Psub(T) is less than or greater than that in a cold plamsa for the (Re..omega../sub 2/)sub(+) or (Re..omega../sub 2/)sub(-) modes respectively. In a weak magnetic field (..omega..sub(c)/..omega..sub(p) = 0.1), Psub(T) does not vary with the direction theta of the magnetic field for the (Re..omega../sub 2/) sub(+) mode. However, Psub(T) for the (Re..omega../sub 2/)sub(-) mode is a minimum at theta = 30deg. and 10deg. for ..omega..sub(c)/ ..omega..sub(p) = 1 and 10 respectively, and it becomes very large (10/sup 5/-10/sup 7/ times its value in a cold unmagnetized plasma) for ..omega..sub(c)/..omega..sub(p) = 0.1. The results for the growth are found to be just the reverse of those for the threshold power.
Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets
Energy Technology Data Exchange (ETDEWEB)
Antipov, Sergey [Univ. of Chicago, IL (United States)
2017-03-01
Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.
Riquelme, Mario; Quataert, Eliot; Verscharen, Daniel
2018-02-01
We use particle-in-cell (PIC) simulations of a collisionless, electron–ion plasma with a decreasing background magnetic field, {\\boldsymbol{B}}, to study the effect of velocity-space instabilities on the viscous heating and thermal conduction of the plasma. If | {\\boldsymbol{B}}| decreases, the adiabatic invariance of the magnetic moment gives rise to pressure anisotropies with {p}| | ,j> {p}\\perp ,j ({p}| | ,j and {p}\\perp ,j represent the pressure of species j (electron or ion) parallel and perpendicular to B ). Linear theory indicates that, for sufficiently large anisotropies, different velocity-space instabilities can be triggered. These instabilities in principle have the ability to pitch-angle scatter the particles, limiting the growth of the anisotropies. Our simulations focus on the nonlinear, saturated regime of the instabilities. This is done through the permanent decrease of | {\\boldsymbol{B}}| by an imposed plasma shear. We show that, in the regime 2≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated ion and electron pressure anisotropies are controlled by the combined effect of the oblique ion firehose and the fast magnetosonic/whistler instabilities. These instabilities grow preferentially on the scale of the ion Larmor radius, and make {{Δ }}{p}e/{p}| | ,e≈ {{Δ }}{p}i/{p}| | ,i (where {{Δ }}{p}j={p}\\perp ,j-{p}| | ,j). We also quantify the thermal conduction of the plasma by directly calculating the mean free path of electrons, {λ }e, along the mean magnetic field, finding that {λ }e depends strongly on whether | {\\boldsymbol{B}}| decreases or increases. Our results can be applied in studies of low-collisionality plasmas such as the solar wind, the intracluster medium, and some accretion disks around black holes.
Smoothing and instability with magnetic field in a non-uniformly laser-irradiated planar target
International Nuclear Information System (INIS)
Bell, A.R.; Epperlein, E.M.
1986-01-01
Calculations are presented of the magneto-hydrodynamic response of a planar target to non-uniformities in energy deposition by a laser. The amplitude of the non-uniformities are assumed small and the equations are linearised in small perturbations about the solution for steady planar ablation driven by uniform laser energy deposition. The grad(n)xgrad(T) magnetic field source is included, along with Nernst convection and the Righi-Leduc heat flow. The magnetic field is shown to give a small increase in smoothing. A source term for magnetic field is included to simulate the effects of the Weibel instability. The instability is not strong enough to overcome the smoothing processes under the present assumptions. (author)
A new purely growing instability in a strongly magnetized nonuniform pair plasma
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P.K.
2007-01-01
It is shown that a strongly magnetized nonuniform electron-positron (hereafter referred to as e-p or pair) plasma is unstable against low-frequency (in comparison with the electron gyrofrequency) electrostatic oscillations. For this purpose, a dispersion relation is derived by using the Poisson equation as well as the electron and positron continuity equations with the guiding center drifts for the electron and positron fluids. The dispersion relation admits a purely growing instability in the presence of the equilibrium density and magnetic field inhomogeneities. Physically, instability arises because of the inhomogeneous magnetic field induced differential electron and positron density fluctuations, which do not keep in phase with the electrostatic potential arising from the charge separation in our nonuniform pair plasmas
Effect of rotation on Jeans instability of magnetized radiative quantum plasma
Joshi, H.; Pensia, R. K.
2017-03-01
The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.
A simplified numerical analysis of helical instabilities of arcs in axial magnetic field
International Nuclear Information System (INIS)
Gong Ye; Lu Wenyan; Liu Jinyuan; Zheng Shu; Gong Jiquan
2002-01-01
The energy equations were simplified by the correct electrostatic ordering under electrostatic approximation. The effects of the external axial magnetic field, the current profiles and arc currents on the helical instabilities of arcs were studied by using numerical method. In the presence of the external magnetic field, numerical results show that when the current profile of an arc column is the uniform distribution, the short wavelength perturbation can be stabilized by positive direction magnetic field, whereas the long wavelength perturbation can be stabilized by reverse magnetic field. When the current profile of an arc column has a parabolic distribution, in the short wavelength perturbation case, the effect of positive direction magnetic field on the arc stability is very small. However, its stabilizing effect is enhanced for the long wavelength perturbation. The intermediate and long wavelength perturbations can also be stabilized by reverse magnetic field
International Nuclear Information System (INIS)
Weber, Norbert; Galindo, Vladimir; Stefani, Frank; Weier, Tom
2015-01-01
The Tayler instability is a kink-type, current driven instability that plays an important role in plasma physics but might also be relevant in liquid metal applications with high electrical currents. In the framework of the Tayler–Spruit dynamo model of stellar magnetic field generation (Spruit 2002 Astron. Astrophys. 381 923–32), the question of spontaneous helical (chiral) symmetry breaking during the saturation of the Tayler instability has received considerable interest (Zahn et al 2007 Astron. Astrophys. 474 145–54; Gellert et al 2011 Mon. Not. R. Astron. Soc. 414 2696–701; Bonanno et al 2012 Phys. Rev. E 86 016313). Focusing on fluids with low magnetic Prandtl numbers, for which the quasistatic approximation can be applied, we utilize an integro-differential equation approach (Weber et al 2013 New J. Phys.15 043034) in order to investigate the saturation mechanism of the Tayler instability. Both the exponential growth phase and the saturated phase are analysed in terms of the action of the α and β effects of mean-field magnetohydrodynamics. In the exponential growth phase we always find a spontaneous chiral symmetry breaking which, however, disappears in the saturated phase. For higher degrees of supercriticality, we observe helicity oscillations in the saturated regime. For Lundquist numbers in the order of one we also obtain chiral symmetry breaking of the saturated magnetic field. (paper)
Studies of energetic-ion-driven MHD instabilities in helical plasmas with low magnetic shear
International Nuclear Information System (INIS)
Yamamoto, S.; Ascasibar, E.; Jimenez-Gomez, R.
2012-11-01
We discuss the features of energetic-ion-driven MHD instabilities such as Alfvén eigenmodes (AEs) in three-dimensional magnetic configuration with low magnetic shear and low toroidal field period number (N p ) that are characteristic of advanced helical plasmas. Comparison of experimental and numerical studies in Heliotron J with those in TJ-II indicates that the most unstable AE is global AE (GAE) in low magnetic shear configuration in spite of the iota and the helicity-induced AE (HAE) is also the most unstable AE in the high iota configuration. (author)
Magnetic resonance imaging of traumatic anterior instability of the shoulder
International Nuclear Information System (INIS)
Horii, Motoyuki
1994-01-01
The diagnostic capability of MRI in depicting abnormalities in traumatic anterior instability of the shoulder (TAI) was evaluated with special attention to MR arthrogram enhanced by joint effusion or saline solution. Sixty five shoulders with TAI and 19 control shoulders were scanned using the field gradient echo method (STAGE technique) on axial plane with a 1.0 or 1.5 Tesla system. MR arthrogram was obtained in 36 shoulders with TAI (Group A) and 11 control shoulders (Group C). Conventional MRI was obtained in 29 shoulders with TAI (Group B) and 8 control shoulders (Group D). Abnormalities in Bankart lesion were assessed according to signal intensity and labral shape. Abnormal signal was obtained in 8 shoulders (27.6%) in group B. Changes in shape were seen in 35 shoulders (97.2%) in group A and 18 (62.1%) in group B. Interruption of the anterior capsule was suspected in 3 (8.3%) in group A. Hill-Sachs lesion was suspected in 60 shoulders. Shoulders in the control group showed no abnormal change. Details of Bankart lesion confirmed by subsequent arthroscopy were diagnosed correctly in all of 14 shoulders on MR arthrogram and 8 of 16 shoulders on conventional MRI. These results show that MRI, MR arthrogram in particular, is useful for depicting abnormalities in TAI. (author)
Energy Technology Data Exchange (ETDEWEB)
Falceta-Gonçalves, D. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Kowal, G. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, São Paulo, SP 03828-000 (Brazil)
2015-07-20
In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.
Magnetic instability with increasing hybridization in cerium compounds
International Nuclear Information System (INIS)
Kioussis, N.; Cooper, B.R.; Wills, J.M.
1991-01-01
A synthesis of a phenomenological theory of orbitally driven magnetic ordering of moderately delocalized light rare-earth systems and ab initio electronic structure calculations has been applied to investigate the change in magnetic behavior on going from CeSb to CeTe, both of which have rocksalt structure with a small decrease in lattice parameter. The hybridization-potential matrix elements and the band energies entering the Anderson-lattice Hamiltonian are obtained from linear-muffin-tin-orbital (LMTO) electronic-structure calculations with the Ce 4f states treated as core states. The position of the Ce 4f energy level relative to the Fermi energy and the intra-atomic Coulomb energy U are obtained by use of a sequence of three total-energy supercell calculations with one out of four Ce sites constrained to f n occupation with n=0,1,2, successively. The calculations elucidate the origins, in the electronic structure, of the variation of the f-state resonance width and hybridization potential on going from CeSb to CeTe, and the resultant sensitivity of the hybridization dressing of the crystal-field splitting and the hybridization-induced exchange interactions to chemical environment. The effect of opening up successive angular momentum scattering channels of the ab initio calculated two-ion exchange-interaction matrix on the nature of the magnetic ordering is examined. The calculated magnitude and range dependence of the two-ion exchange interactions changes sharply from CeSb to CeTe, yielding a change in magnetic behavior in qualitative agreement with experiment. The nonlinear hybridization effects on the hybridization dressing of the crystal-field splitting have been examined
Sadeghi-Goughari, Moslem; Jeon, Soo; Kwon, Hyock-Ju
2018-04-01
CNT (Carbon nanotube)-based fluidic systems hold a great potential for emerging medical applications such as drug delivery for cancer therapy. CNTs can be used to deliver anticancer drugs into a target site under a magnetic field guidance. One of the critical issues in designing such systems is how to avoid the vibration induced by the fluid flow, which is undesirable and may even promote the structural instability. The main objective of the present research is to develop a fluid structure interaction (FSI) model to investigate the flutter instability of a cantilevered CNT induced by a magnetic fluid flow under a longitudinal magnetic field. The CNT is assumed to be embedded in a viscoelastic matrix to consider the effect of biological medium around it. To obtain a dynamical model for the system, the Navier-Stokes theory of magnetic-fluid flow is coupled to the Euler-Bernoulli beam model for CNT. The small size effects of the magnetic fluid and CNT are considered through the small scale parameters including Knudsen number (Kn) and the nonlocal parameter. Then, the extended Galerkin's method is applied to solve the FSI governing equations, and to derive the stability diagrams of the system. Results show how the magnetic properties of the fluid flow have an effect on improving the stability of the cantilevered CNT by increasing the flutter velocity.
Magnetic tension and instabilities in the Orion A integral-shaped filament
Schleicher, Dominik R. G.; Stutz, Amelia
2018-03-01
The Orion nebula is a prime example of a massive star-forming region in our galaxy. Observations have shown that gravitational and magnetic energy are comparable in its integral-shaped filament on a scale of ˜1 pc, and that the population of pre-main sequence stars appears dynamically heated compared to the protostars. These results have been attributed to a slingshot mechanism resulting from the oscillation of the filament by Stutz & Gould. In this paper, we show that radially contracting filaments naturally evolve towards a state where gravitational, magnetic, and rotational energy are comparable. While the contraction of the filament will preferentially amplify the axial component of the magnetic field, the presence of rotation leads to a helical field structure. We show how magnetic tension can give rise to a filament oscillation, and estimate a typical time-scale of 0.7 Myr for the motion of the filament to the position of maximum displacement, consistent with the characteristic time-scale of the ejected stars. Furthermore, the presence of helical magnetic fields is expected to give rise to magneto-hydrodynamical instabilities. We show here that the presence of a magnetic field significantly enhances the overall instability, which operates on a characteristic scale of about 1 pc. We expect the physics discussed here to be generally relevant in massive star-forming regions, and encourage further investigations in the future.
Energy Technology Data Exchange (ETDEWEB)
Cowee, Misa M [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Gary, S Peter [Los Alamos National Laboratory
2009-01-01
Two-dimensional hybrid (kinetic ions, massless fluid electrons) simulations of the Kelvin Helmholtz Instability (KHI) for a magnetopause configuration with a magnetic shear across the boundary are carried out to examine how the transport of magnetosheath plasma into the magnetosphere is affected by the shear field. Low magnetic shear conditions where the magnetosheath magnetic field is within 30{sup o} of northward is included in the simulations because KHI is thought to be important for plasma transport only for northward or near-northward interplanetary magnetic field orientations. The simulations show that coherent vortices can grow for these near-northward angles, and that they are sometimes more coherent than for pure northward conditions because the turbulence which breaks-down these vortices is reduced when there are magnetic tension forces. With increasing magnetic shear angle, the growth rate is reduced, and the vortices do not grow to as large of size which reduces the plasma transport. By tracking the individual particle motions diffusion coefficients can be obtained for the system, where the diffusion is not classical in nature but instead has a time dependence resulting from both the increasingly large-scale vortex motion and the small-scale turbulence generated in the break-down of the instabilities. Results indicate that diffusion on the order of 10{sup 9} m{sup 2}/s could possibly be generated by KHI on the flanks of the magnetosphere.
International Nuclear Information System (INIS)
Wang, Y.; Kulsrud, R.; Ji, H.
2008-01-01
A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients and modest collisions as in the Magnetic Reconnection Experiment (MRX) (10). The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough efoldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (LHDI, MTSI et.) studied previously, we believe the instability we find is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross current layer direction
International Nuclear Information System (INIS)
Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.
2009-01-01
Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.
Energy Technology Data Exchange (ETDEWEB)
Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)
2017-01-15
This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates
Sudden contact of a hot liquid with a volatile coolant: instability of the created vapour film
International Nuclear Information System (INIS)
Pion, Agnes
1983-01-01
As the sudden contact of a hot body with a coolant which may evaporate, results, after some delay, in an explosive evaporation, this research thesis proposes an interpretation based on the study of the destabilization of the vapour film which forms at the surface of the hot body. The author reports the modelling of the evolution of the average thickness of the film before the explosion. The possible chemical reactions at the surface of the hot body are taken into account. A base flow is obtained which allows the calculation of the evolution of Rayleigh-Taylor instabilities which may occur at the gas-coolant interface. This study is applied to the interaction between liquid sodium and water [fr
Effects of Toroidal Magnetic Fields on the Thermal Instability of Thin ...
Indian Academy of Sciences (India)
With this assumption, we obtain a general thermal instability criterion for magne- tized thin disks, i.e.,. = 2 − 5βgas − 4(1 + n)βmag − 6 fadv. + 8 fadvβgas + (8 + 4n) fadvβmag > 0, where βgas, βmag and fadv are the ratio of gas pressure to total pressure, the ratio of magnetic pressure to total pressure, and the advection factor ...
Demonstration of a magnetic Prandtl number disc instability from first principles
Potter, William J.; Balbus, Steven A.
2017-01-01
Understanding what determines the strength of MHD turbulence in accretion discs is a question of fundamental theoretical and observational importance. In this work we investigate whether the dependence of the turbulent accretion disc stress ($\\alpha$) on the magnetic Prandtl number (Pm) is sufficiently sensitive to induce thermal-viscous instability using 3D MHD simulations. We first investigate whether the $\\alpha$-Pm dependence, found by many previous authors, has a physical or numerical or...
Suppression of the Richtmyer-Meshkov Instability in the Presence of a Magnetic Field
International Nuclear Information System (INIS)
Ravi Samtaney
2003-01-01
We present numerical evidence from two dimensional simulations that the growth of the Richtmyer-Meshkov instability is suppressed in the presence of a magnetic field. A bifurcation occurs during the refraction of the incident shock on the density interface which transports baroclinically generated vorticity away from the interface to a pair of slow or intermediate magnetosonic shocks. Consequently, the density interface is devoid of vorticity and its growth and associated mixing is completely suppressed
Subcritical saturation of the magnetorotational instability through mean magnetic field generation
Xie, Jin-Han; Julien, Keith; Knobloch, Edgar
2018-03-01
The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
International Nuclear Information System (INIS)
Shukla, P.K.; Bharuthram, R.; Schlickeiser, R.
2004-01-01
It is shown that the dispersive Shukla mode [P.K. Shukla, Phys. Lett. A 316, 238 (2003)] can become unstable in the presence of equilibrium density and magnetic field inhomogeneities in a dusty plasma. A new dispersion relation for our nonuniform dusty magnetoplasma is derived and analyzed to show the modification of the Shukla mode frequency and its amplification due to combined action of the plasma density and magnetic field gradients. The present instability may account for the origin of low-frequency electromagnetic turbulence in molecular clouds and in cometary plasmas
Magnetic losses and instabilities in ferrite garnet tuned RF cavities for synchrotrons
International Nuclear Information System (INIS)
Shapiro, V.E.
1994-01-01
The aim of this paper is to introduce basic notions and elucidate the main features of magnetic losses and nonlinear effects in high power rf cavities with perpendicularly biased ferrite garnet used for varying the frequency in rapid cycling synchrotrons. A method of analysis is developed using a minimum of specific details. Simple formulae and estimates of the trend of magnetic loss, nonlinear frequency shift and possible instabilities in the cavities as a function of rf power level and ferrite garnet parameters are presented. Numerical examples correspond to the TRIUMF KAON Booster synchrotron. (author). 14 refs., 5 figs
International Nuclear Information System (INIS)
Andropov, V.G.; Sinkevich, O.A.
1983-01-01
It is shown that the ionization front which moves through a gas along a magnetic field in a combined electrical field, which lies in the plane of the front, may be unstable, as a result of the development of an ionization instability in the plasma behind the front. The criterion of instability of the ionization front does not greatly differ from the criterion of instability of an infinite plasma. The ionization front in the magnetic field is stable only in an electrical field of circular polarization or in a combined field in which the direct and alternating electrical fields are orthogonal and the Joule heat liberation from them is equal. The generation of sound is possible in a magnetized plasma in an alternating electrical field orthogonal to a magnetic due to the parametric acoustical instability at the frequency of the external electrical field. 8 refs
Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field
Zhang, Yue
2017-10-01
A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation
Dhiman, Joginder Singh; Sharma, Rajni
2017-12-01
The effects of nonuniform rotation and magnetic field on the instability of a self gravitating infinitely extending axisymmetric cylinder of viscoelastic ferromagnetic medium have been studied using the Generalised Hydrodynamic (GH) model. The non-uniform magnetic field and rotation are acting along the axial direction of the cylinder and the propagation of the wave is considered along the radial direction, while the ferrofluid magnetization is taken collinear with the magnetic field. A general dispersion relation representing magnetization, magnetic permeability and viscoelastic relaxation time parameters is obtained using the normal mode analysis method in the linearized perturbation equation system. Jeans criteria which represent the onset of instability of self gravitating medium are obtained under the limits; when the medium behaves like a viscous liquid (strongly coupled limit) and a Newtonian liquid (weakly coupled limit). The effects of various parameters on the Jeans instability criteria and on the growth rate of self gravitating viscoelastic ferromagnetic medium have been discussed. It is found that the magnetic polarizability due to ferromagnetization of medium marginalizes the effect of non-uniform magnetic field on the Jeans instability, whereas the viscoelasticity of the medium has the usual stabilizing effect on the instability of the system. Further, it is found that the cylindrical geometry is more stable than the Cartesian one. The variation of growth rate against the wave number and radial distance has been depicted graphically.
Electron surfing acceleration by the electron two-stream instability in a weak magnetic field
International Nuclear Information System (INIS)
Dieckmann, M E; Shukla, P K
2006-01-01
The thermalization of relativistically flowing colliding plasmas is not well understood. The transition layer, in which both plasmas interact and thermalize, is wide and highly structured and the instabilities in this layer may yield non-thermal particle distributions and shock-less energy dissipation. The objective in this work is to explore the ability of an electron two-stream instability for thermalizing a plasma beam that moves at the mildly relativistic speed 0.3c through weakly magnetized plasma and to identify the resulting particle distributions. It is demonstrated here with particle-in-cell simulations that the electron two-stream instability leads to waves that propagate within a wide angular range relative to the flow velocity. The waves are thus not planar, as required for efficient electron surfing acceleration (ESA). The short lifetime of the waves implies, however, only weak modifications of the ESA by the oblique modes, since the waves are sufficiently homogeneous. The ion (proton) beams are not modulated, which would be required to extract some of their energy. The instability can thus heat the electrons significantly, but it fails to accelerate them to relativistic energies and it cannot form a shock layer by thermalizing the protons, at least not for the system and the resolved timescales considered here
Electron surfing acceleration by the electron two-stream instability in a weak magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dieckmann, M E; Shukla, P K [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2006-10-15
The thermalization of relativistically flowing colliding plasmas is not well understood. The transition layer, in which both plasmas interact and thermalize, is wide and highly structured and the instabilities in this layer may yield non-thermal particle distributions and shock-less energy dissipation. The objective in this work is to explore the ability of an electron two-stream instability for thermalizing a plasma beam that moves at the mildly relativistic speed 0.3c through weakly magnetized plasma and to identify the resulting particle distributions. It is demonstrated here with particle-in-cell simulations that the electron two-stream instability leads to waves that propagate within a wide angular range relative to the flow velocity. The waves are thus not planar, as required for efficient electron surfing acceleration (ESA). The short lifetime of the waves implies, however, only weak modifications of the ESA by the oblique modes, since the waves are sufficiently homogeneous. The ion (proton) beams are not modulated, which would be required to extract some of their energy. The instability can thus heat the electrons significantly, but it fails to accelerate them to relativistic energies and it cannot form a shock layer by thermalizing the protons, at least not for the system and the resolved timescales considered here.
Kelvin-Helmholtz instability for a bounded plasma flow in a longitudinal magnetic field
International Nuclear Information System (INIS)
Burinskaya, T. M.; Shevelev, M. M.; Rauch, J.-L.
2011-01-01
Kelvin-Helmholtz MHD instability in a plane three-layer plasma is investigated. A general dispersion relation for the case of arbitrarily orientated magnetic fields and flow velocities in the layers is derived, and its solutions for a bounded plasma flow in a longitudinal magnetic field are studied numerically. Analysis of Kelvin-Helmholtz instability for different ion acoustic velocities shows that perturbations with wavelengths on the order of or longer than the flow thickness can grow in an arbitrary direction even at a zero temperature. Oscillations excited at small angles with respect to the magnetic field exist in a limited range of wavenumbers even without allowance for the finite width of the transition region between the flow and the ambient plasma. It is shown that, in a low-temperature plasma, solutions resulting in kink-like deformations of the plasma flow grow at a higher rate than those resulting in quasi-symmetric (sausage-like) deformations. The transverse structure of oscillatory-damped eigenmodes in a low-temperature plasma is analyzed. The results obtained are used to explain mechanisms for the excitation of ultra-low-frequency long-wavelength oscillations propagating along the magnetic field in the plasma sheet boundary layer of the Earth’s magnetotail penetrated by fast plasma flows.
Magnetization anomaly of Nb3Al strands and instability of Nb3Al Rutherford cables
International Nuclear Information System (INIS)
Yamada, Ryuji; Kikuchi, Akihiro; Wake, Masayoshi
2006-01-01
Using a Cu stabilized Nb 3 Al strand with Nb matrix, a 30 meter long Nb 3 Al Rutherford cable was made by a collaboration of Fermilab and NIMS. Recently the strand and cable were tested. In both cases instability was observed at around 1.5 Tesla. The magnetization of this Nb 3 Al strand was measured first using a balanced coil magnetometer at 4.2 K. Strands showed an anomalously large magnetization behavior around at 1.6 T, which is much higher than the usual B c2 ∼ 0.5 Tesla (4.2 K) of Nb matrix. This result is compared with the magnetization data of short strand samples using a SQUID magnetometer, in which a flux-jump signal was observed at 0.5 Tesla, but not at higher field. As a possible explanation for this magnetization anomaly, the interfilament coupling through the thin Nb films in the strands is suggested. The instability problem observed in low field tests of the Nb 3 Al Rutherford cables is attributed to this effect
Energy Technology Data Exchange (ETDEWEB)
Bret, A., E-mail: antoineclaude.bret@uclm.es [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)
2014-02-15
The filamentation (Weibel) instability plays a key role in the formation of collisionless shocks which are thought to produce Gamma-Ray-Bursts and High-Energy-Cosmic-Rays in astrophysical environments. While it has been known for long that a flow-aligned magnetic field can completely quench the instability, it was recently proved in 2D that in the cold regime, such cancelation is possible if and only if the field is perfectly aligned. Here, this result is finally extended to a 3D geometry. Calculations are conducted for symmetric and asymmetric counter-streaming relativistic plasma shells. 2D results are retrieved in 3D: the instability can never be completely canceled for an oblique magnetic field. In addition, the maximum growth-rate is always larger for wave vectors lying in the plan defined by the flow and the oblique field. On the one hand, this bears consequences on the orientation of the generated filaments. On the other hand, it certifies 2D simulations of the problem can be performed without missing the most unstable filamentation modes.
FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY
International Nuclear Information System (INIS)
Ni, Lei; Kliem, Bernhard; Lin, Jun; Wu, Ning
2015-01-01
Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10 6 -10 7 in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s –1 . Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10 4 K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets
FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY
Energy Technology Data Exchange (ETDEWEB)
Ni, Lei; Kliem, Bernhard; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wu, Ning, E-mail: leini@ynao.ac.cn [School of Tourism and Geography, Yunnan Normal University, Kunming 650031 (China)
2015-01-20
Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10{sup 6}-10{sup 7} in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s{sup –1}. Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10{sup 4} K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.
Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.
2018-01-01
The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.
Shape and fission instabilities of ferrofluids in non-uniform magnetic fields
Vieu, Thibault; Walter, Clément
2018-04-01
We study static distributions of ferrofluid submitted to non-uniform magnetic fields. We show how the normal-field instability is modified in the presence of a weak magnetic field gradient. Then we consider a ferrofluid droplet and show how the gradient affects its shape. A rich phase transitions phenomenology is found. We also investigate the creation of droplets by successive splits when a magnet is vertically approached from below and derive theoretical expressions which are solved numerically to obtain the number of droplets and their aspect ratio as function of the field configuration. A quantitative comparison is performed with previous experimental results, as well as with our own experiments, and yields good agreement with the theoretical modeling.
Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line
Spies, Günther O.; Faghihi, Mustafa
1987-06-01
To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.
Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line
International Nuclear Information System (INIS)
Spies, G.O.; Faghihi, M.
1987-01-01
To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter
CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model
Energy Technology Data Exchange (ETDEWEB)
Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)
2015-05-15
If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.
QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES
International Nuclear Information System (INIS)
Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis
2010-01-01
Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of ≥10 5 G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of ∼2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.
International Nuclear Information System (INIS)
Srinivasan, Bhuvana; Tang, Xian-Zhu
2014-01-01
In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified
Equipartition and transport in two-dimensional electrostatic turbulence
DEFF Research Database (Denmark)
Naulin, V.; Nycander, J.; Juul Rasmussen, J.
1998-01-01
Turbulent equipartition is investigated for the nonlinear evolution of pressure driven flute modes of a plasma in an inhomogeneous magnetic field. The Rayleigh-Taylor instability is recovered by linear stability analysis, and occurs when the pressure profile is more peaked than the profile of the...
Accretion-Ejection Instability in magnetized accretion disk around compact objects
International Nuclear Information System (INIS)
Varniere, Peggy
2002-01-01
The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr
International Nuclear Information System (INIS)
Shutt, R.P.; Rehak, M.L.
1990-01-01
For superconducting magnets, one needs many bellows for connection of various helium cooling transfer lines in addition to beam tube bellows. There could be approximately 10,000 magnet interconnection bellows in the SSC exposed to an internal pressure. When axially compressed or internally pressurized, bellows can become unstable, leading to gross distortion or complete failure. If several bellows are contained in an assembly, failure modes might interact. If designed properly, large bellows can be a very feasible possibility for connecting the large tubular shells that support the magnet iron yokes and superconducting coils and contain supercritical helium for magnet cooling. We present here (1) a spring-supported bellows model, in order to develop necessary design features for bellows and end supports so that instabilities will not occur in the bellows pressure operating region, including some margin, (2) a model of three superconducting accelerator magnets connected by two large bellows, in order to ascertain that support requirements are satisfied and in order to study interaction effects between the two bellows. Reliability of bellows for our application will be stressed. 3 refs., 4 figs
Vector condensate and AdS soliton instability induced by a magnetic field
International Nuclear Information System (INIS)
Cai, Rong-Gen; Li, Li; Li, Li-Fang; Wu, You
2014-01-01
We continue to study the holographic p-wave superconductor model in the Einstein-Maxwell-complex vector field theory with a non-minimal coupling between the complex vector field and the Maxwell field. In this paper we work in the AdS soliton background which describes a conformal field theory in the confined phase and focus on the probe approximation. We find that an applied magnetic field can lead to the condensate of the vector field and the AdS soliton instability. As a result, a vortex lattice structure forms in the spatial directions perpendicular to the applied magnetic field. As a comparison, we also discuss the vector condensate in the Einstein-SU(2) Yang-Mills theory and find that in the setup of the present paper, the Einstein-Maxwell-complex vector field model is a generalization of the SU(2) model in the sense that the vector field has a general mass and gyromagnetic ratio
International Nuclear Information System (INIS)
Kersale, Evy
2000-01-01
The first part of this work proposes a new version of the mathematical formalism used to describe pressure-driven instabilities in magnetized accretion-ejection structures. Such processes, occurring in magnetically confined plasmas, pose very stringent limits to thermonuclear fusion devices but their influence in astrophysical objects has rarely been considered. In a framework which eliminates fast magnetosonic waves one develops a system of equations allowing us to follow both ballooning and interchange modes. An application of this result to a cylindrical jet being subject to solid rotation shows that the inner parts of such structures are destabilized by magnetic shear. Furthermore, while clarifying somewhat previous studies, one finds that jets confined by a dominant toroidal magnetic field are generically unstable with respect to interchange modes. Moreover, one has written a numerical code to solve the MHD partial differential equations. Starting with a basic algorithm, one has assessed the effects of the geometry, boundary conditions and artificial dissipation on numerical computation. The code has been tested by solving classical hydrodynamic and MHD Riemann problems. A new mechanism of ultra high energy cosmic ray production in gamma-ray bursts composes the last part of this work. In these objects, particles are accelerated up to energies of the order of 10 21 eV, by means of relativistic Alfven perturbations crossings. A stream instability involving a highly relativistic shell of plasma, the fireball, and baryons going through it produces such Alfven fronts. Then, Brillouin-like backscattering processes redistribute the available energy between the forward and backward Alfven waves and the magnetosonic ones. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Garbet, X
2001-06-01
The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.
2012-04-26
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is
Energy Technology Data Exchange (ETDEWEB)
Dey, S.; Kumar, S., E-mail: kumars@phys.jdvu.ac.in [Department of Physics, Jadavpur University, Kolkata 700032 (India); Dey, S. K. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Department of Physics, NITMAS, 24 Pargana(s) 743368 (India); Bagani, K.; Banerjee, S. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Majumder, S. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Roychowdhury, A.; Das, D. [UGC-DAE CSR, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata 700098 (India); Reddy, V. R. [UGC-DAE CSR, University Campus, Khandwa Road, Indore 452001 (India)
2014-08-11
The authors find that for mechanically milled Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} (∼10 nm), the mechanical strain induced enhancement of anisotropy energy helps to retain stable magnetic order. The reduction of magnetization can be prevented by keeping the cation distribution of nanometric ferrites at its equilibrium ratio. Moreover, the sample can be used in coding, storing, and retrieving of binary bit (“0” and “1”) through magnetic field change.
A magnetic instability of the non-Abelian Sakai-Sugimoto model
International Nuclear Information System (INIS)
Callebaut, Nele; Dudal, David
2014-01-01
In this follow-up paper of http://dx.doi.org/10.1007/JHEP03(2013)033 we further discuss the occurrence of a magnetically induced tachyonic instability of the rho meson in the two-flavour Sakai-Sugimoto model, uplifting two remaining approximations in the previous paper. That is, firstly, the magnetically induced splitting of the branes is now taken into account, evaluating without approximations the symmetrized trace which enters in the non-Abelian Dirac-Born-Infeld (DBI) action. This leads to an extra mass generating effect for the charged heavy-light rho meson through a holographic Higgs mechanism. Secondly, we compare the results in the approximation to second order in the field strength to the results using the full DBI-action. Both improvements cause an increase of the critical magnetic field for the onset of rho meson condensation. In addition, the stability in the scalar sector in the presence of the magnetic field is discussed
The effect of magnetic field on instabilities of heat transfer from an obstacle in a channel
International Nuclear Information System (INIS)
Rashidi, S.; Esfahani, J.A.
2015-01-01
This paper presents forced convective heat transfer in a channel with a built-in square obstacle. The governing equations with the boundary conditions are solved using a finite volume method. The computations were done for a fixed blockage ratio (S=1/8) at Pr=0.71, and Reynolds (Re) and Stuart (N) numbers ranging from 1 to 250 and 0 to 10, respectively. The results are presented to show the effect of the channel walls and streamwise magnetic field at different Reynolds numbers on forced convection heat transfer from a square cylinder. A correlation is obtained for Nusselt number, in which the effect of a magnetic field is taken into account. The obtained results revealed that the existence of channel walls decreases the effects of magnetic field on Nusselt number. It also showed that by increasing Stuart number the thickness of thermal boundary layer increases and the convective heat transfer decreases. - Highlights: • The magnetic field is used to control the instabilities of heat transfer. • The thickness of thermal boundary layer increases by increasing Stuart number. • Unsteadiness in temperature field increases with increase in Reynolds number. • Time-averaged Nusselt number decreases with increase in Stuart number. • The Lorentz forces are much denser near the surface of the obstacle
The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions
Parker, E. N.
1978-01-01
It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.
Magnetization, Low Field Instability and Quench of RHQT Nb(3)Al Strands
Energy Technology Data Exchange (ETDEWEB)
Yamada, R.; Wake, M.; Kikuchi, A.; Velev, V.; /Fermilab
2009-01-01
Since 2005, we made and tested three RHQT Nb{sub 3}Al strands, one with Nb matrix and two with Ta matrix, which are fully stabilized with Cu electroplating. We observed anomalously large magnetization curves extending beyond 1 to 1.5 Tesla with the F1 Nb matrix strand at 4.2 K, when we measured its magnetization with a balanced coil magnetometer. This problem was eliminated with the Ta matrix strands operating at 4.2 K. But with these strands a similar but smaller anomalous magnetization was observed at 1.9 K. We studied these phenomena with FEM. With the F1 Nb matrix strand, it is explained that at low external field, inter-filamentary coupling currents in the outer layers of sub-elements create a shielding effect. It reduces the inside field, keeps the inside Nb matrix superconductive, and stands against a higher outside field beyond the Hc of Nb. At an even higher external field, the superconductivity of the whole Nb matrix collapses and releases a large amount of energy, which may cause a big quench. Depending on the size of the energy in the strand or the cable, a magnet could quench, causing the low field instability. Some attempt to analyze the anomaly with FEM is presented.
Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.
2016-06-01
We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.
Energy Technology Data Exchange (ETDEWEB)
Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Huser, G.; Galmiche, D.; Liberatore, S.; Riazuelo, G. [CEA, DAM, DIF, F-91297 Arpajon (France); Delorme, B. [CEA, DAM, DIF, F-91297 Arpajon (France); CELIA, University of Bordeaux-CNRS-CEA, F-33400 Talence (France); Martinez, D.; Remington, B.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Igumenshchev, I.; Michel, D. T.; Froula, D.; Seka, W.; Goncharov, V. N. [Laboratory of Laser Energetics, Rochester, New York 14623-1299 (United States); Olazabal-Loumé, M.; Nicolaï, Ph.; Breil, J.; Tikhonchuk, V. T. [CELIA, University of Bordeaux-CNRS-CEA, F-33400 Talence (France); Fujioka, S. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565 (Japan); and others
2014-12-15
Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experiments performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. The foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.
Directory of Open Access Journals (Sweden)
S. Reiche
2003-04-01
Full Text Available A self-amplified spontaneous emission free-electron laser (SASE FEL is a device which is based on the creation of a very intense, relativistic electron beam which has very little temperature in all three phase planes. The beam in this system is described as having “high brightness,” and when it is bent repetitively in a magnetic undulator, undergoes a radiation-mediated microbunching instability. This instability can amplify the original radiation amplitude at a particular, resonant wavelength by many orders of magnitude. In order to obtain high brightness beams, it is necessary to compress them to obtain higher currents than available from the electron source. Compression is accomplished by the use of magnetic chicanes, which are quite similar to, if much longer than, a single period of the undulator. It should not be surprising that such chicanes also support a radiation-mediated microbunching interaction, which has recently been investigated, and has been termed coherent synchrotron radiation (CSR instability. The purpose of this paper is to compare and contrast the characteristics of the closely related FEL and CSR microbunching instabilities. We show that a high-gain regime of the CSR instability exists which is formally similar to the FEL instability.
The Onset of Magnetic Reconnection: Tearing Instability in Current Sheets with a Guide Field
Daldorff, L. K. S.; Klimchuk, J. A.; Knizhnik, K. J.
2016-12-01
Magnetic reconnection is fundamental to many solar phenomena, ranging from coronal heating, to jets, to flares and CMEs. A poorly understood yet crucial aspect of reconnection is that it does not occur until magnetic stresses have built to sufficiently high levels for significant energy release. If reconnection were to happen too soon, coronal heating would be weak and flares would be small. As part of our program to study the onset conditions for magnetic reconnection, we have investigated the instability of current sheets to tearing. Surprisingly little work has been done on this problem for sheets that include a guide field, i.e., for which the field rotates by less than 180 degrees. This is the most common situation on the Sun. We present numerical 3D resistive MHD simulations of several sheets and show how the behaviour depends on the shear angle (rotation). We compare our results to the predictions of linear theory and discuss the nonlinear evolution in terms of plasmoid formation and the interaction of different oblique tearing modes. The relevance to the Sun is explained.
van Marle, A. J.; Cox, N. L. J.; Decin, L.
2014-10-01
Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the
Hall effect upon small wavelength kink instabilities near an elliptic magnetic stagnation line
International Nuclear Information System (INIS)
Spies, G.O.; Faghihi, M.
1985-12-01
To explore the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting unstable small wavelenght kinks near any elliptic magnetic stagnation line, a spectral analysis is performed of the motion of an incompressible plasma about cylindrical Z-pinch equilibria with circular sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. These show that every particular mode becomes stable as the Hall parameter exceeds a critical value. However, this critical value is a decreasing function of the ideal growth rate and has a pole at the origin, implying that there always remains an infinite reservoir of slowly growing instabilities. Correspondingly, for equilibiria with arbitrary current distributions, the stability criterion is unaffected by the Hall term. (author)
Scale-lengths and instabilities in magnetized classical and relativistic plasma fluid models
International Nuclear Information System (INIS)
Diver, D A; Laing, E W
2015-01-01
The validity of the traditional plasma continuum is predicated on a hierarchy of scale-lengths, with the Debye length being considered to be effectively unresolvable in the continuum limit. In this article, we revisit the strong magnetic field case in which the Larmor radius is comparable or smaller than the Debye length in the classical plasma, and also for a relativistic plasma. Fresh insight into the validity of the continuum assumption in each case is offered, including a fluid limit on the Alfvén speed that may impose restrictions on the validity of magnetohydrodynamics (MHD) in some solar and fusion contexts. Additional implications concerning the role of the firehose instability are also explored. (paper)
On the instability of a spatially confined electron beam in a magnetized plasma
International Nuclear Information System (INIS)
Strangeway, R.J.
1980-01-01
The instability of a field-aligned electron beam of finite width streaming through a uniform magnetized plasma is investigated. The nature of the normal modes, and the wave field variation within the beam region are studied. It is found that an electrostatic approximation is useful in describing the general form of the dispersion relation, specifically showing how the beam width controls the range of allowed solutions. The electrostatic approximation is shown to be good for most of the range of frequencies considered. When the electron gyrofrequency is greater than the electron plasma frequency, the theory predicts that the cold plasma upper-hybrid resonance (Z mode) is stable to negative Landau damping. A criterion for applying this result to beam-plasma systems other than the ones investigated here is developed, and it is found that the effect should be more readily observable in laboratory experiments than in space plasmas. (author)
Energy Technology Data Exchange (ETDEWEB)
Singh, Chandra B.; Pino, Elisabete M. de Gouveia Dal [Department of Astronomy (IAG-USP), University of São Paulo, São Paulo (Brazil); Mizuno, Yosuke, E-mail: csingh@iag.usp.br, E-mail: dalpino@iag.usp.br, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University, D-60438, Frankfurt am Main (Germany)
2016-06-10
Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of the radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purposes of our study, we used a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light and heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and a relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field, and the flow is accelerated owing to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated with the kink-unstable regions and correlated with the decrease of the sigma parameter of the flow. We discuss the implications of our findings for Poynting-flux-dominated jets in connection with magnetic reconnection processes. We find that fast magnetic reconnection may be driven by the kink-instability turbulence and govern the transformation of magnetic into kinetic energy, thus providing an efficient way to power and accelerate particles in active galactic nucleus and gamma-ray-burst relativistic jets.
The effect of tangled magnetic fields on instabilities in tokamak plasmas
International Nuclear Information System (INIS)
Thornton, A J; Kirk, A; Harrison, J R; Chapman, I T; Cahyna, P; Nardon, E
2014-01-01
The high pressure gradients in the edge of a tokamak plasma can lead to the formation of explosive plasma instabilities known as edge localised modes (ELMs). The control of ELMs is an important requirement for the next generation of fusion devices such as ITER. Experiments performed on the Mega Amp Spherical Tokamak (MAST) at Culham have shown that the application of non-axisymetric resonant magnetic perturbations (RMPs) can be used to mitigate ELMs. During the application of the RMPs, clear structures are observed in visible- light imaging of the X-point region. These lobes, or tangles, have been observed for the first time and their appearance is correlated with the mitigation of ELMs. Tangle formation is seen to be associated with the RMPs penetrating the plasma and may be important in explaining why the ELM frequency increases during ELM mitigation. Whilst the number and location of the tangles can be explained by vacuum magnetic field modelling, obtaining the correct radial extent of the tangles requires the plasma response to be taken into account
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)
2017-03-14
The magnetically charged SU(2) Reissner-Nordström black-hole solutions of the coupled nonlinear Einstein-Yang-Mills field equations are known to be characterized by infinite spectra of unstable (imaginary) resonances {ω_n(r_+,r_−)}{sub n=0}{sup n=∞} (here r{sub ±} are the black-hole horizon radii). Based on direct numerical computations of the black-hole instability spectra, it has recently been observed that the excited instability eigenvalues of the magnetically charged black holes exhibit a simple universal behavior. In particular, it was shown that the numerically computed instability eigenvalues of the magnetically charged black holes are characterized by the small frequency universal relation ω{sub n}(r{sub +}−r{sub −})=λ{sub n}, where {λ_n} are dimensionless constants which are independent of the black-hole parameters. In the present paper we study analytically the instability spectra of the magnetically charged SU(2) Reissner-Nordström black holes. In particular, we provide a rigorous analytical proof for the numerically-suggested universal behavior ω{sub n}(r{sub +}−r{sub −})=λ{sub n} in the small frequency ω{sub n}r{sub +}≪(r{sub +}−r{sub −})/r{sub +} regime. Interestingly, it is shown that the excited black-hole resonances are characterized by the simple universal relation ω{sub n+1}/ω{sub n}=e{sup −2π/√3}. Finally, we confirm our analytical results for the black-hole instability spectra with numerical computations.
Energy Technology Data Exchange (ETDEWEB)
Vandenboomgaerde, M.; Bonnefille, M.; Gauthier, P. [CEA, DAM, DIF, F-91297 Arpajon (France)
2016-05-15
Highly resolved radiation-hydrodynamics FCI2 simulations have been performed to model laser experiments on the National Ignition Facility. In these experiments, cylindrical gas-filled hohlraums with gold walls are driven by a 20 ns laser pulse. For the first time, simulations show the appearance of Kelvin-Helmholtz (KH) vortices at the interface between the expanding wall material and the gas fill. In this paper, we determine the mechanisms which generate this instability: the increase of the gas pressure around the expanding gold plasma leads to the aggregation of an over-dense gold layer simultaneously with shear flows. At the surface of this layer, all the conditions are met for a KH instability to grow. Later on, as the interface decelerates, the Rayleigh-Taylor instability also comes into play. A potential scenario for the generation of a mixing zone at the gold-gas interface due to the KH instability is presented. Our estimates of the Reynolds number and the plasma diffusion width at the interface support the possibility of such a mix. The key role of the first nanosecond of the laser pulse in the instability occurrence is also underlined.
Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities
International Nuclear Information System (INIS)
Mikaelian, K.O.
2008-01-01
We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A/B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A/B/A configurations like air/SF 6 /air gas-curtain experiments. We first consider conventional shock tubes that have a 'fixed' boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a 'free' boundary--a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction towards the interface(s). Complex acceleration histories are achieved, relevant for Inertial Confinement Fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities, and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other, and remain to be verified experimentally
Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities
Energy Technology Data Exchange (ETDEWEB)
Mikaelian, K O
2008-06-10
We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A/B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A/B/A configurations like air/SF{sub 6}/air gas-curtain experiments. We first consider conventional shock tubes that have a 'fixed' boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a 'free' boundary--a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction towards the interface(s). Complex acceleration histories are achieved, relevant for Inertial Confinement Fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities, and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other, and remain to be verified experimentally.
Bender, Jason; Raman, Kumar; Huntington, Channing; Nagel, Sabrina; Morgan, Brandon; Prisbrey, Shon; MacLaren, Stephan
2017-10-01
Experiments at the National Ignition Facility (NIF) are studying Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities in multiply-shocked plasmas. Targets feature two different-density fluids with a multimode initial perturbation at the interface, which is struck by two X-ray-driven shock waves. Here we discuss computational hydrodynamics simulations investigating the effect of second-shock (``reshock'') strength on instability growth, and how these simulations are informing target design for the ongoing experimental campaign. A Reynolds-Averaged Navier Stokes (RANS) model was used to predict motion of the spike and bubble fronts and the mixing-layer width. In addition to reshock strength, the reshock ablator thickness and the total length of the target were varied; all three parameters were found to be important for target design, particularly for ameliorating undesirable reflected shocks. The RANS data are compared to theoretical models that predict multimode instability growth proportional to the shock-induced change in interface velocity, and to currently-available data from the NIF experiments. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. LLNL-ABS-734611.
Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.
2016-10-01
A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.
Magnetic and orbital instabilities in a lattice of SU(4) organometallic Kondo complexes
International Nuclear Information System (INIS)
Lobos, A M; Aligia, A A
2014-01-01
Motivated by experiments of scanning tunneling spectroscopy (STS) on self- assembled networks of iron(II)-phtalocyanine (FePc) molecules deposited on a clean Au(111) surface [FePc/Au(111)] and its explanation in terms of the extension of the impurity SU(4) Anderson model to the lattice in the Kondo regime, we study the competition between the Kondo effect and the magneto-orbital interactions occurring in FePc/Au(111). We explore the quantum phases and critical points of the model using a large-N slave-boson method in the mean-field approximation. The SU(4) symmetry in the impurity appears as a combination of the usual spin and an orbital pseudospin arising from the degenerate 3d xz and 3d yz orbitals in the Fe atom. In the case of the lattice, our results show that the additional orbital degrees of freedom crucially modify the low-temperature phase diagram, and induce new types of orbital interactions among the Fe atoms, which can potentially stabilize exotic quantum phases with magnetic and orbital order. The dominant instability corresponds to spin ferromagnetic and orbital antiferromagnetic order
Magnetic Diagnosis Upgrade and Analysis for MHD Instabilities on the J-TEXT
Guo, Daojing; Hu, Qiming; Zhuang, Ge; Wang, Nengchao; Ding, Yonghua; Tang, Yuejin; Yu, Qingquan; Huazhong University of Science; Technology Team; Max-Planck-Institut für Plasmaphysik Collaboration
2017-10-01
The magnetic diagnostic system on the J-TEXT tokamak has been upgraded to measure the magnetohydrodynamic (MHD) instabilities with diverse bands of frequencies. 12 saddle loop probes and 73 Mirnov probes are newly developed. The fabrication and installment of the new probes are elaborately designed, in consideration of higher spatial resolution and better amplitude-frequency characteristic. In this case, the probes utilize two kinds of novel fabrication craft, one of which is low temperature co-fired ceramics (LTCC), the other is flexible printed circuit (FPC). A great deal of experiments on the J-TEXT have validated the stability of the new system. Some typical discharges observed by the new diagnostic system are reviewed. In order to extract useful information from raw signals, several efficient signal processing methods are reviewed. An analytical model based on lumped eddy current circuits is used to compensate equilibrium flux and the corresponding eddy current fluxes, a visualization processing based on singular value decomposition (SVD) and cross-power spectrum are applied to detect the mode number. Fusion Science Program of China (Contract Nos. 2015GB111001 and 2014GB108000) and the National Natural Science Foundation of China (Contract Nos. 11505069 and 11405068).
Hamlin, Nathaniel D; Newman, William I
2013-04-01
We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number M(A). We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence
Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan
2017-05-01
Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has
Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch
Energy Technology Data Exchange (ETDEWEB)
Ivanov, Vladimir V. [Univ. of Nevada, Reno, NV (United States)
2016-08-17
Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics, magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of stagnated
Kwon, Jae-Min; Ku, S.; Choi, M. J.; Chang, C. S.; Hager, R.; Yoon, E. S.; Lee, H. H.; Kim, H. S.
2018-05-01
We perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E × B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Te -driven trapped electron modes. This implies that the enhanced E × B flow can sustain a quasi-internal transport barrier for Te in an inner region neighboring the magnetic island. The enhanced E × B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.
Field-induced magnetic instability and quantum criticality in the antiferromagnet CeCu2Ge2.
Liu, Yi; Xie, Donghua; Wang, Xiaoying; Zhu, Kangwei; Yang, Ruilong
2016-01-13
The magnetic quantum criticality in strongly correlated electron systems has been considered to be closely related with the occurrence of unconventional superconductivity. Control parameters such as magnetic field, pressure or chemical doping are frequently used to externally tune the quantum phase transition for a deeper understanding. Here we report the research of a field-induced quantum phase transition using conventional bulk physical property measurements in the archetypal antiferromagnet CeCu2Ge2, which becomes superconductive under a pressure of about 10 GPa with Tc ~ 0.64 K. We offer strong evidence that short-range dynamic correlations start appearing above a magnetic field of about 5 T. Our demonstrations of the magnetic instability and the field-induced quantum phase transition are crucial for the quantum criticality, which may open a new route in experimental investigations of the quantum phase transition in heavy-fermion systems.
Surface wave instability in bounded magnetized plasma with inhomogeneous particle stream
Energy Technology Data Exchange (ETDEWEB)
Jovanovic, D.; Vukovic, S. (Belgrade Univ. (Yugoslavia). Inst. za Fiziku)
1981-02-01
The instability of surface wave modes in a semi infinite magnetoactive plasma with a non-homogeneous particle stream is studied. The existence of two possible mechanisms for the development of the instability: induced anomalous Doppler effect and induced Cherenkov effect is demonstrated. Related growth-rates and stability criteria are calculated.
Surface wave instability in bounded magnetized plasma with inhomogeneous particle stream
International Nuclear Information System (INIS)
Jovanovic, D.; Vukovic, S.
1981-01-01
The instability of surface wave modes in a semi infinite magnetoactive plasma with a non-homogeneous particle stream is studied. The existence of two possible mechanisms for the development of the instability: induced anomalous Doppler effect and induced Cherenkov effect is demonstrated. Related growth-rates and stability criteria are calculated. (author)
Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch
International Nuclear Information System (INIS)
Ivanov, Vladimir V.
2016-01-01
Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics, magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution 20 MG, suggested in micropinches, Cotton-Mouton and cutoff diagnostics will be applied. A picosecond optical Kerr shutter will be tested to increase a sensitivity of UV methods for application at multi-MA Z pinches. The proposal is based on the experimental capability of NTF. The Zebra generator produces 1-1.7 MA Z-pinches with electron plasma density of 10"2"0-10"2"1cm"-"3, electron temperature of 0.5-1 keV, and magnetic fields >10 MG. The Leopard laser was upgraded to energy of 90-J at 0.8 ns. This regime will be used for laser initiation
Hybrid Fluid/Kinetic Modeling Of Magnetized High Energy Density Plasmas
Hansen, David; Held, Eric; King, Jacob; Stoltz, Peter; Masti, Robert; Srinivasan, Bhuvana
2017-10-01
MHD modeling with an equation of state (EOS) of the Rayleigh-Taylor (RT) instabily in Z indicates that it is seeded by the electro-thermal instability. Large thermodynamic drives associated with gradients at the interface between the liner and the coronal regions distort distribution functions and likely lead to non-local transport effects in a plasma which varies from weakly to strongly coupled. In this work, we discuss using effective potential theory along with a Chapman-Ensksog-like (CEL) formalism to develop hybrid fluid/kinetic modeling capabilities for these plasmas. Effective potential theory addresses the role of Coulomb collisions on transport across coupling regimes and the CEL approach bridges the gap between full-blow kinetic simulations and the EOS tables, which only depend locally on density and temperature. Quantitative results on the Spitzer problem across coupling coupling regimes will be presented as a first step. DOE Grant No. DE-SC0016525.
Crystalline heterogeneities and instabilities in thermally convecting magma chamber
Culha, C.; Suckale, J.; Qin, Z.
2016-12-01
A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.
International Nuclear Information System (INIS)
Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.
2015-01-01
The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability
Energy Technology Data Exchange (ETDEWEB)
Peterson, J. L.; Clark, D. S.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Masse, L. P. [CEA, DAM, DIF, 91297 Arpajon (France)
2014-09-15
Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.
Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations
Energy Technology Data Exchange (ETDEWEB)
Mikaelian, K O
2009-09-28
We extend our earlier model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities to the more general class of hydrodynamic instabilities driven by a time-dependent acceleration g(t) . Explicit analytic solutions for linear as well as nonlinear amplitudes are obtained for several g(t)'s by solving a Schroedinger-like equation d{sup 2}{eta}/dt{sup 2} - g(t)kA{eta} = 0 where A is the Atwood number and k is the wavenumber of the perturbation amplitude {eta}(t). In our model a simple transformation k {yields} k{sub L} and A {yields} A{sub L} connects the linear to the nonlinear amplitudes: {eta}{sup nonlinear} (k,A) {approx} (1/k{sub L})ln{eta}{sup linear} (k{sub L}, A{sub L}). The model is found to be in very good agreement with direct numerical simulations. Bubble amplitudes for a variety of accelerations are seen to scale with s defined by s = {integral} {radical}g(t)dt, while spike amplitudes prefer scaling with displacement {Delta}x = {integral}[{integral}g(t)dt]dt.
The origin and structure of streak-like instabilities in laminar boundary layer flames
Gollner, Michael; Miller, Colin; Tang, Wei; Finney, Mark
2017-11-01
Streamwise streaks are consistently observed in wildland fires, at the base of pool fires, and in other heated flows within a boundary layer. This study examines both the origin of these structures and their role in influencing some of the macroscopic properties of the flow. Streaks were reproduced and characterized via experiments on stationary heated strips and liquid and gas-fueled burners in laminar boundary layer flows, providing a framework to develop theory based on both observed and measured physical phenomena. The incoming boundary layer was established as the controlling mechanism in forming streaks, which are generated by pre-existing coherent structures, while the amplification of streaks was determined to be compatible with quadratic growth of Rayleigh-Taylor Instabilities, providing credence to the idea that the downstream growth of streaks is strongly tied to buoyancy. These local instabilities were also found to affect macroscopic properties of the flow, including heat transfer to the surface, indicating that a two-dimensional assumption may fail to adequately describe heat and mass transfer during flame spread and other reacting boundary layer flows. This work was supported by NSF (CBET-1554026) and the USDA-FS (13-CS-11221637-124).
Collisionless interchange instability 1. Numerical simulations of intermediate-scale irregularities
International Nuclear Information System (INIS)
Zargham, S.; Seyler, C.E.
1987-01-01
Numerical simulations of the generalized Rayleigh-Taylor instability are presented. The model and simulations are applicable to bottomside and topside spread F, unstable barium cloud dynamics, and collisional interchange instability in general. The principal result is that the evolution of the effective electric field, and shocklike structures propagating perpendicular to E eff along the extrema of the quasiperiodic structures. The spectral properties of the nonlinear state are analyzed using one-dimensional power spectra calculated along spatial trajectories for selected angles to E eff . In this way a direct comparison to in situ probe data can be made. The inherent anisotropy of the nonlinear state is reflected in major qualitative differences between the spectra taken parallel to and perpendicular to E eff . The fundamental finding of the present work is that anisotropy in interchange dynamics is much greater than had been previously reported. This strong anisotropy can explain much of the spectral and spatial structural characteristics of both bottomside and topside spread F. In a companion paper a comparison of the simulation results to various in situ data sets is given
Rouhnia, Mohamad; Strom, Kyle
2015-09-01
We experimentally examine sedimentation from a freshwater suspension of clay flocs overlying saltwater in the presence of gravitational instabilities. The study seeks to determine: (1) if flocculation hampers or alters interface instability formation; (2) how the removal rates of sediment from the buoyant layer compare to those predicted by individual floc settling; and (3) whether or not it is possible to develop a model for effective settling velocity. The experiments were conducted in a tank at isothermal conditions. All experiments were initially stably stratified but later developed instabilities near the interface that grew into downward convecting plumes of fluid and sediment. Throughout, we measured sediment concentration in the upper and lower layers, floc size, and plume descent rates. The data showed that flocculation modifies the mixture settling velocity, and therefore shifts the mode of interface instability from double-diffusive (what one would expect from unflocculated clay) to settling-driven leaking and Rayleigh-Taylor instability formation. Removal rates of sediment from the upper layer in the presence of these instabilities were on the same order of magnitude as those predicted by individual floc settling. However, removal rates were found to better correlate with the speed of the interface plumes. A simple force-balance model was found to be capable of reasonably describing plume velocity based on concentration in the buoyant layer. This relation, coupled with a critical Grashof number and geometry relations, allowed us to develop a model for the effective settling velocity of the mixture based solely on integral values of the upper layer.
Equatorial spread F: a review of recent experimental results
International Nuclear Information System (INIS)
Kelley, M.C.
1979-01-01
In this paper the authors review an intense research effort aimed at understanding the large scale disruption of the equatorial F layer which often commences just after sunset, and lasts for most of the night. A very attractive explanation for the phenomena, although one not universally accepted, is that the F layer is unstable to the classic Rayleigh-Taylor condition in which a heavy fluid, the plasma, is supported against gravity by a light 'fluid', the Earth's magnetic field. It is concluded that a reasonable case has been made for this explanation provided that the concept is extended to include nonlinear Rayleigh-Taylor like buoyancy effects above the F peak where linear process is stable. Internal gravity waves in neutral atmosphere seem to play an important role in seeding the Rayleigh-Taylor process with large scale finite amplitude perturbations. One of the remarkable features of this phenomena is the nearly simultaneous generation of structure with scale sizes spanning five orders of magnitude. These results may have applications in astrophysical processes where the Rayleigh-Taylor instability is thought to play a role. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Itagaki, H.; Inomoto, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Asai, T.; Takahashi, Ts. [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)
2014-03-15
Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.
International Nuclear Information System (INIS)
Ikuma, Hisanori; Abe, Nobuhiro; Furumatsu, Takayuki; Uchida, Youichiro; Fujiwara, Kazuo; Nishida, Keiichiro; Ozaki, Toshifumi
2008-01-01
Instability of the knee after the medial collateral ligament (MCL) injury is usually assessed with the manual valgus stress test, even though, in recent years, it has become possible to apply magnetic resonance imaging (MRI) to the assessment of the damage of the ligament. The valgus instability of 24 patients (12 isolated injuries and 12 multiple ligament injuries) who suffered MCL injury between 1993 and 1998 was evaluated with the Hughston and Eilers classification, which involves radiographic assessment under manual valgus stress to the injured knees. We developed a novel system for classifying the degree of injury to the MCL by calculating the percentage of injured area based on MRI and investigated the relationship between this novel MRI classification and the magnitude of valgus instability by the Hughston and Eilers classification. There was a significant correlation between the 2 classifications (p=0.0006). On the other hand, the results using other MRI based classification systems, such as the Mink and Deutsch classification and the Petermann classification, were not correlated with the findings by the Hughston and Eilers classification in these cases (p>0.05). Since MRI is capable of assessing the injured ligament in clinical practice, this novel classification system would be useful for evaluating the stability of the knee and choosing an appropriate treatment following MCL injury. (author)
International Nuclear Information System (INIS)
Schmitt, R.; Froehner, S.; Coblenz, G.; Christopoulos, G.
2006-01-01
This review addresses the pathoanatomical basics as well as the clinical and radiological presentation of instability patterns of the wrist. Carpal instability mostly follows an injury; however, other diseases, like CPPD arthropathy, can be associated. Instability occurs either if the carpus is unable to sustain physiologic loads (''dyskinetics'') or suffers from abnormal motion of its bones during movement (''dyskinematics''). In the classification of carpal instability, dissociative subcategories (located within proximal carpal row) are differentiated from non-dissociative subcategories (present between the carpal rows) and combined patterns. It is essential to note that the unstable wrist initially does not cause relevant signs in standard radiograms, therefore being ''occult'' for the radiologic assessment. This paper emphasizes the high utility of kinematographic studies, contrast-enhanced magnetic resonance imaging (MRI) and MR arthrography for detecting these predynamic and dynamic instability stages. Later in the natural history of carpal instability, static malalignment of the wrist and osteoarthritis will develop, both being associated with significant morbidity and disability. To prevent individual and socio-economic implications, the handsurgeon or orthopedist, as well as the radiologist, is challenged for early and precise diagnosis. (orig.)
International Nuclear Information System (INIS)
Vladimirov, Andrey E.; Ellison, Donald C.; Bykov, Andrei M.
2009-01-01
We model strong forward shocks in young supernova remnants with efficient particle acceleration where a nonresonant instability driven by the cosmic ray current amplifies magnetic turbulence in the shock precursor. Particle injection, magnetic field amplification (MFA), and the nonlinear feedback of particles and fields on the bulk flow are derived consistently. The shock structure depends critically on the efficiency of turbulence cascading. If cascading is suppressed, MFA is strong, the shock precursor is stratified, and the turbulence spectrum contains several discrete peaks. These peaks, as well as the amount of MFA, should influence synchrotron X-rays, allowing observational tests of cascading and other assumptions intrinsic to the nonlinear model of nonresonant wave growth.
Chang, Chih-Hao; Deng, Xiaolong; Theofanous, Theo G.
2013-06-01
We present a conservative and consistent numerical method for solving the Navier-Stokes equations in flow domains that may be separated by any number of material interfaces, at arbitrarily-high density/viscosity ratios and acoustic-impedance mismatches, subjected to strong shock waves and flow speeds that can range from highly supersonic to near-zero Mach numbers. A principal aim is prediction of interfacial instabilities under superposition of multiple potentially-active modes (Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov) as found for example with shock-driven, immersed fluid bodies (locally oblique shocks)—accordingly we emphasize fidelity supported by physics-based validation, including experiments. Consistency is achieved by satisfying the jump discontinuities at the interface within a conservative 2nd-order scheme that is coupled, in a conservative manner, to the bulk-fluid motions. The jump conditions are embedded into a Riemann problem, solved exactly to provide the pressures and velocities along the interface, which is tracked by a level set function to accuracy of O(Δx5, Δt4). Subgrid representation of the interface is achieved by allowing curvature of its constituent interfacial elements to obtain O(Δx3) accuracy in cut-cell volume, with attendant benefits in calculating cell- geometric features and interface curvature (O(Δx3)). Overall the computation converges at near-theoretical O(Δx2). Spurious-currents are down to machine error and there is no time-step restriction due to surface tension. Our method is built upon a quadtree-like adaptive mesh refinement infrastructure. When necessary, this is supplemented by body-fitted grids to enhance resolution of the gas dynamics, including flow separation, shear layers, slip lines, and critical layers. Comprehensive comparisons with exact solutions for the linearized Rayleigh-Taylor and Kelvin-Helmholtz problems demonstrate excellent performance. Sample simulations of liquid drops subjected to
Analysis of the instability growth rate during the jet– background interaction in a magnetic field
Czech Academy of Sciences Publication Activity Database
Horký, Miroslav; Kulhánek, P.
2013-01-01
Roč. 13, č. 6 (2013), s. 687-694 ISSN 1674-4527 R&D Projects: GA ČR GD205/09/H033 Institutional support: RVO:67985815 Keywords : plasmas * numerical methods * instabilities * turbulence * waves * MHD Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.516, year: 2013
Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.
2018-01-01
Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.
International Nuclear Information System (INIS)
Uchida, Y.; Sakurai, T.
1977-01-01
In this paper it is proposed that the basic behaviors of newly-emerged magnetic regions (NEMR) as seen in EUV and soft X-rays from space are interpreted by the interchange instability of the magnetic field of NEMR in the global situation surrounding it. It is shown that the situation with the NEMR is unstable against the interchange instability, and a continual relaxation to the lower energy state, or a continual invasion of the magnetic flux of the NEMR to the ambient region in the form of fine bundles or thin sheets, will take place in a short time scale of tau 1 approximately L/Vsub(A) following the change in the boundary condition at the photosphere. The second and the final relaxation is shown to be the enhanced Joule dissipation in a time scale of hours to several days occurring in the thin current sheets on the interface of this intermingled structure which is distributed in a large volume. This hypothesis may provide an explanation for the heating of NEMR to an X-ray emitting temperature, which is otherwise rather difficult to explain. The observed fast reconnection without appreciable flares (except for some smaller brightenings) is another aspect which can be explained in the present hypothesis. Namely, since the situation with the NEMR is unstable for the interchange from the beginning, the stressed configuration is relaxed before storing appreciable energy in the form of magnetic stress and therefore without a drastic release of a large amount of stored stress energy in the form of a flare. (Auth.)
International Nuclear Information System (INIS)
Avara, Mark J.; Reynolds, Christopher S.; Bogdanović, Tamara
2013-01-01
The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux
Energy Technology Data Exchange (ETDEWEB)
Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 38430 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)
2016-03-11
The influence of magnetic field and dust rotation on the resonant instability of surface electrostatic-ion-cyclotron wave is kinetically investigated in a semi-bounded warm magnetized dusty plasma. The dispersion relation and the temporal growth rate of the surface electrostatic-ion-cyclotron wave are derived by the specular-reflection boundary condition including the magnetic field and dust rotation effects. It is found that the instability domain decreases with an increase of the rotation frequency of elongated dust grain. It is also found that the dependence of the propagation wave number on the temporal growth rate is more significant for small ion cyclotron frequencies. In addition, it is shown that the scaled growth rate increases with an increase of the strength of magnetic field. The variation of the domain and magnitude of temporal growth rate due to the change of plasma parameters is also discussed. - Highlights: • The resonant instability of surface electrostatic-ion-cyclotron wave is investigated in a semi-bounded magnetized dusty plasma. • The dispersion relation and the temporal growth rate are derived by the specular-reflection condition. • The influence of magnetic field and dust rotation on the resonant instability is discussed.