WorldWideScience

Sample records for magnetic polaron formation

  1. Small-polaron formation and motion in magnetic semiconductors

    International Nuclear Information System (INIS)

    Emin, D.

    1979-01-01

    The fundamental physical processes associated with small-polaron formation are described with various magnetic semi-conductors being cited as examples. Attention is then directed toward the mechanisms of charge transfer and small-polaron hopping motion in magnetic semiconductors

  2. A variational study of the self-trapped magnetic polaron formation in double-exchange model

    International Nuclear Information System (INIS)

    Liu Tao; Feng Mang; Wang Kelin

    2005-01-01

    We study the formation of self-trapped magnetic polaron (STMP) in an antiferro/ferromagnetic double-exchange model semi-analytically by variational solutions. It is shown that the Jahn-Teller effect is not essential to the STMP formation and the STMP forms in the antiferromagnetic material within the region of the order of the lattice constant. We also confirm that no ground state STMP exists in the ferromagnetic background, but the ground state bound MP could appear due to the impurity potential

  3. Small polaron hopping in magnetic semiconductors

    International Nuclear Information System (INIS)

    Emin, D.; Liu, N.L.H.

    1978-01-01

    In a number of magnetic insulators it has been hypothesized that the charge carriers form small polarons. The transfer of an electron between magnetic sites and how the magnetic nature of the material affects the rate which characterizes small-polaron hops between magnetic sites were studied. The basic transfer processes are addressed from a many-electron point in which the itinerant electron is treated as indistinguishable from those which contribute unpaired spins at the magnetic sites

  4. Big magnetoresistance: magnetic polarons

    International Nuclear Information System (INIS)

    Teresa, J.M. de; Ibarra, M.R.

    1997-01-01

    By using several macro and microscopic experimental techniques we have given evidence for magnetoresistance in manganese oxides caused by the effect of the magnetic field on the magnetic polarons. (Author) 3 refs

  5. Mechanism of small-polaron formation in the biferroic YCrO{sub 3} doped with calcium

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A., E-mail: dural@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Apartado Postal 41, C.P. 22800, Ensenada, B.C. (Mexico); Verdin, E. [Universidad de Sonora, Departamento de Fisica, Apartado Postal 1626, Hermosillo, Sonora C.P. 8300 (Mexico); Escamilla, R.; Morales, F.; Escudero, R. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, Apartado Postal 70-360, Mexico D.F. 04510 (Mexico)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer The Ca doped in the YCrO3 matrix was analyzed by means of complete structural, magnetic and electric properties. Black-Right-Pointing-Pointer E{sub act} deduced by Arrhenius' Law suggests small-polarons as conduction mechanisms in pristine and doped sample. Black-Right-Pointing-Pointer Local non-centrosymmetry in pristine sample is proposed as responsible of small polarons formation. Black-Right-Pointing-Pointer A mechanism of formation of small polarons is proposed supported by experimental evidence. Black-Right-Pointing-Pointer The structural distortion caused by the Ca doped in the YCrO3 matrix is harmful to the Ferroic properties. - Abstract: The effects of Ca substitutions on the structure, magnetism and electrical properties of YCrO{sub 3} ceramics are investigated by X-ray diffraction, magnetic susceptibility and electrical conductivity measurements. The cell volume decrease occurs through the change from Cr(III) to Cr(IV) as a result of the charge compensation of the Ca doping. No changes are observed in the antiferromagnetic transition temperature while strong changes are observed in the transport measurements due to Ca content. The increase of the electrical conductivity as well as the decrease of the activation energy is caused by the formation of the small-polarons localized in the O-Cr-O lattice distortion. The origin of small-polarons in the undoped sample is different in nature from the calcium doped. 'Local non-centrosymmetry' is the source of the small-polaron formation in undoped sample, while the change from Cr(III) to Cr(IV) through the charge compensation of Ca(II) in the Y(III) site is the source of small-polarons formations. The decrease of the average bond length Cr-O as well as effective moments in the paramagnetic state and the increase of the electrical conductivity are clear evidence that the Ca doping induces localized polarons, which in turn, these quasiparticles move from site to

  6. Bound magnetic polaron in a semimagnetic double quantum well

    Science.gov (United States)

    Kalpana, P.; Jayakumar, K.

    2017-09-01

    The effect of different combinations of the concentration of Mn2+ ion in the Quantum well Cd1-xinMnxin Te and the barrier Cd1-xoutMnxout Te on the Bound Magnetic Polaron (BMP) in a Diluted Magnetic Semiconductors (DMS) Double Quantum Well (DQW) has been investigated. The Schrodinger equation is solved variationally in the effective mass approximation through which the Spin Polaronic Shift (SPS) due to the formation of BMP has been estimated for various locations of the donor impurity in the DQW. The results show that the effect of the increase of Mn2+ ion composition with different combinations on SPS is predominant for On Centre Well (OCW) impurity when compared to all other impurity locations when there is no application of magnetic field (γ = 0), γ being a dimensionless parameter for the magnetic field, and the same is predominant for On Centre Barrier (OCB) impurity with the application of external magnetic field (γ = 0.15).

  7. Properties of a Bound Polaron under a Perpendicular Magnetic Field

    International Nuclear Information System (INIS)

    Liu Jia; Chen Ziyu; Xiao Jinglin; Huo Shufen

    2007-01-01

    We investigate the influence of a perpendicular magnetic field on a bound polaron near the interface of a polar-polar semiconductor with Rashba effect. The external magnetic field strongly changes the ground state binding energy of the polaron and the Rashba spin-orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splits the ground state binding energy of the bound polaron. In this paper, we have shown how the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity, the wave vector of the electron and the electron areal density, taking into account the SO coupling. Due to the presence of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the bound polaron are more stable, and we find that in the condition of week magnetic field, the Zeeaman effect can be neglected.

  8. Magnetic polarons in a nonequilibrium polariton condensate

    Science.gov (United States)

    Mietki, Paweł; Matuszewski, Michał

    2017-09-01

    We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.

  9. Study of spin-polaron formation in 1D systems

    International Nuclear Information System (INIS)

    Arredondo, Y.; Navarro, O.; Vallejo, E.

    2014-01-01

    We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J H and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J H and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems

  10. A self-consistent theory of the magnetic polaron

    International Nuclear Information System (INIS)

    Marvakov, D.I.; Kuzemsky, A.L.; Vlahov, J.P.

    1984-10-01

    A finite temperature self-consistent theory of magnetic polaron in the s-f model of ferromagnetic semiconductors is developed. The calculations are based on the novel approach of the thermodynamic two-time Green function methods. This approach consists in the introduction of the ''irreducible'' Green functions (IGF) and derivation of the exact Dyson equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. (author)

  11. Study of spin-polaron formation in 1D systems

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo, Y.; Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 México D.F. (Mexico); Vallejo, E. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km. 7.5 Ciudad Universitaria, 27276 Torreón, Coahuila (Mexico)

    2014-05-15

    We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J{sub H} and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J{sub H} and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems.

  12. Hall effect driven by non-collinear magnetic polarons in diluted magnetic semiconductors

    Science.gov (United States)

    Denisov, K. S.; Averkiev, N. S.

    2018-04-01

    In this letter, we develop the theory of Hall effect driven by non-collinear magnetic textures (topological Hall effect—THE) in diluted magnetic semiconductors (DMSs). We show that a carrier spin-orbit interaction induces a chiral magnetic ordering inside a bound magnetic polaron (BMP). The inner structure of non-collinear BMP is controlled by the type of spin-orbit coupling, allowing us to create skyrmion- (Rashba) or antiskyrmion-like (Dresselhaus) configurations. The asymmetric scattering of itinerant carriers on polarons leads to the Hall response which exists in weak external magnetic fields and at low temperatures. We point out that DMS-based systems allow one to investigate experimentally the dependence of THE both on a carrier spin polarization and on a non-collinear magnetic texture shape.

  13. Crossover from Polaronic to Magnetically Phase-Separated Behavior in La1-xSrxCoO3

    Science.gov (United States)

    Phelan, D.; El Khatib, S.; Wang, S.; Barker, J.; Zhao, J.; Zheng, H.; Mitchell, J. F.; Leighton, C.

    2013-03-01

    Dilute hole-doping in La1-xSrxCoO3 leads to the formation of ``spin-state polarons'' where a non-zero spin-state is stabilized on the nearest Co3+ ions surrounding a hole. Here, we discuss the development of electronic/magnetic properties of this system from non-magnetic x=0, through the regime of spin-state polarons, and into the region where longer-range spin correlations and phase separation develop. We present magnetometry, transport, heat capacity, and small-angle neutron scattering (SANS) on single crystals. Magnetometry indicates a crossover with x from Langevin-like behavior (polaronic) to a state with a freezing temperature and finite coercivity. Fascinating correlations with this behavior are seen in transport measurements, the evolution from polaronic to clustered states being accompanied by a crossover from Mott variable range hopping to intercluster hopping. SANS data shows Lorentzian scattering from short-range ferromagnetic clusters first emerging around x = 0.03 with correlation lengths of order two unit cells. We argue that this system provides a unique opportunity to understand in detail the crossover from polaronic to truly phase-separated states.

  14. Magnetic Polarons in Anisotropic Quantum Dots

    Science.gov (United States)

    Oszwaldowski, Rafal; Petukhov, Andre; Zutic, Igor

    2010-03-01

    Tunability of confinement in magnetically-doped quantum dots (QDs) allows to tailor magnetism to an extent not available in bulk semiconductors. Versatile control of magnetic ordering, along with piezomagnetism, has been predicted even at a fixed number of carriers [1]. Recent experiments on colloidal QDs revealed strongly bound magnetic polarons (MPs) [2]. Previous studies of MPs in bulk semiconductors showed that the mean-field theory predicts a spurious magnetic phase transition, which is removed by taking into account spin fluctuations [3]. Here we present our theoretical results for MPs forming in QDs with pronounced magnetic anisotropy, which influences the spin fluctuations. We apply our findings to explain some peculiarities of the magnetic behavior of type-II ZnSe/(Zn,Mn)Te QDs, where magnetic polarons are found to persist to at least 200K [4]. Supported by ONR, AFOSR, and NSF-ECCS CAREER. [4pt] [1] R. M. Abolfath, A. G. Petukhov, and I. Zutic, Phys. Rev. Lett. 101, 207202 (2008); I. Zutic and A. G. Petukhov, Nature Mater.4, 623 (2009). [0pt] [2] R. Beaulac et al., Science 325, 973 (2009). [0pt] [3] T. Dietl and J. Spalek, Phys. Rev. Lett. 48, 355 (1982). [0pt] [4] I. R. Sellers, R. Oszwaldowski, et al., preprint; I. R. Sellers et al., Phys. Rev. Lett. 100, 136405 (2008).

  15. Thermoelectric power of small polarons in magnetic semiconductors

    International Nuclear Information System (INIS)

    Liu, N.H.; Emin, D.

    1984-01-01

    The thermoelectric power (Seebeck coefficient) α of a small polaron in both ferromagnetic and antiferromagnetic semiconductors and insulators is calculated for the first time. In particular, we obtain the contribution to the Seebeck coefficient arising from exchange interactions between the severely localized carrier (i.e., small polaron) of charge q and the spins of the host lattice. In essence, we study the heat transported along with a carrier. This heat, the Peltier heat, Pi, is related to the Seebeck coefficient by the Kelvin relation: Pi = qTα, where T is the temperature. The heat per carrier is simply the product of the temperature and the change of the entropy of the system when a small polaron is added to it. The magnetic contribution to the Seebeck coefficient is therefore directly related to the change of the magnetic entropy of the system upon introduction of a charge carrier. We explicitly treat the intrasite and intersite exchange interactions between a small polaron and the spins of a spin-1/2 system. These magnetic interactions produce two competing contributions to the Seebeck coefficient. First, adding the carrier tends to provide extra spin freedom (e.g., spin up or spin down of the carrier). This effect augments the entropy of the system, thereby producing a positive contribution to the Peltier heat. Second, however, the additional exchange between the carrier and the sites about it enhances the exchange binding among these sites. This generally reduces the energetically allowable spin configurations. The concomitant reduction of the system's entropy provides a negative contribution to the Peltier heat. At the highest of temperatures, when kT exceeds the intrasite exchange energy, the first effect dominates. Then, the Peltier heat is simply augmented by kT ln2

  16. Electron localization, polarons and clustered states in manganites

    International Nuclear Information System (INIS)

    Mannella, N.

    2004-01-01

    Full text: A recent multi-spectroscopic study of prototypical colossal magnetoresistance (CMR) compounds La 1-x Sr x MnO 3 (LSMO, x = 0.3, 0.4) using photoemission (PE), x-ray absorption (XAS), x-ray emission (XES) and extended x-ray absorption e structure (EXAFS) has exposed a dramatic change in the electronic structure on crossing the ferromagnetic-to-paramagnetic transition temperature (T C ). In particular, this investigation revealed an increase of the Mn magnetic moment by ca. 1 Bohr magneton and charge transfer to the Mn atom on crossing T C concomitant with the presence of Jahn-Teller distortions, thus providing direct evidence of lattice polaron formation. These results thus challenge the belief of some authors that the LSMO compounds are canonical double-exchange (DE) systems in which polaron formation is unimportant, and thus help to unify the theoretical description of the CMR oxides. The relationship of these data to other recent work suggesting electron localization, polarons and phase separation, along with additional measurements of magnetic susceptibility indicating the formation of ferromagnetic clusters in the metallic paramagnetic state above T C will be discussed

  17. Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing

    International Nuclear Information System (INIS)

    Wood, R.F.

    1993-06-01

    The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons

  18. Magnon Polarons in the Spin Seebeck Effect.

    Science.gov (United States)

    Kikkawa, Takashi; Shen, Ka; Flebus, Benedetta; Duine, Rembert A; Uchida, Ken-Ichi; Qiu, Zhiyong; Bauer, Gerrit E W; Saitoh, Eiji

    2016-11-11

    Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.

  19. Peltier heat of a small polaron in a magnetic semiconductor

    International Nuclear Information System (INIS)

    Liu, N.H.; Emin, D.

    1985-01-01

    For the first time the heat transported with a small polaron in both antiferromagnetic and ferromagnetic semiconductors is calculated. This heat, the Peltier heat, π, is obtained from the change of the entropy of the total system upon introduction of a charge carrier. We explicitly consider both the intrasite and intersite exchange interactions between a small polaron and the interacting spins of a spin-1/2 magnet. There are two competing magnetic contributions to the Peltier heat. First, adding the carrier increases the spin entropy of the system. This provides a positive contribution to π. Second, the exchange between the carrier and the sites about it enhances the exchange binding between these sites. This reduces the energetically allowable spin configurations and provides a negative contribution to π. At extremely high temperatures when kT exceeds the intrasite exchange energy, the first effect dominates. Then π is simply augmented by kT ln 2. However, well below the magnetic transition temperature the second effect dominates. In the experimentally accessible range between these limits both effects are comparable and sizable. The net magnetic contribution to the Peltier heat rises with temperature. Thus, a carrier's interactions with its magnetic environment produces a significant and distinctive contribution to its Peltier heat

  20. Peltier heat of a small polaron in a magnetic semiconductor

    International Nuclear Information System (INIS)

    Liu, N.L.H.; Emin, D.

    1984-01-01

    The heat transported with a small polaron in both antiferromagnetic and ferromagnetic semiconductors is calculated. This heat, the Peltier heat, π, is obtained from the change of the entropy of the total system upon introduction of a charge carrier. We explicitly consider both the intrasite and intersite exchange interactions between a small polaron and the interacting spins of a spin-1/2 magnet. There are two competing magnetic contributions to the Peltier heat. First, adding the carrier increases the spin entropy of the system. This provides a positive contribution to π. Second, the exchange between the carrier and the sites about it enhances the exchange binding between these sites. This reduces the energetically allowable spin configurations and provides a negative contribution to π. At extremely high temperature when kT exceeds the intrasite exchange energy, the first effect dominates. Then π is simply augmented by kTln2. However, well below the magnetic transition temperature the second effect dominates. In the experimentally accessible range between these limits both effects are comparable and sizable. The net magnetic contribution to the Peltier heat rises with temperature. Thus, a carrier's interactions with its magnetic environment produces a significant and distinctive contribution to its Peltier heat

  1. Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron state in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Bednarski, Henryk; Spałek, Józef

    2014-01-01

    We extend the theory of the bound magnetic polaron (BMP) in diluted paramagnetic semiconductors to the situation with a ferromagnetic phase transition. This is achieved by including the classical Gaussian fluctuations of magnetization from the quartic (non-Gaussian) term in the effective Ginzburg–Landau Hamiltonian for the spins. Within this approach, we find a ferromagnetically ordered state within the BMP in the temperature range well above the Curie temperature for the host magnetic semiconductor. Numerical results are compared directly with the recently available experimental data for the ferromagnetic semiconductor GdN. The agreement is excellent, given the simplicity of our model, and is because the polaron size (≃1.4 nm) encompasses a relatively large but finite number (N≈400) of quasiclassical spins S=7/2 coming from Gd 3+ ions. The presence of BMP invalidates the notion of critical temperature and thus makes the incorporation of classical Gaussian fluctuations sufficient to realistically describe the situation. (paper)

  2. Time Domain View of Liquid-like Screening and Large Polaron Formation in Lead Halide Perovskites

    Science.gov (United States)

    Joshi, Prakriti Pradhan; Miyata, Kiyoshi; Trinh, M. Tuan; Zhu, Xiaoyang

    The structural softness and dynamic disorder of lead halide perovskites contributes to their remarkable optoelectronic properties through efficient charge screening and large polaron formation. Here we provide a direct time-domain view of the liquid-like structural dynamics and polaron formation in single crystal CH3NH3PbBr3 and CsPbBr3 using femtosecond optical Kerr effect spectroscopy in conjunction with transient reflectance spectroscopy. We investigate structural dynamics as function of pump energy, which enables us to examine the dynamics in the absence and presence of charge carriers. In the absence of charge carriers, structural dynamics are dominated by over-damped picosecond motions of the inorganic PbBr3- sub-lattice and these motions are strongly coupled to band-gap electronic transitions. Carrier injection from across-gap optical excitation triggers additional 0.26 ps dynamics in CH3NH3PbBr3 that can be attributed to the formation of large polarons. In comparison, large polaron formation is slower in CsPbBr3 with a time constant of 0.6 ps. We discuss how such dynamic screening protects charge carriers in lead halide perovskites. US Department of Energy, Office of Science - Basic Energy Sciences.

  3. Large polaron tunneling, magnetic and impedance analysis of magnesium ferrite nanocrystallite

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800 005 (India); Majumder, Sumit [Department of Physics, Jadavpur University, Kolkata 700032 (India); Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Banerjee, S. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2017-08-15

    Graphical abstract: The diffraction peaks corresponding to the planes (111), (220), (311), (222), (400), (422), (511), (440), (620), (533) and (444) provide a clear evidence for the formation of spinel structure of the ferrites. The lattice parameter ‘a’ determined as 8.392 Å matches well with JCPDS (73-2410) file for MgFe{sub 2}O{sub 4.} The volume of the unit cell is 591.012 Å{sup 3}. The crystallite size of the synthesized powder estimated from X-ray peak broadening of (311) highest intensity diffraction peak using Scherer formula was 56.4 nm. - Highlights: • Both the grain and grain boundaries contribution to conductivity of the Mg-ferrite has been observed. • Polydispersive nature of the material is checked using Cole – Cole relation. • The ac conductivity of magnesium ferrite followed σ{sub ac} ∝ ω{sup n} dependence. • The variation of the exponent ‘n’ with temperature suggests that overlapping large polaron tunnelling is the dominant conduction mechanism. • The superparamagnetic behavior of this Mg-ferrite has been observed for sample S1 annealed at 500 °C. - Abstract: Single phase MgFe{sub 2}O{sub 4} (MFO) ferrite was prepared through sol-gel auto-combustion route. The Rietveld analysis of X-ray patterns reveals that our samples are single phase. The increase in average particle size with annealing temperature and formation of nanoparticle agglomerates is observed in MgFe{sub 2}O{sub 4}. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is confirmed using Fourier transform infrared spectroscopy (FTIR). The Zero-Field-Cooled (ZFC) and Field-Cooled (FC) magnetization measurements show the maximum irreversibility at 700 °C annealing temperature. The formation of a maximum at blocking temperature, T{sub B}∼ 180 K for sample annealed at 500 °C in the ZFC curve shows the superparamagnetic behavior of the sample. The increase of saturation magnetism (M

  4. Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys

    Science.gov (United States)

    Nhung, Tran Hong; Planel, R.

    1983-03-01

    The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.

  5. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs.

    Science.gov (United States)

    Elmaslmane, A R; Watkins, M B; McKenna, K P

    2018-06-21

    We present a computationally efficient and predictive methodology for modeling the formation and properties of electron and hole polarons in solids. Through a nonempirical and self-consistent optimization of the fraction of Hartree-Fock exchange (α) in a hybrid functional, we ensure the generalized Koopmans' condition is satisfied and self-interaction error is minimized. The approach is applied to model polaron formation in known stable and metastable phases of TiO 2 including anatase, rutile, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B). Electron polarons are predicted to form in rutile, TiO 2 (H), and TiO 2 (R) (with trapping energies ranging from -0.02 eV to -0.35 eV). In rutile the electron localizes on a single Ti ion, whereas in TiO 2 (H) and TiO 2 (R) the electron is distributed across two neighboring Ti sites. Hole polarons are predicted to form in anatase, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B) (with trapping energies ranging from -0.16 eV to -0.52 eV). In anatase, brookite, and TiO 2 (B) holes localize on a single O ion, whereas in TiO 2 (H) and TiO 2 (R) holes can also be distributed across two O sites. We find that the optimized α has a degree of transferability across the phases, with α = 0.115 describing all phases well. We also note the approach yields accurate band gaps, with anatase, rutile, and brookite within six percent of experimental values. We conclude our study with a comparison of the alignment of polaron charge transition levels across the different phases. Since the approach we describe is only two to three times more expensive than a standard density functional theory calculation, it is ideally suited to model charge trapping at complex defects (such as surfaces and interfaces) in a range of materials relevant for technological applications but previously inaccessible to predictive modeling.

  6. Weak coupling polaron and Landau-Zener scenario: Qubits modeling

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fokou, I. F.; Fai, L. C.; Ateuafack, M. E.

    2017-06-01

    The paper presents a weak coupling polaron in a spherical dot with magnetic impurities and investigates conditions for which the system mimics a qubit. Particularly, the work focuses on the Landau-Zener (LZ) scenario undergone by the polaron and derives transition coefficients (transition probabilities) as well as selection rules for polaron's transitions. It is proven that, the magnetic impurities drive the polaron to a two-state superposition leading to a qubit structure. We also showed that the symmetry deficiency induced by the magnetic impurities (strong magnetic field) yields to the banishment of transition coefficients with non-stacking states. However, the transition coefficients revived for large confinement frequency (or weak magnetic field) with the orbital quantum numbers escorting transitions. The polaron is then shown to map a qubit independently of the number of relevant states with the transition coefficients lifted as LZ probabilities and given as a function of the electron-phonon coupling constant (Fröhlich constant).

  7. Large polarons in lead halide perovskites

    OpenAIRE

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3 ? framewor...

  8. f-f Magnetic polaron Wigner glass and anomalous superconductivity in U sub 1 sub - sub x Th sub x Be sub 1 sub 3

    CERN Document Server

    Kasuya, T

    2000-01-01

    Mechanisms of the anomalous properties in the heavy fermion superconductor UBe sub 1 sub 3 and its alloys, in particular for the Th dopings, are studied in detail based on the fundamental electronic states to be consistent with all the crucial experimental results. As the reference systems for the magnetic polaron formation, Ce monopnictides, as well as USb and UTe, are mentioned. From detailed systematic studies of the dilute alloy systems, it is postulated that the 5f states in UBe sub 1 sub 3 split into the well-localized core 5f GAMMA sup 2 sub 7 singlet state and other delocalized 5f states situated around the Fermi energy forming the f-f magnetic polarons through the strong intra-atomic ferromagnetic f-f exchange interaction. The accompanied lattice polarons are also shown to play important roles. In the p-d band states, the f-f exchange interaction and the intersite p-f mixing interactions for the p-f Kondo state are of nearly equal strengths causing a rich variety of delicately balanced states. For th...

  9. Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations.

    Science.gov (United States)

    Smart, Tyler J; Ping, Yuan

    2017-10-04

    Hematite (α-Fe 2 O 3 ) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe 2 O 3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.

  10. Large polarons in lead halide perovskites

    Science.gov (United States)

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647

  11. Observation of magnetic polarons in the magnetoresistive pyrochlore Lu2V2O7

    International Nuclear Information System (INIS)

    Storchak, Vyacheslav G; Brewer, Jess H; Eshchenko, Dmitry G; Mengyan, Patrick W; Zhou Haidong; Wiebe, Christopher R

    2013-01-01

    Materials that exhibit colossal magnetoresistance (CMR) have attracted much attention due to their potential technological applications. One particularly interesting model for the magnetoresistance of low-carrier-density ferromagnets involves mediation by magnetic polarons (MP)—electrons localized in nanoscale ferromagnetic ‘droplets’ by their exchange interaction. However, MP have not previously been directly detected and their size has been difficult to determine from macroscopic measurements. In order to provide this crucial information, we have carried out muon spin rotation measurements on the magnetoresistive semiconductor Lu 2 V 2 O 7 in the temperature range from 2 to 300 K and in magnetic fields up to 7 T. Magnetic polarons with characteristic radius R ≈ 0.4 nm are detected below about 100 K, where Lu 2 V 2 O 7 exhibits CMR; at higher temperature, where the magnetoresistance vanishes, these MP also disappear. This observation confirms the MP-mediated model of CMR and reveals the microscopic size of the MP in magnetoresistive pyrochlores. (paper)

  12. Spin-polarons and high-Tc superconductivity

    International Nuclear Information System (INIS)

    Wood, R.F.

    1994-03-01

    The spin-polaron concept is introduced in analogy to ionic and electronic polarons and the assumptions underlying the author's approach to spin-polaron mediated high-T c superconductivity are discussed. Elementary considerations about the spin-polaron formation energy are reviewed and the possible origin of the pairing mechanism illustrated schematically. The electronic structure of the CuO 2 planes is treated from the standpoint of antiferromagnetic band calculations that lead directly to the picture of holes predominantly on the oxygen sublattice in a Mott-Hubbard/charge transfer insulator. Assuming the holes to be described in a Bloch representation but with the effective mass renormalized by spin-polaron formation, equations for the superconducting gap, Δ, and transition temperature, T c , are developed and the symmetry of Δ discussed. After further simplifications, T c is calculated as a function of the carrier concentration, x. It is shown that the calculated behavior of T c (x) follows the experimental results closely and leads to a natural explanation of the effects of under- and over-doping. The paper concludes with a few remarks about the evidence for the carriers being fermions (polarons) or bosons (bipolarons)

  13. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    International Nuclear Information System (INIS)

    Liu Jia; Xiao Jingling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.

  14. Formation of spin-polarons in the ferromagnetic Kondo lattice model away from half-filling

    International Nuclear Information System (INIS)

    Arredondo, Y; Navarro, O; Vallejo, E; Avignon, M

    2012-01-01

    Even though realistic one-dimensional experiments in the field of half-metallic semiconductors are not at hand yet, we are interested in the underlying fundamental physics. In this regard we study a one-dimensional ferromagnetic Kondo lattice model, a model in which a conduction band is coupled ferromagnetically to a background of localized d moments with coupling constant J H , and investigate the T = 0 phase diagram as a function of the antiferromagnetic interaction J between the localized moments and the band-filling n, since it has been observed that doping of the compounds has led to formation of magnetic domains. We explore the spin-polaron formation by looking at the nearest-neighbour correlation functions in the spin and charge regimes for which we use the density matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems. (paper)

  15. Parton Theory of Magnetic Polarons: Mesonic Resonances and Signatures in Dynamics

    Science.gov (United States)

    Grusdt, F.; Kánasz-Nagy, M.; Bohrdt, A.; Chiu, C. S.; Ji, G.; Greiner, M.; Greif, D.; Demler, E.

    2018-01-01

    When a mobile hole is moving in an antiferromagnet it distorts the surrounding Néel order and forms a magnetic polaron. Such interplay between hole motion and antiferromagnetism is believed to be at the heart of high-temperature superconductivity in cuprates. In this article, we study a single hole described by the t -Jz model with Ising interactions between the spins in two dimensions. This situation can be experimentally realized in quantum gas microscopes with Mott insulators of Rydberg-dressed bosons or fermions, or using polar molecules. We work at strong couplings, where hole hopping is much larger than couplings between the spins. In this regime we find strong theoretical evidence that magnetic polarons can be understood as bound states of two partons, a spinon and a holon carrying spin and charge quantum numbers, respectively. Starting from first principles, we introduce a microscopic parton description which is benchmarked by comparison with results from advanced numerical simulations. Using this parton theory, we predict a series of excited states that are invisible in the spectral function and correspond to rotational excitations of the spinon-holon pair. This is reminiscent of mesonic resonances observed in high-energy physics, which can be understood as rotating quark-antiquark pairs carrying orbital angular momentum. Moreover, we apply the strong-coupling parton theory to study far-from-equilibrium dynamics of magnetic polarons observable in current experiments with ultracold atoms. Our work supports earlier ideas that partons in a confining phase of matter represent a useful paradigm in condensed-matter physics and in the context of high-temperature superconductivity in particular. While direct observations of spinons and holons in real space are impossible in traditional solid-state experiments, quantum gas microscopes provide a new experimental toolbox. We show that, using this platform, direct observations of partons in and out of equilibrium are

  16. Small polaron formation and motion of holes in a-SiO2

    International Nuclear Information System (INIS)

    Hughes, R.C.; Emin, D.

    1978-01-01

    X-ray generated holes in SiO 2 are observed to be reduced to low mobility in times of the order of vibrational periods, 10 -12 s. The temperature dependence, electric field dependence and magnitude of this mobility for times up to about 100 ns are consistent with those of hole-like small polarons. The circumstances which favor the occurrence of rapid small polaron formation are a large effective mass (narrow valence band), the presence of the long-range hole-lattice interaction characteristic of an ionic material and the presence of disorder, all of which are found in amorphous SiO 2 . An alternative explanation involving trapping requires an extremely large localized state density and fortuitous temperature and field dependences of the hopping rates

  17. Implications of the formation of small polarons in Li2O2 for Li-air batteries

    Science.gov (United States)

    Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.

    2012-01-01

    Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

  18. Absolute instability of polaron mode in semiconductor magnetoplasma

    Science.gov (United States)

    Paliwal, Ayushi; Dubey, Swati; Ghosh, S.

    2018-01-01

    Using coupled mode theory under hydrodynamic regime, a compact dispersion relation is derived for polaron mode in semiconductor magnetoplasma. The propagation and amplification characteristics of the wave are explored in detail. The analysis deals with the behaviour of anomalous threshold and amplification derived from dispersion relation, as function of external parameters like doping concentration and applied magnetic field. The results of this investigation are hoped to be useful in understanding electron-longitudinal optical phonon interplay in polar n-type semiconductor plasmas under the influence of coupled collective cyclotron excitations. The best results in terms of smaller threshold and higher gain of polaron mode could be achieved by choosing moderate doping concentration in the medium at higher magnetic field. For numerical appreciation of the results, relevant data of III-V n-GaAs compound semiconductor at 77 K is used. Present study provides a qualitative picture of polaron mode in magnetized n-type polar semiconductor medium duly shined by a CO2 laser.

  19. Comparative analysis of magnetic resonance in the polaron pair recombination and the triplet exciton-polaron quenching models

    Science.gov (United States)

    Mkhitaryan, V. V.; Danilović, D.; Hippola, C.; Raikh, M. E.; Shinar, J.

    2018-01-01

    We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I /I is ∝PL within the PPR model, while it is ∝PL2 crossing over to PL3 within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.

  20. Polaron binding energy in polymers: poly[methyl(phenyl)silylene

    Czech Academy of Sciences Publication Activity Database

    Nožár, Juraj; Nešpůrek, Stanislav; Šebera, Jakub

    2012-01-01

    Roč. 18, č. 2 (2012), s. 623-629 ISSN 1610-2940 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : polaron * polaron binding energy * polysilane Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.984, year: 2012

  1. The Bogolubov Representation of the Polaron Model and Its Completely Integrable RPA-Approximation

    International Nuclear Information System (INIS)

    Bogolubov, Nikolai N. Jr.; Prykarpatsky, Yarema A.; Ghazaryan, Anna A.

    2009-12-01

    The polaron model in ionic crystal is studied in the N. Bogolubov representation using a special RPA-approximation. A new exactly solvable approximated polaron model is derived and described in detail. Its free energy at finite temperature is calculated analytically. The polaron free energy in the constant magnetic field at finite temperature is also discussed. Based on the structure of the N. Bogolubov unitary transformed polaron Hamiltonian a very important new result is stated: the full polaron model is exactly solvable. (author)

  2. Hole polaron-polaron interaction in transition metal oxides and its limit to p-type doping

    Science.gov (United States)

    Chen, Shiyou; Wang, Lin-Wang

    2014-03-01

    Traditionally the origin of the poor p-type conductivity in some transition metal oxides (TMOs) was attributed to the limited hole concentration: the charge-compensating donor defects, such as oxygen vacancies and cation interstitials, can form spontaneously as the Fermi energy shifts down to near the valence band maximum. Besides the thermodynamic limit to the hole concentration, the limit to the hole mobility can be another possible reason, e.g., the hole carrier can form self-trapped polarons with very low carrier mobility. Although isolated hole polarons had been found in some TMOs, the polaron-polaron interaction is not well-studied. Here we show that in TMOs such as TiO2 and V2O5, the hole polarons prefer to bind with each other to form bipolarons, which are more stable than free hole carriers or separated polarons. This pushes the hole states upward into the conduction band and traps the holes. The rise of the Fermi energy suppresses the spontaneous formation of the charge-compensating donor defects, so the conventional mechanism becomes ineffective. Since it can happen in the impurity-free TMO lattices, independent of any extrinsic dopant, it acts as an intrinsic and general limit to the p-type conductivity in these TMOs. This material is based upon work performed by the JCAP, a US DOE Energy Innovation Hub, the NSFC (No. 61106087 and 91233121) and special funds for major state basic research (No. 2012CB921401).

  3. Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons

    Science.gov (United States)

    Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi

    2016-07-01

    We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

  4. Polaron self-localization in white-light emitting hybrid perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-02-03

    Two-dimensional (2D) perovskites with the general formula APbX are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap colour centres. Here, we provide an in-depth description of the charge localization sites underlying the generation of such radiative centres and their corresponding decay dynamics, highlighting the formation of small polarons trapped within their lattice distortion field. Using a combination of spectroscopic techniques and first-principles calculations to study the white-light emitting 2D perovskites (EDBE)PbCl and (EDBE)PbBr, we infer the formation of Pb , Pb, and X (where X = Cl or Br) species confined within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative colour centres. These findings are expected to be relevant for a broad class of white-light emitting perovskites with large polaron relaxation energy.

  5. The ground state energy of a bound polaron in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zorkani, I [International Centre for Theoretical Physics, Trieste (Italy); Belhissi, R [Faculte des Sciences Dhar Mahraz, Fes (Morocco). Dept. de Physique

    1995-09-01

    A theoretical calculation for the ground state energy of a bound polaron as a function of the magnetic field is presented. The theory is based on a variational approach using a trial wave function proposed by Devreese et al. in the absence of the magnetic field. It was shown that his function is adequate for all electron - phonon coupling {alpha} and all parameter {gamma}{sub 0} which is the ratio between the L.O. phonon energy and the Colombian one. Analytical results are obtained in the weak coupling limit. (author). 27 refs, 4 figs, 1 tab.

  6. Effect of interchain coupling on the excited polaron in conjugated polymers

    International Nuclear Information System (INIS)

    Li, Xiao-xue; Chen, Gang

    2017-01-01

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  7. Effect of interchain coupling on the excited polaron in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-xue, E-mail: sps_lixx@ujn.edu.cn; Chen, Gang, E-mail: ss_cheng@ujn.edu.cn

    2017-02-05

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  8. Polaron-mediated surface reconstruction in the reduced Rutile TiO2 (110) surface

    Science.gov (United States)

    Reticcioli, Michele; Setvin, Martin; Hao, Xianfeng; Diebold, Ulrike; Franchini, Cesare

    The role of polarons is of key importance for the understanding of the fundamental properties and functionalities of TiO2. We use density functional theory with an on-site Coulomb interaction and molecular dynamics to study the formation and dynamics of small polarons in the reduced rutile (110) surface. We show that excess electrons donated by oxygen-vacancies (VO) form mobile small polarons that hop easily in subsurface and surface Ti-sites. The polaron formation becomes more favorable by increasing the VO concentration level (up to 20%) due to the progressively lower energy cost needed to distort the lattice. However, at higher VO concentration the shortening of the averaged polaron-polaron distance leads to an increased Coulomb repulsion among the trapped charges at the Ti-sites, which weakens this trend. This instability is overtaken by means of a structural 1 × 2 surface reconstruction, characterized by a distinctively more favorable polaron distribution. The calculations are validated by a direct comparison with experimental AFM and STM data. Our study identifies a fundamentally novel mechanism to drive surface reconstructions and resolves a long standing issue on the origin of the reconstruction in rutile (110) surface.

  9. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  10. Bound magnetic polaron in Zn-rich cobalt-doped ZnSe nanowires

    Science.gov (United States)

    Hou, Lipeng; Pan, Longfei; Liang, Bianbian; Liu, Yuting; Zhang, Li; Bukhtiar, Arfan; Shi, Lijie; Liu, Ruibin; Zou, Bingsuo

    2018-02-01

    The micro-luminescence spectra of the diluted magnetic semiconductor (DMS) can reflect the spin-exciton interaction and related relaxation process. Here the micro-photoluminescence (micro-PL) spectra and PL lifetime measurements have been done on an individual ferromagnetic (FM)-coupled cobalt (Co) doped zinc selenide (ZnSe) nanowire. There occurs a double-peak profile in its near bandedge emission spectrum: the first peak is from free exciton (FX) and the second comes from magnetic polaron (MP). In their temperature dependent PL spectra, the MP emission peak demonstrates obviously temperature-independent behavior, in contrast to the behaviors of FX and reported exciton MP in nanobelt. It is found that in this Co(II) doped ZnSe nanowires, this MP’s temperature-independent emission is related to the coupling between exciton and a FM nanocluster (↑↑↓). The nanocluster is likely due to the interaction of Se vacancies of the wide bandgap semiconductors with the antiferromagnetic (AFM) arrangement transition metal (TM) ions in these Se-deficient Co doped ZnSe nanowires. These results reflect that the AFM coupling TM ions pair can give rise to FM behavior with the involvement of positive charge defect, also indicating that the micro-luminescence detection can be used to study the magnetic coupling in DMS.

  11. Al-bound hole polarons in TiO2

    International Nuclear Information System (INIS)

    Stashans, Arvids; Bermeo, Sthefano

    2009-01-01

    Changes in the structural and electronic properties of TiO 2 (anatase and rutile) due to the Al-doping are studied using a quantum-chemical approach based on the Hartree-Fock theory. The formation of hole polarons trapped at oxygen sites near the Al impurity has been discovered and their spatial configuration are discussed. The occurrence of well-localized one-center hole polarons in rutile may influence its photocatalytic activity. Optical absorption energy for this hole center is obtained, 0.4 eV, using the ΔSCF approach.

  12. Multiphonon generation during photodissociation of slow Landau-Pekar polarons

    International Nuclear Information System (INIS)

    Myasnikov, E. N.; Myasnikova, A. E.; Mastropas, Z. P.

    2006-01-01

    The spectra of the low-temperature photodissociation (photoionization) of Landau-Pekar polarons are calculated using the theory of quantum-coherent states and a new method of variation with respect to the parameters of phonon vacuum deformation. It is shown that the final polaron states upon photodissociation may have different numbers of phonons produced in a single dissociation event and different momenta of charge carriers. The spectrum of optical absorption related to the photodissociation of polarons exhibits a superposition of bands corresponding to various numbers of phonons formed as a result of dissociation of a single polaron. Due to a large width of the energy region corresponding to the final states of charge carriers, the halfwidth of each band is on the order of the energy of polaron coupling and is much greater than the phonon energy. For this reason, the individual phonon bands exhibit strong overlap. The very broad and, probably, structureless band formed as a result of the superposition of all these components begins at an energy equal to the sum of the polaron coupling energy (E p ) and the phonon energy. This band has a maximum at a frequency of about 5.6E p /ℎ and a halfwidth on the order of 5.6E p /ℎ at a unit effective mass (m* = m e ) of band electrons. For an effective charge carrier mass within m* = (1-3)m e , the energy of the polaron band maximum can be estimated as 5E p with an error of about 10%, and the halfwidth falls within 3.4E p 1/2 p . The multiphonon character of this band is related to a decay of the phonon condensate after the escape of charge carrier from a polaron. Such polarons are likely to be observed in the spectra of complex metal oxides, including high-temperature superconductors. Examples of such polaron bands in the reported absorption and photoconductivity spectra of nonstoichiometric cuprates, manganites, nickelates, and titanates are presented. A theory of the formation of Landau-Pekar polarons with the

  13. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele; Yin, Jun; Birowosuto, Muhammad D.; Lo, Shu-Zee A.; Gurzadyan, Gagik G.; Bruno, Annalisa; Bredas, Jean-Luc; Soci, Cesare

    2017-01-01

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  14. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-11-02

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  15. O{sup -} bound small polarons in oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, O F [Department of Physics, University of Osnabrueck, D-49076 Osnabrueck (Germany)

    2006-11-01

    Holes bound to acceptor defects in oxide crystals are often localized by lattice distortion at just one of the equivalent oxygen ligands of the defect. Such holes thus form small polarons in symmetric clusters of a few oxygen ions. An overview on mainly the optical manifestations of those clusters is given. The article is essentially divided into two parts: the first one covers the basic features of the phenomena and their explanations, exemplified by several paradigmatic defects; in the second part numerous oxide materials are presented which exhibit bound small polaron optical properties. The first part starts with summaries on the production of bound hole polarons and the identification of their structure. It is demonstrated why they show strong, wide absorption bands, usually visible, based on polaron stabilization energies of typically 1 eV. The basic absorption process is detailed with a fictitious two-well system. Clusters with four, six and twelve equivalent ions are realized in various oxide compounds. In these cases several degenerate optically excited polaron states occur, leading to characteristic final state resonance splittings. The peak energies of the absorption bands as well as the sign of the transfer energy depend on the topology of the clusters. A special section is devoted to the distinction between interpolaron and intrapolaron optical transitions. The latter are usually comparatively weak. The oxide compounds exhibiting bound hole small polaron absorptions include the alkaline earth oxides (e.g. MgO), BeO and ZnO, the perovskites BaTiO{sub 3} and KTaO{sub 3}, quartz, the sillenites (e.g. Bi{sub 12}TiO{sub 20}), Al{sub 2}O{sub 3}, LiNbO{sub 3}, topaz and various other materials. There are indications that the magnetic crystals NiO, doped with Li, and LaMnO{sub 3}, doped with Sr, also show optical features caused by bound hole polarons. Beyond being elementary paradigms for the properties of small polarons in general, the defect species treated

  16. Tracking polaron generation in electrochemically doped polyaniline thin films

    Science.gov (United States)

    Kalagi, S. S.; Patil, P. S.

    2018-04-01

    Electrochemically deposited polyaniline films on ITO substrates have been studied for their optical properties. π-π*transitions inducing the formation of polarons and bipolarons have been studied from the optical spectra. The generation of these quasiparticles and the corresponding quantum of energy stored has been analysed and calculated from the experimental data. The evolution of polaron with increased levels of protonation has been identified and the necessary energy required for the transitions have been explained with the help of band structure diagram.

  17. Observation of Spin-Polarons in a strongly interacting Fermi liquid

    Science.gov (United States)

    Zwierlein, Martin

    2009-03-01

    We have observed spin-polarons in a highly imbalanced mixture of fermionic atoms using tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom ``dressed'' with a spin up cloud constitutes the spin-polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The narrow width signals a long lifetime of the spin-polaron, much longer than the collision rate with spin up atoms, as it must be for a proper quasi-particle. The peak position allows to directly measure the polaron energy. The broad pedestal at high energies reveals physics at short distances and is thus ``molecule-like'': It is exactly matched by the spin up spectra. The comparison with the area under the polaron peak allows to directly obtain the quasi-particle weight Z. We observe a smooth transition from polarons to molecules. At a critical interaction strength of 1/kFa = 0.7, the polaron peak vanishes and spin up and spin down spectra exactly match, signalling the formation of molecules. This is the same critical interaction strength found earlier to separate a normal Fermi mixture from a superfluid molecular Bose-Einstein condensate. The spin-polarons determine the low-temperature phase diagram of imbalanced Fermi mixtures. In principle, polarons can interact with each other and should, at low enough temperatures, form a superfluid of p-wave pairs. We will present a first indication for interactions between polarons.

  18. Chiral plaquette polaron theory of cuprate superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    2007-07-01

    Ab initio density functional calculations on explicitly doped La2-xSrxCuO4 find that doping creates localized holes in out-of-plane orbitals. A model for cuprate superconductivity is developed based on the assumption that doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical Opz , planar Cud3z2-r2 , and planar Opσ . This is in contrast to the assumption of hole doping into planar Cudx2-y2 and Opσ orbitals as in the t-J model. Allowing these holes to interact with the d9 spin background leads to chiral polarons with either a clockwise or anticlockwise charge current. When the polaron plaquettes percolate through the crystal at x≈0.05 for La2-xSrxCuO4 , a Cudx2-y2 and planar Opσ band is formed. The computed percolation doping of x≈0.05 equals the observed transition to the “metallic” and superconducting phase for La2-xSrxCuO4 . Spin exchange Coulomb repulsion with chiral polarons leads to d -wave superconducting pairing. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. This energy separation is on the order of the antiferromagnetic spin coupling energy, Jdd˜0.1eV , suggesting a higher critical temperature. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for La2-xSrxCuO4 . The integrated imaginary susceptibility, observed by neutron spin scattering, satisfies ω/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor for chiral spin coupling of the polarons to the undoped antiferromagnetic Cud9 spins is computed for classical spins on large two-dimensional lattices and is found to be incommensurate with a

  19. Localized polarons and doorway vibrons in finite quantum structures

    Czech Academy of Sciences Publication Activity Database

    Fehske, H.; Wellein, G.; Loos, Jan; Bishop, A. R.

    2008-01-01

    Roč. 77, č. 8 (2008), 085117/1-085117/6 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dots * electron - phonon interaction * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  20. Trapping, self-trapping and the polaron family

    International Nuclear Information System (INIS)

    Stoneham, A M; Gavartin, J; Shluger, A L; Kimmel, A V; Ramo, D Munoz; Roennow, H M; Aeppli, G; Renner, C

    2007-01-01

    The earliest ideas of the polaron recognized that the coupling of an electron to ionic vibrations would affect its apparent mass and could effectively immobilize the carrier (self-trapping). We discuss how these basic ideas have been generalized to recognize new materials and new phenomena. First, there is an interplay between self-trapping and trapping associated with defects or with fluctuations in an amorphous solid. In high dielectric constant oxides, like HfO 2 , this leads to oxygen vacancies having as many as five charge states. In colossal magnetoresistance manganites, this interplay makes possible the scanning tunnelling microscopy (STM) observation of polarons. Second, excitons can self-trap and, by doing so, localize energy in ways that can modify the material properties. Third, new materials introduce new features, with polaron-related ideas emerging for uranium dioxide, gate dielectric oxides, Jahn-Teller systems, semiconducting polymers and biological systems. The phonon modes that initiate self-trapping can be quite different from the longitudinal optic modes usually assumed to dominate. Fourth, there are new phenomena, like possible magnetism in simple oxides, or with the evolution of short-lived polarons, like muons or excitons. The central idea remains that of a particle whose properties are modified by polarizing or deforming its host solid, sometimes profoundly. However, some of the simpler standard assumptions can give a limited, indeed misleading, description of real systems, with qualitative inconsistencies. We discuss representative cases for which theory and experiment can be compared in detail

  1. Al-bound hole polarons in TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids, E-mail: arvids@utpl.edu.ec [Grupo de Fisicoquimica de Materiales, Instituto de Quimica Aplicada, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Bermeo, Sthefano [Grupo de Fisicoquimica de Materiales, Instituto de Quimica Aplicada, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)] [Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2009-09-18

    Changes in the structural and electronic properties of TiO{sub 2} (anatase and rutile) due to the Al-doping are studied using a quantum-chemical approach based on the Hartree-Fock theory. The formation of hole polarons trapped at oxygen sites near the Al impurity has been discovered and their spatial configuration are discussed. The occurrence of well-localized one-center hole polarons in rutile may influence its photocatalytic activity. Optical absorption energy for this hole center is obtained, 0.4 eV, using the {Delta}SCF approach.

  2. Polaron interaction energies in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Salje, E.; Tilley, R.J.D.

    1981-01-01

    Consideration of the properties of reduced tungsten trioxide suggest that the mobile charge carriers are polarons. As it is uncertain how the presence of polarons will influence the microstructures of the crystallographic shear (CS) planes present in reduced tungsten trioxide we have calculated both the polaron-CS plane and polaron-polaron interaction energy for a variety of circumstances. Three CS plane geometries were considered, (102), (103), and (001) CS plane arrays, and the nominal compositions of the crystals ranged from WO 2 70 to WO 3 0 . The polarons were assumed to have radii from 0.6 to 1.0 nm and the polaron-CS plane electrostatic interaction was assumed to be screened. The results suggest that for the most part the total interaction energy is small and is unlikely to be of major importance in controlling the microstructures found in CS planes. However, at very high polaron densities the interaction energy could be appreciable and may have some influence on the existence range of CS phases

  3. One dimensional polaron effects and current inhomogeneities in sequential phonon emission

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, E.S.; Harris, J.S.; Hanna, C.; Laughlin, R.B.

    1985-07-01

    We have constructed a physical model to explain the tunneling current oscillations reported by Hickmott et al., for GaAs/AlGaAs heterostructures in high magnetic fields. We propose that the periodic structure observed is due to space charge which builds up in the undepleted layer when electrons enter it with energy just below the phonon emission threshold. Such electrons interact with the lattice to form polarons whose energy is pinned to the phonon energy, and thus has a very small group velocity. The polaron effect is strongly enhanced by the confinement of the electrons by the strong magnetic field. We infer from the current-voltage data that most of the tunneling current flows through a small area of the sample. The combined model gives reasonable quantitative agreement with experiment. 6 refs., 6 figs.

  4. One dimensional polaron effects and current inhomogeneities in sequential phonon emission

    International Nuclear Information System (INIS)

    Hellman, E.S.; Harris, J.S.; Hanna, C.; Laughlin, R.B.

    1985-07-01

    We have constructed a physical model to explain the tunneling current oscillations reported by Hickmott et al., for GaAs/AlGaAs heterostructures in high magnetic fields. We propose that the periodic structure observed is due to space charge which builds up in the undepleted layer when electrons enter it with energy just below the phonon emission threshold. Such electrons interact with the lattice to form polarons whose energy is pinned to the phonon energy, and thus has a very small group velocity. The polaron effect is strongly enhanced by the confinement of the electrons by the strong magnetic field. We infer from the current-voltage data that most of the tunneling current flows through a small area of the sample. The combined model gives reasonable quantitative agreement with experiment. 6 refs., 6 figs

  5. Continual integration method in the polaron model

    International Nuclear Information System (INIS)

    Kochetov, E.A.; Kuleshov, S.P.; Smondyrev, M.A.

    1981-01-01

    The article is devoted to the investigation of a polaron system on the base of a variational approach formulated on the language of continuum integration. The variational method generalizing the Feynman one for the case of the system pulse different from zero has been formulated. The polaron state has been investigated at zero temperature. A problem of the bound state of two polarons exchanging quanta of a scalar field as well as a problem of polaron scattering with an external field in the Born approximation have been considered. Thermodynamics of the polaron system has been investigated, namely, high-temperature expansions for mean energy and effective polaron mass have been studied [ru

  6. Quantum transition and decoherence of levitating polaron on helium film thickness under an electromagnetic field

    Science.gov (United States)

    Kenfack, S. C.; Fotue, A. J.; Fobasso, M. F. C.; Djomou, J.-R. D.; Tiotsop, M.; Ngouana, K. S. L.; Fai, L. C.

    2017-12-01

    We have studied the transition probability and decoherence time of levitating polaron in helium film thickness. By using a variational method of Pekar type, the ground and the first excited states of polaron are calculated above the liquid-helium film placed on the polar substrate. It is shown that the polaron transits from the ground to the excited state in the presence of an external electromagnetic field in the plane. We have seen that, in the helium film, the effects of the magnetic and electric fields on the polaron are opposite. It is also shown that the energy, transition probability and decoherence time of the polaron depend sensitively on the helium film thickness. We found that decoherence time decreases as a function of increasing electron-phonon coupling strength and the helium film thickness. It is seen that the film thickness can be considered as a new confinement in our system and can be adjusted in order to reduce decoherence.

  7. Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals

    International Nuclear Information System (INIS)

    Chun, S. H.; Salamon, M. B.; Tomioka, Y.; Tokura, Y.

    2000-01-01

    When heated through the magnetic transition at T C , La 0.7 Ca 0.3 MnO 3 changes from a band metal to a polaronic insulator. The Hall constant R H , through its activated behavior and sign anomaly, provides key evidence for polaronic behavior. We use R H and the Hall mobility to demonstrate the breakdown of the polaron phase. Above 1.4T C , the polaron picture holds in detail, while below, the activation energies of both R H and the mobility deviate strongly from their polaronic values. These changes reflect the presence of metallic, ferromagnetic fluctuations, in the volume of which the Hall effect develops additional contributions tied to quantal phases. (c) 2000 The American Physical Society

  8. Percolation Magnetism in Ferroelectric Nanoparticles

    Science.gov (United States)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  9. Percolation Magnetism in Ferroelectric Nanoparticles.

    Science.gov (United States)

    Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N

    2017-12-01

    Nanoparticles of potassium tantalate (KTaO 3 ) and potassium niobate (KNbO 3 ) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe 3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  10. Dynamics of photogenerated polarons and polaron pairs in P3HT thin films

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Pfleger, Jiří; Toman, Petr

    2017-01-01

    Roč. 677, 1 June (2017), s. 87-91 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : poly(3-hexyl thiophene) * transient absorption spectroscopy * polaron and polaron pairs Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.815, year: 2016

  11. Formation time of a small electron polaron in LiNbO3: measurements and interpretation

    International Nuclear Information System (INIS)

    Qiu, Yong; Ucer, K.B.; Williams, R.T.

    2005-01-01

    Infrared optical absorption attributed to the electron polaron on a non-defective site in LiNbO 3 and KNbO 3 has previously been observed using pulsed electron and laser techniques. With subpicosecond laser excitation and spectroscopy, it is possible to measure a rise time of the infrared absorption, which may be interpreted as the time for a band-state conduction electron to cool by phonon scattering, collapse its wavefunction around a site made attractive by thermal disorder, and relax vibrationally to a small polaron. This is a process which is of fundamental interest, involving dynamics of self-localization from band states and vibrational relaxation of a localized electron in an otherwise non-defective lattice. For example, Gavartin and Shluger have recently performed calculations on the role of thermal fluctuations in self-trapping of holes in MgO. We report initial measurements on the rise time of infrared absorption at 0.95 eV (Mg-perturbed polaron) in LiNbO 3 :Mg to be τ R ∼230 fs at T=20 K and τ R ∼110 fs at T=296 K. We discuss 2 stages that together may account for the delay and its temperature dependence: free-electron cooling and vibrational relaxation of a ''defect'' (small polaron) in a host. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Multiphonon contribution to the polaron formation in cuprates with strong electron correlations and strong electron-phonon interaction

    Science.gov (United States)

    Ovchinnikov, Sergey G.; Makarov, Ilya A.; Kozlov, Peter A.

    2017-03-01

    In this work dependences of the electron band structure and spectral function in the HTSC cuprates on magnitude of electron-phonon interaction (EPI) and temperature are investigated. We use three-band p-d model with diagonal and offdiagonal EPI with breathing and buckling phonon mode in the frameworks of polaronic version of the generalized tight binding (GTB) method. The polaronic quasiparticle excitation in the system with EPI within this approach is formed by a hybridization of the local multiphonon Franck-Condon excitations with lower and upper Hubbard bands. Increasing EPI leads to transfer of spectral weight to high-energy multiphonon excitations and broadening of the spectral function. Temperature effects are taken into account by occupation numbers of local excited polaronic states and variations in the magnitude of spin-spin correlation functions. Increasing the temperature results in band structure reconstruction, spectral weight redistribution, broadening of the spectral function peak at the top of the valence band and the decreasing of the peak intensity. The effect of EPI with two phonon modes on the polaron spectral function is discussed.

  13. DFT+U study of polaronic conduction in Li2O2 and Li2CO3

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Myrdal, J.S.G.; Christensen, Rune

    2013-01-01

    The main discharge products formed at the cathode of nonaqueous Li-air batteries are known to be Li2O2 and residual Li2CO3. Recent experiments indicate that the charge transport through these materials is the main limiting factor for the battery performance. It has been also shown...... that the performance of the battery decreases drastically when the amount of Li2CO3 at the cathode increases with respect to Li2O2. In this work, we study the formation and transport of hole and electron polarons in Li2O2 and Li2CO3 using density functional theory (DFT) within the PBE+U approximation. For both...... materials, we find that the formation of polarons (both hole and electron) is stabilized with respect to the delocalized states for all physically relevant values of U. We find a much higher mobility for hole polarons than for the electron polarons, and we show that the poor charge transport in Li2CO3...

  14. Diagrams in the polaron model

    International Nuclear Information System (INIS)

    Smondyrev, M.A.

    1985-01-01

    The perturbation theory for the polaron energy is systematically treated on the diagrammatic basis. Feynman diagrams being constructed allow to calculate the polaron energy up to the third order in powers of the coupling constant. Similar calculations are performed for the average number of virtual phonons

  15. Strong-coupling polaron effect in quantum dots

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-11-01

    Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease by increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases. (author). 15 refs, 4 figs

  16. Raman and optical spectroscopic studies of small-to-large polaron crossover in the perovskite manganese oxides

    International Nuclear Information System (INIS)

    Yoon, S.; Liu, H.L.; Schollerer, G.; Cooper, S.L.; Han, P.D.; Payne, D.A.; Cheong, S.; Fisk, Z.

    1998-01-01

    We present an optical reflectance and Raman-scattering study of the A 1-x A ' x MnO 3 system as a function of temperature and doping (0.2≤x≤0.5). The metal-semiconductor transition in the A 1-x A ' x MnO 3 system is characterized by a change from a diffusive electronic Raman-scattering response in the high-temperature paramagnetic phase, to a flat continuum scattering response in the low-temperature ferromagnetic phase. We interpret this change in the scattering response as a crossover from a small-polaron-dominated regime at high temperatures to a large-polaron-dominated low-temperature regime. Interestingly, we observe evidence for the coexistence of large and small polarons in the low-temperature ferromagnetic phase. We contrast these results with those obtained for EuB 6 , which is a low-T c magnetic semiconductor with similar properties to the manganites, but with a substantially reduced carrier density and polaron energy. copyright 1998 The American Physical Society

  17. A new polaronic order-disorder phase transition in magnetite as observed through μSR

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Denison, A.B.; Brabers, V.A.M.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.

    1986-01-01

    Recent μSr measurements on the Mott-Wigner glass magnetite, as a function of temperature and external magnetic field have shown the existence of two inequivalent magnetic sites below T A = 247 K. These data are being interpreted in terms of the onset or destruction of local order manifested as local atomic correlations (molecular polarons). (orig.)

  18. Polaron crossover in molecular solids

    International Nuclear Information System (INIS)

    Zoli, Marco; Das, A N

    2004-01-01

    An analytical variational method is applied to the molecular Holstein Hamiltonian in which the dispersive features of the dimension dependent phonon spectrum are taken into account by a force constant approach. The crossover between a large and a small size polaron is monitored, in one, two and three dimensions and for different values of the adiabatic parameter, through the behaviour of the effective mass as a function of the electron-phonon coupling. By increasing the strength of the intermolecular forces the crossover becomes smoother and occurs at higher e-ph couplings. These effects are more evident in three dimensions. We show that our modified Lang-Firsov method starts to capture the occurrence of a polaron self-trapping transition when the electron energies become of order of the phonon energies. The self-trapping event persists in the fully adiabatic regime. At the crossover we estimate polaron effective masses of order ∼ 5-40 times the bare band mass according to the dimensionality and the value of the adiabatic parameter. Modified Lang-Firsov polaron masses are substantially reduced in two and three dimensions. There is no self-trapping in the antiadiabatic regime

  19. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liu, F.; Ruden, P. P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  20. Polarons induced electronic transport, dielectric relaxation and magnetodielectric coupling in spin frustrated Ba{sub 2}FeWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Pezhumkattil Palakkal, Jasnamol [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Lekshmi, P. Neenu; Thomas, Senoy [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Valant, Matjaz [Materials Research Laboratory, University of Nova Gorica, Nova Gorica 5000 (Slovenia); Suresh, K.G. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Varma, Manoj Raama, E-mail: manoj@niist.res.in [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India)

    2016-04-15

    Highlights: • Ordered double perovskite Ba{sub 2}FeWO{sub 6} synthesized in reducing atmosphere possess a tetragonal I4/m crystal structure with mixed valent Fe/W cations. • Ba{sub 2}FeWO{sub 6} has an antiferromagnetic structure with T{sub N} at 19 K. • Insulating Ba{sub 2}FeWO{sub 6} shows different conducting mechanisms at different temperature regions and dielectric relaxation. • The polarons invoked by the mixed valence state of cations and their disordered arrangements are solely responsible for the various physical phenomena observed in Ba{sub 2}FeWO{sub 6}. - Abstract: Mixed valent double perovskite Ba{sub 2}FeWO{sub 6}, with tetragonal crystal structure, synthesized in a highly controlled reducing atmosphere, shows antiferromagnetic transition at T{sub N} = 19 K. A cluster glass-like transition is observed around 30 K arising from the competing interactions between inhomogeneous magnetic states. The structural distortion leads to the formation of polarons that are not contributing to DC conduction below charge ordering temperature, T{sub CO} = 279 K. Above T{sub CO}, small polarons will start to hop by exploiting thermal energy and participate in the conduction mechanism. The polarons are also responsible for the dielectric relaxor behavior, in which the dielectric relaxation time follows non-linearity in temperature as proposed by Fulcher. The material also exhibits a small room temperature magnetoresistance of 1.7% at 90 kOe. An intrinsic magnetodielectric coupling of ∼4% near room temperature and at lower temperatures, as well as an extrinsic magnetodielectric coupling change from +4% to −6% at around 210 K are reported.

  1. Neutron diffuse scattering in magnetite due to molecular polarons

    International Nuclear Information System (INIS)

    Yamada, Y.; Wakabayashi, N.; Nicklow, R.M.

    1980-01-01

    A detailed neutron diffuse scattering study has been carried out in order to verify a model which describes the property of valence fluctuations in magnetite above T/sub V/. This model assumes the existence of a complex which is composed of two excess electrons and a local displacement mode of oxygens within the fcc primitive cell. The complex is called a molecular polaron. It is assumed that at sufficiently high temperatures there is a random distribution of molecular polarons, which are fluctuating independently by making hopping motions through the crystal or by dissociating into smaller polarons. The lifetime of each molecular polaron is assumed to be long enough to induce an instantaneous strain field around it. Based on this model, the neutron diffuse scattering cross section due to randomly distributed dressed molecular polarons has been calculated. A precise measurement of the quasielastic scattering of neutrons has been carried out at 150 K. The observed results definitely show the characteristics which are predicted by the model calculation and, thus, give evidence for the existence of the proposed molecular polarons. From this standpoint, the Verwey transition of magnetite may be viewed as the cooperative ordering process of dressed molecular polarons. Possible extensions of the model to describe the ordering and the dynamical behavior of the molecular polarons are discussed

  2. Polarons and Mobile Impurities Near a Quantum Phase Transition

    Science.gov (United States)

    Shadkhoo, Shahriar

    aforementioned polaronic and solitonic states. We eventually generalize the polaron formalism to the case of impurities that couple quadratically to a nearly-critical field; hence called the ''quadratic polaron''. The Hertz-Millis field theory and its generalization to the case of magnetic transition in helimagnets, is taken as a toy model. The phase diagram of the bare model contains both second-order and fluctuation-induced first-order quantum phase transitions. We propose a semi-classical scenario in which the impurity and the field couple quadratically. The polaron properties in the vicinity of these transitions are calculated in different dimensions. We observe that the quadratic coupling in three dimensions, even in the absence of the critical modes with finite wavelength, leads to a jump-like localization of the polaron. In lower dimensions, the transition behavior remains qualitatively similar to those in the case of linear coupling, namely the critical modes must have a finite wavelength to localize the particle.

  3. Method of T-products in polaron theory

    International Nuclear Information System (INIS)

    Bogolubov, N.N. Jr.; Kurbatov, A.M.; Kireev, A.N.

    1985-11-01

    T-products method is used for the investigation of equilibrium thermodynamic properties of Frohlich's model in polaron theory. Polaron free energy at finite temperatures is calculated on the basis of Bogolubov's variational principle. A trial function is chosen in the most general form corresponding to arbitrary number of oscillators harmonically interacting with electron. The upper bound to the polaron ground state energy in limiting case of weak interaction and low temperatures is obtained and investigated in detail. It is shown that the result becomes more exact by increasing the number of oscillators. (author)

  4. Polaron as the extended particle model

    International Nuclear Information System (INIS)

    Kochetov, E.A.; Kuleshov, S.P.; Smondyrev, M.A.

    1977-01-01

    The polaron (a moving electron with concomitant lattice distortion) mass and energy are calculated. The problem of finding the Green function in the polaron model is solved. A number of the simplest approximations corresponding to the approximation in the picture of straight-line paths is considered. The case of strong coupling requires more detailed study of the particle motion in the effective field, caused by the significant polarization of vacuum near the particle. As a consequence, a more complex approximation of functional integrals is required. A variation method is used in this case. The bound state of a polaron interacting not only with photons, but also with some external classical field is investigated as well. A classical potential is considered as an example

  5. Bi-Polaron Condensation in High Tc Superconductors

    International Nuclear Information System (INIS)

    Ranninger, J.

    1995-01-01

    On the basis of optical measurements-, photoemission-, EXAFS- and neutron scattering-experiments we conclude that itinerant valence electrons coexist with localized bi-polarons.Entering the metallic phase upon chemical doping, a charge transfer between the two electronic subsystems is triggered off. We show that as the temperature is lowered towards Tc this process leads to a delocalization of bi-polarons due to a precursor effect of superfluidity of those bi-polarons. Upon entering the superconducting phase, these bipolarons ultimately condense into a superfluid state which is expected to largely determine the superconducting properties of high Tc materials. (authors)

  6. Direct observation of anisotropic small-hole polarons in an orthorhombic structure of BiV O4 films

    Science.gov (United States)

    Chaudhuri, A.; Mandal, L.; Chi, X.; Yang, M.; Scott, M. C.; Motapothula, M.; Yu, X. J.; Yang, P.; Shao-Horn, Y.; Venkatesan, T.; Wee, A. T. S.; Rusydi, A.

    2018-05-01

    Here, we report an anisotropic small-hole polaron in an orthorhombic structure of BiV O4 films grown by pulsed-laser deposition on yttrium-doped zirconium oxide substrate. The polaronic state and electronic structure of BiV O4 films are revealed using a combination of polarization-dependent x-ray absorption spectroscopy at V L3 ,2 edges, spectroscopic ellipsometry, x-ray photoemission spectroscopies, and high-resolution x-ray diffraction with the support of first-principles calculations. We find that in the orthorhombic phase, which is slightly different from the conventional pucherite structure, the unoccupied V 3d orbitals and charge inhomogeneities lead to an anisotropic small-hole polaron state. Our result shows the importance of the interplay of charge and lattice for the formation of a hole polaronic state, which has a significant impact in the electrical conductivity of BiV O4 , hence its potential use as a photoanode for water splitting.

  7. Polarons in acetanilide

    Science.gov (United States)

    Scott, Alwyn C.; Bigio, Irving J.; Johnston, Clifford T.

    1989-06-01

    The best available data are presented of the integrated intensity of the 1650-cm-1 band in crystalline acetanilide as a function of temperature. A concise theory of polaron states is presented and used to interpret the data.

  8. Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics

    Science.gov (United States)

    Tautz, Raphael; da Como, Enrico; Limmer, Thomas; Feldmann, Jochen; Egelhaaf, Hans-Joachim; von Hauff, Elizabeth; Lemaur, Vincent; Beljonne, David; Yilmaz, Seyfullah; Dumsch, Ines; Allard, Sybille; Scherf, Ullrich

    2012-07-01

    Polymeric semiconductors are materials where unique optical and electronic properties often originate from a tailored chemical structure. This allows for synthesizing conjugated macromolecules with ad hoc functionalities for organic electronics. In photovoltaics, donor-acceptor co-polymers, with moieties of different electron affinity alternating on the chain, have attracted considerable interest. The low bandgap offers optimal light-harvesting characteristics and has inspired work towards record power conversion efficiencies. Here we show for the first time how the chemical structure of donor and acceptor moieties controls the photogeneration of polaron pairs. We show that co-polymers with strong acceptors show large yields of polaron pair formation up to 24% of the initial photoexcitations as compared with a homopolymer (η=8%). π-conjugated spacers, separating the donor and acceptor centre of masses, have the beneficial role of increasing the recombination time. The results provide useful input into the understanding of polaron pair photogeneration in low-bandgap co-polymers for photovoltaics.

  9. Screening effect on the polaron by surface plasmons

    Science.gov (United States)

    Xu, Xiaoying; Xu, Xiaoshan; Seal, Katyayani; Guo, Hangwen; Shen, Jian; Low Dimensional Materials Physics, Oak Ridge National Lab Team; University of Tennessee Team; Physics Department, Fudan University Team

    2011-03-01

    Surface plasmons occur when the conduction electrons at a metal/dielectric interface resonantly interact with external electromagnetic fields. While surface plasmons in vicinity of a polaron in the dielectric material, a strong screening effect on polaron characteristics is introduced. In this work, we observed the reduction of polarons in multiferroic LuFe2O4, which is mainly contributed by surface plasmons. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  10. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    It is shown that the scattering of polaronic charge carriers and bosonic Cooper pairs at acoustic and optical phonons are responsible for the charge carrier mobility above and below the PG temperature. We show that the energy scales of the binding energies of large polarons and polaronic Cooper pairs can be identified by ...

  11. Quantum vibrational polarons: Crystalline acetanilide revisited

    Science.gov (United States)

    Hamm, Peter; Edler, Julian

    2006-03-01

    We discuss a refined theoretical description of the peculiar spectroscopy of crystalline acetanilide (ACN). Acetanilide is a molecular crystal with quasi-one-dimensional chains of hydrogen-bonded units, which is often regarded as a model system for the vibrational spectroscopy of proteins. In linear spectroscopy, the CO stretching (amide I) band of ACN features a double-peak structure, the lower of which shows a pronounced temperature dependence which has been discussed in the context of polaron theory. In nonlinear spectroscopy, both of these peaks respond distinctly differently. The lower-frequency band exhibits the anharmonicity expected from polaron theory, while the higher-frequency band responds as if it were quasiharmonic. We have recently related the response of the higher-frequency band to that of a free exciton [J. Edler and P. Hamm, J. Chem. Phys. 117, 2415 (2002)]. However, as discussed in the present paper, the free exciton is not an eigenstate of the full quantum version of the Holstein polaron Hamiltonian, which is commonly used to describe these phenomena. In order to resolve this issue, we present a numerically exact solution of the Holstein polaron Hamiltonian in one dimension (1D) and 3D. In 1D, we find that the commonly used displaced oscillator picture remains qualitatively correct, even for relatively large exciton coupling. However, the result is not in agreement with the experiment, as it fails to explain the free-exciton band. In contrast, when taking into account the 3D nature of crystalline acetanilide, certain parameter regimes exist where the displaced oscillator picture breaks down and states appear in the spectrum that indeed exhibit the characteristics of a free exciton. The appearance of these states is a speciality of vibrational polarons, whose source of exciton coupling is transition dipole coupling which is expected to have opposite signs of interchain and intrachain coupling.

  12. Small-polaron model of light atom diffusion

    International Nuclear Information System (INIS)

    Emin, D.

    1977-01-01

    A number of researchers have treated the diffusion of light interstitials in metals in strict analogy with the theory for the hopping diffusion of electrons in low-mobility insulators. In other words, these authors view the diffusion of light atoms as simply being an example of small-polaron hopping motion. In this paper the motion of a small polaron is introduced, and the mechanism of its motion is described. The experimental results are then succinctly presented. Next the physical assumptions implicit in the theory are compared with the situation which is believed to characterize the existence and motion of light interstitial atoms in metals. Concomitantly, the modifications of the small-polaron theory required in applying it to light atom diffusion are ennumerated

  13. Introduction to the Physics of Diluted Magnetic Semiconductors

    CERN Document Server

    Gaj, Jan A

    2010-01-01

    The book deals with diluted magnetic semiconductors, a class of materials important to the emerging field of spintronics. In these materials semiconducting properties, both transport and optical, are influenced by the presence of magnetic ions. It concentrates on basic physical mechanisms (e.g. carrier-ion and ion-ion interactions) and resulting phenomena (e.g. magnetic polaron formation and spin relaxation). Introduction to the Physics of Diluted Magnetic Semiconductors is addressed to graduate-level and doctoral students and young researchers entering the field. The authors have been actively involved in the creation of this branch of semiconductor physics.

  14. Polaron Self-localization in White-light Emitting Hybrid Perovskites

    OpenAIRE

    Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Lo, Shu-Zee Alencious; Gurzadyan, Gagik G.; Mhaisalkar, Subodh; Brédas, Jean-Luc; Soci, Cesare

    2016-01-01

    Two-dimensional (2D) perovskites with general formula $APbX_4$ are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap color centers; however, the nature and dynamics of the emissive species have remained elusive. Here we show that the broadband photoluminescence of the 2D perovskites $(EDBE)PbCl_4$ and $(EDBE)PbBr_4$ stems from the localization of small polaron...

  15. Ground state energy of a polaron in a superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, G.; Mensah, N.G.

    2000-10-01

    The ground state energy of a polaron in a superlattice was calculated using the double-time Green functions. The effective mass of the polaron along the planes perpendicular to the superlattice axis was also calculated. The dependence of the ground state energy and the effective mass along the planes perpendicular to the superlattice axis on the electron-phonon coupling constant α and on the superlattice parameters (i.e. the superlattice period d and the bandwidth Δ) were studied. It was observed that if an infinite square well potential is assumed, the ground state energy of the polaron decreases (i.e. becomes more negative) with increasing α and d, but increases with increasing Δ. For small values of α, the polaron ground state energy varies slowly with Δ, becoming approximately constant for large Δ. The effective mass along the planes perpendicular to the superlattice axis was found to be approximately equal to the mass of an electron for all typical values of α, d and Δ. (author)

  16. Polaron binding energy and effective mass in the GaAs film

    International Nuclear Information System (INIS)

    Wu Zhenhua; Yan Liangxing; Tian Qiang; Li Hua; Liu Bingcan

    2012-01-01

    The binding energy and effective mass of a polaron in a GaAs film deposited on the Al 0.3 Ga 0.7 As substrate are studied theoretically by using the fractional-dimensional space approach. Our calculations show that the polaron binding energy and mass shift decrease monotonously with increasing the film thickness. For the film thicknesses with L w ≤ 70Å and the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness influence the polaron binding energy and mass shift in the GaAs film. The polaron binding energy and mass shift increase monotonously with increasing the substrate thickness. For the film thickness with L w ≥ 70Å or the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness have no significant influence on the polaron binding energy and mass shift in the GaAs film deposited on the Al 0.3 Ga 0.7 As substrate.

  17. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    Orifjon Ganiev

    2017-05-30

    May 30, 2017 ... sizes and effective masses are large polarons. According ... nating metallic and insulating domains with mobile ... The mobile polaronic carriers are con- ..... [51] T Kondo, Y Hamaya, A D Palczewski, T Takeuchi, J S Wen,.

  18. DFT +U Modeling of Hole Polarons in Organic Lead Halide Perovskites

    Science.gov (United States)

    Welch, Eric; Erhart, Paul; Scolfaro, Luisa; Zakhidov, Alex

    Due to the ever present drive towards improved efficiencies in solar cell technology, new and improved materials are emerging rapidly. Organic halide perovskites are a promising prospect, yet a fundamental understanding of the organic perovskite structure and electronic properties is missing. Particularly, explanations of certain physical phenomena, specifically a low recombination rate and high mobility of charge carriers still remain controversial. We theoretically investigate possible formation of hole polarons adopting methodology used for oxide perovskites. The perovskite studied here is the ABX3structure, with A being an organic cation, B lead and C a halogen; the combinations studied allow for A1,xA2 , 1 - xBX1,xX2 , 3 - xwhere the alloy convention is used to show mixtures of the organic cations and/or the halogens. Two organic cations, methylammonium and formamidinium, and three halogens, iodine, chlorine and bromine are studied. Electronic structures and polaron behavior is studied through first principle density functional theory (DFT) calculations using the Vienna Ab Initio Simulation Package (VASP). Local density approximation (LDA) pseudopotentials are used and a +U Hubbard correction of 8 eV is added; this method was shown to work with oxide perovskites. It is shown that a localized state is realized with the Hubbard correction in systems with an electron removed, residing in the band gap of each different structure. Thus, hole polarons are expected to be seen in these perovskites.

  19. Polaron in the dilute critical Bose condensate

    Science.gov (United States)

    Pastukhov, Volodymyr

    2018-05-01

    The properties of an impurity immersed in a dilute D-dimensional Bose gas at temperatures close to its second-order phase transition point are considered. Particularly by means of the 1/N-expansion, we calculate the leading-order polaron energy and the damping rate in the limit of vanishing boson–boson interaction. It is shown that the perturbative effective mass and the quasiparticle residue diverge logarithmically in the long-length limit, signalling the non-analytic behavior of the impurity spectrum and pole-free structure of the polaron Green’s function in the infrared region, respectively.

  20. Asymptotic dependence of Gross–Tulub polaron ground-state energy in the strong coupling region

    Directory of Open Access Journals (Sweden)

    N.I. Kashirina

    2017-12-01

    Full Text Available The properties of translationally invariant polaron functional have been investigated in the region of strong and extremely strong coupling. It has been shown that the Gross–Tulub polaron functional obtained earlier using the methods of field theory was derived only for the region , where is the Fröhlich constant of the electron-phonon coupling. Various representations of exact and approximate polaron functionals have been considered. Asymptotic dependences of the polaron energy have been obtained using a functional extending the Gross–Tulub functional to the region of extremely strong coupling. The asymptotic dependence of polaron energies for an extremely strong coupling are (for the one-parameter variational function fk, and (for a two-parameter function . It has been shown that the virial theorem 1:3:4 holds for the two-parameter function . Minimization of the approximate functional obtained by expanding the exact Gross–Tulub functional in a series on leads to a quadratic dependence of the polaron energy. This approximation is justified for . For a two-parameter function , the corresponding dependence has the form . However, the use of approximate functionals, in contrast to the strict variational procedure, when the exact polaron functional varies, does not guarantee obtaining the upper limit for the polaron energy.

  1. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites

    KAUST Repository

    Yin, Jun

    2017-01-20

    We theoretically characterize the unusual white-light emission properties of two-dimensional (2D) hybrid organic inorganic perovskites with an APbX(4) structure (where A is a bidentate organic cation and X = Cl, Br). In addition to band structure calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level. Upon adding or removing an electron from the neutral systems, we find that strongly localized small polarons form in the 2D clusters. The polaron charge density is distributed over just lattice sites, which is consistent with the calculated large polaron binding energies, on the order of similar to 0.4-1.2 eV.

  2. Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.

    Science.gov (United States)

    Kang, Byungkyun; Biswas, Koushik

    2017-10-18

    There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.

  3. Density functional theory + U modeling of polarons in organohalide lead perovskites

    Directory of Open Access Journals (Sweden)

    Eric Welch

    2016-12-01

    Full Text Available We investigate the possible formation of polarons in four organic perovskites (CH3NH3PbI3, CH3NH3PbBr3, CH3NH3PbCl3, and CH3NH3PbI2Cl1 using a density functional theory (DFT calculations with local potentials and hybrid functionals. We show that DFT+U method with U = 8 eV predicts a correct band-gap and matches the forces on ions from hybrid calculations. We then use the DFT + U approach to study the effect of polarons, i.e. to search the configuration space and locate the lowest energy localized band gap state self-trapped hole (STH. STH configurations were found for three pure halides and one mixed halide system. Spin orbit coupling (SOC was also taken into account and the results may be found in the supplementary material. This study focuses on the +U method; however, SOC corrections added to the DFT+U calculations also resulted in STH states in all four systems.

  4. First-principles supercell calculations of small polarons with proper account for long-range polarization effects

    Science.gov (United States)

    Kokott, Sebastian; Levchenko, Sergey V.; Rinke, Patrick; Scheffler, Matthias

    2018-03-01

    We present a density functional theory (DFT) based supercell approach for modeling small polarons with proper account for the long-range elastic response of the material. Our analysis of the supercell dependence of the polaron properties (e.g., atomic structure, binding energy, and the polaron level) reveals long-range electrostatic effects and the electron–phonon (el–ph) interaction as the two main contributors. We develop a correction scheme for DFT polaron calculations that significantly reduces the dependence of polaron properties on the DFT exchange-correlation functional and the size of the supercell in the limit of strong el–ph coupling. Using our correction approach, we present accurate all-electron full-potential DFT results for small polarons in rocksalt MgO and rutile TiO2.

  5. Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach

    Science.gov (United States)

    Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene

    2018-03-01

    When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.

  6. The polaron problem and the Boltzmann equation

    International Nuclear Information System (INIS)

    Devreese, J.

    1979-01-01

    A mobility theory for the Feynman polaron is developed. It is shown that the Boltzmann equation for polarons is valid for weak coupling and not too high electric fields. The analytical results indicate that for E → 0 the relaxation time approximation is valid. A comparison is made of three methods to calculate the mobility in a linear electron transport theory. An approximation to the Kubo formula, a mobility calculation using path integrals by Feynman and a calculation based on the displaced Maxwell distribution function are considered. The three methods lead to equivalent results in the weak scattering and small electric field limit

  7. Polaron effects on the linear and the nonlinear optical absorption coefficients and refractive index changes in cylindrical quantum dots with applied magnetic field

    International Nuclear Information System (INIS)

    Wu Qingjie; Guo Kangxian; Liu Guanghui; Wu Jinghe

    2013-01-01

    Polaron effects on the linear and the nonlinear optical absorption coefficients and refractive index changes in cylindrical quantum dots with the radial parabolic potential and the z-direction linear potential with applied magnetic field are theoretically investigated. The optical absorption coefficients and refractive index changes are presented by using the compact-density-matrix approach and iterative method. Numerical calculations are presented for GaAs/AlGaAs. It is found that taking into account the electron-LO-phonon interaction, not only are the linear, the nonlinear and the total optical absorption coefficients and refractive index changes enhanced, but also the total optical absorption coefficients are more sensitive to the incident optical intensity. It is also found that no matter whether the electron-LO-phonon interaction is considered or not, the absorption coefficients and refractive index changes above are strongly dependent on the radial frequency, the magnetic field and the linear potential coefficient.

  8. Magnetic and electronic properties of La3 M O7 and possible polaron formation in hole-doped La3 M O7 (M   =  Ru and Os)

    International Nuclear Information System (INIS)

    Gao, Bin; Weng, Yakui; Zhang, Jun-Jie; Zhang, Huimin; Zhang, Yang; Dong, Shuai

    2017-01-01

    Oxides with 4 d /5 d transition metal ions are physically interesting for their particular crystalline structures as well as the spin–orbit coupled electronic structures. Recent experiments revealed a series of 4 d /5 d transition metal oxides R 3 M O 7 (R : rare earth; M : 4 d /5 d transition metal) with unique quasi-one-dimensional M chains. Here first-principles calculations have been performed to study the electronic structures of La 3 OsO 7 and La 3 RuO 7 . Our study confirm both of them to be Mott insulating antiferromagnets with identical magnetic order. The reduced magnetic moments, which are much smaller than the expected value for ideal high-spin state (3 t 2g orbitals occupied), are attributed to the strong p   −   d hybridization with oxygen ions, instead of the spin–orbit coupling. The Ca-doping to La 3 OsO 7 and La 3 RuO 7 can not only modulate the nominal carrier density but also affect the orbital order as well as the local distortions. The Coulombic attraction and particular orbital order would prefer to form polarons, which might explain the puzzling insulating behavior of doped 5 d transition metal oxides. In addition, our calculations predict that the Ca-doping can trigger ferromagnetism in La 3 RuO 7 but not in La 3 OsO 7 . (paper)

  9. Gross–Tulub polaron functional in the region of intermediate and strong coupling

    Directory of Open Access Journals (Sweden)

    N.I. Kashirina

    2017-10-01

    Full Text Available Properties of the polaron functional obtained as a result of averaging the Fröhlich Hamiltonian on the translation-invariant function have been investigated. The polaron functional can be represented in two different forms. It has been shown that the functional of translationally invariant Gross–Tulub polaron cannot be applied in the strong coupling region, where the real part of the complex quantity takes negative values. The function coincides in its structure with the dynamic susceptibility of degenerate electron gas. The necessary condition for obtaining correct results is investigation of the region of admissible values of the Gross–Tulub functional depending on properties of the function , variational parameters, and the electron-phonon interaction parameter α (Fröhlich coupling constant. A simple and exact formula for the recoil energy of the translationally invariant polaron has been derived, which makes it possible to extend the range of admissible values of the parameters of the electron-phonon interaction to the region of extremely strong coupling (α > 10, where . Numerical investigation of different forms of polaron functionals obtained using the field theory methods has been carried out.

  10. Polaronic transport in polysilanes

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Nožár, Juraj; Kadashchuk, A.; Fishchuk, I. I.

    2009-01-01

    Roč. 193, č. 1 (2009), s. 1-4 ISSN 1742-6588. [International Conference on Electron Dynamics in Semiconductors, Optoelectronics and Nanostructures /16./. Montpellier, 24.08.2009-28.08.2009] R&D Projects: GA AV ČR IAA100100622; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : polaronic transport * polysilanes * charge carrier mobility Subject RIV: CD - Macromolecular Chemistry

  11. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    Science.gov (United States)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  12. Polaronic and dressed molecular states in orbital Feshbach resonances

    Science.gov (United States)

    Xu, Junjun; Qi, Ran

    2018-04-01

    We consider the impurity problem in an orbital Feshbach resonance (OFR), with a single excited clock state | e ↑⟩ atom immersed in a Fermi sea of electronic ground state | g ↓⟩. We calculate the polaron effective mass and quasi-particle residue, as well as the polaron to molecule transition. By including one particle-hole excitation in the molecular state, we find significant correction to the transition point. This transition point moves toward the BCS side for increasing particle densities, which suggests that the corresponding many-body physics is similar to a narrow resonance.

  13. Problems of linear electron (polaron) transport theory in semiconductors

    CERN Document Server

    Klinger, M I

    1979-01-01

    Problems of Linear Electron (Polaron) Transport Theory in Semiconductors summarizes and discusses the development of areas in electron transport theory in semiconductors, with emphasis on the fundamental aspects of the theory and the essential physical nature of the transport processes. The book is organized into three parts. Part I focuses on some general topics in the theory of transport phenomena: the general dynamical theory of linear transport in dissipative systems (Kubo formulae) and the phenomenological theory. Part II deals with the theory of polaron transport in a crystalline semicon

  14. Small polaron hopping conduction mechanism in LiFePO4 glass and crystal

    Science.gov (United States)

    Banday, Azeem; Murugavel, Sevi

    2017-01-01

    The optimization of a cathode material is the most important criterion of lithium ion battery technology, which decides the power density. In order to improve the rate capability, a cathode material must possess high electronic and ionic conductivities. Therefore, it is important to understand the charge transport mechanism in such an advanced cathode material in its intrinsic state before modifying it by various means. In this work, we report the thermal, structural, and electrical conductivity studies on lithium iron phosphate, LiFePO4, both in its polycrystalline (LFPC) and glassy (LFPG) counterpart states. The vibrational spectroscopic measurements reveal the characteristic vibrational modes, which are the intrinsic part of LFPC, whereas in LFPG, the phonon modes become broader and overlap with each other due to the lattice disorder. The electrical conductivity measurements reveal that LFPG exhibits a higher polaronic conductivity of 1.6 orders than the LFPC sample. The temperature dependent dc conductivity has been analyzed with the Mott model of polarons and reveals the origin of enhanced polaronic conductivity in LFPG. Based on the analysis, the enhanced polaronic conductivity in LFPG has been attributed to the combined effect of reduced hopping length, decreased activation energy, and enhanced polaron concentration.

  15. Logarithmic corrections in a quantization rule. The polaron spectrum

    International Nuclear Information System (INIS)

    Karasev, M.V.; Pereskokov, A.V.

    1994-01-01

    A nonlinear integrodifferential equation that arises in polaron theory is considered. The integral nonlinearity is given by a convolution with the Coulomb potential. Radially symmetric solutions are sought. In the semiclassical limit, an equation for the self-consistent potential is found and studied. The potential has a logarithmic singularity at the origin, and also a turning point at 1. The phase shifts at these points are determined. The quantization rule that takes into account the logarithmic corrections gives a simple asymptotic formula for the polaron spectrum. Global semiclassical solutions of the original nonlinear equation are constructed. 18 refs., 1 tab

  16. On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles

    Science.gov (United States)

    Tolea, F.; Grecu, M. N.; Kuncser, V.; Constantinescu, S. Gr.; Ghica, D.

    2015-04-01

    The role of iron doping on magnetic properties of hydrothermal anatase TiO2:57Fe (0-1 at. %) nanoparticles is investigated by combining superconducting quantum interference device magnetometry with Mössbauer and electron paramagnetic resonance techniques. The results on both as-prepared and thermally treated samples in reduced air atmosphere reveal complexity of magnetic interactions, in connection to certain iron ion electron configurations and defects (oxygen vacancies, F-center, and Ti3+ ions). The distribution of iron ions is predominantly at nanoparticle surface layers. Formation of weak ferromagnetic domains up to 380 K is mainly related to defects, supporting the bound magnetic polaron model.

  17. Optical Detection of Polarons in High - Tc Cuprate

    International Nuclear Information System (INIS)

    Calvani, P.; Capizzi, M.; Lupi, S.; Maselli, P.; Paolone, A.; Roy LURE, P.; Berger, H.

    1995-01-01

    The optical conductivity σ (ω) of slightly e-doped single-crystals of (Nd,Gd) 2 CuO 4-y shows local modes in the far-infrared as well as a broad infrared absorption centered at ∼ 0.1 eV (d-band). This latter shows a fine structure, in agreement with recent calculations of Alexandrov et al., which is made up by intense overtones of the local modes observed in the far-infrared. Similar polaronic structures are shown to exist in the normal metallic phase of Nd 2-x Ce x CuO 4-y and even in the σ (ω ) of YBCO crystals, measured by different authors. The present observations provide evidence for the existence of small polarons in all materials with a Cu-O plane

  18. Explanation for the temperature dependence of plasma frequencies in SrTiO3 using mixed-polaron theory

    International Nuclear Information System (INIS)

    Eagles, D.M.; Georgiev, M.; Petrova, P.C.

    1996-01-01

    A theory of mixed polarons is used to interpret the published experimental results of Gervais et al. on temperature-dependent plasma frequencies in Nb-doped SrTiO 3 . For given polaron masses before mixing, the appropriate average mixed-polaron mass at any temperature T depends on two quantities, δ and b, which are measures of the separation between the bottoms of large and nearly small polaron bands before mixing and of a mixing matrix element; δ and b are assumed to have arbitrary linear dependences on T, probably related to a T dependence of the bare mass, and a term quadratic in T is included in δ, determined from the T dependence of large-polaron binding energies. Including a constraint on the ratio δ/|b| at low T from known masses from specific-heat data, satisfactory agreement is obtained with masses determined from plasma frequencies. This gives further support for the theory of mixed polarons in SrTiO 3 in addition to that already published. copyright 1996 The American Physical Society

  19. Quantum Monte Carlo simulations of the Fermi-polaron problem and bosons with Gaussian interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, Peter Michael

    2017-02-01

    This thesis deals with the application of current Quantum Monte Carlo algorithms to many-body systems of fermionic and bosonic species. The first part applies the diagrammatic Monte Carlo method to the Fermi polaron problem, a system of an impurity interacting resonantly with a homogeneous Fermi bath. It is numerically shown that the three particle-hole diagrams do not contribute significantly to the final answer in a quasi-two-dimensional setup, thus demonstrating a nearly perfect destructive interference of contributions in subspaces with higher-order particle-hole lines. Consequently, for strong-enough confinement in the third direction, the transition between the polaron and the molecule ground state is found to be in good agreement with the pure two-dimensional case and agrees very well with the one found by the wave-function approach in the two-particle-hole subspace. In three-dimensional Fermi-polaron systems with mass imbalance of impurity and bath atoms, polaron energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore, the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and also allows us to locate the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole wave functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance phase diagram. Tan's contact coefficient for the mass-balanced polaron system is found to be in good agreement with variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures such as {sup 6}Li-{sup 40}K. In the second part of the thesis, the ground state of a two-dimensional system of Bose particles of spin zero, interacting via a repulsive Gaussian-Core potential, is investigated by means of path integral Monte Carlo simulations. The quantum phase diagram is qualitatively identical to that of two-dimensional Yukawa

  20. Size dependent polaronic conduction in hematite

    International Nuclear Information System (INIS)

    Sharma, Monika; Banday, Azeem; Murugavel, Sevi

    2016-01-01

    Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe_2O_3 has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe_2O_3 with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observed that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe_2O_3 may be a better alternative anode material for lithium ion batteries than earlier reported systems.

  1. On the role of Fe ions on magnetic properties of doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tolea, F.; Grecu, M. N., E-mail: mgrecu@infim.ro; Kuncser, V.; Constantinescu, S. Gr.; Ghica, D. [National Institute of Materials Physics (NIMP), Mǎgurele-Ilfov 077125 (Romania)

    2015-04-06

    The role of iron doping on magnetic properties of hydrothermal anatase TiO{sub 2}:{sup 57}Fe (0–1 at. %) nanoparticles is investigated by combining superconducting quantum interference device magnetometry with Mössbauer and electron paramagnetic resonance techniques. The results on both as-prepared and thermally treated samples in reduced air atmosphere reveal complexity of magnetic interactions, in connection to certain iron ion electron configurations and defects (oxygen vacancies, F-center, and Ti{sup 3+} ions). The distribution of iron ions is predominantly at nanoparticle surface layers. Formation of weak ferromagnetic domains up to 380 K is mainly related to defects, supporting the bound magnetic polaron model.

  2. Holstein polaron in a valley-degenerate two-dimensional semiconductor.

    Science.gov (United States)

    Kang, Mingu; Jung, Sung Won; Shin, Woo Jong; Sohn, Yeongsup; Ryu, Sae Hee; Kim, Timur K; Hoesch, Moritz; Kim, Keun Su

    2018-05-28

    Two-dimensional (2D) crystals have emerged as a class of materials with tunable carrier density 1 . Carrier doping to 2D semiconductors can be used to modulate many-body interactions 2 and to explore novel composite particles. The Holstein polaron is a small composite particle of an electron that carries a cloud of self-induced lattice deformation (or phonons) 3-5 , which has been proposed to play a key role in high-temperature superconductivity 6 and carrier mobility in devices 7 . Here we report the discovery of Holstein polarons in a surface-doped layered semiconductor, MoS 2 , in which a puzzling 2D superconducting dome with the critical temperature of 12 K was found recently 8-11 . Using a high-resolution band mapping of charge carriers, we found strong band renormalizations collectively identified as a hitherto unobserved spectral function of Holstein polarons 12-18 . The short-range nature of electron-phonon (e-ph) coupling in MoS 2 can be explained by its valley degeneracy, which enables strong intervalley coupling mediated by acoustic phonons. The coupling strength is found to increase gradually along the superconducting dome up to the intermediate regime, which suggests a bipolaronic pairing in the 2D superconductivity.

  3. Influence of impurities on the polaron effective mass

    International Nuclear Information System (INIS)

    Lima, R.A.T. de.

    1975-01-01

    Using the Green Function formalism, it is verified the Rodriguez's model for the effective mass of the polaron at finite temperature in the presence of 'traps'. Some aspects of this model were discussed. (M.W.O.) [pt

  4. Polaron scattering by an external field

    International Nuclear Information System (INIS)

    Kochetov, E.A.

    1980-01-01

    The problem of polaron scattering by an external field is studied. The problem is solved using the stationary scattering theory formalism based on two operators: the G Green function operator and the T scattering operator. The dependence of the scattering amplitude on the quasi particle structure is studied. The variation approach is used for estimation of the ground energy level

  5. The pairing theory of polarons in real- and impulse spaces

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Abboudy, S.; Baratov, A.A.

    1995-07-01

    A consistent pairing theory of carriers in real- and impulse spaces is developed. The pairing of different free (F), delocalized (D) and self-trapped (S) carriers in real-space, leading to the formation of various bipolaronic states are considered within the continuum model and adiabatic approximation taking into account the combined effect of the short- and long-range components of electron-lattice interaction with and without electron correlation. The formation possibility of D- and S-bipolarons as a function of ε ∞ /ε 0 are shown. The pairing scenarios of carriers in k-space leading to the formation of different bipolarons (including also Cooper pairs dynamic bipolarons) are considered within the generalized BCS-like model taking into account the combined phonon and polaron-bag mediated processes. It is shown that the pure BCS pairing picture is the particular case of the general BCS-like one. The possible relevance of the obtained results to high-T c superconductors is discussed in details in the framework of a novel two-stage Fermi-Bose-liquid scenarios of superconductivity which is caused by single particle and pair condensation of an attracting bipolarons. (author). 51 refs, 6 figs

  6. Stability and Polaronic Motion of Self-Trapped Holes in Silver Halides

    DEFF Research Database (Denmark)

    Loftager, Simon; Garcia-Fernandez, P.; Aramburu, J. A.

    2016-01-01

    Polarons and their associated transport properties are a field of great current interest both in chemistry and physics. To further our understanding of these quasi-particles, we have carried out first-principles calculations of self-trapped holes (STHs) in the model compounds AgCl and AgBr, for w......Polarons and their associated transport properties are a field of great current interest both in chemistry and physics. To further our understanding of these quasi-particles, we have carried out first-principles calculations of self-trapped holes (STHs) in the model compounds AgCl and Ag...

  7. Size dependent polaronic conduction in hematite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Monika; Banday, Azeem; Murugavel, Sevi [Department of Physics and Astrophysics, University of Delhi, Delhi – 110 007 (India)

    2016-05-23

    Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe{sub 2}O{sub 3} has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe{sub 2}O{sub 3} with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observed that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe{sub 2}O{sub 3} may be a better alternative anode material for lithium ion batteries than earlier reported systems.

  8. Magnetoresistance of magnetically doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Behan, A J; Mokhtari, A; Blythe, H J; Fox, A M; Gehring, G A [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Ziese, M, E-mail: G.A.Gehring@sheffield.ac.u [Division of Superconductivity and Magnetism, University of Leipzig, D-04103, Leipzig (Germany)

    2009-08-26

    Magnetoresistance measurements have been made at 5 K on doped ZnO thin films grown by pulsed laser deposition. ZnCoO, ZnCoAlO and ZnMnAlO samples have been investigated and compared to similar films containing no transition metal dopants. It is found that the Co-doped samples with a high carrier concentration have a small negative magnetoresistance, irrespective of their magnetic moment. On decreasing the carrier concentration, a positive contribution to the magnetoresistance appears and a further negative contribution. This second, negative contribution, which occurs at very low carrier densities, correlates with the onset of ferromagnetism due to bound magnetic polarons suggesting that the negative magnetoresistance results from the destruction of polarons by a magnetic field. An investigation of the anisotropic magnetoresistance showed that the orientation of the applied magnetic field, relative to the sample, had a large effect. The results for the ZnMnAlO samples showed less consistent trends.

  9. Determining a hopping polaron's bandwidth from its Seebeck coefficient: Measuring the disorder energy of a non-crystalline semiconductor

    International Nuclear Information System (INIS)

    Emin, David

    2016-01-01

    Charge carriers that execute multi-phonon hopping generally interact strongly enough with phonons to form polarons. A polaron's sluggish motion is linked to slowly shifting atomic displacements that severely reduce the intrinsic width of its transport band. Here a means to estimate hopping polarons' bandwidths from Seebeck-coefficient measurements is described. The magnitudes of semiconductors' Seebeck coefficients are usually quite large (>k/|q| = 86 μV/K) near room temperature. However, in accord with the third law of thermodynamics, Seebeck coefficients must vanish at absolute zero. Here, the transition of the Seebeck coefficient of hopping polarons to its low-temperature regime is investigated. The temperature and sharpness of this transition depend on the concentration of carriers and on the width of their transport band. This feature provides a means of estimating the width of a polaron's transport band. Since the intrinsic broadening of polaron bands is very small, less than the characteristic phonon energy, the net widths of polaron transport bands in disordered semiconductors approach the energetic disorder experienced by their hopping carriers, their disorder energy

  10. Faraday rotation by the undisturbed bulk and by photoinduced giant polarons in EuTe

    Science.gov (United States)

    Henriques, A. B.; Usachev, P. A.

    2017-11-01

    A quantum mechanical model is developed for the Faraday effect in europium telluride, for photons of energy within the transparency gap. The model is based on the well known band edge electronic energy states in EuTe. A concise expression for the Verdet constant is obtained, determined by few parameters already available in the literature. The Verdet constant adopted here, defined by the ratio between the Faraday rotation angle and the magnetization, is in effect temperature independent. Its dependence on the photon energy and applied magnetic field is in excellent agreement with published results. Below 3 T the Verdet constant is also nearly independent on field, but above 3 T at low temperatures it increases due to the band gap redshift. The model is used to calculate the photoinduced Faraday rotation associated with photoinduced giant magnetic polarons in EuTe. The theoretical photoinduced Faraday rotation excitation describes quite well the main features seen experimentally. Due to the common band-edge electronic energy structure, the model reported here could be extended to all other europium chalcogenides.

  11. Propagation effect on photoluminescence of spin-aligned high-density exciton magnetic polarons in Cd{sub 0.8}Mn{sub 0.2}Te

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, M.; Hirase, T.; Miyajima, K., E-mail: miyajima@rs.tus.ac.jp

    2017-04-15

    Characteristics of photoluminescence (PL) originating from high-density exciton magnetic polarons (HD-EMPs) for Cd{sub 0.8}Mn{sub 0.2}Te were investigated. The PL appeared only under selective excitation of the localized excitons, and the intensity increased superlinearly with the excitation density. Directivity of the PL was revealed. Therefore, it is concluded that the superlinear increase in the PL intensity resulted from a light amplification process owing to the stimulated emission. In addition, the existence of birefringence that originates from a uniaxial gradation of the Mn ion concentrations was revealed. The degree of circular polarization (DOCP) of the PL is important to obtain the spin alignment state of the HD-EMPs. The initial DOCPs of the PL were examined by removing a variation of the polarization during propagation inside the sample. As a result, it was found that the initial DOCPs of the PL were almost constant for the photon energy. The obtained initial DOCPs exhibited different values for right- and left-circularly polarized excitations, which resulted from different mechanisms of the spin alignment of the HD-EMPs.

  12. MAGNETIC FLUX EXPULSION IN STAR FORMATION

    International Nuclear Information System (INIS)

    Zhao Bo; Li Zhiyun; Nakamura, Fumitaka; Krasnopolsky, Ruben; Shang, Hsien

    2011-01-01

    Stars form in dense cores of magnetized molecular clouds. If the magnetic flux threading the cores is dragged into the stars, the stellar field would be orders of magnitude stronger than observed. This well-known 'magnetic flux problem' demands that most of the core magnetic flux be decoupled from the matter that enters the star. We carry out the first exploration of what happens to the decoupled magnetic flux in three dimensions, using a magnetohydrodynamic (MHD) version of the ENZO adaptive mesh refinement code. The field-matter decoupling is achieved through a sink particle treatment, which is needed to follow the protostellar accretion phase of star formation. We find that the accumulation of the decoupled flux near the accreting protostar leads to a magnetic pressure buildup. The high pressure is released anisotropically along the path of least resistance. It drives a low-density expanding region in which the decoupled magnetic flux is expelled. This decoupling-enabled magnetic structure has never been seen before in three-dimensional MHD simulations of star formation. It generates a strong asymmetry in the protostellar accretion flow, potentially giving a kick to the star. In the presence of an initial core rotation, the structure presents an obstacle to the formation of a rotationally supported disk, in addition to magnetic braking, by acting as a rigid magnetic wall that prevents the rotating gas from completing a full orbit around the central object. We conclude that the decoupled magnetic flux from the stellar matter can strongly affect the protostellar collapse dynamics.

  13. Polaron self-localization in white-light emitting hybrid perovskites

    KAUST Repository

    Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Lo, Shu Zee Alencious; Gurzadyan, Gagik G.; Mhaisalkar, Subodh; Bredas, Jean-Luc; Soci, Cesare

    2017-01-01

    within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative colour centres. These findings are expected to be relevant

  14. Magnetic reconnection and current sheet formation in 3D magnetic configurations

    International Nuclear Information System (INIS)

    Frank, A.G.

    1999-01-01

    The problem of magnetic reconnection in three-dimensional (3D) magnetic configurations has been studied experimentally. The research has concentrated on the possibilities of formation of current sheets, which represent crucial objects for a realization of magnetic reconnection phenomena. Different types of 3D magnetic configurations were examined, including configurations with singular lines of the X-type, non-uniform fields containing isolated magnetic null-points and without null-points. It was revealed that formation of quasi-one-dimensional current sheets is the universal process for plasma dynamics in 3D magnetic fields both with null-points and without. At the same time the peculiarities of current sheets, plasma dynamics and magnetic reconnection processes depend essentially on characteristics of 3D magnetic configurations. The result of principal significance obtained was that magnetic reconnection phenomena can take place in a wide range of 3D magnetic configurations as a consequence of their ability to form current sheets. (author)

  15. Low temperature magnetic characterization of EuO1-x

    Science.gov (United States)

    Rimal, Gaurab; Tang, Jinke

    EuO is a widely studied magnetic semiconductor. It is an ideal case of a Heisenberg ferromagnet as well as a model magnetic polaron system. The interesting aspect of this material is the existance of magnetic polarons in the low temperature region. We study the properties of oxygen deficient EuO prepared by pulsed laser deposition. Besides normal ferromagnetic transitions near 70K and 140K, we observe a different transition at 16K. We also observe a shift in the coercivity for field cooling versus zero field cooling. Possible mechanisms driving these behaviors will be discussed. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DEFG02-10ER46728) and by the School of Energy Resources of the University of Wyoming.

  16. Effect of base-pair inhomogeneities on charge transport along the DNA molecule, mediated by twist and radial polarons

    International Nuclear Information System (INIS)

    Palmero, F; Archilla, J F R; Hennig, D; Romero, F R

    2004-01-01

    Some recent results for a three-dimensional, semi-classical, tight-binding model for DNA show that there are two types of polarons, namely radial and twist polarons, which can transport charge along the DNA molecule. However, the existence of two types of base pairs in real DNA makes it crucial to find out if charge transport also exists in DNA chains with different base pairs. In this paper, we address this problem in its simple case, a homogeneous chain except for a single different base pair, which we call a base-pair inhomogeneity, and its effect on charge transport. Radial polarons experience either reflection or trapping. However, twist polarons are good candidates for charge transport along real DNA. This transport is also very robust with respect to weak parametric and diagonal disorder

  17. Polaronic Nonmetal-Correlated Metal Crossover System β'-CuxV2O5 with Anharmonic Copper Oscillation and Thermoelectric Conversion Performance

    Science.gov (United States)

    Onoda, Masashige; Sato, Takuma

    2017-12-01

    The crystal structures and electronic properties of β'CuxV2O5 are explored through measurements of X-ray four-circle diffraction, electrical resistivity, thermoelectric power, thermal conductivity, magnetization, and electron paramagnetic resonance. For various compositions with 0.243 ≤ x ≤ 0.587, the crystal structures are redetermined through the anharmonic approach of the copper displacement factors, where the anharmonicity is reduced with increasing Cu concentration. The electron transport for x ≤ 0.45 is nonmetallic due to polaron hopping and the random potential of Cu ions, while for x = 0.60, a correlated Fermi-liquid state appears with a Wilson ratio of 1.3 and a Kadowaki-Woods ratio close to the universal value for heavy-fermion systems. At around x = 0.50, the polaronic bandwidth may broaden so that the Hubbard subbands caused by the electron correlation will overlap. The nonmetallic composition in the proximity of the nonmetal-metal crossover shows a dimensionless thermoelectric power factor of 10-2 at 300 K, partly due to the anharmonic copper oscillation.

  18. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    Science.gov (United States)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  19. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  20. Diagrammatic Monte Carlo study of Fröhlich polaron dispersion in two and three dimensions

    Science.gov (United States)

    Hahn, Thomas; Klimin, Sergei; Tempere, Jacques; Devreese, Jozef T.; Franchini, Cesare

    2018-04-01

    We present results for the solution of the large polaron Fröhlich Hamiltonian in 3 dimensions (3D) and 2 dimensions (2D) obtained via the diagrammatic Monte Carlo (DMC) method. Our implementation is based on the approach by Mishchenko [A. S. Mishchenko et al., Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317]. Polaron ground state energies and effective polaron masses are successfully benchmarked with data obtained using Feynman's path integral formalism. By comparing 3D and 2D data, we verify the analytically exact scaling relations for energies and effective masses from 3 D →2 D , which provides a stringent test for the quality of DMC predictions. The accuracy of our results is further proven by providing values for the exactly known coefficients in weak- and strong-coupling expansions. Moreover, we compute polaron dispersion curves which are validated with analytically known lower and upper limits in the small-coupling regime and verify the first-order expansion results for larger couplings, thus disproving previous critiques on the apparent incompatibility of DMC with analytical results and furnishing useful reference for a wide range of coupling strengths.

  1. Novel aspects of diluted and digital magnetic heterostructures

    International Nuclear Information System (INIS)

    Bonanni, A.

    1999-04-01

    In the present work novel aspects of diluted and digital II-VI-based heterostructures containing Mn ions are investigated. All the structures under study were fabricated by means of molecular beam epitaxy. Digital magnetic heterostructures have been prepared by incorporating discrete (sub)monolayers of the purely magnetic semiconductor MnTe into otherwise non magnetic CdTe quantum wells embedded in CdMgTe barriers. Formation and binding energy of magnetic polarons have been investigated in these structures and compared with the diluted case. Reflectance difference spectroscopy (RDS) performed ex-situ allowed to distinguish between signals due to the crystal anisotropy solely and those induced by the presence a magnetic elements. The problem of p-type doping of bulk diluted magnetic semiconductors II-VI-based is tackled. During and upon growth of ZnMnTe highly doped with N, in-situ RDS was carried out in order to investigate intra-ion transitions within the half filled 3d shell of Mn. Transport measurements and magnetometry at low temperature were performed to study, on the tracks of recent theoretical works, the influence of free carriers on the interaction between magnetic ions. As expected, indications of ferromagnetic ordering were found for the DMS with the highest concentration of carriers. Special attention was given to the formation of Mn islands on a II-VI substrate and to their change in morphology upon overgrowth with a mismatched material. A rich zoology of regularly shaped nanostructures could be produced. (author)

  2. Possibility of observation of polaron normal modes at the far-infrared spectrum of acetanilide and related organics

    Science.gov (United States)

    Kalosakas, G.; Aubry, S.; Tsironis, G. P.

    1998-10-01

    We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.

  3. Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach

    Science.gov (United States)

    Chen, Lipeng; Zhao, Yang

    2017-12-01

    Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.

  4. Multi-impurity polarons in a dilute Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Santamore, D H; Timmermans, Eddy

    2011-01-01

    We describe the ground state of a large, dilute, neutral atom Bose-Einstein condensate (BEC) doped with N strongly coupled mutually indistinguishable, bosonic neutral atoms (referred to as ‘impurity’) in the polaron regime where the BEC density response to the impurity atoms remains significantly smaller than the average density of the surrounding BEC. We find that N impurity atoms with N ≠ 1 can self-localize at a lower value of the impurity-boson interaction strength than a single impurity atom. When the ‘bare’ short-range impurity-impurity repulsion does not play a significant role, the self-localization of multiple bosonic impurity atoms into the same single particle orbital (which we call co-self-localization) is the nucleation process of the phase separation transition. When the short-range impurity-impurity repulsion successfully competes with co-self-localization, the system may form a stable liquid of self-localized single impurity polarons. (paper)

  5. Energy Migration in Organic Thin Films--From Excitons to Polarons

    Science.gov (United States)

    Mullenbach, Tyler K.

    The rise of organic photovoltaic devices (OPVs) and organic light-emitting devices has generated interest in the physics governing exciton and polaron dynamics in thin films. Energy transfer has been well studied in dilute solutions, but there are emergent properties in thin films and greater complications due to complex morphologies which must be better understood. Despite the intense interest in energy transport in thin films, experimental limitations have slowed discoveries. Here, a new perspective of OPV operation is presented where photovoltage, instead of photocurrent, plays the fundamental role. By exploiting this new vantage point the first method of measuring the diffusion length (LD) of dark (non-luminescent) excitons is developed, a novel photodetector is invented, and the ability to watch exciton arrival, in real-time, at the donor-acceptor heterojunction is presented. Using an enhanced understanding of exciton migration in thin films, paradigms for enhancing LD by molecular modifications are discovered, and the first exciton gate is experimentally and theoretically demonstrated. Generation of polarons from exciton dissociation represents a second phase of energy migration in OPVs that remains understudied. Current approaches are capable of measuring the rate of charge carrier recombination only at open-circuit. To enable a better understanding of polaron dynamics in thin films, two new approaches are presented which are capable of measuring both the charge carrier recombination and transit rates at any OPV operating voltage. These techniques pave the way for a more complete understanding of charge carrier kinetics in molecular thin films.

  6. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    Science.gov (United States)

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.

  7. Experimental manifestations of the Nb.sup.4+./sup.-O.sup.-./sup. polaronic excitons in KTa.sub.0.988./sub.Nb.sub.0.012./sub.O.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Yusupov, R.V.; Gracheva, I.N.; Rodionov, A.A.; Syrnikov, P. P.; Gubaev, A. I.; Dejneka, Alexandr; Jastrabík, Lubomír; Trepakov, V.A.; Salakhov, M.K.

    2011-01-01

    Roč. 84, č. 17 (2011), 174118/1-174118/7 ISSN 1098-0121 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : photoinduced EPR * Nb 4+ -O - polaronic excitons * KTa 0.988 Nb 0.012 O 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  8. Soliton and polaron generation in polyacetylene

    International Nuclear Information System (INIS)

    Su, Zhao-bin; Yu, Lu.

    1984-07-01

    The nonradiative decay of an e-h pair into soliton pair and that of an electron (hole) into polaron as well as the photoproduction of soliton pairs are considered using the lattice relaxation theory of multiphonon processes generalized to include the self-consistency of the multi-electron states with the lattice symmetry breaking. The selection rule which forbids the direct process of photogeneration for neutral pair is derived from the symmetry arguments. The branching ratio of the photogenerated neutral to charged soliton pairs is estimated. The recent related experiments are discussed. (author)

  9. Polaron-Driven Surface Reconstructions

    Directory of Open Access Journals (Sweden)

    Michele Reticcioli

    2017-09-01

    Full Text Available Geometric and electronic surface reconstructions determine the physical and chemical properties of surfaces and, consequently, their functionality in applications. The reconstruction of a surface minimizes its surface free energy in otherwise thermodynamically unstable situations, typically caused by dangling bonds, lattice stress, or a divergent surface potential, and it is achieved by a cooperative modification of the atomic and electronic structure. Here, we combined first-principles calculations and surface techniques (scanning tunneling microscopy, non-contact atomic force microscopy, scanning tunneling spectroscopy to report that the repulsion between negatively charged polaronic quasiparticles, formed by the interaction between excess electrons and the lattice phonon field, plays a key role in surface reconstructions. As a paradigmatic example, we explain the (1×1 to (1×2 transition in rutile TiO_{2}(110.

  10. Impact of morphology on polaron delocalization in a semicrystalline conjugated polymer

    KAUST Repository

    Steyrleuthner, Robert

    2016-12-20

    We investigate the delocalization of holes in the semicrystalline conjugated polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) by directly measuring the hyperfine coupling between photogenerated polarons and bound nuclear spins using electron nuclear double resonance spectroscopy. An extrapolation of the corresponding oligomer spectra reveals that charges tend to delocalize over 4.0-4.8 nm with delocalization strongly dependent on molecular order and crystallinity of the PBTTT polymer thin films. Density functional theory calculations of hyperfine couplings confirm that long-range corrected functionals appropriately describe the change in coupling strength with increasing oligomer size and agree well with the experimentally measured polymer limit. Our discussion presents general guidelines illustrating the various pitfalls and opportunities when deducing polaron localization lengths from hyperfine coupling spectra of conjugated polymers.

  11. Influence of quasi-particle density over polaron mobility in armchair graphene nanoribbons.

    Science.gov (United States)

    Silva, Gesiel Gomes; da Cunha, Wiliam Ferreira; de Sousa Junior, Rafael Timóteo; Almeida Fonseca, Antonio Luciano; Ribeiro Júnior, Luiz Antônio; E Silva, Geraldo Magela

    2018-06-20

    An important aspect concerning the performance of armchair graphene nanoribbons (AGNRs) as materials for conceiving electronic devices is related to the mobility of charge carriers in these systems. When several polarons are considered in the system, a quasi-particle wave function can be affected by that of its neighbor provided the two are close enough. As the overlap may affect the transport of the carrier, the question concerning how the density of polarons affect its mobility arises. In this work, we investigate such dependence for semiconducting AGNRs in the scope of nonadiabatic molecular dynamics. Our results unambiguously show an impact of the density on both the stability and average velocity of the quasi-particles. We have found a phase transition between regimes where increasing density stops inhibiting and starts promoting mobility; densities higher than 7 polarons per 45 Å present increasing mean velocity with increasing density. We have also established three different regions relating electric field and average velocity. For the lowest electric field regime, surpassing the aforementioned threshold results in overcoming the 0.3 Å fs-1 limit, thus representing a transition between subsonic and supersonic regimes. For the highest of the electric fields, density effects alone are responsible for a stunning difference of 1.5 Å fs-1 in the mean carrier velocity.

  12. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites

    KAUST Repository

    Yin, Jun; Li, Hong; Cortecchia, Daniele; Soci, Cesare; Bredas, Jean-Luc

    2017-01-01

    calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level

  13. DISK FORMATION IN MAGNETIZED CLOUDS ENABLED BY THE HALL EFFECT

    International Nuclear Information System (INIS)

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun

    2011-01-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. A dynamically important magnetic field presents a significant obstacle to the formation of protostellar disks. Recent studies have shown that magnetic braking is strong enough to suppress the formation of rotationally supported disks in the ideal MHD limit. Whether non-ideal MHD effects can enable disk formation remains unsettled. We carry out a first study on how disk formation in magnetic clouds is modified by the Hall effect, the least explored of the three non-ideal MHD effects in star formation (the other two being ambipolar diffusion and Ohmic dissipation). For illustrative purposes, we consider a simplified problem of a non-self-gravitating, magnetized envelope collapsing onto a central protostar of fixed mass. We find that the Hall effect can spin up the inner part of the collapsing flow to Keplerian speed, producing a rotationally supported disk. The disk is generated through a Hall-induced magnetic torque. Disk formation occurs even when the envelope is initially non-rotating, provided that the Hall coefficient is large enough. When the magnetic field orientation is flipped, the direction of disk rotation is reversed as well. The implication is that the Hall effect can in principle produce both regularly rotating and counter-rotating disks around protostars. The Hall coefficient expected in dense cores is about one order of magnitude smaller than that needed for efficient spin-up in these models. We conclude that the Hall effect is an important factor to consider in studying the angular momentum evolution of magnetized star formation in general and disk formation in particular.

  14. Impact of morphology on polaron delocalization in a semicrystalline conjugated polymer

    KAUST Repository

    Steyrleuthner, Robert; Zhang, Yuexing; Zhang, Lei; Kraffert, Felix; Cherniawski, Benjamin P.; Bittl, Robert; Briseno, Alejandro L.; Bredas, Jean-Luc; Behrends, Jan

    2016-01-01

    We investigate the delocalization of holes in the semicrystalline conjugated polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) by directly measuring the hyperfine coupling between photogenerated polarons and bound nuclear

  15. The role of hydrostatic pressure and temperature on bound polaron in semiconductor quantum dot

    International Nuclear Information System (INIS)

    El Moussaouy, A.; Ouchani, N.

    2014-01-01

    We studied theoretically the effects of hydrostatic pressure and temperature on the binding energy of shallow hydrogenic impurity in a cylindrical quantum dot (QD) using a variational approach within the effective mass approximation. The hydrostatic stress was applied along the QD growth axis. The interactions between the charge carriers and confined longitudinal optical (LO) phonon modes are taken into account. The numerical computation for GaAs/Ga 1−x Al x As QD has shown that the binding energy with and without the polaronic correction depends on the location of the impurity and the pressure effect and it is more pronounced for impurities in the QD center. Both the binding energy and the polaronic contribution increase linearly with increasing stress. For each pressure value, these energies are also found to decrease as the temperature increases. The results obtained show that in experimental studies of optical and electronic properties of QDs, the effects of pressure, temperature and polaronic correction on donor impurity binding energy should be taken into consideration

  16. Probing defect driven tunable spontaneous magnetization in paramagnetic Zn{sub 0.95}Co{sub 0.05}O epitaxial films by X-ray absorption investigations

    Energy Technology Data Exchange (ETDEWEB)

    Satyarthi, P.; Ghosh, S. [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Wang, Y.T.; Zhou, S. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Kumar, P.; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Olivi, L. [Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5, 34194 Basovizza Trieste (Italy); Bürger, D.; Skorupa, I.; Schmidt, H. [Department of Materials for Nanoelectronics, Chemnitz University of Technology, 09126 Chemnitz (Germany); Srivastava, P., E-mail: pankajs@physics.iitd.ac.in [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2015-11-15

    In order to address existing unresolved issues related to intrinsic and extrinsic origins of ferromagnetism in Zn{sub 1−x}Co{sub x}O based diluted magnetic semiconductors for varying x, the present work aims to investigate the tunable ferromagnetism triggered in paramagnetic Zn{sub 0.95}Co{sub 0.05}O films using 500 KeV inert xenon ion irradiation of different fluences. The origin of ferromagnetism in post irradiated Zn{sub 0.95}Co{sub 0.05}O films is understood from different densities of bound magnetic polarons (BMPs) formation through correlated spins of tetrahedrally substituted Co{sup 2+} ions and anionic vacancies. The alteration in crystallographic positions of Zn, Co cations, and O anions in the tetrahedral environment as analyzed from Zn and Co K-edgeX-ray absorption and O 1s photoemission is a crucial factor for the stabilization of different density of BMPs. Magnetic field and temperature dependence of X-ray magnetic circular dichroism at the Co L{sub 2,3} edge provide experimental evidence of purely paramagnetic contribution from well localized Co{sup 2+} ions of Co sublattice for paramagnetic Zn{sub 0.95}Co{sub 0.05}O film. The paramagnetic Co{sup 2+} ions of Co sublattice persist in irradiated films, which reveal BMPs formation as the origin of ferromagnetism. - Highlights: • Ferromagnetism is triggered and tuned in Zn{sub 1−x}Co{sub x}O films by inert ion irradiation. • Ferromagnetism is stabilized from different degree of bound magnetic polarons. • The alteration in crystallographic positions of Zn, Co and O atoms tunes BMPs. • Paramagnetic contribution of the Co sublattice persists in Zn{sub 1−x}Co{sub x}O films.

  17. A new DFT approach to model small polarons in oxides with proper account for long-range polarization

    Science.gov (United States)

    Kokott, Sebastian; Levchenko, Sergey V.; Scheffler, Matthias; Theory Department Team

    In this work, we address two important challenges in the DFT description of small polarons (excess charges localized within one unit cell): sensitivity to the errors in exchange-correlation (XC) treatment and finite-size effects in supercell calculations. The polaron properties are obtained using a modified neutral potential-energy surface (PES). Using the hybrid HSE functional and considering the whole range 0 Deutsche Forschungsgemeinschaft).

  18. MAGNETIC BRAKING AND PROTOSTELLAR DISK FORMATION: AMBIPOLAR DIFFUSION

    International Nuclear Information System (INIS)

    Mellon, Richard R.; Li Zhiyun

    2009-01-01

    It is established that the formation of rotationally supported disks during the main accretion phase of star formation is suppressed by a moderately strong magnetic field in the ideal MHD limit. Nonideal MHD effects are expected to weaken the magnetic braking, perhaps allowing the disk to reappear. We concentrate on one such effect, ambipolar diffusion, which enables the field lines to slip relative to the bulk neutral matter. We find that the slippage does not sufficiently weaken the braking to allow rotationally supported disks to form for realistic levels of cloud magnetization and cosmic ray ionization rate; in some cases, the magnetic braking is even enhanced. Only in dense cores with both exceptionally weak fields and unreasonably low ionization rate do such disks start to form in our simulations. We conclude that additional processes, such as Ohmic dissipation or Hall effect, are needed to enable disk formation. Alternatively, the disk may form at late times when the massive envelope that anchors the magnetic brake is dissipated, perhaps by a protostellar wind.

  19. Evidence for polaron conduction in nanostructured manganese ferrite

    International Nuclear Information System (INIS)

    Gopalan, E Veena; Anantharaman, M R; Malini, K A; Saravanan, S; Kumar, D Sakthi; Yoshida, Yasuhiko

    2008-01-01

    Nanoparticles of manganese ferrite were prepared by the chemical co-precipitation technique. The dielectric parameters, namely, real and imaginary dielectric permittivity (ε' and ε-prime), ac conductivity (σ ac ) and dielectric loss tangent (tanδ), were measured in the frequency range of 100 kHz-8 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε-prime) with frequency and temperature were also investigated. The variation of dielectric permittivity with frequency and temperature followed the Maxwell-Wagner model based on interfacial polarization in consonance with Koops phenomenological theory. The dielectric loss tangent and hence ε-prime exhibited a relaxation at certain frequencies and at relatively higher temperatures. The dispersion of dielectric permittivity and broadening of the dielectric absorption suggest the possibility of a distribution of relaxation time and the existence of multiple equilibrium states in manganese ferrite. The activation energy estimated from the dielectric relaxation is found to be high and is characteristic of polaron conduction in the nanosized manganese ferrite. The ac conductivity followed a power law dependence σ ac = Bω n typical of charge transport assisted by a hopping or tunnelling process. The observed minimum in the temperature dependence of the frequency exponent n strongly suggests that tunnelling of the large polarons is the dominant transport process

  20. Effects of Polaron and Quantum Confinement on the Nonlinear Optical Properties in a GaAs/Ga1-xAlxAs Quantum Well Wire

    Directory of Open Access Journals (Sweden)

    L. Caroline Sugirtham

    2014-01-01

    Full Text Available The binding energy of a polaron confined in a GaAs/Ga1-xAlxAs quantum well wire is calculated within the framework of the variational technique and Lee-Low Pines approach. The polaron-induced photoionization cross section as a function of normalized photon energy for a on-centre donor impurity in the quantum wire is investigated. The oscillator strength with the geometrical effect is studied taking into account the polaron effects in a GaAs/Ga0.8Al0.2As quantum well wire. The effect of polaron on the third-order susceptibility of third harmonic generation is studied. Our theoretical results are shown to be in good agreement with previous investigations.

  1. Magnetic, electronic, dielectric and optical properties of Pr(Ca:Sr)MnO 3

    Science.gov (United States)

    Sichelschmidt, J.; Paraskevopoulos, M.; Brando, M.; Wehn, R.; Ivannikov, D.; Mayr, F.; Pucher, K.; Hemberger, J.; Pimenov, A.; Krug von Nidda, H.-A.; Lunkenheimer, P.; Ivanov, V. Yu.; Mukhin, A. A.; Balbashov, A. M.; Loidl, A.

    2001-03-01

    The charge-ordered perovskite Pr0.65Ca0.28Sr0.07MnO3 was investigated by means of magnetic susceptibility, specific heat, dielectric and optical spectroscopy and electron-spin resonance techniques. Under moderate magnetic fields, the charge order melts yielding colossal magnetoresistance effects with changes of the resistivity over eleven orders of magnitude. The optical conductivity is studied from audio frequencies far into the visible spectral regime. Below the phonon modes hopping conductivity is detected. Beyond the phonon modes the optical conductivity is explained by polaronic excitations out of a bound state. ESR techniques yield detailed informations on the (H,T ) phase diagram and reveal a broadening of the linewidth which can be modeled in terms of activated polaron hopping.

  2. Transport and ordering of polarons in CER manganites PrCaMnO

    International Nuclear Information System (INIS)

    Schramm, S; Hoffmann, J; Jooss, Ch

    2008-01-01

    The temperature-dependent resistivity and the colossal resistance effect induced by strong electric fields of the small-band Pr 1-x Ca x MnO 3 (PCMO) manganites are analysed with respect to the influence of the Ca doping, post-annealing, the prehistory of the electric stimulation, and the physical dimensions of the sample. Despite the phase separation between charge and orbital ordered and disordered phases, PCMO reveals the properties of a homogeneous medium with a conductivity governed by the hopping of small polarons if the electric field is not too strong. In contrast, high electric fields induce a structural transition which gives rise to a glassy behaviour in the transient regime. In the low resistance state the small activation energy of charge carrier hopping implies a transition to large polaron hopping

  3. The Role of Magnetic Fields in Star Formation

    Science.gov (United States)

    Pipher, Judith

    2018-06-01

    The SOFIA instrument complement makes available the capability to characterize the physical properties (turbulence, dynamics, magnetic field structure and strength, gas density) of the molecular cloud filaments in which stars form.HAWC+, the newest SOFIA instrument, provides a unique opportunity to probe the complex roles that magnetic fields play in the star formation process on spatial scales intermediate to those explored by Planck (5’ scale), to those of ALMA at the smallest spatial scales (powerful tools to further our understanding of the fundamental physics of both low mass and high mass star formation, including the role that magnetic fields play in each.

  4. Photoelectron spectroscopy on the charge reorganization energy and small polaron binding energy of molecular film

    Energy Technology Data Exchange (ETDEWEB)

    Kera, Satoshi, E-mail: kera@ims.ac.jp [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Ueno, Nobuo [Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan)

    2015-10-01

    Understanding of electron-phonon coupling as well as intermolecular interaction is required to discuss the mobility of charge carrier in functional molecular solids. This article summarizes recent progress in direct measurements of valence hole-vibration coupling in ultrathin films of organic semiconductors by using ultraviolet photoelectron spectroscopy (UPS). The experimental study of hole-vibration coupling of the highest occupied molecular orbital (HOMO) state in ordered monolayer film by UPS is essential to comprehend hole-hopping transport and small-polaron related transport in organic semiconductors. Only careful measurements can attain the high-resolution spectra and provide key parameters in hole-transport dynamics, namely the charge reorganization energy and small polaron binding energy. Analyses methods of the UPS HOMO fine feature and resulting charge reorganization energy and small polaron binding energy are described for pentacene and perfluoropentacene films. Difference between thin-film and gas-phase results is discussed by using newly measured high-quality gas-phase spectra of pentacene. Methodology for achieving high-resolution UPS measurements for molecular films is also described.

  5. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  6. Theory of super-para-electric large polaron for gigantic photo-enhancements of dielectric constant and electronic conductivity in SrTiO3

    International Nuclear Information System (INIS)

    Yu Qiu; Nasu, Keiichiro

    2005-01-01

    In connection with the recent experimental discoveries on gigantic photoenhancements of the electronic conductivity and the quasi-static dielectric susceptibility in SrTiO 3 , we theoretically study a photo-generation mechanism of a charged ferroelectric domain in this quantum dielectric. The photo-generated electron, being quite itinerant in the 3d band of Ti 4+ , is assumed to couple weakly but quadratically with soft-anharmonic T 1u phonons in this quantum dielectric. The photo-generated electron is also assumed to couple strongly but linearly with the breathing type high energy phonons. Using a tight binding model for electron, we will show that these two types of electron-phonon couplings result in two types of polarons, a 'super-para-electric (SPE) large polaron' with a quasi-global parity violation, and an 'off-centre type self-trapped polaron' with only a local parity violation. We will also show that this SPE large polaron is nothing else but a singly charged (e - ) and conductive ferroelectric (or SPE) domain with a quasi macroscopic size. This polaron or domain is also shown to have a high mobility and a large quasi-static dielectric susceptibility

  7. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  8. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurtze, H.; Bayer, M. [Experimentelle Physik 2, TU Dortmund, D-44221 Dortmund (Germany)

    2016-07-04

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock–Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  9. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields

    International Nuclear Information System (INIS)

    Wu, Jinghe; Guo, Kangxian; Liu, Guanghui

    2014-01-01

    Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.

  10. Small polaron hopping conduction in samples of ceramic La1.4Sr1.6Mn2O7.06

    International Nuclear Information System (INIS)

    Nakatsugawa, H.; Iguchi, E.; Jung, W.H.; Munakata, F.

    1999-01-01

    The ceramic sample of La 1.4 Sr 1.6 Mn 2 O 7.06 exhibits the metal-insulator transition and a negative magnetoresistance in the vicinity of the Curie temperature (T C ∼ 100 K). The dc magnetic susceptibility between 100 K and 280 K is nearly constant and decreases gradually with increasing temperature above 280 K. The measurements of dc resistivity and the thermoelectric power indicate that small polaron hopping conduction takes place at T > 280 K. The spin ordering due to the two-dimensional d x 2 -y 2 state occurring at T > 280 K is directly related to the hopping conduction above 280 K, although the spin ordering due to the one-dimensional d 3z 2 -r 2 state takes place at T > T C . The two-dimensional d x 2 -y 2 state extending within the MnO 2 sheets starts to narrow and leads to the carrier localisation at 280 K. The effective number of holes in this sample estimated from the thermoelectric power is considerably smaller than the nominal value. This indicates that the small polaron hopping conduction takes place predominantly within the in-plane MnO 2 sheets. A discussion is given of the experimental results of the ceramic sample of La 2/3 Ca 1/3 MnO 2.98 . Copyright (1999) CSIRO Australia

  11. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  12. Decay of Polarons and Molecules in a Strongly Polarized Fermi Gas

    DEFF Research Database (Denmark)

    Bruun, Georg; Massignan, P.

    2010-01-01

    , and that it vanishes much faster than the energy difference between the two states, thereby confirming the first order nature of the polaron-molecule transition. In the regime where each state is metastable, we find quasiparticle lifetimes which are much longer than what is expected for a usual Fermi liquid. Our...

  13. Optical Characterization of the Hole Polaron in a Series of Diketopyrrolopyrrole Polymers Used for Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Evan L. Williams

    2014-12-01

    Full Text Available A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor and electron-deficient (acceptor conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed.

  14. Magnetized advective accretion flows: formation of magnetic barriers in magnetically arrested discs

    Science.gov (United States)

    Mondal, Tushar; Mukhopadhyay, Banibrata

    2018-05-01

    We discuss the importance of large-scale strong magnetic field in the removal of angular momentum outward, as well as the possible origin of different kinds of magnetic barrier in advective, geometrically thick, sub-Keplerian accretion flows around black holes. The origin of this large-scale strong magnetic field near the event horizon is due to the advection of the magnetic flux by the accreting gas from the environment, say, the interstellar medium or a companion star, because of flux freezing. In this simplest vertically averaged, 1.5-dimensional disc model, we choose the maximum upper limit of the magnetic field, which the disc around a black hole can sustain. In this so called magnetically arrested disc model, the accreting gas either decelerates or faces the magnetic barrier near the event horizon by the accumulated magnetic field depending on the geometry. The magnetic barrier may knock the matter to infinity. We suggest that these types of flow are the building block to produce jets and outflows in the accreting system. We also find that in some cases, when matter is trying to go back to infinity after knocking the barrier, matter is prevented being escaped by the cumulative action of strong gravity and the magnetic tension, hence by another barrier. In this way, magnetic field can lock the matter in between these two barriers and it might be a possible explanation for the formation of episodic jet.

  15. Magnetic field induced enhancement of resistance in polycrystalline ZrTe5

    Science.gov (United States)

    Behera, Prakash; Bera, Sumit; Patidar, Manju Mishra; Singh, Durgesh; Mishra, A. K.; Krishnan, M.; Gangrade, M.; Deshpande, U. P.; Venkatesh, R.; Ganesan, V.

    2018-04-01

    Transport properties of the polycrystalline ZrTe5 showing a considerable positive Magneto-Resistance (MR) in the intermediate temperatures has been reported. Substantial shift of peak temperature by approximately 65 K with an applied magnetic field of 13.5 Tesla has been observed. Magneto resistance of this polycrystalline sample (˜100%) is comparable with its single crystalline counterpart reported in literature. The peak intensity scales with peak temperature and obeys reasonably the Dionne relationship that is a clear indication of polaron mediated conduction in this system. Magneto Resistance (MR) in this system is attributed to the two carrier polaronic conduction model similar to the Holstein's approach. The results are further complemented with the Peak shift in magnetic field expected for a system having a fraction of localized carrier density. This observation places this famous thermoelectric material that displays a topological Dirac to Weyl transition in magnetic field in to the family of materials that have potential technological applications in the liquid nitrogen temperature range viz. 85-150 K.

  16. Vibronic effects and destruction of exciton coherence in optical spectra of J-aggregates: A variational polaron transformation approach

    Energy Technology Data Exchange (ETDEWEB)

    Bloemsma, E.A.; Silvis, M.H.; Stradomska, A.; Knoester, J., E-mail: j.knoester@rug.nl

    2016-12-20

    Using a symmetry adapted polaron transformation of the Holstein Hamiltonian, we study the interplay of electronic excitation-vibration couplings, resonance excitation transfer interactions, and temperature in the linear absorption spectra of molecular J-aggregates. Semi-analytical expressions for the spectra are derived and compared with results obtained from direct numerical diagonalization of the Hamiltonian in the two-particle basis set representation. At zero temperature, we show that our polaron transformation reproduces both the collective (exciton) and single-molecule (vibrational) optical response associated with the appropriate standard perturbation limits. Specifically, for the molecular dimer excellent agreement with the spectra from the two-particle approach for the entire range of model parameters is obtained. This is in marked contrast to commonly used polaron transformations. Upon increasing the temperature, the spectra show a transition from the collective to the individual molecular features, which results from the thermal destruction of the exciton coherence.

  17. Two Impurities in a Bose-Einstein Condensate: From Yukawa to Efimov Attracted Polarons

    Science.gov (United States)

    Naidon, Pascal

    2018-04-01

    The well-known Yukawa and Efimov potentials are two different mediated interaction potentials. The first one arises in quantum field theory from the exchange of virtual particles. The second one is mediated by a real particle resonantly interacting with two other particles. This Letter shows how two impurities immersed in a Bose-Einstein condensate can exhibit both phenomena. For a weak attraction with the condensate, the two impurities form two polarons that interact through a weak Yukawa attraction mediated by virtual excitations. For a resonant attraction with the condensate, the exchanged excitation becomes a real boson and the mediated interaction changes to a strong Efimov attraction that can bind the two polarons. The resulting bipolarons turn into in-medium Efimov trimers made of the two impurities and one boson. Evidence of this physics could be seen in ultracold mixtures of atoms.

  18. Singlet and triplet polaron relaxation in doubly charged self-assembled quantum dots

    International Nuclear Information System (INIS)

    Grange, T; Zibik, E A; Ferreira, R; Bastard, G; Carpenter, B A; Phillips, P J; Stehr, D; Winnerl, S; Helm, M; Steer, M J; Hopkinson, M; Cockburn, J W; Skolnick, M S; Wilson, L R

    2007-01-01

    Polaron relaxation in self-assembled InAs/GaAs quantum dot samples containing 2 electrons per dot is studied using far-infrared, time-resolved pump-probe measurements for transitions between the s-like ground and p-like first excited conduction band states. Spin-flip transitions between singlet and triplet states are observed experimentally in the decay of the absorption bleaching, which shows a clear biexponential dependence. The initial fast decay (∼30 ps) is associated with the singlet polaron decay, while the decay component with the longer time constant (∼5 ns) corresponds to the excited state triplet lifetime. The results are explained by considering the intrinsic Dresselhaus spin-orbit interaction, which induces spin-flip transitions by acoustic phonon emission or phonon anharmonicity. We have calculated the spin-flip decay times, and good agreement is obtained between the experiment and the simulation of the pump-probe signal. Our results demonstrate the importance of spin-mixing effects for intraband energy relaxation in InAs/GaAs quantum dots

  19. Madelung and Hubbard interactions in polaron band model of doped organic semiconductors

    Science.gov (United States)

    Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.

    2016-01-01

    The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355

  20. STABILITY OF MAGNETIZED DISKS AND IMPLICATIONS FOR PLANET FORMATION

    International Nuclear Information System (INIS)

    Lizano, Susana; Galli, Daniele; Cai, Mike J.; Adams, Fred C.

    2010-01-01

    This paper considers gravitational perturbations in geometrically thin disks with rotation curves dominated by a central object, but with substantial contributions from magnetic pressure and tension. The treatment is general, but the application is to the circumstellar disks that arise during the gravitational collapse phase of star formation. We find the dispersion relation for spiral density waves in these generalized disks and derive the stability criterion for axisymmetric (m = 0) disturbances (the analog of the Toomre parameter Q T ) for any radial distribution of the mass-to-flux ratio λ. The magnetic effects work in two opposing directions: on one hand, magnetic tension and pressure stabilize the disk against gravitational collapse and fragmentation; on the other hand, they also lower the rotation rate making the disk more unstable. For disks around young stars the first effect generally dominates, so that magnetic fields allow disks to be stable for higher surface densities and larger total masses. These results indicate that magnetic fields act to suppress the formation of giant planets through gravitational instability. Finally, even if gravitational instability can form a secondary body, it must lose an enormous amount of magnetic flux in order to become a planet; this latter requirement represents an additional constraint for planet formation via gravitational instability and places a lower limit on the electrical resistivity.

  1. Fingerprints of spin-orbital polarons and of their disorder in the photoemission spectra of doped Mott insulators with orbital degeneracy

    Science.gov (United States)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-04-01

    We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission spectra of doped transition metal oxides in the Mott insulating regime by the example of the R1 -xCaxVO3 perovskites, where R = La, ⋯, Lu. A fundamental characteristic of these vanadium d2 compounds with partly filled t2 g valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of magnetic order in high-Tc cuprates at low defect concentration. We study the disordered electronic structure of such doped Mott-Hubbard insulators within the unrestricted Hartree-Fock approximation and, as a result, manage to explain the spectral features that occur in photoemission and inverse photoemission. In particular, (i) the atomic multiplet excitations in the inverse photoemission spectra and the various defect-related states and satellites are qualitatively well reproduced, (ii) a robust Mott gap survives up to large doping, and (iii) we show that the defect states inside the Mott gap develop a soft gap at the Fermi energy. The soft defect-states gap, which separates the highest occupied from the lowest unoccupied states, can be characterized by a shape and a scale parameter extracted from a Weibull statistical sampling of the density of states near the chemical potential. These parameters provide a criterion and a comprehensive schematization for the insulator-metal transition in disordered systems. Our results provide clear indications that doped holes are bound to charged defects and form small spin-orbital polarons whose internal kinetic energy is responsible for the opening of the soft defect-states gap. We show that this kinetic gap survives disorder fluctuations of defects and is amplified by the long-range electron-electron interactions, whereas we observe a Coulomb singularity in the atomic limit. The small size of spin-orbital polarons is inferred by an analysis of the inverse participation ratio and by

  2. Line formation in microturbulent magnetic fields

    International Nuclear Information System (INIS)

    Domke, H.; Pavlov, G.G.

    1979-01-01

    The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Eddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength eta 0 < approx. 2. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurements only in combination with further spectroscopic data or physical reasoning. (orig.)

  3. Muonium formation via charge transport in solids and liquids

    International Nuclear Information System (INIS)

    Storchak, Vyacheslav G.; Brewer, Jess H.; Cox, Stephen F.J.

    1997-01-01

    We review our recent experimental studies on delayed muonium formation in insulators and semiconductors. This involves the positive muon capturing one of the excess electrons liberated in its own ionization track and competes with recombination or escape of the electrons. The muon is generally found to thermalise well 'downstream' from the center of the electron distribution, so that the transport mechanism of the electrons is a crucial factor. This is discussed in terms of the different tendencies to localization (as polarons in solids or in bubbles in liquids) vs. band-like propagation. Studies of Van der Waals cryocrystals and cryoliquids are reviewed and some preliminary results reported for sapphire and silicon. Transport distances and times are determined from the variation of μSR signal amplitudes with applied electric and magnetic fields, respectively, enabling the development of a new technique for measuring electron mobilities on a microscopic scale

  4. Polaronic and bipolaronic structures in the adiabatic Hubbard-Holstein model involving 2 electrons and its extensions

    International Nuclear Information System (INIS)

    Proville, L.

    1998-01-01

    This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.)

  5. Generalized formula for electron emission taking account of the polaron effect

    Science.gov (United States)

    Barengolts, Yu A.; Beril, S. I.; Barengolts, S. A.

    2018-01-01

    A generalized formula is derived for the electron emission current as a function of temperature, field, and electron work function in a metal-dielectric system that takes account of the quantum nature of the image forces. In deriving the formula, the Fermi-Dirac distribution for electrons in a metal and the quantum potential of the image obtained in the context of electron polaron theory are used.

  6. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, S.; Baras, A.; Roqan, I. S., E-mail: Iman.roqan@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Lee, J.-S. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-03-15

    We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaron percolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (∼40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.

  7. THE ROLE OF TURBULENT MAGNETIC RECONNECTION IN THE FORMATION OF ROTATIONALLY SUPPORTED PROTOSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)

    2012-03-01

    The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star

  8. NON-IDEAL MHD EFFECTS AND MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION

    International Nuclear Information System (INIS)

    Li Zhiyun; Krasnopolsky, Ruben; Shang Hsien

    2011-01-01

    Dense, star-forming cores of molecular clouds are observed to be significantly magnetized. A realistic magnetic field of moderate strength has been shown to suppress, through catastrophic magnetic braking, the formation of a rotationally supported disk (RSD) during the protostellar accretion phase of low-mass star formation in the ideal MHD limit. We address, through two-dimensional (axisymmetric) simulations, the question of whether realistic levels of non-ideal effects, computed with a simplified chemical network including dust grains, can weaken the magnetic braking enough to enable an RSD to form. We find that ambipolar diffusion (AD), the dominant non-ideal MHD effect over most of the density range relevant to disk formation, does not enable disk formation, at least in two dimensions. The reason is that AD allows the magnetic flux that would be dragged into the central stellar object in the ideal MHD limit to pile up instead in a small circumstellar region, where the magnetic field strength (and thus the braking efficiency) is greatly enhanced. We also find that, on the scale of tens of AU or more, a realistic level of Ohmic dissipation does not weaken the magnetic braking enough for an RSD to form, either by itself or in combination with AD. The Hall effect, the least explored of these three non-ideal MHD effects, can spin up the material close to the central object to a significant, supersonic rotation speed, even when the core is initially non-rotating, although the spun-up material remains too sub-Keplerian to form an RSD. The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved. Possible resolutions of this problem are discussed.

  9. Polaron variable range hopping in TiO2-δ(-0.04=<δ=<0.2) thin films

    International Nuclear Information System (INIS)

    Heluani, S.P.; Comedi, D.; Villafuerte, M.; Juarez, G.

    2007-01-01

    The mechanisms of electrical conduction in TiO 2-δ (-0.04= 2 +Ar gas atmospheres where changes in δ and film structure had been achieved by varying the O 2 flow rate and the substrate temperature. The electrical transport properties of these samples were investigated by measuring the conductivity as a function of temperature between 17K and room temperature. At the temperature range between 200 and 290K the best fit to the experimental data was obtained assuming a dependence characteristic of adiabatic variable range hopping. At lower temperature the activation energy for the conductivity tends to zero. The results suggest that the conduction mechanism is adiabatic small polaron hopping, which switches to conduction in a polaron band at low temperatures

  10. Second order approximation for optical polaron in the strong coupling case

    International Nuclear Information System (INIS)

    Bogolubov, N.N. Jr.

    1993-11-01

    Here we propose a method of construction second order approximation for ground state energy for class of model Hamiltonian with linear type interaction on Bose operators in strong coupling case. For the application of the above method we have considered polaron model and propose construction set of nonlinear differential equations for definition ground state energy in strong coupling case. We have considered also radial symmetry case. (author). 10 refs

  11. Numerical analysis of microstructure formation of magnetic particles and nonmagnetic particles in MR fluids

    International Nuclear Information System (INIS)

    Ido, Y; Yamaguchi, T; Inagaki, T

    2009-01-01

    Microstructure formation of magnetic particles and nonmagnetic particles in MR fluids is investigated using the particle method simulation. Nonmagnetic sphere particles are rearranged in the field direction due to the chain-like cluster formation of magnetic particles. In the contrast, the nonmagnetic spherocylinder particles are not sufficiently rearranged in the field direction by using the cluster formation of sphere magnetic particles.

  12. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes

    Science.gov (United States)

    Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo

    2017-11-01

    Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.

  13. Optically Detected Magnetic Resonance Studies on π-conjugated semiconductor systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in π-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at ΔmS=±1 and ΔmS=±2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal

  14. Experimental insight into the magnetic and electrical properties of amorphous Ge1-xMnx

    Science.gov (United States)

    Conta, Gianluca; Amato, Giampiero; Coïsson, Marco; Tiberto, Paola

    2017-12-01

    We present a study of the electrical and magnetic properties of the amorphous Ge1-xMnx.DMS, with 2% ≤ x ≤ 17%, by means of SQUID magnetometry and low temperature DC measurements. The thin films were grown by physical vapour deposition at 50°C in ultrahigh vacuum. The DC electrical characterizations show that variable range hopping is the main mechanism of charge transport below room temperature. Magnetic characterization reveals that a unique and smooth magnetic transition is present in our samples, which can be attributed to ferromagnetic percolation of bound magnetic polarons.

  15. Quantum fluctuations of D5d polarons on C60 molecules

    International Nuclear Information System (INIS)

    Wang Chui-Lin; Wang Wenzheng; Liu Yuliang; Su Zhaobin; Yu Lu.

    1994-06-01

    The dynamic Jahn-Teller splitting of the six equivalent D 5d polarons due to quantum fluctuations is studied in the framework of the Bogoliubov-de Gennes formalism. The tunneling induced level splittings are determined to be 2 T 1u + 2 T 2u and 1 A g + 1 H g for C 1- 60 and C -2 60 , respectively, which should give rise to observable effects in experiments. (author). 17 refs, 2 tabs

  16. Manipulating the magnetism and resistance state of Mn:ZnO/Pb(Zr0.52Ti0.48)O3 heterostructured films through electric fields

    Science.gov (United States)

    Li, Yong-Chao; Wu, Jun; Pan, Hai-Yang; Wang, Jue; Wang, Guang-Hou; Liu, Jun-Ming; Wan, Jian-Guo

    2018-05-01

    Mn:ZnO/Pb(Zr0.52Ti0.48)O3 (PZT) heterostructured films have been prepared on Pt/Ti/SiO2/Si wafers by a sol-gel process. Nonvolatile and reversible manipulation of the magnetism and resistance by electric fields has been realized. Compared with the saturation magnetic moment (Ms) in the +3.0 V case, the modulation gain of Ms can reach 270% in the -3.0 V case at room temperature. The resistance change is attributed to the interfacial potential barrier height variation and the formation of an accumulation (or depletion) layer at the Mn:ZnO/PZT interface, which can be regulated by the ferroelectric polarization direction. The magnetism of Mn:ZnO originates from bound magnetic polarons. The mobile carrier variation in Mn:ZnO, owing to interfacial polarization coupling and the ferroelectric field effect, enables the electric manipulation of the magnetism in the Mn:ZnO/PZT heterostructured films. This work presents an effective method for modulating the magnetism of magnetic semiconductors and provides a promising avenue for multifunctional devices with both electric and magnetic functionalities.

  17. Semiclassical and quantum polarons in crystalline acetanilide

    Science.gov (United States)

    Hamm, P.; Tsironis, G. P.

    2007-08-01

    Crystalline acetanilide is a an organic solid with peptide bond structure similar to that of proteins. Two states appear in the amide I spectral region having drastically different properties: one is strongly temperature dependent and disappears at high temperatures while the other is stable at all temperatures. Experimental and theoretical work over the past twenty five years has assigned the former to a selftrapped state while the latter to an extended free exciton state. In this article we review the experimental and theoretical developments on acetanilide paying particular attention to issues that are still pending. Although the interpretation of the states is experimentally sound, we find that specific theoretical comprehension is still lacking. Among the issues that that appear not well understood is the effective dimensionality of the selftrapped polaron and free exciton states.

  18. Observation of semiconductor to metallic transition and polaron hopping in double perovskite Pr{sub 2}CoTiO{sub 6} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800005 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1, APC Road, Kolkata 700009 (India)

    2017-05-01

    This paper describes semiconductor to metal transition and polaron conduction in double perovskite Pr{sub 2}CoTiO{sub 6} (PCTO) ceramics. The XRD pattern recorded at room temperature confirmed the pure phase, single crystalline structure. The semicircle arc in the impedance plot at each temperature can be attributed to the grain boundary contribution, indicating one dominating response in the measurement frequency range. The semiconductor to metallic transition was also confirmed by the variation of grain boundary resistance (R{sub gb}) with temperature. The activation energy estimated from the imaginary part of electrical modulus and impedance are found to be the characteristic of polaron conduction in PCTO. Ac conductivity followed power law dependence σ{sub ac} = Bω{sup n}. The observed variation of the exponent ‘n’ with temperature suggests the typical of charge transport assisted by a hopping process. The observed minimum in the temperature dependence of frequency exponent ‘n’ strongly suggests that the large polaron tunneling is the dominant transport process.

  19. Electric-field controlled ferromagnetism in MnGe magnetic quantum dots

    Directory of Open Access Journals (Sweden)

    Faxian Xiu

    2011-03-01

    Full Text Available Electric-field control of ferromagnetism in magnetic semiconductors at room temperature has been actively pursued as one of the important approaches to realize practical spintronics and non-volatile logic devices. While Mn-doped III-V semiconductors were considered as potential candidates for achieving this controllability, the search for an ideal material with high Curie temperature (Tc>300 K and controllable ferromagnetism at room temperature has continued for nearly a decade. Among various dilute magnetic semiconductors (DMSs, materials derived from group IV elements such as Si and Ge are the ideal candidates for such materials due to their excellent compatibility with the conventional complementary metal-oxide-semiconductor (CMOS technology. Here, we review recent reports on the development of high-Curie temperature Mn0.05Ge0.95 quantum dots (QDs and successfully demonstrate electric-field control of ferromagnetism in the Mn0.05Ge0.95 quantum dots up to 300 K. Upon the application of gate-bias to a metal-oxide-semiconductor (MOS capacitor, the ferromagnetism of the channel layer (i.e. the Mn0.05Ge0.95 quantum dots was modulated as a function of the hole concentration. Finally, a theoretical model based upon the formation of magnetic polarons has been proposed to explain the observed field controlled ferromagnetism.

  20. Correlation between excited d-orbital electron lifetime in polaron dynamics and coloration of WO3 upon ultraviolet exposure

    Science.gov (United States)

    Lee, Young-Ahn; Han, Seung-Ik; Rhee, Hanju; Seo, Hyungtak

    2018-05-01

    Polarons have been suggested to explain the mechanism of the coloration of WO3 induced by UV light. However, despite the many experimental results that support small polarons as a key mechanism, direct observation of the carrier dynamics of polarons have yet to be reported. Here, we investigate the correlation between the electronic structure and the coloration of WO3 upon exposure to UV light in 5% H2/N2 gas and, more importantly, reveal photon-induced excited d-electron generation/relaxation via the W5+ oxidation state. The WO3 is fabricated by radio-frequency magnetron sputtering. X-ray diffraction patterns show that prepared WO3 is amorphous. Optical bandgap of 3.1 eV is measured by UV-vis before and after UV light. The results of Fourier transform infrared and Raman exhibit pristine WO3 is formed with surface H2O. The colored WO3 shows reduced state of W5+ state (34.3 eV) by using X-ray photoelectron spectroscopy. The valence band maximum of WO3 after UV light in H2 is shifted from mid gap to shallow donor by using ultraviolet photoelectron spectroscopy. During the exploration of the carrier dynamics, pump (700 nm)-probe (1000 nm) spectroscopy at the femtosecond scale was used. The results indicated that electron-phonon relaxation of UV-irradiated WO3, which is the origin of the polaron-induced local surface plasmonic effect, is dominant, resulting in slow decay (within a few picoseconds); in contrast, pristine WO3 shows fast decay (less than a picosecond). Accordingly, the long photoinduced carrier relaxation is ascribed to the prolonged hot-carrier lifetime in reduced oxides resulting in a greater number of free d-electrons and, therefore, more interactions with the W5+ sub-gap states.

  1. Dynamics of the optically-induced properties of a small-polaronic glass

    International Nuclear Information System (INIS)

    Emin, D.

    1979-01-01

    The relaxation and recombination of an electronic excitation created by the absorption of a super-band-gap photon is considered for a system in which excitons and charge carriers find it energetically favorable to self-trap. The notions of a barrier to self-trapping, a short-range repulsion between electrons and holes, and the electromodulation of the small-polaron absorption band play a central role in this discussion. The results are consistent with experiments on chalcogenide glasses

  2. Electromagnetic-field dependence of the internal excited state of the polaron and the qubit in quantum dot with thickness

    Science.gov (United States)

    Bai, Xu-Fang; Xin, Wei; Yin, Hong-Wu; Eerdunchaolu

    2017-06-01

    The electromagnetic-field dependence of the ground and the first excited-state (GFES) energy eigenvalues and eigenfunctions of the strong-coupling polaron in a quantum dot (QD) was studied for various QD thicknesses by using the variational method of the Pekar type (VMPT). On this basis, we construct a qubit in the quantum dot (QQD) by taking a two-level structure of the polaron as the carrier. The results of numerical calculations indicate that the oscillation period of the qubit, {itT}{in0}, increases with increasing the thickness of the quantum dot (TQD) {itL}, but decreases with increasing the cyclotron frequency of the magnetic field (CFMF) ω{in{itc}}, electric-field strength {itF}, and electron-phonon coupling strength (EPCS) α. The probability density of the qubit |Ψ({itρ}, {itz}, {itt})|{su2} presents a normal distribution of the electronic transverse coordinate ρ, significantly influenced by the TQD and effective radius of the quantum dot (ERQD) {itR}{in0}, and shows a periodic oscillation with variations in the electronic longitudinal coordinate {itz}, polar angle φ and time {itt}. The decoherence time τ and the quality factor {itQ} of the free rotation increase with increasing the CFMF ω{in{itc}}, dispersion coefficient η, and EPCS α, but decrease with increasing the electric-field strength {itF}, TQD {itL}, and ERQD {itR}{in0}. The TQD is an important parameter of the qubit. Theoretically, the target, which is to regulate the oscillation period, decoherence time and quality factor of the free rotation of the qubit, can be achieved by designing different TQDs and regulating the strength of the electromagnetic field.

  3. Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases

    DEFF Research Database (Denmark)

    Massignan, Pietro; Bruun, Georg

    2011-01-01

    We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From...... polarized (ferromagnetic) domains are then examined for a binary mixture of atoms with a general mass ratio. Our results indicate that mass imbalance lowers the critical interaction strength for phase-separation, but that very short quasiparticle decay times will complicate the experimental observation...

  4. Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.

    Science.gov (United States)

    Pal, Bappaditya; Giri, P K

    2011-10-01

    Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.

  5. Anisotropic small-polaron hopping in W:BiVO4 single crystals

    International Nuclear Information System (INIS)

    Rettie, Alexander J. E.; Chemelewski, William D.; Zhou, Jianshi; Lindemuth, Jeffrey; McCloy, John S.; Marshall, Luke G.; Emin, David; Mullins, C. Buddie

    2015-01-01

    DC electrical conductivity, Seebeck and Hall coefficients are measured between 300 and 450 K on single crystals of monoclinic bismuth vanadate that are doped n-type with 0.3% tungsten donors (W:BiVO 4 ). Strongly activated small-polaron hopping is implied by the activation energies of the Arrhenius conductivities (about 300 meV) greatly exceeding the energies characterizing the falls of the Seebeck coefficients' magnitudes with increasing temperature (about 50 meV). Small-polaron hopping is further evidenced by the measured Hall mobility in the ab-plane (10 −1  cm 2  V −1  s −1 at 300 K) being larger and much less strongly activated than the deduced drift mobility (about 5 × 10 −5  cm 2  V −1  s −1 at 300 K). The conductivity and n-type Seebeck coefficient is found to be anisotropic with the conductivity larger and the Seebeck coefficient's magnitude smaller and less temperature dependent for motion within the ab-plane than that in the c-direction. These anisotropies are addressed by considering highly anisotropic next-nearest-neighbor (≈5 Å) transfers in addition to the somewhat shorter (≈4 Å), nearly isotropic nearest-neighbor transfers

  6. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    Science.gov (United States)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  7. Transport through a vibrating quantum dot: Polaronic effects

    International Nuclear Information System (INIS)

    Koch, T; Alvermann, A; Fehske, H; Loos, J; Bishop, A R

    2010-01-01

    We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.

  8. Decoupling of magnetic fields in collapsing protostellar envelopes and disc formation and fragmentation

    Science.gov (United States)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun; Krasnopolsky, Ruben

    2018-02-01

    Efficient magnetic braking is a formidable obstacle to the formation of rotationally supported discs (RSDs) around protostars in magnetized dense cores. We have previously shown, through 2D (axisymmetric) non-ideal magnetohydrodynamic simulations, that removing very small grains (VSGs: ∼10 Å to few 100 Å) can greatly enhance ambipolar diffusion and enable the formation of RSDs. Here, we extend the simulations of disc formation enabled by VSG removal to 3D. We find that the key to this scenario of disc formation is that the drift velocity of the magnetic field almost cancels out the infall velocity of the neutrals in the 102-103 au scale 'pseudo-disc' where the field lines are most severely pinched and most of protostellar envelope mass infall occurs. As a result, the bulk neutral envelope matter can collapse without dragging much magnetic flux into the disc-forming region, which lowers the magnetic braking efficiency. We find that the initial discs enabled by VSG removal tend to be Toomre-unstable, which leads to the formation of prominent spiral structures that function as centrifugal barriers. The piling-up of infall material near the centrifugal barrier often produces dense fragments of tens of Jupiter masses, especially in cores that are not too strongly magnetized. Some fragments accrete on to the central stellar object, producing bursts in mass accretion rate. Others are longer lived, although whether they can survive for a long term to produce multiple systems remains to be ascertained. Our results highlight the importance of dust grain evolution in determining the formation and properties of protostellar discs and potentially multiple systems.

  9. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwara University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaron radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.

  10. Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions

    Science.gov (United States)

    Wu, B. H.; Cao, J. C.; Timm, C.

    2012-07-01

    We study the interplay of polaronic effect and superconductivity in transport through molecular Josephson junctions. The tunneling rates of electrons are dominated by vibronic replicas of the superconducting gap, which show up as prominent features in the differential conductance for the dc and ac current. For relatively large molecule-lead coupling, a features that appears when the Josephson frequency matches the vibron frequency can be identified with an over-the-gap structure observed by Marchenkov [Nat. Nanotech. 1748-338710.1038/nnano.2007.2182, 481 (2007)]. However, we are more concerned with the weak-coupling limit, where resonant tunneling through the molecular level dominates. We find that certain features involving both Andreev reflection and vibron emission show an unusual shift of the bias voltage V at their maximum with the gate voltage Vg as V˜(2/3)Vg. Moreover, due to the polaronic effect, the ac Josephson current shows a phase shift of π when the bias eV is increased by one vibronic energy quantum ℏωv. This distinctive even-odd effect is explained in terms of the different sign of the coupling to vibrons of electrons and of Andreev-reflected holes.

  11. Effects of hole self-trapping by polarons on transport and negative bias illumination stress in amorphous-IGZO

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-04-01

    The effects of hole injection in amorphous indium-gallium-zinc-oxide (a-IGZO) are analyzed by means of first-principles calculations. The injection of holes in the valence band tail states leads to their capture as a polaron, with high self-trapping energies (from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides and remain localized close to the hole injection source due to the presence of a large diffusion energy barrier (of at least 0.6 eV). Their diffusion mechanism can be mediated by the presence of hydrogen. The capture of these holes is correlated with the low off-current observed for a-IGZO transistors, as well as with the difficulty to obtain a p-type conductivity. The results further support the formation of peroxides as being the root cause of Negative Bias Illumination Stress (NBIS). The strong self-trapping substantially reduces the injection of holes from the contact and limits the creation of peroxides from a direct hole injection. In the presence of light, the concentration of holes substantially rises and mediates the creation of peroxides, responsible for NBIS.

  12. Influence of Immobilized Biomolecules on Magnetic Bead Plug Formation and Retention in Capillary Electrophoresis

    Science.gov (United States)

    Henken, Rachel L.; Chantiwas, Rattikan; Gilman, S. Douglass

    2012-01-01

    Significant changes in the formation and retention of magnetic bead plugs in a capillary during electrophoresis were studied, and it was demonstrated that these effects were due to the type of biological molecule immobilized on the surface of these beads. Three biological molecules, an antibody, an oligonucleotide and alkaline phosphatase, were attached to otherwise identical streptavidin-coated magnetic beads through biotin-avidin binding in order to isolate differences in bead immobilization in a magnetic field resulting from the type of biological molecule immobilized on the bead surface. Alkaline phosphatase also was attached to the magnetic beads using epoxy groups on the bead surfaces (instead of avidin-biotin binding) to study the impact of immobilization chemistry. The formation and retention of magnetic bead plugs were studied quantitatively using light scattering detection of magnetic particles eluting from the bead plugs and qualitatively using microscopy. Both the type of biomolecule immobilized on the magnetic bead surface and the chemistry used to link the biomolecule to the magnetic bead impacted the formation and retention of the bead plugs. PMID:22437880

  13. Magnetic properties of co-modified Fe,N-TiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Zolnierkiewicz Grzegorz

    2015-01-01

    Full Text Available Iron and nitrogen co-modified titanium dioxide nanocomposites, nFe,N-TiO2 (where n = 1, 5 and 10 wt% of Fe, were investigated by detailed dc susceptibility and magnetization measurements. Different kinds of magnetic interactions were evidenced depending essentially on iron loading of TiO2. The coexistence of superparamagnetic, paramagnetic and ferromagnetic phases was identified at high temperatures. Strong antiferromagnetic interactions were observed below 50 K, where some part of the nanocomposite entered into a long range antiferromagnetic ordering. Antiferromagnetic interactions were attributed to the magnetic agglomerates of iron-based and trivalent iron ions in FeTiO3 phase,whereas ferromagnetic interactions stemmed from the F-center mediated bound magnetic polarons.

  14. Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach

    Science.gov (United States)

    Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.

    2017-07-01

    Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather

  15. Critical behavior of a La0,7Sr0,3MnO3 crystal in the vicinity of its transition to ferromagnetic state

    International Nuclear Information System (INIS)

    Kalita, V.M.; Lozenko, A.F.; Ryabchenko, S.M.; Trotsenko, P.O.; Tovstolitkyin, O.Yi.; Pogoryilij, A.M.

    2009-01-01

    Magnetostatic properties of a La 0,7 Sr 0,3 MnO 3 single crystal have been studied in the vicinity of its critical temperature T c . A nonlinear temperature dependence of the inverse magnetic susceptibility which is characteristic of the Griffiths phase, has been found in the minimal measuring magnetic field at temperatures slightly above the temperature of ferromagnetic (FM) ordering. A conclusion was made that such a nonlinearity arises owing to the formation of magnetic polarons

  16. Small polaron conduction in lead modified lanthanum ferrite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bhargav, K.K.; Ram, S.; Majumder, S.B., E-mail: subhasish@matsc.iitkgp.ernet.in

    2015-07-25

    Highlights: • La{sub 0.8}Pb{sub 0.2}FeO{sub 3} (ε{sub r} ∼ 30,000) shows higher dielectric constant than LaFeO{sub 3} (∼14,000). • Lower A-site dopant content, the dielectric maxima shift to higher temperature. • The frequency dependence of ε{sub r} and tan δ vs. temperature exhibit CDC like behavior. • R{sub g} and R{sub gb} of Pb modified LaFeO{sub 3} follow small polaron hopping conduction model. - Abstract: In the present work we have illustrated the physics of the electrical characteristics of nanocrystalline La{sub 1−x}Pb{sub x}FeO{sub 3,} (0 ⩽ x ⩽ 0.2) powder prepared using auto-combustion synthesis. The effect of lead doping on the dielectric, impedance and ac conductivity characteristics of lanthanum ferrite has systematically been investigated. The synthesized powders were phase pure and crystallized into centro-symmetric Pnma space group. As compared to pure LaFeO{sub 3} ceramics (dielectric constant ∼ 14,000), the dielectric constant is grossly increased (∼30,000) in Pb doped LaFeO{sub 3}. The temperature dependence of dielectric constant of 10.0 at.% Pb doped LaFeO{sub 3} exhibits dielectric maxima similar to that observed in ferroelectric ceramics with non-centrosymmetric point group. For La{sub 0.8}Pb{sub 0.2}FeO{sub 3} ceramics, the frequency dependence of the dielectric constant and loss tangent at various temperatures (300–450 K) exhibit typical colossal dielectric constant (CDC) like behavior. From the impedance spectroscopy we have estimated the grain and grain boundary resistance and capacitance of Pb doped LaFeO{sub 3} that follow a small polaron hopping conduction model. Long range movement of the charge carriers govern the CDC behavior.

  17. Quasi-one-dimensional polaronic states due to the preferential reduction in the Li sub 1 sub + sub x V sub 3 O sub 8 insertion electrode

    CERN Document Server

    Onoda, M

    2003-01-01

    The structural and electronic properties of the Li sub 1 sub + sub x V sub 3 O sub 8 insertion electrode, where 0 sup 0.1 with nearly stoichiometric oxygen atoms, small polarons exist without carrier-creation energy at high temperatures, while at low temperatures the conduction may be of variable-range hopping (VRH) type. For x > 0.2, one-dimensional magnetic properties appear due to sizable exchange couplings and order-disorder effects of additional Li ions may lead to significant change of transport properties. For the intermediate composition 0 < x sup<= 0.1, strong randomness of the Li doping and the congenital oxygen deficiency cause VRH states even at high temperatures.

  18. Magnetic fields and star formation: evidence from imaging polarimetry of the Serpens Reflection Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; Draper, P W; Scarrott, S M

    1987-08-01

    CCD imaging of the Serpens bipolar reflection nebula shows it to be surrounded by dark material having spiral density structure. Multi-colour polarization mapping also reveals details of the surrounding magnetic field, indicating that this also has spiral structure. These observations are discussed along with current ideas about the role of magnetic fields during star formation. An interpretation involving the non-axisymmetric magnetically braked collapse of a protostellar cloud is proposed and a resulting magnetic field configuration is described which can account for the observations. Evidence is also discussed for the formation of a binary star system within the nebula, resulting from the fragmentation of a magnetized protostellar disc.

  19. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dinesh; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2015-01-15

    In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics.

  20. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-01-01

    In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics

  1. Full-counting statistics of energy transport of molecular junctions in the polaronic regime

    International Nuclear Information System (INIS)

    Tang, Gaomin; Yu, Zhizhou; Wang, Jian

    2017-01-01

    We investigate the full-counting statistics (FCS) of energy transport carried by electrons in molecular junctions for the Anderson–Holstein model in the polaronic regime. Using the two-time quantum measurement scheme, the generating function (GF) for the energy transport is derived and expressed as a Fredholm determinant in terms of Keldysh nonequilibrium Green’s function in the time domain. Dressed tunneling approximation is used in decoupling the phonon cloud operator in the polaronic regime. This formalism enables us to analyze the time evolution of energy transport dynamics after a sudden switch-on of the coupling between the dot and the leads towards the stationary state. The steady state energy current cumulant GF in the long time limit is obtained in the energy domain as well. Universal relations for steady state energy current FCS are derived under a finite temperature gradient with zero bias and this enabled us to express the equilibrium energy current cumulant by a linear combination of lower order cumulants. The behaviors of energy current cumulants in steady state under temperature gradient and external bias are numerically studied and explained. The transient dynamics of energy current cumulants is numerically calculated and analyzed. Universal scaling of normalized transient energy cumulants is found under both temperature gradient and external bias. (paper)

  2. Effect of doping Ca on polaron hopping in LaSr 2 Mn 2 O 7

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 5-6. Effect of doping Ca on polaron hopping in LaSr2Mn2O7. S N Bhatia Osama A Yassin. Colossal Magnetoresistance & Other Materials Volume 58 Issue 5-6 May-June 2002 pp 1061- ...

  3. Exact results and conjectures on the adiabatic Holstein-Hubbard model at large electron-phonon coupling

    International Nuclear Information System (INIS)

    Aubry, S.

    1993-01-01

    Principles and notations of the Holstein-Hubbard model in a magnetic field are first reviewed. Effects of the dimensionality, the lattice discreteness and the magnetic field on single polarons, are examined and the existence of many polarons and bipolarons structures at large electron-phonon coupling is discussed. Properties of bipolaronic and polaronic structures are examined together with the magnetic field effects on these structures. High Tc superconductivity resulting from the competition between the electron-phonon and Hubbard couplings is discussed. 7 figs., 18 refs

  4. Cr doping induced negative transverse magnetoresistance in C d3A s2 thin films

    Science.gov (United States)

    Liu, Yanwen; Tiwari, Rajarshi; Narayan, Awadhesh; Jin, Zhao; Yuan, Xiang; Zhang, Cheng; Chen, Feng; Li, Liang; Xia, Zhengcai; Sanvito, Stefano; Zhou, Peng; Xiu, Faxian

    2018-02-01

    The magnetoresistance of a material conveys various dynamic information about charge and spin carriers, inspiring both fundamental studies in physics and practical applications such as magnetic sensors, data storage, and spintronic devices. Magnetic impurities play a crucial role in the magnetoresistance as they induce exotic states of matter such as the quantum anomalous Hall effect in topological insulators and tunable ferromagnetic phases in dilute magnetic semiconductors. However, magnetically doped topological Dirac semimetals are hitherto lacking. Here, we report a systematic study of Cr-doped C d3A s2 thin films grown by molecular-beam epitaxy. With the Cr doping, C d3A s2 thin films exhibit unexpected negative transverse magnetoresistance and strong quantum oscillations, bearing a trivial Berry's phase and an enhanced effective mass. More importantly, with ionic gating the magnetoresistance of Cr-doped C d3A s2 thin films can be drastically tuned from negative to positive, demonstrating the strong correlation between electrons and the localized spins of the Cr impurities, which we interpret through the formation of magnetic polarons. Such a negative magnetoresistance under perpendicular magnetic field and its gate tunability have not been observed previously in the Dirac semimetal C d3A s2 . The Cr-induced topological phase transition and the formation of magnetic polarons in C d3A s2 provide insights into the magnetic interaction in Dirac semimetals as well as their potential applications in spintronics.

  5. A polaronic model of superconductivity in doped fulleride systems

    International Nuclear Information System (INIS)

    Tiwari, S.C.

    2007-01-01

    Full text: A polaronic model of superconductivity in doped fulleride systems is presented. The normal and anomalous one-particle Green's functions are derived for a system with strong electron phonon coupling. The study of collapse of the electron band and the phonon vacuum is presented within the mean-field approximation. Self consistent equation for the superconducting order parameter is derived using Green's function technique and following Lang and Firsov transformations. Expressions for specific heat, density of states, free energy and critical field based on this model have been derived. The theory is applied to explain the experimental results in the systems K 3 C 60 and Rb 3 C 6 O. These results are in good agreement with the available experimental data. (authors)

  6. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  7. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)

    2017-06-20

    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.

  8. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    Science.gov (United States)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  9. Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries

    Science.gov (United States)

    Fan, Quan-Lin; Wei, Feng-Si; Feng, Xue-Shang

    2003-08-01

    The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet. The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc. The project supported by National Natural Science Foundation of China under Grant Nos. 40104006, 49925412, and 49990450

  10. Electric field control of the small-polaron hopping conduction in spatial confined Pr0.7(Ca0.6Sr0.40.3MnO3/PMN-PT heterostructure

    Directory of Open Access Journals (Sweden)

    Hao Kuang

    2017-05-01

    Full Text Available The electric field dependent high-temperature small-polaron hopping conduction was investigated in patterned Pr0.7(Ca0.6Sr0.40.3MnO3 strips. The small-polaronic activation energy EA and the carrier localization were found to decrease with the reduction of the strip size. Meanwhile, a similar dependence on the strip size was also obtained for the calculated small-polaron coupling constants, which could be related to the strain relaxation in strips. These results indicate that the spatial confinement prefers to delocalize the carrier and reduce the electron-phonon interaction. Furthermore, opposite variation trends of EA under negative and positive electric field were found in the strips with small size, which could be attributed to the enhancement of polarization effect induced by the reduction of strip size.

  11. The magnetic polarity stratigraphy of the Mauch Chunk Formation, Pennsylvania.

    Science.gov (United States)

    Opdyke, Neil D; DiVenere, Victor J

    2004-09-14

    Three sections of Chesterian Mauch Chunk Formation in Pennsylvania have been studied paleomagnetically to determine a Late Mississippian magnetic polarity stratigraphy. The upper section at Lavelle includes a conglomerate with abundant red siltstone rip-up clasts that yielded a positive conglomerate test. All samples were subjected to progressive thermal demagnetization to temperatures as high as 700 degrees C. Two components of magnetization were isolated: a synfolding "B" component and the prefolding "C" component. The conglomerate test is positive, indicating that the C component was acquired very early in the history of the sediment. A coherent pattern of magnetic polarity reversals was identified. Five magnetozones were identified in the upper Lavelle section, which yields a pattern that is an excellent match with the pattern of reversals obtained from the upper Mauch Chunk at the original type section of the Mississippian/Pennsylvanian boundary at Pottsville, PA. The frequency of reversals in the upper Mississippian, as identified in the Mauch Chunk Formation, is approximately one to two per million years, which is an average for field reversal through time.

  12. Polaron Hopping in Nano-scale Poly(dA–Poly(dT DNA

    Directory of Open Access Journals (Sweden)

    Singh Mahi

    2010-01-01

    Full Text Available Abstract We investigate the current–voltage relationship and the temperature-dependent conductance of nano-scale samples of poly(dA–poly(dT DNA molecules. A polaron hopping model has been used to calculate the I–V characteristic of nano-scale samples of DNA. This model agrees with the data for current versus voltage at temperatures greater than 100 K. The quantities G 0 , i 0 , and T 1d are determined empirically, and the conductivity is estimated for samples of poly(dA–poly(dT.

  13. Inelastic scattering in a local polaron model with quadratic coupling to bosons

    DEFF Research Database (Denmark)

    Olsen, Thomas

    2009-01-01

    We calculate the inelastic scattering probabilities in the wide band limit of a local polaron model with quadratic coupling to bosons. The central object is a two-particle Green's function which is calculated exactly using a purely algebraic approach. Compared with the usual linear interaction term...... a quadratic interaction term gives higher probabilities for inelastic scattering involving a large number of bosons. As an application we consider the problem hot-electron-mediated energy transfer at surfaces and use the delta self-consistent field extension of density-functional theory to calculate...

  14. THE FORMATION AND MAGNETIC STRUCTURES OF ACTIVE-REGION FILAMENTS OBSERVED BY NVST, SDO, AND HINODE

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Xiang, Y. Y.; Kong, D. F.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Pan, G. M. [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)

    2015-08-15

    To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small sunspots with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small sunspot with negative polarity. The small sunspot rotated not only around another small sunspot with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The sunspot rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.

  15. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    Science.gov (United States)

    Song, H.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-12-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this presentation, we present an intriguing observation of a solar eruptive event with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved-in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~ 10 MK), presumably a MFR, producing a CME. We suggest that two spatially-separated magnetic reconnections occurred in this event, responsible for producing the flare and the hot blob (CME), respectively.

  16. Magnetic and electrical properties of In doped FeCr{sub 2}S{sub 4} compound

    Energy Technology Data Exchange (ETDEWEB)

    Sagredo, V. [Lab. de Magnetismo, Facultad de Ciencias, Universidad de los Andes, Merida, 5101 (Venezuela)], E-mail: sagredo@ula.ve; Davila, Y. [Lab. de Magnetismo, Facultad de Ciencias, Universidad de los Andes, Merida, 5101 (Venezuela); Goya, G.F. [Instituto Universitario de Investigacion en Nanociencia de Aragon, Zaragoza (Spain)

    2008-07-15

    Single crystals of FeIn{sub 1-x}Cr{sub 2x}S{sub 4} compounds have been grown by using the chemical transport method. DC magnetization measurements on single crystals for 0.6{<=}x{<=}1.0 revealed a reentrant behavior below T{sub sg}=120-170 K depending on the Cr concentration sample. The transition temperature T{sub c} increases as the indium concentration increases. The electrical resistivity measurements on polycrystalline materials above the Curie temperature revealed that the conduction behavior could be described as magnetic-polaron transport.

  17. Frequency and temperature dependence of the electrical conductivity of KTaO3; Li and PbTiO3; La, Cu: Indication of a low temperature polaron mechanism

    International Nuclear Information System (INIS)

    Levstik, A.; Filipic, C.; Bidault, O.; Maglione, M.

    2008-01-01

    Recently, the concept of polarons has again been at the focus of solid-state research, as it can constitute the basis for understanding the high-temperature superconductivity or the colossal magnetoresistance of materials. More than a decade ago there were some indications that polarons play an important role in explaining low temperature maxima in imaginary part of the dielectric constant ε '' (T) in ABO 3 perovskites. In the present work we report the ac electrical conductivities of KTaO 3 ; Li and PbTiO 3 ; La, Cu and their frequency and temperature dependence. The real part of the complex ac conductivity was found to follow the universal dielectric response σ ' ∝ν s . A detailed theoretical analysis of the temperature dependence of the parameter s revealed that, at low temperatures, the tunnelling of small polarons is the dominating charge transport mechanism in ABO 3 perovskites

  18. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    Science.gov (United States)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  19. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  20. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Cheng, X., E-mail: hqsong@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China)

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  1. Liquid-liquid phase separation and cluster formation at deposition of metals under inhomogeneous magnetic field

    Science.gov (United States)

    Gorobets, O. Yu; Gorobets, Yu I.; Rospotniuk, V. P.; Grebinaha, V. I.; Kyba, A. A.

    2017-10-01

    The formation and dynamic of expansion and deformation of the liquid-liquid interface of an electrolyte at deposition of metals at the surface of the magnetized steel ball is considered in this paper. The electrochemical processes were investigated in an external magnetic field directed at an arbitrary angle to the force of gravity. These processes are accompanied by the formation of effectively paramagnetic clusters of electrochemical products - magnions. Tyndall effect was used for detection of the presence of magnions near the magnetized steel electrode in a solution. The shape of the interface separating the regions with different concentration of magnions, i.e. different magnetic susceptibilities, was described theoretically based on the equation of hydrostatic equilibrium which takes into account magnetic, hydrostatic and osmotic pressures.

  2. Control of hole localization in magnetic semiconductors by axial strain

    Science.gov (United States)

    Raebiger, Hannes; Bae, Soungmin; Echeverría-Arrondo, Carlos; Ayuela, Andrés

    2018-02-01

    Mn and Fe-doped GaN are widely studied prototype systems for hole-mediated magnetic semiconductors. The nature of the hole states around the Mn and Fe impurities, however, remains under debate. Our self-interaction corrected density-functional calculations show that the charge neutral Mn 0 and positively charged Fe+ impurities have symmetry-broken d5+h ground states, in which the hole is trapped by one of the surrounding N atoms in a small polaron state. We further show that both systems also have a variety of other d5+h configurations, including symmetric, delocalized states, which may be stabilized by axial strain. This finding opens a pathway to promote long-range hole-mediated magnetic interactions by strain engineering and clarifies why highly strained thin-films samples often exhibit anomalous magnetic properties.

  3. Proton impurity in the neutron matter: a nuclear polaron problem

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, M [Institute of Nuclear Physics, Cracow (Poland); Wojcik, W [Politechnika Krakowska, Cracow (Poland)

    1992-10-01

    We study interactions of a proton impurity with density oscillations of the neutron matter in a Debye approximation. The proton-phonon coupling is of the deformation-potential type at long wavelengths. It is weak at low density and increases with the neutron matter density. We calculate the proton`s effective mass perturbatively for a weak coupling, and use a canonical transformation technique for stronger couplings. The proton`s effective mass grows significantly with density, and at higher densities the proton impurity can be localized. This behaviour is similar to that of the polaron in solids. We obtain properties of the localized proton in the strong coupling regime from variational calculations, treating the neutron in the Thomas-Fermi approximation. (author). 14 refs, 8 figs.

  4. Sheared flow layer formation in tokamak plasmas with reversed magnetic shear

    International Nuclear Information System (INIS)

    Dong, J.Q.; Long, Y.X.; Mou, Z.Z.; Zhang, J.H.; Li, J.Q.

    2005-01-01

    Sheared flow layer (SFL) formation due to magnetic energy release through tearing-reconnections in tokamak plasmas is investigated. The characteristics of the SFLs created in the development of double tearing mode, mediated by electron viscosity in configurations with non-monotonic safety factor q profiles and, therefore, two rational flux surfaces of same q value, are analyzed in detail as an example. Quasi-linear simulations demonstrate that the sheared flows induced by the mode have desirable characteristics (lying at the boundaries of the magnetic islands), and sufficient levels required for internal transport barrier (ITB) formation. A possible correlation of the SFLs with experimental observations, that double transport barrier structures are preferentially formed in proximity of the two rational surfaces, is also proffered. (author)

  5. The effects of magnetic fields and protostellar feedback on low-mass cluster formation

    Science.gov (United States)

    Cunningham, Andrew J.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2018-05-01

    We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes - magnetohydrodynamics, radiative transfer, and protostellar outflows - and span a wide range of virial parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large-scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top heavy with time. In all cases, we find that the competition between magnetic flux advection towards the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.

  6. Stochastic layers of magnetic field lines and formation of ITB in a toroidal plasma

    International Nuclear Information System (INIS)

    Volkov, E.D.; Bererzhnyi, V.L.; Bondarenko, V.N.

    2003-01-01

    The results of local measurements of RF discharge plasma parameters in the process of ITB formation in the vicinity of rational magnetic surfaces in the Uragan-3M torsatron are presented. The next phenomena were observed in the process of ITB formation: the widening of the radial density distribution, the formation of pedestals on radial density and electron temperature distributions, the formation of regions with high shear of poloidal plasma rotation velocity and radial electric field in the vicinity of stochastic layers of magnetic field lines, the decrease of density fluctuations and their radial correlation length, the decorrelation of density fluctuations, the increase of the bootstrap current. After the ITB formation, the transition to the improved plasma confinement regime takes place. The transition moves to the beginning of the discharge with the increase of heating power. The possible mechanism of ITB formation near rational surfaces is discussed. (orig.)

  7. The formation of magnetic silicide Fe3Si clusters during ion implantation

    Science.gov (United States)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  8. The formation of magnetic silicide Fe3Si clusters during ion implantation

    International Nuclear Information System (INIS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-01-01

    A simple two-dimensional model of the formation of magnetic silicide Fe 3 Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field

  9. Formation of compact toroidal configurations for magnetic confinement of high temperature plasmas

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Rodrigo, A.B.

    1986-01-01

    The formation stage of inverted magnetic field toroidal configurations (FRC) for hot plasmas confinement using a low energy linear theta pinch is studied. The diagnostic techniques used are based on optical spectroscopy, ultrarapid photography, magnetic probes and excluded flux compensated bonds. The generalities of the present research program, the used diagnostic techniques and the results obtained are discussed. (Author)

  10. Polaron-electron assisted giant dielectric dispersion in SrZrO{sub 3} high-k dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Hitesh; Barvat, Arun; Pal, Prabir; Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Shukla, A. K. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pulikkotil, J. J. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Computation and Networking Facility, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-06-07

    The SrZrO{sub 3} is a well known high-k dielectric constant (∼22) and high optical bandgap (∼5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (T{sub e}) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction. X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O{sup 2−} anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO{sub 6} octahedral angle in the temperature range of 650–750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.

  11. Using Magnetic Helicity Diagnostics to Determine the Nature of Solar Active-Region Formation

    Science.gov (United States)

    Georgoulis, Manolis K.

    Employing a novel nonlinear force-free (NLFF) method that self-consistently infers instantaneous free magnetic-energy and relative magnetic-helicity budgets from single photospheric vector magnetograms, we recently constructed the magnetic energy-helicity (EH) diagram of solar active regions. The EH diagram implies dominant relative helicities of left-handed or right-handed chiralities for the great majority of active regions. The amplitude (budget) of these helicities scales monotonically with the free magnetic energy. This constructive, strongly preferential accumulation of a certain sense of magnetic helicity seems to disqualify recently proposed mechanisms relying on a largely random near-surface convection for the formation of the great majority of active regions. The existing qualitative formation mechanism for these regions remains the conventional Omega-loop emergence following a buoyant ascension from the bottom of the convection zone. However, exceptions to this rule include even eruptive active regions: NOAA AR 11283 is an obvious outlier to the EH diagram, involving significant free magnetic energy with a small relative magnetic helicity. Relying on a timeseries of vector magnetograms of this region, our methodology shows nearly canceling amounts of both senses of helicity and an overall course from a weakly left-handed to a weakly right-handed structure, in the course of which a major eruption occurs. For this and similarly behaving active regions the latest near-surface formation scenario might conceivably be employed successfully. Research partially supported by the EU Seventh Framework Programme under grant agreement No. PIRG07-GA-2010-268245 and by the European Union Social Fund (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  12. Studying the Formation and Evolution of Eruptive Solar Magnetic Flux Ropes

    Science.gov (United States)

    Linton, M.

    2017-12-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics. This work is funded by the NASA Living with a Star program.

  13. Annealing effects on the structural, optical and magnetic properties of Mn implanted GaN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar; Sharif, Rehana; Husnain, G

    2009-01-01

    Mn ions were implanted into GaN thin films with six doses ranging from 10 14 to 5 x 10 16 cm -2 and the samples were subsequently annealed isochronically in three steps at 800, 850 and 900 deg. C. Structural, optical and magnetic properties of the implanted samples were studied after each annealing. X-ray diffraction measurements exhibited new peaks on the lower angle side of the main GaN peak which are attributed to the implantation induced damage as well as the formation of a GaMnN phase. A dose dependent decrease in the optical band gap and an increase in the Urbach tail were observed from optical transmission measurements. The clear magnetic hysteresis loops were recorded by the magnetometer which revealed the room temperature ferromagnetic ordering in all the implanted samples. Unusual behaviour in the magnetic measurements was observed when saturation magnetic moment decreased in all the samples with an increase in annealing temperature from 850 to 900 deg. C. This is explained by the out-diffusion of Mn atoms from the samples during high temperature annealing. Annealing temperature of 850 deg. C for Mn implanted GaN has been suggested as suitable since the samples annealed at this temperature exhibited maximum M s and minimum Urbach energy. Bound magnetic polarons are suggested to be the origin of room temperature ferromagnetic exchange in the samples. XPS measurements indicated that the Mn ions have been incorporated into the wurtzite structure of the host lattice by substituting the Ga sites.

  14. Annealing effects on the structural, optical and magnetic properties of Mn implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar [Advance Materials Physics Laboratory, Physics Department, Quaid-i-Azam University, Islamabad (Pakistan); Sharif, Rehana [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Husnain, G, E-mail: abdulmajid40@yahoo.co, E-mail: akbar@qau.edu.p [Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2009-07-07

    Mn ions were implanted into GaN thin films with six doses ranging from 10{sup 14} to 5 x 10{sup 16} cm{sup -2} and the samples were subsequently annealed isochronically in three steps at 800, 850 and 900 deg. C. Structural, optical and magnetic properties of the implanted samples were studied after each annealing. X-ray diffraction measurements exhibited new peaks on the lower angle side of the main GaN peak which are attributed to the implantation induced damage as well as the formation of a GaMnN phase. A dose dependent decrease in the optical band gap and an increase in the Urbach tail were observed from optical transmission measurements. The clear magnetic hysteresis loops were recorded by the magnetometer which revealed the room temperature ferromagnetic ordering in all the implanted samples. Unusual behaviour in the magnetic measurements was observed when saturation magnetic moment decreased in all the samples with an increase in annealing temperature from 850 to 900 deg. C. This is explained by the out-diffusion of Mn atoms from the samples during high temperature annealing. Annealing temperature of 850 deg. C for Mn implanted GaN has been suggested as suitable since the samples annealed at this temperature exhibited maximum M{sub s} and minimum Urbach energy. Bound magnetic polarons are suggested to be the origin of room temperature ferromagnetic exchange in the samples. XPS measurements indicated that the Mn ions have been incorporated into the wurtzite structure of the host lattice by substituting the Ga sites.

  15. Interplay of cross-plane polaronic transport and resistive switching in Pt–Pr0.67Ca0.33MnO3–Pt heterostructures

    International Nuclear Information System (INIS)

    Scherff, M; Hoffmann, J; Meyer, B; Danz, Th; Jooss, Ch

    2013-01-01

    The identification of the cross-plane electric transport mechanisms in different resistance states of metal–oxide sandwich structures is essential for gaining insights into the mechanisms of resistive switching (RS). Here, we present a systematic study of cross-plane electric transport properties of Pr 0.67 Ca 0.33 MnO 3 (PCMO) thin films sandwiched by precious Pt metal electrodes. We observe three different transport regimes: ohmic, nonlinear and RS. The nonlinear regime is associated with colossal magneto-resistance (CMR) and colossal electro-resistance (CER) effects. In contrast to RS, the CMR and CER are volatile resistance effects which persist only during application of strong magnetic or electric fields and they are restricted to low temperatures. At low current densities, the device resistance is dominated by small polaron hopping transport of the PCMO film. At higher electric current densities near the switching threshold, the interface resistance starts to dominate and remarkably also exhibits thermally activated transport properties. Our studies also shed light onto the interplay of colossal resistance effects and RS: at low temperatures, RS can be only induced by reduction of the PCMO resistivity through CMR and CER. This clearly demonstrates the key role of the current density for controlling the amplitude of non-volatile resistive changes. Conversely, the CMR can be used as a probe for the switching induced changes in disorder and correlations. At small switching amplitudes, we observe slight changes in polaron activation energy which can be attributed to changes at the interface. If the switching amplitude exceeds 1000% and more, the CMR effect in the device can be reversibly changed. This indicates persistent changes in electronic or lattice structure of large regions within the PCMO film. (paper)

  16. Magnetization of three Nubia Sandstone formations from Central Western Desert of Egypt

    Directory of Open Access Journals (Sweden)

    H. El-Shayeb

    2013-06-01

    The first magnetic component obtained from the two older formations is considered primary, as the corresponding pole reflects the age when compared with the previously obtained Cretaceous poles for North Africa. On other hand, the second pole obtained from the Maghrabi formation (the younger is inconsistent with the Cretaceous pole positions for North Africa, but falls closer to the Eocene pole indicating that the rocks of this formation could have suffered remagnetization during the late Eocene time.

  17. Effect of magnetic field on the donor impurity in CdTe/Cd1-xMnxTe quantum well wire

    Science.gov (United States)

    Kalpana, P.; Reuben, A. Merwyn Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2016-05-01

    The donor impurity binding energy in CdTe / Cd1-xMnxTe QWW with square well confinement along x - direction and parabolic confinement along y - direction under the influence of externally applied magnetic field has been computed using variational principle in the effective mass approximation. The spin polaronic shift has also been computed. The results are presented and discussed.

  18. Quartz Ti-center in ESR dating of Xigeda formation in Sichuanand contrast with magnetic stratigraphic profiles

    International Nuclear Information System (INIS)

    Wang Ping; Li Jianping; Liu Chunru; Han Fei; Gao Lu; Wang Jiancun

    2011-01-01

    Xigeda formation is a famous fluvial-lacustrine sedimentation formed in late cenozoic in southwest China, distributed in the valley of Dadu River, Anning River, Chin-sha River etc. The age of Xigeda formation,ranges between 4.18 and 1.78 Ma BP, depending on the magnetic stratigraphy research of the stratigraphic section. Quartz Ti-center in ESR dating of sand samples from several typical sections of Xigeda formation in Sichuan shows that they are sediments in mid-pleistocene. Comparing the ESR ages and mainly normal polarity, Xigeda formation can be confirmed in Brunhes epoch according to magnetic stratigraphy. (authors)

  19. Influence of a minor periodicity on the magnetic island formation in tokamaks

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    1975-01-01

    A formation of magnetic islands due to external error fields in tokamaks is described. In particular, current control fields associated with shell gaps are shown to make islands of significant size. Moreover, we found that a toroidal minor periodicity of these perturbation fields, which is generally represented by the number of shell gaps, has an important meaning for the suppression of the resonant magnetic islands. (auth.)

  20. Strong magnetic fields, galaxy formation, and the Galactic engine

    International Nuclear Information System (INIS)

    Greyber, H.D.

    1989-01-01

    The strong-magnetic-field model proposed as an energy source for AGN and quasars by Greyber (1961, 1962, 1964, 1967, 1984, 1988, and 1989) is discussed. The basic principles of the model are reviewed; its advantages (in explaining the observed features of AGN and quasars) over models based on a rotating accretion disk are indicated in a table; and its implications for galaxy and quasar formation are explored. The gravitationally bound current loops detected in nearby spiral galaxies are interpreted as weak remnants of the current loops present during their formation. An observational search for a similar loop near the Galactic center is proposed. 27 refs

  1. Structural, magnetic and electronic properties on the Li-doped manganites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, A.M. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Papavassiliou, G. [Institute of Materials Science, NCSR Demokritos, Aghia Paraskevi (Greece); Mohamed, H.F., E-mail: h.fathy@science.sohag.edu.eg [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Ibrahim, E.M.M. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt)

    2015-10-15

    We present results of a comprehensive investigation of the structural, frequency dependent ac susceptibility, dc magnetization, magnetoresistance and thermoelectric power measurements on polycrystalline samples of La{sub 1−x}Li{sub x}MnO{sub 3} (0.05≤x≤0.30). All samples undergo ferromagnetic to paramagnetic transition and metal to semiconductor transition. A cusp in the zero field-cooled in dc magnetization and a frequency-dependent peak in the ac susceptibility reveal the glassy behaviors. The out of phase component of the ac susceptibility shows frequency-dependent peaks below the Curie temperature (indicative of glassy behavior) which have previously been interpreted in terms of freezing of clusters. The grain boundaries play a dominant role in the conduction process. The framework of the magnon and phonon drag concept analyzed thermoelectric power data at low temperature, while small polaron conduction mechanism explained thermoelectric power data at high temperature. It has been found that the percolation threshold sample is x=0.10, so the author’s point of view refers to make spot on this sample in the future works. - Highlights: • The investigated samples undergo FM to PM and metal to semiconductor transition. • The M(T){sub ZFC} and χ(T){sub ZFC} measurements reveal that the glassy behaviors. • The χ''(T){sub ZFC} shows dependent peak where interpreted in the cluster freeze. • The TEP data analyzed in the magnon and phonon drag, and small polaron mechanism.

  2. The paleomagnetic field and possible mechanisms for the formation of reversed rock magnetization

    International Nuclear Information System (INIS)

    Trukhin, Vladimir I.; Bezaeva, Natalia; Kurochkina, Evgeniya

    2006-01-01

    Investigations of ancient magnetized rocks show that their natural remanent magnetization (NRM) can be oriented in the direction of modern geomagnetic field (GMF) as well as in the opposite direction. It is supposed that reversed NRM is related to reversals of the GMF in the past geological periods. During reversals, the strength of the GMF is near zero and can cause the destruction of living organisms as a result of powerful space and solar radiation, which, in the absence of the GMF, can reach the Earth's surface. That is why the question of reality of the GMF reversals is of global ecological importance. There is also another natural mechanism for the formation of reversed NRM-the self-reversal of magnetization as a result of thermomagnetization of rocks. In the paper, both natural processes for the formation of reversed NRM in rocks are discussed, and the results of experimental research on the physical mechanism of self-reversal of magnetization in continental and oceanic rocks are presented. The results of computer modeling of the self-reversal phenomenon are also presented

  3. The paleomagnetic field and possible mechanisms for the formation of reversed rock magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Trukhin, Vladimir I. [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)]. E-mail: trukhin@phys.msu.ru; Bezaeva, Natalia [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation); Kurochkina, Evgeniya [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)

    2006-05-15

    Investigations of ancient magnetized rocks show that their natural remanent magnetization (NRM) can be oriented in the direction of modern geomagnetic field (GMF) as well as in the opposite direction. It is supposed that reversed NRM is related to reversals of the GMF in the past geological periods. During reversals, the strength of the GMF is near zero and can cause the destruction of living organisms as a result of powerful space and solar radiation, which, in the absence of the GMF, can reach the Earth's surface. That is why the question of reality of the GMF reversals is of global ecological importance. There is also another natural mechanism for the formation of reversed NRM-the self-reversal of magnetization as a result of thermomagnetization of rocks. In the paper, both natural processes for the formation of reversed NRM in rocks are discussed, and the results of experimental research on the physical mechanism of self-reversal of magnetization in continental and oceanic rocks are presented. The results of computer modeling of the self-reversal phenomenon are also presented.

  4. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes

    Energy Technology Data Exchange (ETDEWEB)

    Romano, P. [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Zuccarello, F. P. [Centre for Mathematical Plasma-Astrophysics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Guglielmino, S. L.; Zuccarello, F., E-mail: paolo.romano@oact.inaf.it [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95123 Catania (Italy)

    2014-10-20

    We describe the evolution and the magnetic helicity flux for two active regions (ARs) since their appearance on the solar disk: NOAA 11318 and NOAA 11675. Both ARs hosted the formation and destabilization of magnetic flux ropes. In the former AR, the formation of the flux rope culminated in a flare of C2.3 GOES class and a coronal mass ejection (CME) observed by Large Angle and Spectrometric Coronagraph Experiment. In the latter AR, the region hosting the flux rope was involved in several flares, but only a partial eruption with signatures of a minor plasma outflow was observed. We found a different behavior in the accumulation of the magnetic helicity flux in the corona, depending on the magnetic configuration and on the location of the flux ropes in the ARs. Our results suggest that the complexity and strength of the photospheric magnetic field is only a partial indicator of the real likelihood of an AR producing the eruption of a flux rope and a subsequent CME.

  5. Magnetic-island formation

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1983-08-01

    The response of a finite conductivity plasma to resonant magnetic perturbations is studied. The equations, which are derived for the time development of magnetic islands, help one interpret the singular currents which occur under the assumption of perfect plasma conductivity. The relation to the Rutherford regime of resistive instabilities is given

  6. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin; Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Loo, Sven Van [School of Physics and Astronomy, University of Leeds (United Kingdom); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Collins, David [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-02-01

    We investigate giant molecular cloud collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of 3D, magnetohydrodynamics (MHD), adaptive mesh refinement simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region models that span the atomic-to-molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; {sup 13}CO( J = 2-1), {sup 13}CO( J = 3-2), and {sup 12}CO( J = 8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds.

  7. The formation of magnetic silicide Fe{sub 3}Si clusters during ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, N. [Kazan National Research Technological University, K.Marx st. 68, Kazan 420015 (Russian Federation); Zhikharev, V., E-mail: valzhik@mail.ru [Kazan National Research Technological University, K.Marx st. 68, Kazan 420015 (Russian Federation); Gumarov, G. [Zavoiskii Physico-Technical Institute of Russian Academy of Sciences, 10/7 Sibirskii trakt st., Kazan 420029 (Russian Federation)

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe{sub 3}Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  8. Analysis of the Variations in Rock Magnetic Properties of the Quaternary Blackwater Draw (Eolian) Formation, West Texas

    Science.gov (United States)

    Stine, J. M.; Ferguson, J. F.; Geissman, J. W.; Sweet, D. E.

    2017-12-01

    The Quaternary Blackwater Draw Formation consists of the surficial deposits ( 10 + m thick) that directly overlie the Neogene Ogallala Formation in the Southern High Plains (SHP). These Quaternary deposits display a rhythmic pattern where eolian derived sediments (loess) are in turn punctuated by several paleosol layers, implying that Quaternary glacial-interglacial climate cycles are recorded in the Blackwater Draw Formation. In order to investigate this hypothesis, several rock magnetic parameters obtained from the Blackwater Draw Formation were analyzed using exploratory data analysis (EDA) techniques. The Blackwater Draw Formation was sampled at high resolution (2.5-5 cm intervals in depth, which serves as a proxy for time). Rock magnetic parameters measured are bulk magnetic susceptibility (χ, median: 1.56 * 10-4 SI volume), anhysteretic remanent magnetization (ARM, median: 0.1612 A/m), and isothermal remanent magnetization (IRM, median: 2.5367 A/m) intensity, which allow for the determination of two common environmental magnetic ratios (ARM/χ and ARM/IRM, medians: 1051 and 0.068 respectively) that are often used to approximate magnetic grain size. The data were analyzed using robust EDA methods for classification, correlation, and signal extraction. Using these techniques, it becomes evident that a good correspondence exists between the geophysical data and the geologic model (stratigraphy). For example, the cross plots showed that the magnetic data segregate into clusters corresponding to stratigraphy. Smoothing of the magnetic ratio data produces an oscillatory signal that may correspond to climate cyclicity. Additionally the smoothed models show a noticeable change in periodicity, where the ARM, IRM and χ values in the uppermost section exhibit a much higher amplitude and lower frequency than the bottom part of the section (with the reverse being true for the ratios). When comparing the data to the geologic model this change appears to correlate with

  9. Magnetoelectroluminescence in organic light-emitting diodes

    Science.gov (United States)

    Lawrence, Joseph E.; Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.

    2016-06-01

    The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.

  10. Magnetoelectroluminescence in organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lawrence, Joseph E.; Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.

    2016-01-01

    The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.

  11. Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Panda, J.; Sasmal, I.; Nath, T. K., E-mail: tnath@phy.iitkgp.ernet.in, E-mail: tapnath@gmail.com [Department of Physics, Indian Institute Technology Kharagpur, West Bengal, 721302 (India)

    2016-03-15

    In this paper we have reported the synthesis of high quality vertically aligned undoped and Mn-doped ZnO single crystalline nanorods arrays on Si (100) substrates using two steps process, namely, initial slow seed layer formation followed by solution growth employing wet chemical hydrothermal method. The shapes of the as grown single crystalline nanorods are hexagonal. The diameter and length of the as grown undoped ZnO nanorods varies in the range of 80-150 nm and 1.0 - 1.4 μm, respectively. Along with the lattice parameters of the hexagonal crystal structure, the diameter and length of Mn doped ZnO nanorods are found to increase slightly as compared to the undoped ZnO nanorods. The X-ray photoelectron spectroscopy confirms the presence of Mn atoms in Mn{sup 2+} state in the single crystalline ZnO nanorods. The recorded photoluminescence spectrum contains two emissions peaks having UV exciton emissions along with a green-yellow emission. The green-yellow emissions provide the evidence of singly ionized oxygen vacancies. The magnetic field dependent magnetization measurements [M (H)] and zero field cooled (ZFC) and field cooled (FC) magnetization [M(T)] measurements have been carried out at different isothermal conditions in the temperature range of 5-300 K. The Mn doped ZnO nanorods clearly show room temperature ferromagnetic ordering near room temperature down to 5 K. The observed magnetization may be attributed to the long range ferromagnetic interaction between bound magnetic polarons led by singly charged oxygen vacancies.

  12. Dynamics of seed magnetic island formation due to geometrically coupled perturbations

    International Nuclear Information System (INIS)

    Hegna, C.C.; Callen, J.D.; LaHaye, R.J.

    1998-06-01

    Seed magnetic island formation due to a dynamically growing external source in toroidal confinement devices is modeled as an initial value forced reconnection problem. For an external source whose amplitude grows on a time scale quickly compared to the Sweet-Parker time of resistive magnetohydrodynamics, the induced reconnection is characterized by a current sheet and a reconnected flux amplitude which lags in time the source amplitude. This suggests that neoclassical tearing modes, whose excitation requires a seed magnetic island, are more difficult to cause in high Lundquist number plasmas

  13. Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect

    KAUST Repository

    Danon, Jeroen

    2013-08-06

    Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.

  14. Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect

    KAUST Repository

    Danon, Jeroen; Wang, Xuhui; Manchon, Aurelien

    2013-01-01

    Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.

  15. Elimination of impurity phase formation in FePt magnetic thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Ying; Medwal, Rohit; Sehdev, Neeru; Yadian, Boluo; Tan, T.L.; Lee, P.; Talebitaher, A.; Ilyas, Usman; Ramanujan, R.V.; Huang, Yizhong; Rawat, R.S.

    2014-01-01

    The formation of impurity phases in FePt thin films severely degrades its magnetic properties. The X-ray diffraction patterns of FePt thin films, synthesized using pulsed laser deposition (PLD), showed peaks corresponding to impurity phases, resulting in softer magnetic properties. A systematic investigation was carried to determine the factors that might have led to impurity phase formation. The factors include (i) PLD target composition, (ii) substrate material, (iii) annealing parameters such as temperature, duration and ambience and (iv) PLD deposition parameters such as chamber ambience, laser energy fluence and target–substrate distance. Depositions on the different substrates revealed impurity phase formation only on Si substrates. It was found that the target composition, PLD chamber ambience, and annealing ambience were not the factors that caused the impurity phase formation. The annealing temperature and duration influenced the impurity phases, but are not the cause of their formation. A decrease in the laser energy fluence and increase of the target–substrate distance resulted in elimination of the impurity phases and enhancement in the magnetic and structural properties of FePt thin films. The energy of the ablated plasma species, controlled by the laser energy fluence and the target–substrate distance, is found to be the main factor responsible for the formation of the impurity phases.

  16. Investigation of magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by magnetic, differential scanning calorimetry and thermal analysis

    International Nuclear Information System (INIS)

    Aparnadevi, M.; Barik, S.K.; Mahendiran, R.

    2012-01-01

    We investigated magnetocaloric effect in La 0.45 Pr 0.25 Ca 0.3 MnO 3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with T C =200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔS m =−7.2 J kg −1 K −1 at T=212.5 K and refrigeration capacity of 228 J kg −1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound. - Highlights: ► We report magnetic entropy change measured by indirect and direct methods in La 0.45 Pr 0.25 Ca 0.3 MnO 3. ► Anomalous field-induced induced metamagnetic transition is found in the paramagnetic state. ► A large reversible magnetic entropy change (ΔS m =7.2 J kg −1 K −1 for ΔH=5 T). ► A large refrigeration capacity (RC=228 J kg −1 ). ► Collapse of magnetic polarons is suggested as possible origin of the large MCE.

  17. Hot Flow Anomaly formation by magnetic deflection

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Winske, D.

    1990-01-01

    Hot Flow Anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the Earth's quasi-parallel bow shock. The authors present 1-D hybrid computer simulations illustrating a formation mechanism for HFAs in which the single, hot, ion population results from a spatial separation of two counterstreaming ion beams. The higher-density, cooler regions are dominated by the background (solar wind) ions, and the lower-density, hotter, internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large amplitude magnetic fields which are generated by ion/ion streaming instabilities

  18. Synthesis and magnetic properties of hexagonal Y(Mn,Cu)O{sub 3} multiferroic materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeuvrey, L., E-mail: laurent.jeuvrey@univ-rennes1.fr [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Pena, O. [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Moure, A.; Moure, C. [Electroceramics Department, Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049, Madrid (Spain)

    2012-03-15

    Single-phase hexagonal-type solid solutions based on the multiferroic YMnO{sub 3} material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn{sub 1-x}Cu{sub x}O{sub 3}; x<0.15) and self-doping at the A-site (Y{sub 1+y}MnO{sub 3}; y<0.10) successfully maintained the hexagonal structure. Self-doping was limited to y(Y)=2 at% and confirmed that excess yttrium avoids formation of ferromagnetic manganese oxide impurities but creates vacancies at the Mn site. Chemical substitution at the B-site inhibits the geometrical frustration of the Mn{sup 3+} two-dimensional lattice. The magnetic transition at T{sub N} decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn{sup 3+}-Mn{sup 4+} interactions created by the substitution of Mn{sup 3+} by Cu{sup 2+}, are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn{sup 3+}-Mn{sup 4+} pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure. - Highlights: Black-Right-Pointing-Pointer Hexagonal-type solid solutions of Y(Mn,Cu)O{sub 3} synthesized by Pechini process. Black-Right-Pointing-Pointer Chemical substitution at B site inhibits geometrical magnetic frustration. Black-Right-Pointing-Pointer Magnetic transition decreases with Cu-doping. Black-Right-Pointing-Pointer Local ferromagnetic Mn-Mn interactions coexist with the frustrated state.

  19. Transport-entropy correlations in La0.7Ca0.3MnO3 manganite

    International Nuclear Information System (INIS)

    Debnath, J.C.; Strydom, A.M.

    2014-01-01

    An investigation of the magnetic entropy change ΔS M and resistivity ρ, and the relation between them, for La 0.7 Ca 0.3 MnO 3 (LCMO) material has been presented. By using an equation of the form ΔS M =−α∫ 0 H [(δln(ρ))/(δT) ] H dH (α=9.98 emu/g), which relates magnetic order to transport behavior of the compounds, we measure the magnetic entropy change ΔS M from the resistivity measurement, where the resistivity results agree quite well with the fitting parameter α=9.98 emu/g in the intermediate temperature range. This result reveals the predominant role of magnetic polarons on the magnetoresistive property of manganites. It is obvious that magnetic disorder, characterized by ΔS M , affects the magnetic polarons, while the magnetic polarons influence the electronic transport properties, which may be the underlying reason for a salient ΔS M −ρ relation. It also provides an alternative method to determine magnetic entropy change on the basis of resistive measurements

  20. Structural, magnetic and electrical properties of self-doped La{sub 0.8}Na{sub 0.2−x}□{sub x}MnO{sub 3} manganites

    Energy Technology Data Exchange (ETDEWEB)

    Khlifi, M., E-mail: khlifimouadh3000@yahoo.fr; Wali, M.; Dhahri, E.

    2014-09-15

    Polycrystalline compounds La{sub 0.8}Na{sub 0.2−x}□{sub x}MnO{sub 3} were prepared by the solid-state reaction with 0.00≤x≤0.15. Structural, magnetic and electrical measurements were investigated. The XRD data have been analyzed by Rietveld refinement technique which reveals that all samples are crystallized in a rhombohedral structure with R3{sup ¯}c space group. Magnetic measurement versus temperature shows that all samples exhibit a magnetic transition from ferromagnetic (FM) to paramagnetic (PM) phase when increasing temperature. The Curie temperature (T{sub C}) decrease from 340 K for x=0.00 samples to 260 K for x=0.15 one. Hysteresis cycles confirm the ferromagnetic character at low temperature with a decrease of the remanent magnetization and the coercive field when the vacancy rate increases. Moreover, the temperature dependence of electrical resistivity shows a metal–insulator transition at T{sub ρ} for all samples. In addition, T{sub ρ} decreases with vacancy content in accordance with T{sub C}. Thus, the conduction mechanism was explained by the adiabatic small polaron hopping (ASPH) in the insulating region and by the competition between the small-polaron and spin-wave scattering and the electron–magnon scattering mechanisms. Finally, the minimum of resistivity at very low temperature range is explained by the Kondo-like scattering model.

  1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guyot-Sionnest, Philippe [Univ. of Chicago, IL (United States)

    2016-04-28

    Conductivity and Magnetism in Strongly Coupled Quantum Dot Solids. One outcome of the project is the discovery of a rather universal 1/f noise magnitude in electrical transport across nanocrystals. The noise is extensive in the number of dots in the device, and inversely proportional to the interdot resistance. The other outcome is a study of the magneto-resistance of light and heavy doped chalcogenides semiconductor quantum dots with Manganese. Strong MR was observed at low temperature in n-doped Mn doped quantum dot films, and this was attributed to the formation of magnetic polarons.

  2. Pattern formation in diffusive excitable systems under magnetic flow effects

    Science.gov (United States)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  3. In-plain electric properties of [CaMnO3/REMO3] (RE=Bi, La M=Fe, Fe0.8Mn0.2) superlattices grown by pulsed laser deposition method

    NARCIS (Netherlands)

    Iwata, N.; Watabe, Y.; Oikawa, T.; Takase, K.; Huijben, Mark; Inaba, T.; Oshima, K.; Rijnders, Augustinus J.H.M.; Yamamoto, H.

    2014-01-01

    The [CaMnO3 (CMO)/REMO3] (RE = Bi, La M = Fe, Fe0.8Mn0.2) superlattices show semiconducting behavior with transition temperatures (TEg) of 71, 127, and 151 K in the [CMO/BiFe0.8Mn0.2O3], [CMO/BiFeO3], and [CMO/LaFeO3] superlattices. The formation of a magnetic polaron is expected in the CMO layer of

  4. Polaronic transport and thermoelectricity in Fe1 -xCoxSb2S4 (x =0 , 0.1, and 0.2)

    Science.gov (United States)

    Liu, Yu; Kang, Chang-Jong; Stavitski, Eli; Du, Qianheng; Attenkofer, Klaus; Kotliar, G.; Petrovic, C.

    2018-04-01

    We report a study of Co-doped berthierite Fe1 -xCoxSb2S4 (x =0 , 0.1, and 0.2). The alloy series of Fe1 -xCoxSb2S4 crystallize in an orthorhombic structure with the Pnma space group, similar to FeSb2, and show semiconducting behavior. The large discrepancy between activation energy for conductivity, Eρ (146 ˜270 meV ), and thermopower, ES (47 ˜108 meV ), indicates the polaronic transport mechanism. Bulk magnetization and heat-capacity measurements of pure FeSb2S4 (x =0 ) exhibit a broad antiferromagnetic transition (TN=46 K ) followed by an additional weak transition (T*=50 K ). Transition temperatures (TN and T*) slightly decrease with increasing Co content x . This is also reflected in the thermal conductivity measurement, indicating strong spin-lattice coupling. Fe1 -xCoxSb2S4 shows relatively high value of thermopower (up to ˜624 μ V K-1 at 300 K) and thermal conductivity much lower when compared to FeSb2, a feature desired for potential applications based on FeSb2 materials.

  5. Magnetic and electrical response of Co-doped La{sub 0.7}Ca{sub 0.3}MnO{sub 3} manganites/insulator system

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, J.C., E-mail: Jyotish.debnath@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Wang, Jianli, E-mail: jcd341@uowmail.edu.au [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2017-01-01

    We present a systematic study of the structural, magnetic and electrical properties of La{sub 0.7}Ca{sub 0.3}MnO{sub 3} (LCMO) and La{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}Co{sub 0.05}O{sub 3} (LCMCO0 perovskite manganites. Most of the work is devoted to the electrical properties with a thorough discussion about different models for both the metallic and insulator states. With a view to understand the conduction mechanism in these materials, the resistivity of both materials was measured over a temperature range 5–300 K and in a magnetic field up to 1 T and the data were analysed by using several theoretical models. It has been observed that the metallic part of the temperature dependent resistivity (ρ) curve fits well with ρ=ρ{sub 0} +ρ{sub 2,5}Τ{sup 2,5}, indicating the electron–magnon scattering processes in the conduction of these materials. On the other hand, in the high temperature paramagnetic insulating regime, the adiabatic small polaron and VRH models fit well, thereby indicating that polaron hopping might be responsible for the conduction mechanism.

  6. Doping effects on the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Júnior, H.; Aquino, J. C. R.; Aragón, F. H. [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Hidalgo, P. [Universidade de Brasília, Faculdade Gama-FGA, Setor Central Gama (Brazil); Cohen, R.; Nagamine, L. C. C. M. [Universidade de São Paulo, Instituto de Física (Brazil); Coaquira, J. A. H., E-mail: coaquira@unb.br; Silva, S. W. da [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Brito, H. F. [Universidade de São Paulo, Instituto de Química (Brazil)

    2014-12-15

    In this work we present the study of the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles synthesized by a polymer precursor method. The X-ray diffraction data analysis shows the formation of the rutile-type structure in all samples with Gd content from 1.0 to 10.0 mol%. The mean crystallite size is ∼11 nm for the 1.0 mol% Gd-doped samples and it shows a decreasing tendency as the Gd content is increased. The analysis of magnetic measurements indicates the coexistence of ferromagnetic and paramagnetic phases for the 1.0 mol% Gd-doped sample; however, above that content, only a paramagnetic phase is observed. The ferromagnetic phase observed in the 1.0 mol% Gd-doped sample has been assigned to the presence of bound magnetic polarons which overlap to create a spin-split impurity band. Room-temperature {sup 119}Sn Mössbauer measurements reveal the occurrence of strong electric quadrupole interactions. It has been determined that the absence of magnetic interactions even for 1.0 mol% Gd-doped sample has been related to the weak magnetic field associated to the exchange interaction between magnetic ions and the donor impurity band. The broad distribution of electric quadrupole interactions are attributed to the several non-equivalent surroundings of Sn{sup 4+} ions provoked by the entrance of Gd{sup 3+} ions and to the likely presence of Sn{sup 2+} ions. The isomer shift seems to be nearly independent of the Gd content for samples with Gd content below 7.5 mol%.

  7. THE IMPACT OF THERMODYNAMICS ON GRAVITATIONAL COLLAPSE: FILAMENT FORMATION AND MAGNETIC FIELD AMPLIFICATION

    International Nuclear Information System (INIS)

    Peters, Thomas; Klessen, Ralf S.; Federrath, Christoph; Smith, Rowan J.; Schleicher, Dominik R. G.; Banerjee, Robi; Sur, Sharanya

    2012-01-01

    Stars form by the gravitational collapse of interstellar gas. The thermodynamic response of the gas can be characterized by an effective equation of state. It determines how gas heats up or cools as it gets compressed, and hence plays a key role in regulating the process of stellar birth on virtually all scales, ranging from individual star clusters up to the galaxy as a whole. We present a systematic study of the impact of thermodynamics on gravitational collapse in the context of high-redshift star formation, but argue that our findings are also relevant for present-day star formation in molecular clouds. We consider a polytropic equation of state, P = kρ Γ , with both sub-isothermal exponents Γ 1. We find significant differences between these two cases. For Γ > 1, pressure gradients slow down the contraction and lead to the formation of a virialized, turbulent core. Weak magnetic fields are strongly tangled and efficiently amplified via the small-scale turbulent dynamo on timescales corresponding to the eddy-turnover time at the viscous scale. For Γ < 1, on the other hand, pressure support is not sufficient for the formation of such a core. Gravitational contraction proceeds much more rapidly and the flow develops very strong shocks, creating a network of intersecting sheets and extended filaments. The resulting magnetic field lines are very coherent and exhibit a considerable degree of order. Nevertheless, even under these conditions we still find exponential growth of the magnetic energy density in the kinematic regime.

  8. A numerical model for aggregations formation and magnetic driving of spherical particles based on OpenFOAM®.

    Science.gov (United States)

    Karvelas, E G; Lampropoulos, N K; Sarris, I E

    2017-04-01

    This work presents a numerical model for the formation of particle aggregations under the influence of a permanent constant magnetic field and their driving process under a gradient magnetic field, suitably created by a Magnetic Resonance Imaging (MRI) device. The model is developed in the OpenFOAM platform and it is successfully compared to the existing experimental and numerical results in terms of aggregates size and their motion in water solutions. Furthermore, several series of simulations are performed for two common types of particles of different diameter in order to verify their aggregation and flow behaviour, under various constant and gradient magnetic fields in the usual MRI working range. Moreover, the numerical model is used to measure the mean length of aggregations, the total time needed to form and their mean velocity under different permanent and gradient magnetic fields. The present model is found to predict successfully the size, velocity and distribution of aggregates. In addition, our simulations showed that the mean length of aggregations is proportional to the permanent magnetic field magnitude and particle diameter according to the relation : l¯ a =7.5B 0 d i 3/2 . The mean velocity of the aggregations is proportional to the magnetic gradient, according to : u¯ a =6.63G˜B 0 and seems to reach a steady condition after a certain period of time. The mean time needed for particles to aggregate is proportional to permanent magnetic field magnitude, scaled by the relationship : t¯ a ∝7B 0 . A numerical model to predict the motion of magnetic particles for medical application is developed. This model is found suitable to predict the formation of aggregations and their motion under the influence of permanent and gradient magnetic fields, respectively, that are produced by an MRI device. The magnitude of the external constant magnetic field is the most important parameter for the aggregations formation and their driving. Copyright © 2017

  9. Studies on structural, dielectric, and transport properties of Ni{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Dhiren K.; Misra, Pankaj; Sahoo, Satyaprakash; Katiyar, Ram S., E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan 00936, Puerto Rico (United States); Puli, Venkata S. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Pradhan, Dillip K. [Department of Physics, National Institute of Technology, Rourkela 769008 (India)

    2014-06-28

    We report the crystal structure, dielectric, transport, and magnetic properties of Ni{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}. Rietveld refinement results of X-ray diffraction patterns confirm the phase formation of the material with cubic crystal structure (Fd3{sup ¯}m). The frequency dependent ac conductivity behavior obeys the Jonscher's power law and is explained using the jump relaxation model. The observed behavior of temperature dependent bulk conductivity is attributed to the variable-range hopping of localized polarons. The correlation of polaron conduction and high permittivity behavior of NZFO is established on the basis of long range and short range conduction mechanisms. The complex impedance spectra clearly show the contribution of both grain and grain boundary effect on the electrical properties.

  10. Effect of magnetic field on the donor impurity in CdTe/Cd{sub 1-x}Mn{sub x}Te quantum well wire

    Energy Technology Data Exchange (ETDEWEB)

    Kalpana, P.; Nithiananthi, P.; Jayakumar, K., E-mail: kjkumar-gri@rediffmail.com [Nanostructure Lab, Department of Physics, Gandhigram Rural University, Gandhigram – 624 302, Tamilnadu (India); Reuben, A. Merwyn Jasper D. [Department of Physics, School of Engineering, Saveetha University, Thandalam, Chennai-600104, TamilNadu (India)

    2016-05-23

    The donor impurity binding energy in CdTe / Cd{sub 1-x}Mn{sub x}Te QWW with square well confinement along x – direction and parabolic confinement along y – direction under the influence of externally applied magnetic field has been computed using variational principle in the effective mass approximation. The spin polaronic shift has also been computed. The results are presented and discussed.

  11. Microstructure Formation in Strip-Cast RE-Fe-B Alloys for Magnets

    Science.gov (United States)

    Yamamoto, Kazuhiko; Matsuura, Masashi; Sugimoto, Satoshi

    2017-07-01

    During the manufacturing of sintered NdFeB magnets, it is well known that the microstructure of the starting alloy has a strong influence on the processing and the magnetic properties of the product. In this study, we clarify the microstructure formation in strip-cast rare earth (R)-Fe-B alloys used to produce magnets. The microstructure of the alloy surface in contact with the cooling roll and its cross-section were observed using laser microscopy, field emission electron microprobe analysis, and transmission electron microscopy. The orientations of crystal grains were determined by X-ray diffraction and electron backscatter diffraction analyses. Petal-shaped structures were found to cover the alloy surface in contact with the cooling roll, each consisting of a central nucleation region and radially grown Nd2Fe14B dendritic structures. The nucleation region, consisting of a "disc" and "predendrites", occurs in the super-cooled region of the contact area between the cooling roll and melt. In the disc region, spherical Nd2Fe14B particles in the thickness direction increase in volume. These discs and predendrites observed in the super-cooled area negatively influence the magnetic orientation and sinterability in the produced magnets. Therefore, it is important to avoid excessive super-cooling to obtain optimum magnetic properties.

  12. Formation of Electron Strings in Narrow Band Polar Semiconductors

    Science.gov (United States)

    Kusmartsev, F. V.

    2000-01-01

    We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.

  13. Reaction pathway towards formation of cobalt single chain magnets and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, G.; Desilva, Rohini M.; Palshin, V. [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Desilva, N. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Palmer, G. [Department of Biochemistry and Cell Biology, Rice University, MS 140, 6100 Main street, Houston, TX 77251 (United States); Kumar, Challa S.S.R., E-mail: ckumar1@lsu.ed [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States)

    2010-03-15

    With the advent of molecular magnets the quest for suitable high density magnetic storage materials has fuelled further research in this area. Here in this report, we present a detailed mechanistic investigation of thermal decomposition of cyclopentadienyl cobalt [CoCp(CO){sub 2}] precursor where Cp is the cyclopentadienyl moiety. The reaction revealed the formation of cobalt nanoparticles (Co-NPs) through an isolable reaction intermediate characterized as a Single Chain Magnet (SCM), [Co(Cp){sub 2}]{sub 2}CoCl{sub 4} (1). The SQUID magnetic measurements showed the presence of very strong antiferromagnetic interactions between Co{sup 2+} ions. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves branch out below 5 K and there is evidence for frequency dependent complex susceptibility along with a maximum observed around 2.5 K. The optical studies indicated that the Co{sup 2+} d-d transition is influenced by the polarity of the solvents. The cobalt nanoparticles (Co-NPs) were obtained, either directly from 1 or from its precursor. They are spherical in shape with a mean size 15 nm, have fcc crystal structure and were found to be ferromagnetic at room temperature.

  14. MHD flow layer formation at boundaries of magnetic islands in tokamak plasmas

    International Nuclear Information System (INIS)

    Jiaqi Dong; Yongxing Long; Zongze Mou; Jinhua Zhang

    2005-01-01

    Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just at the boundaries of the magnetic islands, and to have sufficient levels required for internal transport barrier (ITB) formation. Possible correlation between the layer formation and triggering of experimentally observed ITBs, preferentially formed in proximities of rational flux surfaces of low safety factors, is discussed. (author)

  15. Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy.

    Science.gov (United States)

    Fragouli, Despina; Buonsanti, Raffaella; Bertoni, Giovanni; Sangregorio, Claudio; Innocenti, Claudia; Falqui, Andrea; Gatteschi, Dante; Cozzoli, Pantaleo Davide; Athanassiou, Athanassia; Cingolani, Roberto

    2010-04-27

    We present a simple technique for magnetic-field-induced formation, assembling, and positioning of magnetic nanowires in a polymer film. Starting from a polymer/iron oxide nanoparticle casted solution that is allowed to dry along with the application of a weak magnetic field, nanocomposite films incorporating aligned nanocrystal-built nanowire arrays are obtained. The control of the dimensions of the nanowires and of their localization across the polymer matrix is achieved by varying the duration of the applied magnetic field, in combination with the evaporation dynamics. These multifunctional anisotropic free-standing nanocomposite films, which demonstrate high magnetic anisotropy, can be used in a wide field of technological applications, ranging from sensors to microfluidics and magnetic devices.

  16. The influence of magnetic field on the stability region of the bipolaron in high-Tc superconductors with the Van Hove scenario

    International Nuclear Information System (INIS)

    Bouayad, M.; El Amrani, B.; Fliyou, M.; Chaouch, M.

    2006-01-01

    The properties of polarons and bipolarons are studied by the variational method taking into account the density of state for Van Hove singularity (V.H.S) in two-dimension (2D) in the presence of a perpendicular magnetic field. It should be noticed that the bipolaron stability region is relatively sensitive to the application of a magnetic field. In 2D, for ω c =0.8 the value of α c =1 is compared to α c =1.6 for ω c =0. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism

    Science.gov (United States)

    Citron, Robert I.; Zhong, Shijie

    2012-12-01

    The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20-25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5° E and 84.5° S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern

  18. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    International Nuclear Information System (INIS)

    Modarress, H.; Shekaari, H.

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo 3 ) and electron donor benzylcyanide (C 6 H 5 -CH 2 -C≡N) in solvent ethyleneglycol [(CH 2 OH) 2 ] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 d ig C . The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the appropriate formation constant should be expressed in terms of activities. Also an equation have been derived to eliminate the undesirable effects on the nuclear magnetic resonance measured chemical shifts in calculating the constant. The selection of concentration domains and its effect on the calculated formation constant has been discussed and the new equation is modified to be independent of the concentration domains. In this equation the solution nationalised, by considering coefficients, have been taken in to account

  19. Effect of different conductivity between the spin polarons on spin injection in a ferromagnet/organic semiconductor system

    International Nuclear Information System (INIS)

    Mi Yilin; Zhang Ming; Yan Hui

    2008-01-01

    Spin injection across ferromagnet/organic semiconductor system with finite width of the layers was studied theoretically considering spin-dependent conductivity in the organic-semiconductor. It was found that the spin injection efficiency is directly dependent on the difference between the conductivity of the up-spin and down-spin polarons in the spin-injected organic system. Furthermore, the finite width of the structure, interfacial electrochemical-potential and conductivity mismatch have great influence on the spin injection process across ferromagnet/organic semiconductor interface

  20. Numerical study on formation process of helical nonneutral plasmas using electron injection from outside magnetic surfaces

    International Nuclear Information System (INIS)

    Nakamura, Kazutaka; Himura, Haruhiko; Masamune, Sadao; Sanpei, Akio; Isobe, Mitsutaka

    2009-01-01

    In order to investigate the formation process of helical nonneutral plasmas, we calculate the orbits of electron injected in the stochastic magnetic field when the closed helical magnetic surfaces is correspond with the equipotential surfaces. Contrary to the experimental observation, there are no electrons inward penetrating. (author)

  1. Ionothermal Synthesis and Magnetic Studies of Novel Two-Dimensional Metal-Formate Frameworks

    International Nuclear Information System (INIS)

    Calderone, P.; Feygenson, M.; Forster, P.M.; Borkowski, L.A.; Teat, S.J.; Aronson, M.C.; Parise, J.B.

    2011-01-01

    Five novel two-dimensional frameworks containing formate-bridged metal-centered octahedra are synthesized ionothermally from two ionic liquids previously unused as solvents in hybrid synthesis, 2-hydroxyethylammonium (HEA) formate, and 1-hydroxy-3-proplyammonium (HPA) formate. Templating effects of the cation from each ionic liquid drive the formation of different structures. [NH 3 C 2 H 4 OH] 2 [M(CHO 2 ) 4 ] (1: M = Co, 2: M = Ni) exhibit the same stoichiometry and connectivity as their manganese analogue (3: M = Mn), but the manganese form exhibits a different topology from 1 and 2. [NH 3 C 3 H6OH][M(CHO 2 ) 3 (H 2 O)] (4: M = Co, 5: M = Mn) were synthesized using the HPA formate ionic liquid with a metal-formate connectivity related to those of 1-3. Canted antiferromagnetic ordering occurs at low temperatures (1: T N = 7.0 K, 2: T N = 4.6 K, 3: T N = 8.0 K, 4: T N = 7.0 K, 5: T N = 9.2 K), similar to the magnetic properties previously reported for other metal-formate hybrid materials.

  2. The origin of high eccentricity planets: The dispersed planet formation regime for weakly magnetized disks

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available In the tandem planet formation regime, planets form at two distinct sites where solid particles are densely accumulated due to the on/off state of the magnetorotational instability (MRI. We found that tandem planet formation can reproduce the solid component distribution of the Solar System and tends to produce a smaller number of large planets through continuous pebble flow into the planet formation sites. In the present paper, we investigate the dependence of tandem planet formation on the vertical magnetic field of the protoplanetary disk. We calculated two cases of Bz=3.4×10−3 G and Bz=3.4×10−5 G at 100 AU as well as the canonical case of Bz=3.4×10−4 G. We found that tandem planet formation holds up well in the case of the strong magnetic field (Bz=3.4×10−3 G. On the other hand, in the case of a weak magnetic field (Bz=3.4×10−5 G at 100 AU, a new regime of planetary growth is realized: the planets grow independently at different places in the dispersed area of the MRI-suppressed region of r=8−30 AU at a lower accretion rate of M˙<10−7.4 M⊙yr−1. We call this the “dispersed planet formation” regime. This may lead to a system with a larger number of smaller planets that gain high eccentricity through mutual collisions.

  3. Correlation between defect and magnetism of low energy Ar+9 implanted and un-implanted Zn0.95Mn0.05O thin films suitable for electronic application

    International Nuclear Information System (INIS)

    Neogi, S.K.; Midya, N.; Pramanik, P.; Banerjee, A.; Bhattacharyya, A.; Taki, G.S.; Krishna, J.B.M.; Bandyopadhyay, S.

    2016-01-01

    The structural, morphological, optical and magnetic properties of Ar +9 implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol–gel derived films were implanted with fluences 0 (un-implanted), 5×10 14 (low), 10 15 (intermediate) and 10 16 (high) ions/cm 2 . Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV–visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 10 16 ions/cm 2 with saturation magnetization (M S ) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn 2+ ions and V Zn related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited. - Highlights: • Synthesis of transparent 5 at% Mn doped ZnO films was done by sol-gel technique. • Defect induced intrinsic ferromagnetism was observed for Ar 9+ ion implanted films. • The maximum magnetization was attained for highest dose of Ar 9+ implantation. • Zn vacancy may favors intrinsic ferromagnetic ordering. • Intrinsic ferromagnetism was interpreted in terms of bound magnetic polaron model.

  4. Double and super-exchange model in one-dimensional systems

    International Nuclear Information System (INIS)

    Vallejo, E.; Navarro, O.; Avignon, M.

    2010-01-01

    We present an analytical and numerical study of the competition between double and super-exchange interactions in a one-dimensional model. For low super-exchange interaction energy we find phase separation between ferromagnetic and anti-ferromagnetic phases. When the super-exchange interaction energy gets larger, the conduction electrons are self-trapped within separate small magnetic polarons. These magnetic polarons contain a single electron inside two or three sites depending on the conduction electron density and form a Wigner crystallization. A new phase separation is found between these small polarons and the anti-ferromagnetic phase. Spin-glass behavior is obtained consistent with experimental results of the nickelate one-dimensional compound Y 2-x Ca x BaNiO 5 .

  5. Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2006-01-01

    the presence of long- range correlations in the particle density fluctuations. Finally, conditional statistics of the particle flux demonstrates the intermittency of the turbulent plasma transport and the quasi-periodic apparency of blob structures due to bursting in the global turbulence level....... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...

  6. Optical rotation and electron spin resonance of an electro-optically active polythiophene

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2010-01-01

    Graphical abstract: The electro-chiroptical polythiophene displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. - Abstract: A chiroptical polythiophene, is synthesized by electrolytic polymerization in a cholesteric liquid crystal electrolyte solution. The polymer displays a fingerprint texture similar to that of the cholesteric electrolyte solution. Upon electrochemical doping, the polymer displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. The results demonstrate the intermolecular chirality of polarons in this π-conjugated polymer, indicating continuum delocalized polarons are in a three-dimensional helical environment.

  7. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    Science.gov (United States)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  8. Science and technology of reduced-dimensional magnetic materials

    International Nuclear Information System (INIS)

    Heffner, R.H.; Bishop, A.R.; Hundley, M.F.; Jia, Q.; Neumeier, J.J.; Trugman, S.A.; Thompson, J.D.; Wu, X.D.; Zhang, J.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work involved the synthesis of single crystal and thin film samples of magnetoresistive manganites (LaMnO 3 doped with Ca and Sr) and the characterization of their electronic transport properties to understand the underlying physical mechanisms responsible for the colossal magnetoresistance (CMR) of these materials. The experimental program was supplemented by a modeling effort that sought to develop microscopic mathematical models of the observed phenomena. The authors succeeded in finding an important relation between the magnetization and resistivity in these materials, which helps to explain the importance of lattice distortions accompanied by clusters of ferromagnetic spins (called spin-lattice polarons) in the CMR phenomena. In addition, they developed rudimentary tunnel junctions of CMR-insulator-CMR multilayers that will lead to possible applications of these materials as magnetic sensors

  9. FORMATION OF PORES ASSOCIATED WITH THE INFLOW OF MOVING MAGNETIC FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaobo; Yang, Zhiliang [Department of Astronomy, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875 (China); Zhang, Hongqi, E-mail: zlyang@bnu.edu.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-07-10

    We investigate the formation of pores in NOAA AR 10930 associated with the inflow of moving magnetic features (MMFs) using simultaneous Hinode/Solar Optical Telescope filtergrams and magnetograms. The main results are outlined as follows: (1) the existence of MMFs around pores is a fairly common phenomenon. Around the four innate and one residue pores investigated, there are obvious inflows of MMFs during the pores’ growth phase. (2) The observed magnetic flux transport conveyed by MMFs is strongly correlated with the change in the pore’s flux content, and therefore reflects the pore’s growth and decay. The concentration and dissolution of the pores are direct results of the local convergence and convection of sunspots’ magnetic outflow. (3) The most common source of MMF flows into pores are produced near sunspots and move along the connection lines between the sunspots’ penumbrae and the pores. These monopolar and bipolar magnetic elements are either fragments from the penumbra or continuations of penumbral fibrils. Pores also merge dissociated elements and receive flows produced by small-scale bipolar emergence. MMF inflows that diminish a pore’s magnetic flux often trigger chromospheric bright points. (4) In their decay phase, the pores release outflows of magnetic elements. The distribution of flows around pores is asymmetrical: the inflow is concentrated on the side facing the parent sunspot, while the outflow is generally concentrated on the opposite side. A pore’s outflow is also part of the process of decomposing and removing of the active region’s magnetic field.

  10. Investigation of magnetocaloric effect in La{sub 0.45}Pr{sub 0.25}Ca{sub 0.3}MnO{sub 3} by magnetic, differential scanning calorimetry and thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aparnadevi, M; Barik, S K [Department of Physics, 2 Science Drive 3, National University of Singapore, Lower Kent Ridge Road, Singapore-117 452 (Singapore); Mahendiran, R [Department of Physics, 2 Science Drive 3, National University of Singapore, Lower Kent Ridge Road, Singapore-117 452 (Singapore)

    2012-10-15

    We investigated magnetocaloric effect in La{sub 0.45}Pr{sub 0.25}Ca{sub 0.3}MnO{sub 3} by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with T{sub C}=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of {Delta}S{sub m}=-7.2 J kg{sup -1} K{sup -1} at T=212.5 K and refrigeration capacity of 228 J kg{sup -1} are found for a field change of {Delta}H=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound. - Highlights: Black-Right-Pointing-Pointer We report magnetic entropy change measured by indirect and direct methods in La{sub 0.45}Pr{sub 0.25}Ca{sub 0.3}MnO{sub 3.} Black-Right-Pointing-Pointer Anomalous field-induced induced metamagnetic transition is found in the paramagnetic state. Black-Right-Pointing-Pointer A large reversible magnetic entropy change ({Delta}S{sub m}=7.2 J kg{sup -1} K{sup -1} for {Delta}H=5 T). Black-Right-Pointing-Pointer A large refrigeration capacity (RC=228 J kg{sup -1}). Black-Right-Pointing-Pointer Collapse of magnetic polarons is suggested as possible origin of the large MCE.

  11. Theoretical study on the magnetic moments formation in Ta-doped anatase TiO2

    Science.gov (United States)

    Bupu, A.; Majidi, M. A.; Rusydi, A.

    2017-04-01

    We present a theoretical study on Ti-vacancy induced ferromagnetism in Ta-doped anatase TiO2. Experimental study of Ti1-x Ta x O2 thin film has shown that Ti-vacancies (assisted by Ta doping) induce the formation of localized magnetic moment around it, then, the observed ferromagnetism is caused by the alignment of localized magnetic moments through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. In this study, we focus on the formation of the localized magnetic moments in this system. We hypothesize that on a unit cell, Ti-vacancy has caused four electrons from the surrounding oxygen atoms to become unpaired. These unpaired electrons then arrange themselves into a configuration with a non-zero net magnetic moment. To examine our hypothesis, we construct a Hamiltonian of the four unpaired electrons, incorporating the Coulomb intra- and inter-orbital interactions, in matrix form. Using a set of chosen parameter values, we diagonalize the Hamiltonian to get the eigenstates and eigenvalues, then, with the resulting eigenstates, we calculate the magnetic moment, μ, by obtaining the expectation value of the square of total spin operator. Our calculation results show that in the ground state, provided that the ratio of parameters satisfies some criterion, μ ≈ 4μ B , corresponding to the four electron spins being almost perfectly aligned, can be achieved. Further, as long as we keep the Coulomb intra-orbital interaction between 0.5 and 1 eV, we find that μ ≈ 4μ B is robust up to far above room temperature. Our results demonstrate that Ti vacancies in anatase TiO2 can form very stable localized magnetic moments.

  12. Effect of calcination routes on phase formation of BaTiO3 and their electronic and magnetic properties

    Science.gov (United States)

    Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.

    2018-05-01

    We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.

  13. Correlation between defect and magnetism of low energy Ar{sup +9} implanted and un-implanted Zn{sub 0.95}Mn{sub 0.05}O thin films suitable for electronic application

    Energy Technology Data Exchange (ETDEWEB)

    Neogi, S.K.; Midya, N. [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); Pramanik, P. [Institute of RadioPhysics and Electronics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India); Bhattacharyya, A. [Institute of RadioPhysics and Electronics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Taki, G.S. [Variable Energy Cyclotron Centre, 1/AF, Salt Lake, Kolkata 700064 (India); Krishna, J.B.M. [UGC DAE CSR, Kolkata Centre, LB 8, Sector III, Salt Lake, Kolkata 700098 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.in [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); CRNN, University of Calcutta, JB Block, Sector III, Salt Lake, Kolkata 700098 (India)

    2016-06-15

    The structural, morphological, optical and magnetic properties of Ar{sup +9} implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol–gel derived films were implanted with fluences 0 (un-implanted), 5×10{sup 14} (low), 10{sup 15} (intermediate) and 10{sup 16} (high) ions/cm{sup 2}. Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV–visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 10{sup 16} ions/cm{sup 2} with saturation magnetization (M{sub S}) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn{sup 2+} ions and V{sub Zn} related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited. - Highlights: • Synthesis of transparent 5 at% Mn doped ZnO films was done by sol-gel technique. • Defect induced intrinsic ferromagnetism was observed for Ar{sup 9+} ion implanted films. • The maximum magnetization was attained for highest dose of Ar{sup 9+} implantation. • Zn vacancy may favors intrinsic ferromagnetic ordering. • Intrinsic ferromagnetism was interpreted in terms of bound magnetic polaron model.

  14. Effect of a Traveling Magnetic Field on Micropore Formation in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Yanjin Xu

    2018-06-01

    Full Text Available The effect of traveling magnetic fields (TMFs on the grain and micro-pore formation in an Al alloy was studied by scanning electron microscope and X-ray microtomography in this work. The results show that with the increasing magnetic flux density, the three-dimensional morphology of the micro-pores transformed from dendrite to a relatively equiaxed structure. Quantified results show that both the micro-pore volume fraction and the average grain size of the primary phase decreased as the TMF density increased. The analyses show that the forced convection induced by TMF can break the dendrites, refine the grain size, and promote the liquid feeding, leading to the decrease in the volume fraction of the porosity and improved mechanical property. The TMF performed at different stages during solidification reveal that the maximum effect of TMF on reducing the micro-pore formation was found when TMF was applied in the stage of nucleation and the early stage of grain growth during solidification.

  15. Effects of electric field and magnetic induction on spin injection into organic semiconductors

    International Nuclear Information System (INIS)

    Wang, Y.M.; Ren, J.F.; Yuan, X.B.; Dou, Z.T.; Hu, G.C.

    2011-01-01

    Spin-polarized injection and transport into ferromagnetic/organic semiconductor structure are studied theoretically in the presence of the external electric field and magnetic induction. Based on the spin-drift-diffusion theory and Ohm's law, we obtain the charge current polarization, which takes into account the special carriers of organic semiconductors. From the calculation, it is found that the current spin polarization is enhanced by several orders of magnitude by tuning the magnetic induction and electric fields. To get an apparent current spin polarization, the effects of spin-depended interfacial resistances and the special carriers in the organic semiconductor, which are polarons and bipolarons, are also discussed. -- Research highlights: → Current polarization in ferromagnetic/organic semiconductor structure is obtained. → Calculations are based on spin-drift-diffusion theory and Ohm's law. → Current polarization is enhanced by tuning magnetic induction and electric fields. → Effects of interfacial resistances and the special carriers are also discussed.

  16. Pressure effect on magnetic and transport properties of FeCr{sub 2}S{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.M. [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Tong, R. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Z.R., E-mail: zryang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-10-15

    In this paper, the influence of chemical pressure caused by Se substituting and hydrostatic pressure on magnetic and transport properties of FeCr{sub 2}S{sub 4} have been investigated. In addition to a large irreversibility between zero-field-cooled (ZFC) and field-cooled (FC) magnetization under low magnetic field, FeCr{sub 2}S{sub 4} polycrystalline sample also shows a cusp-like anomaly around 70 K and a step-like transition around 9 K. With increasing Se content, ferrimagnetic transition temperature decreases, irreversibility between ZFC and FC magnetization increases. At the same time, both the step-like transition and the cusp-like anomaly in magnetization shift to a lower temperature and disappears gradually. All the above effects caused by Se substituting are in accord with the effects caused by applying hydrostatic pressure. Furthermore, we found magnetoresistance increases with increasing Se content, and attributed it to the stabilization of magnetic polarons. - Highlights: • Se doping makes the anomalies in magnetization shift toward lower temperatures. • Chemical pressure effects are in accord with hydrostatic pressure effects. • Magnetoresistance increases with increasing Se content.

  17. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    CERN Document Server

    Modarress, H

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo sub 3) and electron donor benzylcyanide (C sub 6 H sub 5 -CH sub 2 -C ident to N) in solvent ethyleneglycol [(CH sub 2 OH) sub 2] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 sup d ig sup C. The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO sub 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the a...

  18. Thermoelectric Power and Normal State of the High - Tc Copper Oxides

    International Nuclear Information System (INIS)

    Goodenough, J.B.; Zhou, J.S.; Besuker, G.I.

    1995-01-01

    The temperature dependence of the thermoelectric power and resistance for the system La 2-x Sr x CuO 4 , 0≤ x ≤0.30, are presented and interpreted. The following model emerges: (1) In the underdoped region 0 2 sheets by Sr substitution form non-adiabatic large polarons containing 6 ± 1 Cu atoms; a cooperative pseudo Jahn-Teller vibronic coupling increases the size of the polaron, but a contraction of the equilibrium Cu-O distance inside the polaron limits the size. Polaron motion occurs via a tunneling of one Cu - O bond at a time. A dynamic segregation into a hole-poor parent phase and a hole-rich superconductive phase occurs below 150K. (2) The range 0.10 2 sheet. In the polaron liquid, pairs of polarons form zig-zag polaron chains; these chains form an ordered array of alternating polaron and parent-phase stripes. Complete ordering of the stripes occurs below Tc. (4) In the overdoped region x>0.27, polaron overcrowding suppresses polaron formation; however, the vibronic coupling stabilized by the dynamic pseudo Jahn -Teller deformations persists to give unusual properties to the overdoped metallic phase. (author)

  19. Dynamo generation of magnetic fields in three-dimensional space: Solar cycle main flux tube formation and reversals

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1983-01-01

    Dynamo processes as a magnetic field generation mechanism in astrophysics can be described essentially by movement and deformation of magnetic field lines due to plasma fluid motions. A basic element of the processes is a kinematic problem. As an important prototype of these processes, we investigate the case of the solar magnetic cycle. To follow the movement and deformation, we solve magnetohydrodynamic (MHD) equations by a numerical method with a prescribed velocity field. A simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the Sun. We call them the main flux tubes of the solar cycle. They are progenitors of small-scale flux ropes of the solar activity. This shows that magnetic field generation by fluid motions is, in fact, possible and that MHD equations have a new type of oscillatory solution. The solar cycle can be identified with one of such oscillatory solutions. This means that we can follow detailed stages of the field generation and reversal processes of the dynamo by continuously observing the Sun. It is proposed that the magnetic flux tube formation by streaming plasma flows exemplified here could be a universal mechanism of flux tube formation in astrophysics

  20. One-dimensional magnetic nanocomposites with attapulgites as templates: Growth, formation mechanism and magnetic alignment

    Science.gov (United States)

    Fu, Meng; Li, Xiangming; Jiang, Rui; Zhang, Zepeng

    2018-05-01

    Magnetic nanocomposite composed of attapulgite and Fe3O4 was synthesized by a simple and facile co-precipitation method. Its structure and morphology was verified using X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Although the difficulty of forming uniform Fe3O4 on the attapulgite surface was discussed in detail in this study, one-dimensional magnetic nanorod with attapulgites as core and Fe3O4 as uniform shell was implemented for the first time using a cationic polymer surfactant, polyethylenimine. Polyethylenimine concentration, Fe3+/Fe2+ concentration and temperature were controlled to investigate the morphological evolutions of this nanocomposite. It was found that a uniform shell could be available with thickness tuning from 10 nm to 40 nm when Fe3+ concentration ranged from 0.01 mol/L to 0.03 mol/L meanwhile the polyethylenimine concentration was kept at 0.2 mg/mL and the temperature was kept at 60-80 °C. Finally, a possible mechanism for the formation of the Fe3O4 shell was suggested. The polyethylenimine on the surface of the attapulgites first adsorbed Fe3+/Fe2+ and then released under the action of alkali. It acted as a linker for the Fe3O4 nanoparticles nucleation in situ. The synthesized one-dimensional nanocomposites exhibit the superparamagnetism and fast response to an external magnetic field. The alignment of attapulgite-Fe3O4 one-dimensional nanocomposite along the external magnetic field was demonstrated. It provides promising candidates for building blocks and functional devices, which are low cost, non-toxic and eco-friendly, and opens the door for the application of attapulgite as one-dimensional nanomaterials.

  1. THE FORMATION AND ERUPTION OF A SMALL CIRCULAR FILAMENT DRIVEN BY ROTATING MAGNETIC STRUCTURES IN THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Xu, Zhe, E-mail: boyang@ynao.ac.cn, E-mail: yjy@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)

    2015-04-20

    We present the first observation of the formation and eruption of a small circular filament driven by a rotating network magnetic field (RNF) in the quiet Sun. In the negative footpoint region of an inverse J-shaped dextral filament, the RNF was formed by the convergence to supergranular junctions of several magnetic flux patches of the same polarity, and it then rotated counterclockwise (CCW) for approximately 11 hr and showed up as a CCW rotating EUV cyclone, during which time the filament gradually evolved into a circular filament that surrounded the cyclone. When the calculated convergence and vortex flows appeared around the RNF during its formation and rotation phases, the injected magnetic helicity calculation also showed negative helicity accumulation during the RNF rotation that was consistent with the dextral chirality of the filament. Finally, the RNF rotation stopped and the cyclone disappeared, and, probably due to an emerging bipole and its forced cancellation with the RNF, the closure filament underwent an eruption along its axis in the (clockwise) direction opposite to the rotation directions of the RNF and cyclone. These observations suggest that the RNFs might play an important role in the formation of nearby small-scale circular filaments as they transport and inject magnetic energy and helicity, and the formation of the EUV cyclones may be a further manifestation of the helicity injected into the corona by the rotation of the RNFs in the photosphere. In addition, the new emerging bipole observed before the filament eruption might be responsible for destabilizing the system and triggering the magnetic reconnection which proves useful for the filament eruption.

  2. Augmentation of chain formation in a magnetic fluid by the addition of halloysite nanotubes

    International Nuclear Information System (INIS)

    Desai, Rucha; Upadhyay, R V; Mehta, R V

    2014-01-01

    The study aims to investigate the effect of the addition of nanotubes of halloysite on the augmentation of chains observed in an aqueous magnetic fluid consisting of co-precipitated magnetite particles stabilized with lauric acid. Three samples of the mixture containing 0.5%, 1% and 2% of halloysite nanotubes (HNTs) and a pure magnetic fluid are used for this study. A room temperature magnetization study shows that for 0.5% and 1% of HNT, the magnetization of the mixture significantly increases, while for the higher concentration (2%) it decreases. Such concentration dependent behaviour on the addition of a nonmagnetic system to a magnetic fluid has not previously been observed. The increase in the magnetization is attributed to smaller sized (<5–6 nm) magnetite attached to the HNT, forming a magnetite–HNT composite. Additionally, field-induced chaining is augmented by the addition of HNT in the magnetic fluid. The augmentation of chain formation is confirmed by optical microscopy, field-induced transmission changes and field-dependent diffraction effects. The augmentation will be useful in enhancing other properties of the composite, such as the viscosity and thermal conductivity of nanofluids. (paper)

  3. Formation of magnetic filaments at the boundaries of the magnetospheres of solar system planets

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1988-01-01

    The theory of localized spontaneous reconnection at the boundaries of the magnetospheres of solar-system planets with strong intrinsic magnetic field is given in the paper. Such forms of reconnection (flux transfer events - FTE) resulting in formation of magnetic filaments are observed by sattelites near the magnetosphgeres of Mercury, Earth and Jupiter. The physical factors controlling the temporal and spatial scales of this phenomenon in dependence on the distance from the Sun (the parameters of the solar wind) and the planetary magnetic dipole moment are discussed. the theoretical estimates of characteristic diameters of magnetic filaments λE ∼ 5000 km, λM ∼ 500 km, λJ ∼ 13000 km for the Earth, Mercury and Jupiter agree satisfactorily with the experimental data. In conclusion, the typical FTE parameters for Saturn and some other astrophysical objects are evaluated

  4. Angular-dependent EDMR linewidth for spin-dependent space charge limited conduction in a polycrystalline pentacene

    Science.gov (United States)

    Fukuda, Kunito; Asakawa, Naoki

    2017-08-01

    Spin-dependent space charge limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR) spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived respectively from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.

  5. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  6. Synthesis and magnetic properties of hexagonal Y(Mn,Cu)O3 multiferroic materials

    International Nuclear Information System (INIS)

    Jeuvrey, L.; Peña, O.; Moure, A.; Moure, C.

    2012-01-01

    Single-phase hexagonal-type solid solutions based on the multiferroic YMnO 3 material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn 1−x Cu x O 3 ; x 1+y MnO 3 ; y 3+ two-dimensional lattice. The magnetic transition at T N decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn 3+ –Mn 4+ interactions created by the substitution of Mn 3+ by Cu 2+ , are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn 3+ –Mn 4+ pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure. - Highlights: ► Hexagonal-type solid solutions of Y(Mn,Cu)O 3 synthesized by Pechini process. ► Chemical substitution at B site inhibits geometrical magnetic frustration. ► Magnetic transition decreases with Cu-doping. ► Local ferromagnetic Mn–Mn interactions coexist with the frustrated state.

  7. Prediction of d^0 magnetism in self-interaction corrected density functional theory

    Science.gov (United States)

    Das Pemmaraju, Chaitanya

    2010-03-01

    Over the past couple of years, the phenomenon of ``d^0 magnetism'' has greatly intrigued the magnetism community [1]. Unlike conventional magnetic materials, ``d^0 magnets'' lack any magnetic ions with open d or f shells but surprisingly, exhibit signatures of ferromagnetism often with a Curie temperature exceeding 300 K. Current research in the field is geared towards trying to understand the mechanism underlying this observed ferromagnetism which is difficult to explain within the conventional m-J paradigm [1]. The most widely studied class of d^0 materials are un-doped and light element doped wide gap Oxides such as HfO2, MgO, ZnO, TiO2 all of which have been put forward as possible d0 ferromagnets. General experimental trends suggest that the magnetism is a feature of highly defective samples leading to the expectation that the phenomenon must be defect related. In particular, based on density functional theory (DFT) calculations acceptor defects formed from the O-2p states in these Oxides have been proposed as being responsible for the ferromagnetism [2,3]. However. predicting magnetism originating from 2p orbitals is a delicate problem, which depends on the subtle interplay between covalency and Hund's coupling. DFT calculations based on semi-local functionals such as the local spin-density approximation (LSDA) can lead to qualitative failures on several fronts. On one hand the excessive delocalization of spin-polarized holes leads to half-metallic ground states and the expectation of room-temperature ferromagnetism. On the other hand, in some cases a magnetic ground state may not be predicted at all as the Hund's coupling might be under estimated. Furthermore, polaronic distortions which are often a feature of acceptor defects in Oxides are not predicted [4,5]. In this presentation, we argue that the self interaction error (SIE) inherent to semi-local functionals is responsible for the failures of LSDA and demonstrate through various examples that beyond

  8. DFT+U study of self-trapping, trapping, and mobility of oxygen-type hole polarons in barium stannate

    Science.gov (United States)

    Geneste, Grégory; Amadon, Bernard; Torrent, Marc; Dezanneau, Guilhem

    2017-10-01

    The charge-transfer insulating perovskite oxides currently used as fuel cell electrolytes undergo, at high temperature, an oxidation reaction 1/2 O2(g ) +VO••→OOX+2 h• , that produces oxygen-type holes. Understanding the nature and mobility of these oxygen-type holes is an important step to improve the performance of devices, but presents a theoretical challenge since, in their localized form, they cannot be captured by standard density functional theory. Here, we employ the DFT+U formalism with a Hubbard correction on the p orbitals of oxygen to investigate several properties of these holes, in the particular case of BaSnO3. We describe the small oxygen-type hole polarons, the self-trapping at their origin, and their trapping by trivalent dopants (Ga, Sc, In, Lu, Y, Gd, La). Strong similarities with protonic defects are observed concerning the evolution of the trapping energy with ionic radius of the dopant. Moreover, we show that long-range diffusion of holes is a complex phenomenon, that proceeds by a succession of several mechanisms. However, the standard implementation of DFT+U within the projector augmented-wave (PAW) formalism leads to use very large, unphysical values of U for the O-p orbital. We propose here a slightly modified DFT+U scheme, that takes into account the fact that the O-p is truncated in usual DFT+U implementation in PAW. This scheme yields more physical values of U than the ones traditionally used in the literature, and describes well the properties of the hole polaron.

  9. Magnetic field effect on Gd2(MoO4)3 domain structure formation in the phase transformation range

    International Nuclear Information System (INIS)

    Flerova, S.A.; Tsinman, I.L.

    1987-01-01

    The behaviour of ferroelastic-ferroelectric domain structure of gadolinium molybdate crystal (GMO)during its formation in the magnetic field in the vicinity of phase transformation is studied.It is shown that the formation of domain structure in the presence of a temperature gradient occurs in the field of mechanical stresses whose mainly stretching effect is concentrated near phase boundaries.The magnetic field intensifies summary mechanical stresses where a domain structure in a ferroelectric phase is formed due to interaction with the elements of inhomogeneous and differently oriented currents near phase boundaries

  10. Structural, magnetic and dielectric properties of Sr and V doped BiFeO{sub 3} multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Dahiya, Reetu; Agarwal, Ashish, E-mail: aagju@yahoo.com; Sanghi, Sujata; Hooda, Ashima; Godara, Priyanka

    2015-07-01

    Bi{sub 0.85}Sr{sub 0.15}FeO{sub 3} (BSFO), Bi{sub 0.85}Sr{sub 0.15}Fe{sub 0.97}V{sub 0.03}O{sub 3} (BSFVO1) and Bi{sub 0.85}Sr{sub 0.15}Fe{sub 0.95}V{sub 0.05}O{sub 3} (BSFVO2) ceramics were synthesized by solid state reaction method. X-ray diffraction studies and Rietveld refinement results indicate that all the samples crystallized in rhombohedrally distorted perovskite structure. The remnant magnetization and coercive field of BSFVO2 were greatly enhanced in comparison with BSFO. The enhancement of remnant magnetization was attributed to collapse of the spiral spin structure caused by change in bond length and bond angles of BSFO on V substitution. The enhanced value of coercive field might be attributed to decreased grain size with V substitution. BSFO sample shows dispersion in dielectric constant (έ) and dielectric loss (tan δ) values in lower frequency region. With V doping this dispersion is reduced resulting in frequency independent region. Dielectric anomaly peak due to charge defects in BSFO sample is also suppressed significantly on V substitution. BSFVO2 sample shows almost temperature stable behavior in έ and tan δ in the studied temperature range. Temperature dependence of index ‘s’ of power law suggests that overlapping large polaron tunneling model is applicable for describing the conduction mechanism in BSFO sample while small polaron tunneling model is appropriate for BSFVO1 and BSFVO2 samples in the studied temperature range. - Highlights: • Sr and V doped BiFeO{sub 3} multiferroics were synthesized by solid state reaction. • Ceramics crystallized in rhombohedrally distorted perovskite structure. • Remnant magnetization and coercive field were improved with V doping.

  11. Hole localization, migration, and the formation of peroxide anion in perovskite SrTiO3

    Science.gov (United States)

    Chen, Hungru; Umezawa, Naoto

    2014-07-01

    Hybrid density functional calculations are carried out to investigate the behavior of holes in SrTiO3. As in many other oxides, it is shown that a hole tend to localize on one oxygen forming an O- anion with a concomitant lattice distortion; therefore a hole polaron. The calculated emission energy from the recombination of the localized hole and a conduction-band electron is about 2.5 eV, in good agreement with experiments. Therefore the localization of the hole or self-trapping is likely to be responsible for the green photoluminescence at low temperature, which was previously attributed to an unknown defect state. Compared to an electron, the calculated hole polaron mobility is three orders of magnitude lower at room temperature. In addition, two O- anions can bind strongly to form an O22- peroxide anion. No electronic states associated with the O22- peroxide anion are located inside the band gap or close to the band edges, indicating that it is electronically inactive. We suggest that in addition to the oxygen vacancy, the formation of the O22- peroxide anion can be an alternative to compensate acceptor doping in SrTiO3.

  12. Effect of Preparation Method on Phase Formation Process and Structural and Magnetic Properties of Mn2.5Ge Samples

    Directory of Open Access Journals (Sweden)

    R. Sobhani

    2016-12-01

    Full Text Available In this paper, the phase formation process of Mn2.5Ge samples, prepared by mechanical alloying of Mn and Ge metal powders and annealing, has been studied. Results showed that in the milled samples the stable phase is Mn11Ge8 compound with orthorhombic structure and Pnam space group. The value of saturation magnetization increases by increasing milling time from 0.2 up to 1.95 (Am2Kg-1. The remanece of the samples increases by increasing the milling time while the coercivity decreases. Annealing of 15-hour milled sample results in disappearance of Mn and Ge and the formation of new phases of Mn3Ge, Mn5Ge2, Mn5Ge3 and Mn2.3Ge. Mn3Ge is the main phase with Do22 tetragonal structure and I4/mmm space group which is stable and dominant. The enhancement of saturation magnetization in the annealed sample is related to the formation of three new magnetic phases and the increase of coercivity is due to the presence of Mn3Ge compound with tetragonal structure. Studies were replicated on samples made by arc melting method to compare the results and to investigate the effect of the preparation method on phase formation and structural and magnetic properties of the materials. In these samples the saturation value was in range of 0.2 up to 1.95 (Am2Kg-1 depending on preparation methods. Rietveld refinement shows that Mn2.3Ge sample prepared from arc melted under 620oC anealing is single phase. Magnetic analysis of this sample show a saturation magnetization of 5.252(Am2Kg-1 and 0.005 T coercive field.

  13. Planetesimal Sizes and Mars Formation in the Magnetized Solar Nebula

    Science.gov (United States)

    Hasegawa, Yasuhiro; Morishima, Ryuji

    2017-10-01

    The Hf-W chronology inferred from Martian meteorites suggests that Mars should be a stranded planetary embryo formed within a very short (about 2 Myr) accretion timescale. Previous studies show that such rapid growth can be realized when small (nebular evolution. Under this circumstance, impact velocity of planetesimals can be very high due to nebular density fluctuations caused by turbulence, and hence collisions between small planetesimals can become destructive, rather than mergers. Here, we investigate how Mars formed in the magnetized solar nebula, focusing on MHD turbulence. We demonstrate what mass of planetesimals can contribute to Mars formation and what value of the nebular mass is needed to satisfy the rapid accretion timescale. We therefore derive a more realistic condition of the solar nebula under which Mars formation took place. While this study is based on the standard picture of runaway and oligarchic growth, we also discuss other formation mechanisms in order to compare how our results would be consistent with the properties of the solar system. These mechanisms are a hypothesis that Mars formed from a narrow ring of planetesimals, and the pebble accretion scenario.

  14. Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: A wavelength-dependent selective spectroscopy study

    International Nuclear Information System (INIS)

    Freiberg, Arvi; Raetsep, Margus; Timpmann, Kou; Trinkunas, Gediminas

    2009-01-01

    Spectral characteristics of the optically excited states in the ring-shaped quasi-one-dimensional aggregates comprising 18 and 32 tightly coupled bacteriochlorophyll a molecules have been investigated using selective spectroscopy methods and theoretical modelling of the data. Distinguished by the lowest electronic transition energies in the LH2 and LH1 antenna complexes these aggregates govern the functionally important ultrafast funneling of solar excitation energy in the photosynthetic membranes of purple bacteria. It was found by using a sophisticated differential fluorescence line narrowing method that exciton-phonon coupling in terms of the dimensionless Huang-Rhys factor is strong in these systems, justifying an excitonic polaron theoretical approach for the data analysis. Although we reached this qualitative conclusion already previously, in this work essential dependence of the exciton-phonon coupling strength and reorganization energy on excitation wavelength as well as on excitation light fluence has been established. We then show that these results corroborate with the properties of excitonic polarons in diagonally disordered ensembles of the aggregates. Furthermore, the weighted density of states of the phonon modes, which is an important characteristic of dynamical systems interacting with their surroundings, was derived. Its shape, being similar for all studied circular aggregates, deviates significantly from a reference profile describing local response of a protein to the Q y electronic transition in a single bacteriochlorophyll a molecule. Similarities of the data for regular and B800 deficient mutant LH2 complexes indicate that the B800 pigments have no direct influence on the electronic states of the B850 aggregate system. Consistent set of model parameters was determined, unambiguously implying that excitonic polarons, rather than bare excitons are proper lowest-energy optical excitations in the LH1 and LH2 antenna complexes

  15. Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: A wavelength-dependent selective spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, Arvi [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)], E-mail: arvi.freiberg@ut.ee; Raetsep, Margus; Timpmann, Kou [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Trinkunas, Gediminas [Insitute of Physics, Savanoriu pr. 231, LT-02300 Vilnius (Lithuania)

    2009-02-23

    Spectral characteristics of the optically excited states in the ring-shaped quasi-one-dimensional aggregates comprising 18 and 32 tightly coupled bacteriochlorophyll a molecules have been investigated using selective spectroscopy methods and theoretical modelling of the data. Distinguished by the lowest electronic transition energies in the LH2 and LH1 antenna complexes these aggregates govern the functionally important ultrafast funneling of solar excitation energy in the photosynthetic membranes of purple bacteria. It was found by using a sophisticated differential fluorescence line narrowing method that exciton-phonon coupling in terms of the dimensionless Huang-Rhys factor is strong in these systems, justifying an excitonic polaron theoretical approach for the data analysis. Although we reached this qualitative conclusion already previously, in this work essential dependence of the exciton-phonon coupling strength and reorganization energy on excitation wavelength as well as on excitation light fluence has been established. We then show that these results corroborate with the properties of excitonic polarons in diagonally disordered ensembles of the aggregates. Furthermore, the weighted density of states of the phonon modes, which is an important characteristic of dynamical systems interacting with their surroundings, was derived. Its shape, being similar for all studied circular aggregates, deviates significantly from a reference profile describing local response of a protein to the Q{sub y} electronic transition in a single bacteriochlorophyll a molecule. Similarities of the data for regular and B800 deficient mutant LH2 complexes indicate that the B800 pigments have no direct influence on the electronic states of the B850 aggregate system. Consistent set of model parameters was determined, unambiguously implying that excitonic polarons, rather than bare excitons are proper lowest-energy optical excitations in the LH1 and LH2 antenna complexes.

  16. Charge Transport in 4 nm Molecular Wires with Interrupted Conjugation: Combined Experimental and Computational Evidence for Thermally Assisted Polaron Tunneling.

    Science.gov (United States)

    Taherinia, Davood; Smith, Christopher E; Ghosh, Soumen; Odoh, Samuel O; Balhorn, Luke; Gagliardi, Laura; Cramer, Christopher J; Frisbie, C Daniel

    2016-04-26

    We report the synthesis, transport measurements, and electronic structure of conjugation-broken oligophenyleneimine (CB-OPI 6) molecular wires with lengths of ∼4 nm. The wires were grown from Au surfaces using stepwise aryl imine condensation reactions between 1,4-diaminobenzene and terephthalaldehyde (1,4-benzenedicarbaldehyde). Saturated spacers (conjugation breakers) were introduced into the molecular backbone by replacing the aromatic diamine with trans-1,4-diaminocyclohexane at specific steps during the growth processes. FT-IR and ellipsometry were used to follow the imination reactions on Au surfaces. Surface coverages (∼4 molecules/nm(2)) and electronic structures of the wires were determined by cyclic voltammetry and UV-vis spectroscopy, respectively. The current-voltage (I-V) characteristics of the wires were acquired using conducting probe atomic force microscopy (CP-AFM) in which an Au-coated AFM probe was brought into contact with the wires to form metal-molecule-metal junctions with contact areas of ∼50 nm(2). The low bias resistance increased with the number of saturated spacers, but was not sensitive to the position of the spacer within the wire. Temperature dependent measurements of resistance were consistent with a localized charge (polaron) hopping mechanism in all of the wires. Activation energies were in the range of 0.18-0.26 eV (4.2-6.0 kcal/mol) with the highest belonging to the fully conjugated OPI 6 wire and the lowest to the CB3,5-OPI 6 wire (the wire with two saturated spacers). For the two other wires with a single conjugation breaker, CB3-OPI 6 and CB5-OPI 6, activation energies of 0.20 eV (4.6 kcal/mol) and 0.21 eV (4.8 kcal/mol) were found, respectively. Computational studies using density functional theory confirmed the polaronic nature of charge carriers but predicted that the semiclassical activation energy of hopping should be higher for CB-OPI molecular wires than for the OPI 6 wire. To reconcile the experimental and

  17. Temperature study of magnetic resonance spectra of co-modified (Co,N-TiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Guskos Nikos

    2016-06-01

    Full Text Available The (nCo,N-TiO2 (n = 1, 5 and 10 wt.% of Co nanocomposites were investigated by magnetic resonance spectroscopy in 4 K to 290 K range. Analyses of ferromagnetic/electron paramagnetic resonance (FMR/EPR spectra in terms of four Callen lineshape components revealed the existence of two types of magnetic centers, one derived from metallic cobalt nanoparticles in superparamagnetic (SPM phase and the other from cobalt clusters in the TiO2 lattice. Additionally, at low temperature the EPR spectrum arising from Ti3+ ions was also registered. Both relaxations of the Landau-Lifshitz type and the Bloch-Bloembergen type played an important role at high temperature in determining the linewidths and the latter relaxation was prevailing at low temperature. Analysis of the integrated intensity showed that the SPM signal is due to small size FM cobalt nanoparticles while the paramagnetic signal from Co clusters originates from those nanoparticles in which the concentration of magnetic polarons is below the percolation threshold.

  18. Interband optical absorption in the Wannier-Stark ladder under the electron-LO-phonon resonance condition

    International Nuclear Information System (INIS)

    Govorov, A.O.

    1993-08-01

    Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs

  19. Spin waves theory and applications

    CERN Document Server

    Stancil, Daniel D

    2009-01-01

    Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magneto static properties of the material, they are called magneto static waves (sometimes 'magnons' or 'magnetic polarons'). This book discusses magnetic properties of materials, and magnetic moments of atoms and ions

  20. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  1. Magnetic field-induced cluster formation and variation of magneto-optical signals in zinc-substituted ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S.S. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India)]. E-mail: swapna@cusat.ac.in; Rajesh, S. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Abraham, V.S. [School of Engineering and Sciences, International University of Bremen, 28759 (Germany); Anantharaman, M.R. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India)]. E-mail: mraiyer@yahoo.com; Nampoori, V.P.N. [International School of Photonics, Cochin University of Science and Technology, Cochin-22 (India)

    2006-10-15

    Fine magnetic particles (size{approx_equal}100 A) belonging to the series Zn {sub x} Fe{sub 1-} {sub x} Fe{sub 2}O{sub 4} were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.

  2. Effect of Polyethylene Glycol on the Formation of Magnetic Nanoparticles Synthesized by Magnetospirillum magnetotacticum MS-1.

    Directory of Open Access Journals (Sweden)

    Hirokazu Shimoshige

    Full Text Available Magnetotactic bacteria (MTB synthesize intracellular magnetic nanocrystals called magnetosomes, which are composed of either magnetite (Fe3O4 or greigite (Fe3S4 and covered with lipid membranes. The production of magnetosomes is achieved by the biomineralization process with strict control over the formation of magnetosome membrane vesicles, uptake and transport of iron ions, and synthesis of mature crystals. These magnetosomes have high potential for both biotechnological and nanotechnological applications, but it is still extremely difficult to grow MTB and produce a large amount of magnetosomes under the conventional cultural conditions. Here, we investigate as a first attempt the effect of polyethylene glycol (PEG added to the culture medium on the increase in the yield of magnetosomes formed in Magnetospirillum magnetotacticum MS-1. We find that the yield of the formation of magnetosomes can be increased up to approximately 130 % by adding PEG200 to the culture medium. We also measure the magnetization of the magnetosomes and find that the magnetosomes possess soft ferromagnetic characteristics and the saturation mass magnetization is increased by 7 %.

  3. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    Science.gov (United States)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  4. Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3

    International Nuclear Information System (INIS)

    Conradi, D.; Merschjann, C.; Schoke, B.; Imlau, M.; Corradi, G.; Polgar, K.

    2008-01-01

    Transient light-induced absorption changes α li (t), caused by optically generated small polarons, are investigated in LiNbO 3 :Mg below and above the optical-damage-resistance threshold (ODRT). The lifetime of α li (t) is reduced by three orders of magnitude above the ODRT while a significantly enhanced amplitude α max li is observed in the infrared. Our observations are in full accordance with the predictions of microscopic models for the ODRT, namely the removal of Nb Li antisite defects upon incorporation of Mg ions, and an enhanced dark conductivity. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    KAUST Repository

    Venkatesh, S.

    2016-03-24

    We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (∼40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.

  6. Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Charles L. H.; Mocz, Philip; Burkhart, Blakesley; Goodman, Alyssa A.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Girart, Josep M. [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Cortés, Paulo C. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Springel, Volker [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Lai, Shih-Ping, E-mail: chat.hull@cfa.harvard.edu [Institute of Astronomy and Department of Physics, National Tsing Hua University, 101 Section 2 Kuang Fu Road, 30013 Hsinchu, Taiwan (China)

    2017-06-20

    We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of polarized dust emission from the protostellar source Ser-emb 8 at a linear resolution of 140 au. Assuming models of dust-grain alignment hold, the observed polarization pattern gives a projected view of the magnetic field structure in this source. Contrary to expectations based on models of strongly magnetized star formation, the magnetic field in Ser-emb 8 does not exhibit an hourglass morphology. Combining the new ALMA data with previous observational studies, we can connect magnetic field structure from protostellar core (∼80,000 au) to disk (∼100 au) scales. We compare our observations with four magnetohydrodynamic gravo-turbulence simulations made with the AREPO code that have initial conditions ranging from super-Alfvénic (weakly magnetized) to sub-Alfvénic (strongly magnetized). These simulations achieve the spatial dynamic range necessary to resolve the collapse of protostars from the parsec scale of star-forming clouds down to the ∼100 au scale probed by ALMA. Only in the very strongly magnetized simulation do we see both the preservation of the field direction from cloud to disk scales and an hourglass-shaped field at <1000 au scales. We conduct an analysis of the relative orientation of the magnetic field and the density structure in both the Ser-emb 8 ALMA observations and the synthetic observations of the four AREPO simulations. We conclude that the Ser-emb 8 data are most similar to the weakly magnetized simulations, which exhibit random alignment, in contrast to the strongly magnetized simulation, where the magnetic field plays a role in shaping the density structure in the source. In the weak-field case, it is turbulence—not the magnetic field—that shapes the material that forms the protostar, highlighting the dominant role that turbulence can play across many orders of magnitude in spatial scale.

  7. Carbon distribution during plasma detachment triggered by edge magnetic island formation in LHD

    International Nuclear Information System (INIS)

    Dong, C.F.; Morita, S.; Kobayashi, M.; Oishi, T.; Goto, M.; Wang, E.H.; Huang, X.L.

    2013-01-01

    The detached plasma has been successfully achieved by applying the edge 1/1 magnetic island in Large Helical Device (LHD). Carbon, which is uniquely the dominant intrinsic impurity in general LHD discharges, is considered to be the main radiating species in the island-triggered detached plasma. The vertical profile of CIV measured from general discharges of LHD is characterized by a single edge intensity peak. In detached plasmas triggered by the edge magnetic island formation, however, the vertical profile of CIV shows a significant difference. Double edge peaks of CIV are found during the plasma detachment and the CIV radiation is also remarkably enhanced in the vicinity of X-point, whereas the vertical profile of CVI does not show any significant difference in both the attached and detached plasmas. In this proceeding the carbon distribution during the plasma detachment is presented and the results are discussed with edge magnetic field structure. (author)

  8. Angular-Dependent EDMR Linewidth for Spin-Dependent Space-Charge-Limited Conduction in a Polycrystalline Pentacene

    Directory of Open Access Journals (Sweden)

    Kunito Fukuda

    2017-08-01

    Full Text Available Spin-dependent space-charge-limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived, respectively, from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.

  9. Rietveld refinement, dielectric and magnetic properties of Nb modified Bi0.80Ba0.20FeO3 ceramic

    Science.gov (United States)

    Jangra, Sandhaya; Sanghi, Sujata; Agarwal, Ashish; Rangi, Manisha

    2018-05-01

    Bi0.80Ba0.20Fe0.95Nb0.05O3 ceramic has been prepared via conventional solid state reaction method. Structure analysis was carried out by X-ray diffraction (XRD) technique at room temperature. XRD pattern confirmed the crystalline nature of prepared sample. Rietveld analysis used for further structural investigations and confirmed the existence of rhombohedral symmetry (R3c space group). The dielectric response shows dispersion at lower frequency range and becomes frequency independent at high frequency. The approximation of conduction mechanism is determined by the temperature dependent behavior of frequency exponent `s'. Fitting results suggests the applicability of small polaron conduction mechanism at lower temperatures and CBH model at higher temperature. Room temperature magnetic measurements give the evidence of significant enhancement in magnetic properties with remanent magnetization (Mr = 0.1218 emu/g) and coercive field (Hc = 3.5342 kOe).

  10. Polaronic and bipolaronic structures in the adiabatic Hubbard-Hostein model involving 2 electrons and in its extensions; Structures polaroniques et bipolaroniques dans le modele de hostein hubbard adiabatique a deux electrons et ses extensions

    Energy Technology Data Exchange (ETDEWEB)

    Proville, L

    1998-03-30

    This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.) 33 refs.

  11. Influence of electron beam irradiation on electrical, structural, magnetic and thermal properties of Pr{sub 0.8}Sr{sub 0.2}MnO{sub 3} manganites

    Energy Technology Data Exchange (ETDEWEB)

    Christopher, Benedict [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Rao, Ashok, E-mail: ashokanu_rao@rediffmail.com [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Petwal, Vikash Chandra; Verma, Vijay Pal; Dwivedi, Jishnu [Industrial Accelerator Section, PSIAD, Raja Ramanna Centre for Advanced Technology, Indore 452012, M.P. (India); Lin, W.J. [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Kuo, Y.-K., E-mail: ykkuo@mail.ndhu.edu.tw [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China)

    2016-12-01

    In this communication, the effect of electron beam (EB) irradiation on the structural, electrical transport and thermal properties of Pr{sub 0.8}Sr{sub 0.2}MnO{sub 3} manganites has been investigated. Rietveld refinement of XRD data reveals that all samples are single phased with orthorhombic distorted structure (Pbnm). It is observed that the orthorhombic deformation increases with EB dosage. The Mn–O–Mn bond angle is found to increase with increase in EB dosage, presumably due to strain induced by these irradiations. Analysis on the measured electrical resistivity data indicates that the small polaron hopping model is operative in the high temperature region for pristine as well as EB irradiated samples. The electrical resistivity in the entire temperature region has been successfully fitted with the phenomenological percolation model which is based on phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions. The Seebeck coefficient (S) of the pristine as well as the irradiated samples exhibit positive values, indicating that holes is the dominant charge carriers. The analysis of Seebeck coefficient data confirms that the small polaron hopping mechanism governs the thermoelectric transport in the high temperature region. In addition, Seebeck coefficient data also is well fitted with the phenomenological percolation model. The behavior in thermal conductivity at the transition is ascribed to the local anharmonic distortions associated with small polarons. Specific heat measurement indicates that electron beam irradiation enhances the magnetic inhomogeneity of the system.

  12. Electrical and magnetic transport in Strontium doped Europium Ferrimanganites

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Latif, I.A. [Physics Department, College of Science & Arts, Najran University, P. O. 1988, Najran (Saudi Arabia); Reactor Physics Department, NRC, Atomic Energy Authority, Abou Zabaal P.O. 13759, Cairo (Egypt); Ahmed, Mahrous R. [Physics Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Physics Department, Aljamoum University College, Um-Elqura University, Makka (Saudi Arabia); Al-Omari, I.A.; Sellai, A. [Physics Department, Faculty of Science, Soltan Qaboos University, P.O. Box 36, PC 123, Muscatt (Oman)

    2016-12-15

    Eu{sub 0.65}Sr{sub 0.35}Fe{sub x}Mn{sub 1−x}O{sub 3} (x=0.1, 0.3 and 0.5) has been prepared using a standard solid state reaction method. The under-investigation compounds is found to crystallize in a single-phase orthorhombic structure in the P{sub bnm} space group (62). The adiabatic polaron electronic transfer was obtained for all samples and the activation energy of x=0.1 sample is equal to 1.013 meV and slightly increase at x=0.3 (1.289 meV) while is doubled for x=0.5 to be 2.1065 meV. The magnetization–temperature dependence measurements of Eu{sub 0.65}Sr{sub 0.35}Fe{sub x}Mn{sub 1−x}O{sub 3} show the ferromagnetic ordering at low iron concentration x=0.1 and when iron concentration increase to x=0.5 the noncollinear magnetic ordering (the canted antiferromagnetic) is obtained. The magnetic phase transition (paramagnetic-ferromagnetic transition) in the Eu{sub 0.65}Sr{sub 0.35}Fe{sub 0.1}Mn{sub 0.9}O{sub 3} is observed at T{sub c} of 150 K. For Eu{sub 0.65}Sr{sub 0.35}Fe{sub 0.5}Mn{sub 0.5}O{sub 3} the multi-magnetic phase transition is observed at T{sub c} of 200K and T{sub N} of 430 K. The resistivity at low temperature is measured. Theoretical Calculations using Monte Carlo code have been done. The magnetization as function of temperature has been calculated using Monte Carlo simulations for Eu{sub 0.65}Sr{sub 0.35}Fe{sub x}Mn{sub 1−x}O{sub 3} (x=0.0, 0.1, 0,2, 0.3, 0.4 and 0.5). Ising model is a suitable model to study the magnetization for our compounds. The internal energy for x=0 is the highest value compared with the other x values which have nearly a ground state value equal to 2.7 J. - Highlights: • The distortion parameter in the crystal structure of Eu{sub 0.65}Sr{sub 0.35}Fe{sub x}Mn{sub 1−x}O{sub 3} increase with increasing concentration of iron and affected both electrical and magnetic transport. • The density of electrons over the unit cell decrease with increasing the iron concentration and thus give rise to the decrease in

  13. Ferromagnetism in poly(N-perfluorophenylpyrrole)

    Energy Technology Data Exchange (ETDEWEB)

    Čík, G., E-mail: gabriel.cik@stuba.sk [Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Šeršeň, F. [Institute of Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava (Slovakia); Dlháň, L. [Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Zálupský, P. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Rapta, P. [Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Hrnčariková, K. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava (Slovakia)

    2015-10-01

    Magnetic properties of the synthesized poly(N-perfluorophenylpyrrole) were studied. The synthesized polymer dissolves in common organic solvents. By the zero-field cooling-field cooling method (ZFC–FC) we found that at low temperatures (T{sub b}<50 K) the synthetic polymer reaches a state with prevailing ferromagnetism. The synthesized polymer retained ferromagnetism even at 300 K. The anomalous magnetic behavior was explained in terms of spin–spin interaction of triplet polarons. As can be seen from the calculated spin density of SOMO and SOMO 1 such a state arise as a consequence of 1-D spin interactions of polarons. Based on the calculated and visualized spin density (SOMO) on the polymer chain such interactions can be explained by the theory of flat-band-ferromagnetism. - Highlights: • We synthesized a new conducting polymer poly(N-perfluorophenylpyrrole). • By the ZFC–FC and EPR methods we measured magnetic properties of the prepared polymer. • We discussed stability and interactions of the polarons in triplet states. • At low temperatures the synthesized polymer reached ferromagnetism.

  14. Influence of a magnetic field on microstructure formation in L1{sub 0}-type ferromagnetic intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Farjami, Sahar; Fukuda, Takashi; Kakeshita, Tomoyuki [Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: farjami@mat.eng.osaka-u.ac.jp

    2009-05-01

    The influence of a magnetic field on microstructure formation through a disorder-order transformation has been investigated in Co-Pt and Fe-Pd alloys. Single crystals of disordered Co-50Pt(at%) and Fe-55Pd(at%) were subjected to an ordering heat-treatment under a magnetic field. When the ordering heat-treatment is performed without applying a magnetic field, three equivalent variants are formed. On the other hand, when the ordering heat-treatment is performed under a magnetic field of 0.5 T (in CoPt) - 4 T (in Fe-55Pd) and higher as applied along the [001] direction of the disordered phase, a single variant with an easy axis along the field direction is obtained. The induced anisotropy energy of the ordered phase under a magnetic field of 1 T was 4.1 kJ|m{sup -3} at 773 K for CoPt and 45.3 kJ|m{sup -3} at 673 K for Fe-55Pd.

  15. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  16. The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.

    Science.gov (United States)

    Spreafico, Clelia; VandeVondele, Joost

    2014-12-21

    The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.

  17. Phase formation and magnetic properties of YFe12-xNbx (x=0.70-0.90) compounds

    International Nuclear Information System (INIS)

    Fuquan, B.; Wang, J.L.; Tegus, O.; Dagula, W.; Tang, N.; Yang, F.M.; Wu, G.H.; Brueck, E.; Boer, F.R. de; Buschow, K.H.J.

    2005-01-01

    The phase formation and the magnetic properties of YFe 12-x Nb x (x=0.70-0.90) compounds have been investigated by means of X-ray diffraction and magnetization measurements. The powder X-ray diffraction patterns show that all compounds investigated crystallize single phase in the tetragonal ThMn 12 -type of structure. The lattice parameters and the unit-cell volume increase slightly with increasing Nb content, but the Curie temperature does not change. The X-ray-diffraction patterns of aligned powders of the samples show that all the compounds investigated have uniaxial anisotropy at room temperature. At 1.5K, the spontaneous magnetization, the anisotropy field and the anisotropy constant K 1 decrease with increasing Nb content

  18. Anomalous heating and plasmoid formation in pulsed power driven magnetic reconnection experiments

    Science.gov (United States)

    Hare, Jack

    2017-10-01

    Magnetic reconnection is an important process occurring in various plasma environments, including high energy density plasmas. In this talk we will present results from a recently developed magnetic reconnection platform driven by the MAGPIE pulsed power generator (1 MA, 250 ns) at Imperial College London. In these experiments, supersonic, sub-Alfvénic plasma flows collide, bringing anti-parallel magnetic fields into contact and producing a well-defined, elongated reconnection layer. This layer is long-lasting (>200 ns, > 10 hydrodynamic flow times) and is diagnosed using a suite of high resolution, spatially and temporally resolved diagnostics which include laser interferometry, Thomson scattering and Faraday rotation imaging. We observe significant heating of the electrons and ions inside the reconnection layer, and calculate that the heating must occur on time-scales far faster than can be explained by classical mechanisms. Possible anomalous mechanisms include in-plane electric fields caused by two-fluid effects, and enhanced resistivity and viscosity caused by kinetic turbulence. We also observe the repeated formation of plasmoids in the reconnection layer, which are ejected outwards along the layer at super-Alfvénic velocities. The O-point magnetic field structure of these plasmoids is determined using in situ magnetic probes, and these plasmoids could also play a role in the anomalous heating of the electrons and ions. In addition, we present further modifications to this experimental platform which enable us to study asymmetric reconnection or measure the out-of-plane magnetic field inside the plasmoids. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/N013379/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.

  19. Polaronic effects on the off-center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots

    Science.gov (United States)

    El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-11-01

    The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.

  20. Magnetic properties for the Mn{sub 2}GeTe{sub 4} compound

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, M. [Departamento de Fisica, Facultad de Ciencias, Centro de Estudios de Semiconductores, Universidad de los Andes, Merida 5101 (Venezuela, Bolivarian Republic of)], E-mail: mquinter@ula.ve; Quintero, E.; Caldera, D.; Moreno, E.; Morocoima, M.; Grima, P.; Ferrer, D.; Marchan, N.; Bocaranda, P. [Departamento de Fisica, Facultad de Ciencias, Centro de Estudios de Semiconductores, Universidad de los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Henao, J.A.; Macias, M.A.; Pinto, J.L. [Grupo de Investigacion en Quimica Estructural (GIQUE), Centro de Investigacion en Biomoleculas (CIBIMOL), Facultad de Ciencias, Escuela de Quimica, Universidad Industrial de Santander, Apartado aereo 678, Bucaramanga (Colombia); Ponce, C.A. [Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes 3400 (Argentina)

    2009-02-15

    Measurements of magnetic susceptibility {chi}, in the temperature range from 2 to 300 K, and of magnetization M vs. applied magnetic field B, up to 5 T, at various temperatures were made on polycrystalline samples of the Mn{sub 2}GeTe{sub 4} compound. It was found that Mn{sub 2}GeTe{sub 4} has a Neel temperature T{sub N} of about 135 K, shows mainly antiferromagnetic behavior with a very weak superimposed ferromagnetic component that is attributed to spin canting. Also, the magnetic results suggest that a possible spin-glass transition takes place at T{sub f}{approx}45 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory. The M vs. B results indicated that bound magnetic polarons (BMPs) occur in the compound, and that the effects from BMPs disappear at approximately 80 K. The M vs. B curves were well fitted by a Langevin type of equation, and the variation of the fitting parameters determined as a function of temperature. Using a simple spherical model, the radius of the BMP in the material was found to be about 27 A; this value is similar to the effective Bohr radius for an acceptor in the II-IV-V{sub 2} and I-III-VI{sub 2} ternary semiconductor compounds.

  1. On exceeding the solubility limit of Cr+3 dopants in SnO2 nanoparticles based dilute magnetic semiconductors

    Science.gov (United States)

    URS, Kusuma; Bhat, S. V.; Kamble, Vinayak

    2018-04-01

    The paper investigates the magnetic behavior of chromium doped SnO2 Dilute Magnetic Semiconductor (DMS) nanoparticles, through structural, spectroscopic, and magnetic studies. A non-equilibrium solution combustion method is adopted to synthesize 0-5 at. % Cr doped SnO2 nanoparticles. The detailed spectroscopic studies on the system using micro-Raman spectroscopy, x-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy along with the structural analysis confirm the presence of Cr in 3+ oxidation state, which substitutes at Sn4+ site in SnO6 octahedra of the rutile structure. This doping is found to enhance the defects in the system, i.e., oxygen vacancies. All the synthesized SnO2 nanoparticles (with or without dopants) are found to exhibit Room Temperature Ferromagnetism (RTFM). This occurrence of RTFM is attributed to the magnetic exchange interaction through F-centers of oxygen vacancies as well as dopant magnetic impurities and explained through the Bound Magnetic Polaron (BMP) model of DMS systems. Nonetheless, as the doping of Cr is further increased beyond 2%, the solubility limit is achieved. This antiferromagnetic exchange interaction from interstitial Cr dopants dominates over the BMP mechanism and, hence, leads to the decrease in the net magnetic moment drastically.

  2. Experimental and Theoretical Investigations on Agglomeration of Magnetic Colloidal Particles in Magnetic Fluids

    Science.gov (United States)

    Taketomi, Susamu; Takahashi, Hiromasa; Inaba, Nobuyuki; Miyajima, Hideki

    1991-05-01

    Macro-clusters formation of the magnetic colloidal particles in magnetic fluids is investigated. Experiments of an optical microscope observation of the macro-clusters formation and of anomalous light scattering by the magnetic fluid are reported. Looking upon the anomalous light scattering of the magnetic fluid as a kind of critical opalescence and using Debye’s opalescence theory, we derive a thermodynamical instability theory of the colloidal particles’ dispersion. Relations among the instability theory of Cebers, that of Sano and Doi, and ours are discussed. An interaction energy among the colloidal particles is evaluated from the light scattering experiment. Similarities among the macro-cluster formation, spinodal decomposition of precipitation-type magnetic alloys, and flux-line lattice formation in type-II superconductors are discussed.

  3. Transport properties of Na doped La sub 1 sub - sub x Ca sub x sub - sub y Na sub y MnO sub 3 measured in a pulsed magnetic field

    CERN Document Server

    Bhattacharya, S; Pal, S; Chatterjee, P; Mukherjee, R K; Chaudhuri, B K

    2002-01-01

    Temperature-dependent magnetization and magnetoresistance of the Na doped La sub 1 sub - sub x Ca sub x sub sub - sub y Na sub y MnO sub 3 type samples with x=0.3 and 0 T sub p up to 320 K) conductivity data satisfy the variable range hopping (VRH) model. For T > 320 the small polaron hopping model is more appropriate than the VRH model. Even with a very small change of y, the density of states at the Fermi level N(E sub F) changes considerably. The resistivity of these materials measured under pulsed and continuous DC magnetic fields behaves in an identical fashion. The relaxation time (decay time of the magnetic pulse within the sample) varies with field strength, which indicates that, with a change of magnetic field, the ordering of spin in the ferromagnetic regime changes.

  4. Effects of compositional defects on small polaron hopping in micas.

    Science.gov (United States)

    Rosso, Kevin M; Ilton, Eugene S

    2005-06-22

    Hartree-Fock calculations and electron transfer (ET) theory were used to model the effects of compositional defects on ET in the brucite-like octahedral sheet of mica. ET was modeled as an Fe(IIIII) valence interchange reaction across shared octahedral edges of the M2-M2 iron sublattice. The model entails the hopping of localized electrons and small polaron behavior. Hartree-Fock calculations indicate that substitution of F for structural OH bridges increases the reorganization energy lambda, decreases the electronic coupling matrix element V(AB), and thereby substantially decreases the hopping rate. The lambda increase arises from modification of the metal-ligand bond force constants, and the V(AB) decrease arises from reduction of superexchange interaction through anion bridges. Deprotonation of an OH bridge, consistent with a possible mechanism of maintaining charge neutrality during net oxidation, yields a net increase in the ET rate. Although substitution of Al or Mg for Fe in M1 sites distorts the structure of adjacent Fe-occupied M2 sites, the distortion has little net impact on ET rates through these M2 sites. Hence the main effect of Al or Mg substitution for Fe, should it occur in the M2 sublattice, is to block ET pathways. Collectively, these findings pave the way for larger-scale oxidation/reduction models to be constructed for realistic, compositionally diverse micas.

  5. Electronic and magnetic phase separation in EuB6. Fluctuation spectroscopy and nonlinear transport

    International Nuclear Information System (INIS)

    Amyan, Adham

    2013-01-01

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB 6 as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB 6 and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T MI and T C . Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  6. Enhancement of the guide field during the current sheet formation in the three-dimensional magnetic configuration with an X line

    International Nuclear Information System (INIS)

    Frank, Anna; Bugrov, Sergey; Markov, Vladimir

    2009-01-01

    Results are presented from studies of the formation of current sheets during exciting a current aligned with the X line of the 3D magnetic configuration, in the CS-3D device. Enhancement of the guide field (parallel to the X line) was directly observed for the first time, on the basis of magnetic measurements. After the current sheet formation, the guide field inside the sheet exceeds its initial value, as well as the field outside. It is convincingly demonstrated that an enhancement of the guide field is due to its transportation by plasma flows on the early stage of the sheet formation. The in-plane plasma currents, which produce the excess guide field, are comparable to the total current along the X line that initiates the sheet itself.

  7. Shock-front compression of the magnetic field in the Canis Majoris R1 star-formation region

    International Nuclear Information System (INIS)

    Vrba, F.J.; Baierlein, R.; Herbst, W.; Wesleyan Univ., Middletown, CT; Van Vleck Observatory, Middletown, CT)

    1987-01-01

    Results are presented from a linear polarization survey at optical wavelengths of over 140 stars in the direction of the CMa R1 star-formation region; 26 of these are clearly associated with nebulosity within the area. The observations were obtained in order to test the argument of Herbst et al. (1978) that star formation in CMa R1 is driven by a shock wave from a nearby supernova (Herbs and Assousa, 1977 and 1978). The polarizations are found to be consistent with a simple model of the compression by a supernova-induced spherical shock front of an initially uniform interstellar magnetic field. The polarization vectors are inconsistent with a scenario of quiescent cloud collapse along magnetic-field lines. Multicolor polarimetry of the nebular stars provides evidence of grain growth toward increasing cloud optical depth, characterized by a ratio of total-to-selective extinction of R = 3.0 at E(B-V) = 0.23, increasing to R = 4.2 at E(B-V) = 0.7. 15 references

  8. Ba doped Fe3O4 nanocrystals: Magnetic field and temperature tuning dielectric and electrical transport

    Science.gov (United States)

    Dutta, Papia; Mandal, S. K.; Nath, A.

    2018-05-01

    Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.

  9. A disordered polaron model for polarized fluorescence excitation spectra of LH1 and LH2 bacteriochlorophyll antenna aggregates

    International Nuclear Information System (INIS)

    Trinkunas, Gediminas; Freiberg, Arvi

    2006-01-01

    Excitonic polarons in antenna complexes are subject to static lattice disorder. A model has been developed to analyze polarized fluorescence excitation spectra of circular light-harvesting complexes from purple photosynthetic bacteria containing bacteriochlorophyll as the main photoactive pigment that includes both diagonal (energetic) and off-diagonal (structural) disorders. Essential differences of disorder realizations seem to exist between the core LH1 and peripheral LH2 complexes from the bacterium Rhodobacter sphaeroides. The disorder in LH1 appears to be dominated by the structural disorder, while that in LH2, by energetic one. These differences may be due to relatively bigger size of the LH1 complex and, consequently, with its enhanced structural flexibility

  10. Investigation on magnetic, electrical and thermoelectric power of Bi-substituted La{sub 0.8}Ca{sub 0.2}MnO{sub 3} manganites

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, S.O. [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Rao, Ashok, E-mail: ashokanu_rao@rediffmail.com [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Awana, V.P.S. [Superconductivity and Cryogenics Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Marg, New Delhi (India); Okram, G.S. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452001, MP (India)

    2015-11-15

    In the present work, the structural, magnetic, magneto-transport and thermoelectric properties of polycrystalline compounds of La{sub 0.8−x}Bi{sub x}Ca{sub 0.2}MnO{sub 3}(0≤x≤0.1) compounds are reported. Structure refinement using Rietveld method confirms that the samples are single phased and crystallize in rhombohedral structure with R-3C space group. Magnetic studies reveal that the pristine sample exhibits T{sub C} at 221 K and it shift towards lower temperature with Bi doping. Deviation of the temperature dependent of inverse susceptibility curves from the Curie–Weiss law confirms the existence of Griffiths-like phase. All the samples exhibit metal to insulator transition at temperature T{sub MI}, which is found to decrease with increase in Bi doping which is consistent with the magnetic studies. Magneto-resistance MR% data shows that its peak value increases with Bi-doping. The analysis of electrical resistivity data in the metallic region (TT{sub MI}) is well described using Small polaron hopping (SPH) and Mott's variable range hopping (VRH) models. Analysis of thermoelectric power data in the high temperature region suggests that the SPH mechanism is operative in this regime, while the analysis of low temperature data reveals that the electron–magnon scattering is dominant in the region. - Highlights: • Bi-doped compounds follow small polaron hopping model in high temperature range. • MR(%) increases with Bi-doping. • High temperature TEP data follows SPH model. • At low temperatures, electron–magnon scattering play role in thermo-electric transport.

  11. Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations

    Science.gov (United States)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.

  12. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    Science.gov (United States)

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

  13. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    Science.gov (United States)

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

  14. Simulation of magnetic holes formation in the magnetosheath

    Science.gov (United States)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2017-12-01

    Magnetic holes have been frequently observed in the Earth's magnetosheath and are believed to be the consequence of the nonlinear evolution of the mirror instability. Mirror mode perturbations mainly form as magnetic holes in regions where the plasma is marginally mirror stable with respect to the linear instability criterion. We present an expanding box particle-in-cell simulation to mimic the changing conditions in the magnetosheath as the plasma is convected through it that produces mirror mode magnetic holes. We show that in the initial nonlinear evolution, where the plasma conditions are mirror unstable, the magnetic peaks are dominant, while later, as the plasma relaxes toward marginal stability, the fluctuations evolve into deep magnetic holes. While the averaged plasma parameters in the simulation remain close to the mirror instability threshold, the local plasma in the magnetic holes is highly unstable to mirror instability and locally mirror stable in the magnetic peaks.

  15. A review on organic spintronic materials and devices: I. Magnetic field effect on organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-06-01

    Full Text Available Organic spintronics is an emerging and potential platform for future electronics and display due to the intriguing properties of organic semiconductors (OSCs. For the past decade, studies have focused on three types of organic spintronic phenomena: (i magnetic field effect (MFE in organic light emitting diodes (OLEDs, where spin mixing between singlet and triplet polaron pairs (PP can be influenced by an external magnetic field leading to organic magnetoresistive effect (OMAR; (ii magnetoresistance (MR in organic spin valves (OSVs, where spin injection, transport, manipulation, and detection have been demonstrated; and (iii magnetoelectroluminescence (MEL bipolar OSVs or spin-OLEDs, where spin polarized electrons and holes are simultaneously injected into the OSC layer, leading to the dependence of electroluminescence intensity on relative magnetization of the electrodes. In this first of two review papers, we present major experimental results on OMAR studies and current understanding of OMAR using several spin dependent processes in organic semiconductors. During the discussion, we highlight some of the outstanding challenges in this promising research field. Finally, we provide an outlook on the future of organic spintronics.

  16. THE NONISOTHERMAL STAGE OF MAGNETIC STAR FORMATION. I. FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION

    International Nuclear Information System (INIS)

    Kunz, Matthew W.; Mouschovias, Telemachos Ch.

    2009-01-01

    We formulate the problem of the formation and subsequent evolution of fragments (or cores) in magnetically supported, self-gravitating molecular clouds in two spatial dimensions. The six-fluid (neutrals, electrons, molecular and atomic ions, positively charged, negatively charged, and neutral grains) physical system is governed by the radiation, nonideal magnetohydrodynamic equations. The magnetic flux is not assumed to be frozen in any of the charged species. Its evolution is determined by a newly derived generalized Ohm's law, which accounts for the contributions of both elastic and inelastic collisions to ambipolar diffusion and Ohmic dissipation. The species abundances are calculated using an extensive chemical-equilibrium network. Both MRN and uniform grain size distributions are considered. The thermal evolution of the protostellar core and its effect on the dynamics are followed by employing the gray flux-limited diffusion approximation. Realistic temperature-dependent grain opacities are used that account for a variety of grain compositions. We have augmented the publicly available Zeus-MP code to take into consideration all these effects and have modified several of its algorithms to improve convergence, accuracy, and efficiency. Results of magnetic star formation simulations that accurately track the evolution of a protostellar fragment from a density ≅10 3 cm -3 to a density ≅10 15 cm -3 , while rigorously accounting for both nonideal MHD processes and radiative transfer, are presented in a separate paper.

  17. Laboratory studies of the dynamic of resonance cones formation in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, V. V.; Starodubtsev, M. V.; Kostrov, A. V. [Russian Academy of Sciences, Institute of Applied Physics, Nizhny Novgorod (Russian Federation)

    2013-03-15

    The paper is devoted to experimental studies of formation of resonance cones in magnetized plasmas by pulsed RF source in the lower-hybrid (whistler) and the upper-hybrid frequency ranges. It is shown that in both frequency ranges, resonance cones exhibit similar dynamics after switching-on the RF source: at first, wide maxima of radiation are formed in non-resonance directions, which then become narrower, with their direction approaching the resonance one. While the resonance cones are being formed, one observes a fine structure in the form of secondary radiation maxima. It is shown that the characteristic formation time of stationary resonance cones is determined by the minimal value of the group velocity of the quasi-electrostatic waves excited by the antenna. In the low-temperature plasma, this value is limited in the lower-hybrid frequency range by the spatial spectrum of the emitting antenna and in the upper-hybrid range, by the effects of spatial plasma dispersion.

  18. On the Mott transition and the new metal-insulator transitions in doped covalent and polar crystals

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Begimkulov, U.; Kurbanov, U.T.; Yavidov, B.Y.

    2001-10-01

    The Mott transition and new metal-insulator transitions (MIT's) and their distinctive features in doped covalent semiconductors and polar compounds are studied within the continuum model of extrinsic carrier self-trapping, the Hubbard impurity band model (with on-site Coulomb repulsion and screening effects) and the extrinsic (bi)polaronic band model (with short- and long-range carrier-impurity, impurity-phonon and carrier-phonon interactions and intercarrier correlation) using the appropriate tight-binding approximations and variational methods. We have shown the formation possibility of large-radius localized one- and two-carrier impurity (or defect) states and narrow impurity bands in the band gap and charge transfer gap of these carrier-doped systems. The extrinsic Mott-Hubbard and (bi)polaronic insulating gaps are calculated exactly. The proper criterions for Mott transition, extrinsic excitonic and (bi)polaronic MIT's are obtained. We have demonstrated that the Mott transition occurs in doped covalent semiconductors (i.e. Si and Ge) and some insulators with weak carrier-phonon coupling near the large-radius dopants. While, in doped polar compounds (e.g. oxide high-T c superconductors (HTSC) and related materials) the MIT's are new extrinsic (or intrinsic) (bi)polaronic MIT's. We have found that the anisotropy of the dielectric (or (bi)polaronic) properties of doped cuprate HTSC is responsible for smooth (or continuous) MIT's, stripe formation and suppression of high-T c superconductivity. Various experimental results on in-gap states, bands and MIT's in doped covalent semiconductors, oxide HTSC and related materials are in good agreement with the developed theory of Mott transition and new (bi)polaronic MIT's. (author)

  19. Formation of fast shocks by magnetic reconnection in the solar corona

    International Nuclear Information System (INIS)

    Hsieh, M. H.; Tsai, C. L.; Ma, Z. W.; Lee, L. C.

    2009-01-01

    Reconnections of magnetic fields over the solar surface are expected to generate abundant magnetohydrodynamic (MHD) discontinuities and shocks, including slow shocks and rotational discontinuities. However, the generation of fast shocks by magnetic reconnection process is relatively not well studied. In this paper, magnetic reconnection in a current sheet is studied based on two-dimensional resistive MHD numerical simulations. Magnetic reconnections in the current sheet lead to the formation of plasma jets and plasma bulges. It is further found that the plasma bulges, the leading part of plasma jets, in turn lead to the generation of fast shocks on flanks of the bulges. The simulation results show that during the magnetic reconnection process, the plasma forms a series of structures: plasma jets, plasma bulges, and fast shocks. As time increases, the bulges spread out along the current sheet (±z direction) and the fast shocks move just ahead of the bulges. The effects of initial parameters ρ s /ρ m , β ∞ , and t rec on the fast shock generation are also examined, where ρ s /ρ m is the ratio of plasma densities on two sides of the initial current sheet, β ∞ =P ∞ /(B ∞ 2 /2μ 0 ), P ∞ is the plasma pressure and B ∞ is the magnetic field magnitude far from the current sheet, and t rec is the reconnection duration. In the asymmetric case with ρ s /ρ m =2, β ∞ =0.01 and t rec =1000, the maximum Alfven Mach number of fast shocks (M A1max ) is M A1max congruent with 1.1, where M A1 =V n1 /V A1 , and V n1 and V A1 are, respectively, the normal upstream fluid velocity and the upstream Alfven speed in the fast shocks frame. As the density ratio ρ s /ρ m (=1-8) and plasma beta β ∞ (=0.0001-1) increase, M A1max varies slightly. For the case with a large plasma beta β ∞ (=5), the fast shock is very weak. As the reconnection duration t rec increases, the bulges lead to generation of fast shocks with a higher M A1max . The present results can be

  20. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  1. Crystalline and Electronic Structures and Magnetic and Electrical Properties of La-Doped Ca2Fe2O5 Compounds

    Science.gov (United States)

    Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.

    2018-01-01

    Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.

  2. Chemical disorder influence on magnetic state of optimally-doped La0.7Ca0.3MnO3

    Science.gov (United States)

    Rozenberg, E.; Auslender, M.; Shames, A. I.; Jung, G.; Felner, I.; Tsindlekht, M. I.; Mogilyansky, D.; Sominski, E.; Gedanken, A.; Mukovskii, Ya. M.; Gorodetsky, G.

    2011-10-01

    X-band electron magnetic resonance and dc/ac magnetic measurements have been employed to study the effects of chemical disorder on magnetic ordering in bulk and nanometer-sized single crystals and bulk ceramics of optimally-doped La0.7Ca0.3MnO3 manganite. The magnetic ground state of bulk samples appeared to be ferromagnetic with the lower Curie temperature and higher magnetic homogeneity in the vicinity of the ferromagnetic-paramagnetic phase transition in the crystal, as compared with those characteristics in the ceramics. The influence of technological driven "macroscopic" fluctuations of Ca-dopant level in crystal and "mesoscopic" disorder within grain boundary regions in ceramics was proposed to be responsible for these effects. Surface spin disorder together with pronounced inter-particle interactions within agglomerated nano-sample results in well defined core/shell spin configuration in La0.7Ca0.3MnO3 nano-crystals. The analysis of the electron paramagnetic resonance data enlightened the reasons for the observed difference in the magnetic order. Lattice effects dominate the first-order nature of magnetic phase transition in bulk samples. However, mesoscale chemical disorder seems to be responsible for the appearance of small ferromagnetic polarons in the paramagnetic state of bulk ceramics. The experimental results and their analysis indicate that a chemical/magnetic disorder has a strong impact on the magnetic state even in the case of mostly stable optimally hole-doped manganites.

  3. The effect of correlations on the non-ohmic behavior of the small-polaron hopping conductivity in 1D and 3D disordered systems

    International Nuclear Information System (INIS)

    Dimakogianni, M; Triberis, G P

    2010-01-01

    According to percolation theory the investigation of charge transport in disordered systems is equivalent to the study of the possibility of the passage of the carriers through a random network of impedances which interconnect the different lattice sites. When the site energies are not the same, the energy of a site affects the incoming as well as the outgoing impedances connected to the given site and this gives rise to correlations between neighboring impedances. This new condition characterizes the transport process and imposes the evaluation of the average number of sites accessible by a bond from a given site for all possible configurations of sites that satisfy the percolation condition. The generalized molecular crystal model, appropriate for the study of small-polaron hopping transport in disordered systems, and the Kubo formula permit the evaluation of these impedances. Taking correlations into account, theoretical percolation considerations applicable to one-dimensional and three-dimensional disordered systems, lead to analytical expressions for the temperature and electric field dependence of the DC conductivity at high (multi-phonon-assisted hopping) and low (few-phonon-assisted hopping) temperatures. The theoretical analysis reveals the effect of correlations on the non-ohmic behavior of the small-polaron hopping conductivity and permits the evaluation of the maximum hopping distance. Quantitative estimates of this effect are presented comparing the theoretical results, including correlations with those ignoring them, previously reported, applying them to recent experimental data for a wide temperature range and from low up to moderate electric fields.

  4. Magnetic reconnection through the current sheets as the universal process for plasma dynamics in nonuniform magnetic fields

    International Nuclear Information System (INIS)

    Frank, A.G.; Bogdanov, S.Yu.; Burilina, V.B.; Kyrie, N.P.

    1997-01-01

    Laboratory experiments are reported, in which we studied the possibilities of the formation of current sheets (CS) in different magnetic configurations, as well as the magnetic reconnection phenomena. In 2D magnetic fields with null-lines the CS formation was shown to be a typical process in both linear and nonlinear regimes. The problem of CS formation is of a fundamental importance in the general case of 3D magnetic configurations. We have revealed experimentally, that the formation of CS occurs in the various 3D configurations, both containing magnetic null-points and without them. At the same time, the CS parameters essentially depend on the local characteristics of the configuration. We may conclude therefore, that the self-organization of CS represents the universal process for the plasma dynamics in the nonuniform magnetic fields. (author)

  5. Investigation on structural, magneto-transport, magnetic and thermal properties of La{sub 0.8}Ca{sub 0.2−x}Ba{sub x}MnO{sub 3} (0 ⩽ x ⩽ 0.2) manganites

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, S.O. [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Rao, Ashok, E-mail: ashokanu_rao@rediffmail.com [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Subhashini [Material Processing Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 575025 (India); Okram, G.S. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452 001, MP (India)

    2015-08-15

    Highlights: • Ba-doped compounds follow small polaron hopping model in high temperature range. • Ba-doping introduces structural phase transformation. • MR (%) decreases with Ba-doping, however T{sub MI} and T{sub C} increase with doping. • High temperature TEP data follows SPH model. • At low temperatures, electron–magnon scattering play role in thermal transport. - Abstract: A systematic study on the structural, electrical, magnetic and thermo-electric properties of La{sub 0.8}Ba{sub x}Ca{sub 0.2−x}MnO{sub 3} (0 ⩽ x ⩽ 0.2) manganites is carried out in the present work. The samples have been prepared using solid state reaction technique. All the samples are single phased. It is seen that Ba-doping introduces a structural phase transformation viz. from rhombohedral to cubic system. Electric and magnetic studies respectively show that the metal–insulator transition temperature, T{sub MI} and Curie temperature, T{sub C} increase with Ba-content. Magneto-resistance (MR) data shows that it decreases with Ba-doping. Analyses of the electrical transport data in metallic region i.e. T < T{sub MI} shows that the electrical transport is governed predominantly by electron–electron scattering process. On the other hand, the adiabatic small polaron hopping (ASPH) model is appropriate in the high-temperature insulating range viz. T > T{sub MI}. We have used the electrical resistivity data in the entire temperature range (50–300 K) and analyzed using the phenomenological percolation model which is based on the phase segregation mechanism. We have analyzed the Seebeck coefficient data which reveals that the small polaron hopping mechanism is operative in high temperature regime and the low temperature region is examined by taking into account the impurity, electron–magnon scattering, and spin wave fluctuation terms. It is established that the electron–magnon scattering is dominating for the thermoelectric transport below T{sub MI}.

  6. Theory of novel normal and superconducting states in doped oxide high-Tc superconductors

    International Nuclear Information System (INIS)

    Dzhumanov, S.

    2001-10-01

    A consistent and complete theory of the novel normal and superconducting (SC) states of doped high-T c superconductors (HTSC) is developed by combining the continuum model of carrier self-trapping, the tight-binding model and the novel Fermi-Bose-liquid (FBL) model. The ground-state energy of carriers in lightly doped HTSC is calculated within the continuum model and adiabatic approximation using the variational method. The destruction of the long-range antiferromagnetic (AF) order at low doping x≥ x cl ≅0.015, the formation of the in-gap states or bands and novel (bi)polaronic insulating phases at x c2 ≅0.06-0.08, and the new metal- insulator transition at x≅x c2 in HTSC are studied within the continuum model of impurity (defect) centers and large (bi)polarons by using the appropriate tight-binding approximations. It is found that the three-dimensional (3d) large (bi)polarons are formed at ε ∞ /ε 0 ≤0.1 and become itinerant when the (bi)polaronic insulator-to-(bi)polaronic metal transitions occur at x x c2 . We show that the novel pseudogapped metallic and SC states in HTSC are formed at x c2 ≤x≤x p ≅0.20-0.24. We demonstrate that the large polaronic and small BCS-like pairing pseudogaps opening in the excitation spectrum of underdoped (x c2 BCS =0.125), optimally doped (x BCS o ≅0.20) and overdoped (x>x o ) HTSC above T c are unrelated to superconductivity and they are responsible for the observed anomalous optical, transport, magnetic and other properties of these HTSC. We develop the original two-stage FBL model of novel superconductivity describing the combined novel BCS-like pairing scenario of fermions and true superfluid (SF) condensation scenario of composite bosons (i.e. bipolarons and cooperons) in any Fermi-systems, where the SF condensate gap Δ B and the BCS-like pairing pseudogap Δ F have different origins. The pair and single particle condensations of attracting 3d and two- dimensional (2d) composite bosons are responsible for

  7. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  8. Magnetism of Carbonados

    Science.gov (United States)

    Kletetschka, G.; Taylor, P. T.; Wasilewski, P. J.

    2000-01-01

    Origin of Carbonado is not clear. Magnetism of Carbonado comes from the surface, indicating contemporary formation of both the surface and magnetic carriers. The interior of carbonado is relatively free of magnetic phases.

  9. Low virial parameters in molecular clouds: Implications for high-mass star formation and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kauffmann, Jens; Pillai, Thushara [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Goldsmith, Paul F., E-mail: jens.kauffmann@astro.caltech.edu, E-mail: tpillai@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 (United States)

    2013-12-20

    Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only 'supercritical' cloud fragments are able to collapse and form stars. The virial parameter α = M {sub vir}/M, which compares the virial mass to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by α ≲ 2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters α ≳ 2 prevail in clouds. This would suggest that collapse toward star formation is a gradual and relatively slow process and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters <<2 and compile a catalog of 1325 virial parameter estimates. Low values of α are in particular observed for regions of high-mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable 'competitive accretion' in HMSF, constrain some models of 'monolithic collapse', and might explain the absence of high-mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ∼1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.

  10. Formation of a compact toroid for enhanced efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2014-02-15

    We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.

  11. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  12. Lattice strain accompanying the colossal magnetoresistance effect in EuB6.

    Science.gov (United States)

    Manna, Rudra Sekhar; Das, Pintu; de Souza, Mariano; Schnelle, Frank; Lang, Michael; Müller, Jens; von Molnár, Stephan; Fisk, Zachary

    2014-08-08

    The coupling of magnetic and electronic degrees of freedom to the crystal lattice in the ferromagnetic semimetal EuB(6), which exhibits a complex ferromagnetic order and a colossal magnetoresistance effect, is studied by high-resolution thermal expansion and magnetostriction experiments. EuB(6) may be viewed as a model system, where pure magnetism-tuned transport and the response of the crystal lattice can be studied in a comparatively simple environment, i.e., not influenced by strong crystal-electric field effects and Jahn-Teller distortions. We find a very large lattice response, quantified by (i) the magnetic Grüneisen parameter, (ii) the spontaneous strain when entering the ferromagnetic region, and (iii) the magnetostriction in the paramagnetic temperature regime. Our analysis reveals that a significant part of the lattice effects originates in the magnetically driven delocalization of charge carriers, consistent with the scenario of percolating magnetic polarons. A strong effect of the formation and dynamics of local magnetic clusters on the lattice parameters is suggested to be a general feature of colossal magnetoresistance materials.

  13. Effect of magnetic fields on green color formation in frog skin

    Directory of Open Access Journals (Sweden)

    H. Kashiwagi

    2017-05-01

    Full Text Available The present work is focused on a dynamic and efficient optical control system that is made possible by investigation of the body surfaces of various animals. Specifically, we expect Japanese tree frog (Hyla japonica skin to provide a model for a flexible display device actuator mechanism. Tree frogs change body color from their original green to other colors in response to background colors. The color formation is controlled not only by chromatophores, but also by guanine microcrystals in iridophores. We collected sample microcrystals from the frog’s dorsal skin and made a model display sheet using the green skin layers. The transparent chamber that contained the crystal suspension was layered to enhance light reflection. Sheet color was observed while the angle of light incidence was varied, with and without magnetic field exposure at 0.3 T. A slight increase in red and green intensity was detected. Additionally, reflected intensity increased with increasing angle of incidence. These results indicate that the guanine crystal platelets in frog skin can efficiently switch the reflected light direction under application of a magnetic field. This in turn suggests that a several-micron-sized microcrystal of this type is a candidate material for development of flexible optical chips for ambient light control.

  14. Electron magnetic resonance study of monovalent Na doping in Pr0.6Sr0.4−xNaxMnO3 manganites

    International Nuclear Information System (INIS)

    Thaljaoui, Rachid; Boujelben, Wahiba; Pękała, Marek; Szydłowska, Jadwiga; Cheikhrouhou, Abdelwaheb

    2012-01-01

    Highlights: ► New monovalent doped manganites Pr 0.6 Sr 0.4−x Na x MnO 3 (x = 0, 0.05). ► Comparison of electron magnetic resonance spectra in ferro- and paramagnetic phases. ► Double exchange interactions weakened by Na doping as indicated by activation energy. ► Magnetic susceptibility derived from resonance intensity obeys Curie–Weiss law. - Abstract: Effect of monovalent Na doping on the magnetic properties is studied in Pr 0.6 Sr 0.4−x Na x MnO 3 system (x = 0, 0.05) using X-band electron magnetic resonance and magnetization measurements. Temperature variation of magnetic resonance spectra of doped and undoped manganites is analyzed for paramagnetic and ferromagnetic states and compared to similar systems. In paramagnetic phase the magnetic susceptibility proportional to resonance signal intensity is found to obey the Curie–Weiss law. The effective magnetic moment becomes smaller in doped manganite. The paramagnetic Curie temperature derived from signal intensity equals to 312 and 306 K for the undoped and doped manganites, respectively, and is close to values obtained from magnetization variation in paramagnetic phase. The activation energy determined using the adiabatic small polaron hopping model is higher for the undoped than the doped manganite, which proves that the Na doping slightly reduces the Mn 3+ /Mn 4+ double exchange interactions.

  15. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    Science.gov (United States)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  16. Glassy formation ability, magnetic properties and magnetocaloric effect in Al27Cu18Er55 amorphous ribbon

    Science.gov (United States)

    Li, Lingwei; Xu, Chi; Yuan, Ye; Zhou, Shengqiang

    2018-05-01

    In this work, we have fabricated the Al27Cu18Er55 amorphous ribbon with good glassy formation ability by melt-spinning technology. A broad paramagnetic (PM) to ferromagnetic (FM) transition (second ordered) together with a large reversible magnetocaloric effect (MCE) in Al27Cu18Er55 amorphous ribbon was observed around the Curie temperature TC ∼ 11 K. Under the magnetic field change (ΔH of 0-7 T, the values of MCE parameter of the maximum magnetic entropy change (-ΔSMmax) and refrigerant capacity (RC) for Al27Cu18Er55 amorphous ribbon reach 21.4 J/kg K and 599 J/kg, respectively. The outstanding glass forming ability as well as the excellent magneto-caloric properties indicate that Al27Cu18Er55 amorphous could be a good candidate for low temperature magnetic refrigeration.

  17. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  18. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  19. Grain boundary characteristics and texture formation in a medium carbon steel during its austenitic decomposition in a high magnetic field

    International Nuclear Information System (INIS)

    Zhang, Y.D.; Esling, C.; Lecomte, J.S.; He, C.S.; Zhao, X.; Zuo, L.

    2005-01-01

    A 12-T magnetic field has been applied to a medium plain carbon steel during the diffusional decomposition of austenite and the effect of a high magnetic field on the distribution of misorientation angles, grain boundary characteristics and texture formation in the ferrite produced has been investigated. The results show that a high magnetic field can cause a considerable decrease in the frequency of low-angle misorientations and an increase in the occurrence of low Σ coincidence boundaries, in particular the Σ3 of ferrite. This may be attributed to the elevation in the transformation temperature caused by the magnetic field and, therefore, the reduction of the transformation stress. The wider temperature range for grain growth offers longer time to the less mobile Σ boundaries to enlarge their areas. Moreover, the magnetic field can enhance the transverse field-direction fiber ( parallel TFD). It can be assumed that the effects of the field were caused by the dipolar interaction between the magnetic moments of Fe atoms

  20. Temporal and spatial spectroscopy of the plasma formation in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Miljevic, V.I.; Tosic, D.D.

    1980-01-01

    The formation of argon plasma in crossed electric and magnetic fields in a cylindrical diode with an incandescent cathode has been studied by means of the delay time of the anode current pulse and photon pulse (corresponding to the optical transitions) and the shape of the voltage collapse. The working conditions were: pressure p=10 -5 --10 -3 Torr, anode voltage U/sub a/=800 V, and maximum magnetic field B/sub max/=1200 Gs. Photoelectrical recording of spectral lines was performed with a monochromator in the wavelength range 3600--6000 A, and the total optical spectrum was recorded simultaneously on a photoplate in a separate spectrograph in the wavelength range 2000--10 000 A. The delay time of the anode current pulse and photon pulse are approximately the same and are in the millisecond range. The delay time of the photon pulse does not depend on the wavelength. Simultaneously the spectral lines of the working gas (A II), residual gas (O II), and tungsten (W I) appear. Tungsten atoms appear at the moment of breakdown as a result of ion bombardment of the cathode. Neutral atomic lines of the working gas (A I) have not been observed. Radial analysis shows that the delay time of the photon pulse does not depend on the radius. Spectroscopic results have been analyzed in terms of excitation and ionization processes during the formation time. The shape of the voltage collapse suggests the streamer breakdown mechanism

  1. Defect formation and magnetic properties of Co-doped GaN crystal and nanowire

    International Nuclear Information System (INIS)

    Shi, Li-Bin; Liu, Jing-Jing; Fei, Ying

    2013-01-01

    Theoretical calculation based on density functional theory (DFT) and generalized gradient approximation (GGA) has been carried out in studying defect formation and magnetic properties of Co doped GaN crystal and nanowire (NW). Co does not exhibit site preference in GaN crystal. However, Co occupies preferably surface sites in GaN NW. Transition level of the defect is also investigated in GaN crystal. We also find that Co Ga (S) in NW does not produce spin polarization and Co Ga (B) produces spontaneous spin polarization. Ferromagnetic (FM) and antiferromagnetic (AFM) couplings are analyzed by six different configurations. The results show that AFM coupling is more stable than FM coupling for Co doped GaN crystal. It is also found from Co doped GaN NW calculation that the system remains FM stability for majority of the configurations. Magnetic properties in Co doped GaN crystal can be mediated by N and Ga vacancies. The FM and AFM stability can be explained by Co 3d energy level coupling

  2. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    Science.gov (United States)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  3. Ag-related alloy formation and magnetic phases for Ag/Co/Ir(111) ultrathin films

    International Nuclear Information System (INIS)

    Tsay, Jyh-Shen; Tsai, Du-Cheng; Chang, Cheng-Hsun-Tony; Chen, Wei-Hsiang

    2013-01-01

    The Kerr intensity versus the Ag thickness for Ag grown on the top of Co/Ir(111) exhibits an oscillating behavior with a period around one monolayer which should be due to the morphological change related electronic structure differences of the Ag layer. From systematical investigations of Ag/Co/Ir(111) films with the Co layer thinner than 4 monolayers at temperatures below 900 K, a magnetic phase diagram has been established. As the annealing temperature increases for Ag/Co/Ir(111) films, enhancements of the coercive force occur in both the polar and longitudinal configurations due to the intermixing of Ag and Co at the interface and the formation of Co–Ir alloy. The disappearance of ferromagnetism is mainly attributed to the reduced atomic percent of cobalt in Co–Ir alloy, the lowered Curie temperature by a reduction of the thickness of magnetic layers, and the intermixing of Ag and Co at the Ag/Co interface. - Highlights: • An oscillating behavior occurs due to the morphological change for Ag on Co/Ir(111). • A magnetic phase diagram has been established for Ag/Co/Ir(111). • Some Ag atoms intermix with the underlying Co layer at high temperatures. • Polar coercive force is enhanced due to the compositional change

  4. Role of Ni2+(d8) ions in electrical, optical and magnetic properties of CdS nanowires for optoelectronic and spintronic applications

    Science.gov (United States)

    Arshad Kamran, Muhammad

    2018-06-01

    For the first time, 1D Ni ion doped CdS nanowires (NWs) were synthesized via chemical vapour deposition (CVD). The synthesized Cd0.886Ni0.114S NWs were single crystalline. We have reported here the investigation of optical, electrical and magnetic properties of prepared NWs for optoelectronic and spintronic applications. Successful incorporation of Ni ions in an individual CdS NW has been confirmed through several characterization tools: significantly higher angle and phonon mode shift were observed in the XRD and Raman spectra. SEM-EDX and XPS analysis also confirmed the presence of Ni2+ ions. Room temperature photoluminescence (RT-PL) showed multiple peaks: two emission peaks in the visible region centered at 517.1 nm (green), 579.2 nm (orange), and a broad-band near infra-red (NIR) emission centered at 759.9 nm. The first peak showed 5 nm red shift upon Ni2+ doping, hinting at the formation of exciton magnetic polarons (EMPs), and broad NIR emission was observed in both chlorides and bromides, which was assigned to d‑d transition of Ni ions whose energy levels lying at 749.51 nm (13 342 cm–1) and 750.98 nm (13 316 cm–1) are very close to NIR emission. Orange emission not only remained at same peak position—its PL intensity was also significantly enhanced at 78 K; this was assigned to d‑d transition (3A2g → 1Eg) of Ni2+ ions. It was observed that 11.4% Ni2+ ion doping enhanced the conductivity of our sample around 20 times, and saturation magnetization (Ms) increased from 7.2 × 10‑5 Am2/Kg to 1.17 × 10‑4 Am2/Kg, which shows promise for optoelectronic and spintronic applications.

  5. Planck intermediate results XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2016-01-01

    emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively...... for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution....

  6. Formation of Cool and Warm Jets by Magnetic Flux Emerging from the Solar Chromosphere to Transition Region

    Science.gov (United States)

    Yang, Liping; Peter, Hardi; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Zhang, Lei; Yan, Limei

    2018-01-01

    In the solar atmosphere, jets are ubiquitous at various spatial-temporal scales. They are important for understanding the energy and mass transports in the solar atmosphere. According to recent observational studies, the high-speed network jets are likely to be intermittent but continual sources of mass and energy for the solar wind. Here, we conduct a 2D magnetohydrodynamics simulation to investigate the mechanism of these network jets. A combination of magnetic flux emergence and horizontal advection is used to drive the magnetic reconnection in the transition region between a strong magnetic loop and a background open flux. The simulation results show that not only a fast warm jet, much similar to the network jets, is found, but also an adjacent slow cool jet, mostly like classical spicules, is launched. Differing from the fast warm jet driven by magnetic reconnection, the slow cool jet is mainly accelerated by gradients of both thermal pressure and magnetic pressure near the outer border of the mass-concentrated region compressed by the emerging loop. These results provide a different perspective on our understanding of the formation of both the slow cool jets from the solar chromosphere and the fast warm jets from the solar transition region.

  7. Phase formation, morphology and magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles synthesized by hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Phumying, Santi; Maensiri, Santi [Advanced Materials Physics Laboratory (Amp.), School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-01

    In the present work, the processing conditions for obtaining monodispersed magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles with the desired morphology and relatively high saturation magnetization via hydrothermal technique were developed. For the first time, the effects of base type and reaction conditions (i.e. temperature and time) on phase formation, morphology and magnetic properties of the obtained products were determined by using a combination of XRD, TEM/EDX and VSM techniques. It is seen that the saturation magnetization of the particles can be increased by employing lower reaction temperature and/or shorter reaction time, while narrow size distribution of the particles can be maintained. In addition, it was found that pure phase of superparamagnetic MgFe{sub 2}O{sub 4} nanoparticles with the smallest size of about 65 nm was obtained by using CH{sub 3}COONa as a base at 180 °C for 14 h. - Highlights: • Preparation of MgFe{sub 2}O{sub 4} nanoparticles by hydrothermal method. • Effects of base and reaction conditions on formation and morphology MgFe{sub 2}O{sub 4} particles. • Producing the 65 nm MgFe{sub 2}O{sub 4} nanoparticles with superparamagnetic property.

  8. Multilevel modeling of micromechanics and phase formation for microstructural evolution of magnetic zones

    International Nuclear Information System (INIS)

    Suwa, Yoshihiro; Aizawa, Tatsuhiko; Takaya, Shigeru; Nagae, Yuji; Aoto, Kazumi

    2005-03-01

    The present research aims at a proposal of theoretical treatise to describe the local phase transformation from austenite to ferrite in the stainless steels under hot cyclic fatigue conditions. In experiments, this local phase transformation is detected as a magnetized region in the non-magnetic matrix after low-cycle fatigue test at the elevated temperature. The theoretical frame proposed here is composed of two methodologies. In the first approach, microstructure evolution with γ → α transformation is described by the phase field method. In the second approach, micromechanical method on the basis of the unit cell modeling is proposed to develop a new micromechanical analysis. The details of two approached are summarized in the following. (1) Phase formation simulation by the phase field method. Most of reports have started that γ-α phase transformation as a creep damage is induced by dechromization, which comes from carbide precipitation around grain boundaries. A new theoretical treatise is proposed for simulating this γ → α transformation in Fe-Cr-Ni system. Stabilities of both phases are investigated for various chemical compositions. Furthermore, in order to investigate dechromization phenomena in Fe-Cr-Ni-C system, a new theoretical frame is also proposed to handle an interstitial element in phase field method. (2) Low cycle fatigue elasto-plastic analysis by the unit-cell modeling. In experiments, the magnetized zones are generated to distribute at the vicinity of the hard, delta-phase inclusion in the austenitic matrix. The cumulative plastic region advances in the surroundings of this hard inclusion with increasing the number of cycles in the controlled strain range. This predicted profile of cumulative plastic regions corresponds to the experimentally measured, magnetized zones. In addition, the effect of geometric configuration of this inclusion on the plastic region evolution has close relationship of creep damage advancement in experiments

  9. THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE FORMATION OF CLOSE-IN EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Jacob B., E-mail: jbsimon.astro@gmail.com [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States)

    2016-08-20

    Approximately half of Sun-like stars harbor exoplanets packed within a radius of ∼0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura and Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α , and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving for the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.

  10. Kinetics of doublet formation in bicomponent magnetic suspensions: The role of the magnetic permeability anisotropy

    Science.gov (United States)

    Lopez-Lopez, M. T.; Nogueras-Lara, F.; Rodriguez-Arco, L.; Guigo, N.; Sbirrazzuoli, N.; Zubarev, A. Yu.; Lacis, S.; Kuzhir, P.

    2017-12-01

    Micron-sized particles (microbeads) dispersed in a suspension of magnetic nanoparticles, i.e., ferrofluids, can be assembled into different types of structures upon application of an external magnetic field. This paper is devoted to theoretical modeling of a relative motion of a pair of microbeads (either soft ferromagnetic or diamagnetic) in the ferrofluid under the action of applied uniform magnetic field which induces magnetic moments in the microbeads making them attracting to each other. The model is based on a point-dipole approximation for the magnetic interactions between microbeads mediated by the ferrofluid; however, the ferrofluid is considered to possess an anisotropic magnetic permeability thanks to field-induced structuring of its nanoparticles. The model is tested against experimental results and shows generally better agreement with experiments than the model considering isotropic magnetic permeability of ferrofluids. The results could be useful for understanding kinetics of aggregation of microbeads suspended in a ferrofluid. From a broader perspective, the present study is believed to contribute to a general understanding of particle behaviors in anisotropic media.

  11. Kinetic Monte Carlo Study of Ambipolar Lithium Ion and Electron-Polaron Diffusion into Nanostructured TiO2

    International Nuclear Information System (INIS)

    Yu, Jianguo; Sushko, Maria L.; Kerisit, Sebastien N.; Rosso, Kevin M.; Liu, Jun

    2012-01-01

    Nanostructured titania (TiO2) polymorphs have proved to be promising electrode materials for next generation lithium-ion batteries. However, there is still a lack of understanding of the fundamental microscopic processes that control charge transport in these materials. Here we present microscopic simulations of the collective dynamics of lithium-ion (Li+) and charge compensating electron polarons (e-) in rutile TiO2 nanoparticles in contact with idealized conductive matrix and electrolyte. Kinetic Monte Carlo simulations are used, parameterized by molecular dynamics-based predictions of activation energy barriers for Li+ and e- diffusion. Simulations reveal the central role of electrostatic coupling between Li+ and e- on their collective drift diffusion at the nanoscale. They also demonstrate that high contact area between conductive matrix and rutile nanoparticles leads to undesirable coupling-induced surface saturation effects during Li+ insertion, which limits the overall capacity and conductivity of the material. These results help provide guidelines for design of nanostructured electrode materials with improved electrochemical performance.

  12. Effect of Ti doping on magnetic properties and magnetoresistance in LaSr2Mn2O7

    International Nuclear Information System (INIS)

    Feng, J.; Che, P.; Wang, J.P.; Lu, M.F.; Liu, J.F.; Cao, X.Q.; Meng, J.

    2005-01-01

    The effect of Ti substitution for Mn on magnetic and transport properties has been investigated for layered manganese oxides LaSr 2 Mn 2-x Ti x O 7 . Titanium doping hampered the canted antiferromagnetic (AFM) exchange at low temperature and their Neel temperature (T N ) decreased from 138 K (x = 0) to 106 K (x = 0.1). Meanwhile, spin glass, charge ordering and metal-insulator transition are suppressed by Ti addition. This can be attributed to Mn-site disorder caused by random substitution of Ti 4+ . The suppression of charge ordering leads to magntetoresistance (MR) ratio increase and MR reaches maximum at x = 0.3. The resistivity increases obviously with x increasing because of double exchange interaction channel broken by Ti 4+ addition. The resistivity of all samples in low temperature range fits to the Mott's variable range hopping (VRH) model, while it fits to nearest neighbor hopping of small polarons model in high temperature range. We also found that both disorder and distortion in A-site and B-site will induce the similar effect to electrical and magnetic properties

  13. Magnetic fields in giant planet formation and protoplanetary discs

    Science.gov (United States)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in

  14. Critical phenomena in magnetic vortex formation probed by noise spectroscopy

    International Nuclear Information System (INIS)

    Saitoh, E.; Harii, K.; Miyajima, H.; Yamaoka, T.

    2004-01-01

    Transition between a vortex magnetic state and a uniform magnetic state in a Ni 81 Fe 19 mesoscopic ring has been investigated in terms of resistive-noise spectroscopy. The observed low-frequency noise exhibits critical enhancement around the magnetization saturation. This noise enhancement can be argued from the viewpoint of the critical phenomena due to the chiral-symmetry breakdown of mesoscopic magnetic-structure, which can present a typical mechanism of symmetry transition of magnetic structure in mesoscopic ferromagnets

  15. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    Science.gov (United States)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  16. Exploring Polaronic, Excitonic Structures and Luminescence in Cs4PbBr6/CsPbBr3.

    Science.gov (United States)

    Kang, Byungkyun; Biswas, Koushik

    2018-02-15

    Among the important family of halide perovskites, one particular case of all-inorganic, 0-D Cs 4 PbBr 6 and 3-D CsPbBr 3 -based nanostructures and thin films is witnessing intense activity due to ultrafast luminescence with high quantum yield. To understand their emissive behavior, we use hybrid density functional calculations to first compare the ground-state electronic structure of the two prospective compounds. The dispersive band edges of CsPbBr 3 do not support self-trapped carriers, which agrees with reports of weak exciton binding energy and high photocurrent. The larger gap 0-D material Cs 4 PbBr 6 , however, reveals polaronic and excitonic features. We show that those lattice-coupled carriers are likely responsible for observed ultraviolet emission around ∼375 nm, reported in bulk Cs 4 PbBr 6 and Cs 4 PbBr 6 /CsPbBr 3 composites. Ionization potential calculations and estimates of type-I band alignment support the notion of quantum confinement leading to fast, green emission from CsPbBr 3 nanostructures embedded in Cs 4 PbBr 6 .

  17. Refining the Formation and Early Evolution of the Eastern North American Margin: New Insights From Multiscale Magnetic Anomaly Analyses

    Science.gov (United States)

    Greene, John A.; Tominaga, Masako; Miller, Nathaniel C.; Hutchinson, Deborah R.; Karl, Matthew R.

    2017-11-01

    To investigate the oceanic lithosphere formation and early seafloor spreading history of the North Atlantic Ocean, we examine multiscale magnetic anomaly data from the Jurassic/Early Cretaceous age Eastern North American Margin (ENAM) between 31 and 40°N. We integrate newly acquired sea surface magnetic anomaly and seismic reflection data with publicly available aeromagnetic and composite magnetic anomaly grids, satellite-derived gravity anomaly, and satellite-derived and shipboard bathymetry data. We evaluate these data sets to (1) refine magnetic anomaly correlations throughout the ENAM and assign updated ages and chron numbers to M0-M25 and eight pre-M25 anomalies; (2) identify five correlatable magnetic anomalies between the East Coast Magnetic Anomaly (ECMA) and Blake Spur Magnetic Anomaly (BSMA), which may document the earliest Atlantic seafloor spreading or synrift magmatism; (3) suggest preexisting margin structure and rifting segmentation may have influenced the seafloor spreading regimes in the Atlantic Jurassic Quiet Zone (JQZ); (4) suggest that, if the BSMA source is oceanic crust, the BSMA may be M series magnetic anomaly M42 ( 168.5 Ma); (5) examine the along and across margin variation in seafloor spreading rates and spreading center orientations from the BSMA to M25, suggesting asymmetric crustal accretion accommodated the straightening of the ridge from the bend in the ECMA to the more linear M25; and (6) observe anomalously high-amplitude magnetic anomalies near the Hudson Fan, which may be related to a short-lived propagating rift segment that could have helped accommodate the crustal alignment during the early Atlantic opening.

  18. Long-range ferromagnetic order induced by a donor impurity band exchange in SnO{sub 2}:Er{sup 3+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Aragón, F. H.; Coaquira, J. A. H. [Núcleo de Física Aplicada, Institute of Physics, University of Brasília, Brasília DF 70910-900 (Brazil); Chitta, V. A. [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-000 (Brazil); Hidalgo, P. [Faculdade Gama-FGA, Sector Central Gama, Universidade de Brasília, Brasília, DF72405-610 (Brazil); Brito, H. F. [Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000 (Brazil)

    2013-11-28

    In this work, the structural and magnetic properties of Er-doped SnO{sub 2} (SnO{sub 2}:Er) nanoparticles are reported. The SnO{sub 2}:Er nanoparticles have been synthesized by a polymer precursor method with Er content from 1.0% to 10.0%. X-ray diffraction results indicate the formation of only the rutile-type structure in all samples. The estimated mean crystallite size shows a decrease from ∼10 to ∼4 nm when the Er content is increased from 1.0% to 10.0%. The particle size values have been corroborated by transmission electron microscopy technique. The thermal dependence of the magnetization is consistent with the 3+ oxidation state of erbium ions for all samples. A strong paramagnetic-like behavior coexisting with a ferromagnetic phase has been determined for samples with Er content below 5.0%. Above this concentration, only a paramagnetic behavior has been determined. Isothermal magnetization curves are consistent with the occurrence of long-range ferromagnetic order mediated by donor electrons forming bound magnetic polarons which overlap to produce a spin-split impurity band.

  19. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation

    International Nuclear Information System (INIS)

    Skaat, Hadas; Margel, Shlomo; Belfort, Georges

    2009-01-01

    Maghemite (γ-Fe 2 O 3 ) magnetic nanoparticles of 15.0 ± 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic γ-Fe 2 O 3 /poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) (γ-Fe 2 O 3 /PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the γ-Fe 2 O 3 /PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from α-helix to β-sheets during insulin fibril formation is observed in the presence of the γ-Fe 2 O 3 /PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the γ-Fe 2 O 3 core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

  20. Numerical simulation of microstructure formation of suspended particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Ido, Y; Inagaki, T; Yamaguchi, T

    2010-01-01

    Microstructure formation of magnetic particles and nonmagnetic particles in magnetorheological (MR) fluids is investigated using the particle method simulation based on simplified Stokesian dynamics. Spherical nonmagnetic particles are rearranged in the field direction due to the formation of magnetic particles in chain-like clusters. Cluster formation of spherocylindrical magnetic particles forces spherical nonmagnetic particles to arrange in the direction of the field. In contrast, the spherocylindrical nonmagnetic particles, with an aspect ratio of two or three, are not sufficiently rearranged in the field direction by cluster formation of spherical magnetic particles. Even after cluster formation in the presence of a magnetic field, the uniformity of distribution of particles on the plane perpendicular to the field direction shows very little change. However, the deviation of uniformity in particle distribution is reduced when the volume fraction of magnetic particles is the same as that of nonmagnetic particles.

  1. Donor states in a semimagnetic Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well

    Science.gov (United States)

    Kalpana, Panneer Selvam; Nithiananthi, Perumal; Jayakumar, Kalyanasundaram

    2017-02-01

    The theoretical investigation has been carried out on the binding energy of donor associated with the electrons confined in a Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well (DQW) as a function of central barrier width for various well dimensions and impurity locations in the barrier and the well. The magnetic field can act as a tool to continuously change the interwell coupling inside this DQW systems and its effect on donor binding has also been studied. Moreover, the polaronic corrections, which is due to the strong exchange interaction between the magnetic moment of Mn2+ ion and the spin of the confined carrier, to the binding energy of the hydrogenic donor impurity has also been estimated with and without the application of magnetic field. The binding energy of the donor impurity is determined by solving the Schrodinger equation variationally in the effective mass approximation and the effect due to Bound Magnetic Polaron (BMP) is included using mean field theory with the modified Brillouin function. The results are reported and discussed.

  2. Optical transition energy of magneto-polaron in a GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Vinolin, Ada [Dept. of Physics, Madurai Kamaraj University College, Alagarkoil Road, Madurai-625002. India (India); Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, Govt. Arts College, Melur-625106. Madurai. India (India)

    2015-06-24

    Magneto-LO-polaron in a cylindrical GaAs{sub 0.9} P{sub 0.1} / GaAs{sub 0.6} P{sub 0.4} quantum dot is investigated taking into consideration of geometrical confinement effect. The effects of phonon on the exciton binding energy and the interband emission energy as a function of dot radius are found. The calculations are performed within the single band effective mass approximation using the variational method based on the Lee-Low-Pine LLP transformation.

  3. Magnetic particle diverter in an integrated microfluidic format

    Energy Technology Data Exchange (ETDEWEB)

    Pekas, Nikola [Institute for Combinatorial Discovery, Departments of Chemistry and Chemical Engineering, and Ames Laboratory-USDOE, Iowa State University, Ames, IA 50011-3111 (United States); Granger, Michael [Institute for Combinatorial Discovery, Departments of Chemistry and Chemical Engineering, and Ames Laboratory-USDOE, Iowa State University, Ames, IA 50011-3111 (United States); Tondra, Mark [NVE Corporation, Eden Prairie, Minnesota 55344 (United States); Popple, Anthony [NVE Corporation, Eden Prairie, Minnesota 55344 (United States); Porter, Marc D. [Institute for Combinatorial Discovery, Departments of Chemistry and Chemical Engineering, and Ames Laboratory-USDOE, Iowa State University, Ames, IA 50011-3111 (United States)]. E-mail: mporter@porter1.ameslab.gov

    2005-05-15

    A fully integrated micromagnetic particle diverter and microfluidic system are described. Particles are diverted via an external uniform magnetic field perturbed at the microscale by underlying current straps. The resulting magnetic force deflects particles across a flow stream into one of the two channels at a Y-shaped junction. The basic theoretical framework, design, and operational demonstration of the device are presented.

  4. Magnetic particle diverter in an integrated microfluidic format

    International Nuclear Information System (INIS)

    Pekas, Nikola; Granger, Michael; Tondra, Mark; Popple, Anthony; Porter, Marc D.

    2005-01-01

    A fully integrated micromagnetic particle diverter and microfluidic system are described. Particles are diverted via an external uniform magnetic field perturbed at the microscale by underlying current straps. The resulting magnetic force deflects particles across a flow stream into one of the two channels at a Y-shaped junction. The basic theoretical framework, design, and operational demonstration of the device are presented

  5. Computer simulation of the formation of Langmuir solitons and holes in a cylindrical magnetized plasma column

    International Nuclear Information System (INIS)

    Turikov, V.A.

    1978-06-01

    Nonlinear plasma oscillations in a cylindrical plasma resulting from a short localized external excitation are examined by means of a particle-in-cell simulation scheme. Computer calculations are performed for describing the experimental results obtained in a single-ended Q-machine plasma in a cylindrical waveguide. It is assumed that there is a strong magnetic field in the direction of the column axis. When the amplitude of the excitation potential is close to the kinetic energy of electrons having a phase velocity of the electron plasma wave, the formation is observed of solitons and holes in phase space. After formation, the solitons and holes move with constant velocities. The velocities of solitons are close to the wave-phase velocity, while holes move with smaller velocities. When the external potential amplitude is increased, there is a tendency that the number of holes grows. The potential amplitude of the self-consistent field in the soliton region damps in time with increasing soliton width. The potential profile of the hole does not change after its formation. (Auth.)

  6. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  7. Magnetic island formation in tokamaks

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1989-04-01

    The size of a magnetic island created by a perturbing helical field in a tokamak is estimated. A helical equilibrium of a current- carrying plasma is found in a helical coordinate and the helically flowing current in the cylinder that borders the plasma is calculated. From that solution, it is concluded that the helical perturbation of /approximately/10/sup /minus/4/ of the total plasma current is sufficient to cause an island width of approximately 5% of the plasma radius. 6 refs

  8. Formation of magnetized plasma stream in the CTCC-I experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ikegami, K.; Ozaki, A.; Uyama, T.; Satomi, N.; Watenabe, K. (Osaka Univ., Suita (Japan). Faculty of Engineering)

    1981-10-01

    Magnetized plasma stream with the kinetic energy of more than 500 eV was produced successfully using a coaxial plasma gun with the subsidiary coils for providing the radial magnetic field at its muzzle. It was injected into the drift tube and the characteristics were investigated experimentally using the streak photographs, magnetic probes and flux loops. It was confirmed that this plasma stream had really both toroidal and poloidal magnetic fields.

  9. Resonant shallow donor magnetopolaron effect in a GaAs/AlGaAs quantum dot in high magnetic fields

    International Nuclear Information System (INIS)

    Zhu Kadi.

    1993-11-01

    Resonant shallow donor magnetopolaron effect in a GaAs/AlGaAs quantum dot in high magnetic fields is investigated by the variational treatment. It is shown that both the cyclotron resonant frequency ω * c+ due to the 1s-p+ hydrogenic transition and the cyclotron resonant frequency ω * c- due to the 1s-p - hydrogenic transition increase with the decrease of the dot size. The cyclotron resonant frequency ω * c+ is always larger than the bulk LO-phonon frequency ω LO , while the cyclotron resonant frequency ω * c- is lower than ω LO for larger quantum dots (l 0 > 2.0.r 0 , r 0 is the polaron radius). The results also show that the Coulomb interaction effect on the resonant frequencies is significant. (author). 26 refs, 3 figs

  10. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  11. Many-polaron theory for superconductivity and charge-density waves in a strongly coupled electron-phonon system with quasi-two-dimensionality: An interpolation between the adiabatic limit and the inverse-adiabatic limit

    International Nuclear Information System (INIS)

    Nasu, K.

    1987-01-01

    The phase diagram of a two-dimensional N-site N-electron system (N>>1) with site-diagonal electron-phonon (e-ph) coupling is studied in the context of polaron theory, so as to clarify the competition between the superconducting (SC) state and the charge-density wave (CDW) state. The Fermi surface of noninteracting electrons is assumed to be a complete circle with no nesting-type instability in the case of weak e-ph coupling, so as to focus on such a strong coupling that even the standard ''strong-coupling theory'' for superconductivity breaks down. Phonon clouds moving with electrons as well as a frozen phonon are taken into account by a variational method, combined with a mean-field theory. It covers the whole region of three basic parameters characterizing the system: the intersite transfer energy of electron T, the e-ph coupling energy S, and the phonon energy ω. The resultant phase diagram is given in a triangular coordinate space spanned by T, S, and ω. In the adiabatic region ω >(T,S) near the ω vertex of the triangle, on the other hand, each electron becomes a small polaron, and the SC state is always more stable than the CDW state, because the retardation effect is absent

  12. Formation of magnetized plasma stream in the CTCC-I experiment

    International Nuclear Information System (INIS)

    Ikegami, Kazunori; Ozaki, Atsuhiko; Uyama, Tadao; Satomi, Norio; Watanabe, Kenji

    1981-01-01

    Magnetized plasma stream with the kinetic energy of more than 500 eV was produced successfully using a coaxial plasma gun with the subsidiary coils for providing the radial magnetic field at its muzzle. It was injected into the drift tube and the characteristics were investigated experimentally using the streak photographs, magnetic probes and flux loops. It was confirmed that this plasma stream had really both toroidal and poloidal magnetic fields. (author)

  13. Magnetic resonance methods used to study the mobility of lithium ions and the formation of gamma radiolysis products in lithium silicates

    International Nuclear Information System (INIS)

    Pronin, I.S.; Nikiforov, A.S.; Vashman, A.A.

    1986-01-01

    The authors present the results of research on the mobility of lithium ions and the formation of radiation induced paramagnetic centers in the gamma radiolysis of lithium ortho- and metasilicates; nuclear magnetic resonance of Li-7 and electroparamagnetic resonance were used in the studies

  14. Effect of the Heusler phase formation on the magnetic behavior of the Cu–10 wt.%Mn alloy with Al and Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, T.M., E-mail: thaisa.mary@gmail.com [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra – UNIFESP, 09972-270 Diadema, SP (Brazil); Magnani, M. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The presence of the Cu{sub 2}MnAl phase was observed in annealed alloys. • Al and Ag additions shift the equilibrium concentration to higher Al values. • There is a correlation between the Ag-rich phase and the Cu{sub 2}MnAl phase. - Abstract: In this work, the formation of the Cu{sub 2}AlMn Heusler phase and its influence on the magnetic behavior of the Cu–Mn–Al–Ag alloys in the range of 8–10 wt.% of aluminum and 2–4 wt.% of silver were studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and saturation magnetization measurements at 4 K. The results showed that there is a correlation between the presence of the Ag-rich phase and the formation of the Cu{sub 2}MnAl phase.

  15. Investigation of magnetic flux transport and shock formation in a staged Z-pinch

    Science.gov (United States)

    Narkis, J.; Rahman, H. U.; Wessel, F. J.; Beg, F. N.

    2017-10-01

    Target preheating is an integral component of magnetized inertial fusion in reducing convergence ratio. In the staged Z-pinch concept, it is achieved via one or more shocks. Previous work [Narkis et al., Phys. Plasmas 23, 122706 (2016)] found that shock formation in the target occurred earlier in higher-Z liners due to faster flux transport to the target/liner interface. However, a corresponding increase in magnitude of magnetic pressure was not observed, and target implosion velocity (and therefore shock strength) remained unchanged. To investigate other means of increasing the magnitude of transported flux, a Korteweg-de Vries-Burgers equation from the 1-D single-fluid, resistive magnetohydrodynamic equations is obtained. Solutions to the nondispersive (i.e., Burgers) equation depend on nondimensional coefficients, whose dependence on liner density, temperature, etc., suggests an increase in target implosion velocity, and therefore shock strength, can be obtained by tailoring the mass of a single-liner gas puff to a double-liner configuration. In the selected test cases of 1-D simulated implosions of krypton on deuterium, the peak Mach number increased from ˜ 5 to ˜ 8 . While a notable increase was seen, Mach numbers exceeding 10 (implosion velocities exceeding ˜25 cm/μs) are necessary for adequate shock preheating.

  16. Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Amonpattaratkit, P. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, P. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Ananta, S., E-mail: suponananta@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-09-01

    In this work, the investigation of phase formation, crystal structure, microstructure, microchemical composition and magnetic properties of perovskite (1−x)PFN–xPZT (x=0.1–0.5) multiferroic ceramics derived from a combination of perovskite stabilizer PZT and a wolframite-type FeNbO{sub 4}B-site precursor was carried out by using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analyzer and vibrating sample magnetometer (VSM) techniques. The addition of PZT phase and its concentration have been found to have pronounced effects on the perovskite phase formation, densification, grain growth and magnetic properties of the sintered ceramics. XRD spectra from these ceramics reveal transformation of the (pseudo) cubic into the tetragonal perovskite structure. When increasing PZT content, the degree of perovskite phase formation and the tetragonality value of the ceramics increase gradually accompanied with the variation of cell volume, the M–H hysteresis loops, however, become narrower accompanied by the decrease of maximum magnetization (M{sub max}), remanent polarization (M{sub r}), and coercive field (H{sub C}). - Highlights: • Fabrication of PFN-PZT multiferroic ceramics from PZT and FeNbO{sub 4} precursors. • Effect of PZT content on phase transformation of PFN-PZT multiferroic ceramics. • Effect of PZT content on magnetic properties of PFN-PZT multiferroic ceramics.

  17. Detrital and early chemical remanent magnetization in redbeds and their rock magnetic signature: Zicapa Formation, southern Mexico

    Science.gov (United States)

    Sierra-Rojas, Maria Isabel; Molina-Garza, Roberto Stanley

    2018-06-01

    Poles from continental redbeds are a large fraction of the world's palaeomagnetic database. Nonetheless, the time of acquisition and origin of the remanent magnetization of redbeds has been long debated. We report palaeomagnetic data, rock magnetic data and microscope observations for Lower Cretaceous redbeds in southern Mexico. These data allow us to discriminate between the hysteresis properties of remanent magnetizations of detrital and chemical origin, and to establish the early origin of a chemical remanence. Red sandstones of the Zicapa Formation contain a multicomponent remanence revealed by thermal demagnetization, and consisting of three stable components with partially overlapping laboratory unblocking temperatures of 600 °C, (low, intermediate and high temperature, respectively). They are interpreted as a viscous remanence residing in detrital magnetite, a chemical remanence residing in authigenic hematite and a depositional remanence residing in detrital hematite, respectively. The low-temperature component is nearly parallel to the recent dipole field. The tilt-corrected overall site means of the intermediate (chemical) and high temperature (depositional) components are indistinguishable (Dec = 282.0°, Inc = 12.4°, k = 13.33, α95 = 10.1°, N = 17, for the intermediate temperature; and Dec = 272.5°, Inc = 16.5°, k = 14.04, α95 = 11, N = 14, for the high temperature). Elongation/inclination analysis suggests that depositional and chemical components require applying an f = factor of approximately 0.4. Both of these components define a magnetic polarity zonation, but the polarity of the chemical and detrital components may or may not be the same. The chemical remanence coincides, more often than not, with the polarity of the depositional remanence of the overlying (younger) strata, suggesting a delay in remanence acquisition of tens to a few hundred ka for the chemical component. Pigmentary and detrital haematite were recognized with microscopic

  18. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.

    Science.gov (United States)

    Wen, Qiannan; Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Reckmeier, Claas; Vasilevskiy, Mikhail I; Rogach, Andrey L

    2016-04-26

    We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H2O to D2O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H2O to D2O), however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials for infrared light emitting diodes and photodetectors.

  19. Effect of magnetic field on self-assembling of colloidal Co magnetic nanoparticles

    International Nuclear Information System (INIS)

    Chitu, L.; Chushkin, Y.; Luby, S.; Majkova, E.; Leo, G.; Satka, A.; Giersig, M.; Hilgendorff, M.

    2006-01-01

    In this paper the formation of 3-D structures composed of Co nanoparticles (NPs) is reported. Structures were obtained by drying a droplet of a colloidal solution of NPs in a magnetic field perpendicular to the substrate. The Co nanoparticles were prepared by thermolysis of Co 2 (CO) 8 . The 3-D NP structures were characterized by scanning electron microscopy (SEM) and atomic and magnetic force microscopy (AFM/MFM). It has been found that at the border of the droplet, NPs assemble into hexagonally ordered 3-D columns or they form a labyrinthine structure. The formation of the 3-D structures can be explained by the outflow of NPs to the border of the droplet during the drying process. Within this model the pattern formation is dependent on the concentration of the NPs and the degree of alignment of the magnetic moments of NPs in the 3-D columns

  20. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    International Nuclear Information System (INIS)

    Wongmaneerung, R.; Tipakontitikul, R.; Jantaratana, P.; Bootchanont, A.; Jutimoosik, J.; Yimnirun, R.; Ananta, S.

    2016-01-01

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe_0_._5Ta_0_._5)O_3–xPb(Zr_0_._5_3Ti_0_._4_7)O_3 (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  1. Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites

    Science.gov (United States)

    Datt, Gopal; Abhyankar, A. C.

    2017-07-01

    Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in

  2. Nuclear and magnetic correlations in a topologically frustrated elemental magnet

    International Nuclear Information System (INIS)

    Stewart, J.R.; Andersen, K.H.; Cywinski, R.

    1999-01-01

    β-Mn is an exchange enhanced paramagnetic metal on the verge of antiferromagnetic order. However, strong spin-fluctuations and topological frustration prevent the formation of static long-range order. We investigate the magnetic properties of the β-MnAl series of alloys in which short-range magnetic order is achieved at low temperature. We extract the short-range nuclear and magnetic correlations using a novel reverse Monte-Carlo procedure. (authors)

  3. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Skaat, Hadas; Margel, Shlomo [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Belfort, Georges [Howard P Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)], E-mail: ch348@mail.biu.ac.il, E-mail: belfog@rpi.edu, E-mail: Shlomo.margel@mail.biu.ac.il

    2009-06-03

    Maghemite ({gamma}-Fe{sub 2}O{sub 3}) magnetic nanoparticles of 15.0 {+-} 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic {gamma}-Fe{sub 2}O{sub 3}/poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) ({gamma}-Fe{sub 2}O{sub 3}/PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the {gamma}-Fe{sub 2}O{sub 3}/PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from {alpha}-helix to {beta}-sheets during insulin fibril formation is observed in the presence of the {gamma}-Fe{sub 2}O{sub 3}/PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the {gamma}-Fe{sub 2}O{sub 3} core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

  4. High blocking temperature in SnO{sub 2} based super-paramagnetic diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Salmani, E. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); El Moussaoui, H. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Ez-Zahraouy, H. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-11-25

    Highlights: • Simple doping, (Sn,Fe)O{sub 2} exhibits a soft ferromagnetism at low temperature. • High blocking temperature was observed for Cu doped (Sn,Fe)O{sub 2} nanocrystalline. • Experimental results are confirmed by ab initio calculations. - Abstract: (Fe,Cu)-doped SnO{sub 2} nanocrystals was synthesized using the co-precipitation method. Magnetic Properties Measurement System (MPMS) revealed that for simple doping, Fe-doped SnO{sub 2} soft ferromagnetism at low temperature appears, while the ferromagnetic phase is stable at temperature higher than room temperature for Cu co-doping element. The ferromagnetism is significantly enhanced by the Cu addition to Fe-doped SnO{sub 2}, according to the ZFC and FC magnetizations and the hysteresis loops. The evidences for the existence of superparamagnetism are characterized and high blocking temperature super-paramagnetism in (Fe,Cu)-doped SnO{sub 2} nanocrystals was observed. Based on first-principles calculations, we have investigated electronic structures and magnetic properties of Fe-doped SnO{sub 2} and (Fe,Cu)-doped SnO{sub 2} with and without defect with LDA and LDA-SIC approximations. The results suggest that the oxygen vacancies (V{sub O}) play a critical role in the activation of ferromagnetism in Fe doped SnO{sub 2}. For (Fe,Cu)-doped SnO{sub 2} the results exhibit that Cu strongly influences on the magnetic properties of these doped systems which are in good agreement with the experimental observations. Electronic structure show that the presence of Cu promote the ferromagnetic bound magnetic polaron interaction through the carriers introduce by d (Cu)

  5. Influence of magnetic moment formation on the conductance of coupled quantum wires

    International Nuclear Information System (INIS)

    Puller, V I; Mourokh, L G; Bird, J P; Ochiai, Y

    2005-01-01

    In this paper, we develop a model for the resonant interaction between a pair of coupled quantum wires, under conditions where self-consistent effects lead to the formation of a local magnetic moment in one of the wires. Our analysis is motivated by the experimental results of Morimoto et al (2003 Appl. Phys. Lett. 82 3952), who showed that the conductance of one of the quantum wires exhibits a resonant peak at low temperatures, whenever the other wire is swept into the regime where local-moment formation is expected. In order to account for these observations, we develop a theoretical model for the inter-wire interaction that calculated the transmission properties of one (the fixed) wire when the device potential is modified by the presence of an extra scattering term, arising from the presence of the local moment in the swept wire. To determine the transmission coefficients in this system, we derive equations describing the dynamics of electrons in the swept and fixed wires of the coupled-wire geometry. Our analysis clearly shows that the observation of a resonant peak in the conductance of the fixed wire is correlated to the appearance of additional structure (near 0.75 x 2e 2 /h or 0.25 x 2e 2 /h) in the conductance of the swept wire, in agreement with the experimental results of Morimoto et al

  6. Reentrant Superspin Glass Phase in a La_{0.82}Ca_{0.18}MnO_{3} Ferromagnetic Insulator

    Directory of Open Access Journals (Sweden)

    P. Anil Kumar

    2014-03-01

    Full Text Available We report results of the magnetization and ac susceptibility measurements down to very low fields on a single crystal of the perovskite manganite, La_{0.82}Ca_{0.18}MnO_{3}. This composition falls in the intriguing ferromagnetic insulator region of the manganite phase diagram. In contrast to earlier beliefs, our investigations reveal that magnetically (and in every other sense, this is a single-phase system with a ferromagnetic ordering temperature of around 170 K. However, this ferromagnetic state is magnetically frustrated, and the system exhibits pronounced glassy dynamics below 90 K. Based on measured dynamical properties, we propose that this quasi-long-ranged ferromagnetic phase, and the associated superspin glass behavior, is the true magnetic state of the system, rather than being a macroscopic mixture of ferromagnetic and antiferromagnetic phases, as often suggested. Our results provide an understanding of the quantum phase transition from an antiferromagnetic insulator to a ferromagnetic metal via this ferromagnetic insulating state as a function of x in La_{1−x}Ca_{x}MnO_{3}, in terms of the possible formation of magnetic polarons.

  7. Magnetic force microscopy: advanced technique for the observation of magnetic domains

    International Nuclear Information System (INIS)

    Asenjo, A.; Garcia, J. M.; Vazquez, M.

    2001-01-01

    An overview on the Magnetic Force Microscopy, MFM, as an advanced technique to observe magnetic domains and walls is displayed. Basic concepts are first introduced on the domain structure formation as well as on other techniques to observe magnetic domains. Afterwards, the MFM instrumentation is described making also an emphasis in micro magnetic consideration to interpret the images. Finally, a set of selected advanced magnetic materials with different domain structures is chosen to show the wide possibilities of this techniques to characterise the surface magnetic behaviour. The domain structure of materials as commercial magnetic recording media, thin films and multilayers, amorphous micro tubes, nanocrystalline ribbons, perovskites or magnetic nano wires is shown. (Author) 16 refs

  8. Formation of hard magnetic L1{sub 0}-FePt/FePd monolayers from elemental multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Nam Hoon

    2007-06-18

    In this thesis, ordered L1{sub 0}-FePt and FePd films of different nominal compositions are prepared from Fe/Pt and Fe/Pd multilayers by annealing. In case of the L1{sub 0}-FePt films the composition of the films is modified by changing the individual elemental layer thicknesses in the multilayer precursors. This simple variation of the composition is the great advantage of the multilayer approach compared to sputtering single alloy layer from an alloy target. The formation mechanism of the fct phase from the multilayers and the microstructural properties are investigated. The characteristics of the hysteresis loop (coercivity {mu}{sub 0}H{sub c}, remanence J{sub r}) and of the intrinsic magnetic properties (anisotropy constant K{sub l}, spontaneous polarization J{sub s}, exchange constant A) of the ordered L1{sub 0}-FePt and FePd films are studied. The effects of the composition of the L1{sub 0}-FePt films on the microstructural and magnetic properties are investigated. The microstructure of these ordered L1{sub 0}-FePt films are then correlated to the magnetic properties with microstructural parameters by investigating the temperature dependence of the coercivity. (orig.)

  9. The particle concentration effect on magnetic resonance linewidth for magnetic liquids with chain aggregates

    International Nuclear Information System (INIS)

    Marin, C.N.

    2002-01-01

    Based on the assumption of particle chains formation within a magnetic liquid, computer simulation of the magnetic resonance line is presented. The dependence on particle concentration within a magnetic liquid of magnetic resonance linewidth is analyzed. The computer simulation demonstrates that the particles chaining has an important effect on the enlargement of the magnetic resonance line. Increasing the particle concentration within magnetic liquid leads to an increase in the linewidth. The agreement with some experimental findings is discussed

  10. Effects of polarons on static polarizabilities and second order hyperpolarizabilities of conjugated polymers

    International Nuclear Information System (INIS)

    Wang Ya-Dong; Meng Yan; Di Bing; Wang Shu-Ling; An Zhong

    2010-01-01

    According to the one-dimensional tight-binding Su—Schrieffer—Heeger model, we have investigated the effects of charged polarons on the static polarizability, α xx , and the second order hyperpolarizabilities, γ xxxx , of conjugated polymers. Our results are consistent qualitatively with previous ab initio and semi-empirical calculations. The origin of the universal growth is discussed using a local-view formalism that is based on the local atomic charge derivatives. Furthermore, combining the Su-Schrieffer-Heeger model and the extended Hubbard model, we have investigated systematically the effects of electron-electron interactions on α xx and γ xxxx of charged polymer chains. For a fixed value of the nearest-neighbour interaction V, the values of α xx and γ xxxx increase as the on-site Coulomb interaction U increases for U c and decrease with U for U > U c , where U c is a critical value of U at which the static polarizability or the second order hyperpolarizability reaches a maximal value of α max or γ max . It is found that the effect of the e-e interaction on the value of α xx is dependent on the ratio between U and V for either a short or a long charged polymer. Whereas, that effect on the value of γ xxxx is sensitive both to the ratio of U to V and to the size of the molecule. (rapid communication)

  11. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Tao-Chung; Lai, Shih-Ping [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Zhang, Qizhou; Girart, Josep M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Liu, Hauyu B., E-mail: chingtaochung@gmail.com [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-04-01

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.

  12. Magneto-optical and cyclotron resonance studies of semiconductors and their nanostructures in pulsed high magnetic fields

    International Nuclear Information System (INIS)

    Miura, N.

    1999-01-01

    Full text: We present a review on the recent advances in physics of magneto-optical spectroscopy in the visible range and of infrared cyclotron resonance in pulsed high magnetic fields, which are produced by electromagnetic flux compression up to 500T, by the single-turn coil technique up to 200T or by conventional non-destructive long pulse magnets up to 50T. We discuss the recent results on the spectroscopy of low dimensional excitons in quantum wells and short period superlattices. In very high fields up to 500T, we observed anomalous field dependence of the exciton absorption lines and the 2D - 3D cross-over effects in GaAs/AlAs quantum wells. In GaP/AlP short period superlattices, it was found that the exciton photoluminescence intensity shows a dramatic decrease and the diamagnetic shift was negative when high magnetic fields were applied parallel to the growth direction. We observed also remarkable effects of uniaxial stress, which are ascribed to the cross-over effect between the two inequivalent valleys at the X points. Cyclotron resonance was measured by using various molecular gas lasers as radiation sources in the range 5 - 119 m . We present the results of cyclotron resonance in GaAs/AlGaAs quantum wells with tilted magnetic fields from the growth direction. It was found that the resonant field and the peak intensity show many different features depending on the extent of the Landau level-subband coupling and on the relation between the photon energy and the barrier height. A large hysteresis was observed between the rising and the falling sweeps of the magnetic field, when the cyclotron resonance energy became comparable with the subband spacing. In a diluted magnetic semiconductor CdFeS, we observed anomalous temperature dependence of the effective mass, suggestive of the magnetic polaron effect

  13. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  14. Phonon affected transport through molecular quantum

    Czech Academy of Sciences Publication Activity Database

    Loos, Jan; Koch, T.; Alvermann, A.; Bishop, A. R.; Fehske, H.

    2009-01-01

    Roč. 21, č. 39 (2009), 395601/1-395601/18 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dots * electron - phonon interaction * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  15. Magnetic surfactants as molecular based-magnets with spin glass-like properties

    International Nuclear Information System (INIS)

    Brown, Paul; Hatton, T Alan; Smith, Gregory N; Hernández, Eduardo Padrón; James, Craig; Eastoe, Julian; Nunes, Wallace C; Settens, Charles M; Baker, Peter J

    2016-01-01

    This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets. (paper)

  16. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wongmaneerung, R., E-mail: re_nok@yahoo.com [Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Tipakontitikul, R. [Department of Physics, Ubonratchathani University, Ubonratchathani 31490 (Thailand); Jantaratana, P. [Department of Physics, Kasetsart University, Bangkok 10900 (Thailand); Bootchanont, A.; Jutimoosik, J.; Yimnirun, R. [School of Physics, Institute of Science, and NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Ananta, S. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-03-15

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  17. Formation mechanism for the structure of the magnetic-storm ring current

    CERN Document Server

    Tverskoy, B A

    1999-01-01

    An analysis is presented for the implications of the relationship between the amplitude of the Dst variation and the position L sub m sub a sub x of the intensity maximum of the relativistic-electron belt that arises immediately after the cessation of a storm. The quantity L sub m sub a sub x is regarded to correspond to the position of the pressure maximum of the ring-current plasma at the moment of the maximum amplitude of the storm main phase. Under this assumption, the structure of the mentioned plasma formation is calculated, and the idea is substantiated that the plasma cloud is adiabatically driven deep into the magnetosphere during the sub-storm and subsequently symmetrized (this idea was originally put forward by the author on the basis of the theory of the magnetosphere-ionosphere interaction). It is shown that the presence of the mentioned relationship implies the existence of a certain boundary where the entropy calculated for a unit-magnetic-flux tube always has the same value. The applicability ...

  18. Formation mechanism for the structure of the magnetic-storm ring current

    International Nuclear Information System (INIS)

    Tverskoy, B.A.

    1999-01-01

    An analysis is presented for the implications of the relationship between the amplitude of the Dst variation and the position L max of the intensity maximum of the relativistic-electron belt that arises immediately after the cessation of a storm. The quantity L max is regarded to correspond to the position of the pressure maximum of the ring-current plasma at the moment of the maximum amplitude of the storm main phase. Under this assumption, the structure of the mentioned plasma formation is calculated, and the idea is substantiated that the plasma cloud is adiabatically driven deep into the magnetosphere during the sub-storm and subsequently symmetrized (this idea was originally put forward by the author on the basis of the theory of the magnetosphere-ionosphere interaction). It is shown that the presence of the mentioned relationship implies the existence of a certain boundary where the entropy calculated for a unit-magnetic-flux tube always has the same value. The applicability of the theory of low-pressure plasmas to the problem under study is justified

  19. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    International Nuclear Information System (INIS)

    Cornish, S.; Gummersall, D.; Carr, M.; Khachan, J.

    2014-01-01

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory

  20. Detrital zircon fission-track thermochronology and magnetic fabric of the Amaga Formation (Colombia): Intracontinental deformation and exhumation events in the northwestern Andes

    Czech Academy of Sciences Publication Activity Database

    Piedrahita, V. A.; Bernet, M.; Chadima, Martin; Sierra, G. M.; Marín-Cerón, M. I.; Toro, G. E.

    2017-01-01

    Roč. 356, JUL 1 2017 (2017), s. 26-42 ISSN 0037-0738 Institutional support: RVO:67985831 Keywords : Panama-Choco Block * Northern Andean Block * Amaga Formation * zircon fission track * anisotropy of magnetic susceptibility Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.373, year: 2016

  1. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility

    International Nuclear Information System (INIS)

    Sercheli, Mauricio da Silva

    1999-01-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er 3+ ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO 4 - , which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  2. Phase domain structures in cylindrical magnets under conditions of a first-order magnetic phase transition

    International Nuclear Information System (INIS)

    Dzhezherya, Yu.I.; Klymuk, O.S.

    2011-01-01

    The magnetic and resonance properties of cylindrical magnets at first-order phase transition from paramagnetic to ferromagnetic state were theoretically studied. It has been shown that in the external magnetic field directed perpendicularly to the rotation axis, formation of a specific domain structure of paramagnetic and ferromagnetic layers can be energetically favorable. The parameters of cylindrical phase domains as well as their dependences on temperature, magnetic field and material characteristics have been calculated. Peculiarities of the magnetic resonance spectra appearing as a result of the phase domain formation have been considered. Dependence of the resonance field of the system of ferromagnetic domains on magnetization and temperature has been obtained. - Highlights: → Parameters of the equilibrium system of cylindrical phase domains are calculated. → The range of fields for PM and FM phases coexistence is found. → FMR field of the disk domains is found to be lower than that of the PMR field.→ The resonance field increases with the decrease of temperature lower than T || .

  3. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Sun, X. D. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Wang, Y. M. [School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Kliem, B. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Deng, Y. Y., E-mail: xincheng@nju.edu.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  4. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    International Nuclear Information System (INIS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-01-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s –1 . The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  5. IMAGING AND SPECTROSCOPIC DIAGNOSTICS ON THE FORMATION OF TWO MAGNETIC FLUX ROPES REVEALED BY SDO/AIA AND IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.; Ding, M. D.; Fang, C., E-mail: xincheng@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2015-05-10

    Helical magnetic flux rope (MFR) is a fundamental structure of coronal mass ejections (CMEs) and has been discovered recently to exist as a sigmoidal channel structure prior to its eruption in the EUV high-temperature passbands of the Atmospheric Imaging Assembly (AIA). However, when and where the MFR is built up are still elusive. In this paper, we investigate two MFRs (MFR1 and MFR2) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively. The AIA EUV images reveal that for a long time prior to their eruption, both MFR1 and MFR2 are under formation, which is probably through magnetic reconnection between two groups of sheared arcades driven by the shearing and converging flows in the photosphere near the polarity inversion line. At the footpoints of the MFR1, the Interface Region Imaging Spectrograph Si iv, C ii, and Mg ii lines exhibit weak to moderate redshifts and a non-thermal broadening in the pre-flare phase. However, a relatively large blueshift and an extremely strong non-thermal broadening are found at the formation site of the MFR2. These spectral features consolidate the proposition that the reconnection plays an important role in the formation of MFRs. For the MFR1, the reconnection outflow may propagate along its legs, penetrating into the transition region and the chromosphere at the footpoints. For the MFR2, the reconnection probably takes place in the lower atmosphere and results in the strong blueshift and non-thermal broadening for the Mg ii, C ii, and Si iv lines.

  6. Imaging and Spectroscopic Diagnostics on the Formation of Two Magnetic Flux Ropes Revealed by SDO/AIA and IRIS

    Science.gov (United States)

    Cheng, X.; Ding, M. D.; Fang, C.

    2015-05-01

    Helical magnetic flux rope (MFR) is a fundamental structure of coronal mass ejections (CMEs) and has been discovered recently to exist as a sigmoidal channel structure prior to its eruption in the EUV high-temperature passbands of the Atmospheric Imaging Assembly (AIA). However, when and where the MFR is built up are still elusive. In this paper, we investigate two MFRs (MFR1 and MFR2) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively. The AIA EUV images reveal that for a long time prior to their eruption, both MFR1 and MFR2 are under formation, which is probably through magnetic reconnection between two groups of sheared arcades driven by the shearing and converging flows in the photosphere near the polarity inversion line. At the footpoints of the MFR1, the Interface Region Imaging Spectrograph Si iv, C ii, and Mg ii lines exhibit weak to moderate redshifts and a non-thermal broadening in the pre-flare phase. However, a relatively large blueshift and an extremely strong non-thermal broadening are found at the formation site of the MFR2. These spectral features consolidate the proposition that the reconnection plays an important role in the formation of MFRs. For the MFR1, the reconnection outflow may propagate along its legs, penetrating into the transition region and the chromosphere at the footpoints. For the MFR2, the reconnection probably takes place in the lower atmosphere and results in the strong blueshift and non-thermal broadening for the Mg ii, C ii, and Si iv lines.

  7. IMAGING AND SPECTROSCOPIC DIAGNOSTICS ON THE FORMATION OF TWO MAGNETIC FLUX ROPES REVEALED BY SDO/AIA AND IRIS

    International Nuclear Information System (INIS)

    Cheng, X.; Ding, M. D.; Fang, C.

    2015-01-01

    Helical magnetic flux rope (MFR) is a fundamental structure of coronal mass ejections (CMEs) and has been discovered recently to exist as a sigmoidal channel structure prior to its eruption in the EUV high-temperature passbands of the Atmospheric Imaging Assembly (AIA). However, when and where the MFR is built up are still elusive. In this paper, we investigate two MFRs (MFR1 and MFR2) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively. The AIA EUV images reveal that for a long time prior to their eruption, both MFR1 and MFR2 are under formation, which is probably through magnetic reconnection between two groups of sheared arcades driven by the shearing and converging flows in the photosphere near the polarity inversion line. At the footpoints of the MFR1, the Interface Region Imaging Spectrograph Si iv, C ii, and Mg ii lines exhibit weak to moderate redshifts and a non-thermal broadening in the pre-flare phase. However, a relatively large blueshift and an extremely strong non-thermal broadening are found at the formation site of the MFR2. These spectral features consolidate the proposition that the reconnection plays an important role in the formation of MFRs. For the MFR1, the reconnection outflow may propagate along its legs, penetrating into the transition region and the chromosphere at the footpoints. For the MFR2, the reconnection probably takes place in the lower atmosphere and results in the strong blueshift and non-thermal broadening for the Mg ii, C ii, and Si iv lines

  8. Magnetism v.5

    CERN Document Server

    Suhl, Harry

    1973-01-01

    Magnetism, Volume V: Magnetic Properties of Metallic Alloys deals with the magnetic properties of metallic alloys and covers topics ranging from conditions favoring the localization of effective moments to the s-d model and the Kondo effect, along with perturbative, scattering, and Green's function theories of the s-d model. Asymptotically exact methods used in addressing the Kondo problem are also described.Comprised of 12 chapters, this volume begins with a review of experimental results and phenomenology concerning the formation of local magnetic moments in metals, followed by a Har

  9. Features of magnetic susceptibility and inhomogeneous magnetic state in La-Sr manganites

    International Nuclear Information System (INIS)

    Dovgij, V.T.; Linnik, A.I.; Kamenev, V.I.; Prokopenko, V.K.; Mikhajlov, V.I.; Khokhlov, V.A.; Kadontseva, A.M.; Linnik, T.A.; Davydejko, N.V.; Turchenko, V.A.

    2007-01-01

    Anomalous magnetic susceptibility has been observed in mono- and polycrystalline (ceramic) samples of La-Sr manganites. The oscillations of the magnetic susceptibility observed for monocrystal samples in the vicinity of the Curie temperature (and in the paramagnetic region) are explained by the existence of magnetic clusters. The appearance of susceptibility oscillations in ceramic samples is attributed to the formation of magnetic clusters, which may occur both in grains (at the interface between ferro- and antiferromagnetic phases) and at the grain boundaries [ru

  10. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  11. Magnon polarons in the spin seebeck effect

    NARCIS (Netherlands)

    Kikkawa, T.; Shen, K.; Flebus, B.; Duine, R.A.; Uchida, K.I.; Qiu, Z.; Bauer, G.E.W.; Saitoh, E.

    2016-01-01

    Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y3Fe5O12 at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide

  12. Mechanism of hot spots formation in magnetic Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Kubes, P; Kravarik, J [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Fakulta Elektrotechnicka; Kolacek, K; Krejci, A [Akademie Ved Ceske Republiky, Prague (Czech Republic). Ustav Fyziky Plazmatu; Paduch, M; Tomaszewski, K [Inst. of Plasma Physics and Laser Microfusion, Warsaw (Poland)

    1997-12-31

    The evolution of neon implosion of low energy discharge (4 kJ, 40 kV, 150 kA, 1.1 {mu}s) was studied using X-ray, schlieren and high speed electrooptical visible gated Quadro camera diagnostics. The geometry, the helical structure of pinched column, two steps of pinching and X-ray emission were studied. The diameters, electron density and temperature of the hot spots were determined. The hypothesis of axial component of magnetic field generation, of helical shape of magnetic and electric field lines, of the possibility of the release of magnetic energy and of the acceleration of the keV electrons and ions due to voltage induction during the second pinching of the column are discussed. (author). 3 figs., 5 refs.

  13. Final Report for Project DE-SC0006958: "An Investigation of the Effects of magnetic Fields and Collisionality on Shock Formation in Radiatively Cooled Plasma Flows"

    Energy Technology Data Exchange (ETDEWEB)

    Bott-Suzuki, Simon

    2014-11-05

    We have developed a new experimental platform to study bow-shock formation in plasma flows generated using an inverse wire array z-pinch. We have made significant progress on the analysis of both hydrodynamic and magnetized shocks using this system. The hydrodynamic experiments show formation of a well-defined Mach cone, and highly localized shock strong associated with radiative losses and rapidly cooling over the shock. Magnetized shocks show that the balance of magnetic and ram pressures dominate the evolution of the shock region, generating a low plasma beta void around the target. Manuscripts are in preparation for publication on both these topics. We have also published the development of a novel diagnostic method which allow recovery of interferometry and self-emission data along the same line of sight. Finally, we have carried out work to integrate a kinetic routine with the 3D MHD code Gorgon, however it remains to complete this process. Both undergraduate and graduate students have been involved in both the experimental work and publications.

  14. SQUID magnetometry and magneto-optics of epitaxial EuS

    International Nuclear Information System (INIS)

    Rumpf, K.; Granitzer, P.; Krenn, H.; Kellner, W.; Pascher, H.; Kirchschlager, R.; Janecek, S.

    2004-01-01

    The complicated (H,T)-magnetic phase diagram of EuS is caused by the critical balance between nearest and next nearest neighbour exchange interaction (J NN = 0.119 K and J NNN =-0.1209 K) and leads to various spin arrangements NNSS..., NSN..., NNS, NNN... [NS denotes opposite ferromagnetic order in adjacent (111) planes]. Beside the subtle local exchange of 5d-t 2g electrons and localized holes with neighbouring Eu-4f spins, obviously also the strain status influences the occurrence of these different phases. We investigate the magnetic ordering phenomenon in a strained 2.5 μm EuS film on BaF 2 substrate by SQUID magnetometry and magneto-optics like spectral Faraday- and Kerr-effect measurements for temperatures from 2 K up to 200 K and for magnetic field up to 5 T. The magneto-optical probe monitors the local environment of the photoexcited electron-hole pair, called magnetic exciton, located within a ferromagnetic surrounding (photoinduced magnetic polaron), whereas the integral magnetization measured by SQUID is most sensitive to long-range magnetic ordering. In spite of the dissimilarity of measurement techniques we find an influence of the long-range magnetic order (e.g. of the NNS- or NNN-matrix) on the non-resonant Kerr reflection. The complementarity of SQUID and magneto-optical methods is stringent only in the (resonant) spectral range, where magnetic polarons are formed. (author)

  15. Formation of Large-scale Coronal Loops Interconnecting Two Active Regions through Gradual Magnetic Reconnection and an Associated Heating Process

    Science.gov (United States)

    Du, Guohui; Chen, Yao; Zhu, Chunming; Liu, Chang; Ge, Lili; Wang, Bing; Li, Chuanyang; Wang, Haimin

    2018-06-01

    Coronal loops interconnecting two active regions (ARs), called interconnecting loops (ILs), are prominent large-scale structures in the solar atmosphere. They carry a significant amount of magnetic flux and therefore are considered to be an important element of the solar dynamo process. Earlier observations showed that eruptions of ILs are an important source of CMEs. It is generally believed that ILs are formed through magnetic reconnection in the high corona (>150″–200″), and several scenarios have been proposed to explain their brightening in soft X-rays (SXRs). However, the detailed IL formation process has not been fully explored, and the associated energy release in the corona still remains unresolved. Here, we report the complete formation process of a set of ILs connecting two nearby ARs, with successive observations by STEREO-A on the far side of the Sun and by SDO and Hinode on the Earth side. We conclude that ILs are formed by gradual reconnection high in the corona, in line with earlier postulations. In addition, we show evidence that ILs brighten in SXRs and EUVs through heating at or close to the reconnection site in the corona (i.e., through the direct heating process of reconnection), a process that has been largely overlooked in earlier studies of ILs.

  16. Application of the magnetic fluid as a detector for changing the magnetic field

    Science.gov (United States)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.; Balashov, V.

    2018-05-01

    In article the possibility of use of magnetic fluid as a sensitive element for fixing of change of induction of magnetic field in space is considered. Importance of solvable tasks is connected with search of the perspective magnetic substances susceptible to weak magnetic field. The results of a study of the capacitive method for fixing the change in the magnetic field on the basis of a ferromagnetic liquid are presented. The formation of chain structures in the ferrofluid from magnetic particles under the influence of the applied magnetic field leads to a change in the capacitance of the plate condenser. This task has important practical value for development of a magnetosensitive sensor of change of magnetic field.

  17. Mechanism of formation and methods of removing magnetic blowing in welding

    International Nuclear Information System (INIS)

    Korol'kov, P.

    1998-01-01

    All welding processes using the electric arc or electron beams are characterised by the detrimental effect of magnetic fields: the electrons of the welding arc are subjected to the effect of the magnetic force distorting their trajectory. In most cases, the arc is deflected along the area of preparation for welding but, in this case, a natural magnetic field forms around the are and, consequently, arc in his unstable and, under severe conditions, the arc breaks up. The effect of the magnetic field of the welding are depends not only on its strength but also the shape and the depth of the area of preparation for welding, the specific pass in welding and arc voltage. Thus, the effect of the magnetic fields is the strongest in the deep and narrow areas of preparation for welding. In most cases, this effect is stronger in welding the weld root, and in subsequent passes the magnetic flux is shunted by the deposited metal. (author)

  18. Microstructure, magnetic properties and magnetic hardening in 2:17 Sm-Co magnets

    International Nuclear Information System (INIS)

    Tang, W.; Zhang, Y.; Hadjipanayis, G.C.

    2002-01-01

    A comprehensive and systematic study has been made on Sm(Co,Fe,M,L) z magnets (M=Cu or Ni, and L=Zr or Ti) to completely understand the effects of composition and processing on the microstructure and magnetic properties of magnets. Ti-containing magnets do not have a lamellar phase but exhibit only a cellular microstructure, resulting in a much lower coercivity (below 10 kOe). Ni-containing magnets exhibit a perfect cellular/lamellar microstructure, but without a large domain wall energy gradient at the interface of the 2:17 and 1:5 phases, leading to a low coercivity. Only in the magnets containing both Cu and Zr, a uniform and stable cellular/lamellar microstructure with a high domain wall energy gradient across the 1:5 phase is formed, resulting in high coercivity. These results indicate that the conditions for effective magnetic hardening are: (1) Formation of a cellular/lamellar microstructure, and (2) establishment of a domain wall energy gradient at the cell boundaries. Based on all of these experimental results, the magnetization reversal mechanism of 2:17 Sm-Co magnets can be explained by both the domain wall pinning and nucleation models. The nucleation mechanism holds at any temperature in the Cu-rich magnets, and only above the Curie temperature of the 1:5 phase in the alloys with the lower Cu content. In these cases, the 2:17 cells become magnetically decoupled. (orig.)

  19. Thermoelectric effects in molecular quantum dots with contacts

    Czech Academy of Sciences Publication Activity Database

    Koch, T.; Loos, Jan; Fehske, H.

    2014-01-01

    Roč. 89, č. 15 (2014), "155133-1"-"155133-11" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : theory of electronic transport * scattering mechanisms * polarons and electron-phonon interactions * quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  20. Phonon-affected steady-state transport through molecular quantum dots

    Czech Academy of Sciences Publication Activity Database

    Koch, T.; Fehske, H.; Loos, Jan

    T151, č. 1 (2012), 1-10 ISSN 0031-8949 Institutional research plan: CEZ:AV0Z10100521 Keywords : the ory of electron ic transport * scattering mechanisms * polarons and electron -phonon interactions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.032, year: 2012

  1. Effect of ECRH and resonant magnetic fields on formation of magnetic islands in the T-10 tokamak plasma

    Science.gov (United States)

    Shestakov, E. A.; Savrukhin, P. V.

    2017-10-01

    Experiments in the T-10 tokamak demonstrated possibility of controlling the plasma current during disruption instability using the electron cyclotron resonance heating (ECRH) and the controlled operation of the ohmic current-holding system. Quasistable plasma discharge with repeating sawtooth oscillations can be restored after energy quench using auxiliary ECRH power when PEC / POH > 2-5. The external magnetic field generation system consisted of eight saddle coils that were arranged symmetrically relative to the equatorial plane of the torus outside of the vacuum vessel of the T-10 tokamak to study the possible resonant magnetic field effects on the rotation frequency of magnetic islands. The saddle coils power supply system is based on four thyristor converters with a total power of 300 kW. The power supply control system is based on Siemens S7 controllers. As shown by preliminary experiments, the interaction efficiency of external magnetic fields with plasma depends on the plasma magnetic configuration. Optimal conditions for slowing the rotation of magnetic islands were determined. Additionally, the direction of the error magnetic field in the T-10 tokamak was determined, and the threshold value of the external magnetic field was determined.

  2. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  3. Study of the cosmological evolution of the magnetic field

    International Nuclear Information System (INIS)

    Dubois, Yohan

    2008-01-01

    In numerical models within the standard hierarchical structure formation, galaxies contain too much stars in comparison with observations. That is called the over-cooling dilemma. I have studied the galactic wind formation produced by the supernovae explosions using the numerical code RAMSES and a bunch of analytical tools. I have underlined the central role of the infalling gas accreting on galactic disks, and I have determined the conditions under which this accretion can prevent any gas ejection on large scales. It appears that winds are unable to elucidate the over-cooling problem in quiescent star forming galaxies. On the other hand, dwarf galaxies, capable to form such super-winds, are responsible for the metallic and magnetic enrichment of the extra-galactic medium. Using the same numerical tool, I performed the first simulation of the formation of a galactic win with magnetic fields. Numerical simulations of galactic wind formation with magnetic fields show the necessity of some amplification process occurring in galaxies: associated to a strong stellar dynamo, supernovae explosions can originate the residual magnetic field of the Universe. The magnetic field present on large scales is therefore amplified when the hot gas of the galaxy cluster collapses. By achieving the first magnetic cosmological simulation of the formation of a cluster and its galaxies, I was able to point out the necessity of accounting for the cooling processes to properly describe the magnetic field evolution inside the cluster core and to reconcile simulations with observational values. (author) [fr

  4. Electrical conduction in composites containing copper core–copper ...

    Indian Academy of Sciences (India)

    Unknown

    of Mott's small polaron hopping conduction model. ... sample exhibited a metallic conduction confirming the formation of a percolative chain of ..... value of εp. Also the oxide layer formation on the initially unoxidized copper particles will increase the resistivity level of the nanocomposite. This is borne out by results shown in ...

  5. From clouds to cores to envelopes to disks: a multi-scale view of magnetized star formation

    Science.gov (United States)

    Hull, Charles; Plambeck, R. L.; TADPOL survey Team

    2014-01-01

    Magnetic fields are thought to play an important role in the formation of stars. However, that importance has been called into question by previous observations showing misalignment between protostellar outflows and magnetic fields (B-fields), as well as inconsistency in field morphology between 10,000 and 1000 AU scales. To investigate these inconsistencies, we used the 1.3 mm full-Stokes polarimeter — which I tested, installed, and calibrated for CARMA, a mm-wave interferometer — to map dust polarization with ~2.5" resolution toward 29 star-forming cores and 8 star-forming regions as part of the TADPOL survey. We find that a subset of the sources have consistent B-field orientations between the large 20") scales measured by single-dish submm bolometers and the small scales measured by CARMA. Those same sources also tend to have higher fractional polarizations (measured by CARMA), presumably because the B-fields are less twisted by dynamic effects. However, even in these sources, which seem to have retained the memory of the global B-field direction, the fields in the cores are misaligned with the disks and outflows in the central protostars — a key result of the TADPOL survey. Furthermore, the cores with lower polarization fractions tend to have B-fields that are perpendicular to outflows, which suggests that in these sources the B-fields have lost the memory of the larger-scale global field, and have been wrapped up by core rotation. This is an important result for disk formation theory, as it suggests that field misalignment may indeed be the solution to the magnetic braking catastrophe. Finally, we find that all sources exhibit the so-called “polarization hole” effect, where the polarization drops significantly near the total intensity peak. When this effect was seen in low-resolution single-dish maps, it was attributed to the averaging of unresolved structure in the plane of the sky. However, the higher resolution maps we present here resolve these

  6. Formation of an internal transport barrier and magnetohydrodynamic activity in experiments with the controlled density of rational magnetic surfaces in the T-10 Tokamak

    International Nuclear Information System (INIS)

    Razumova, K. A.; Andreev, V. F.; Bel’bas, I. S.; Gorshkov, A. V.; Dnestrovskij, A. Yu.; Dyabilin, K. S.; Kislov, A. Ya.; Lysenko, S. E.; Notkin, G. E.; Timchenko, N. N.; Chudnovskiy, A. N.; Shelukhin, D. A.

    2013-01-01

    Results are presented from experiments on the formation of an internal electron transport barrier near the q = 1.5 rational surface in the T-10 tokamak. The experiments were carried out in the regime with off-axis electron cyclotron resonance (ECR) heating followed by a fast plasma current ramp-up. After suppressing sawtooth oscillations by off-axis ECR heating, an internal transport barrier began to form near the q = 1.5 rational surface. In the phase of the current ramp-up, the quality of the transport barrier improved; as a result, the plasma energy confinement time increased 2–2.5 times. The intentionally produced flattening of the profile of the safety factor q(r) insignificantly affected magnetohydrodynamic activity in the plasma column in spite of the theoretical possibility of formation of substantial m/n = 3/2 and 2/1 magnetic islands. Conditions are discussed under which the flattening of the profile of the safety factor q near low-order rational surfaces leads to the formation of either an internal transport barrier or the development of an island magnetic structure induced by tearing modes

  7. Rock magnetic characterization of faulted sediments with associated magnetic anomalies in the Albuquerque Basin, Rio Grande rift, New Mexico

    Science.gov (United States)

    Hudson, M.R.; Grauch, V.J.S.; Minor, S.A.

    2008-01-01

    Variations in rock magnetic properties are responsible for the many linear, short-wavelength, low-amplitude magnetic anomalies that are spatially associated with faults that cut Neogene basin sediments in the Rio Grande rift, including the San Ysidro normal fault, which is well exposed in the northern part of the Albuquerque Basin. Magnetic-susceptibility measurements from 310 sites distributed through a 1200-m-thick composite section of rift-filling sediments of the Santa Fe Group and prerift Eocene and Cretaceous sedimentary rocks document large variations of magnetic properties juxtaposed by the San Ysidro fault. Mean volume magnetic susceptibilities generally increase upsection through eight map units: from 1.7 to 2.2E-4 in the prerift Eocene and Cretaceous rocks to 9.9E-4-1.2E-3 in three members of the Miocene Zia Formation of the Santa Fe Group to 1.5E-3-3.5E-3 in three members of the Miocene-Pleistocene Arroyo Ojito Formation of the Santa Fe Group. Rock magnetic measurements and petrography indicate that the amount of detrital magnetite and its variable oxidation to maghemite and hematite within the Santa Fe Group sediments are the predominant controls of their magnetic property variations. Magnetic susceptibility increases progressively with sediment grain size within the members of the Arroyo Ojito Formation (deposited in fluvial environments) but within members of the Zia Formation (deposited in mostly eolian environments) reaches highest values in fine to medium sands. Partial oxidation of detrital magnetite is spatially associated with calcite cementation in the Santa Fe Group. Both oxidation and cementation probably reflect past flow of groundwater through permeable zones. Magnetic models for geologic cross sections that incorporate mean magnetic susceptibilities for the different stratigraphic units mimic the aeromagnetic profiles across the San Ysidro fault and demonstrate that the stratigraphic level of dominant magnetic contrast changes with

  8. Application of a magnetized coaxial plasma gun for formation of a high-beta field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Kiguchi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Takahashi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Matsuzawa, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Okano, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Nogi, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2006-11-15

    We have tested a field-reversed configuration (FRC) formation with a spheromak injection for the first time. In this method, initial pre-ionized plasma is injected as a magnetized spheromak-like plasmoid into the discharge chamber prior to main field reversal. The FRC plasma with an electron density of 1.3 x 10{sup 21} m{sup -3}, a separatrix radius of 0.04 m and a plasma length of 0.8 m was produced successfully in initial background plasma of about 1.6 x 10{sup 19} m{sup -3} by spheromak injection. The density is about one third of the conventional formed by the z-ionized method.

  9. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  10. Global enhancement and structure formation of the magnetic field in spiral galaxies

    Science.gov (United States)

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also

  11. Biosensing based on magnetically induced self-assembly of particles in magnetic colloids.

    Science.gov (United States)

    Yang, Ye; Morimoto, Yoshitaka; Takamura, Tsukasa; Sandhu, Adarsh

    2012-03-01

    Superparamagnetic beads and nonmagnetic beads of different sizes were assembled to form a "ring-structure" in a magnetorheological (MR) fluid solution by the application of external magnetic fields. For superparamagnetic beads and non-magnetic beads functionalized with probe and target molecules, respectively, the ring-structure was maintained even after removing the external magnetic field due to biomolecular bonding. Several experiments are described, including the formation process of ring-structures with and without molecular interactions, the accelerating effect of external magnetic fields, and the effect of biotin concentration on the structures of the rings. We define the small nonmagnetic particles as "petals" because the whole structure looks like a flower. The number of remnant ring petals was a function of the concentration of target molecules in the concentration range of 0.0768 ng/ml-3.8419 ng/ml which makes this protocol a promising method for biosensing. Not only was the formation process rapid, but the resulting two-dimensional colloidal system also offers a simple method for reducing reagent consumption and waste generation.

  12. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Science.gov (United States)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  13. Low-Field Bi-Skyrmion Formation in a Noncentrosymmetric Chimney Ladder Ferromagnet

    Science.gov (United States)

    Takagi, R.; Yu, X. Z.; White, J. S.; Shibata, K.; Kaneko, Y.; Tatara, G.; Rønnow, H. M.; Tokura, Y.; Seki, S.

    2018-01-01

    The real-space spin texture and the relevant magnetic parameters were investigated for an easy-axis noncentrosymmetric ferromagnet Cr11 Ge19 with Nowotny chimney ladder structure. Using Lorentz transmission electron microscopy, we report the formation of bi-Skyrmions, i.e., pairs of spin vortices with opposite magnetic helicities. The quantitative evaluation of the magnetocrystalline anisotropy and Dzyaloshinskii-Moriya interaction (DMI) proves that the magnetic dipolar interaction plays a more important role than the DMI on the observed bi-Skyrmion formation. Notably, the critical magnetic field value required for the formation of bi-Skyrmions turned out to be extremely small in this system, which is ascribed to strong easy-axis anisotropy associated with the characteristic helix crystal structure. The family of Nowotny chimney ladder compounds may offer a unique material platform where two distinctive Skyrmion formation mechanisms favoring different topological spin textures can become simultaneously active.

  14. Magnetic particle inspection

    Science.gov (United States)

    Sastri, Sankar

    1990-01-01

    The purpose of this experiment is to familiarize the student with magnetic particle inspection and relate it to classification of various defects. Magnetic particle inspection is a method of detecting the presence of cracks, laps, tears, inclusions, and similar discontinuities in ferromagnetic materials such as iron and steel. This method will most clearly show defects that are perpendicular to the magnetic field. The Magnaglo method uses a liquid which is sprayed on the workpiece to be inspected, and the part is magnetized at the same time. The workpiece is then viewed under a black light, and the presence of discontinuity is shown by the formation of a bright indication formed by the magnetic particles over the discontinuity. The equipment and experimental procedures are described.

  15. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    International Nuclear Information System (INIS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-01-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%

  16. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junliang, E-mail: liujunliang@yzu.edu.cn [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zeng, Yanwei [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Zhang, Xingkai [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Ming [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Testing Center of Yangzhou University, Yangzhou 225002 (China)

    2015-05-15

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%.

  17. Fine structure of metal–insulator transition in EuO resolved by doping engineering

    Science.gov (United States)

    Averyanov, Dmitry V.; Parfenov, Oleg E.; Tokmachev, Andrey M.; Karateev, Igor A.; Kondratev, Oleg A.; Taldenkov, Alexander N.; Platunov, Mikhail S.; Wilhelm, Fabrice; Rogalev, Andrei; Storchak, Vyacheslav G.

    2018-05-01

    Metal–insulator transitions (MITs) offer new functionalities for nanoelectronics. However, ongoing attempts to control the resistivity by external stimuli are hindered by strong coupling of spin, charge, orbital and lattice degrees of freedom. This difficulty presents a quest for materials which exhibit MIT caused by a single degree of freedom. In the archetypal ferromagnetic semiconductor EuO, magnetic orders dominate the MIT. Here we report a new approach to take doping under control in this material on the nanoscale: formation of oxygen vacancies is strongly suppressed to exhibit the highest MIT resistivity jump and magnetoresistance among thin films. The nature of the MIT is revealed in Gd doped films. The critical doping is determined to be more than an order of magnitude lower than in all previous studies. In lightly doped films, a remarkable thermal hysteresis in resistivity is discovered. It extends over 100 K in the paramagnetic phase reaching 3 orders of magnitude. In the warming mode, the MIT is shown to be a two-step process. The resistivity patterns are consistent with an active role of magnetic polarons—formation of a narrow band and its thermal destruction. High-temperature magnetic polaron effects include large negative magnetoresistance and ferromagnetic droplets revealed by x-ray magnetic circular dichroism. Our findings have wide-range implications for the understanding of strongly correlated oxides and establish fundamental benchmarks to guide theoretical models of the MIT.

  18. Electronic and magnetic phase separation in EuB{sub 6}. Fluctuation spectroscopy and nonlinear transport; Elektronische und magnetische Phasenseparation in EuB{sub 6}. Fluktuationsspektroskopie und nichtlinearer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Amyan, Adham

    2013-07-09

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB{sub 6} as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB{sub 6} and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T{sub MI} and T{sub C}. Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  19. Formation of magnetic aluminium oxyhydroxide nanorods and use for hyperthermal effects

    International Nuclear Information System (INIS)

    Jha, Himendra; Schmidt-Stein, Felix; Shrestha, Nabeen K; Schmuki, Patrik; Kettering, Melanie; Hilger, Ingrid

    2011-01-01

    In the present work, we show that a porous alumina template can easily be filled with magnetic nanoparticles and then be sealed by a hot water treatment (by forming an aluminium oxyhydroxide (AlOOH) sealant layer). The porous layer then can be separated from the substrate by an etch to form free magnetic AlOOH nano-capsules. The process allows for a straightforward and highly defined size control of the magnetic units and can easily be scaled up. Furthermore, as AlOOH is biocompatible and has been used as a drug adjuvant for human use, the nanorod shaped capsules are highly promising for biomedical applications such as hyperthermal effects (heating in alternating magnetic fields).

  20. Modeling of magnetic particle orientation in magnetic powder injection molding

    Science.gov (United States)

    Doo Jung, Im; Kang, Tae Gon; Seul Shin, Da; Park, Seong Jin

    2018-03-01

    The magnetic micro powder orientation under viscous shear flow has been analytically understood and characterized into a new analytical orientation model for a powder injection molding process. The effects of hydrodynamic force from the viscous flow, external magnetic force and internal dipole-dipole interaction were considered to predict the orientation under given process conditions. Comparative studies with a finite element method proved the calculation validity with a partial differential form of the model. The angular motion, agglomeration and magnetic chain formation have been simulated, which shows that the effect of dipole-dipole interaction among powders on the orientation state becomes negligible at a high Mason number condition and at a low λ condition (the ratio of external magnetic field strength and internal magnetic moment of powder). Our developed model can be very usefully employed in the process analysis and design of magnetic powder injection molding.