WorldWideScience

Sample records for magnetic phase transformations

  1. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  2. Determining the magnetically nonlinear characteristics of a three phase core-type power transformer

    International Nuclear Information System (INIS)

    Dolinar, Matjaz; Stumberger, Gorazd; Polajzer, Bostjan; Dolinar, Drago

    2006-01-01

    This paper presents nonlinear iron core model of a three-phase, three-limb power transformer which is given by the current-dependant characteristics of flux linkages. The magnetically nonlinear characteristics are determined by controlled magnetic excitation of all three limbs which allows to take into account the variable magnetic-cross couplings between different coils placed on limbs, caused by saturation. The corresponding partial derivatives of measured flux linkage characteristics are used in the transformer circuit model as a magnetically nonlinear iron core model in order to analyze the behaviour of a nonsymmetrically excited transformer. Numerical results using transformer model with the determined iron core model agree very well with the measured results

  3. Moessbauer study of the magnetic phase transformations in SnMn3N

    International Nuclear Information System (INIS)

    Nagy, D.L.; Zimmer, G.J.; Lohner, T.; Senateur, J.P.

    1975-01-01

    Moessbauer measurements were performed on SnMn 3 N with the aim of verifying the magnetic phase transformations at 175 and 230 K and the Neel transition at 475 K as well as of seeking an explanation for the anomalous peak in magnetic susceptibility about 380 K. Moessbauer spectra were taken at several temperatures between 83 and 475 K and evaluated by a least square fitting program. Abrupt changes in the hyperfine field were found at 175, 230 and 350 K indicating first-order magnetic phase transformations at these temperatures; the 350 K transformation is certainly related to the anomaly in susceptibility. About 475 only a smooth change in the hyperfine field was found suggesting the Neel transition to be of the second order. An attempt is made to explain the relatively high hyperfine field in the cubic antiferromagnetic phase. (A.K.)

  4. Evaluation of phase transformation in ferromagnetic shape memory Fe-Pd alloy by magnetic Barkhausen noise

    Science.gov (United States)

    Furuya, Yasubumi; Tamoto, Shizuka; Kubota, Takeshi; Okazaki, Teiko; Hagood, Nesbitt W.; Spearing, S. Mark

    2002-07-01

    The possibility to detect the phase transformation with martensites by heating or cooling as well as stress-loading in ferromagnetic shape memory Fe-30at percent Pd alloy thin foil by using magnetic Markhausen noise sensor was studied. MBHN is caused by the irregular interactions between magnetic domain and thermally activated martensite twins during magnetization. In general, the envelope of the MBHN voltage versus time signals in Fe-29at percent Pd ribbon showed two peaks during magnetization, where secondary peak at intermediate state of magnetization process decreased with increasing temperature, while the MBHN envelopes in pure iron did not change with increasing temperature. The variety of MBHN due to the phase transformation was apt to arise at higher frequency part of spectrum during intermediate state of magnetization process and it decreased with disappearance of martensite twins. Besides, MBHN increased monotonically with increasing loading stress and then, it decreased with unloading, however MBHN showed large hysteresis between loading and unloading passes. Based on the experimental results from MBHN measurements for both thermoelastic and stress-induced martensite phase transformations in Fe-30at percent Pd ribbon samples, MBHN method seems a useful technique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy.

  5. Magnetic properties and phase transformations of iron sulfides synthesized under the hydrothermal method

    Science.gov (United States)

    Li, S. H.; Chen, Y. H.

    2016-12-01

    The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.

  6. Thermal and magnetic hysteresis associated with martensitic and magnetic phase transformations in Ni52Mn25In16Co7 Heusler alloy

    Science.gov (United States)

    Madiligama, A. S. B.; Ari-Gur, P.; Ren, Y.; Koledov, V. V.; Dilmieva, E. T.; Kamantsev, A. P.; Mashirov, A. V.; Shavrov, V. G.; Gonzalez-Legarreta, L.; Grande, B. H.

    2017-11-01

    Ni-Mn-In-Co Heusler alloys demonstrate promising magnetocaloric performance for use as refrigerants in magnetic cooling systems with the goal of replacing the lower efficiency, eco-adverse fluid-compression technology. The largest change in entropy occurs when the applied magnetic field causes a merged structural and magnetic transformation and the associated entropy changes of the two transformations works constructively. In this study, magnetic and crystalline phase transformations were each treated separately and the effects of the application of magnetic field on thermal hystereses associated with both structural and magnetic transformations of the Ni52Mn25In16Co7 were studied. From the analysis of synchrotron diffraction data and thermomagnetic measurements, it was revealed that the alloy undergoes both structural (from cubic austenite to a mixture of 7M &5M modulated martensite) and magnetic (ferromagnetic to a low-magnetization phase) phase transformations. Thermal hysteresis is associated with both transformations, and the variation of the thermal hystereses of the magnetic and structural transformations with applied magnetic field is significantly different. Because of the differences between the hystereses loops of the two transformations, they merge only upon heating under a certain magnetic field.

  7. Phase transformation and magnetic anisotropy of an iron-palladium ferromagnetic shape-memory alloy

    International Nuclear Information System (INIS)

    Cui, J.; Shield, T.W.; James, R.D.

    2004-01-01

    Martensitic phase transformations in an Fe 7 Pd 3 alloy were studied using various experimental techniques: visual observation, differential scanning calorimeter (DSC) measurements and X-ray diffraction. Magnetic measurements on this alloy were made using a vibrating sample magnetometer (VSM) and a Susceptibility Kappa bridge. The VSM measurements were made with the sample in a compression fixture to bias the martensite phase to a single variant. Both X-ray and DSC measurements show that the FCC-FCT transformation is a weak first-order thermoelastic transition. The average lattice parameters are a=3.822±0.001 A and c=3.630±0.001 A for the FCT martensite, and a 0 =3.756±0.001 A for the FCC austenite. The latent heat of the FCC-FCT transformation is 10.79±0.01 J/cm 3 . A Susceptibility Kappa bridge measurement determined the Curie temperature to be 450 deg. C. The saturation magnetization from VSM data is m s =1220±10 emu/cm 3 at -20 deg. C for the martensite and m s =1080±10 emu/cm 3 at 60 deg. C for the austenite. The easy axes of a single variant of FCT martensite are the [1 0 0] and [0 1 0] directions (the a-axes of the FCT lattice) and the [0 0 1] direction (FCT c-axis) is the hard direction. The cubic magnetic anisotropy constant K 1 is -5±2x10 3 erg/cm 3 for the austenite at 60 deg. C, and the tetragonal anisotropy constant K 1 +K 2 is 3.41 ± 0.02 x 10 5 erg/cm 3 for the martensite at a temperature of -20 deg. C and under 8 MPa of compressive stress in the [0 0 1] direction

  8. Chemical synthesis, phase transformation and magnetic proprieties of FePt and FePd nanoparticles

    International Nuclear Information System (INIS)

    Delattre, Anastasia

    2010-01-01

    This work aims at understanding the chemical synthesis of FePt and FePd nanoparticles (NPs), and at exploring how to implement the phase transformation from the chemically disordered to the L10 phase, without coalescence. Using hexadecanenitrile instead of oleylamine, we obtain NPs with a more homogenous internal composition, instead of core-shell NPs. Through a systematic study (designed experiment relying on Taguchi tables), we developed the FePd synthesis, while evidencing the role of each ligand and of the reductor. To induce the crystalline phase transformation while avoiding coalescence, we explored two ways. In the first one, atomic vacancies are introduced in the NPs through light ion irradiation, atomic mobility being ensured by annealing at moderate temperature (300 C). As a result, the blocking temperature is multiplied by 4, due to anisotropy enhancement. However, strong chemical ordering in the L10 phase cannot be achieved. The second approach relies on the dispersion of the NPs in a salt (NaCl) matrix, prior to annealing at 700 C: high chemical ordering is achieved, and the blocking temperature is beyond 400 C. We then developed a single-step process to remove the salt by dissolution in water and to re-disperse NPs in stable aqueous or organics solutions. These high magnetic anisotropy NPs are then readily available for further chemical or manipulation steps, with applied perspectives in areas such as data storage, or biology. (author)

  9. In situ investigation of ordering phase transformations in FePt magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, James E., E-mail: j.wittig@vanderbilt.edu [Interdisciplinary Materials Science, Vanderbilt University, PMB 351683, 2301 Vanderbilt Place, Nashville, TN 37232 (United States); Bentley, James, E-mail: bentleyj48@gmail.com [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States); Allard, Lawrence F., E-mail: allardlfjr@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States)

    2017-05-15

    In situ high-resolution electron microscopy was used to reveal information at the atomic level for the disordered-to-ordered phase transformation of equiatomic FePt nanoparticles that can exhibit outstanding magnetic properties after transforming from disordered face-centered-cubic into the tetragonal L1{sub 0} ordered structure. High-angle annular dark-field imaging in the scanning transmission electron microscope provided sufficient contrast between the Fe and Pt atoms to readily monitor the ordering of the atoms during in situ heating experiments. However, during continuous high-magnification imaging the electron beam influenced the kinetics of the transformation so annealing had to be performed with the electron beam blanked. At 500 °C where the reaction rate was relatively slow, observation of the transformation mechanisms using this sequential imaging protocol revealed that ordering proceeded from (002) surface facets but was incomplete and multiple-domain particles were formed that contained anti-phase domain boundaries and anti-site defects. At 600 and 700 °C, the limitations of sequential imaging were revealed as a consequence of increased transformation kinetics. Annealing for only 5 min at 700 °C produced complete single-domain L1{sub 0} order; such single-domain particles were more spherical in shape with (002) facets. The in situ experiments also provided information concerning nanoparticle sintering, coalescence, and consolidation. Although there was resistance to complete sintering due to the crystallography of L1{sub 0} order, the driving force from the large surface-area-to-volume ratio resulted in considerable nanoparticle coalescence, which would render such FePt nanoparticles unsuitable for use as magnetic recording media. Comparison of the in situ data acquired using the protocol described above with parallel ex situ annealing experiments showed that identical behavior resulted in all cases. - Highlights: • HAADF STEM imaging reveals the

  10. Magnetic field effect on Gd2(MoO4)3 domain structure formation in the phase transformation range

    International Nuclear Information System (INIS)

    Flerova, S.A.; Tsinman, I.L.

    1987-01-01

    The behaviour of ferroelastic-ferroelectric domain structure of gadolinium molybdate crystal (GMO)during its formation in the magnetic field in the vicinity of phase transformation is studied.It is shown that the formation of domain structure in the presence of a temperature gradient occurs in the field of mechanical stresses whose mainly stretching effect is concentrated near phase boundaries.The magnetic field intensifies summary mechanical stresses where a domain structure in a ferroelectric phase is formed due to interaction with the elements of inhomogeneous and differently oriented currents near phase boundaries

  11. Integrated magnetic transformer assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input...... inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output......-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well- suited for use...

  12. Diffusionless phase transformations

    International Nuclear Information System (INIS)

    Vejman, K.M.

    1987-01-01

    Diffusionless phase transformations in metals and alloys in the process of which atomic displacements occur at the distances lower than interatomic ones and relative correspondence of neighbour atoms is preserved, are considered. Special attention is paid to the mechanism of martensitic transformations. Phenomenologic crystallographical theory of martensitic transformations are presented. Two types of martensitic transformations different from the energy viewpoint are pointed out - thermoelastic and non-thermoelastic ones - which are characterized by transformation hysteresis and ways of martensite - initial phase reverse transformation realization. Mechanical effect in the martensitic transformations have been analyzed. The problem of diffusionless formation of ω-phases and the effect of impurities and vacancies on the process are briefly discussed. The role of charge density waves in phase transformations of the second type (transition of initial phase into noncommensurate one) and of the first type (transition of noncommensurate phase into commensurate one) is considered

  13. Phase diagrams of magnetic state transformations in multiferroic composites controlled by size, shape and interfacial coupling strain

    Directory of Open Access Journals (Sweden)

    Qiang Sheng

    2017-10-01

    Full Text Available This work aims to give a comprehensive view of magnetic state stability and transformations in PZT-film/FeGa-dot multiferroic composite systems due to the combining effects of size, shape and interfacial coupling strain. It is found that the stable magnetic state of the FeGa nanodots is not only a function of the size and shape of the nanodot but also strongly sensitive to the interfacial coupling strain modified by the polarization state of PZT film. In particular, due to the large magnetostriction of FeGa, the phase boundaries between different magnetic states (i.e., in-plane/out-of-plane polar states, and single-/multi-vortex states of FeGa nanodots can be effectively tuned by the polarization-mediated strain. Fruitful strain-mediated transformation paths of magnetic states including those between states with different orderings (i.e., one is polar and the other is vortex, as well as those between states with the same ordering (i.e., both are polar or both are vortex have been revealed in a comprehensive view. Our result sheds light on the potential of utilizing electric field to induce fruitful magnetic state transformation paths in multiferroic film-dot systems towards a development of novel magnetic random access memories.

  14. In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded Ni-Co-Mn-In composite

    International Nuclear Information System (INIS)

    Liu, D.M.; Nie, Z.H.; Wang, G.; Wang, Y.D.; Brown, D.E.; Pearson, J.; Liaw, P.K.; Ren, Y.

    2010-01-01

    A polymer-bonded Ni 45 Co 5 Mn 36.6 In 13.4 ferromagnetic shape-memory composite was fabricated, having magnetic-field-driven shape recovery properties. The thermo-magnetization curves of the composite suggested that the magnetic-field-induced reverse martensitic transformation occurs in the composite. The effects of temperature, stress, and magnetic-field on the phase transformation properties were systematically investigated using an in-situ high-energy X-ray diffraction technique. A temperature-induced reversible martensitic phase transformation was confirmed within the composite, showing a broad phase transformation interval. Stress-induced highly textured martensite was observed in the composite during uniaxial compressive loading, with a residual strain after unloading. The origin of the textured martensite can be explained by the grain-orientation-dependent Bain distortion energy. A recovery strain of ∼1.76% along the compression direction was evidenced in the pre-strained composite with an applied magnetic-field of 5 T. This recovery was caused by the magnetic-field-induced reverse martensitic phase transformation. The phase transformation properties of the ferromagnetic shape-memory composite, different from its bulk alloys, can be well explained by the Clausius-Clapeyron relation. The large magnetic-field-induced strain, together with good ductility and low cost, make the polymer-bonded Ni-Co-Mn-In composites potential candidates for magnetic-field-driven actuators.

  15. Phase transformation and diffusion

    CERN Document Server

    Kale, G B; Dey, G K

    2008-01-01

    Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g

  16. Improved modeling of new three-phase high voltage transformer with magnetic shunts

    Directory of Open Access Journals (Sweden)

    Chraygane M.

    2015-03-01

    Full Text Available This original paper deals with a new approach for the study of behavior in nonlinear regime of a new three-phase high voltage power supply for magnetrons, used for the microwave generators in industrial applications. The design of this system is composed of a new three-phase leakage flux transformer supplying by phase a cell, composed of a capacitor and a diode, which multiplies the voltage and stabilizes the current. Each cell. in turn, supplies a single magnetron. An equivalent model of this transformer is developed taking into account the saturation phenomenon and the stabilization process of each magnetron. Each inductance of the model is characterized by a non linear relation between flux and current. This model was tested by EMTP software near the nominal state. The theoretical results were compared to experimental measurements with a good agreement. Relative to the current device, the new systemprovides gains of size, volume, cost of implementation and maintenance which make it more economical.

  17. Phase transformation, magnetic property and microstructure of Ni-Mn-Fe-Co-Ga ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tsuchiya, K.; Sho, Y.; Kushima, T.; Todaka, Y.; Umemoto, M.

    2007-01-01

    Effects of addition of Fe and Co on the phase stability, magnetic property and microstructures were investigated for Ni-Mn-Ga. In Ni-Mn 21- x -Fe x -Ga 27 alloys, martensitic transformation temperatures decreased with increasing amount of Fe (x) up to 15 mol%, then slightly increased by the further addition. The crystal structure of martensite phase was 10 M for x 15 mol%. Relatively high martensite stability was obtained for Ni 52 -Mn 16- x -Fe x -Co 5 -Ga 27 alloys. The highest stability of the ferromagnetic martensite phase was achieved in Ni 52 -Mn 6 -Fe 10 -Co 5 -Ga 27 after aging at 773 K for 3.6 ks. Martensite structure was non-modulated 2 M in this series of alloys

  18. On the cryogenic magnetic transition and martensitic transformation of the austenite phase of 7MoPLUS duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.H., E-mail: KHLO@umac.m [Department of Electromechanical Engineering, University of Macau, Macau (China); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong)

    2010-08-15

    The magnetic behaviour and martensitic transformation at cryogenic temperatures (down to 4 K) of the austenite phase of the duplex stainless steel (DSS), 7MoPLUS, were studied. As regards the prediction of Neel temperature, the empirical expressions for austenitic stainless steels are not applicable to the austenite phase of 7MoPLUS, although the composition of the austenite phase falls within the composition ranges within which the expressions were developed. Regarding the prediction of martensitic point Ms, the applicability of 'old' and recently developed expressions has been examined. The recently developed expressions, which take into account more alloying elements and their interactions, are not suitable for the austenite phase of 7MoPLUS. But for the 'old', simpler expressions, they seem to be valid in the sense that they all predict high stability of the austenite phase. Results obtained from 7MoPLUS were qualitatively the same as those obtained from another DSS, designated as 2205. Reasons for the applicability and inapplicability of these empirical expressions are suggested.

  19. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  20. Kinetics of phase transformations

    International Nuclear Information System (INIS)

    Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.

    1992-01-01

    This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations

  1. Solid phase transformations

    CERN Document Server

    Čermák, J

    2008-01-01

    This special-topic book, devoted to ""Solid Phase Transformations"" , covers a broad range of phenomena which are of importance in a number of technological processes. Most commercial alloys undergo thermal treatment after casting, with the aim of imparting desired compositions and/or optimal morphologies to the component phases. In spite of the fact that the topic has lain at the center of physical metallurgy for a long time, there are numerous aspects which are wide open to potential investigative breakthroughs. Materials with new structures also stimulate research in the field, as well as n

  2. Phase transformations im smart materials

    International Nuclear Information System (INIS)

    Newnham, R.E.

    1998-01-01

    One of the qualities that distinguishes living systems from inanimate matter is the ability to adapt to changes in the environment. Smart materials have the ability to perform both sensing and actuating functions and are, therefore, capable of imitating this rudimentary aspect of life. Four of the most widely used smart materials are piezoelectric Pb(Zr, Ti)O 3 , electrostrictive Pb(Mg, Nb)O 3 , magnetostrictive (Tb, Dy)Fe 2 and the shape-memory alloy NiTi. All four are ferroic with active domain walls and two phase transformations, which help to tune the properties of these actuator materials. Pb(Zr, Ti)O 3 is a ferroelectric ceramic which is cubic at high temperature and becomes ferroelectric on cooling through the Curie temperature. At room temperature, it is poised on a rhombohedral-tetragonal phase boundary which enhances the piezoelectric coefficients. Terfenol, (Tb, Dy)Fe 2 , is also cubic at high temperature and then becomes magnetic on cooling through its Curie temperature. At room temperature, it too is poised on a rhombohedral-tetragonal transition which enhances its magnetostriction coefficients. Pb(Mg, Nb)O 3 and nitinol (NiTi) are also cubic at high temperatures and on annealing transform to a partially ordered state. On further cooling, Pb(Mg, Nb)O 3 passes through a diffuse phase transformation at room temperature where it exhibits very large dielectric and electrostrictive coefficients. Just below room temperature, it transforms to a ferroelectric rhombohedral phase. The partially ordered shape-memory alloy NiTi undergoes an austenitic (cubic) to martensitic (mono-clinic) phase change just above room temperature. It is easily deformed in the martensitic state but recovers its original shape when reheated to austenite

  3. Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling

    Science.gov (United States)

    Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox

    2018-05-01

    The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.

  4. Evolution of phase transformation and magnetic properties with Fe content in Ni55-x Fe x Mn20Ga25 Heusler alloys

    Science.gov (United States)

    Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao

    2018-02-01

    A series of Ni55-x Fe x Mn20Ga25 (0  ⩽  x  ⩽  5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x  =  0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M  →  L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M  →  5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5  ×  105 J m-3) for the alloys with x  >  3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x  =  4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.

  5. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  6. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  7. Orbital momentum and topological phase transformation

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Kučera, Jan

    2015-01-01

    Roč. 92, č. 23 (2015), "235152-1"-"235152-6" ISSN 1098-0121 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : orbital momentum * anomalous Hall effect * topological phase transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  8. Magnetically self-insulated transformers

    International Nuclear Information System (INIS)

    Novac, B.M.; Smith, I.R.; Brown, J.

    2002-01-01

    Magnetic insulation is the only practicable form of insulation for much equipment used in ultrahigh pulsed-power work, including transmission lines and plasma opening switches. It has not however so far been successfully exploited in the transformers that are necessarily involved, and the first proposed design that appeared more than 30 years ago raised apparently insuperable problems. The two novel arrangements for a magnetically insulated transformer described in this paper overcome the problems faced by the earlier designs and also offer considerable scope for development in a number of important areas. Theoretical justification is given for their insulating properties, and this is confirmed by proof-of-principle results obtained from a small-scale experimental prototype in which magnetic insulation was demonstrated at up to 100 kV. (author)

  9. Magnetic dipole self-organization of charge carriers in high-temperature superconductors and kinetics of phase transformation

    CERN Document Server

    Voronov, A V; Shuvalov, V V

    2001-01-01

    The phenomenological model, describing the magnetic dipole self-organization of charge carriers (formation of so-called stripe-structures and energy gap in the states spectrum), is designed for interpreting the data on the nonstationary nonlinear spectroscopy of the high-temperature superconductors. It is shown that after fast heating of the superconducting sample the kinetics of the subsequent phase transition depends on the initial temperature T. The destruction of the stripe-structures at low overheating T* < T < T sub m approx = (1.4-1.5)T*, whereby T sub c and T* approx = T sub c are the temperatures of transition into the superconducting state and formation of the stripe-structures occurs slowly (the times above 10 sup - sup 9 s) in spite of practically instantaneous disappearance of the superconductivity

  10. Phase transformations in engineering materials

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Lawson, A.C.; Dunand, D.C.

    1996-01-01

    Phase transformations in engineering materials are inevitably related to mechanical behavior and are often precursors to residual stress and distortion. Neutron scattering in general is a valuable tool for studying their effects, and pulsed neutrons are of special value, because of the inherently comprehensive crystallographic coverage they provide in each measurement. At the Manuel Lujan neutron scattering center several different research programs have addressed the relationships between phase transformation/mechanical behavior and residual strains. Three disparate examples are presented; (1) stress induced transformation in a NiTi shape memory alloy, (2) cryogenically induced transformation in a quenched 5180 steel, and (3) time resolved evolution of strain induced martensite in 304 stainless steel. In each case a brief description of the principle result will be discussed in the context of using neutrons for the measurement

  11. Field dependence of temperature induced irreversible transformations of magnetic phases in Pr0.5Ca0.5Mn0.975Al0.025O3 crystalline oxide

    International Nuclear Information System (INIS)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R; Kumar, Kranti; Banerjee, A; Chaddah, P

    2010-01-01

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr 0.5 Ca 0.5 Mn 0.975 Al 0.025 O 3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle. (fast track communication)

  12. FAST TRACK COMMUNICATION: Field dependence of temperature induced irreversible transformations of magnetic phases in Pr0.5Ca0.5Mn0.975Al0.025O3 crystalline oxide

    Science.gov (United States)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R.; Kumar, Kranti; Banerjee, A.; Chaddah, P.

    2010-01-01

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr0.5Ca0.5Mn0.975Al0.025O3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.

  13. Role of magnetism on the martensitic transformation in Ni–Mn-based magnetic shape memory alloys

    International Nuclear Information System (INIS)

    Sánchez-Alarcos, V.; Recarte, V.; Pérez-Landazábal, J.I.; Gómez-Polo, C.; Rodríguez-Velamazán, J.A.

    2012-01-01

    The effect of magnetism on the martensitic structural transformation has been analyzed through the evolution of the transformation temperatures of several Ni–Mn–Ga and Ni–Mn–In alloys subjected to high-temperature quenching and post-quench annealing thermal treatments. It is found that the atomic order variations associated with the thermal treatments affect the structural transformation in different ways depending on the character of the magnetic ordering in the austenitic and the martensitic phases. In particular, regardless of composition, the variation in the atomic order affects the martensitic transformation temperature only in those alloys in which at least one of the structural phases show magnetic order at the transformation temperature, whereas those transformations taking place between paramagnetic phases remain unaffected. The observed behaviors are explained in terms of the effect of the magnetic exchange coupling variations on the free energy difference between austenite and martensite. The results confirm the key role of magnetism in the martensitic transformation.

  14. Magnetic bead detection using nano-transformers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kwon; Ahn, Doyeol [Institute of Quantum Information Processing and Systems, University of Seoul, 90 Jeonnong, Dongdaemun, Seoul 130-743 (Korea, Republic of); Hwang, Jong Seung; Hwang, Sung Woo, E-mail: dahn@uos.ac.kr [Research Center for Time-domain Nano-functional Devices and School of Electrical Engineering, Korea University, 5-1 Anam, Sungbuk, Seoul 136-701 (Korea, Republic of)

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  15. Magnetic bead detection using nano-transformers.

    Science.gov (United States)

    Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  16. Ab initio calculation of phase boundaries in iron along the bcc-fcc transformation path and magnetism of iron overlayers

    Czech Academy of Sciences Publication Activity Database

    Friák, Martin; Šob, Mojmír; Vitek, V.

    2001-01-01

    Roč. 63, č. 5 (2001), s. čl. 052405 ISSN 0163-1829 R&D Projects: GA ČR GA106/99/1178; GA MŠk ME 264 Grant - others:-(US) INT9605232 Institutional research plan: CEZ:AV0Z2041904 Keywords : ultrathin fe films * generalized-gradient approximation * energy-electron-diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.070, year: 2001

  17. Phase transformations in metallic glasses

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    2003-01-01

    Recent development of grain-size effect on phase transformations induced by pressure is reported. A thermodynamic theory is presented and three components: the ratio of volume collapses, the surface energy differences, and the internal energy differences, governing the change of transition pressure...... in nanocrystals were uncovered. They can be used to explain the results reported in the literature and to identify the main factor to the change of the transition pressure in nanocrystals. We demonstrated that the grain-size effect on the structural stability in nanocrystals with respect to transition pressure...

  18. Magnetic properties near the ferromagnetic-paramagnetic transformation in the austenite phase of Ni43Mn44X2Sn11 (X = Fe and Co) Heusler alloys

    Science.gov (United States)

    Nan, W. Z.; Thanh, T. D.; You, T. S.; Piao, H. G.; Yu, S. C.

    2018-03-01

    In this work, we present a detail study on the magnetic properties in the austenitic phase (A phase) Ni43Mn44X2Sn11 alloy with X = Fe and Co, which were prepared by an arc-melting method in an argon atmosphere. The M(T) curves of two samples exhibits a single magnetic phase transition at the Curie temperature of the ferromagnetic (FM) austenitic phase with TCA = 298 K and 334k for (X = Fe and Co) respectively. Based on the Landau theory and M(H) data measured at different temperatures, we found that the FM-PM phase transitions around TCA in both samples were the second-order phase transition. Under an applied field change of 30 kOe, around TCA , the magnetic entropy changes were found to be 0.66 J Kg-1 K-1 and 1.62 J Kg-1 K-1 for (X = Fe and Co) respectively.

  19. 3D printed magnetic polymer composite transformers

    Science.gov (United States)

    Bollig, Lindsey M.; Hilpisch, Peter J.; Mowry, Greg S.; Nelson-Cheeseman, Brittany B.

    2017-11-01

    The possibility of 3D printing a transformer core using fused deposition modeling methods is explored. With the use of additive manufacturing, ideal transformer core geometries can be achieved in order to produce a more efficient transformer. In this work, different 3D printed settings and toroidal geometries are tested using a custom integrated magnetic circuit capable of measuring the hysteresis loop of a transformer. These different properties are then characterized, and it was determined the most effective 3D printed transformer core requires a high fill factor along with a high concentration of magnetic particulate.

  20. Effect of isochronal annealing on phase transformation studies of ...

    Indian Academy of Sciences (India)

    The mixed phase sample shows higher value of magnetization because of the presence of ferromagnetic γ-Fe2O3 ... 1. Introduction. The study of particle size, phase transformation and micros- ..... The results are in qualitative agreement with ...

  1. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  2. Rare earth permanent-magnet alloys’ high temperature phase transformation in situ and dynamic observation and its application in material design

    CERN Document Server

    Pan, Shuming

    2013-01-01

    The process of high temperature phase transition of rare earth permanent-magnet alloys is revealed by photographs taken by high voltage TEM. The relationship between the formation of nanocrystal and magnetic properties is discussed in detail, which effects alloys composition and preparation process. The experiment results verified some presumptions, and were valuable for subsequent scientific research and creating new permanent-magnet alloys. The publication is intended for researchers, engineers and managers in the field of material science, metallurgy, and physics. Prof. Shuming Pan is senior engineer of Beijing General Research Institute of Non-ferrous Metal.

  3. Transformation magneto-statics and illusions for magnets

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2014-10-01

    Based on the form-invariant of Maxwell's equations under coordinate transformations, we extend the theory of transformation optics to transformation magneto-statics, which can design magnets through coordinate transformations. Some novel DC magnetic field illusions created by magnets (e.g. rescaling magnets, cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our research will open a new door to designing magnets and controlling DC magnetic fields.

  4. Thermally induced phase transformation of pearl powder

    International Nuclear Information System (INIS)

    Zhang, Guoqing; Guo, Yili; Ao, Ju; Yang, Jing; Lv, Guanglie; Shih, Kaimin

    2013-01-01

    The polymorphic phase transformation of thermally treated pearl powder was investigated by X-ray diffraction and thermoanalytical techniques. The phase transformation was based on quantification of the calcite content at various temperatures using Rietveld refinement analysis. The results show that the phase transformation of pearl aragonite occurred within a temperature range of 360–410 °C, which is 50–100 °C lower than the range for non-biomineralized aragonite. These thermoanalytical results suggest that the phase transformation of pearl aragonite may occur immediately after the thermal decomposition of the organic matrix in the pearl powder. An important finding is that decomposition of the organic matrix may greatly facilitate such transformation by releasing additional space for an easier structural reconstruction during the phase transformation process. - Highlights: ► Providing a new method to describe the polymorphic transition of pearl powder ► The phase transition sketch was exhibited by XRD phase quantitative analysis. ► There are dozens of degrees in advance comparing to natural aragonite. ► The phase transition occurs following the thermal decomposition of organism

  5. Kinetics of first order phase transformation in metals and alloys. Isothermal evolution in martensite transformation

    International Nuclear Information System (INIS)

    Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2011-01-01

    The 11th lecture about microstructures and fluctuation in solids reports on the martensitic phase transformation of alkali metals and alloys. The martensitic transformation is a diffusionless first order phase transformation. Martensitic transformations are classified into two with respect to kinetics, one is isothermal transformation and the other is athermal transformation. The former transformation depends upon both temperature and time, but the latter solely depends on temperature. The former does not have a definite transformation start temperature but occurs after some finite incubation time during isothermal holding. The isothermal martensitic transformation is changed to the athermal one under high magnetic field, and also the reverse transformation occurs under the application of hydrostatic pressure. The former phenomena were observed in Fe-Ni-Mn alloys, Fe-Ni-Cr alloys and also the reverse transformation in Fe-3.1at%Ni-0.5at%Mn alloys. The athermal transformation was observed in Li and Na metals at 73 and 36 K, respectively. A neutron diffraction study has been performed on single crystals of metallic Na. On cooling the virgin sample, the incubation time to transform from the bcc structure to the low-temperature structure (9R structure) is formed to be more than 2h at 38 K, 2 K higher than the transformation temperature of 36 K. The full width of half maximum of the Bragg reflection suddenly increased, due to some deformation introduced by the nucleation of the low-temperature structure. In relation to the deformation, strong extra-diffuse scattering (Huang scattering) was observed around the Bragg reflection in addition to thermal diffuse scattering. The kinetics of the martensitic transformation in In-Tl alloys has been studied by x-ray and neutron diffraction methods. A characteristic incubation time appeared at fixed temperature above Ms, the normal martensitic transformation start temperature. (author)

  6. Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Rao Weifeng [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States); Khachaturyan, Armen G., E-mail: khach@jove.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States)

    2011-06-15

    A phase field theory of proper displacive transformations is developed to address the microstructure evolution and its response to applied fields in decomposing and martensitic systems. The theory is based on the explicit equation for the non-equilibrium free energy function of the transformation strain obtained by a consistent separation of the total strain into transformation and elastic strains. The transformation strain is considered to be a relaxing long-range order parameter evolving in accordance with the system energetics rather than as a fixed material constant used in the conventional Eshelby theory of coherent inclusions. The elastic strain is defined as a coherency strain recovering the crystal lattice compatibility. The obtained free energy function of the transformation strain leads to the concepts of structural anisotropy and directional flexibility of low symmetry phases. The formulated vector model of displacive transformation makes apparent a similarity between proper displacive transformation and ferromagnetic/ferroelectric transformation and, in particular, a similarity between the structural anisotropy and magnetic/polar anisotropy of ferromagnetic/ferroelectric materials. It even predicts the feasibility of a glass-like structural state with unlimited directional flexibility of the transformation strain that is conceptually similar to a ferromagnetic glass. The thermodynamics of the equilibrium between low symmetry phases and the thermodynamic conditions leading to the formation of adaptive states are formulated.

  7. Generalized phase transformations of spinor fields

    International Nuclear Information System (INIS)

    Mikhov, S.G.

    1993-09-01

    In this paper some generalized four parameter phase transformations of a Dirac spinor are considered. It is shown that a corresponding compensating transformation of the electromagnetic field which restores the invariance of the Dirac-Maxwell equation might exist, provided some consistency conditions are satisfied by the parameters of the transformations. These transformations are used further to consider the Maxwell equations under the assumption that a Bosonization takes place. Only one of the considered cases proves to have a solution (the other cases show to be trivial) which although unphysical is obtained explicitly. (author). 10 refs

  8. Soliton bubbles and phase transformations

    International Nuclear Information System (INIS)

    Masperi, L.

    1989-01-01

    It is shown that no topological classical solutions in form of bubbles of a real scalar field theory with Lagrangian of quartet and sextet self interactions in 1+1 dimensions are responsible to discontinue transitions in the quantum problem between phases with degenerated and disordered excited level. (M.C.K.)

  9. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  10. Effect of Phase Transformations on Seismic Velocities

    Science.gov (United States)

    Weidner, D. J.; Li, L.; Whitaker, M.; Triplett, R.

    2017-12-01

    The radial velocity structure of the Earth consists of smooth variations of velocities with depth punctuated by abrupt changes of velocity, which are typically due to multivariant phase transformations, where high - low pressure phases can coexist. In this mixed phase region, both the effective shear and bulk moduli will be significantly reduced by the dynamic interaction of the propagating wave and the phase transition if the period of the wave is long enough relative to the kinetic time so that some of the transition can take place. In this presentation, we will give examples from both laboratory studies of phases transitions of Earth minerals and the calculated velocity profile based on our models. We focus on understanding the time limiting factor of the phase transformation in order to extrapolate laboratory results to Earth observations. Both the olivine to ringwoodite transition and KLB-1 partial melting are explored. We find that when the transformation requires diffusion, the kinetics are often slowed down considerably and as a result the diffusivity of atoms become the limiting factor of characteristic time. Specifically Fe-Mg exchange rate in the olivine-ringwoodite phase transition becomes the limiting factor that seismic waves are likely to sample. On the other hand, partial melting is an extremely fast phase transformation at seismic wave periods. We present evidence that ultrasonic waves, with a period of a few tens of nanoseconds, are slowed by the reduction of the effective elastic moduli in this case.

  11. Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liqiu; Yang, Binjie; Qin, Sixiao [University of Science and Technology Beijing (China). Corrosion and Protection Center

    2016-02-15

    This paper demonstrates the hydrogen-induced phase transformation and the associated pitting nucleation sites of 2507 duplex stainless steel using scanning Kelvin probe force microscopy and magnetic force microscopy. The low potential sites in Volta potential images, which are considered as the pitting nucleation sites, are strongly dependent on the hydrogen-induced phase transformation. They firstly initiate on the magnetic martensite laths in the austenite phase or at the ferrite/austenite boundaries, and then appear near the needle-shaped microtwins in the ferrite phase, because of the difference in physicochemical properties of hydrogen-induced phase transformation microstructures.

  12. Phase transformations in Higher Manganese Silicides

    Energy Technology Data Exchange (ETDEWEB)

    Allam, A. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Boulet, P. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); Nunes, C.A. [Departamento de Engenharia de Materiais (DEMAR), Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP, Caixa Postal 116, 12600-970 Lorena, Sao Paulo (Brazil); Sopousek, J.; Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kolarska 2, 611 37 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 625 00 Brno (Czech Republic); Record, M.-C., E-mail: m-c.record@univ-cezanne.fr [IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The phase transitions of the Higher Manganese Silicides were investigated. Black-Right-Pointing-Pointer The samples were characterised by XRD, DTA and DSC. Black-Right-Pointing-Pointer Mn{sub 27}Si{sub 47} is the stable phase at room temperature and under atmospheric pressure. Black-Right-Pointing-Pointer At around 800 Degree-Sign C, Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. Black-Right-Pointing-Pointer The phase transition is of a second order. - Abstract: This work is an investigation of the phase transformations of the Higher Manganese Silicides in the temperature range [100-1200 Degree-Sign C]. Several complementary experimental techniques were used, namely in situ X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The evolution of both the lattice parameters and the thermal expansion coefficients was determined from in situ XRD measurements. The stability of the samples was investigated by thermal analysis (DTA) and Cp measurements (DSC). This study shows that Mn{sub 27}Si{sub 47} which is the stable phase at room temperature and under atmospheric pressure undergoes a phase transformation at around 800 Degree-Sign C. Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. This phase transformation seems to be of a second order one. Indeed it was not evidenced by DTA and by contrast it appears on the Cp curve.

  13. Phase Transformations During Cooling of Automotive Steels

    Science.gov (United States)

    Padgett, Matthew C.

    This thesis explores the effect of cooling rate on the microstructure and phases in advanced high strength steels (AHSS). In the manufacturing of automobiles, the primary joining mechanism for steel is resistance spot welding (RSW), a process that produces a high heat input and rapid cooling in the welded metal. The effect of RSW on the microstructure of these material systems is critical to understanding their mechanical properties. A dual phase steel, DP-600, and a transformation induced plasticity bainitic-ferritic steel, TBF-1180, were studied to assess the changes to their microstructure that take place in controlled cooling environments and in uncontrolled cooling environments, i.e. resistance spot welding. Continuous cooling transformation (CCT) diagrams were developed using strip specimens of DP-600 and TBF-1180 to determine the phase transformations that occur as a function of cooling rate. The resulting phases were determined using a thermal-mechanical simulator and dilatometry, combined with light optical microscopy and hardness measurements. The resulting phases were compared with RSW specimens where cooling rate was controlled by varying the welding time for two-plate welds. Comparisons were drawn between experimental welds of DP-600 and simulations performed using a commercial welding software. The type and quantity of phases present after RSW were examined using a variety of techniques, including light optical microscopy using several etchants, hardness measurements, and x-ray diffraction (XRD).

  14. Field dependence of temperature induced irreversible transformations of magnetic phases in Pr{sub 0.5}Ca{sub 0.5}Mn{sub 0.975}Al{sub 0.025}O{sub 3} crystalline oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R; Kumar, Kranti; Banerjee, A; Chaddah, P, E-mail: rrawat@csr.ernet.i [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452017, M.P (India)

    2010-01-27

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr{sub 0.5}Ca{sub 0.5}Mn{sub 0.975}Al{sub 0.025}O{sub 3} to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle. (fast track communication)

  15. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  16. Phase transformations, stability, and materials interactions

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Brewer, L.; Cost, J.R.; Shewmon, P.

    1977-07-01

    The proceedings of the Materials Sciences Workshop on Phase Transformations, Stability, and Materials Interactions are divided into sections according to the following topics: (I) workshop scope and priorities; (II) study group reports--ERDA mission needs; (III) study group reports--technical area research priorities

  17. Total energy calculations for structural phase transformations

    International Nuclear Information System (INIS)

    Ye, Y.Y.; Chan, C.T.; Ho, K.M.; Harmon, B.N.

    1990-01-01

    The structural integrity and physical properties of crystalline solids are frequently limited or enhanced by the occurrence of phase transformations. Martensitic transformations involve the collective displacement of atoms from one ordered state to another. Modern methods to determine the microscopic electronic changes as the atoms move are now accurate enough to evaluate the very small energy differences involved. Extensive first principles calculations for the prototypical martensitic transformation from body-centered cubic (bcc) to closepacked 9R structure in sodium metal are described. The minimum energy coordinate or configuration path between the bcc and 9R structures is determined as well as paths to other competing close-packed structures. The energy barriers and important anharmonic interactions are identified and general conclusions drawn. The calculational methods used to solve the Schrodinger equation include pseudopotentials, fast Fourier transforms, efficient matrix diagnonalization, and supercells with many atoms

  18. THREE-PHASE TRANSFORMER PARAMETERS CALCULATION CONSIDERING THE CORE SATURATION FOR THE MATLAB-SIMULINK TRANSFORMER MODEL

    Directory of Open Access Journals (Sweden)

    I. V. Novash

    2015-01-01

    Full Text Available This article describes the parameters calculation for the three-phase two-winding power transformer model taken from the SimPowerSystems library, which is the part of the MatLab- Simulink environment. Presented methodology is based on the power transformer nameplate data usage. Particular attention is paid to the power transformer magnetization curve para- meters  calculation.  The  methodology  of  the  three-phase  two-winding  power  transformer model parameters calculation considering the magnetization curve nonlinearity isn’t presented in Russian-and English-language sources. Power transformers demo models described in the SimPowerSystems user’s guide have already calculated parameters, but without reference to the sources of their determination. A power transformer is a nonlinear element of the power system, that’s why for its performance analysis in different modes of operation is necessary to have the magnetization curve parameters.The process analysis during no-load energizing of the power transformer is of special interest. This regime is accompanied by the inrush current on the supply side of the power transformer, which is several times larger than the transformer rated current. Sharp rising of the magnetizing current is explained by the magnetic core saturation. Therefore, magnetiza- tion characteristic accounting during transformer no-load energizing modeling is a mandatory requirement. Article authors attempt to put all calculating formulas in a more convenient form and validate the power transformer nonlinear magnetization characteristics parameters calcu- lation. Inrush current oscillograms obtained during the simulation experiment confirmed the adequacy of the calculated model parameters.

  19. Transformer current sensor for superconducting magnetic coils

    Science.gov (United States)

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  20. Phase transformations of siderite ore by the thermomagnetic analysis data

    Energy Technology Data Exchange (ETDEWEB)

    Ponomar, V.P., E-mail: vitaliyponomar.vp@gmail.com; Dudchenko, N.O.; Brik, A.B.

    2017-02-01

    Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was ~320 °C. Saturation magnetization of obtained samples increases up to 20 Am{sup 2}/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite. - Highlights: • Mg-siderite decomposition was investigated by thermomagnetic analysis. • Magnetization and Curie temperature change with each next cycle of heating/cooling. • Magnesioferrite is the final phase of Mg-siderite thermal decomposition. • Transformation exclude the hematite formation.

  1. Grain nucleation and growth during phase transformations

    DEFF Research Database (Denmark)

    Offerman, S.E.; Dijk, N.H. van; Sietsma, J.

    2002-01-01

    of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally...... different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....

  2. Plasticity induced phase transformation in molecular crystals

    OpenAIRE

    Koslowski, Marisol

    2014-01-01

    Solid state amorphization (SSA) can be achieved in crystalline materials including metal alloys, intermetallics, semiconductors, minerals and molecular crystals. Even though the mechanisms may differ in different materials, the crystalline to amorphous transformation occurs when the crystal reaches a metastable state in which its free energy is higher than that of the amorphous phase. SSA is observed in metal alloys because of interdiffusion of the crystalline elements during mechanical milli...

  3. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  4. Numerical simulation of heterogeneous phase transformations

    International Nuclear Information System (INIS)

    Combeau, H.; Lacaze, J.

    1993-01-01

    A numerical model is presented for the simulation of diffusion controlled phase transformations in multicomponent alloys. A closed system is considered, with simple geometric shape, either planar, cylindrical or spherical. The temperature inside this microscopic volume is homogeneous, but can vary according to any specified monoteneous law. Particular care has been given to the description of the solute profiles where the concentration gradients are the steepest, i.e. near the interface between the parent and the resultant phases. Solute redistribution at the interface is described by means of an original method which ensures that the overall solute balance is satisfied. A non linear system is obtained which includes the diffusion equations in both phases and the boundary conditions. The solution of this system makes use of a special algorithm which has been devised for a quick convergence. An example is presented which deals with microsegregation build-up during solidification of a multi-component nickel base alloy. (orig.)

  5. Phase transformations in Mo-doped FINEMETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveyra, Josefina M., E-mail: jsilveyra@fi.uba.a [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina); Illekova, Emilia; Svec, Peter; Janickovic, Dusan [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Rosales-Rivera, Andres [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Cremaschi, Victoria J. [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina)

    2010-06-15

    In this paper, the phase transformations occurring during the crystallization process of FINEMETs in which Nb has been gradually replaced by Mo have been studied by a variety of techniques including DSC, DTA, TGA, XRD and TEM. The thermal stability of the alloy was deteriorated as a consequence of Mo's smaller atomic size. The gradual replacement of Nb by Mo reduced the onset temperature of Fe-Si and of the borides. The Curie temperature of the amorphous phase slightly decreased from 594 K for x=0 to 587 K for x=3. The borides compounds Fe{sub 2}B and Fe{sub 23}B{sub 6} as well as the (Nb,Mo){sub 5}Si{sub 3} phase were found to precipitate in the second and third crystallization.

  6. Elementary excitations and phase transformations in solids

    International Nuclear Information System (INIS)

    Cowley, R.A.

    1985-01-01

    Neutron scattering is and will continue to be a uniquely powerful tool for the study of elementary excitations and phase transformations in solids. The paper examines a few recent experiments on molecular crystals, superionic materials, paramagnetic scattering and phase transitions to see what experimental features made these experiments possible, and hence to make suggestions about future needs. It is concluded that new instruments will extend the scope of neutron scattering studies to new excitations, that there is a need for higher resolution, particularly for phase transition studies, and that it will be important to use intensity information, discrimination against unwanted inelastic processes and polarization analysis to reliably measure the excitations in new materials. (author)

  7. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Igor V. [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kuzmin, Dmitry A., E-mail: kuzminda@csu.ru [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G. [Kotelnikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya Street 11-7, Moscow 125009 (Russian Federation)

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii–Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii–Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications. - Highlights: • Magnetostrictive ultrasound generation by spiral magnets at phase transition (PT) is studied. • Spiral magnets during PT may generate transverse sound with wavelength equal to spiral period. • Amplitude of the sound is strictly depends on the phase transition speed. • Microwave-to-sound transformation in the vicinity of PT is investigated as well.

  8. Pressure Induced Phase Transformations in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)

    2017-10-15

    The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics, most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to

  9. Magnetic phase diagram of a nanocone

    International Nuclear Information System (INIS)

    Suarez, O; Vargas, P; Escrig, J; Landeros, P; Albir, D; Laroze, D

    2008-01-01

    In this work we analyze the magnetic properties of truncated conical nanoparticles. Based on the continuous magnetic model we find expressions for the total energy in three different magnetic configurations. Finally, we calculate the magnetic phase diagram as function of the geometrical parameters.

  10. Magnetic phase diagram of a nanocone

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, O; Vargas, P [Departamento de Fisica, Universidad Tecnica Federico Santa MarIa, P. O. Box 110-V, Valparaiso (Chile); Escrig, J; Landeros, P; Albir, D [Universidad de Santiago de Chile, Depatamento de Fisica, Casilla 307, Correo 2, Santiago (Chile); Laroze, D [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, P. O. Box 4059, Valparaiso (Chile)], E-mail: omar.suarez@postgrado.usm.cl

    2008-11-01

    In this work we analyze the magnetic properties of truncated conical nanoparticles. Based on the continuous magnetic model we find expressions for the total energy in three different magnetic configurations. Finally, we calculate the magnetic phase diagram as function of the geometrical parameters.

  11. Investigation of phase transformations in ductile cast iron of differential scanning calorimetry

    International Nuclear Information System (INIS)

    Przeliorz, R; Piatkowski, J

    2011-01-01

    The effect of heating rate on phase transformations to austenite range in ductile cast iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC) was used. Micro structure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15 deg. C min -1 , local extrema have been observed to occur: for pearlite→austenite transformation at 784 deg. C and 795 deg. C, respectively, and for ferrite+ graphite →austenite transformation at 805 deg. C and 821 deg. C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740 deg. C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  12. Application of Differential Scanning Calorimetry (DSC in study of phase transformations in ductile iron

    Directory of Open Access Journals (Sweden)

    R. Przeliorz

    2010-04-01

    Full Text Available The effect of heating rate on phase transformations to austenite range in ductile iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC was used. Microstructure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15°C/min, local extrema have been observed to occur: for pearlite→austenite transformation at 784°C and 795°C, respectively, and for ferrite→austenite transformation at 805°C and 821°C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740°C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  13. Sweeping a persisting superconducting magnet with a transformer

    International Nuclear Information System (INIS)

    Spencer, G.F.; Alexander, P.W.; Ihas, G.G.

    1982-01-01

    A method for sweeping a persisting superconducting magnet is described. The field sweep is achieved by including in the superconducting loop of the magnet a coil which acts as the secondary coil of a transformer. Variation of the current in the primary coil of the transformer, controlled from outside the cryostat, causes the field-sweeping action through flux-linking with the superconducting loop. Compared to directly changing the current in a magnet, this technique improves control by the ratio of the magnet's inductance to the transformer's inductance. The advantages of using an all-metal vacuum-tight superconducting feedthrough are discussed. (author)

  14. Phase transformations in nickel sulphide: Microstructures and mechanisms

    International Nuclear Information System (INIS)

    Yousfi, Oussama; Donnadieu, Patricia; Brechet, Yves; Robaut, Florence; Charlot, Frederic; Kasper, Andreas; Serruys, Francis

    2010-01-01

    Nickel sulphide inclusions are known to be responsible for delayed fracture in tempered glasses due to phase transformation within the inclusion. Microstructural identification of the phase transformation mechanisms in the Ni-S system close to the NiS composition were carried out on a series of partially transformed states. Observations allow to investigate the morphological evolution during transformation, the phase orientation relationships and the first stages of the transformation were investigated by optical microscopy, electron backscatter diffraction, and scanning and transmission electron microscopy. The transformation mechanisms change significantly with the change in sulphur content of the α-NiS phase. Massive transformation is observed for near-stoichiometric composition. For overstoichiometric composition, the transformation is controlled by a long-range diffusion mechanism. The influence of stoichiometry and impurities (Fe) on the microstructural evolution and transformation mechanisms has also been studied.

  15. Design and Implementation of GSM Based Transformer Phase ...

    African Journals Online (AJOL)

    In this work, the design and implementation of a transformer phase monitoring system, which continuously check for blown fuses on each phases of the distribution transformer was carried out. The system promptly reports any transformer with blown J&P fuse via a preprogrammed SMS which will state the location of the ...

  16. Mechanically induced atomic disorder and phase transformations. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Limei, D

    1992-11-30

    The study shows the possibilities of preparing alloys in various metastable configurations by the simple technique of ball milling. Firstly, chapter 2 gives the description of experimental techniques. In chapter 3, evidence of atomic anti-site disordering in A15-structure superconducting compounds Nb3Sn and Nb3Au during an early stage of milling is demonstrated. Chapter 4 represents the experimental results on the B2-structure magnetic compounds CoGa and CoAl upon mechanical impact. These compounds are well known for their particular type of atomic disorder, namely triple-defect disorder. Various examples of experimental evidence of phase transformations induced by mechanical grinding are presented in chapter 5. Section 5.2 gives an example of amorphization induced by mechanical attrition in the intermetallic compound Ni3Sn. Section 5.3 shows the milling experiment of the intermetallic compound V3 Ga. In section 5.4, for the first time, the observation of a phase transformation to a high-temperature phase with a complex structure will be demonstrated for the intermetallic compound Co3Sn2. In the last chapter, detailed studies on the intermetallic Nb-Au binary compounds for a variety of compositions are presented.

  17. Phase transformations in the B2 phase of Co-rich Co-Al binary alloys

    International Nuclear Information System (INIS)

    Niitsu, K.; Omori, T.; Nagasako, M.; Oikawa, K.; Kainuma, R.; Ishida, K.

    2011-01-01

    Research highlights: → Bainitic transformation and a martensite-like structure from B2-CoAl were observed depending on quenching rate. → The phase separation into the metastable A2 + B2 structure was found in the as-quenched B2-CoAl. → The two-phase structure of A2 and B2 was found to show some coercive force after aging under a magnetic field. - Abstract: Phase transformations in the β (B2) phase of Co-21 and -23 at.% Al alloys were examined using transmission electron microscopy, energy dispersive X-ray spectroscopy and differential scanning calorimetry. The microstructures obtained from as-quenched specimens were found to be strongly affected by the quenching condition. While relatively thick sheet-specimens with a lower quenching rate showed bainitic plate precipitates with a fcc structure, a martensite-like structure was observed by optical microscopy in relatively thin specimens with a higher quenching rate. Regardless of the quenching condition, a spinodal-like microstructure composed of A2 and B2 phases was also detected and the A2 phase changed to a metastable hcp phase during further aging.

  18. Phase transformations in neutron-irradiated Zircaloys

    International Nuclear Information System (INIS)

    Chung, H.M.

    1986-04-01

    Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after ∼3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr 3 O and cubic-ZrO 2 particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of ∼4 x 10 21 ncm -2 in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs

  19. A New Identification Method of Both Magnetization Characteristic and Parameters of an Unloaded Transformer

    Directory of Open Access Journals (Sweden)

    Petr Orsag

    2008-01-01

    Full Text Available In this paper a new method of identification of both the magnetization characteristic and the instantaneous parameters G(t and K(t of a single-phase transformer under a sinusoidal supply voltage is proposed. The instantaneous conductance G(t and inverse inductance K(t of the transformer cross section are determined by the scalar product of time functions. The magnetization characteristic is derived by means of the inverse inductance K(t. The method is practically applied to an isolating transformer.

  20. An optical Fourier transform coprocessor with direct phase determination.

    Science.gov (United States)

    Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D

    2017-10-20

    The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.

  1. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  2. Multi-channel phase-equivalent transformation and supersymmetry

    OpenAIRE

    Shirokov, A. M.; Sidorenko, V. N.

    2000-01-01

    Phase-equivalent transformation of local interaction is generalized to the multi-channel case. Generally, the transformation does not change the number of the bound states in the system and their energies. However, with a special choice of the parameters, the transformation removes one of the bound states and is equivalent to the multi-channel supersymmetry transformation recently suggested by Sparenberg and Baye. Using the transformation, it is also possible to add a bound state to the discr...

  3. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  4. Low-temperature phase transformation in rubidium and cesium superoxides

    International Nuclear Information System (INIS)

    Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.

    1980-01-01

    Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru

  5. Penetration of magnetic field in ferromagnetic transformer sheet

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, R; Ziolkowski, M

    1981-01-12

    The paper deals with the penetration of magnetic field in a ferromagnetic transformer sheet. The flux-density distribution is computed using Galerkin's procedure. The different boundary conditions and the nonlinear B/H characteristic is taken into account.

  6. Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases

    International Nuclear Information System (INIS)

    Perez-Mato, J M; Aroyo, M I; Ribeiro, J L; Petricek, V

    2012-01-01

    Superspace symmetry has been for many years the standard approach for the analysis of non-magnetic modulated crystals because of its robust and efficient treatment of the structural constraints present in incommensurate phases. For incommensurate magnetic phases, this generalized symmetry formalism can play a similar role. In this context we review from a practical viewpoint the superspace formalism particularized to magnetic incommensurate phases. We analyse in detail the relation between the description using superspace symmetry and the representation method. Important general rules on the symmetry of magnetic incommensurate modulations with a single propagation vector are derived. The power and efficiency of the method is illustrated with various examples, including some multiferroic materials. We show that the concept of superspace symmetry provides a simple, efficient and systematic way to characterize the symmetry and rationalize the structural and physical properties of incommensurate magnetic materials. This is especially relevant when the properties of incommensurate multiferroics are investigated. (topical review)

  7. Atomic disorder, phase transformation, and phase restoration in Co3Sn2

    Science.gov (United States)

    di, L. M.; Zhou, G. F.; Bakker, H.

    1993-03-01

    The behavior of the intermetallic compound Co3Sn2 upon ball milling was studied by x-ray diffraction, high-field-magnetization measurements, and subsequently by differential scanning calorimetry. It turns out that starting from the stoichiometric-ordered compound, mechanical attrition of Co3Sn2 generates atomic disorder in the early stage of milling. The nonequilibrium phase transformation from the low-temperature phase with orthorhombic structure to the high-temperature phase with a hexagonal structure was observed in the intermediate stage of milling. It was accompanied by the creation of increasing atomic disorder. After long milling periods, the phase transformation was completed and the atomic disordering became saturated. All the physical parameters measured in the present work remained constant during this period. The above outcome was confirmed by comparison with the high-temperature phase thermally induced by quenching. The good agreement of the results obtained by different techniques proves that the ball milling generates well-defined metastable states in Co3Sn2.

  8. Grain alignment in bulk YBa2Cu3Ox superconductor by a low temperature phase transformation method

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Goyal, A.; Kroeger, D.M.

    1994-01-01

    A quench and directional phase transformation process has been developed to achieve grain alignment in bulk YBa 2 Cu 3 O x superconductors at temperatures about 100 degree C below the peritectic temperature. Isothermal phase transformation of quenched precursors at 890 degree C for 3 min is found to result in the formation of more than 75% of YBa 2 Cu 3 O x phase without any formation of Y 2 BaCuO 5 . Phase transformation at higher temperatures leads to rapid formation of Y 2 BaCuO 5 in addition to YBa 2 Cu 3 O x . A well-aligned microstructure is achieved by directional phase transformation of the quenched compacts as a rate of 10 mm/h. The magnetic field dependence of the critical current density at 77 K of the directionally phase transformed material compares well with that of melt-textured YBCO and is superior to that of magnetically aligned and sintered YBCO

  9. Leakage Inductance Calculation for Planar Transformers with a Magnetic Shunt

    DEFF Research Database (Denmark)

    Jun, Zhang; Ouyang, Ziwei; Duffy, M. C.

    2013-01-01

    The magnetic shunt is generally inserted in a planar transformer to increase the leakage inductance which can be utilized as the series inductor in resonant circuits such as the LLC resonant converter. This paper presents a calculation methodology for the leakage inductance of the transformer...

  10. Phase transformations and systems driven far from equilibrium

    International Nuclear Information System (INIS)

    Ma, E.; Atzmon, M.; Bellon, P.; Trivedi, R.

    1998-01-01

    This volume compiles invited and contributed papers that were presented at Symposium B of the 1997 Materials Research Society Fall Meeting, Phase Transformations and Systems Driven Far From Equilibrium, which was held December 1--5, in Boston, Massachusetts. While this symposium followed the tradition of previous MRS symposia on the fundamental topic of phase transformations, this year the emphasis was on materials systems driven far from equilibrium. The central theme of the majority of the work presented is the understanding of the thermodynamics and kinetics of phase transformations, with significant coverage of metastable materials and externally forced transformations driven, for example, by energy beams or mechanical deformation. The papers are arranged in seven sections: solidification theory and experiments; nucleation; solid state transformations and microstructural evolution; beam-induced transformations; amorphous solids; interfacial and thin film transformations; and nanophases and mechanical alloying. One hundred three papers have been processed separately for inclusion on the data base

  11. Transformable ferroelectric control of dynamic magnetic permeability

    Science.gov (United States)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  12. Neutron scattering studies of pretransitional phenomena in structural phase transformations

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1979-03-01

    Materials exhibiting structural phase transformations are well known to possess pretransitional phenomena. Below the transition temperature, T/sub c/, an order parameter appears and the pretransitional effects are associated with the fluctuations of the order parameter. Neutron scattering techniques have proved invaluable in studying the temporal and spatial dependence of these fluctuations. SrTiO 3 is the prototypical example of a structural phase transformation exhibiting features observable in other transformations such as martensitic and order-disorder. The experimental evolution of the understanding of the phase transformation in SrTiO 3 will be reviewed and the features observed will be shown to typify other systems

  13. Magnetic phase shift reconstruction for uniformly magnetized nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Akhtari-Zavareh, Azadeh [Department of Physics, Simon Fraser University, Burnaby, British Columbia (Canada); De Graef, Marc [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA (United States); Kavanagh, Karen L. [Department of Physics, Simon Fraser University, Burnaby, British Columbia (Canada)

    2017-01-15

    A new analytical model is developed for the magnetic phase shift of uniformly magnetized nanowires with ideal cylindrical geometry. The model is applied to experimental data from off-axis electron holography measurements of the phase shift of CoFeB nanowires, and the saturation induction of a selected wire, as well as its radius, aspect ratio, position and orientation, is determined by fitting the model parameters. The saturation induction value of 1.7 T of the CoFeB nanowire is found to be similar, to be within the measurement error, to values reported in the literature. - Highlights: • We describe a mathematical model for the magnetic phase shift of a cylindrical nanowire. • We discuss electron holography experiments on magnetic nanowires. • We obtain an accurate fit of the measured magnetic phase shift profile. • We extract the magnetic induction of the nanowire from the phase shift model. • The magnetic induction of 1.7 T agrees well with literature results.

  14. Topological defects in the second-class phase transformations

    International Nuclear Information System (INIS)

    Dobrowolski, T.

    2002-06-01

    The dynamics of systems during second-class phase transformations are presented.in a frame of quantum fields theory. It is shown that solutions of non-linear field equations generate some topological defects what result in symmetry breaking and field phase transformations

  15. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  16. Leakage Inductance Calculation for Planar Transformers with a Magnetic Shunt

    DEFF Research Database (Denmark)

    Zhang, Jun; Ouyang, Ziwei; Duffy, Maeve C.

    2014-01-01

    with a magnetic shunt by means of the stored magnetic energy in the primary and secondary sides of the transformer using the magnetomotive force (MMF) variation method, as well as the stored energy in the shunt based on the reluctance model. The detailed calculation method is described. Both the FEA simulation...

  17. Two-phase transformation of lepidocrocite to maghemite

    Science.gov (United States)

    Dekkers, M. J.; Gapeev, A. K.; Gendler, T. S.; Gribov, S. K.; Shcherbakov, V. P.

    2003-04-01

    A detailed investigation of CRM acquired at different stages of the transformation lepidocrocite -> maghemite -> hematite is carried out. Apparently, at least two-stage lepidocrocite maghemite transformation was revealed from: a) the two-peak Ms(T) curve; b) the observation of constricted hysteresis loops appearing after annealing fresh lepidocrocite samples at elevated temperatures; c) continuous monitoring (for 500 hrs) of CRM acquisition at elevated temperatures. For the latter two sets of CRM acquisition experiments at 12 temperatures from 175C to 550C in the presence of 0.1 mT magnetic field were performed: 1) with fine dispersed natural lepidocrocite grains in a kaolin matrix (about 1 volume % of lepidocrocite), 2) for lepidocrocite peaces 3x3x3 mm in size. In both cases the CRM was detected already at 175C after 1 day of annealing. Note that this temperature is lower than the temperature of the TGA peak of the lepidocrocite -> maghemite transformation. Mossbauer spectra obtained from the peaces after annealing at 225C during 6 and 14 hours, respectively, revealed significantly different patterns. Unexpectadly, fine dispersed maghemite grains formed due the lepidocrocite dehydration in the first peace (6 hrs of annealing) occurred to be more ordered than those of from the second peace. The samples are subjected to the X-ray analysis in an attempt to clarify the observed difference. The observed phenomena can be explained by the two-phase conception of the transformation lepidocrocite -> maghemite. First the precipitation of small superparamagnetic particles of maghemite takes place growing with time. Second, these grains coalesce with each other resulting in appearance of the antiphase boundaries decreasing the susceptibility, slowing down the process of CRM acquisition and generating the constricted hysteresis loops. The work is supported by INTAS 99-1273.

  18. Thermodynamic and kinetic characteristics of the austenite-to-ferrite transformation under high magnetic field in medium carbon steel

    International Nuclear Information System (INIS)

    Zhang Yudong; He Changshu; Zhao Xiang; Zuo Liang; Esling, Claude

    2005-01-01

    The thermodynamic and kinetic characteristics of austenite-to-ferrite phase transformation in medium carbon steel in the high magnetic fields were investigated. Results showed that the magnetic field could obviously change the γ/α+γ phase equilibrium-by increasing the amount of ferrite obtained during cooling-and greatly accelerate the transformation. Thus the microstructure obtained under fast cooling with high magnetic field was still ferritic and pearlitic, while that obtained without the magnetic field under the same cooling conditions was bainitic. Exploration in this area contributes both to enriching the new theory on electromagnetic processing of materials (EPM) and in establishing new techniques for materials processing

  19. Magnetically Actuated Seal, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  20. Magnetically Actuated Seal, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  1. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition

    International Nuclear Information System (INIS)

    Levin, E.M.; Gschneidner, K.A.; Pecharsky, V.K.

    2001-01-01

    The temperature (from 5 to 300 K) and DC magnetic field (from 0 to 90 kOe) dependencies of the DC magnetization and magnetic susceptibility, and the temperature (from 5 to 350 K) dependency of the AC magnetic susceptibility of Gd 5 (Si 1.5 Ge 2.5 ) have been studied. The temperature and/or magnetic field induced magnetic phase transition in Gd 5 (Si 1.5 Ge 2.5 ) is a first order ferromagnet-paramagnet transition. The temperature of the magnetic transition in low AC magnetic field is 206 and 217 K for cooling and heating, respectively. The DC magnetic field increases the transition temperature by ∼0.36 K/kOe indicating that the paramagnetic phase can be reversibly transformed into the ferromagnetic phase. When the magnetic field is removed, the ferromagnetic phase transforms into the paramagnetic phase showing a large remanence-free hysteresis. The magnetic phase diagram based on the isothermal magnetic field dependence of the DC magnetization at various temperatures for Gd 5 (Si 1.5 Ge 2.5 ) is proposed. The magnetic field dependence of the magnetization in the vicinity of the first order phase transition shows evidence for the formation of a magnetically heterogeneous system in the volume of Gd 5 (Si 1.5 Ge 2.5 ) specimen where the magnetically ordered (ferromagnetic) and disordered (paramagnetic) phases co-exist

  2. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Science.gov (United States)

    Marks, Janis; Vitolina, Sandra

    2017-12-01

    Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  3. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Directory of Open Access Journals (Sweden)

    Marks Janis

    2017-12-01

    Full Text Available Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  4. Phases of the energy system transformation

    International Nuclear Information System (INIS)

    Fischedick, Manfred; Samadi, Sascha; Hoffmann, Clemens; Henning, Hans-Martin; Pregger, Thomas; Leprich, Uwe; Schmidt, Maike

    2015-01-01

    The energy transition is an ambitious and highly complex process of transformation. This article presents eight theses that can help to better understand the challenges and to identify starting points for future action and to identify research needs. [de

  5. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.

    1986-01-01

    Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; 1) lowering the density of helium in the magnet cooling tubes and 2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned

  6. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Watt, R.D.

    1986-01-01

    Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; (1) lowering the density of helium in the magnet cooling tubes and (2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned. 10 refs., 1 fig., 5 tabs

  7. Shear-driven phase transformation in silicon nanowires.

    Science.gov (United States)

    Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G

    2018-03-23

    We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

  8. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    Science.gov (United States)

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  9. Tailoring magnetic nanoparticle for transformers application.

    Science.gov (United States)

    Morais, P C; Silva, A S; Leite, E S; Garg, V K; Oliveira, A C; Viali, W R; Sartoratto, P P C

    2010-02-01

    In this study photoacoustic spectroscopy was used to investigate the effect of dilution of an oil-based magnetic fluid sample on the magnetic nanoparticle surface-coating. Changes of the photoacoustic signal intensity on the band-L region (640 to 830 nm) upon dilution of the stock magnetic fluid sample were discussed in terms of molecular surface desorption. The model proposed here assumes that the driving force taking the molecules out from the nanoparticle surface into the bulk solvent is the gradient of osmotic pressure. This gradient of osmotic pressure is established between the nanoparticle surface and the bulk suspension. It is further assumed that the photoacoustic signal intensity (area under the photoacoustic spectra) scales linearly with the number of coating molecules (surface grafting) at the nanoparticle surface. This model picture provides a non-linear analytical description for the reduction of the surface grafting coefficient upon dilution, which was successfully-used to curve-fit the photoacoustic experimental data.

  10. Specific features of phase transformations in germanium monotelluride

    International Nuclear Information System (INIS)

    Bigvava, A.D.; Gabedava, A.A.; Kunchuliya, Eh.D.; Shvangiradze, R.R.

    1981-01-01

    Phase transformations in germanium monotelluride are studied . using DRON-0.5 and DRON-1 plants with high-temperature chamber GPVT-1500 at Cu, Ksub(α) radiation. It is shown that in the whole homogeneity range α GeTe is a metastable phase which is formed under the conditions of fast cooling of alloy from temperatures >=Tsub(cub) (temperature of transition in cubic crystal system). An equilibrium γ-phase is obtained by annealing of dispersed powders and metal-ceramic specimens of alloys with 50.3; 50.6; 50.9 at % Te. Lattice parameters of rhombic γ-phase do not depend on tellurium content in initial α- phase. α→γ transformation is observed at any temperature less than Tsub(cub) with the change of alloy composition, namely tellurium precipitation. γ-phase transforms into β at higher temperatures than α-phase [ru

  11. Mechanisms of diffusional phase transformations in metals and alloys

    CERN Document Server

    Aaronson, Hubert I; Lee, Jong K

    2010-01-01

    Developed by the late metallurgy professor and master experimentalist Hubert I. Aaronson, this collection of lecture notes details the fundamental principles of phase transformations in metals and alloys upon which steel and other metals industries are based. Mechanisms of Diffusional Phase Transformations in Metals and Alloys is devoted to solid-solid phase transformations in which elementary atomic processes are diffusional jumps, and these processes occur in a series of so-called nucleation and growth through interface migration. Instead of relying strictly on a pedagogical approach, it doc

  12. Acoustic emission during low temperature phase transformations in plutonium

    International Nuclear Information System (INIS)

    Khejpl, K.; Karpenter, S.

    1988-01-01

    To study the nature of phase transformations in plutonium and plutonium-gallium alloys (0.3 and 0.57% Ga) the measurement of acoustic emission is conducted. The presence of acoustic emission testifies to martensitic character of transformation, related to sharp local changes in the volume, which cause elastic waves. It is detected that during α reversible β transformations in non-alloyed plutonium acoustic emission is absent, and that testifies to nonmartensitic nature of the transformations. σ reversible α transformation in plutonium-gallium alloys is accompanied by the appearance of acoustic emission, i.e. it is of martensitic origin

  13. Magnetic and spontaneous Barkhausen noise techniques used in investigation of a martensitic transformation

    Science.gov (United States)

    Capò Sànchez, J.; Huallpa, E.; Farina, P.; Padovese, L. R.; Goldenstein, H.

    2011-10-01

    Magnetic Barkhausen noise (MBN) was used to characterize the progress of austenite to martensite phase transformation while cooling steel specimens, using a conventional Barkhausen noise emission setup stimulated by an alternating magnetic field. The phase transformation was also followed by electrical resistivity measurements and by optical and scanning electron microscopy. MBN measurements on a AISI D2 tool steel austenitized at 1473 K and cooled to liquid nitrogen temperature presented a clear change near 225 K during cooling, corresponding to the MS (martensite start) temperature, as confirmed by resistivity measurements. Analysis of the resulting signals suggested a novel experimental technique that measures spontaneous magnetic emission during transformation, in the absence of any external field. Spontaneous magnetic noise emission measurements were registered in situ while cooling an initially austenitic sample in liquid nitrogen, showing that local microstructural changes, corresponding to an avalanche or "burst" phenomena, could be detected. This spontaneous magnetic emission (SME) can thus be considered a new experimental tool for the study of martensite transformations in ferrous alloys, at the same level as acoustic emission.

  14. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  15. Magnetic phase diagrams of UNiGe

    International Nuclear Information System (INIS)

    Nakotte, H.; Hagmusa, I.H.; Klaasse, J.C.P.; Hagmusa, I.H.; Klaasse, J.C.P.

    1997-01-01

    UNiGe undergoes two magnetic transitions in zero field. Here, the magnetic diagrams of UNiGe for B parallel b and B parallel c are reported. We performed temperatures scans of the magnetization in static magnetic fields up to 19.5T applied along the b and c axes. For both orientations 3 magnetic phases have been identified in the B-T diagrams. We confirmed the previously reported phase boundaries for B parallel c, and in addition we determined the location of the phase boundaries for B parallel b. We discuss a possible relationship of the two zero-field antiferromagnetic phases (commensurate: T<42K; incommensurate: 42K< T<50K) and the field-induced phase, which, at low temperatures, occurs between 18 and 25T or 4 and 10T for B parallel b or B parallel c, respectively. Finally, we discuss the field dependence of the electronic contribution γ to the specific heat for B parallel c up to 17.5T, and we find that its field dependence is similar to the one found in more itinerant uranium compounds

  16. Transformer core modeling for magnetizing inrush current investigation

    Directory of Open Access Journals (Sweden)

    A.Yahiou

    2014-03-01

    Full Text Available The inrush currents generated during an energization of power transformer can reach very high values and may cause many problems in power system. This magnetizing inrush current which occurs at the time of energization of a transformer is due to temporary overfluxing in the transformer core. Its magnitude mainly depends on switching parameters such as the resistance of the primary winding and the point-on-voltage wave (switching angle. This paper describes a system for measuring the inrush current which is composed principally of an acquisition card (EAGLE, and LabVIEW code. The system is also capable of presetting various combinations of switching parameters for the energization of a 2 kVA transformer via an electronic card. Moreover, an algorithm for calculating the saturation curve is presented taking the iron core reactive losses into account, thereby producing a nonlinear inductance. This curve is used to simulate the magnetizing inrush current using the ATP-EMTP software.

  17. [The discussion of superconducting MRI magnet transformation without LHe].

    Science.gov (United States)

    Yu, Huixian

    2014-01-01

    In this paper, from the current situation of the domestic use of superconducting MRI, on liquid helium supply and demand crisis in the market, the significance of the transformation without LHe of the superconducting MRI magnet was explained, and according to the enterprise's production process, a number of operating without liquid helium transformation practice and ideas were raised, important value orientation for the domestic manufacture and use of superconducting MRI was provided.

  18. Transformational leadership: application of magnet's new empiric outcomes.

    Science.gov (United States)

    Meredith, Erin K; Cohen, Elaine; Raia, Lucille V

    2010-03-01

    The many benefits to hospitals throughout the world that achieved Magnet designation is well documented. This status of recognition demands the support of leadership during the Magnet journey. In 2008, the American Nurses Credentialing Center (ANCC) announced a new model for the Magnet Recognition Program that translates the original 14 Forces of Magnetism into Five Model Components. Specifically, this new model includes sources of evidence and empiric outcomes that by definition accentuates transformational nursing leadership. The day-to-day impact of this change places an even greater emphasis on demonstrated outcomes and innovation that may potentially transform nursing practice, quality and safety of care, and the population served. This article provides tangible examples and outcomes for reaching nursing excellence through leadership support and engagement. Published by Elsevier Inc.

  19. Phase transformations in the Cu.6 Pd.4 alloy

    International Nuclear Information System (INIS)

    Imakuma, K.

    1977-01-01

    Order-disorder and structural transformations in the Cu-Pd 60-40% (Cu. 6 Pd. 4 ) alloy by means of a temperature and time dependent treatment are studied. The structural transformations by x-rays diffraction are also studied, where the bcc, fcc and tetragonal phases were observed. A qualitative analyze of the resistivity kinetics are made [pt

  20. SIMULATION OF CHARACTERISTICS OF DUAL-CORE PHASE SHIFTING TRANSFORMER

    Directory of Open Access Journals (Sweden)

    Kalinin L.P.

    2014-04-01

    Full Text Available The role and importance of phase shifting transformers are increased as a result of the further development of integrated power systems. This gives the rise to new technical solutions which entails the necessity of comparison of new developments with existing. The article consider the technical characteristics of dual-core phase shifting transformer which later will be used as a basis for comparison with other competing options and assess of their technical efficiency.

  1. A Novel Three Phase to Seven Phase Conversion Technique Using Transformer Winding Connections

    Directory of Open Access Journals (Sweden)

    M. Tabrez

    2017-10-01

    Full Text Available This paper proposes a novel multiphase transformer connection scheme which converts three phase balanced AC input to seven phase balanced AC output. Generalized theory to convert a three phase utility supply into any number of phases is presented. Based on the proposed generalized principle, a three phase to seven phase power converting transformer design is presented with connection scheme, analysis and simulation and experimental results of the proposed three phase to seven phase conversion transformer. The proposed transformer in this paper is analyzed and compared with the connection scheme for seven phase available in the literature. The connection scheme is found to have higher power density, lower core area and lower core requirement as compared to the available connection scheme of the same rating. Impedance mismatching between different phases of the transformer is observed in the three phase to seven phase transformer available in the literature. As this mismatching introduces error in study of per phase equivalent circuit diagrams as well as imbalance in voltage and currents. The present design also addresses the impedance mismatching issue and reduces mismatching in the proposed transformer design. A prototype of the proposed system is developed and waveforms are presented. The proposed design is verified using simulation and validated using experimental approach.

  2. Nonadiabatic Berry phase in nanocrystalline magnets

    Directory of Open Access Journals (Sweden)

    R. Skomski

    2017-05-01

    Full Text Available It is investigated how a Berry phase is created in polycrystalline nanomagnets and how the phase translates into an emergent magnetic field and into a topological Hall-effect contribution. The analysis starts directly from the spin of the conduction electrons and does not involve any adiabatic Hamiltonian. Completely random spin alignment in the nanocrystallites does not lead to a nonzero emergent field, but a modulation of the local magnetization does. As an explicit example, we consider a wire with a modulated cone angle.

  3. Magnetic field measurements near stand-alone transformer stations.

    Science.gov (United States)

    Kandel, Shaiela; Hareuveny, Ronen; Yitzhak, Nir-Mordechay; Ruppin, Raphael

    2013-12-01

    Extremely low-frequency (ELF) magnetic field (MF) measurements around and above three stand-alone 22/0.4-kV transformer stations have been performed. The low-voltage (LV) cables between the transformer and the LV switchgear were found to be the major source of strong ELF MFs of limited spatial extent. The strong fields measured above the transformer stations support the assessment method, to be used in future epidemiological studies, of classifying apartments located right above the transformer stations as highly exposed to MFs. The results of the MF measurements above the ground around the transformer stations provide a basis for the assessment of the option of implementing precautionary procedures.

  4. Modelling of stresses generated in steels by phase transformations

    International Nuclear Information System (INIS)

    Dudek, K.; Glowacki, M.; Pietrzyk, M.

    1999-01-01

    Numerical model describing stresses arising during phase transformations in steels products is presented. The full model consists of three components. The first component uses finite element solution of Fourier equation for an evaluation of the temperature field inside the sample. The second component predicts kinetics of phase transformation occurring during cooling of steel products. Coupling of these two components allows prediction of structure and properties of final products at room temperature. The third component uses elastic-plastic finite element model for prediction of stresses caused by non-uniform temperatures and by changes of volume during transformations. Typical results of simulations performed for cooling of rails after hot rolling are presented. (author)

  5. Spatiotemporal Signal Analysis via the Phase Velocity Transform

    International Nuclear Information System (INIS)

    Mattor, Nathan

    2000-01-01

    The phase velocity transform (PVT) is an integral transform that divides a function of space and time into components that propagate at uniform phase velocities without distortion. This paper examines the PVT as a method to analyze spatiotemporal fluctuation data. The transform is extended to systems with discretely sampled data on a periodic domain, and applied to data from eight azimuthally distributed probes on the Sustained Spheromak Physics Experiment (SSPX). This reveals features not shown by Fourier analysis, particularly regarding nonsinusoidal mode structure. (c) 2000 The American Physical Society

  6. A balance principle approach for modeling phase transformation kinetics

    International Nuclear Information System (INIS)

    Lusk, M.; Krauss, G.; Jou, H.J.

    1995-01-01

    A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)

  7. Canonical Transform Method for Treating Strongly Anisotropy Magnets

    DEFF Research Database (Denmark)

    Cooke, J. F.; Lindgård, Per-Anker

    1977-01-01

    An infinite-order perturbation approach to the theory of magnetism in magnets with strong single-ion anisotropy is given. This approach is based on a canonical transformation of the system into one with a diagonal crystal field, an effective two-ion anisotropy, and reduced ground-state corrections....... A matrix-element matching procedure is used to obtain an explicit expression for the spin-wave energy to second order. The consequences of this theory are illustrated by an application to a simple example with planar anisotropy and an external magnetic field. A detailed comparison between the results...

  8. Phase Transformation of Hydrothermally Synthesized Nanoparticle ...

    African Journals Online (AJOL)

    Mild hydrothermal hydrolysis of TiCl4 produces nanorods of the rutile phase of titanium dioxide in high yield, while in the presence of organic acids (citric, acetic, D-tartaric and benzoic acids) anatase is the only product. The effect of these organic acids on the products of the hydrolysis reaction as well as the reaction kinetics ...

  9. Displacive phase transformations and generalized stacking faults

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Ostapovets, Andriy; Duparc, O. H.; Khalfallah, O.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 490-492 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : ab-initio calculations * close-packed structures * generalized stacking faults * homogeneous deformation * lattice deformation * many-body potentials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  10. Z-transform Zeros in Mixed Phase Deconvolution of Speech

    DEFF Research Database (Denmark)

    Pedersen, Christian Fischer

    2013-01-01

    The present thesis addresses mixed phase deconvolution of speech by z-transform zeros. This includes investigations into stability, accuracy, and time complexity of a numerical bijection between time domain and the domain of z-transform zeros. Z-transform factorization is by no means esoteric......, but employing zeros of the z-transform (ZZT) as a signal representation, analysis, and processing domain per se, is only scarcely researched. A notable property of this domain is the translation of time domain convolution into union of sets; thus, the ZZT domain is appropriate for convolving and deconvolving...... discrimination achieves mixed phase deconvolution and equivalates complex cepstrum based deconvolution by causality, which has lower time and space complexities as demonstrated. However, deconvolution by ZZT prevents phase wrapping. Existence and persistence of ZZT domain immiscibility of the opening and closing...

  11. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    Science.gov (United States)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2014-03-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  12. Effects of high magnetic field on martensitic transformation behavior and structure in Fe-based alloys

    International Nuclear Information System (INIS)

    Ohtsuka, H.; Wada, H.; Ghosh, G.

    2000-01-01

    Effects of magnetic field on lath-type martensitic transformation behavior and the reverse transformation behavior from lath math martensite to austenite have been investigated in 18Ni maraging steel. It was found that the reverse transformation temperature during heating is increased by magnetic field. Reverse transformation behavior during isothermal holding was also found to be retarded by magnetic field. (orig.)

  13. Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel

    International Nuclear Information System (INIS)

    Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.

    2007-01-01

    A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% (±1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% (±1%) retained austenite was measured

  14. Study of 18-Pulse Rectifier Utilizing Hexagon Connected 3-Phase to 9-Phase Transformer

    Directory of Open Access Journals (Sweden)

    Ahmad Saudi Samosir

    2008-04-01

    Full Text Available The 18-pulse converter, using Y or -connected differential autotransformer, is very interesting since it allows natural high power factor correction. The lowest input current harmonic components are the 17th and 19th. The Transformer is designed to feed three six-pulse bridge rectifiers displaced in phase by 200. This paper present a high power factor three-phase rectifier bases on 3-phase to 9-phase transformer and 18-pulse rectifier. The 9-phase polygon-connected transformer followed by 18-pulse diode rectifiers ensures the fundamental concept of natural power factor correction. Simulation results to verify the proposed concept are shown in this paper.

  15. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  16. Frame transforms, star products and quantum mechanics on phase space

    International Nuclear Information System (INIS)

    Aniello, P; Marmo, G; Man'ko, V I

    2008-01-01

    Using the notions of frame transform and of square integrable projective representation of a locally compact group G, we introduce a class of isometries (tight frame transforms) from the space of Hilbert-Schmidt operators in the carrier Hilbert space of the representation into the space of square integrable functions on the direct product group G x G. These transforms have remarkable properties. In particular, their ranges are reproducing kernel Hilbert spaces endowed with a suitable 'star product' which mimics, at the level of functions, the original product of operators. A 'phase space formulation' of quantum mechanics relying on the frame transforms introduced in the present paper, and the link of these maps with both the Wigner transform and the wavelet transform are discussed

  17. Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Huang, Houbing; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Chen, Long-Qing; Xing, Xianran

    2018-01-01

    A functional material with coexisting energetically equivalent phases often exhibits extraordinary properties such as piezoelectricity, ferromagnetism, and ferroelasticity, which is simultaneously accompanied by field-driven reversible phase transformation. The study on the interplay between such phase transformation and the performance is of great importance. Here, we have experimentally revealed the important role of field-driven reversible phase transformation in achieving enhanced electromechanical properties using in situ high-energy synchrotron x-ray diffraction combined with 2D geometry scattering technology, which can establish a comprehensive picture of piezoelectric-related microstructural evolution. High-throughput experiments on various Pb /Bi -based perovskite piezoelectric systems suggest that reversible phase transformation can be triggered by an electric field at the morphotropic phase boundary and the piezoelectric performance is highly related to the tendency of electric-field-driven phase transformation. A strong tendency of phase transformation driven by an electric field generates peak piezoelectric response. Further, phase-field modeling reveals that the polarization alignment and the piezoelectric response can be much enhanced by the electric-field-driven phase transformation. The proposed mechanism will be helpful to design and optimize the new piezoelectrics, ferromagnetics, or other related functional materials.

  18. Corundum-to-spinel structural phase transformation in alumina

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Shogo [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Ishimaru, Manabu, E-mail: ishimaru@post.matsc.kyutech.ac.jp [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Sina, Younes; McHargue, Carl J.; Sickafus, Kurt E. [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996-2200 (United States); Alves, Eduardo [Unit of Physics and Accelerators, Ion Beam Laboratory, Instituto Superior Técnico/Instituto Tecnológico e Nuclear, EN. 10 2686-953 Sacavém (Portugal)

    2015-09-01

    Several polymorphs exist in alumina (Al{sub 2}O{sub 3}), and they transform to a stable α-phase with a hexagonal corundum structure on thermal annealing. This structural change is irreversible as a function of temperature, and transformation of corundum to another metastable crystalline phase has never been observed by heat treatments. In this study, we irradiated single crystals of Al{sub 2}O{sub 3} with Zr ions and obtained an irradiated microstructure consisting of a buried α-Al{sub 2}O{sub 3} layer surrounded on top and bottom by layers of a defect cubic spinel Al{sub 2}O{sub 3} phase. We examined the thermal stability of this microstructure using transmission electron microscopy and X-ray diffraction. We found that the corundum phase completely transforms to the spinel phase following annealing at 1173 K for 1 h: the thermodynamically stable phase transforms to the metastable phase by heat treatments. We discuss this unusual structural change within the context of our results as well as previous observations.

  19. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Luňáček, J., E-mail: jiri.lunacek@vsb.cz [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Životský, O. [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Jirásková, Y. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Buršík, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Janoš, P. [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2016-10-15

    The present paper is devoted to detailed study of the magnetically separable sorbents based on a cerium dioxide/iron oxide composite annealed at temperatures T{sub a} = 773 K, 873 K, and 973 K. The X-ray diffraction and high resolution transmission electron microscopy are used to determine the phase composition and microstructure morphology. Mössbauer spectroscopy at room (300 K) and low (5 K) temperatures has contributed to more exact identification of iron oxides and their transformations Fe{sub 3}O{sub 4} → γ-Fe{sub 2}O{sub 3} (ε-Fe{sub 2}O{sub 3}) → α-Fe{sub 2}O{sub 3} in dependence on calcination temperature. Different iron oxide phase compositions and grain size distributions influence the magnetic characteristics determined from the room- and low-temperature hysteresis loop measurements. The results are supported by zero-field-cooled and field-cooled magnetization measurements allowing a quantitative estimation of the grain size distribution and its effect on the iron oxide transformations. - Highlights: •Magnetically separable sorbents based on a CeO{sub 2}/Fe{sub 2}O{sub 3} composite were investigated. •Microstructure of sorbents was determined by XRD, TEM and Mössbauer spectroscopy. •Magnetic properties were studied by hysteresis loops at room- and low-temperatures. •Phase transitions of iron oxides with increasing annealing temperature are observed.

  20. Structural and magnetic transformations in NdMn2Hx hydrides

    International Nuclear Information System (INIS)

    Budziak, A.; Zachariasz, P.; Pełka, R.; Figiel, H.; Żukrowski, J.; Woch, M.W.

    2012-01-01

    Highlights: ► Full structural phase diagram is presented for the NdMn 2 H x (2.0 ≤ x ≤ 4.0) hydrides in the temperature range of 70–385 K. ► For samples x = 2.0, 2.5, and 4.0 a splitting into two phases with different hydrogen concentrations are observed. ► Only for samples with x = 3.0 and 3.5 no spinodal decompositions are detected. ► The effects of hydrogen absorption on structural properties are shown to be reflected in magnetic behavior. ► A huge jump of magnetic ordering temperatures from ∼104 K for host NdMn 2 to above 200 K for its hydrides is observed or anticipated. - Abstract: X-ray powder diffraction and bulk magnetization measurements were used to study structural and magnetic properties of hydrides NdMn 2 H x (2.0 ≤ x ≤ 4.0). The X-ray investigations performed in the temperature range 70–385 K have revealed many structural transformations at low temperatures. In particular, a transformation from the hexagonal to the monoclinic phase and spinodal decompositions were observed. The magnetic behavior of the hydrides is correlated with the structural transitions. A tentative structural diagram is presented. The obtained results are compared with the properties of other cubic and hexagonal RMn 2 H x hydrides.

  1. Analysis and simulation of phase transformation kinetics of zeolite A from amorphous phases

    CERN Document Server

    Marui, Y; Uchida, H; Takiyama, H

    2003-01-01

    Experiments on transformation rates of zeolite A from amorphous phases at different feed rates to alter the particle size of the amorphous phases were carried out to analyze the kinetics of the transformation, and were analyzed by performing simulation of the transformation. A clear dependence of the induction time for nucleation of zeolite A crystals on the surface area of the amorphous phase was recognized, indicating that the nucleation of zeolite A was heterogeneous and the nucleation rate was almost proportional to the size of the amorphous particles. From the simulation, the mechanism of the transformation was found to be heterogeneous nucleation of zeolite A crystals on the surface of amorphous particles followed by solution mediated phase transformation, and the transformation kinetics were well reproduced at different feed rates. (author)

  2. Considerations Concerning Matrix Diagram Transformations Associated with Mathematical Model Study of a Three-phase Transformer

    Directory of Open Access Journals (Sweden)

    Mihaela Poienar

    2014-09-01

    Full Text Available The clock hour figure mathematical model of a threephase transformer can be expressed, in the most plain form, through a 3X3 square matrix, called code matrix. The lines position reflect the modification in the high voltage windings terminal and the columns position reflect the modification in the low voltage winding terminal. The main changes on the transformer winding terminal are: the circular permutation of connection between windings; terminal supply reversal; reverse direction for the phase winding wrapping; reversal the beginning with the end for a phase winding; the connection conversion from N in Z between phase winding or inverse. The analytical form of these changes actually affect the configuration of the mathematical model expressed through a transformations diagram proposed and analyzed in two ways: bipolar version and unipolar version (fanwise. In the end of the paper are presented about the practical exploitation of the transformations diagram.

  3. Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe2

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaonan; Lin, Kun; Gao, Qilong; Zhu, He; Li, Qiang; Cao, Yili; Liu, Zhanning; You, Li; Chen, Jun; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Huang, Rongjin [Key Laboratory; Lapidus, Saul H. [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Xing, Xianran

    2017-10-13

    As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe2, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe2 has been identified as a cubic Fd$ \\overline{3}\\ $m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111]cubic direction. Here we studied the crystal structure of SmFe2 by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe2 is found to adopt a centrosymmetric trigonal R$ \\overline{3}\\ $m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111]cubic to [110]cubic direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe2 could be useful to understand the magnetostriction and related physical properties of other RM2-type pseudo-cubic Laves-phase intermetallic compounds.

  4. Investigation of electrical and magnetic properties of ferro-nanofluid on transformers.

    Science.gov (United States)

    Tsai, Tsung-Han; Chen, Ping-Hei; Lee, Da-Sheng; Yang, Chin-Ting

    2011-03-28

    This study investigated a simple model of transformers that have liquid magnetic cores with different concentrations of ferro-nanofluids. The simple model was built on a capillary by enamel-insulated wires and with ferro-nanofluid loaded in the capillary. The ferro-nanofluid was fabricated by a chemical co-precipitation method. The performances of the transformers with either air core or ferro-nanofluid at different concentrations of nanoparticles of 0.25, 0.5, 0.75, and 1 M were measured and simulated at frequencies ranging from 100 kHz to 100 MHz. The experimental results indicated that the inductance and coupling coefficient of coils grew with the increment of the ferro-nanofluid concentration. The presence of ferro-nanofluid increased resistance, yielding to the decrement of the quality factor, owing to the phase lag between the external magnetic field and the magnetization of the material.

  5. Complex windmill transformation producing new purely magnetic fluids

    International Nuclear Information System (INIS)

    Lozanovski, C; Wylleman, L

    2011-01-01

    Minimal complex windmill transformations of G 2 IB(ii) spacetimes (admitting a two-dimensional Abelian group of motions of the so-called Wainwright B(ii) class) are defined and the compatibility with a purely magnetic Weyl tensor is investigated. It is shown that the transformed spacetimes cannot be perfect fluids or purely magnetic Einstein spaces. We then determine which purely magnetic perfect fluids (PMpfs) can be windmill-transformed into purely magnetic anisotropic fluids (PMafs). Assuming separation of variables, complete integration produces two, algebraically general, G 2 I-B(ii) PMpfs: a solution with zero 4-acceleration vector and spatial energy-density gradient, previously found by the authors, and a new solution in terms of Kummer's functions, where these vectors are aligned and non-zero. The associated windmill PMafs are rotating but non-expanding. Finally, an attempt to relate the spacetimes to each other by a simple procedure leads to a G 2 I-B(ii) one-parameter PMaf generalization of the previously found metric.

  6. Formation, transformation and dissolution of phases formed on surfaces

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1983-03-01

    The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed

  7. REVIEWS OF TOPICAL PROBLEMS: Order-disorder transformations and phase equilibria in strongly nonstoichiometric compounds

    Science.gov (United States)

    Gusev, Aleksandr I.

    2000-01-01

    Data on order-disorder phase transformations in strongly nonstoichiometric carbides and nitrides MXy (X=C, N) of Group IV and V transition metals at temperatures below 1300-1400 K are reviewed. The order-parameter functional method as applied to atomic and vacancy ordering in strongly nonstoichiometric MXy compounds and to phase equilibrium calculations for M-X systems is discussed. Phase diagram calculations for the Ti-C, Zr-C, Hf-C, V-C, Nb-C, Ta-C, Ti-N, and Ti-B-C systems (with the inclusion of the ordering of nonstoichiometric carbides and nitrides) and those for pseudobinary carbide M(1)C-M(2)C systems are presented. Heat capacity, electrical resistivity and magnetic susceptibility changes at reversible order-disorder phase transformations in nonstoichiometric carbides are considered.

  8. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Watt, R.D.

    1985-08-01

    A closed circuit tubular cooling system for superconducting magnets offers advantages of limiting boiloff and containing high pressures during quenches. Proper location of automatic valves to lower pressures and protect the refrigerator in the event of quenches is described. Theoretical arguments and exprimental evidence are given against a previously suggested method to determine He two phase flow regimes. If loss of flow occurs due to some types of refrigeration failure and transfer lines have enough heat leak to warm up, quenches are induced when the flow is restored. Examples are taken from experience with the TPC magnet

  9. Ferrian Ilmenites: Investigating the Magnetic Phase Diagram

    Science.gov (United States)

    Lagroix, F.

    2007-12-01

    The main objective of this study is to investigate the magnetic phase changes within the hematite-ilmenite solid solution, yFeTiO3·(1-y)·Fe2O3. Two sets of synthetic ferrian ilmenites of y-values equal to 0.7, 0.8, 0.9, and 1.0 were available for this study. As currently drawn, the magnetic phase diagram, proposed by Ishikawa et al. [1985, J. Phys. Soc. Jpn. v.54, 312-325], predicts for increasing y values (0.5magnetic odering from paramagnetism to (1) ferrimagnetism, or (2) to superparamagnetism then ferrimagnetism, or (3) to superparamagnetism then antiferromagnetism. Moreover, for y values ranging between 0.65 and 1.0 a transition into a spin glass state is expected at 100K or below. Ilmenite, y=1.0, is antiferromagnetic. Various low tempreature experiments including temperature dependance of remanence and induced magnetizations and AC susceptibility were conducted in order to characterize the magnetic behaviour and changes of magnetic states. In general, the data confirms the predicted phase changes for the different compositions investigated. The y=1.0 sample, pure ilmenite, is antiferromagnetic below 57K, the measured Néel temperature. The y=0.9 sample magnetically orders at about 100K in a superparamagnetic state. Hysteresis loops remain effectively closed down to 60K below which an antiferromagnetic order prior to reaching the spin glass state is ambiguous. The y=0.8 sample magnetically orders at about 270K in an initially superparamagnetic states before entering a ferrimagnetic state below about 250K. Lastly, as previously demonstrated in Lagroix et al. [2004, JGR-B, v.109, doi:10.1029/2004JB003076], the y=0.7 samples order ferrimagnetically at 380K. However, like the y=0.7 samples which also demonstrated an antiferromagnetic state at temperature above the Curie temperature, hysteresis loops for y=0.9 and y=0.8 only achieve perfect linearity at 190K and 340K respectively. All samples (except y=1.0) show a frequency dependent amplitude non

  10. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  11. The lattice correspondence and diffusional-displacive phase transformations

    International Nuclear Information System (INIS)

    Nie, J.F.; Muddle, B.C.

    1999-01-01

    When a coherent interface is maintained between parent and product phases in a solid state phase transformation, then it is always possible to define a lattice correspondence across this interface and describe the structural change by a homogeneous lattice deformation, S T . For certain transformations, this strain is an invariant plane strain, with the invariant plane defining the planar, coherent interface between parent and product. This group includes the familiar martensitic face-centred cubic to close-packed hexagonal transformation in, for example, cobalt-based alloys, but it is demonstrated here that it also contains transformations giving rise to a broad range of plate-shaped, diffusional precipitation products. For many such transformation products, the transformation strain has a significant shear component and the accommodation of shear strain energy is potentially an important, and often overlooked, factor in both the nucleation and growth of such products. More commonly S T is not an invariant plane strain and, if a planar interface is to be preserved between parent and product, it is necessary to combine S T with a lattice invariant strain to allow a partially-coherent interface that is macroscopically invariant. It is demonstrated that there are diffusional transformation products which also have the geometric and crystallographic features of both of the common forms of partially-coherent martensitic products

  12. Neutron guide geometries for homogeneous phase space volume transformation

    International Nuclear Information System (INIS)

    Stüßer, N.; Bartkowiak, M.; Hofmann, T.

    2014-01-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender

  13. Neutron guide geometries for homogeneous phase space volume transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stüßer, N., E-mail: stuesser@helmholtz-berlin.de; Bartkowiak, M.; Hofmann, T.

    2014-06-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender.

  14. Li doping effect on properties and phase transformations of KNbO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Trepakov, Vladimír; Savinov, Maxim; Železný, Vladimír; Syrnikov, P. P.; Deyneka, Alexander; Jastrabík, Lubomír

    2007-01-01

    Roč. 27, - (2007), s. 4071-4073 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100522; CEZ:AV0Z10100520 Keywords : impurities * spectroscopy * phase transformations * perovskites Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.562, year: 2007

  15. Phase transformations in intermetallic phases in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. P., E-mail: vpfilippov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kirichenko, V. G. [Kharkiv National Karazin University (Ukraine); Salomasov, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Khasanov, A. M. [University of North Carolina – Asheville, Chemistry Department (United States)

    2017-11-15

    Phase change was analyzed in intermetallic compounds of zirconium alloys (Zr – 1.03 at.% Fe; Zr – 0.51 at.% Fe; Zr – 0.51 at.% Fe – M(M = Nb, Sn). Mössbauer spectroscopy on {sup 57}Fe nuclei in backscattering geometry with the registration of the internal conversion electrons and XRD were used. Four types of iron bearing intermetallic compounds with Nb were detected. A relationship was found between the growth process of intermetallic inclusions and segregation of these phases. The growth kinetics of inclusions possibly is not controlled by bulk diffusion, and a lower value of the iron atom’s activation energy of migration can be attributed to the existence of enhanced diffusion paths and interface boundaries.

  16. Performance characteristic of saturable three-phase interface transformers-investigations using a model simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gierse, G; Pestka, J

    1981-11-01

    For electric locomotive drives equipped with converter fed squirrel cage induction motors the influence of different three-phase interface transformers on the smoothing of the motor currents is shown. In combination with a modified pulse-width-controlled thyristor firing system the size of the interface transformers can be greatly reduced without the distortion currents being greater than in the case of reactors in the motor supply lines. Finally, it is shown how the additional magnetic coupling of two driving systems can influence the behaviour of the two motors.

  17. Phase domain structures in cylindrical magnets under conditions of a first-order magnetic phase transition

    International Nuclear Information System (INIS)

    Dzhezherya, Yu.I.; Klymuk, O.S.

    2011-01-01

    The magnetic and resonance properties of cylindrical magnets at first-order phase transition from paramagnetic to ferromagnetic state were theoretically studied. It has been shown that in the external magnetic field directed perpendicularly to the rotation axis, formation of a specific domain structure of paramagnetic and ferromagnetic layers can be energetically favorable. The parameters of cylindrical phase domains as well as their dependences on temperature, magnetic field and material characteristics have been calculated. Peculiarities of the magnetic resonance spectra appearing as a result of the phase domain formation have been considered. Dependence of the resonance field of the system of ferromagnetic domains on magnetization and temperature has been obtained. - Highlights: → Parameters of the equilibrium system of cylindrical phase domains are calculated. → The range of fields for PM and FM phases coexistence is found. → FMR field of the disk domains is found to be lower than that of the PMR field.→ The resonance field increases with the decrease of temperature lower than T || .

  18. AC system stabilization via phase shift transformer with thyristor commutation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Carlos de; Guimaraes, Geraldo Caixeta; Moraes, Adelio Jose [Uberlandia Univ., MG (Brazil); Abreu, Jose Policarpo G. de [Escola Federal de Engenharia de Itajuba, MG (Brazil); Oliveira, Edimar Jose de [Juiz de Fora Univ., MG (Brazil)

    1994-12-31

    This article aims to present initially the constructive and operative forms of a phase-shift autotransformer which provides both magnitude and phase angle change through thyristor commutation, including a technic to reduce the number of thyristors. Following, it is proposed a control system to make such equipment an efficient AC system stabilizing tool. It is presented some simulation results to show the operation of this transformer in an electrical system. (author) 3 refs., 11 figs., 3 tabs.

  19. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Holzweissig, M.J., E-mail: martinh@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany); Canadinc, D., E-mail: dcanadinc@ku.edu.tr [Koc University, Advanced Materials Group, Department of Mechanical Engineering, 34450 Istanbul (Turkey); Maier, H.J., E-mail: hmaier@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany)

    2012-03-15

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: Black-Right-Pointing-Pointer Local variations of strain were observed by DIC throughout the phase transformation. Black-Right-Pointing-Pointer The study clearly established the role of the stress-induced variant selection. Black-Right-Pointing-Pointer Variant selection is a key parameter that governs distortion.

  20. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    International Nuclear Information System (INIS)

    Holzweissig, M.J.; Canadinc, D.; Maier, H.J.

    2012-01-01

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: ► Local variations of strain were observed by DIC throughout the phase transformation. ► The study clearly established the role of the stress-induced variant selection. ► Variant selection is a key parameter that governs distortion.

  1. Phase transformations in TiAl based alloys

    International Nuclear Information System (INIS)

    Zghal, Slim; Thomas, Marc; Naka, Shigehisa; Finel, Alphonse; Couret, Alain

    2005-01-01

    Microstructural characteristics of a fully lamellar Ti 49 Al 47 Cr 2 Nb 2 alloy have been investigated in different annealed conditions by quantitative transmission electron microscopy. Statistical analyses have yielded clear information about the γ-γ interfaces, the respective orientation groups of the γ phase, and the distribution of orientational variants. From the results, three sequences of lamellar transformation have been identified with decreasing temperature: (1) a high-temperature heterogeneous transformation characterized by the nucleation of isolated primary γ lamellae mostly belonging to the same orientation group and having locally the same order; (2) a low-temperature homogeneous transformation in the ordered α 2 phase characterized by the formation of a fine lamellar structure with an even distribution of the orientation groups and a random ordering of γ lamellae; and (3) a coherent interfacial transformation at the α 2 /γ interfaces characterized by the nucleation of ultra-fine twin related lamellae. Finally, the driving forces for these various transformations as well as the nucleation mechanisms of γ lamellae involved in these transformations are discussed

  2. The Phase-Space Transformer Instrument (PASTIS) and the Phase-Space Transformation on Ultra-Cold Neutrons

    International Nuclear Information System (INIS)

    Henggeler, W.; Boehm, M.

    2003-11-01

    Both reports - part I by Wolfgang Henggeler and part II by Martin Boehm - serve as a comprehensive basis for the realisation of a PST (phase-space transformation) instrument coupled either to cold or ultra-cold neutrons, respectively. This publication accidentally coincides with the 200 th birthday of the Austrian physicist C.A. Doppler who discovered the principle (i.e., the effect denoted later by his name) giving rise to the phase-space transformation described in the present work. (author)

  3. A Transformer-less Single Phase Inverter For photovoltaic Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

    2017-01-01

    A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer comp...

  4. The Phase Transformations in Hypoeutectoid Steels Mn-Cr-Ni

    Directory of Open Access Journals (Sweden)

    RoŻniata E.

    2015-04-01

    Full Text Available The results of a microstructure and hardness investigations of the hypoeutectoid steels Mn-Cr-Ni, imitating by its chemical composition toughening steels, are presented in the paper. The analysis of the kinetics of phase transformations of undercooled austenite of steels containing different amounts of alloying elements in their chemical composition, constitutes the aim of investigations.

  5. Phase transformation kinetics and microstructure of NiTi shape

    Indian Academy of Sciences (India)

    Phase transformation kinetics and microstructure of NiTi shape memory alloy: ... by 1.4687 J. In addition, entropy of the alloys decreases by 0.2335 J (g ∘ C) − 1 ... is an obvious difference in the grain sizes of the unpressured sample and the ...

  6. Study of effect of chromium on titanium dioxide phase transformation ...

    Indian Academy of Sciences (India)

    Administrator

    Study of effect of chromium on titanium dioxide phase transformation by A Bellifa (pp 669–677). Figure S1. Structural ... 4 × 1⋅9486; 2 × 1⋅9799. Octahedral packing. 2 × 2 shared edges. 8 free edges. 3 shared edges. 4 corners. 5 free edges. 2 parallel shared edges. 2 corners. 10 free edges. O. O. Coordination scheme.

  7. Phase transformation changes in thermocycled nickel-titanium orthodontic wires.

    Science.gov (United States)

    Berzins, David W; Roberts, Howard W

    2010-07-01

    In the oral environment, orthodontic wires will be subject to thermal fluctuations. The purpose of this study was to investigate the effect of thermocycling on nickel-titanium (NiTi) wire phase transformations. Straight segments from single 27 and 35 degrees C copper NiTi (Ormco), Sentalloy (GAC), and Nitinol Heat Activated (3M Unitek) archwires were sectioned into 5mm segments (n=20). A control group consisted of five randomly selected non-thermocycled segments. The remaining segments were thermocycled between 5 and 55 degrees C with five randomly selected segments analyzed with differential scanning calorimetry (DSC; -100150 degrees C at 10 degrees C/min) after 1000, 5000, and 10,000 cycles. Thermal peaks were evaluated with results analyzed via ANOVA (alpha=0.05). Nitinol HA and Sentalloy did not demonstrate qualitative or quantitative phase transformation behavior differences. Significant differences were observed in some of the copper NiTi transformation temperatures, as well as the heating enthalpy with the 27 degrees C copper NiTi wires (p<0.05). Qualitatively, with increased thermocycling the extent of R-phase in the heating peaks decreased in the 35 degrees C copper NiTi, and an austenite to martensite peak shoulder developed during cooling in the 27 degrees C copper NiTi. Repeated temperature fluctuations may contribute to qualitative and quantitative phase transformation changes in some NiTi wires. Copyright 2010 Academy of Dental Materials. All rights reserved.

  8. Phase transformation order-disorder in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Vlasov, V.A.; Karmo, Yu.S.; Kustova, L.V.

    1986-01-01

    Titanium carbide delta-phase is studied using the methods of electric conductivity and differential thermal analysis (DTA). It is shown on the Ti-C system phase diagram that two regions of TiCsub(0.46-0.60) and TiCsub(0.65-1.00) compositions, different in their properties, correspond to delta-phase. Both ordered and disordered phases exist within the TiCsub(0.046-0.60) concentration range, and in equilibrium heating or cooling one phase converts to another at 590 deg C (the first order phase transformation). Samples of the TiCsub(0.65-1.00) composition are characterized by low electric conductivity stability, that is explained by strong titanium carbide electric conductivity sensitivity to defects and impurities

  9. One Core Phase Shifting Transformer for Control of the Power Flow Distribution in Electric Networks

    Directory of Open Access Journals (Sweden)

    Golub I.V.

    2016-08-01

    Full Text Available This paper presents the variant of phase shifting transformer that is made, unlike from traditional technology, on the basis of only one magnetic core. The paper describes the methodology related to the analysis of operation modes of device and its components. Additionally it presents a mathematical model of device with determines the relationship between input and output electric quantities as well as own longitudinal and transverse parameters of an equivalent circuit of phase shifting transformer (PST. Proposed configuration of PST is interesting from an economic and operational consideration; enable continuous control of power flow distribution in electric networks as a result of regulation a phase shift angle between input and output voltages of device.

  10. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    Science.gov (United States)

    Dean, Bruce H.

    2007-01-01

    A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein

  11. Magnetic transitions and phases in random-anisotropy magnets

    International Nuclear Information System (INIS)

    Sellmyer, D.J.; Nafis, S.; O'Shea, M.J.

    1988-01-01

    The generality and universality of the Ising spin-glass-like phase transitions observed in several rare-earth, random-anisotropy magnets are discussed. Some uncertainties and practical problems in determining critical exponents are considered, and a comparison is made to insulating spin glasses and crystalline spin glasses where an apparent anisotropy-induced crossover from Heisenberg to Ising-like behavior is seen. The observation of a reentrant transition in a weak anisotropy system and its correlation with the theory of Chudnovsky, Saslow, and Serota [Phys. Rev. B 33, 251 (1986)] for the correlated spin glass is discussed

  12. Magnetic transitions and phases in random-anisotropy magnets

    Science.gov (United States)

    Sellmyer, D. J.; Nafis, S.; O'Shea, M. J.

    1988-04-01

    The generality and universality of the Ising spin-glass-like phase transitions observed in several rare-earth, random-anisotropy magnets are discussed. Some uncertainties and practical problems in determining critical exponents are considered, and a comparison is made to insulating spin glasses and crystalline spin glasses where an apparent anisotropy-induced crossover from Heisenberg to Ising-like behavior is seen. The observation of a reentrant transition in a weak anisotropy system and its correlation with the theory of Chudnovsky, Saslow, and Serota [Phys. Rev. B 33, 251 (1986)] for the correlated spin glass is discussed.

  13. Aliasless fresnel transform image reconstruction in phase scrambling fourier transform technique by data interpolation

    International Nuclear Information System (INIS)

    Yamada, Yoshifumi; Liu, Na; Ito, Satoshi

    2006-01-01

    The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)

  14. High-pressure phase transformations of fluorite-type dioxides

    International Nuclear Information System (INIS)

    Lin-Gun Liu

    1980-01-01

    Phase transformations in six fluorite-type dioxides ('TbO 2 ', PbO 2 , 'PrO 2 ', CeO 2 , UO 2 and ThO 2 in the order of increasing cation size, where the quotation marks indicate non-stoichiometric materials) have been investigated in the diamond-anvil press coupled with laser heating. Together with earlier work, the results show that the post-fluorite phase transformations of these dioxides fall into two groups. The smaller cation group (HfO 2 , ZrO 2 and 'TbO 2 ') transforms to a cotunnite or a distorted cotunnite-type structure at pressures in the vicinity of 100 kbar and at about 1000 0 C. The larger cation group (from PbO 2 to ThO 2 ) is believed to transform to a different type of orthorhombic modification at high pressures. It is plausible that this high-pressure phase may possess a Ni 2 Si-related structure, as was observed in ThO 2 and 'PrO 2 ' at pressures greater than 150 and 200 kbar, respectively. (orig./ME)

  15. A study of phase transformations in complex matallic alloys Al73Mn23Pd4 and Al73Mn21Pd6

    Czech Academy of Sciences Publication Activity Database

    Priputen, P.; Černičková, I.; Kusý, M.; Illeková, E.; Švec, P.; Buršík, Jiří; Svoboda, Milan; Dolinšek, J.; Janovec, J.

    2011-01-01

    Roč. 465, - (2011), s. 302-305 ISSN 1013-9826 Institutional research plan: CEZ:AV0Z20410507 Keywords : ternary alloy system * phase transformation * DTA/SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Charge density wave instabilities and incommensurate structural phase transformations

    International Nuclear Information System (INIS)

    Axe, J.D.

    1977-10-01

    Incommensurate structural phase transformations involve the appearance of modulated atomic displacements with spatial periodicity unrelated to the fundamental periodicity of the basic lattice. In the case of some quasi one- or two-dimensional metals such transformations are the result of Fermi-surface instabilities that also produce electronic charge density waves (CDW's) and soft phonon modes due to metallic electron screening singularities. Incommensurate soft mode instabilities have been found in insulators as well. Recent neutron scattering studies of both the statics and dynamics of incommensurate structural instabilities will be reviewed

  17. New transformation mechanism for a zinc-blende to rocksalt phase transformation in MgS

    International Nuclear Information System (INIS)

    Durandurdu, Murat

    2009-01-01

    The stability of the zinc-blende structured MgS is studied using a constant pressure ab initio molecular dynamics technique. A phase transition into a rocksalt structure is observed through the simulation. The zinc-blende to rocksalt phase transformation proceeds via two rhombohedral intermediate phases within R3m (No:160) and R3-barm (No:166) symmetries and does not involve any bond breaking. This mechanism is different from the previously observed mechanism in molecular dynamics simulations. (fast track communication)

  18. The use of Fourier reverse transforms in crystallographic phase refinement

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, Sharon [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations.

  19. Quasi-phase transformation in ferromagnetic semiconductors with two-charged donors

    International Nuclear Information System (INIS)

    Kovalenko, A.A.; Nagaev, Eh.L.

    1978-01-01

    Effect of term inversion of two-charged donors 1s2s → 1s 2 on properties of ferromagnetic semiconductors, has been investigated. Term inversion is accompanied by changes in local magnetic ordering in the donor area and takes place as spread phase transformation of the first type in the system of n 2 atoms, enveloped by donor 2s-orbit. It is a reason for creating not only heat capacity peak at Tsub(c), but another peak at inversion temperature Tsub(i) as well. At temperatures T > Tsub(i) introduction of external magnetic field can lead to a reverse term inversion 1s 2 → 1s2s, under that condition crystal magnetization should clearly increase. Term inversion tells upon electric properties of crystals: in Ti inversion point, the energy of conductivity activation of ungenerate semiconductors changes abruptly. In the case of larger concentrations of donors, term inversion can lead to metal-insulator transformation. Analysis of experimental data on magnetic susceptibility of EuO crystals with oxygen vacancies, shows that transformation in these crystals takes place according to a different mechanism

  20. Study of the maguemite-hematite transformation by magnetic resonance

    International Nuclear Information System (INIS)

    Portella, P.D.

    1979-08-01

    The conversion of γ-Fe 2 O 3 powders to α-Fe 2 O 3 has been studied with the magnetic resonance technique. The residual fraction of γ-Fe 2 O 3 was measured for several times and temperatures of isothermal treatments, in the range 450 0 C - 550 0 C. The transformation can be described by a first order Kinetic equation and the apparent activation energy is about 200 kJ/mol (48 kcal/mol). This value is independent of temperature and particle size. The experimental data suggest that the reaction is growth-controlled and nucleation occurs preferably at the particle surface. (Author) [pt

  1. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  2. Multilevel modeling of micromechanics and phase formation for microstructural evolution of magnetic zones

    International Nuclear Information System (INIS)

    Suwa, Yoshihiro; Aizawa, Tatsuhiko; Takaya, Shigeru; Nagae, Yuji; Aoto, Kazumi

    2005-03-01

    The present research aims at a proposal of theoretical treatise to describe the local phase transformation from austenite to ferrite in the stainless steels under hot cyclic fatigue conditions. In experiments, this local phase transformation is detected as a magnetized region in the non-magnetic matrix after low-cycle fatigue test at the elevated temperature. The theoretical frame proposed here is composed of two methodologies. In the first approach, microstructure evolution with γ → α transformation is described by the phase field method. In the second approach, micromechanical method on the basis of the unit cell modeling is proposed to develop a new micromechanical analysis. The details of two approached are summarized in the following. (1) Phase formation simulation by the phase field method. Most of reports have started that γ-α phase transformation as a creep damage is induced by dechromization, which comes from carbide precipitation around grain boundaries. A new theoretical treatise is proposed for simulating this γ → α transformation in Fe-Cr-Ni system. Stabilities of both phases are investigated for various chemical compositions. Furthermore, in order to investigate dechromization phenomena in Fe-Cr-Ni-C system, a new theoretical frame is also proposed to handle an interstitial element in phase field method. (2) Low cycle fatigue elasto-plastic analysis by the unit-cell modeling. In experiments, the magnetized zones are generated to distribute at the vicinity of the hard, delta-phase inclusion in the austenitic matrix. The cumulative plastic region advances in the surroundings of this hard inclusion with increasing the number of cycles in the controlled strain range. This predicted profile of cumulative plastic regions corresponds to the experimentally measured, magnetized zones. In addition, the effect of geometric configuration of this inclusion on the plastic region evolution has close relationship of creep damage advancement in experiments

  3. Weighted least squares phase unwrapping based on the wavelet transform

    Science.gov (United States)

    Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia

    2007-01-01

    The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.

  4. Isometric and unitary phase operators: explaining the Villain transform

    International Nuclear Information System (INIS)

    Hemmen, J L van; Wreszinski, Walter F

    2007-01-01

    The Villain transform plays a key role in spin-wave theory, a bosonization of elementary excitations in a system of extensively many Heisenberg spins. Intuitively, it is a representation of the spin operators in terms of an angle and its canonically conjugate angular momentum operator and, as such, has a few nasty boundary-condition twists. We construct an isometric phase representation of spin operators that conveys a precise mathematical meaning to the Villain transform and is related to both classical mechanics and the Pegg-Barnett-Bialynicki-Birula boson (photon) phase operators by means of suitable limits. In contrast to the photon case, unitary extensions are inadequate because they describe the wrong physics. We also discuss in some detail the application to spin-wave theory, pointing out some examples in which the isometric representation is indispensable

  5. Phase transformation in a Ni-Mo-Cr alloy

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Blicharski, M.; Dollar, M.

    2001-01-01

    The paper gives a characteristic of a nickel-based superalloy containing 25 wt.% Mo and 8 wt.% Cr with particular attention to the influence of a thermochemical and heat treatment on phase transformations. The applied heat treatments are comprised of soaking temperature 1100 o C followed by aging at 650 o C at three conditions: conventional aging for 72 hours, prolonged aging for 4000 hours and prolonged aging for 4000 hours followed by cold working and subsequent aging for 1000 hours. The conventional aging led to the formation of lenticular precipitates of the dispersed metastable Ni 2 (Mo,Cr) phase. The aging for 4000 hours brought about coarsening of the ordered domains without changing their crystallographic and ordering characteristics. The plastic deformation preceded the further aging for 1000 hours accelerated the decomposition of the Ni 2 (Mo,Cr) phase on the mixture of the Ni 3 Mo and Ni 4 Mo-based phases. (author)

  6. Formation of {1 0 0} textured columnar grain structure in a non-oriented electrical steel by phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Li; Yang, Ping, E-mail: yangp@mater.ustb.edu.cn; Zhang, Ning; Zong, Cui; Xia, Dongsheng; Mao, Weimin

    2014-04-01

    This study confirms the effect of anisotropic strain energy on the formation of {1 0 0} textured columnar grain structure induced by temperature gradient during γ to α phase transformation in pure hydrogen atmosphere. Results indicate that high temperature gradient in pure hydrogen atmosphere induces a significant strain energy difference across grain boundaries during γ to α phase transformation, leading to the formation of {1 0 0} texture with columnar grains. Given its simplicity in processing and its ability to obtain good texture-related magnetic properties, the proposed approach is helpful to the development of new types of non-oriented electrical steel. - Highlights: • A strong {1 0 0} texture with columnar grains was obtained. • Good texture and magnetic properties are attributed to the anisotropic strain energy. • The anisotropy in elastic strain energy was induced by the temperature gradient. • The phase transformation rate affects columnar grain morphology.

  7. Plasticity induced by phase transformation in steel: experiment vs modeling

    International Nuclear Information System (INIS)

    Tahimi, Abdeladhim

    2011-01-01

    The objectives of this work are: (i) understand the mechanisms and phenomena involved in the plasticity of steels in the presence of a diffusive or martensitic phase transformation. (ii) develop tools for predicting TRIP, which are able to correctly reproduce the macroscopic deformation for cases of complex loading and could also provide information about local elasto-visco-plastic interactions between product and parent phases. To this purpose, new experimental tests are conducted on 35NCD16 steel for austenite to martensite transformation and on 100C6 steel for austenite to pearlite transformation. The elasto viscoplastic properties of austenite and pearlite of the 100C6 steel are characterized through tension compression and relaxation tests. The parameters of macro-homogeneous and crystal-based constitutive laws could then be identified such as to analyse different models with respect to the experimental TRIP: the analytical models of Leblond (1989) and Taleb and Sidoroff (2003) but also, above all, different numerical models which can be distinguished by the prevailing assumptions concerning the local kinetics and the constitutive laws. An extension of the single-grain model dedicated to martensitic transformations developed during the thesis of S. Meftah (2007) is proposed. It consists in introducing the polycrystalline character of the austenite through a process of homogenization based on a self-consistent scheme by calculating the properties of an Equivalent Homogeneous Medium environment (EHM). (author)

  8. Pressure-induced phase transformations in L-alanine crystals

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Freire, P.T.C.

    2008-01-01

    Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of L-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another...... phase transformation from tetragonal to monoclinic structure has been observed at about 9 GPa. From the equation of state, the zero-pressure bulk modulus and its pressure derivative have been determined as (31.5 +/- 1.4) GPa and 4.4 +/- 0.4, respectively....

  9. Lectures notes on phase transformations in nuclear matter

    CERN Document Server

    López, Jorge A

    2000-01-01

    The atomic nucleus, despite of being one of the smallest objects found in nature, appears to be large enough to experience phase transitions. The book deals with the liquid and gaseous phases of nuclear matter, as well as with the experimental routes to achieve transformation between them.Theoretical models are introduced from the ground up and with increasing complexity to describe nuclear matter from a statistical and thermodynamical point of view. Modern critical phenomena, heavy ion collisions and computational techniques are presented while establishing a linkage to experimental data.The

  10. Microstructures and phase transformations in interstitial alloys of tantalum

    International Nuclear Information System (INIS)

    Dahmen, U.

    1979-01-01

    The analysis of microstructures, phases, and possible ordering of interstitial solute atoms is fundamental to an understanding of the properties of metal-interstitial alloys in general. As evidenced by the controversies on phase transformations in the particular system tantalum--carbon, our understanding of this class of alloys is inferior to our knowledge of substitutional metal alloys. An experimental clarification of these controversies in tantalum was made. Using advanced techniques of electron microscopy and ultrahigh vacuum techology, an understanding of the microstructures and phase transformations in dilute interstitial tantalum--carbon alloys is developed. Through a number of control experiments, the role and sources of interstitial contamination in the alloy preparation (and under operating conditions) are revealed. It is demonstrated that all previously published work on the dilute interstitially ordered phase Ta 64 C can be explained consistently in terms of ordering of the interstitial contaminants oxygen and hydrogen, leading to the formation of the phases Ta 12 O and Ta 2 H

  11. Phase Transformation of Hot Dipped Aluminium during High Temperature Oxidation

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Hishamuddin Husain; Mohd Saari Ripin; Rusni Rejab; Zaiton Selamat; Mohd Shariff Sattar

    2014-01-01

    Low alloy carbon steel was coated by hot-dipping into a molten aluminum bath. Isothermal oxidations were carried out at 750 degree Celsius in static air to study the oxidation behaviour of the hot-dipped aluminide steel. The phase transformation in the aluminide layer during diffusion at 750 degree Celsius in static air was analyzed by SEM-EDX and XRD. After hot-dip treatment, the coating layers consisted of three phases, where Al, thinner layer of FeAl 3 , and thicker layer of Fe 2 Al 5 were detected from external topcoat to the aluminide/ steel substrate. After oxidation, the Fe 2 Al 5 formed during the immersion process completely transformed to Fe 2 Al 5 , FeAl 2 , FeAl and Al-Fe(Al) phases because of the composition gradient and the chemical diffusion by oxidation. After oxidation, there are some voids were found at the coating/ substrate interface due to the rapid inter-diffusion of iron and aluminium during oxidation. The FeAl phase kept growing with increasing exposure time at 750 degree Celsius, while the Fe 2 Al 5 was consumed during oxidation. After 168 hrs oxidation, the Fe 2 Al 5 phase was going disappeared as the aluminum layer was consumed. (author)

  12. Application of phase coherent transform to cloud clutter suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ng, L.C. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    This paper describes a tracking algorithm using frame-to-frame correlation with frequency domain clutter suppression. Clutter suppression was mechanized via a `Phase Coherent Transform` (PCT) approach. This approach was applied to explore the feasibility of tracking a post-boost rocket from a low earth orbit satellite with real cloud background data. Simulation results show that the PCT/correlation tracking algorithm can perform satisfactorily at signal-to-clutter ratio (SCR) as low as 5 or 7 dB.

  13. Energy Barriers and Hysteresis in Martensitic Phase Transformations

    Science.gov (United States)

    2008-08-01

    glacial acetic acid (CH3COOH) and 10-15% perchloric acid (HCLO4) by volume, the cathode was stainless steel , the anode was stainless steel or Ti, the...Submitted to Acta Materialia Energy barriers and hysteresis in martensitic phase transformations Zhiyong Zhang, Richard D. James and Stefan Müller...hysteresis based on the growth from a small scale of fully developed austenite martensite needles. In this theory the energy of the transition layer plays a

  14. Braiding transformation, entanglement swapping, and Berry phase in entanglement space

    International Nuclear Information System (INIS)

    Chen Jingling; Ge Molin; Xue Kang

    2007-01-01

    We show that braiding transformation is a natural approach to describe quantum entanglement by using the unitary braiding operators to realize entanglement swapping and generate the Greenberger-Horne-Zeilinger states as well as the linear cluster states. A Hamiltonian is constructed from the unitary R i,i+1 (θ,φ) matrix, where φ=ωt is time-dependent while θ is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space

  15. A TECHNIQUE OF IDENTIFICATION OF THE PHASE-DISPLACEMENT GROUP OF THREE-PHASE TRANSFORMER

    International Nuclear Information System (INIS)

    Aburjania, A.; Begiashvili, V.; Rezan Turan

    2007-01-01

    It is demonstrated that the arbitrary choice of arbitrarily pisitive direction of induced currents and voltages contradicts the energy conservation law and leads to equilibrium equations and standards making no sense from the physical standpoint. Of 12 recognized standard phase-displacement groups of three-phase transformer, only three have real physical bases. The rest are based on a wrong assumption about mutual biasing of primary and secondary currents. They does not rule out the occurrence of emergency situations and, thus, must be eliminated from use. A new method of identification of the phase-displacement of three-phase transformer is proposed. The method is based on well-known physical laws with consideration for the dual character of the inertia of mutual inductance and exhausts for all possible versions of connection of transformer windings. (author)

  16. Role of multiorbital effects in the magnetic phase diagram of iron pnictides

    Science.gov (United States)

    Christensen, Morten H.; Scherer, Daniel D.; Kotetes, Panagiotis; Andersen, Brian M.

    2017-07-01

    We elucidate the pivotal role of the band structure's orbital content in deciding the type of commensurate magnetic order stabilized within the itinerant scenario of iron pnictides. Recent experimental findings in the tetragonal magnetic phase attest to the existence of the so-called charge and spin ordered density wave over the spin-vortex crystal phase, the latter of which tends to be favored in simplified band models of itinerant magnetism. Here we show that employing a multiorbital itinerant Landau approach based on realistic band structures can account for the experimentally observed magnetic phase, and thus shed light on the importance of the orbital content in deciding the magnetic order. In addition, we remark that the presence of a hole pocket centered at the Brillouin zone's M point favors a magnetic stripe rather than a tetragonal magnetic phase. For inferring the symmetry properties of the different magnetic phases, we formulate our theory in terms of magnetic order parameters transforming according to irreducible representations of the ensuing D4 h point group. The latter method not only provides transparent understanding of the symmetry-breaking schemes but also reveals that the leading instabilities always belong to the {A1 g,B1 g} subset of irreducible representations, independently of their C2 or C4 nature.

  17. Martensitic phase transformations in the nanostructured surface layers induced by mechanical attrition treatment

    International Nuclear Information System (INIS)

    Ni Zhichun; Wang Xiaowei; Wu Erdong; Liu Gang

    2005-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) and x-ray diffraction (XRD) analysis have been used to investigate the relationship between characteristics of phase transformation and the treatment time in surface nanocrystallized 316L stainless steel induced by surface mechanical attrition treatment (SMAT). A similar trend of development of the martensitic phase upon the treatment time has been observed from both CEMS and XRD measurements. However, in the CEMS measurement, two types of martensite phase with different magnetic hyperfine fields are revealed. Based on a random distribution of the non-iron coordinating atoms, a three-element theoretical model is developed to illustrate the difference of two types of martensite phase. The calculated results indicate the segregation of the non-iron atoms associated with SMAT treatment

  18. Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components

    Energy Technology Data Exchange (ETDEWEB)

    Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

    2012-03-26

    The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure

  19. Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid

    International Nuclear Information System (INIS)

    Timko, M; Marton, K; Tomco, L; Kopcansky, P; Koneracka, M

    2010-01-01

    The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 10 6 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.

  20. Pressure-induced phase transformation of HfO2

    International Nuclear Information System (INIS)

    Arashi, H.

    1992-01-01

    This paper reports on the pressure dependence of the Raman spectra of HfO 2 that was measured by a micro-Raman technique using a single-crystal specimen in the pressure range from 0 to 10 GPa at room temperature. The symmetry assignment of Raman bands of the monoclinic phase was experimentally accomplished from the polarization measurements for the single crystal. With increased pressure, a phase transformation for the monoclinic phase took place at 4.3 ± 0.3 GPa. Nineteen Raman bands were observed for the high-pressure phase. The spectral structure of the Raman bands for the high-pressure phase was similar with those reported previously for ZrO 2 . The space group for the high pressure phase of HfO 2 was determined as Pbcm, which was the same as that of the high-pressure phase for ZrO 2 on the basis of the number and the spectral structure of the Raman bands

  1. Model-based magnetization retrieval from holographic phase images

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: f.roeder@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Vogel, Karin [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Wolf, Daniel [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Hellwig, Olav [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); AG Magnetische Funktionsmaterialien, Institut für Physik, Technische Universität Chemnitz, D-09126 Chemnitz (Germany); HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wee, Sung Hun [HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wicht, Sebastian; Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-05-15

    The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO{sub 3} substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. - Highlights: • Retrieval of the magnetization from holographic phase images. • Magnetostatic model constructed for a magnetic nano-structure. • Decomposition into homogeneously magnetized components. • Discretization of a each component by elementary cuboids. • Analytic solution for the phase of a magnetized cuboid considered. • Fitting a set of magnetization vectors to experimental phase images.

  2. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Schule, W.; Panzarasa, A.; Lang, E.

    1988-01-01

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -196 0 C and 1000 0 C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 500 0 C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 1000 0 C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 600 0 C and much narrower than reported in the literature. 95 figs. 22 refs

  3. Phase transformations and thermodynamics of aluminum-based metallic glasses

    Science.gov (United States)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  4. Isostructural magnetic phase transition and magnetocaloric effect in Ising antiferromagnet

    International Nuclear Information System (INIS)

    Lavanov, G.Yu; Kalita, V.M.; Loktev, V.M.

    2014-01-01

    It is shown that the external magnetic field induced isostructural I st order magnetic phase transition between antiferromagnetic phases with different antiferromagnetic vector values is associated with entropy. It is found, that depending on temperature the entropy jump and the related heat release change their sign at this transition point. In the low-temperature region of metamagnetic I st order phase tensition the entropy jump is positive, and in the triple point region this jump for isostructural magnetic transition is negative

  5. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  6. Experimental demonstration of conformal phased array antenna via transformation optics.

    Science.gov (United States)

    Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang

    2018-02-28

    Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.

  7. Magnetic Phase Diagram of α-RuCl3

    Science.gov (United States)

    Sears, Jennifer; Kim, Young-June; Zhao, Yang; Lynn, Jeffrey

    The layered honeycomb material α-RuCl3 is thought to possess unusual magnetic interactions including a strong bond-dependent Kitaev term, offering a potential opportunity to study a material near a well understood spin liquid phase. Although this material orders magnetically at low temperatures and is thus not a realization of a Kitaev spin liquid, it does show a broad continuum of magnetic excitations reminiscent of that expected for the spin liquid phase. It has also been proposed that a magnetic field could destabilize the magnetic order in this material and induce a transition into a spin liquid phase. Low temperature magnetization and specific heat measurements in this material have suggested a complex magnetic phase diagram with multiple unidentified magnetic phases present at low temperature. This has provided motivation for our work characterizing the magnetic transitions and phase diagram in α-RuCl3. I will present detailed bulk measurements combined with magnetic neutron diffraction measurements to map out the phase diagram and identify the various phases present.

  8. Magnetic phase diagram of UNi2Si2 under magnetic field and high-pressure

    International Nuclear Information System (INIS)

    Honda, F.; Oomi, G.; Svoboda, P.; Syshchenko, A.; Sechovsky, V.; Khmelevski, S.; Divis, M.; Andreev, A.V.; Takeshita, N.; Mori, N.; Menovsky, A.A.

    2001-01-01

    Measurements of electrical resistance under high pressure and neutron diffraction in high-magnetic field of single crystalline UNi 2 Si 2 have been performed. We have found the analogy between the p-T and B-T magnetic phase diagrams. It is also found that the propagation vector q Z of incommensurate antiferromagnetic phase decreases with increasing magnetic field. A new pronounced pressure-induced incommensurate-commensurate magnetic phase transition has been detected

  9. Transmission Network Expansion Planning Considering Phase-Shifter Transformers

    Directory of Open Access Journals (Sweden)

    Celso T. Miasaki

    2012-01-01

    Full Text Available This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process.

  10. Phase transformations in the titanium-niobium binary alloy system

    International Nuclear Information System (INIS)

    Moffat, D.L.

    1985-01-01

    A fundamental study of the phase transformations in the Ti-Nb binary alloy system was completed. Eight alloys in the range 20 to 70 at% Nb were investigated using transmission electron microscopy, light metallography, and x-ray diffraction. Measurements of electric resistivity and Vicker's microhardness also were performed. Emphasis was placed on the minimization of interstitial contamination in all steps of alloy fabrication and specimen preparation. In order to eliminate the effects of prior cold working, the alloys studied were recrystallized at 1000 0 C. Phase transformations were studied in alloys quenched to room temperature after recrystallization and then isothermally aged, and in those isothermally aged without a prior room temperature quench. It was found that the microstructures of the quenched 20 and 25% Nb alloys were extremely sensitive to quench rate - with a fast quench producing martensite, a slow quench, the omega phase. Microstructures of the higher niobium content alloys were much less sensitive to quench rate. The microstructures of the isothermally aged 20 and 25% Nb alloys were found to be sensitive to prior thermal history. Alloys quenched to room temperature and then aged at 400 0 C contained large omega precipitates, while those aged without an intermediate room temperature quench contained alpha precipitates

  11. Criterion of magnetic saturation and simulation of nonlinear magnetization for a linear multi-core pulse transformer

    International Nuclear Information System (INIS)

    Zeng Zhengzhong; Kuai Bin; Sun Fengju; Cong Peitian; Qiu Aici

    2002-01-01

    The linear multi-core pulse transformer is an important primary driving source used in pulsed power apparatus for the production of dense plasm owing to its compact, relatively low-cost and easy-to-handle characteristics. The evaluation of the magnetic saturation of the transformer cores is essential to the transformer design, because the energy transfer efficiency of the transformer will degrade significantly after magnetic saturation. This work proposes analytical formulas of the criterion of magnetic saturation for the cores when the transformer drives practical loads. Furthermore, an electric circuit model based on a dependent source treatment for simulating the electric behavior of the cores related to their nonlinear magnetization is developed using the initial magnetization curve of the cores. The numerical simulation with the model is used to evaluate the validity of the criterion. Both the criterion and the model are found to be in agreement with the experimental data

  12. Phase evolution and its effects on the magnetic performance of nanocrystalline SmCo7 alloy

    International Nuclear Information System (INIS)

    Zhang Zhexu; Song Xiaoyan; Xu Wenwu

    2011-01-01

    The evolution of the phase constitution and the microstructure, as well as their effects on magnetic performance, were investigated systematically using a prepared nanocrystalline single-phase SmCo 7 alloy as the starting material for a series of annealing processes. The SmCo 7 (1:7 H) phase was discovered to have a good single-phase stability from room temperature up to 600 deg. C. The destabilization of the SmCo 7 phase results in the formation of the Sm 2 Co 17 (2:17 R) and SmCo 5 (1:5 H) phases, which exist as phase-transformation twins and particulate precipitates, respectively, with a completely coherent relationship with the 1:7 H parent phase. For the first time the formation mechanism of the 2:17 R phase-transformation twins has been proposed, in which the ordered substitution of 1/3 of the Sm atoms by Co-Co dumbbell pairs along two particular crystal directions was demonstrated. The characteristic width values of the 2:17 R phase-transformation twins, as deduced from this model of the mechanism, were unambiguously verified by the experimental results. Among the SmCo 7 alloys with various phase constitutions and microstructures, the best magnetic properties were obtained in the nanocrystalline 1:7 H single-phase alloys. The present work may promote a new understanding of nanoscale-stabilized single-phase SmCo 7 and its potential applications as unique high-temperature permanent magnets.

  13. The β → α phase transformation in plutonium

    International Nuclear Information System (INIS)

    Mitchell, T.E.; Hirth, J.P.; Schwartz, D.S.; Mitchell, J.N.

    2013-01-01

    The β → α transformation in plutonium is discussed in terms of the crystallography of the two phases and the resulting topological modeling of the β/α interface. There has been little microscopy work on the transformation, but it is probably martensitic. β-Pu is monoclinic I2/m, while α-Pu is monoclinic P2 1 /m. α-Pu has been described as a hexagonal close-packed pseudostructure with AB stacking of the (0 2 0) α planes with pseudo-close-packing along [1 0 0] α and two other directions. β-Pu is less obvious, but X-ray diffraction suggests that the (1 0 3) β planes, which are selected as the terrace plane, have the highest structure factor and are therefore among the closest-packed planes. Other pseudo-close-packed planes, such as {222 ¯ } β and {321 ¯ } β , could also act as terrace planes for the transformation. The (1 0 3) β planes have a pseudo-hexagonal grid of Pu atoms with AB stacking and pseudo-close-packing along [301 ¯ ] β and two other directions. A selection of terrace planes as (0 2 0) α //(1 0 3) β with disconnections along [100] α //[301 ¯ ] β provides the basis for topological modeling. The model predicts a habit plane that is ∼6° from the terrace plane. The extra Pu atoms in the β structure (17 for every 16 in α) are accommodated by having 16 (1 0 3) β planes transform into 17 (0 2 0) α planes at steps in the interface. Short-range interstitial diffusion of Pu atoms from β to α is required for the transformation to proceed. Possible lattice invariant deformation systems are discussed

  14. TRANSFORMER

    Science.gov (United States)

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  15. Uniform sparse bounds for discrete quadratic phase Hilbert transforms

    Science.gov (United States)

    Kesler, Robert; Arias, Darío Mena

    2017-09-01

    For each α \\in T consider the discrete quadratic phase Hilbert transform acting on finitely supported functions f : Z → C according to H^{α }f(n):= \\sum _{m ≠ 0} e^{iα m^2} f(n - m)/m. We prove that, uniformly in α \\in T , there is a sparse bound for the bilinear form for every pair of finitely supported functions f,g : Z→ C . The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Hölder classes.

  16. Towards an improved continuum theory for phase transformations

    International Nuclear Information System (INIS)

    Tijssens, M.G.A.; James, R.D.

    2003-01-01

    We develop a continuum theory for martensitic phase transformations in which explicit use is made of atomistic calculations based on density functional theory. Following the work of Rabe and coworkers, branches of the phonon-dispersion relation with imaginary frequencies are selected to construct a localized basis tailored to the symmetry of the crystal lattice. This so-called Wannier basis helps to construct an effective Hamiltonian of a particularly simple form. We extend the methodology by incorporating finite deformations and passing the effective Hamiltonian fully to continuum level. The developments so far are implemented on the shape memory material NiTi

  17. Sintering prevention and phase transformation of FePt nanoparticles

    International Nuclear Information System (INIS)

    Ding, Y.; Majetich, S.A.; Kim, J.; Barmak, K.; Rollins, H.; Sides, P.

    2004-01-01

    Two approaches attempted to overcome FePt nanoparticle sintering during the transformation to the high coercivity L1 0 phase, which currently limits the use of these nanoparticles in data storage media. High-pressure treatment of dilute nanoparticle solutions failed to prevent sintering due to surfactant decomposition above 360 deg. C. By pre-annealing nanoparticle monolayers to decompose the surfactant, and then coating with an immiscible SiO 2 matrix, sintering was prevented with annealing temperatures up to 700 deg. C

  18. Power Electronic Transformer based Three-Phase PWM AC Drives

    Science.gov (United States)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  19. Comparison of theories of anisotropy in transformer oil-based magnetic fluids

    OpenAIRE

    Kúdelčík, Jozef; Bury, Peter; Drga, Jozef; Kopčanský, Peter; Závišová, Vlasta; Timko, Milan

    2013-01-01

    The external magnetic field in transformer oil-based magnetic fluids leads to the aggregation of magnetic nanoparticles and formation of clusters. These aggregations are the result of the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs. However, the temperature of magnetic fluids has also very important influence on the structural changes because the mechanism of thermal motion acts against the cluster creation. The acoustic spectroscopy ...

  20. Magnetic phase diagram of Ce2Fe17 under high pressures in high magnetic fields

    International Nuclear Information System (INIS)

    Ishikawa, Fumihiro; Goto, Tsuneaki; Fujii, Hironobu

    2003-01-01

    The magnetization of Ce 2 Fe 17 was precisely measured under high pressures up to 1.2 GPa in magnetic fields up to 18 T. The magnetic phase diagram in the B-T plane is determined at 0, 0.3, 0.4, 0.6, 0.9 and 1.2 GPa. At 0 GPa, five magnetic phases exist and the application of high pressure produces two additional magnetic phases. The shape of the phase diagram changes drastically with increasing pressure

  1. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; Chu, Y. H.; Heron, J. T.; Yang, S. Y.; Wang, C. H.; Kuo, C. Y.; Lin, H. J.; Yu, P.; Liang, C. W.; Zeches, R. J.; Chen, C. T.; Arenholz, E.; Scholl, A.; Ramesh, R.

    2010-08-02

    The emergence of enhanced spontaneous magnetic moments in self-assembled, epitaxial nanostructures of tetragonal (T-phase) and rhombohedral phases (R-phase) of the multiferroic BiFeO{sub 3} system is demonstrated. X-ray magnetic circular dichroism based photoemission electron microscopy (PEEM) was applied to investigate the local nature of this magnetism. We find that the spontaneous magnetization of the R-phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent T-phase and the epitaxial constraint. Reversible electric field control and manipulation of this magnetic moment at room temperature is shown using a combination of piezoresponse force microscopy and PEEM studies.

  2. Forced two phase helium cooling of large superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.

    1979-08-01

    A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids

  3. Change in generally accepted regularity of phase transformations of quartzite

    Science.gov (United States)

    Kukartsev, V. A.; Kukartsev, V. V.; Chzhan, E. A.; Tynchenko, V. S.; Stupina, A. A.

    2018-05-01

    The subject of this research is phasic transformations of quartzites that are under temperature treatment to remove moisture. This technology is used in enterprises operating melting furnaces. The studies have shown that using a temperature regime consisting in heating to 800° C and holding for 2 hours, after cooling, quartzite changes its color and appears a shift in the angle of the interplanar distances of the crystal lattice by 6.6% in it. The use of a temperature treatment regime consisting in heating to 200° C and holding for 4 hours does not reveal such changes. With subsequent exposure to these samples of the temperature regime corresponding to the sintering process of the liner, the following is established. In a sample pretreated with a temperature of 800° C, at a temperature of 1550° C, a tridymite phase appears. In the sample of a 200° C pretreated with temperature, a phase of cristobalite appears without tridymite.

  4. Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K

    DEFF Research Database (Denmark)

    Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.

    2001-01-01

    The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...

  5. Modeling of diffusional phase transformation in multi-component systems with stoichiometric phases

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Abart, R.

    2010-01-01

    Roč. 58, č. 8 (2010), s. 2905-2911 ISSN 1359-6454 R&D Projects: GA MŠk(CZ) OC10029 Institutional research plan: CEZ:AV0Z20410507 Keywords : Interdiffusion * Intermetallics * Phase transformation kinetics Subject RIV: BJ - Thermodynamics Impact factor: 3.781, year: 2010

  6. Modelling a single phase voltage controlled rectifier using Laplace transforms

    Science.gov (United States)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  7. Out-of-phase magnetic susceptibility and environmental magnetism

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.

    2016-01-01

    Roč. 18 (2016), EGU2016-6808 ISSN 1607-7962. [European Geosciences Union General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985831 Keywords : paleomagnetism * magnetic susceptibility * environmental magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2016/EGU2016-6808.pdf

  8. Phase diagrams and phase transformations in 'Zirlo': Zr-1% Sn-1% Nb (0,1% Fe)

    International Nuclear Information System (INIS)

    Canay, Marcelo G.

    1996-01-01

    The transformation temperatures and the phases present in Zr-base alloys with 1% at. Nb, (0,1 and 0,8) % at. Sn, (0,2 and 0,7) % at. Fe and 600 and 6000 ppmat O were studied it the present work. α ↔ α + β and α + β ↔ β transformation temperatures were determined by means of electrical resistivity variation v. temperature measurements. Scanning Electronic Microscopy (SEM) and quantitative microanalysis techniques were used in order to study the microstructures and chemical composition of the phases appearing at three different annealing temperatures (600, 800 and 850 C degrees). Samples annealed at 600 C degrees were also analyzed by X-ray diffraction methods. Oxygen influence turned out to increase the α + β ↔ β transformation temperature, while iron produced a decrease in the α ↔ α + β one. Comparing with literature data we concluded that tin increases the α + β ↔ β and decreases the α ↔ α + β temperatures while niobium decreases both. The samples annealed at 800 and 850 C degrees, showed two different microstructures of α-phases: α-plates which correspond to the α-phases portion at the annealing temperature and α-Widmanstaetten like structure formed from the β-phase when quenching the sample. A Widmanstaetten like structure consisting in α phase plates with a supersaturated (in Nb and Fe) α phase (α s ) in between was observed at 600 C degrees. It is in this α s phase the different intermetallic phases could precipitate. We were only able to identify Zr 3 Fe in two alloys with low tin and oxygen content. (author)

  9. On the coexistence of the magnetic phases in chromium alloys

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.

    1969-01-01

    Detailed neutron diffraction investigations have been performed on Cr-Re alloys in order to explain the several observations in Cr alloys of the coexistence of a commensurable and an oscillatory magnetic phase. It is concluded that the individual magnetic phases probably occur in separate domains....

  10. Kalman filters for real-time magnetic island phase tracking

    NARCIS (Netherlands)

    Borgers, D. P.; Lauret, M.; M.R. de Baar,

    2013-01-01

    For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX

  11. Flux distribution in single phase, Si-Fe, wound transformer cores

    International Nuclear Information System (INIS)

    Loizos, George; Kefalas, Themistoklis; Kladas, Antonios; Souflaris, Thanassis; Paparigas, Dimitris

    2008-01-01

    This paper shows experimental results of longitudinal flux density and its harmonics at the limb, the yoke and the corner as well as normal flux in the step lap joint of a single phase, Si-Fe, wound transformer core. Results show that the flux density as well as the harmonics content is higher in the inner (window) side of the core and reduces gradually towards the outer side. Variations of flux density distribution between the limb and the corner or the yoke of the core were observed. A full record of normal flux around the step lap region of the model core was also obtained. Longitudinal and normal flux findings will enable the development of more accurate numerical models that describe the magnetic behavior of magnetic cores

  12. Study on linear canonical transformation in a framework of a phase space representation of quantum mechanics

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.; Solofoarisina, W.C.

    2015-04-01

    We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions.Then we introduce the concept of isodispersion linear canonical transformation.

  13. Soft mode and magnetic phase transition in PrNi

    International Nuclear Information System (INIS)

    Alekseev, P.A.; Lazukov, V.N.; Sadikov, I.P.; Klement'ev, E.S.; Allenspach, P.; Chumlyakov, Yu.I.

    2002-01-01

    The spectrum of the magnetic excitation of the PrNi intermetallic compound monocrystal is studied through the neutrons inelastic scattering. Essential softening of certain collective modes of the magnetic excitation near the temperature of the ferromagnetic ordering T c ∼ 20 K is identified. The above result is analyzed from the viewpoint of the model, describing the magnetic phase transition in the systems with the directed magnetic moment [ru

  14. Growth and phase transformations of Ir on Ge(111)

    Science.gov (United States)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  15. Single beam Fourier transform digital holographic quantitative phase microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  16. Magnetically aligned H I fibers and the rolling hough transform

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S. E.; Putman, M. E.; Peek, J. E. G. [Department of Astronomy, Columbia University, New York, NY (United States)

    2014-07-01

    We present observations of a new group of structures in the diffuse Galactic interstellar medium (ISM): slender, linear H I features we dub 'fibers' that extend for many degrees at high Galactic latitude. To characterize and measure the extent and strength of these fibers, we present the Rolling Hough Transform, a new machine vision method for parameterizing the coherent linearity of structures in the image plane. With this powerful new tool we show that the fibers are oriented along the interstellar magnetic field as probed by starlight polarization. We find that these low column density (N{sub H} {sub I}≃5×10{sup 18} cm{sup –2}) fiber features are most likely a component of the local cavity wall, about 100 pc away. The H I data we use to demonstrate this alignment at high latitude are from the Galactic Arecibo L-Band Feed Array H I (GALFA-H I) Survey and the Parkes Galactic All Sky Survey. We find better alignment in the higher resolution GALFA-H I data, where the fibers are more visually evident. This trend continues in our investigation of magnetically aligned linear features in the Riegel-Crutcher H I cold cloud, detected in the Southern Galactic Plane Survey. We propose an application of the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi method. We conclude that data-driven, quantitative studies of ISM morphology can be very powerful predictors of underlying physical quantities.

  17. On Inclusion-Matrix Interfacial Stresses in Composites Containing Phase-Transforming Phases

    International Nuclear Information System (INIS)

    Wang, Y.-C.; Ko, C.-C.

    2010-01-01

    Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded. Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the two-dimensional plane stress elasticity problem of a square plate containing a circular inclusion, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of applied stress to averaged strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The rationale for this nonuniform stress distributions is due to nonlocal effects induced from negative stiffness.

  18. Phase composition and magnetic properties in nanocrystalline permanent magnets based on misch-metal

    Science.gov (United States)

    Ma, Q.; Wang, J.; Zhang, Z. Y.; Zhang, X. F.; Liu, F.; Liu, Y. L.; Jv, X. M.; Li, Y. F.; Wang, G. F.

    2017-09-01

    The magnetic properties and phase composition of magnets based on misch-metal (MM) with nominal composition of MM13+xFe84-xB6.5 with x = 0.5, 1, 1.5, 2 and 2.5 using melt-spinning method were investigated. For x = 1.5, it could exhibit best magnetic properties (Hcj = 753.02 kA m-1, (BH)max = 70.77 kJ m-3). X-ray diffraction and energy dispersive spectroscopy show that the multi hard magnetic phase of RE2Fe14B (RE = La, Ce, Pr, Nd) existed in the magnets. The domain wall pinning effect and the exchange coupling interaction between grains are dependent on the abnormal RE-rich phase composition. Optimizing the phase constitution is necessary to improve magnetic properties in MM-Fe-B magnets for utilizing the rare earth resource in a balanced manner.

  19. Phase transformations in lithium aluminates irradiated with neutrons

    International Nuclear Information System (INIS)

    Carrera, L.M.; Delfin L, A.; Urena N, F.; Basurto, R.; Bosch, P.

    2003-01-01

    The lithium aluminate like candidate to be used in the coverings producers of tritium in the fusion nuclear reactors, presents high resistance to the corrosion to the one to be stuck to structural materials as special steels. However, the crystallographic changes that take place in the cover that is continually subjected to irradiation with neutrons, can alter its resistance to the corrosion. In this work the changes of crystalline structure are shown that they present two types of nano structures of lithium aluminates, subjected to an average total dose 7.81 x 10 8 Gy in the fixed irradiation system of capsules of the one TRIGA Mark lll nuclear reactor of the Nuclear Center of Mexico. The studied nano structures presented only phase transformations without formation of amorphous material. (Author)

  20. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  1. Phase separation in La-Ca manganites: Magnetic field effects

    International Nuclear Information System (INIS)

    Tovar, M.; Causa, M.T.; Ramos, C.A.; Laura-Ccahuana, D.

    2008-01-01

    The coexistence of magnetic phases seems to be a characteristic of the La-Ca family of in colossal magnetoresistant manganites. We have analyzed this phenomenon in terms of a free energy, F, where magnetic and electronic contributions of two coexistent phases are included. Three order parameters describe the behavior of the mixed material: the magnetization of each phase and the metallic fraction. Due to the coupling between order parameters there is a range: T**≤T≤T* where coexistence is possible. Values for the phenomenological parameters are obtained from the experiment. In this paper we analyze the effects of an applied magnetic field on the range of T where the phase coexistence takes place, based on results obtained from dc-magnetization and ESR measurements

  2. Phase separation in La-Ca manganites: Magnetic field effects

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, M; Causa, M T [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica and Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Ramos, C.A. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica and Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, Rio Negro (Argentina)], E-mail: cramos@cab.cnea.gov.ar; Laura-Ccahuana, D [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica and Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Rimac/Lima 25 (Peru)

    2008-02-15

    The coexistence of magnetic phases seems to be a characteristic of the La-Ca family of in colossal magnetoresistant manganites. We have analyzed this phenomenon in terms of a free energy, F, where magnetic and electronic contributions of two coexistent phases are included. Three order parameters describe the behavior of the mixed material: the magnetization of each phase and the metallic fraction. Due to the coupling between order parameters there is a range: T**{<=}T{<=}T* where coexistence is possible. Values for the phenomenological parameters are obtained from the experiment. In this paper we analyze the effects of an applied magnetic field on the range of T where the phase coexistence takes place, based on results obtained from dc-magnetization and ESR measurements.

  3. Phase dynamics of oscillating magnetizations coupled via spin pumping

    Science.gov (United States)

    Taniguchi, Tomohiro

    2018-05-01

    A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.

  4. Cost Optimal Design of a Single-Phase Dry Power Transformer

    Directory of Open Access Journals (Sweden)

    Raju Basak

    2015-08-01

    Full Text Available The Dry type transformers are preferred to their oil-immersed counterparts for various reasons, particularly because their operation is hazardless. The application of dry transformers was limited to small ratings in the earlier days. But now these are being used for considerably higher ratings.  Therefore, their cost-optimal design has gained importance. This paper deals with the design procedure for achieving cost optimal design of a dry type single-phase power transformer of small rating, subject to usual design constraints on efficiency and voltage regulation. The selling cost for the transformer has been taken as the objective function. Only two key variables have been chosen, the turns/volt and the height: width ratio of window, which affects the cost function to high degrees. Other variables have been chosen on the basis of designers’ experience. Copper has been used as conductor material and CRGOS as core material to achieve higher efficiency, lower running cost and compact design. The electrical and magnetic loadings have been kept at their maximum values without violating the design constraints. The optimal solution has been obtained by the method of exhaustive search using nested loops.

  5. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    International Nuclear Information System (INIS)

    Ahn, Taehong; Lee, Sung Bo; Han, Heung Nam; Park, Kyungtae

    2013-01-01

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite

  6. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Taehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sung Bo; Han, Heung Nam [Seoul National Univ., Seoul (Korea, Republic of); Park, Kyungtae [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite.

  7. Structural phase transformation in K2SeO4

    International Nuclear Information System (INIS)

    Iizumi, M.; Axe, J.D.; Shirane, G.; Shimaoka, K.

    1977-01-01

    Successive phase transformations in K 2 SeO 4 at T 1 = 130 K and T/sub c/ = 93 K were studied by the neutron-scattering technique. The superlattice reflections in the intermediate phase were found to be incommensurate with the lattice periodicity. The wave vector characterizing the reflections is q/sub delta/ = (1-delta) a*/3 with delta = 0.07 at 122.5 K. The deviation delta decreases with decreasing temperature with an apparently discontinuous jump to zero at T/sub c/. Below this temperature, the crystal remains commensurate and is known to be ferroelectric. The incommensurate-commensurate transition and the simultaneous occurrence of the commensurate phase and the spontaneous polarization are discussed using a Landau-type expansion of the free energy in which a term proportional to Q 3 (q/sub delta/) P/sub z/ (q 3 /sub delta/) plays an essential role in driving the incommensurate-commensurate phase transformation and in inducing the spontaneous polarization. Here, Q (q/sub delta/) is the amplitude of the primary atomic displacements with wave vector q/sub delta/ and P/sub z/(q 3 /sub delta/) is the polarization wave with wave vector q 3 /sub delta/ = 3delta (a*/3) and becomes the macroscopic polarization below T/sub c/. Above T/sub i/, a Σ 2 optic-phonon branch along (xi,0,0) shows a striking softening and ω/sub j/(q) for q approx. (1/3,0,0) tends to zero at T/sub i/. The softening results from a temperature-dependent decrease of the interlayer forces with ranges a/2 and a (a is one unit-cell length along the a axis) in the presence of strong and persisting forces with a range 3a/2. The intensities of the soft phonon were measured about different reciprocal-lattice points and were used to determine the nature of the soft-phonon mode and suggest a coupled translation of potassium ions with rotational motion of SeO 4 groups to be the origin of the lattice instability

  8. Thermodynamics and phase transformations: the selected works of Mats Hillert

    International Nuclear Information System (INIS)

    Agren, J.; Brechet, Y.; Hutchinson, Ch.; Purdy, G.

    2006-01-01

    For over half a century, Mats Hillert has contributed greatly to the science of materials. He is widely known and respected as an innovator and an educator, a scientist with an enormous breadth of interest and depth of insight. In acknowledgment of his many contributions, a conference was held in Stockholm in December 2004 to mark his eightieth birthday. This volume was conceived prior to, and publicly announced during the conference. The difficult choice of twenty-four papers from a publication list of more than three hundred was carried out in consultation with Mats. He also suggested or approved the scientists who would be invited to write a brief introduction to each paper. A brief reading of the topics of the selected papers and their introductions reveals something of their range and depth. Several early selections (for example, those on 'The Role of Interfacial Energy during Solid State Phase Transformations', and 'A Solid-Solution Model for Inhomogeneous Systems') contained seminal material that established Mats as a leading figure in the study of phase transformations in solids. Others established his presence in the areas of solidification and computational thermodynamics. A review of his full publication list shows that he has consistently built upon those early foundational papers, and maintained a dominant position in those fields. Although many of his contributions have been of a theoretical nature, he has always maintained a close contact with experiment, and indeed, he has designed numerous critical experiments. This volume represents a judicious sampling of Mats Hillert's extensive body of work; it is necessarily incomplete, but it is hoped and expected that it will prove useful to students of materials science and engineering at all levels, and that it will inspire the further study and appreciation of his many contributions. (authors)

  9. Magnetic liquid metal two-phase flow research. Phase 1. Final report

    International Nuclear Information System (INIS)

    Graves, R.D.

    1983-04-01

    The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure

  10. NMR Phase Noise in Bitter Magnets

    Science.gov (United States)

    Sigmund, E. E.; Calder, E. S.; Thomas, G. W.; Mitrović, V. F.; Bachman, H. N.; Halperin, W. P.; Kuhns, P. L.; Reyes, A. P.

    2001-02-01

    We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin-spin relaxation even in the presence of magnetic field temporal instability.

  11. Magnetic phase diagram of a frustrated spin ladder

    Science.gov (United States)

    Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi

    2018-04-01

    Frustrated spin ladders show magnetization plateaux depending on the rung-exchange interaction and frustration defined by the ratio of first and second neighbor exchange interactions in each chain. This paper reports on its magnetic phase diagram. Using the variational matrix-product state method, we accurately determine phase boundaries. Several kinds of magnetization plateaux are induced by the frustration and the strong correlation among quasiparticles on a lattice. The appropriate description of quasiparticles and their relevant interactions are changed by a magnetic field. We find that the frustration differentiates the triplet quasiparticle from the singlet one in kinetic energy.

  12. Dual phase magnetic material component and method of forming

    Science.gov (United States)

    Dial, Laura Cerully; DiDomizio, Richard; Johnson, Francis

    2017-04-25

    A magnetic component having intermixed first and second regions, and a method of preparing that magnetic component are disclosed. The first region includes a magnetic phase and the second region includes a non-magnetic phase. The method includes mechanically masking pre-selected sections of a surface portion of the component by using a nitrogen stop-off material and heat-treating the component in a nitrogen-rich atmosphere at a temperature greater than about 900.degree. C. Both the first and second regions are substantially free of carbon, or contain only limited amounts of carbon; and the second region includes greater than about 0.1 weight % of nitrogen.

  13. Progressive Transformation between Two Magnetic Ground States for One Crystal Structure of a Chiral Molecular Magnet.

    Science.gov (United States)

    Li, Li; Nishihara, Sadafumi; Inoue, Katsuya; Kurmoo, Mohamedally

    2016-03-21

    We report the exceptional observation of two different magnetic ground states (MGS), spin glass (SG, T(B) = 7 K) and ferrimagnet (FI, T(C) = 18 K), for one crystal structure of [{Mn(II)(D/L-NH2ala)}3{Mn(III)(CN)6}]·3H2O obtained from [Mn(CN)6](3-) and D/L-aminoalanine, in contrast to one MGS for [{Mn(II)(L-NH2ala)}3{Cr(III)(CN)6}]·3H2O. They consist of three Mn(NH2ala) helical chains bridged by M(III)(CN)6 to give the framework with disordered water molecules in channels and between the M(III)(CN)6. Both MGS are characterized by a negative Weiss constant, bifurcation in ZFC-FC magnetizations, blocking of the moments, both components of the ac susceptibilities, and hysteresis. They differ in the critical temperatures, absolute magnetization for 5 Oe FC (lack of spontaneous magnetization for the SG), and the shapes of the hysteresis and coercive fields. While isotropic pressure increases both T(crit) and the magnetizations linearly and reversibly in each case, dehydration progressively transforms the FI into the SG as followed by concerted in situ magnetic measurements and single-crystal diffraction. The relative strengths of the two moderate Mn(III)-CN-Mn(II) antiferromagnetic (J1 and J2), the weak Mn(II)-OCO-Mn(II) (J3), and Dzyaloshinkii-Moriya antisymmetric (DM) interactions generate the two sets of characters. Examination of the bond lengths and angles for several crystals and their corresponding magnetic properties reveals a correlation between the distortion of Mn(III)(CN)6 and the MGS. SG is favored by higher magnetic anisotropy by less distorted Mn(III)(CN)6 in good accordance with the Mn-Cr system. This conclusion is also born out of the magnetization measurements on orientated single crystals with fields parallel and perpendicular to the unique c axis of the hexagonal space group.

  14. Phase transformations in an ascending adiabatic mixed-phase cloud volume

    Science.gov (United States)

    Pinsky, M.; Khain, A.; Korolev, A.

    2015-04-01

    Regimes of liquid-ice coexistence that may form in an adiabatic parcel ascending at constant velocity at freezing temperatures are investigated. Four zones with different microphysical structures succeeding one another along the vertical direction have been established. On the basis of a novel balance equation, analytical expressions are derived to determine the conditions specific for each of these zones. In particular, the necessary and sufficient conditions for formation of liquid water phase within an ascending parcel containing only ice particles are determined. The results are compared to findings reported in earlier studies. The role of the Wegener-Bergeron-Findeisen mechanism in the phase transformation is analyzed. The dependence of the phase relaxation time on height in the four zones is investigated on the basis of a novel analytical expression. The results obtained in the study can be instrumental for analysis and interpretation of observed mixed-phase clouds.

  15. Atomistic modelling of diffusional phase transformations with elastic strain

    International Nuclear Information System (INIS)

    Mason, D R; Rudd, R E; Sutton, A P

    2004-01-01

    Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorporating the effects of strain around misfitting atoms and vacancies. Atomic interactions are modelled by Finnis-Sinclair potentials constructed for these simulations. Vacancy diffusion is modelled by comparing the energies of trial states, where the system is partially relaxed for each trial state. No special requirements are made about the description of atomic interactions, making our approach suitable for more fundamentally based models such as tight binding if sufficient computational resources are available. Only a limited precision is required for the energy of each trial state, determined by the value of k B T. Since the change in the relaxation displacement field caused by a vacancy hop decays as 1/r 3 , it is sufficient to determine the next move by relaxing only those atoms in a sphere of finite radius centred on the moving vacancy. However, once the next move has been selected, the entire system is relaxed. Simulations of the early stages of phase separation in Al-Cu with elastic relaxation show an enhanced rate of clustering compared to those performed on the same system with a rigid lattice

  16. Magnetic monopoles, duality and cosmological phase transitions

    International Nuclear Information System (INIS)

    Escobar, C.O.; Natale, A.A.; Marques, G.C.

    1981-06-01

    Is is shown that duality for magnetic monopoles, as proposed by Montonen and Olive, does not hold in quatum field theory at finite temperatures. Furthermore, the evolution picture of the Universe looks different when analyzed in the original 'electric' theory or in its dual 'magnetic' counterpart. (Author) [pt

  17. Non-Resonant Magnetoelectric Energy Harvesting Utilizing Phase Transformation in Relaxor Ferroelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Peter Finkel

    2015-12-01

    Full Text Available Recent advances in phase transition transduction enabled the design of a non-resonant broadband mechanical energy harvester that is capable of delivering an energy density per cycle up to two orders of magnitude larger than resonant cantilever piezoelectric type generators. This was achieved in a [011] oriented and poled domain engineered relaxor ferroelectric single crystal, mechanically biased to a state just below the ferroelectric rhombohedral (FR-ferroelectric orthorhombic (FO phase transformation. Therefore, a small variation in an input parameter, e.g., electrical, mechanical, or thermal will generate a large output due to the significant polarization change associated with the transition. This idea was extended in the present work to design a non-resonant, multi-domain magnetoelectric composite hybrid harvester comprised of highly magnetostrictive alloy, [Fe81.4Ga18.6 (Galfenol or TbxDy1-xFe2 (Terfenol-D], and lead indium niobate–lead magnesium niobate–lead titanate (PIN-PMN-PT domain engineered relaxor ferroelectric single crystal. A small magnetic field applied to the coupled device causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. We have demonstrated high energy conversion in this magnetoelectric device by triggering the FR-FO transition in the single crystal by a small ac magnetic field in a broad frequency range that is important for multi-domain hybrid energy harvesting devices.

  18. Electric-field control of tri-state phase transformation with a selective dual-ion switch

    Science.gov (United States)

    Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua; Qiao, Ruimin; He, Qing; Li, Hao-Bo; Wang, Yujia; Guo, Jingwen; Zhang, Ding; Duan, Zheng; Li, Zhuolu; Wang, Meng; Yang, Shuzhen; Yan, Mingzhe; Arenholz, Elke; Zhou, Shuyun; Yang, Wanli; Gu, Lin; Nan, Ce-Wen; Wu, Jian; Tokura, Yoshinori; Yu, Pu

    2017-06-01

    Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.

  19. Time dependence of 50 Hz magnetic fields in apartment buildings with indoor transformer stations.

    Science.gov (United States)

    Yitzhak, Nir-Mordechay; Hareuveny, Ronen; Kandel, Shaiela; Ruppin, Raphael

    2012-04-01

    Twenty-four hour measurements of 50 Hz magnetic fields (MFs) in apartment buildings containing transformer stations have been performed. The apartments were classified into four types, according to their location relative to the transformer room. Temporal correlation coefficients between the MF in various apartments, as well as between MF and transformer load curves, were calculated. It was found that, in addition to their high average MF, the apartments located right above the transformer room also exhibit unique temporal correlation properties.

  20. An application of the time-step topological model for three-phase transformer no-load current calculation considering hysteresis

    International Nuclear Information System (INIS)

    Carrander, Claes; Mousavi, Seyed Ali; Engdahl, Göran

    2017-01-01

    In many transformer applications, it is necessary to have a core magnetization model that takes into account both magnetic and electrical effects. This becomes particularly important in three-phase transformers, where the zero-sequence impedance is generally high, and therefore affects the magnetization very strongly. In this paper, we demonstrate a time-step topological simulation method that uses a lumped-element approach to accurately model both the electrical and magnetic circuits. The simulation method is independent of the used hysteresis model. In this paper, a hysteresis model based on the first-order reversal-curve has been used. - Highlights: • A lumped-element method for modelling transformers i demonstrated. • The method can include hysteresis and arbitrarily complex geometries. • Simulation results for one power transformer are compared to measurements. • An analytical curve-fitting expression for static hysteresis loops is shown.

  1. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  2. Magnetic islands modelled by a phase-field-crystal approach

    Science.gov (United States)

    Faghihi, Niloufar; Mkhonta, Simiso; Elder, Ken R.; Grant, Martin

    2018-03-01

    Using a minimal model based on the phase-field-crystal formalism, we study the coupling between the density and magnetization in ferromagnetic solids. Analytical calculations for the square phase in two dimensions are presented and the small deformation properties of the system are examined. Furthermore, numerical simulations are conducted to study the influence of an external magnetic field on various phase transitions, the anisotropic properties of the free energy functional, and the scaling behaviour of the growth of the magnetic domains in a crystalline solid. It is shown that the energy of the system can depend on the direction of the magnetic moments, with respect to the crystalline direction. Furthermore, the growth of the magnetic domains in a crystalline solid is studied and is shown that the growth of domains is in agreement with expected behaviour.

  3. Magnetic phase diagram of HoxTm1-x alloys

    DEFF Research Database (Denmark)

    Sarthour, R.S.; Cowley, R.A.; Ward, R.C.C.

    2000-01-01

    The magnetic phase diagram of the competing anisotropy system, Ho/Tm, has been determined by neutron-scattering techniques and the results compared with calculations based on a mean-field model. The crystal-field interactions in Ho favor alignment of the magnetic moments in the basal plane whereas......, with long-range order, were identified and the magnetic phase diagram, including a pentacritical point, determined. A mean-field model was used to explain the results and the results are in good agreement with the experimental results....... in Tm they favor alignment along the c axis. Single-crystal alloys were grown with molecular-beam epitaxy techniques in Oxford. The components of the magnetic moment alone the c direction and in the basal plane were determined from the neutron-scattering measurements. Five distinct magnetic phases...

  4. Comparative Study of Phase Transformation in Single-Crystal Germanium during Single and Cyclic Nanoindentation

    Directory of Open Access Journals (Sweden)

    Koji Kosai

    2017-11-01

    Full Text Available Single-crystal germanium is a semiconductor material which shows complicated phase transformation under high pressure. In this study, new insight into the phase transformation of diamond-cubic germanium (dc-Ge was attempted by controlled cyclic nanoindentation combined with Raman spectroscopic analysis. Phase transformation from dc-Ge to rhombohedral phase (r8-Ge was experimentally confirmed for both single and cyclic nanoindentation under high loading/unloading rates. However, compared to single indentation, double cyclic indentation with a low holding load between the cycles caused more frequent phase transformation events. Double cyclic indentation caused more stress in Ge than single indentation and increased the possibility of phase transformation. With increase in the holding load, the number of phase transformation events decreased and finally became less than that under single indentation. This phenomenon was possibly caused by defect nucleation and shear accumulation during the holding process, which were promoted by a high holding load. The defect nucleation suppressed the phase transformation from dc-Ge to r8-Ge, and shear accumulation led to another phase transformation pathway, respectively. A high holding load promoted these two phenomena, and thus decreased the possibility of phase transformation from dc-Ge to r8-Ge.

  5. Investigation of protection problems due to geomagnetically induced currents (solar magnetic disturbances, transformers)

    International Nuclear Information System (INIS)

    1997-01-01

    The problems with geomagnetically induced currents (GIC) flowing in power systems during solar magnetic disturbances were studied. Transformers can overheat as a result of GIC because they can cause offset saturation of power system transformers. Harmonic currents can also be introduced into the system which then affect the relay and protection systems. Several studies have been conducted using simplified transformer core models to predict the transformer response to DC excitation. In this study, an accurate transformer core model was developed and validated by comparing the recorded waveforms during GIC events with simulated waveforms using the model. The new transformer core model was used to evaluate the performance of different protection schemes under GIC

  6. An eigenstrain approach to predict phase transformation and self-accommodation in partially stabilized zirconia

    International Nuclear Information System (INIS)

    Hensl, Th.; Mühlich, U.; Budnitzki, M.; Kuna, M.

    2015-01-01

    Highlights: • Analytical model to predict phase transformation in PSZ is developed. • Analytical model to predict number of twins in monoclinic inclusions in PSZ. • Models consider inclusions size, shape, temperature, remote loading and surface energy. - Abstract: This work focuses on micromechanical modeling of the tetragonal to monoclinic phase transformation (t–m transformation) in partially stabilized zirconia (PSZ). Tetragonal particles dispersed in a cubic matrix may transform into the monoclinic phase under sufficiently high mechanical loading or if the material is cooled down below a critical temperature. This phase transformation is supposed to be responsible for the so called transformation toughening effect of PSZ. The transformation is usually accompanied by a self-accommodation process, which reduces the occurring eigenstresses in the surrounding matrix. The influences of particle size and geometry, chemical driving force, temperature, surface energy and remote loading on the t–m transformation are estimated by a thermostatic approach. We assume, that transformations occur, once the Gibbs free energy of the transformed equilibrium state is lower than that of the untransformed reference state. To obtain an analytical solution, the microstructure is modeled as an inclusion of rectangular cross section, restrained by an infinite elastic matrix, under plane strain conditions. The developed model for phase transformation captures the well-known size and temperature dependencies. Furthermore, it indicates a significant influence of the particle geometry, that large aspect ratios of the inclusion’s cross section lower the trigger stress for phase transformation

  7. Laser Femto-Tesla Magnetic Gradiometer (LFMG), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The LFMG instrument is used to make extremely high resolution scalar magnetic field and difference measurements at the Earthfs surface. The Phase 1 effort included...

  8. Inorganic Nanostructured High-Temperature Magnet Wires, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a high-temperature tolerant electrically-insulating coating for magnet wires. The Phase I program will result in a flexible, inorganic...

  9. Temperature induced reversible polymorphic phase transformations in a bis-hydrazone compound

    Science.gov (United States)

    Jayant, Vikrant; Das, Dinabandhu

    2018-03-01

    Two reversible polymorphic phase transformation of 2,3-butanedione, 2,3- bis[4,4‧-bis(diethylamino)benzophenone hydrazone] (DEBH) have been identified in DSC experiment. Topotactic phase transformation of three polymorphs has been observed in variable temperature Single Crystal X-ray Diffraction experiment. The reversible phase transformation of bulk material has been confirmed by Powder X-ray diffraction study.

  10. Synthesis and phase transformation mechanism of Nb{sub 2}C carbide phases

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanadh, B., E-mail: visubathula@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Murthy, T.S.R.Ch. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Arya, A.; Tewari, R.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India)

    2016-06-25

    In the present work, Niobium carbide samples were prepared through powder metallurgy route using spark plasma sintering technique. Some of these samples were heat treated at 900 °C up to 7 days. In order to investigate the phase transformation in Nb{sub 2}C carbide, the as-prepared and heat treated samples were characterized by X-ray diffraction, scanning electron microscopy and electron back scattered diffraction (EBSD) and transmission electron microscopy techniques. EBSD could index the same area of the sample in terms of any of the three allotropes of Nb{sub 2}C carbide phases (γ-Nb{sub 2}C, β-Nb{sub 2}C and α-Nb{sub 2}C) with good confidence index. From the EBSD patterns orientation relationships (OR) among γ, β and α-Nb{sub 2}C have been determined. Based on this OR when crystals of the three allotropes were superimposed, it has revealed that the basic Nb metal atom lattice (hcp lattice) in all the Nb{sub 2}C phases is same. The only difference exists in the carbides is the ordering of carbon atoms and vacancies in the octahedral positions of the hcp Nb metal atom lattice. Crystallographic analysis showed that for the transformation of γ-Nb{sub 2}C → β-Nb{sub 2}C → α-Nb{sub 2}C, large movement of Nb atoms is not required; but only by ordering of carbon atoms ensues the phase transformation. Literature shows that in the Nb–C system formation of the α-Nb{sub 2}C is not well established. Therefore, first principle calculations were carried out on these carbides. It revealed that the formation energy for α-Nb{sub 2}C is lower than the β and γ-Nb{sub 2}C carbides which indicate that the formation of α-Nb{sub 2}C is thermodynamically feasible. - Highlights: • Nb{sub 2}C carbide was produced by Spark Plasma Sintering in a single process. • Phase transformation mechanism of different Nb{sub 2}C carbide phases is studied. • In all the three Nb{sub 2}C carbides (γ, β, α), the base Nb lattice remains same. • Among γ, β and α-Nb{sub 2}C

  11. Effect of lattice mismatch-induced strains on coupled diffusive and displacive phase transformations

    OpenAIRE

    Bouville, Mathieu; Ahluwalia, Rajeev

    2006-01-01

    Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some materials systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize m...

  12. Quantum phase transition of a magnet in a spin bath

    DEFF Research Database (Denmark)

    Rønnow, H.M.; Parthasarathy, R.; Jensen, J.

    2005-01-01

    The excitation spectrum of a model magnetic system, LiHoF(4), was studied with the use of neutron spectroscopy as the system was tuned to its quantum critical point by an applied magnetic field. The electronic mode softening expected for a quantum phase transition was forestalled by hyperfine...

  13. Simple explanation for the reentrant magnetic phase transition in Pr ...

    Indian Academy of Sciences (India)

    The reentrant magnetic phase transition in Pr0.5Sr0.41Ca0.09MnO3 perovskite is explained using the Ising spin model on the square lattice with mixed ferromagnetic and antiferromagnetic exchange interactions. It is shown using numerical calculations that this effect is strongly affected by the external magnetic field and ...

  14. Spontaneous phase transitions in magnetic films with a modulated structure

    International Nuclear Information System (INIS)

    Arzamastseva, G. V.; Evtikhov, M. G.; Lisovskii, F. V.; Mansvetova, E. G.

    2011-01-01

    The influence of monoperiodic and biperiodic bias fields on the nucleation of domain structures in quasi-uniaxial magnetic films near the Curie point has been studied experimentally. The main types of observed nonuniform magnetic moment distributions have been established and chains of a devil’s staircase phase transitions are shown to be realized when the films are slowly cooled.

  15. The crystallographic phases and magnetic properties of Fe2MnSi1-xGex

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    Fe 2 MnSi 1-x Ge x (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) compounds were prepared by a mechanically activated solid-state diffusion method. Both X-ray diffraction and differential scanning calorimetry evidenced the presence of an amorphous phase after 10 h of milling. The X-ray data reveal that in the high-temperature annealing the single D0 3 -type phase can be retained up to 50% substitution of Ge for Si in Fe 2 MnSi. A metastable D0 3 phase is obtained after crystallization of the as-milled amorphous compounds with x>0.5. High-temperature annealing transforms the low-temperature D0 3 phase into a single D0 19 phase (x=1) or a mixture of D0 3 and D0 19 phase (x=0.6 and 0.8). Low-field thermomagnetic measurements show a moderately sharp ferromagnetic-paramagnetic transition, which becomes enormously broad in higher magnetic fields. The Curie temperature is significantly enhanced when going from the D0 3 phase to the D0 19 phase. Neither a magnetic-field-induced transition nor a reversible structural transition is observed throughout this compound series. The magnetocaloric effect associated with the magnetic transition is small

  16. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    International Nuclear Information System (INIS)

    Hai-Yan, Wang; Jian-Hua, Liu; Gui-Rong, Peng; Yan, Chen; Yu-Wen, Liu; Fei, Li; Wen-Kui, Wang

    2009-01-01

    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze

  17. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    Science.gov (United States)

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  18. Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation

    International Nuclear Information System (INIS)

    Kúdelčík, Jozef; Bury, Peter; Kopčanský, Peter; Timko, Milan

    2015-01-01

    The anisotropy of acoustic attenuation in transformer oil-based magnetic fluids upon the external magnetic field was studied to discover the structure of nanoparticles. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles leads to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids and the concentration of nanoparticles also have very important influence on the structural changes. The measurement of the dependence of the acoustic attenuation on the angle between the magnetic field direction and acoustic wave vector (anisotropy) can give the useful information about the structure of magnetic nanoparticles formations. In the present, the results of anisotropy measurements of the transformer oil-based magnetic fluids are described and using appropriate theory the basic parameters of clusters are calculated. On the basis of the performed calculations, the proportion of the acoustic wave energy used for excitation of the translational and rotational degrees of freedom was also established. - Highlights: • Nanoparticles formation in transformer oil-based magnetic fluids was investigated. • The anisotropy acoustic spectroscopy as the method of investigation was used. • The external conditions on the structure of magnetic fluids were studied. • The structure parameters using suitable theoretical model were determined

  19. Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Kúdelčík, Jozef, E-mail: kudelcik@fyzika.uniza.sk [Department of Physics, University of Žilina, Univerzitná 1, 010 01 Žilina (Slovakia); Bury, Peter [Department of Physics, University of Žilina, Univerzitná 1, 010 01 Žilina (Slovakia); Kopčanský, Peter; Timko, Milan [Department of Magnetism, IEP SAS, Watsonova 47, 040 01 Košice (Slovakia)

    2015-08-15

    The anisotropy of acoustic attenuation in transformer oil-based magnetic fluids upon the external magnetic field was studied to discover the structure of nanoparticles. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles leads to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids and the concentration of nanoparticles also have very important influence on the structural changes. The measurement of the dependence of the acoustic attenuation on the angle between the magnetic field direction and acoustic wave vector (anisotropy) can give the useful information about the structure of magnetic nanoparticles formations. In the present, the results of anisotropy measurements of the transformer oil-based magnetic fluids are described and using appropriate theory the basic parameters of clusters are calculated. On the basis of the performed calculations, the proportion of the acoustic wave energy used for excitation of the translational and rotational degrees of freedom was also established. - Highlights: • Nanoparticles formation in transformer oil-based magnetic fluids was investigated. • The anisotropy acoustic spectroscopy as the method of investigation was used. • The external conditions on the structure of magnetic fluids were studied. • The structure parameters using suitable theoretical model were determined.

  20. Magnetic phase diagrams from non-collinear canonical band theory

    DEFF Research Database (Denmark)

    Shallcross, Sam; Nordstrom, L.; Sharma, S.

    2007-01-01

    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...... hybridization, and on this basis we are able to analyze the microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets....... to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...

  1. Pressure-induced magnetic collapse and metallization of molecular oxygen: The ζ-O2 phase

    International Nuclear Information System (INIS)

    Serra, S.; Chiarotti, G.; Scandolo, S.; Tosatti, E.

    1998-01-01

    The behavior of solid oxygen in the pressure range between 5-116 GPa is studied by ab-initio simulations, showing a spontaneous phase transformation from the antiferromagnetic insulating δ-O 2 phase to a non-magnetic, metallic molecular phase. The calculated static structure factor of this phase is in excellent agreement with X-ray diffraction data in the metallic ζ-O 2 phase above 96 GPa. We thus propose that ζ-O 2 should be base centered monoclinic with space group C2/m and 4 molecules per cell, suggesting a re-indexing of the experimental diffraction peaks. Physical constraints on the intermediate-pressure ε - O 2 phase are also obtained. (author)

  2. System of coefficients for charged-particle beam linear transformation by a magnetic dipole element

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1979-01-01

    A new technique for consideration of dipole magnet ion-optical effect has been developed to study the problems of commutation and monochromatization of a charged particle beam. In a new form obtained are systematized coefficients of linear transformation (CLT) of the charged particle beam for radial and axial motions in a magnetic dipole element (MDE) including a dipole magnet and two gaps without magnetic field. Given is a method of graphic determination of MDE parameters and main CLT. The new form of coefficients and conditions of the transformations feasibility considerably facilitates the choice and calculation of dipole elements

  3. Martensitic phase transformation in shape-memory alloys

    International Nuclear Information System (INIS)

    Golestaneh, A.A.

    1979-01-01

    Isothermal studies are described of the shape-recovery phenomenon, stress-strain behavior, electrical resistivity and thermo-electric power associated with the martensite-parent phase reaction in the Ni-Ti shape-memory alloys. The energy-balance equation that links the reaction kinetics with the strain energy change during the cooling-deforming and heating cycle is analyzed. The strain range in which the Clausius-Clapeyron equation satisfactorily describes this reaction is determined. A large change in the Young's modulus of the specimen is found to be associated with the M → P reaction. A hysteresis loop in the resistivity-temperature plot is found and related to the anomaly in the athermal resistivity changes during cyclic M → P → M transformation. An explanation for the resistivity anomaly is offered. The M structure is found to be electrically negative relative to the P structure. A thermal emf of greater than or equal to 0.12 mV is found at the M-P interface

  4. Optimisation of Transmission Systems by use of Phase Shifting Transformers

    Energy Technology Data Exchange (ETDEWEB)

    Verboomen, J

    2008-10-13

    In this thesis, transmission grids with PSTs (Phase Shifting Transformers) are investigated. In particular, the following goals are put forward: (a) The analysis and quantification of the impact of a PST on a meshed grid. This includes the development of models for the device; (b) The development of methods to obtain optimal coordination of several PSTs in a meshed grid. An objective function should be formulated, and an optimisation method must be adopted to solve the problem; and (c) The investigation of different strategies to use a PST. Chapter 2 gives a short overview of active power flow controlling devices. In chapter 3, a first step towards optimal PST coordination is taken. In chapter 4, metaheuristic optimisation methods are discussed. Chapter 5 introduces DC load flow approximations, leading to analytically closed equations that describe the relation between PST settings and active power flows. In chapter 6, some applications of the methods that are developed in earlier chapters are presented. Chapter 7 contains the conclusions of this thesis, as well as recommendations for future work.

  5. Structure of transformer oil-based magnetic fluids studied using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Kúdelčík, Jozef; Bury, Peter; Drga, Jozef; Kopčanský, Peter; Závišová, Vlasta; Timko, Milan

    2013-01-01

    The structural changes in transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature were studied by acoustic spectroscopy. The attenuation of acoustic wave was measured as a function of the magnetic field in the range of 0–300 mT and in the temperature range of 15–35 °C for various magnetic nanoparticles concentrations. The effect of anisotropy of the acoustic attenuation was determined, too. The both strong influence of the magnetic field on the acoustic attenuation and its hysteresis were observed. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs, leading to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids also has very important influence on the structural changes because of the mechanism of thermal motion that acts against the cluster creation. The observed influences of both magnetic field and temperature on the investigated magnetic fluid structure are discussed. - Highlights: ► Structural changes in transformer oil-based magnetic fluids were investigated. ► The acoustic spectroscopy as the method of investigation was used. ► The influence of magnetic field on the structural was studied. ► The influence of temperatures on the structures was investigated, too. ► The influence of external conditions on the structure of MF is interpreted.

  6. Structure of transformer oil-based magnetic fluids studied using acoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kudelcik, Jozef, E-mail: kudelcik@fyzika.uniza.sk [Department of Physics, University of Zilina, Univerzitna 1, 010 01 Zilina (Slovakia); Bury, Peter; Drga, Jozef [Department of Physics, University of Zilina, Univerzitna 1, 010 01 Zilina (Slovakia); Kopcansky, Peter; Zavisova, Vlasta; Timko, Milan [Department of Magnetism, IEP SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2013-01-15

    The structural changes in transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature were studied by acoustic spectroscopy. The attenuation of acoustic wave was measured as a function of the magnetic field in the range of 0-300 mT and in the temperature range of 15-35 Degree-Sign C for various magnetic nanoparticles concentrations. The effect of anisotropy of the acoustic attenuation was determined, too. The both strong influence of the magnetic field on the acoustic attenuation and its hysteresis were observed. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs, leading to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids also has very important influence on the structural changes because of the mechanism of thermal motion that acts against the cluster creation. The observed influences of both magnetic field and temperature on the investigated magnetic fluid structure are discussed. - Highlights: Black-Right-Pointing-Pointer Structural changes in transformer oil-based magnetic fluids were investigated. Black-Right-Pointing-Pointer The acoustic spectroscopy as the method of investigation was used. Black-Right-Pointing-Pointer The influence of magnetic field on the structural was studied. Black-Right-Pointing-Pointer The influence of temperatures on the structures was investigated, too. Black-Right-Pointing-Pointer The influence of external conditions on the structure of MF is interpreted.

  7. Magnetic Phase Transitions of CeSb. I

    DEFF Research Database (Denmark)

    Fischer, Pernille Hertz; Lebech, Bente; Meier, G.

    1978-01-01

    The magnetic ordering of the anomalous antiferromagnet CeSb, which has a NaCl crystal structure, was determined in zero applied magnetic field by means of neutron diffraction investigations of single crystals and powder. Below the Neel temperature TN of (16.1+or-0.1)K, there exist six partially...... a first-order phase transition at TN. At approximately TN/2 there is a first-order phase transition to a FCC type IA low-temperature configuration. The unusual magnetic properties of CeSb, which result from anisotropic exchange and crystalline electric field effects, resemble those of certain actinide Na...

  8. Analysis of reconstructed interference fields in digital holographic interferometry using the polynomial phase transform

    International Nuclear Information System (INIS)

    Gorthi, Sai Siva; Rastogi, Pramod

    2009-01-01

    A noisy wrapped phase map is the end-output of commonly employed phase estimation methods in digital holographic interferometry. Hence filtering and unwrapping are necessary to obtain continuous phase distributions. This paper introduces a new approach for phase estimation in digital holographic interferometry using the polynomial phase transform. The proposed approach directly provides an accurate estimation of the unwrapped phase distribution from a noisy reconstructed interference field, thereby bypassing cumbersome and error-prone filtering and 2D phase unwrapping procedures

  9. Phase transformation of dental zirconia following artificial aging.

    Science.gov (United States)

    Lucas, Thomas J; Lawson, Nathaniel C; Janowski, Gregg M; Burgess, John O

    2015-10-01

    Low-temperature degradation (LTD) of yttria-stabilized zirconia can produce increased surface roughness with a concomitant decrease in strength. This study determined the effectiveness of artificial aging (prolonged boiling/autoclaving) to induce LTD of Y-TZP (yttria-tetragonal zirconia-polycrystals) and used artificial aging for transformation depth progression analyses. The null hypothesis is aging techniques tested produce the same amount of transformation, transformation is not time/temperature dependent and LTD causes a constant transformation throughout the Y-TZP samples. Dental-grade Y-TZP samples were randomly divided into nine subgroups (n = 5): as received, 3.5 and 7 day boiling, 1 bar autoclave (1, 3, 5 h), and 2 bar autoclave (1, 3, 5 h). A 4-h boil treatment (n = 2) was performed post-experiment for completion of data. Transformation was measured using traditional X-ray diffraction and low-angle X-ray diffraction. The fraction of t → m transformation increased with aging time. The 3.5 day boil and 2 bar 5 h autoclave produced similar transformation results, while the 7 day boiling treatment revealed the greatest transformation. The surface layer of the aged specimen underwent the most transformation while all samples displayed decreasing transformation with depth. Surface transformation was evident, which can lead to rougher surfaces and increased wear of opposing dentition/materials. Therefore, wear studies addressing LTD of Y-TZP are needed utilizing accelerated aging. © 2014 Wiley Periodicals, Inc.

  10. Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics

    International Nuclear Information System (INIS)

    Borkar, Hitesh; Singh, V N; Kumar, Ashok; Choudhary, R J; Tomar, M; Gupta, Vinay

    2015-01-01

    Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr 0.52 Ti 0.48 ) 0.60 (Fe 0.67 W 0.33 ) .40 ]O 3 ] 0.80 –[CoFe 2 O 4 ] 0.20 (PZTFW–CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4–350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (∼0.4–0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (T B ). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite. (paper)

  11. Magnetic solid-phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Ding, Xueqin; Huang, Yanhua; Li, Na; Wen, Qian

    2016-01-01

    As a new type of green solvent, four kinds of choline chloride (ChCl)-based deep eutectic solvents (DESs) have been synthesized, and then a core-shell structure magnetic graphene oxide (Fe3O4-NH2@GO) nanoparticles have been prepared and coated with the ChCl-based DESs. Magnetic solid-phase extraction (MSPE) based Fe3O4-NH2@GO@DES was studied for the first time for the extraction of proteins. The characteristic results of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) indicated the successful preparation of Fe3O4-NH2@GO@DES. The concentrations of proteins in studies were determined by a UV-vis spectrophotometer. The advantages of Fe3O4-NH2@GO@DES in protein extraction were compared with Fe3O4-NH2@GO and Fe3O4-NH2, and Fe3O4-NH2@GO@ChCl-glycerol was selected as the suitable extraction solvent. The influence factors of the extraction process such as the pH value, the temperature, the extraction time, the concentration of protein and the amount of Fe3O4-NH2@GO@ChCl-glycerol were evaluated. Desorption experimental result showed 98.73% of BSA could be eluted from the solid extractant with 0.1 mol/L Na2HPO4 solution contained 1 mol/L NaCl. Besides, the conformation of BSA was not changed during the elution by the investigation of circular dichromism (CD) spectra. Furthermore, the analysis of real sample demonstrated that the prepared magnetic nanoparticles did have extraction ability on proteins in bovine whole blood. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The influence of peak shock stress on the high pressure phase transformation in Zr

    International Nuclear Information System (INIS)

    Cerreta, E K; Addessio, F L; Bronkhorst, C A; Brown, D W; Escobedo, J P; Fensin, S J; Gray, G T III; Lookman, T; Rigg, P A; Trujillo, C P

    2014-01-01

    At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, a significant volume fraction of high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and the multi-phase plasticity under shock conditions is not well understood. For these reasons, the influence of peak shock stress and temperature on the retention of omega phase in Zr has been explored. VISAR and PDV measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase and qualitatively understand the kinetics of this transformation. In turn, soft recovered specimens with varying volume fractions of retained omega phase have been utilized to understand the contribution of omega and alpha phases to strength in shock loaded Zr.

  13. Regularities of texture formation in alloys undergoing phase transformations during heat treatment and plastic working

    International Nuclear Information System (INIS)

    Ageev, N.V.; Babarehko, A.A.

    1983-01-01

    Peculiarities of texture formation in metals undergoing phase transformations in the temperature range of heat treatment and hot working are investigated theoretically and experimentally. A low-temperature phase after hot working is shown to inherite a high-temperature phase texture due to definite orientation conformity during phase transformation. Strengthened heat and thermomechanical treatments, as a rule, do not destroy material texture but change it

  14. Magnetic Phase Transitions of CeSb. II: Effects of Applied Magnetic Fields

    DEFF Research Database (Denmark)

    Meier, G.; Fischer, P.; Hälg, W.

    1978-01-01

    For pt.I see ibid., vol.11, p.345 (1978). The metamagnetic phase transition and the associated phase diagram of the anomalous antiferromagnet CeSb were determined in a neutron diffraction study of the magnetic ordering of CeSb single crystals in applied magnetic fields parallel to the (001...... magnetic fields. The observed magnetic structures do not correspond to the stable configurations expected from the molecular field theory of the face-centred cubic lattice. The change from a first-order transition at the Neel temperature in zero field to second-order transition at high fields points...

  15. Acoustic investigation of structure of magnetic fluids based on transformer oil mogul

    International Nuclear Information System (INIS)

    Kudelcik, J.; Bury, P.; Kopcansky, P.; Timko, M.

    2013-01-01

    In this paper the authors study the influence of temperature on the changes of the acoustic attenuation in magnetic fluids based on transformer oil MOGUL caused by an external magnetic field measured. The influences of both magnetic field and temperature on the structures of investigated magnetic fluids based on the transformer oil MOGUL were observed using acoustic spectroscopy. The effect of external magnetic field on the creation of clusters of nanoparticles in magnetic fluids was confirmed and their influence on the development of attenuation was described. In this type of magnetic fluid complicated structures of clusters at magnetic field over 100 mT are created. These structures are than at higher magnetic field almost stable. This state of equilibrium is not function of time. Measurements also confirmed that the lifetime of these structures or clusters is very short. The further investigation of the time and temperature dependences of the acoustic attenuation on the magnetic field at different concentrations of magnetic nanoparticles and various direction of magnetic field are necessary to understand all processes in this magnetic fluid. (authors)

  16. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengyu, E-mail: liusytyut@sina.com [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Suhong, E-mail: zhangsh04@sina.com [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Jianying; Wen, Jing; Qiao, Yan [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-01-15

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer. - Highlights: • The preparation mechanism of the magnetic polymer was proposed. • The magnetic property of the magnetic polymer was related to reaction conditions. • Swelling ratio and kinetics of polymer and magnetic polymer were studied. • Water retention ratio and kinetics of polymer and magnetic polymer were studied.

  17. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    International Nuclear Information System (INIS)

    Liu, Shengyu; Zhang, Suhong; Guo, Jianying; Wen, Jing; Qiao, Yan

    2017-01-01

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer. - Highlights: • The preparation mechanism of the magnetic polymer was proposed. • The magnetic property of the magnetic polymer was related to reaction conditions. • Swelling ratio and kinetics of polymer and magnetic polymer were studied. • Water retention ratio and kinetics of polymer and magnetic polymer were studied.

  18. Transformational leadership practices of chief nursing officers in Magnet® organizations.

    Science.gov (United States)

    Clavelle, Joanne T; Drenkard, Karen; Tullai-McGuinness, Susan; Fitzpatrick, Joyce J

    2012-04-01

    This study describes the transformational leadership practices of Magnet® chief nursing officers (CNOs). It is believed that transformational leadership practices influence quality and are integral to Magnet designation. E-mail surveys of 384 Magnet CNOs were conducted in 2011 using the leadership practices inventory (LPI). Enabling others to act and modeling the way are top practices of Magnet CNOs. Those 60 years or older and those with doctorate degrees scored significantly higher in inspiring a shared vision and challenging the process. There was a significant positive relationship between total years as a CNO and inspiring a shared vision and between total scores on the LPI and number of beds in the organization. As CNOs gain experience and education, they exhibit more transformational leadership characteristics. Magnet organizations should take steps to retain CNOs and support their development and advancement.

  19. Driving higher magnetic field sensitivity of the martensitic transformation in MnCoGe ferromagnet

    Science.gov (United States)

    Ma, S. C.; Ge, Q.; Hu, Y. F.; Wang, L.; Liu, K.; Jiang, Q. Z.; Wang, D. H.; Hu, C. C.; Huang, H. B.; Cao, G. P.; Zhong, Z. C.; Du, Y. W.

    2017-11-01

    The sharp metamagnetic martensitic transformation (MMT) triggered by a low critical field plays a pivotal role in magnetoresponsive effects for ferromagnetic shape memory alloys (FSMAs). Here, a sharper magnetic-field-induced metamagnetic martensitic transformation (MFIMMT) is realized in Mn1-xCo1+xGe systems with a giant magnetocaloric effect around room temperature, which represents the lowest magnetic driving and completion fields as well as the largest magnetization difference around MFIMMT reported heretofore in MnCoGe-based FSMAs. More interestingly, a reversible MFIMMT with field cycling is observed in the Mn0.965Co0.035Ge compound. These results indicate that the consensus would be broken that the magnetic field is difficult to trigger the MMT for MnCoGe-based systems. The origin of a higher degree of sensitivity of martensitic transformation to the magnetic field is discussed based on the X-ray absorption spectroscopic results.

  20. Magnetically Modified Asymmetric Supercapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....

  1. Acoustic emission characterization of the tetragonal-monoclinic phase transformation in zirconia

    International Nuclear Information System (INIS)

    Clarke, D.R.; Arora, A.

    1983-01-01

    The processes accompanying the tetragonal-monoclinic phase transformation in zirconia (ZrO 2 ) have been studied using acoustic emission and electron microscopy in an attempt to characterize the different mechanisms by which the transformation can be accommodated in bulk materials. Experiments in which the acoustic emission is detected as specimens are cooled through the transformation, following densification by sintering, are described. For comparison, the acoustic emission from free, nominally unconstrained powders similarly cooled through the transformation is reported. The existence of distinct processes accompanying the phase transformation is established on the basis of postexperiment multiparametric correlation analysis of the acoustic emission

  2. A solution phase fabrication of magnetic nanoparticles encapsulated in carbon

    International Nuclear Information System (INIS)

    Wei Xianwen; Zhu Guoxing; Xia Chuanjun; Ye Yin

    2006-01-01

    To avoid high energy consumption, intensive use of hardware and high cost in the manufacture of nanoparticles encapsulated in carbon, a simple, efficient and economical solution-phase method for the fabrication of FeNi at C nanostructures has been explored. The reaction to the magnetic metal at C structures here is conducted at a relatively low temperature (160 deg. C) and this strategy can be transferred to prepare other transition metal at C core-shell nanostructures. The saturation magnetization of metal in metal at C nanostructures is similar to those of the corresponding buck metals. Magnetic metal at C nanostructures with magnetic metal nanoparticles inside and a functionalized carbon surface outside may not only provide the opportunity to tailor the magnetic properties for magnetic storage devices and therapeutics but also make possible the loading of other functional molecules (e.g. enzymes, antigens) for clinic diagnostics, molecular biology, bioengineering, and catalysis

  3. Effect of different factors on phase transformations in Fe-Mn alloys

    International Nuclear Information System (INIS)

    Balychev, Yu.M.; Tkachenko, F.K.

    1983-01-01

    Phase transformations proceeding under Fe-Mn alloy heating are studied and the effect of previous working conditions, particularly, cooling rate on these transformations is investigated. Investigations have been conducted on pure Fe-Mn alloys with 2-15% Mn. Phase transformations are shown to proceed according to α → #betta# and epsilon → #betta# reaction in Fe-Mn alloys containing 2-15% Mn under heating. Cooling rate in the range of approximately 5-1000 deg/min in preliminary working essentially affects phase transformations under subsequent heating

  4. Fundamental Studies on Phase Transformations and Mechanical Properties of Fusion Welds in Advanced Naval Steels

    Science.gov (United States)

    2017-07-31

    naval and structural applications. However, prior to this research project, a fundamental understanding of the phase transformation behavior under the...prior to this research project, a fundamental understanding of the phase transformation behavior under the high heating and cooling rates associated...HAZ mechanical properties. Such a treatment is expensive, time consuming , and cannot be practically applied to large structures. However, the absence

  5. Kinetics of martensitic transformations in magnetic field or under hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kakeshita, Jung-min Nam and Takashi Fukuda

    2011-01-01

    Full Text Available We have recently constructed a phenomenological theory that provides a unified explanation for athermal and isothermal martensitic transformation processes. On the basis of this theory, we predict some properties of martensitic transformation and confirm them experimentally using some Fe-based alloys and a Ni–Co–Mn–In magnetic shape memory alloy.

  6. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  7. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

    Science.gov (United States)

    Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong

    2017-12-01

    A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

  8. Deformation-induced phase transformation in 4H–SiC nanopillars

    International Nuclear Information System (INIS)

    Chen, Bin; Wang, Jun; Zhu, Yiwei; Liao, Xiaozhou; Lu, Chunsheng; Mai, Yiu-Wing; Ringer, Simon P.; Ke, Fujiu; Shen, Yaogen

    2014-01-01

    The deformation behaviour of single-crystal SiC nanopillars was studied by a combination of in situ deformation transmission electron microscopy and molecular dynamics simulations. An unexpected deformation-induced phase transformation from the 4H hexagonal structure to the 3C face-centred cubic structure was observed in these nanopillars at room temperature. Atomistic simulations revealed that the 4H to 3C phase transformation follows a stick–slip process with initiation and end stresses of 12.1–14.0 and 7.9–9.0 GPa, respectively. The experimentally measured stress of 9–10 GPa for the phase transformation falls within the range of these theoretical upper and lower stresses. The reasons for the phase transformation are discussed. The finding sheds light on the understanding of phase transformation in polytypic materials at low temperature

  9. Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghm@lanl.gov [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Jeong, Y. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Clausen, B.; Liu, Y.; McCabe, R.J. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Barlat, F. [Graduate Institute of Ferrous Technology, POSTECH (Korea, Republic of); Tomé, C.N. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-01-01

    The present work integrates in-situ neutron diffraction, electron backscatter diffraction and crystal plasticity modeling to investigate the effect of martensitic phase transformation on the behavior of 304 stainless steel under uniaxial tension. The macroscopic stress strain response, evolution of the martensitic phase fraction, texture evolution of each individual phase, and internal elastic strains were measured at room temperature and at 75 °C. Because no martensitic transformation was observed at 75 °C, the experimental results at 75 °C were used as a reference to quantify the effect of formed martensitic phase on the behavior of 304 stainless steel at room temperature. A crystallographic phase transformation model was implemented into an elastic–viscoplastic self-consistent framework. The phase transformation model captured the macroscopic stress strain response, plus the texture and volume fraction evolution of austenite and martensite. The model also predicts the internal elastic strain evolution with loading in the austenite, but not in the martensite. The results of this work highlight the mechanisms that control phase transformation and the sensitivity of modeling results to them, and point out to critical elements that still need to be incorporated into crystallographic phase transformation models to accurately describe the internal strain evolution during phase transformation.

  10. Peculiarities of phase transformation in Ni3Fe powder alloy

    International Nuclear Information System (INIS)

    Nuzhdin, A.A.

    1990-01-01

    Ordering process in sintered powder alloy Ni 3 Fe by normal and high temperatures was studied. Thermal stresses connected with porosity level of material effect on transformation peculiarities. The changes of electric conductivity, thermal expansion coefficient, bulk modulus during transformation were studied. The analysis of this changes was made

  11. Magnetic hysteresis and refrigeration capacity of Ni–Mn–Ga alloys near Martensitic transformation

    International Nuclear Information System (INIS)

    Bin, Fu; Yi, Long; Jing-Fang, Duan; Chao-Lun, Wang; Yong-Qin, Chang; Rong-Chang, Ye; Guang-Heng, Wu

    2010-01-01

    This paper studies the magnetic hysteresis and refrigeration capacity of Ni-Mn-Ga alloys in detail during heating and cooling isothermal magnetisation processes. The Ni-Mn-Ga alloys show larger magnetic hysteresis when they transform from austenite to martensite, but smaller magnetic hysteresis when they transform from martensite to austenite. This behaviour is independent of either the pure Ni-Mn-Ga alloys or the alloys doped with other elements. Because of the existence of the magnetic hysteresis, the relation between the magnetic entropy change and refrigeration capacity is not simply linear. For practical consideration, magnetocaloric effect of Ni-Mn-Ga alloys should be investigated both on cooling and heating processes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Phase transformations of nanostructured Zr-Y-O coatings under loading

    Science.gov (United States)

    Fedorischeva, M. V.; Kalashnikov, M. P.; Bozhko, I. A.; Mironov, Yu. P.; Sergeev, V. P.

    2017-12-01

    The deposition of nanostructured Zr-Y-O/Si-Al-N-based coatings was implemented by the pulse magnetron methods. The structural-phase state of the nanostructured coatings was studied with TEM and X-ray analysis. The phase transformation in Zr-Y-O layer was observed with the X-ray diffraction analysis in the "in-situ" mode under loading in conditions of free and constrained volumes. It was found, that there were martensitic phase transformations at certain deformation levels under the conditions of the free volume and martensitic phase transformations in the local regions of the coating layer with the structure fining in constrained volume.

  13. On mechanism of substructure formation in SmS during isomorphic phase transformations

    International Nuclear Information System (INIS)

    Aptekar', I.L.; Ivanov, V.I.; Tonkov, E.Yu.; Shmyt'ko, I.M.

    1986-01-01

    X-ray diffraction study of substructure characteristics of SmS samples subjected to treatment at different temrerature and pressure in media with different viscosity ( graphite, silicon oil) for realization of P-M-P transformations ( p-semiconductor phase, M - high pressure phase) is performed. It is assumed that with M - phase formation P - matrix volume relaxation delays, therefore the new phase particles occupy smaller volume than the initial matrix which causes the M - phase disorientation. The difference between the phase transformation rate and deformation rate under the pressure in media with various viscosity results in arising different substructural characteristics

  14. All-optical WDM Regeneration of DPSK Signals using Optical Fourier Transformation and Phase Sensitive Amplification

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian

    2015-01-01

    We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....

  15. Superconducting Film Flux Transformer for a Sensor of a Weak Magnetic Field

    International Nuclear Information System (INIS)

    Ichkitidze, L; Mironyuk, A

    2012-01-01

    The object of study is a superconducting film flux transformer in the form of a square shaped loop with the tapering operative strip used in a sensor of a weak magnetic field. The magnetosensitive film element based on the giant magnetoresistance effect is overlapped with the tapering operative strip of the flux transformer; it is separated from the latter by the insulator film. It is shown that the topological nanostructuring of the operative strip of the flux transformer increases its gain factor by one or more orders of magnitude, i.e. increases its efficiency, which leads to a significant improvement of important parameters of a magnetic-field sensor.

  16. Moessbauer study of magnetic transformation of Ni3Al-(57Co+57Fe) surface layer

    International Nuclear Information System (INIS)

    Dudas, J.; Zemcik, T.

    1975-01-01

    The results of the magnetic transformation study of the Ni 3 Al-( 57 Co+ 57 Fe) surface layer by the 57 Fe Moessbauer effect in dependence on the penetration depth of ( 57 Co+ 57 Fe) are presented. These results are discussed in terms of the magnetic polarization of the Co (and Fe) atoms and the appearance of the 'giant' magnetic moment. The critical concentration of Co+Fe impurities sufficient for transformation of the originally paramagnetic surface layer into ferromagnetic at room temperature was determined to be 1.03 at.'=.. (author)

  17. Topological phases in superconductor-noncollinear magnet interfaces with strong spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Menke, H.; Schnyder, A.P. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Toews, A. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Quantum Matter Institute, University of British Columbia, Vancouver, BC (Canada)

    2016-07-01

    Majorana fermions are predicted to emerge at interfaces between conventional s-wave superconductors and non-collinear magnets. In these heterostructures, the spin moments of the non-collinear magnet induce a low-energy band of Shiba bound states in the superconductor. Depending on the type of order of the magnet, the band structure of these bound states can be topologically nontrivial. Thus far, research has focused on systems where the influence of spin-orbit coupling can be neglected. Here, we explore the interplay between non-collinear (or non-coplanar) spin textures and Rashba-type spin-orbit interaction. This situation is realized, for example, in heterostructures between helical magnets and heavy elemental superconductors, such as Pb. Using a unitary transformation in spin space, we show that the effects of Rashba-type spin-orbit coupling are equivalent to the effects of the non-collinear spin texture of the helical magnet. We explore the topological phase diagram as a function of spin-orbit coupling, spin texture, and chemical potential, and find many interesting topological phases, such as p{sub x}-, (p{sub x} + p{sub y})-, and (p{sub x} + i p{sub y})-wave states. Conditions for the formation and the nature of Majorana edge channels are examined. Furthermore, we study the topological edge currents of these phases.

  18. Phase difference estimation method based on data extension and Hilbert transform

    International Nuclear Information System (INIS)

    Shen, Yan-lin; Tu, Ya-qing; Chen, Lin-jun; Shen, Ting-ao

    2015-01-01

    To improve the precision and anti-interference performance of phase difference estimation for non-integer periods of sampling signals, a phase difference estimation method based on data extension and Hilbert transform is proposed. Estimated phase difference is obtained by means of data extension, Hilbert transform, cross-correlation, auto-correlation, and weighted phase average. Theoretical analysis shows that the proposed method suppresses the end effects of Hilbert transform effectively. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of phase difference estimation and has better performance of phase difference estimation than the correlation, Hilbert transform, and data extension-based correlation methods, which contribute to improving the measurement precision of the Coriolis mass flowmeter. (paper)

  19. Transformation of QSPA plasma streams in longitudinal magnetic field

    International Nuclear Information System (INIS)

    Makhlaj, V.A.; Bandura, A.N.; Chebotarev, V.V.; Kulik, N.V.; Wuerz, H.

    2002-01-01

    The main aim of this work is analysis of efficiency of QSPA powerful plasma streams transportation in longitudinal magnetic field in dependence on operational mode of accelerator and plasma stream parameters

  20. Initial transformer sizing for single-phase residential load

    International Nuclear Information System (INIS)

    Schneider, K.C.; Hoad, R.F.

    1992-01-01

    The purchase of distribution transformers represents a significant capital investment per year for an electric utility. Choosing the correct thermal and economic size transformer can help control this investment. This paper describes a method for determining the correct economic size of distribution transformers using end-use appliance load profiles and the ANSI/IEEE Standard C57.91-1981 thermal model. Although applied only to single family and multifamily residential load in this paper, the method can be extended to other types of load such as commercial or industrial

  1. 500 keV Ar2+ ion irradiation induced anatase to brookite phase transformation and ferromagnetism at room temperature in TiO2 thin films

    Science.gov (United States)

    Bharati, B.; Mishra, N. C.; Kanjilal, D.; Rath, Chandana

    2018-01-01

    In our earlier report, where we have demonstrated ferromagnetic behavior at room temperature (RT) in TiO2 thin films deposited through electron beam evaporation technique followed by annealing either in Ar or O2 atmosphere [Mohanty et al., Journal of Magnetism and Magnetic Materials 355 (2014) 240-245], here we have studied the evolution of structure and magnetic properties after irradiating the TiO2 thin films with 500 keV Ar2+ ions. The pristine film while exhibits anatase phase, the films become amorphous after irradiating at fluence in the range 1 × 1014 to 1 × 1016 ions/cm2. Increasing the fluence up to 5 × 1016 ions/cm2, amorphous to crystalline phase transformation occurs and the structure becomes brookite. Although anatase to rutile phase transformation is usually reported in literatures, anatase to brookite phase transformation is an unusual feature which we have reported here for the first time. Such anatase to brookite phase transformation is accompanied with grain growth without showing any change in film thickness evidenced from Rutherford's Back Scattering (RBS) measurement. From scanning probe micrographs (SPM), roughness is found to be more in amorphous films than in the crystalline ones. Anatase to brookite phase transformation could be realized by considering the importance of intermediate amorphous phase. Because due to amorphous phase, heat deposited by energetic ions are localized as dissipation of heat is less and as a result, the localized region crystallizes in brookite phase followed by grain growth as observed in highest fluence. Further, we have demonstrated ferromagnetic behavior at RT in irradiated films similar to pristine one, irrespective of their phase and crystallinity. Origin for room temperature ferromagnetism (RTFM) is attributed to the presence of oxygen vacancies which is confirmed by carrying out XPS measurement.

  2. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    International Nuclear Information System (INIS)

    Gao, Lei; Ding, Xiangdong; Sun, Jun; Lookman, Turab; Salje, E. K. H.

    2016-01-01

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  3. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Salje, E. K. H., E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom)

    2016-07-18

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  4. Magnetic Imaging with a Novel Hole-Free Phase Plate

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2014-01-01

    One of the main interests in phase plate imaging is motivated by a decrease in irradiation dose needed to obtain desired signal to noise ratio, a result of improved contrast transfer [1]. The decrease in irradiation improves the imaging of biological materials [2]. Here we demonstrate that phase...... most phase objects, including magnetic and electrostatic fields in vacuum. The requirement for phase plate imaging, including that by HFPP, is that the object spectrum in the back focal plane of the objective lens must not be broadened via the effect of chromatic aberration. In other words, the imaged...

  5. Microwave monolithic filter and phase shifter using magnetic nanostructures

    Science.gov (United States)

    Aslam, Shehreen; Khanna, Manoj; Veenugopal, Veerakumar; Kuanr, Bijoy K.

    2018-05-01

    Monolithic Microwave Integrated Circuit (MMIC) have major impact on the development of microwave communication technology. Transition metal based ferromagnetic nano-wired (FMNWs) substrate are of special interest in order to fabricate these MMIC devices. Their saturation magnetization is comparatively higher than ferrites which makes them suitable for high frequency (>10 ˜ 40 GHz) operation at zero or a small applied magnetic field. The CoFeB nanowires in anodic alumina templates were synthesized using three-electrode electro-deposition system. After electro-deposition, 1μm thick Cu layer was sputtered on the top surface of FMNW substrate and lithography was done to design microstrip lines. These microstrip transmission lines were tested for band-stop filters and phase shifters based on ferromagnetic resonance (FMR) over a wide applied magnetic field (H) range. It was observed that attenuation and frequency increase with the increase of magnetic field (upto 5.3 kOe). For phase shifter, the influence of magnetic material was studied for two frequency regions: (i) below FMR and (ii) above FMR. These two frequency regions were suitable for many practical device applications as the insertion loss was very less in these regions in comparison to resonance frequency regions. In the high frequency region (at 35 GHz), the optimal differential phase shift increased significantly to ˜ 250 deg/cm and around low frequency region (at 24 GHz), the optimal differential phase shift is ˜175 deg/cm at the highest field (H) value.

  6. Microwave monolithic filter and phase shifter using magnetic nanostructures

    Directory of Open Access Journals (Sweden)

    Shehreen Aslam

    2018-05-01

    Full Text Available Monolithic Microwave Integrated Circuit (MMIC have major impact on the development of microwave communication technology. Transition metal based ferromagnetic nano-wired (FMNWs substrate are of special interest in order to fabricate these MMIC devices. Their saturation magnetization is comparatively higher than ferrites which makes them suitable for high frequency (>10 ∼ 40 GHz operation at zero or a small applied magnetic field. The CoFeB nanowires in anodic alumina templates were synthesized using three-electrode electro-deposition system. After electro-deposition, 1μm thick Cu layer was sputtered on the top surface of FMNW substrate and lithography was done to design microstrip lines. These microstrip transmission lines were tested for band-stop filters and phase shifters based on ferromagnetic resonance (FMR over a wide applied magnetic field (H range. It was observed that attenuation and frequency increase with the increase of magnetic field (upto 5.3 kOe. For phase shifter, the influence of magnetic material was studied for two frequency regions: (i below FMR and (ii above FMR. These two frequency regions were suitable for many practical device applications as the insertion loss was very less in these regions in comparison to resonance frequency regions. In the high frequency region (at 35 GHz, the optimal differential phase shift increased significantly to ∼ 250 deg/cm and around low frequency region (at 24 GHz, the optimal differential phase shift is ∼175 deg/cm at the highest field (H value.

  7. Nonvolatile memory design magnetic, resistive, and phase change

    CERN Document Server

    Li, Hai

    2011-01-01

    The manufacture of flash memory, which is the dominant nonvolatile memory technology, is facing severe technical barriers. So much so, that some emerging technologies have been proposed as alternatives to flash memory in the nano-regime. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing introduces three promising candidates: phase-change memory, magnetic random access memory, and resistive random access memory. The text illustrates the fundamental storage mechanism of these technologies and examines their differences from flash memory techniques. Based on the latest advances,

  8. Study of the phase transformations in Ni2MnGa by capacitance dilatometry

    International Nuclear Information System (INIS)

    Wu, X D; Finlayson, T R

    2007-01-01

    High precision capacitance dilatometry has been used to study the phase transformations in a Ni 2 MnGa single crystal. The results show that capacitance dilatometry is an effective method to study the phase transformations. The thermal strain accompanying the martensitic transformation was not reproducible, but became more reproducible with the application of external stress. The first-order character of the martensitic transformation was enhanced by external stress. The intermediate transformation temperature decreased with increasing external stress with a temperature coefficient of -2.40 K MPa -1 . The coefficient of thermal expansion was 1.7 x 10 -5 K -1 for the parent phase and 1.4 x 10 -5 K -1 for the intermediate phase

  9. Stainless austenitic steels strengthened due to reversible phase transformations and by ageing

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Kositsyna, I.I.; Ozhiganov, A.V.

    1981-01-01

    The effect of the reversible phase transformations, consisting in the conduction of the direct and reverse martensite transformations and aging, during which the intermetallide γ'-phase of the composition Ni 3 Ti is formed, on the streng-thening of alloys in the Fe-Cr-Ni-Ti system is considered. Stainless austenitic steels Kh12N12T3 and Kh12N14T3, which acquire high mechanical properties: σsub(0.2)=685-785 MPa, σsub(B)=1275 MPa, delta >= 20%, as a result of reversible phase transformations and aging, are suggested. After the reversible phase transformations and ageing the steels possess a high resistance to γ-α-transformation during cold treatment [ru

  10. Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.

    2006-01-01

    We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  11. Pressure-induced phase transformation in ZrW2O8 - Compressibility and thermal expansion of the orthorhombic phase

    International Nuclear Information System (INIS)

    Hu, Z.; Jorgensen, J.D.; Teslic, S.; Short, S.; Argyriou, D.N.

    1997-01-01

    In situ neutron powder diffraction has been used to show that the application of hydrostatic pressure at room temperature produces a transformation of ZrW 2 O 8 from the cubic to an orthorhombic phase beginning at 2.1 kbar and completed by 3.1 kbar, with a 5% reduction in volume. After release of pressure, the orthorhombic phase is retained at room temperature. Its thermal expansion is negative below room temperature, but is positive above room temperature with a transformation back to the cubic phase at about 390 K. The WO 4 groups are found to play the dominant role in both phase transformations. The volume compressibilities of the cubic and orthorhombic phases are 1.38 x 10 -3 and 1.53 x 10 -3 kbar -1 , respectively. (orig.)

  12. Comparison of Theories of Anisotropy in Transformer Oil-Based Magnetic Fluids

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2013-01-01

    Full Text Available The external magnetic field in transformer oil-based magnetic fluids leads to the aggregation of magnetic nanoparticles and formation of clusters. These aggregations are the result of the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs. However, the temperature of magnetic fluids has also very important influence on the structural changes because the mechanism of thermal motion acts against the cluster creation. The acoustic spectroscopy was used to study the anisotropy of transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature. In present the anisotropy of the magnetic fluids can be described by two theories. Taketomi theory assumes the existence of spherical clusters. These clusters form long chains, aligned in a magnetic field direction. Shliomis in his theory supposed that only nanoparticles formed chains. A comparison of the experimental results with the predictions of the Taketomi theory allowed a determination of the cluster radius and the number density of the colloidal particles. The proportions of the acoustic wave energy used for excitation of the translational and rotational motion were determined.

  13. A Stabilization Procedure For The Transformation Of Magnetic Data ...

    African Journals Online (AJOL)

    ... made between the conventional filtering technique and the equivalent source technique using theoretical data and secondly a quantitative method is developed by using an algorithm which uses the correlation coefficient between successive pairs of the transformed maps. IFE Journal of Science Vol. 9 (1) 2007 pp. 77-86 ...

  14. Ferrofluid spiral formations and continuous-to-discrete phase transitions under simultaneously applied DC axial and AC in-plane rotating magnetic fields

    International Nuclear Information System (INIS)

    Rhodes, Scott; Perez, Juan; Elborai, Shihab; Lee, Se-Hee; Zahn, Markus

    2005-01-01

    New flows and instabilities are presented for a ferrofluid drop contained in glass Hele-Shaw cells with simultaneously applied in-plane clockwise rotating and DC axial uniform magnetic fields. When a ferrofluid drop is stressed by a uniform DC axial magnetic field, up to ∼250 G in 0.9-1.4 mm gap Hele-Shaw cells, the drop forms a labyrinth pattern. With subsequent application of an in-plane uniform rotating magnetic field, up to ∼100 G rms at frequency 20-40 Hz, smooth spirals form from viscous shear due to ferrofluid flow. If the rotating magnetic field is applied first, the drop is held together without a labyrinth. Gradual increase of the DC axial magnetic field, to a critical magnetic field value, results in an abrupt phase transformation from a large drop to many small discrete droplets. A preliminary minimum magnetization and surface energy analysis is presented to model the phase transformation

  15. Does apartment's distance to an in-built transformer room predict magnetic field exposure levels?

    Science.gov (United States)

    Huss, Anke; Goris, Kelly; Vermeulen, Roel; Kromhout, Hans

    2013-01-01

    It has been shown that magnetic field exposure in apartments located directly on top or adjacent to transformer rooms is higher compared with exposure in apartments located further away from the transformer rooms. It is unclear whether this also translates into exposure contrast among individuals living in these apartments. We performed spot measurements of magnetic fields in 35 apartments in 14 apartment buildings with an in-built transformer and additionally performed 24-h personal measurements in a subsample of 24 individuals. Apartments placed directly on top of or adjacent to a transformer room had on average exposures of 0.42 μT, apartments on the second floor on top of a transformer room, or sharing a corner or edge with the transformer room had 0.11 μT, and apartments located further away from the transformer room had levels of 0.06 μT. Personal exposure levels were approximately a factor 2 lower compared with apartment averages, but still showed exposure contrasts, but only for those individuals who live in the apartments directly on top or adjacent to a transformer room compared with those living further away, with 0.23 versus 0.06 μT for personal exposure when indoors, respectively. A classification of individuals into 'high' and 'low' exposed based on the location of their apartment within a building with an in-built transformer is possible and could be applied in future epidemiological studies.

  16. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  17. Wideband Precision Current Transformer for the Magnet Current of the Beam Extraction Kicker Magnet of the Large Hadron Collider

    CERN Document Server

    Gräwer, G

    2004-01-01

    The LHC beam extraction system is composed of 15 fast kicker magnets per beam to extract the particles in one turn of the collider and to safely dispose them on external absorbers. Each magnet is powered by a separate pulse generator. The generator produces a magnet current pulse with 3 us rise time, 20 kA amplitude and 1.8 ms fall time, of which 90 us are needed to dump the beam. The beam extraction system requires a high level of reliability. To detect any change in the magnet current characteristics, which might indicate a slow degradation of the pulse generator, a high precision wideband current transformer will be installed. For redundancy reasons, the results obtained with this device will be cross-checked with a Rogowski coil, installed adjacent to the transformer. A prototype transformer has been successfully tested at nominal current levels and showed satisfactory results compared with the output of a high frequency resistive coaxial shunt. The annular core of the ring type transformer is composed of...

  18. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    Science.gov (United States)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  19. Indoor transformer stations and ELF magnetic field exposure: use of transformer structural characteristics to improve exposure assessment.

    Science.gov (United States)

    Okokon, Enembe Oku; Roivainen, Päivi; Kheifets, Leeka; Mezei, Gabor; Juutilainen, Jukka

    2014-01-01

    Previous studies have shown that populations of multiapartment buildings with indoor transformer stations may serve as a basis for improved epidemiological studies on the relationship between childhood leukaemia and extremely-low-frequency (ELF) magnetic fields (MFs). This study investigated whether classification based on structural characteristics of the transformer stations would improve ELF MF exposure assessment. The data included MF measurements in apartments directly above transformer stations ("exposed" apartments) in 30 buildings in Finland, and reference apartments in the same buildings. Transformer structural characteristics (type and location of low-voltage conductors) were used to classify exposed apartments into high-exposure (HE) and intermediate-exposure (IE) categories. An exposure gradient was observed: both the time-average MF and time above a threshold (0.4 μT) were highest in the HE apartments and lowest in the reference apartments, showing a statistically significant trend. The differences between HE and IE apartments, however, were not statistically significant. A simulation exercise showed that the three-category classification did not perform better than a two-category classification (exposed and reference apartments) in detecting the existence of an increased risk. However, data on the structural characteristics of transformers is potentially useful for evaluating exposure-response relationship.

  20. Collapsing cycloidal structures in the magnetic phase diagram of erbium

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Simpson, J.A.

    1994-01-01

    The magnetic structure of Er with a magnetic field applied in the hexagonal basal plane has been studied using a combination of experimental techniques and mean-field modeling. From neutron-scattering and magnetization measurements, phase diagrams are constructed. At temperatures above...... approximately 20 K, the application of a field is found to favor cycloidal structures with modulation wave vectors of q(c) = (6/23)c*, (4/15)c*, and (2/7)c*. For fields above almost-equal-to 40 kOe, the (2/7) structure dominates the phase diagram. From a detailed study of this most stable cycloid, we determine...... how it distorts as the field is increased. In low fields, there is a spin reorientation, so that the plane of the cycloid becomes perpendicular to the applied field, while in larger fields, the cycloid collapses through a series of fanlike structures. At lower temperatures, as the field is increased...

  1. MAGNETIC AND HYPERFINE CHARACTERIZATION OF THE THERMAL TRANSFORMATION CuO - Fe2O3 TO Fe3O4

    Directory of Open Access Journals (Sweden)

    Juan D. Betancur

    2018-01-01

    Full Text Available A magnetic study about the thermal transformation of hematite doped with CuO (Fe2O3 + CuO is presented. The heat treatment was carried out at a temperature of 375 ± 1 ºC, in a controlled atmosphere composed by 20% hydrogen and 80% nitrogen. Samples were characterized by Mössbauer spectroscopy at room temperature, magnetization as a function of temperature and hysteresis loops at 10K. Our results suggest that both the hyperfine fields and linewidths of the A and B sites remain essentially constant with increasing the CuO concentration, while at the same time a paramagnetic component arises, which is indicative of the appearance of a precipitate or a new phase of Fe-Cu, i.e. there is not an effective incorporation of the copper into the structure of the magnetite. The saturation magnetization falls from approximately 87 emu/g to 78 emu/g, consistent with such a paramagnetic phase. Also, an increase in the coercivity from ~576 Oe up to ~621 Oe by increasing the percentage of CuO from 2% up to 20% is observed. Such increase is also attributed to the paramagnetic phase acting as pinning center for domain walls, besides also de pinning effect due to vacancies induced by the thermal treatment. Finally, an inversion of the magnetization in the Verwey temperature is observed. The data suggest that by means of the synthesis method employed, it is possible to obtain Fe3O4 magnetite particles coexisting with precipitates of Fe-Cu, giving rise to a modification in the magnetic properties and generatingan interesting effect in the magnetization at the Verwey temperature.

  2. Study of effect of chromium on titanium dioxide phase transformation

    Indian Academy of Sciences (India)

    Administrator

    the other hand, the effect of solution pH in phase stability .... pore size of anatase phase decreases with increase of ... range of 0–200 °C, corresponding to desorption of water .... The correlation revealed a straight line with a slope equal to 1 for ...

  3. Modelling study on the three-dimensional neutron depolarisation response of the evolving ferrite particle size distribution during the austenite-ferrite phase transformation in steels

    Science.gov (United States)

    Fang, H.; van der Zwaag, S.; van Dijk, N. H.

    2018-07-01

    The magnetic configuration of a ferromagnetic system with mono-disperse and poly-disperse distribution of magnetic particles with inter-particle interactions has been computed. The analysis is general in nature and applies to all systems containing magnetically interacting particles in a non-magnetic matrix, but has been applied to steel microstructures, consisting of a paramagnetic austenite phase and a ferromagnetic ferrite phase, as formed during the austenite-to-ferrite phase transformation in low-alloyed steels. The characteristics of the computational microstructures are linked to the correlation function and determinant of depolarisation matrix, which can be experimentally obtained in three-dimensional neutron depolarisation (3DND). By tuning the parameters in the model used to generate the microstructure, we studied the effect of the (magnetic) particle size distribution on the 3DND parameters. It is found that the magnetic particle size derived from 3DND data matches the microstructural grain size over a wide range of volume fractions and grain size distributions. A relationship between the correlation function and the relative width of the particle size distribution was proposed to accurately account for the width of the size distribution. This evaluation shows that 3DND experiments can provide unique in situ information on the austenite-to-ferrite phase transformation in steels.

  4. On the study of the solid-solid phase transformation of TlBiTe2

    International Nuclear Information System (INIS)

    Chrissafis, K.; Vinga, E.S.; Paraskevopoulos, K.M.; Polychroniadis, E.K.

    2003-01-01

    The narrow gap semiconductor TlBiTe 2 undergoes a solid-solid phase transformation from the rhombohedral (D 3d ) to the cubic (O h ) phase. The present paper deals with the study of this phase transformation combining the results of Differential Scanning Calorimetry (DSC) and Transmission Electron Microscopy (TEM). It has been found that during heating the transformation is an athermal activated process, which can be described only by a combination of more than one processes while during cooling it exhibits an expectable thermal hysteresis due to the volume difference. The results of the kinetic analysis combined with the electron microscopy findings, supported also by the Fourier Transform Infrared (FTIR) spectroscopy ones, lead to the conclusion that TlBiTe 2 undergoes a multiple-step, displacive, martensitic type transformation. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. Pressure-induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics

    International Nuclear Information System (INIS)

    Zeng, T.; Dong, X.L.; Chen, X.F.; Yao, C.H.; He, H.L.

    2007-01-01

    The hydrostatic pressure-induced ferroelectric to antiferroelectric (FE-AFE) phase transformation of PZT95/5 ceramics was investigated as a function of porosity, pore shape and pore size. FE-AFE phase transformations were more diffuse and occurred at lower hydrostatic pressures with increasing porosity. The porous PZT95/5 ceramics with spherical pores exhibited higher transformation pressures than those with irregular pores. Moreover, FE-AFE phase transformations of porous PZT95/5 ceramics with polydisperse irregular pores were more diffuse than those of porous PZT95/5 ceramics with monodisperse irregular pores. The relation between pore structure and hydrostatic pressure-induced FE-AFE transformation was established according to stress concentration theory. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.

    Science.gov (United States)

    Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  7. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    Energy Technology Data Exchange (ETDEWEB)

    Berek, H., E-mail: harry.berek@ikgb.tu-freiberg.de [TU Bergakademie Freiberg, Agricolastraße 17, D-09599 Freiberg (Germany); Ballaschk, U.; Aneziris, C.G. [TU Bergakademie Freiberg, Agricolastraße 17, D-09599 Freiberg (Germany); Losch, K.; Schladitz, K. [Fraunhofer ITWM, Fraunhoferplatz 1, D-67663 Kaiserslautern (Germany)

    2015-09-15

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.

  8. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    International Nuclear Information System (INIS)

    Berek, H.; Ballaschk, U.; Aneziris, C.G.; Losch, K.; Schladitz, K.

    2015-01-01

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated

  9. In situ measurement of solvent-mediated phase transformations during dissolution testing

    DEFF Research Database (Denmark)

    Aaltonen, Jaakko; Heinänen, Paula; Peltonen, Leena

    2006-01-01

    In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry......) and measurement of the solid-state form of the dissolving solid (in situ with Raman spectroscopy). The solid phase transformations were also investigated off-line with scanning electron microscopy. TP anhydrate underwent a transformation to TP monohydrate, and NF anhydrate (form beta) to NF monohydrate (form II......). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form beta) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than...

  10. Modeling of magnetization reversal processes in magnetic circuits of measuring transformers

    OpenAIRE

    Lebedev, Vladimir; Makarov, Arkadiy; Yablokov, Andrey; Filatova, Galina

    2015-01-01

    The article describes methods for modeling transient regimes in current and voltage transformers. In most studies measuring transformers are modeled in a stationary mode to determine their metrological characteristics. However, for safe uninterrupted operation of transformers and electrical networks it is necessary to carry out their research in dynamic mode. In particular, the study of the transformers stability to the ferroresonant phenomena occurring during switching o...

  11. Magnetic phase transitions in low dimension quantum spin systems

    International Nuclear Information System (INIS)

    Canevet, Emmanuel

    2010-01-01

    In this PhD thesis, three low dimensional spin systems are studied by means of elastic and inelastic neutron scattering. Macroscopic measurements in the DMACuCl 3 compound indicate the coexistence of two kinds of dimers: antiferromagnetic and ferromagnetic. The magnetic structure determined by our neutron diffraction survey at H = 0 shows irrevocably the existence of these two kinds of dimers. It has been shown that the Ising-like compound BaCo 2 V 2 O 8 should be the first realization of a system in which a longitudinal spin density wave (LSDW) magnetic order occurs when a magnetic field is applied. In a first time, we have determined the magnetic structure in zero magnetic field. Then, we focused on the effect of a magnetic field on the propagation vector, showing an entrance in the LSDW phase at H c = 3.9 T. The magnetic structure refined above this critical field confirms that BaCo 2 V 2 O 8 is the first compound in which occurs a LSDW phase. In the organic compound DF 5 PNN, it has been shown that this compound is well described at low temperature by spin chains with alternating couplings. However, the crystallographic structure determined at room temperature implies that the interactions are uniform. By means of neutron diffraction, we characterized a structural transition at low temperature (T c = 450 mK) making the system evolve from C2/c space group to Pc. This transition explains the alternating behavior of the interactions. We have also evidenced a field-induced structural transition (H c = 1.1 T). Above this field, the system is back to the C2/c space group, implying that the interactions are back to uniform. We have confirmed this by studying the magnetic excitations. (author) [fr

  12. High Frequency LLC Resonant Converter with Magnetic Shunt Integrated Planar Transformer

    DEFF Research Database (Denmark)

    Li, Mingxiao; Ouyang, Ziwei; Andersen, Michael A. E.

    2018-01-01

    High Frequency LLC requires a smaller resonant inductance which is usually implemented by transformer leakage inductance. However, this small resonant inductance is difficult to deal with a wide input voltage range. This paper proposes a new method to implement a larger resonant inductance by using...... a magnetic shunt integrated into planar transformer. The switching frequency can be greatly narrowed by designing a smaller inductance ratio of magnetizing inductance to resonant inductance. Since this method can well deal with a wide input voltage range without adding extra inductor and increasing the size...... of the transformer, the power density can be improved. The precise leakage inductance calculation method for this transformer and detailed LLC converter design procedure are presented. A 280-380V and 48V-100W half bridge LLC resonant converter with 1 MHz resonant frequency is built to verify the design methodology....

  13. Searching for high magnetization density in bulk Fe: the new metastable Fe-6 phase

    Energy Technology Data Exchange (ETDEWEB)

    Umemoto, K; Himmetoglu, B; Wang, JP; Wentzcovitch, RM; Cococcioni, M

    2014-11-26

    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn2(1) symmetry, a six-atom unit cell (hence the name Fe-6), and the highest magnetization density (M-s) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn2(1) Fe-6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe-6 could become the basis material for high M-s rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high M-s of Fe16N2, which is currently attracting intense research activity.

  14. Surface magnetic phase transitions in Dy/Lu superlattices

    International Nuclear Information System (INIS)

    Goff, J.P.; Sarthour, R.S.; Micheletti, C.; Langridge, S.; Wilkins, C.J.T.; Ward, R.C.C.; Wells, M.R.

    1999-01-01

    Dy/Lu superlattices comprising ferromagnetic Dy blocks coupled antiferromagnetically across the Lu blocks may be modelled as a chain of XY spins with antiferromagnetic exchange and six-fold anisotropy. We have calculated the stable magnetic phases for the cases of large anisotropy and a field applied along an easy direction. For an infinite chain an intermediate phase (1, 5,...) is predicted, where the notation gives the angle between the moment and the applied field in units of π/3. Furthermore, the effects of surface reconstruction are determined for finite chains. A [Dy 20 Lu 12 ] 20 superlattice has been studied using bulk magnetization and polarized neutron reflectivity. The (1, 5,...) phase has been identified and the results provide direct evidence in support of the theoretical predictions. Dipolar forces are shown to account for the magnitude of the observed exchange coupling. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  16. Synchrotron radiation : characteristics and application in structural studies and phase transformations of materials

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1984-01-01

    The main characteristics of the synchrotron radiation for studying atomic structure and phase transformations in materials are presented. Some specific applications in alloys, glass and solids are described. (E.G.) [pt

  17. Size and temperature dependent stability and phase transformation in single-crystal zirconium nanowire

    International Nuclear Information System (INIS)

    Sutrakar, Vijay Kumar; Roy Mahapatra, D.

    2011-01-01

    A novel size dependent FCC (face-centered-cubic) → HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions 20 Å, in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC → HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.

  18. Metallographic Study of the Isothermal Transformation of Beta Phase in Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Oestberg, G

    1960-06-15

    Observations of the structure of commercial zircaloy-2 have been made in the microscope showing that the high temperature beta phase is transformed isothermally at lower temperatures into alpha plus secondary precipitate. The alpha occurs mainly as Widmanstaetten plates developed by a shear mechanism. The secondary precipitate is formed from the beta - alpha structure at the phase boundary between these phases. This precipitation of particles of secondary phase occurs on account of a eutectoid reaction, alpha also being formed. A time-temperature transformation diagram has been constructed from the observations.

  19. Martensitic phase transformations in Ni–Ti-based shape memory alloys: The Landau theory

    International Nuclear Information System (INIS)

    Shchyglo, Oleg; Salman, Umut; Finel, Alphonse

    2012-01-01

    We present a simple Landau free energy functional for cubic-to-orthorhombic and cubic-to-monoclinic martensitic phase transformations. The functional is derived following group–subgroup relations between different martensitic phases – tetragonal, trigonal, orthorhombic and monoclinic – in order to fully capture the symmetry properties of the free energy of the austenite and martensite phases. The derived free energy functional is fitted to the elastic and thermodynamic properties of NiTi and NiTiCu shape memory alloys which exhibit cubic-to-monoclinic and cubic-to-orthorhombic martensitic phase transformations, respectively.

  20. Phase locking of vortex cores in two coupled magnetic nanopillars

    Directory of Open Access Journals (Sweden)

    Qiyuan Zhu

    2014-11-01

    Full Text Available Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. This work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.

  1. Induced Voltages Ratio-Based Algorithm for Fault Detection, and Faulted Phase and Winding Identification of a Three-Winding Power Transformer

    Directory of Open Access Journals (Sweden)

    Byung Eun Lee

    2014-09-01

    Full Text Available This paper proposes an algorithm for fault detection, faulted phase and winding identification of a three-winding power transformer based on the induced voltages in the electrical power system. The ratio of the induced voltages of the primary-secondary, primary-tertiary and secondary-tertiary windings is the same as the corresponding turns ratio during normal operating conditions, magnetic inrush, and over-excitation. It differs from the turns ratio during an internal fault. For a single phase and a three-phase power transformer with wye-connected windings, the induced voltages of each pair of windings are estimated. For a three-phase power transformer with delta-connected windings, the induced voltage differences are estimated to use the line currents, because the delta winding currents are practically unavailable. Six detectors are suggested for fault detection. An additional three detectors and a rule for faulted phase and winding identification are presented as well. The proposed algorithm can not only detect an internal fault, but also identify the faulted phase and winding of a three-winding power transformer. The various test results with Electromagnetic Transients Program (EMTP-generated data show that the proposed algorithm successfully discriminates internal faults from normal operating conditions including magnetic inrush and over-excitation. This paper concludes by implementing the algorithm into a prototype relay based on a digital signal processor.

  2. Effect of phase transformations on laser forming of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Fan, Y.; Cheng, P.; Yao, Y.L.; Yang, Z.; Egland, K.

    2005-01-01

    In laser forming, phase transformations in the heat-affected zone take place under steep thermal cycles, and have a significant effect on the flow behavior of Ti-6Al-4V alloy and the laser-forming process. The flow-stress data of a material are generally provided as only dependent on strain, strain rate, and temperature, while phase transformations are determined by both temperature and temperature history. Therefore, effect of phase transformations on the flow behavior of materials in thermomechanical processing is not given necessary considerations. In the present work, both the α→β transformation during heating and the decomposition of β phase, producing martensite α ' or lamellae α dependent on cooling rate, are numerically investigated. The spatial distribution of volume fractions of phases is obtained by coupling thermal and phase transformation kinetic modeling. Consequently, the flow stress of Ti-6Al-4V alloy is calculated by the rule of mixtures based on the phase ratio and the flow stress of each single phase, which is also a function of temperature, strain, and strain rate. According to the obtained flow-stress data, the laser-forming process of Ti-6Al-4V alloy is modeled by finite element method, and the deformation is predicted. A series of carefully controlled experiments are conducted to validate the theoretically predicted results

  3. Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.G., E-mail: helen.jones@npl.co.uk [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Day, A.P. [Aunt Daisy Scientific Ltd, Claremont House, High St, Lydney GL15 5DX (United Kingdom); Cox, D.C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2016-10-15

    A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beam exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.

  4. Electronic basis of hardness and phase transformations (covalent crystals)

    International Nuclear Information System (INIS)

    Gilman, J J

    2008-01-01

    Several electronic parameters measure the stabilities of covalent crystals, including minimum energy band-gap densities, inverse polarizabilities, plasma frequencies, transverse vibrational frequencies and elastic shear moduli. Convenient is the band-gap density (energy/volume; called the 'bond modulus'). For a given bonding type, the indentation hardness is proportional to the bond modulus. Examples are the group IV elements, III-V compounds; and II-VI compounds. The motion of dislocation kinks requires the excitation of bonding electrons into anti-bonding states. The bond modulus measures this together with the work done by the applied stress when a kink moves. In addition to hardness, the bond modulus measures the compressive strain (pressure) needed to transform an ambient structure into a more dense structure. Activation of such transformations also requires the excitation of bonding electrons into anti-bonding states together with the work done by the compressive stress

  5. High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength

    International Nuclear Information System (INIS)

    Schaffert, Stefan; Pfau, Bastian; Günther, Christian M; Schneider, Michael; Korff Schmising, Clemens von; Eisebitt, Stefan; Geilhufe, Jan

    2013-01-01

    Exploiting x-ray magnetic circular dichroism at the L-edges of 3d transition metals, Fourier transform holography has become a standard technique to investigate magnetic samples with sub-100 nm spatial resolution. Here, magnetic imaging in the 21 nm wavelength regime using M-edge circular dichroism is demonstrated. Ultrafast pulses in this wavelength regime are increasingly available from both laser- and accelerator-driven soft x-ray sources. We explain the adaptations concerning sample preparation and data evaluation compared to conventional holography in the 1 nm wavelength range. We find the correction of the Fourier transform hologram to in-plane Fourier components to be critical for high-quality reconstruction and demonstrate 70 nm spatial resolution in magnetization imaging with this approach. (paper)

  6. Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1961-04-15

    The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.

  7. The transformation behaviour of the beta phase in Zr-2.5 wt% Nb pressure tubes

    International Nuclear Information System (INIS)

    Griffiths, M.; Winegar, J.E.

    1994-12-01

    A temperature-time-transformation (TTT) diagram has been developed for the β-phase in Zr-2.5 wt% Nb pressure tubes. The results show that the morphology and/or physical state of the β-phase in pressure tubes has a significant effect on the transformation behaviour compared with a bulk Zr-19 wt%Nb alloy. (author). 14 refs., 1 tab., 15 figs

  8. Multi-stage phase retrieval algorithm based upon the gyrator transform.

    Science.gov (United States)

    Rodrigo, José A; Duadi, Hamootal; Alieva, Tatiana; Zalevsky, Zeev

    2010-01-18

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and experimental results.

  9. Multi-stage phase retrieval algorithm based upon the gyrator transform

    OpenAIRE

    Rodrigo Martín-Romo, José Augusto; Duadi, Hamootal; Alieva, Tatiana Krasheninnikova; Zalevsky, Zeev

    2010-01-01

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...

  10. Critical indices for reversible gamma-alpha phase transformation in metallic cerium

    Science.gov (United States)

    Soldatova, E. D.; Tkachenko, T. B.

    1980-08-01

    Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.

  11. Thermodynamics and phase transformations the selected works of Mats Hillert

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    This book is a compendium of Mat Hillert's publications. Mat Hillert is a world specialist in metal alloy at the origin of a universal computing code used to calculate the diagrams of phase. This work is in English.

  12. A new kind of low-inductance transformer type magnetic switch (TTMS) with coaxial cylindrical conductors.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang

    2013-02-01

    As important devices for voltage boosting and switching, respectively, pulse transformer and magnetic switch are widely used in pulsed power technology. In this paper, a new kind of transformer type magnetic switch (TTMS) with coaxial cylindrical conductors is put forward to combine the functions of voltage boosting and switching in one power device. As a compact combination device of discrete pulse transformer and magnetic switch, the compact TTMS decreases the required volume of magnetic cores in a large scale. The primary windings of the TTMS have a parallel combination structure so that the TTMS which only has 3 turns of secondary windings has a step-up ratio at 1:9. Before the magnetic core saturates, the TTMS has low unsaturated inductances of windings and good pulse response characteristics, so it can be used to substitute the Marx generator to charge the pulse forming line (PFL) at the ranges of several hundred kV and several hundred ns. After the core saturates, the cylindrical conductors can decrease the saturated inductance of the secondary windings of TTMS to a level less than 400 nH. As a result, the proposed TTMS can be used as the boosting transformer and main switch of helical Blumlein PFL to form the quasi-square voltage pulse on the 160 Ω load with a short pulse rise time only at 60 ns.

  13. Phase transformations in lead zirconate-titanate doped with lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Ishchuk, V M; Morozov, E M

    1979-07-01

    Presented are the results of studies on the character of phase transitions of the lead-lanthanum zirconate-titanate (LLZT) system. The replacement of lead by lanthanum leads to the expansion of the region of antisegnetoelectric (ASE) states of solid solutions of lead zirconate-titanate (LZT) in the direction of PbTiO/sub 3/ concentration growth. An intermediate region is revealed between segnetoelectric (SE) and ASE states, material properties in which depend on their prehistory: annealed samples are in the ASE state, whereas the application of electric field exceeding some critical value induces the SE state. A family of phase diagrams obtained at consequent replacement of lead by lanthanum permits to identify phase states in any series of LLZT with a constant ratio of Zr:Ti, in the x/65/35 series in particular. Thermally depolarized state of materials of this series at x<6.5 is shown to be antisegnetoelectric at all the temperatures below the Curie point Tsub(c), and heating causes phase transition of ASE..-->..PE (paraelectric state) at Tsub(c). Polarized samples being heated, a successiveness of phase transitions of SE..-->..ASE takes place at T/sub 0/, and that of ASE reversible PE at Tsub(C) (Tsub(0)..ASE phase transition in the LZT system.

  14. Magnetic Phase Transitions in NdCoAsO

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Michael A [ORNL; Gout, Delphine J [ORNL; Garlea, Vasile O [ORNL; Sefat, A. S. [Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Mandrus, David [ORNL

    2010-01-01

    NdCoAsO undergoes three magnetic phase transitions below room temperature. Here we report the results of our experimental investigation of this compound, including determination of the crystal and magnetic structures using powder neutron diffraction, as well as measurements of electrical resistivity, thermal conductivity, Seebeck coefficient, magnetization, and heat capacity. These results show that upon cooling a ferromagnetic state emerges near 69 K with a small saturation moment of -0.2{micro}{sub B}, likely on Co atoms. At 14 K the material enters an antiferromagnetic state with propagation vector (0 0 1/2) and small ordered moments (-0.4{micro}{sub B}) on Co and Nd. Near 3.5 K a third transition is observed, and corresponds to the antiferromagnetic ordering of larger moments on Nd, with the same propagation vector. The ordered moment on Nd reaches 1.39(5){micro}{sub B} at 300 mK. Anomalies in the magnetization, electrical resistivity, and heat capacity are observed at all three magnetic phase transitions.

  15. Effect of atomic disorder on the magnetic phase separation

    Science.gov (United States)

    Groshev, A. G.; Arzhnikov, A. K.

    2018-05-01

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  16. Berry-Phase Blockade in Single-Molecule Magnets

    Science.gov (United States)

    González, Gabriel; Leuenberger, Michael N.

    2007-06-01

    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that, in the case of incoherent spin states, it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the stationary current, which exhibits topological zeros as a function of the transverse magnetic field.

  17. Crystallographic phases and magnetic properties of iron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ke [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Liu, Yan; Zhao, Rui-Bin [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Shen, Jun-Jie [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Hou, Deng-Lu, E-mail: houdenglu@mail.hebtu.edu.cn [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-08-31

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe.

  18. Crystallographic phases and magnetic properties of iron nitride films

    International Nuclear Information System (INIS)

    Li, Guo-Ke; Liu, Yan; Zhao, Rui-Bin; Shen, Jun-Jie; Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian; Hou, Deng-Lu

    2015-01-01

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe 4 N, ε-Fe 3−x N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe 4 N, ε-Fe 3−x N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe

  19. Phase Transformations in Electrically Conductive Ferromagnetic Shape-Memory Alloys, Their Thermodynamics and Analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2013-01-01

    Roč. 210, č. 1 (2013), s. 1-43 ISSN 0003-9527 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : magnetostrictive materials * martensitic transformation * ferro-to-para-magnetic transformation Subject RIV: BA - General Mathematics Impact factor: 2.022, year: 2013 http://link.springer.com/article/10.1007/s00205-013-0648-2

  20. Modelling of stresses generated in steels by phase transformations; Modelowanie naprezen wywolanych przemianami fazowymi w stalach

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, K; Glowacki, M; Pietrzyk, M [Akademia Gorniczo-Hutnicza, Cracow (Poland)

    1999-07-01

    Numerical model describing stresses arising during phase transformations in steels products is presented. The full model consists of three components. The first component uses finite element solution of Fourier equation for an evaluation of the temperature field inside the sample. The second component predicts kinetics of phase transformation occurring during cooling of steel products. Coupling of these two components allows prediction of structure and properties of final products at room temperature. The third component uses elastic-plastic finite element model for prediction of stresses caused by non-uniform temperatures and by changes of volume during transformations. Typical results of simulations performed for cooling of rails after hot rolling are presented. (author)

  1. Preparation of 147Pm metal and the determination of the melting point and phase transformation temperatures

    International Nuclear Information System (INIS)

    Angelini, P.; Adair, H.L.

    1976-07-01

    The promethium metal used in the determination of the melting point and phase transformation temperatures was prepared by reduction of promethium oxide with thorium metal at 1600 0 C and distilling the promethium metal into a quartz dome. The melting point and phase transformation temperatures of promethium metal were found to be 1042 +- 5 0 C and 890 +- 5 0 C, respectively. The ratio for the heat of the high-temperature transformation to the heat of fusion was determined to be 0.415

  2. Amphiphilic phase-transforming catalysts for transesterification of triglycerides

    Science.gov (United States)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be

  3. Influence of martensitic transformation on the magnetic transition in Ni-Mn-Ga

    Energy Technology Data Exchange (ETDEWEB)

    Kokorin, V.V. [Institute of Magnetism of NASU and MESU, Vernadsky blvd., 03680 Kyiv (Ukraine); Konoplyuk, S.M., E-mail: ksm@imag.kiev.ua [Institute of Magnetism of NASU and MESU, Vernadsky blvd., 03680 Kyiv (Ukraine); Dalinger, A.; Maier, H.J. [Institut für Werkstoffkunde (Materials Science), Leibnitz Universität Hannover, An der Universität 2, D-30823 Garbsen (Germany)

    2017-06-15

    Highlights: • The magnetic transition with temperature hysteresis occurs in Ni{sub 51.9}Mn{sub 27}Ga{sub 211}. • Its second-order character is confirmed by magnetic measurements. • The reason for this phenomenon lies in temperature dependence of lattice constant. - Abstract: The magnetic transition with a temperature hysteresis of about 7 K was observed in the martensitic phase of Ni{sub 51.9}Mn{sub 27}Ga{sub 211}. The measurements of AC magnetic susceptibility in constant magnetic fields up to 570 kA/m have proved its magnetic origin. The transport and caloric measurements were used to gain better understanding of the nature of this phenomenon. The variation of the martensite lattice parameters with temperature is suggested to account for the hysteresis of the magnetic transition.

  4. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    Science.gov (United States)

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue.

  5. Effects of deep cryogenic treatment on the solid-state phase transformation of Cu-Al alloy in cooling process

    Science.gov (United States)

    Wang, Yuhui; Liao, Bo; Liu, Jianhua; Chen, Shuqing; Feng, Yu; Zhang, Yanyan; Zhang, Ruijun

    2012-07-01

    The solid-state phase transformation temperature and duration of deep cryogenic treated and untreated Cu-Al alloys in cooling process were measured by differential scanning calorimetry measurement. The solid-state phase transformation activation energy and Avrami exponent were calculated according to these measurements. The effects of deep cryogenic treatment on the solid-state phase transformation were investigated based on the measurement and calculation as well as the observation of alloy's microstructure. The results show that deep cryogenic treatment can increase the solid-phase transformation activation energy and shorten the phase transformation duration, which is helpful to the formation of fine grains in Cu-Al alloy.

  6. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes.

    Science.gov (United States)

    Albetran, Hani; Vega, Victor; Prida, Victor M; Low, It-Meng

    2018-02-23

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.

  7. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    Science.gov (United States)

    Honorio, Tulio

    2017-11-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  8. Non-isothermal kinetic analysis on the phase transformations of Fe–Co–V alloy

    International Nuclear Information System (INIS)

    Hasani, S.; Shamanian, M.; Shafyei, A.; Behjati, P.; Szpunar, J.A.

    2014-01-01

    Highlights: • We investigated, occurrence of different phase transformations in a FeCo- 7.15%wt V alloy upon heating to 1200 °C. • We investigated, the determination of the activation energy for these phase transformations by using five isoconversional methods. • We investigated, the calculation of the empirical kinetic triplets by using the invariant kinetic parameters method and fitting model. - Abstract: In this study, occurrence of different phase transformations was investigated in a FeCo-7 wt% V alloy upon heating to 1200 °C by the dilatometry method at different heating rates (5, 10, and 15 °C min −1 ). It was found that four phase transformations (including B2-type atomic ordering in α phase, first stage of polymorphic transformation (α → α r + γ), ordering to disordering, and second stage of polymorphic transformation (α r → γ) occur in this alloy up to 1200 °C. Two isoconversional methods, as Starink and Friedman, were used to determine variation of the activation energy with temperature, E(T). Moreover, the empirical kinetic triplets (E, A, and g(α)) were calculated by the invariant kinetic parameters (IKP) method and fitting model

  9. Neutron powder investigation of the tetragonal to monoclinic phase transformation in undoped zirconia

    International Nuclear Information System (INIS)

    Boysen, H.; Frey, F.

    1991-01-01

    The tetragonal (t) to monoclinic (m) transformation in pure ZrO 2 was investigated by neutron powder diffraction at temperatures between 1900 K and room temperature. The results of a Rietveld analysis are compared with a previous investigation of the m → t transformation. The t → m transformation takes place near 1200 K (implaying a hysteresis of 300 K) and in a much smaller interval (about 150 K compared with about 600 K in the m → t case). There are no indications of a two-stage process as found for the m → t transformation. The structural parameters of the m phase depend only on temperature while those of the t phase differ at the same temperatures for the forward and reverse transformation. The temperature dependence of the lattice constants suggests an orientational relationship a t parallela m * and c t parallelb m . There are no macrostrains whereas the overall microstrain behaviour is similar in both cases, viz. the large microstrains present in both phases are released within the transformation regime. An analysis of temperature factors and diffuse background suggest dynamical disorder in the t phase and static disorder in the m phase. (orig.)

  10. Finite size effects in phase transformation kinetics in thin films and surface layers

    International Nuclear Information System (INIS)

    Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il

    2004-01-01

    In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively

  11. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    Science.gov (United States)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  12. Fourier transform nuclear magnetic resonance studies of 199Hg

    International Nuclear Information System (INIS)

    Krueger, H.; Lutz, O.; Nolle, A.; Schwenk, A.

    1975-01-01

    199 Hg Fourier Transform NMR studies of various solutions of diverse mercury salts in H 2 O and D 2 O or in the appropriate protonated and deuterated acids are reported for both Hg 2 ++ and Hg ++ . In the different solutions investigated the 199 Hg line positions depend on the concentration of the solution, on the solvents and their isotopic composition and on the temperature of the sample. A ratio of the Larmor frequency of 199 Hg and of 2 H in a Hg(NO 3 ) 2 solution in dilute DNO 3 is given. Using this ratio and the measured chemical shifts, a ratio of the Larmor frequencies of 199 Hg for infinite dilution relative to 2 H in pure D 2 O is given. From this a g 1 -factor for 199 Hg is derived and compared with the g 1 -factor of an optical pumping experiment. The resulting shielding constant is sigma (hydrated 199 Hg ++ versus 199 Hg atom) = -24.32(5) x 10 -4 . This yields an atomic reference scale for all measured NMR line shifts of mercury. (orig.) [de

  13. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure

    International Nuclear Information System (INIS)

    Zuzjaková, Š.; Zeman, P.; Kos, Š.

    2013-01-01

    Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes

  14. Theoretical and experimental investigation of magnetic materials for DC beam curent transformers

    CERN Document Server

    Kottman, P

    1997-01-01

    Toroidal cores made of high-permeability magnetic materials are fundamental building blocks of DC beam current transformers (DCBT). The impact of the properties of the magnetic cores on the overall performance of DCBT was studied. The principle of the DCBT operation is based on the superposition of AC and DC electromagnetic fields in the cores. This effect was studied in detail in two magnetic materials currently used in a construction of DCBT at CERN. The simulation of the DCBT operation was made using the results of these studies and the theoretical model for description of a B-H hysteresis curve of magnetic materials. This simulation allows to evaluate the influence of various factors (a shape of the B-H curve, deviations of core parameters, presence of noise) on the performance of DCBT. A survey of available high-permeability magnetic materials suitable for DCBT is presented.

  15. Is the anomalous magnetic moment the consequence of a non-classical transformation for rotating frames?

    International Nuclear Information System (INIS)

    Gisin, B V

    2002-01-01

    We consider the anomalous magnetic moment from an 'optical viewpoint' using an analogy between the motion of a particle with a magnetic moment in a magnetic field and the propagation of an optical pulse through an electro-optical crystal in an electric field. We show that an optical experiment similar to electron magnetic resonance is possible in some electro-optical crystals possessing the Faraday effect. This phenomenon is described by an analogue of the Pauli equation extracted from the Maxwell equation in the slowly varied amplitude approximation. In such an experiment the modulation by rotating fields plays a significant role. From the optical viewpoint the modulation assumes introducing the concept of a point rotation frame with the rotation axis at every point originated from the concept of the optical indicatrix (index ellipsoid). We discuss the connection between the non-classical transformation by transition from one such frame to another and an anomalous magnetic moment

  16. Berry-phase blockade in single-molecule magnets

    OpenAIRE

    Gonzalez, Gabriel; Leuenberger, Michael N.

    2006-01-01

    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that in the case of incoherent spin states it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the s...

  17. Magnetic Quasi-Phase Matching All-Fiber Isolator

    Directory of Open Access Journals (Sweden)

    Chunte A. Lu

    2010-01-01

    Full Text Available We have experimentally demonstrated an all-fiber optical isolator with 20 dB isolation. The result shows that the quasi-phase matching technique via a meter-long magnet array is highly feasible to generate more than 45 degrees of Faraday rotation in the fibers. The all-fiber isolator can also be temperature tuned to operate between 1048 nm and 1066 nm wavelength.

  18. Radiation-induced phase transformation in ferromagnetic perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Podsekin, A K; Dem' yanov, V V; Ivanova, V V; Venevtsev, Yu N [Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR)

    1976-12-01

    An effect of neutron irradiation inducing a phase transition in ferromagnetic perovskite, Sr/sub 0.3/La/sub 0.7/MnO/sub 3/, has been discovered and studied. It is shown that a change in the Curie temperature is proportional to the dose of reactor irradiation. A decrease in the temperature of the phase transition with the concentration of radiation defects is accompanied by an increase in the electrical specific resistance and a change in the initial lattice parameters. It is shown that the radiation shift is due to at least two causes, viz. to an increase in the parameters of the elementary cell and the growth of the electrical specific resistance as a result of bounded electron states' forming on the radiation defects.

  19. Phase transformation in Mg—Sb3Te thin films

    International Nuclear Information System (INIS)

    Li Jun-Jian; Chen Yi-Min; Nie Qiu-Hua; Lü Ye-Gang; Wang Guo-Xiang; Shen Xiang; Dai Shi-Xun; Xu Tie-Feng

    2014-01-01

    Mg-doped Sb 3 Te films are proposed to improve the performance of phase-change memory (PCM). We prepare Mg-doped Sb 3 Te films and investigate their crystallization behaviors, structural, optical and electrical properties. We find that Mg-doping can increase the crystallization temperature, enhance the activation energy, and improve the 10-year data retention of Sb 3 Te. Especially Mg 25.19 (Sb 3 Te)74.81 shows higher T c (∼ 190 °C) and larger E a (∼ 3.49 eV), which results in a better data retention maintaining for 10 yr at ∼ 112 °C. Moreover R a /R c value is also improved. These excellent properties make Mg—Sb—Te material a promising candidate for the phase-change memory (PCM). (special topic — international conference on nanoscience and technology, china 2013)

  20. Ultrasonic spectroscopy study into the nature of a high-temperature phase transformation in V203

    International Nuclear Information System (INIS)

    Andrianov, G.O.; Drichko, I.L.; Lakhtman, B.D.

    1978-01-01

    The velocity of longitudinal sound wave propagation in V 2 O 3 vanadium sesquioxide was studied in the temperature range of 250-550 K in a wide range of ultrasound frequencies from 70 to 1500 MHz. The investigation was carried out in order to obtain the dynamic characteristics of the transition and to define the nature of high-temperature anomalies in V 2 O 3 . The sound velocity dispersion was observed. The frequency dependence of the sound velocity can be adequately described by the Mandelstam-Leontovich formula. Values and temperature dependences of tau, Vsub(infinity) and (Vsub(infinity)-Vsub(0)/Vsub(infinity) were calculated where tau is the relaxation time; Vsub(0), Vsub(infinity) are the values of velocitiea when ω→0 and ω→infinity respectively. The acoustic anomalies in the temperature range under investigation are shown to be well described qualitatively by the overlapping zone model. A deep maximum in the sound velocity at T=520 K can be explained by fluctuations in the neighbourhood of the magnetic phase transformation

  1. A Phase Transformation with no Change in Space Group Symmetry: Octafluoronaphtalene

    DEFF Research Database (Denmark)

    Pawley, G. S.; Dietrich, O. W.

    1975-01-01

    A solid-state phase transformation in octafluoronaphthalene has been discovered at 266.5K on cooling, and at 15K higher on heating. The symmetry of both phases is found to be the same, namely monoclinic with space group P21/c. The unit cell parameters change by up to 10%, but the integrity...... of a single crystal, which shatters on cooling, is good enough for a single-crystal structure determination. This has been done in both phases to a sufficient accuracy that a mechanism for the transformation can be proposed. Molecules which lie parallel to one another shear to a new parallel position...

  2. Theory of phase transformation and reorientation in single crystalline shape memory alloys

    International Nuclear Information System (INIS)

    Zhu, J J; Liang, N G; Cai, M; Liew, K M; Huang, W M

    2008-01-01

    A constitutive model, based on an (n+1)-phase mixture of the Mori–Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place

  3. On the form invariant volume transformation in phase space by focusing neutron guides: An analytic treatment

    International Nuclear Information System (INIS)

    Stüßer, N.; Hofmann, T.

    2013-01-01

    Tapered guides with supermirror coating are frequently used to focus neutron beams on specimens. The divergence distribution in the focused beam is of a great importance for the quality of neutron instrumentation. Using an analytic approach we derive the tapering which is needed to achieve a form invariant phase space transformation of a rectangular phase volume. In addition we consider the effect of beam attenuation by the finite reflectivity of supermirrors. -- Highlights: • Form invariant volume transformation in phase space. • Focusing modules for neutron beams. • Analytical approach. • Attenuation effects in linearly and nonlinearly tapered guides

  4. The effect of manganese on the kinetics of phase transformations of austenite in structural steels

    International Nuclear Information System (INIS)

    Pacyna, J.; Jedrzejewska-Strach, A.

    1995-01-01

    The aim of this work was to examine the effect of Mn on the kinetics of phase transformations of supercooled austenite. It was executed the 4 CCT diagrams for alloys of a variable Mn content. The obtained results indicate that with the increase of Mn concentrations in austenite in the range 0.73-2.94% the times to the beginning of its transformation are lengthened and the temperatures of these transformations into ferrite and the bainitic transformations are lengthened slightly whole only the time to the beginning of a pearlitic transformation is lengthened more strongly. In the range of 2.0-2.94% Mn the times to the beginnings of all transformations grow very strongly. (author)

  5. Ion transport and phase transformation in thin film intercalation electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wunde, Fabian; Nowak, Susann; Muerter, Juliane; Hadjixenophontos, Efi; Berkemeier, Frank; Schmitz, Guido [Stuttgart Univ. (Germany). Inst. fuer Materialwissenschaft

    2017-11-15

    Thin film battery electrodes of the olivine structure LiFePO{sub 4} and the spinel phase LiMn{sub 2}O{sub 4} are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO{sub 4} clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles-Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO{sub 4} have the character of an ion-conductor of vanishing electronic conductivity.

  6. Kalman filters for real-time magnetic island phase tracking

    International Nuclear Information System (INIS)

    Borgers, D.P.; Lauret, M.; Baar, M.R. de

    2013-01-01

    Highlights: • We propose two Kalman filters for tracking of NTMs on ASDEX Upgrade. • The Kalman filters can track NTMs in a much larger frequency range than PLLs. • The filters are tested on synthetic and experimental data from TEXTOR and TCV. • We conclude that the unscented Kalman filter can be useful for NTM control. -- Abstract: For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX Upgrade however, the desired frequency range in which the islands are to be tracked (100 Hz–10 kHz) is much larger than is possible with a PLL. In this contribution, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF) are proposed for real-time frequency, phase and amplitude tracking of sinusoidal signals, based on noisy measurements. Compared to PLLs, the EKF and UKF are able to track sinusoidal signals in a much larger frequency range. The filters are applied on synthetic data and on experimental data from the TEXTOR and TCV tokamaks, from which we conclude that the UKF can be useful for real-time control of magnetic islands on ASDEX Upgrade

  7. Kalman filters for real-time magnetic island phase tracking

    Energy Technology Data Exchange (ETDEWEB)

    Borgers, D.P. [Hybrid and Networked Systems, Department of Mechanical Engineering – Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Lauret, M., E-mail: M.Lauret@tue.nl [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, Nieuwegein (Netherlands); Control Systems Technology, Department of Mechanical Engineering – Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Baar, M.R. de [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, Nieuwegein (Netherlands); Control Systems Technology, Department of Mechanical Engineering – Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15

    Highlights: • We propose two Kalman filters for tracking of NTMs on ASDEX Upgrade. • The Kalman filters can track NTMs in a much larger frequency range than PLLs. • The filters are tested on synthetic and experimental data from TEXTOR and TCV. • We conclude that the unscented Kalman filter can be useful for NTM control. -- Abstract: For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX Upgrade however, the desired frequency range in which the islands are to be tracked (100 Hz–10 kHz) is much larger than is possible with a PLL. In this contribution, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF) are proposed for real-time frequency, phase and amplitude tracking of sinusoidal signals, based on noisy measurements. Compared to PLLs, the EKF and UKF are able to track sinusoidal signals in a much larger frequency range. The filters are applied on synthetic data and on experimental data from the TEXTOR and TCV tokamaks, from which we conclude that the UKF can be useful for real-time control of magnetic islands on ASDEX Upgrade.

  8. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  9. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    International Nuclear Information System (INIS)

    Leung Shingyu; Qian Jianliang

    2010-01-01

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  10. Raman studies of pressure and temperature induced phase transformations in calcite

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Hess, N.J.

    1992-01-01

    This patent describes phase stability in the calcium carbonate system investigated as a simultaneous function of pressure and temperature up to 40 kbar and several hundred degrees Kelvin. Micro-Raman techniques were used to interrogate samples constrained within a resistively heated diamond anvil cell. Measured spectra allow unequivocal identification of crystalline phases and are used to refine the P,T phase diagram. Calcium carbonate was found to exhibit both reversible and irreversible transformation phenomena among the four known phases which exist under these conditions. Time-dependent Raman intensity variations as the material is perturbed from its equilibrium state allow real-time kinetics measurements to be performed. Evidence suggests that the order of certain observed transformations may be pressure dependent. The utility of Raman spectroscopy to follow transformation phenomena and to estimate fundamental thermophysical properties from the stress dependence of vibrational mode frequencies is demonstrated

  11. Effect of grinding and polishing on near-surface phase transformations in zirconia

    International Nuclear Information System (INIS)

    Reed, J.S.; Lejus, A.M.

    1977-01-01

    The transformation of near-surface material on grinding and polishing has been investigated in sintered zirconia of 1 μm grain size and 99 percent density containing 4.5 and 7.0 mole percent Y 2 O 3 . Rough wet and dry grinding transformed about 20 percent cubic phase into 18 percent tetragonal and 2 percent monoclinic in material initially 47 percent cubic and 53 percent tetragonal (4.5 mole percent Y 2 O 3 ) but no change of phase in material that was fully cubic (7.0 mole percent Y 2 O 3 ). Annealing and polishing reduced lattice strain but only polishing reduced the concentration of monoclinic and tetragonal phases. Microhardness studies indicated that lattice strain and the phase transformations increased the penetration hardness to a depth of about 4 μm

  12. Numerical model of phase transformation of steel C80U during hardening

    Directory of Open Access Journals (Sweden)

    T. Domański

    2007-12-01

    Full Text Available The article concerns numerical modelling of the phase transformations in solid state hardening of tool steel C80U. The transformations were assumed: initial structure – austenite, austenite – perlite, bainite and austenite – martensite. Model for evaluation of fractions of phases and their kinetics based on continuous heating diagram (CHT and continuous cooling diagram (CCT. The dilatometric tests on the simulator of thermal cycles were performed. The results of dilatometric tests were compared with the results of the test numerical simulations. In this way the derived models for evaluating phase content and kinetics of transformations in heating and cooling processes were verified. The results of numerical simulations confirm correctness of the algorithm that were worked out. In the numerical example the simulated estimation of the phase fraction in the hardened axisimmetrical element was performed.

  13. Misfit dislocations and phase transformations in high-T sub c superconducting films

    CERN Document Server

    Gutkin, M Y

    2002-01-01

    A theoretical model is suggested that describes the effects of misfit stresses on defect structures, phase content and critical transition temperature T sub c in high-T sub c superconducting films. The focus is placed on the exemplary case of YBaCuO films deposited onto LaSrAlO sub 4 substrates. It is theoretically revealed here that misfit stresses are capable of inducing phase transformations controlled by the generation of misfit dislocations in growing cuprate films. These transformations, in the framework of the suggested model, account for experimental data on the influence of the film thickness on phase content and critical temperature T sub c of superconducting cuprate films, reported in the literature. The potential role of stress-assisted phase transformations in suppression of critical current density across grain boundaries in high-T sub c superconductors is briefly discussed.

  14. Phase diagrams and switching of voltage and magnetic field in dilute magnetic semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, R. [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, 39005 Santander (Spain); Carretero, M.; Bonilla, L.L. [G. Millan Institute, Fluid Dynamics, Nanoscience and Industrial Maths., Universidad Carlos III de Madrid, 28911 Leganes (Spain); Unidad Asociada al Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain); Platero, G. [Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain)

    2010-04-15

    The response of an n-doped dc voltage biased II-VI multi-quantum well dilute magnetic semiconductor nanostructure having its first well doped with magnetic (Mn) impurities is analyzed by sweeping wide ranges of both the voltage and the Zeeman level splitting induced by an external magnetic field. The level splitting versus voltage phase diagram shows regions of stable self-sustained current oscillations immersed in a region of stable stationary states. Transitions between stationary states and self-sustained current oscillations are systematically analyzed by both voltage and level splitting abrupt switching. Sudden voltage or/and magnetic field changes may switch on current oscillations from an initial stationary state, and reciprocally, current oscillations may disappear after sudden changes of voltage or/and magnetic field changes into the stable stationary states region. The results show how to design such a device to operate as a spin injector and a spin oscillator by tuning the Zeeman splitting (through the applied external magnetic field), the applied voltage and the sample configuration parameters (doping density, barrier and well widths, etc.) to select the desired stationary or oscillatory behavior. Phase diagram of Zeeman level splitting {delta} vs. dimensionless applied voltage {phi} for N = 10 QWs. White region: stable stationary states; black: stable self-sustained current oscillations. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. A Fuzzy Logic Based Three phase Inverter with Single DC Source for Grid Connected PV System Employing Three Phase Transformer

    OpenAIRE

    Mani, venkatesan; Ramachandran, Rajeswari; N, Deverajan

    2016-01-01

    A fuzzy based three phase inverter with single DC source for grid connected photo voltaic (PV) system employing three phase transformer is presented in this paper. Space Vector Pulse Width Modulation (SVPWM) control scheme is effectively used to generate the appropriate switching sequences to the inverter switches. The intend of the fuzzy logic approach is to meet high quality output, fast response and high robustness. Finally Total Harmonics Distortion (THD) generated by the inverter is comp...

  16. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    Science.gov (United States)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Inhomogeneous magnetic phase in Co–Al–O spinel nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K., E-mail: sato.koichi@nims.go.jp [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Naka, T., E-mail: naka.takashi@nims.go.jp [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Nakane, T. [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Rangappa, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur PO, Hyderabad 500-005 (India); Takami, S. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Ohara, S. [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Adschiri, T. [WPI, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-01-15

    We report on the crystallographic structure and magnetism of 5-nm Co–Al–O spinel nanocrystals synthesized under supercritical hydrothermal conditions. Structural examination using powder X-ray diffraction and chemical analysis showed the composition of the sample to be Co{sub 0.47}Al{sub 2.36}O{sub 4} rather than the stoichiometric composition of CoAl{sub 2}O{sub 4}. The site occupancy of Co on the A-site forming the diamond lattice was 0.47, which is slightly larger than the site percolation limit. Magnetization measurements showed that magnetic clusters emerged below 40 K. At temperatures below 40 K, a Griffiths-phase-like inhomogeneous state appeared in the sample in which magnetic clusters and paramagnetic spins coexisted. The dc-paramagnetic and ac-susceptibilities exhibited an anomaly below 7 K. - Highlights: • The synthesized sample had an Al-rich structure described by Co{sub 0.47}Al{sub 2.36}O{sub 4}. • The site occupancy of Co at the A-site is larger than the site percolation limit of the A-site. • The non-linearity of the magnetization appeared at T<40 K. • The paramagnetic component showed a peak at 7 K. • An inhomogeneous state is established in our Co–Al oxide nanocrystals.

  18. Features of the kinetics of heterogeneous reactions with phase transformations on catalyst surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berman, A D; Krylov, O V

    1978-01-01

    This paper presents a review of 41 bibliographic references to experiments on the adsorption of various gases (e.g., carbon monoxide, formic acid, ammonia, and oxygen) on metals (e.g., nickel, molybdenum, and platinum) and oxides covers observations of two-dimensional phases during adsorption; the kinetics of adsorption and catalysis associated with two-dimensional phase transitions; and several approximate models for describing the kinetics of heterogeneous catalysis which account for two-dimensional phase transformations on catalyst surfaces.

  19. Heat Treatment of Iron-Carbon Alloys in a Magnetic Field (Phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    Thermomagnetic processing was shown to shift the phase transformation temperatures and therefore microstructural evolution in the high performance engine valve spring 9254 steel alloy by applying a high magnetic field during cooling. These effects would be anticipated to improve performance such as high cycle fatigue as demonstrated in prior projects. Thermomagnetic processing of gears and crank shafts was constrained by the size of the prototype equipment currently available at ORNL. However, the commercial procurement viability of production scale 9-Tesla, 16-inch diameter bore thermomagnetic processing equipment for truck idler gears up to ~11-inch diameter and potential crank shaft applications was shown, as multiple superconducting magnet manufacturing companies (in conjunction with an induction heat treating company, AjaxTOCCO Magnethermic) offered cryogen-free or cryocooler equipment designs to Cummins.

  20. Phase transformations in interstitial Fe-N alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liapina, T.

    2005-04-15

    Nitriding is a prominent thermochemical heat-treatment procedure leading to various types of surface property improvements of the treated iron and steel. Many questions regarding even very basic properties of these compound layers and the relevant nitride phases are still open. Some of these open questions related with the behaviour of iron nitrides and, in particular, of iron nitride compound layers occurring below the usual process temperatures are addressed to in this thesis, as relevant e.g. for the cooling procedure after nitriding. The most important iron nitrides occurring in iron-nitride compound layers are the {gamma}'- and {epsilon}-phases in the Fe-N system. It is shown that for relatively low nitrogen contents of epsilon-iron nitrides (around Fe{sub 3}N) the cooling rate upon going down from an elevated annealing temperature to room temperature has a significant effect on the lattice parameters. X-ray and neutron diffraction analysis revealed that the lattice parameter values observed after fast cooling are affected by the higher degree of nitrogen disorder at elevated temperature, thus changing the c/a ratio. New relations between the lattice parameters of {epsilon}-iron nitrides and the nitrogen content are suggested for different types of cooling. The investigation by TEM of the decomposition upon annealing (633 K, 673 K) of initially homogeneous {epsilon}-Fe{sub 3}N powders revealed that the {gamma}'-formation occurs in only a few powder particles in a grain-like form. Moreover, diffraction line-profile analysis revealed N transport occurring from particle to particle, leading to inhomogeneities of N content in the epsilon-phase. It was shown that {gamma}'-iron nitride formation can occur by backwards growth of the existing {gamma}'-sublayer at the cost of the {epsilon}-sublayer increasing N concentration in the {epsilon}-layer. Another process, which may additionally occur in the compound layer upon annealing, is diffusion of N

  1. Phases of crown-gall transformation susceptible to hydroxyurea

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2014-01-01

    Full Text Available With the use of bacterial strains, both sensitive and resistant to hydroxyurea the action of this inhibitor on tumour formation on the leaves of Kalanchoe daigremontiana infected with Agrobacterium tumefaciens was tested for five days after inoculation. The results are in agreement with the opinion that the anti-tumour effect of hydroxyurea applied in the induction phase (between 18 and 60 h after inoculation is the result of its direct action on plant cells, whereas inhibition of tumour formation by the inhibitor in the inoculation period depends on its action on the pathogenic bacteria.

  2. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Science.gov (United States)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  3. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    International Nuclear Information System (INIS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-01-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations

  4. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M.; Howells, R. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)

    2014-11-15

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  5. Phase transformations in titanium oxycarbide TiC0.545O0.08

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Em, V.T.; Savenko, B.N.; Batdemberel, G.

    2003-01-01

    Phase transformations in titanium oxycarbide TiC 0.545 O 0.08 have been studied by the methods of neutron diffraction and X-ray structure analysis. It was established that the ordered cubic structure δ ' (sp. gr. Fd3m) of the oxycarbide sample is the low-temperature ordered phase existing up to 990 K. The order-disorder phase transition (990 K) results in the formation of an ordered trigonal structure (sp. gr. R3-barm or P3 1 21). The α-Ti-phase is separated at the temperature 1020 K. The order-disorder phase transition was found at T = 1040 K

  6. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.

    Science.gov (United States)

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R

    2015-08-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  7. Phase transformations of pyrophyllite clay mineral after heat treatment

    International Nuclear Information System (INIS)

    Salvadori, M.C.

    1988-01-01

    The termal transformation of the Pyrophyllite clay mineral, given by the equations: AL sub(2) O sub(3).4SiO sub(2).H sub(2) O → Al sub(2) O sub(3).4SiO sub(2) + H sub(2) O Pyrophyllite Anhydride Water vapour. 3 (Al sub(2) O sub(3).4SiO sub(2)) → 3 Al sub(2) O sub(3). 2SiO sub(2) + 10 (SiO sub(2)) Pyrophyllite Anhydride Mullite Cristobalite, were studied by Transmission Electron Microscopy (TEM) associated to Selected Area Electron Diffraction (SAD), applied to a very pure sample, colected at Diamantina, M.G. Some other tgechniques were also used, as X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA), applied to other different Pyrophyllite samples. A thermodynamical theoretical study was undertaken to estimate the values for the entropyu of formation, enthalpy and molar thermal capacity for the Pyrophyllite Anhydride. (author)

  8. Completion of a high efficiency ultralarge capacity three-phase transformer

    International Nuclear Information System (INIS)

    Maejima, Masaaki; Maruyama, Katsuya; Fukuda, Teruo.

    1986-01-01

    As for the boosting transformers for thermal and nuclear power stations, at present the ultralarge capacity transformers of 1000 - 1200 MVA class are the main, and particularly in nuclear power, accompanying the development of improved type BWRs and the rise of system stability, there is the tendency toward further large capacity and large size. Consequently, reflecting the recent rise of energy cost, the demand of energy conservation and the reduction of required sites heightened largely as well as the high reliability. In order to meet these demands, Hitachi Ltd. has established the technology of changing to iron machines such as ultralarge iron cores and ultralarge capacity undivided disk windings using the latest design and manufacture techniques were applied to the 525 kV, 1200 MVA transformer for No.4 plant in Fukushima No.2 Nuclear Power Station, Tokyo Electric Power Co., Inc., thus a three-phase transformer of the highest level, high efficiency and ultralarge capacity was completed. In this paper, the outline of this transformer and the test for verifying its reliability are described. The technical change of large capacity three-phase transformers, the specifications, construction, manufacture, reliability test and the effect of modification of this transformer, and the expansion of application to the next generation ultralarge capacity transformers are reported. (Kako, I.)

  9. Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation

    International Nuclear Information System (INIS)

    Song, Shaojie; Liu, Feng

    2016-01-01

    Considering a spherical misfitting precipitate growing into a finite elastic-perfectly plastic supersaturated matrix, a kinetic modeling for such solid-state partitioning phase transformation is presented, where the interactions of interface migration, solute diffusion and misfit accommodation are analyzed. The linkage between interface migration and solute diffusion proceeds through interfacial composition and interface velocity; their effects on misfit accommodation are mainly manifested in an effective transformation strain, which depends on instantaneous composition field and precipitate size. Taking γ to α transformation of a binary Fe-0.5 at.% C alloy under both isothermal and continuous cooling conditions as examples, the effects of misfit accommodation on the coupling interface migration and solute diffusion are well evaluated and discussed. For the isothermal transformation, a counterbalancing influence between mechanical and chemical driving forces is found so that the mixed-mode transformation kinetics is not sensitive with respect to the elastic–plastic accommodation of the effective misfit strain. Different from the isothermal process, during the continuous cooling condition, the effects of misfit accommodation on the kinetics of solid-state partitioning phase transformation are mainly manifested in the great decrease of the transformation starting temperature and the thermodynamic equilibrium composition. The present kinetic modeling was applied to predict the experimentally measured γ/α transformation of Fe-0.47 at.% C alloy conducted with a cooling rate of 10 K min −1 and a good agreement was achieved.

  10. Application of fast Fourier transform in thermo-magnetic convection analysis

    International Nuclear Information System (INIS)

    Pyrda, L

    2014-01-01

    Application of Fast Fourier Transform in thermo-magnetic convection is reported. Cubical enclosure filled with paramagnetic fluid heated from below and placed in the strong magnetic field gradients was investigated. The main aim of study was connected with identification of flow types, especially transition to turbulence. For this purpose the Fast Fourier Transform (FFT) analysis was applied. It was followed by the heat transfer characteristic for various values of magnetic induction gradient. The analysis was done at two Rayleigh numbers 7.89·10 5 and 1.86·10 6 with thermo-magnetic Rayleigh numbers up to 1.8·10 8 and 4.5·10 8 respectively. The presented results clearly indicate flow types and also demonstrate augmented heat transfer in dependence on magnetic induction gradient. Detailed analysis of flow transition to turbulent state was compared with transition line for natural convection reported in literature. The transition to turbulence in the case of thermo-magnetic convection of paramagnetic fluid was in very good agreement with transition in the case of natural convection.

  11. Nature of gallium focused ion beam induced phase transformation in 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Babu, R. Prasath; Irukuvarghula, S.; Harte, A.; Preuss, M.

    2016-01-01

    The microstructural evolution and chemistry of the ferrite phase (α), which transforms from the parent austenite phase (γ) of 316L stainless steel during gallium (Ga) ion beam implantation in Focused Ion Beam (FIB) instrument was systematically studied as a function of Ga"+ ion dose and γ grain orientations. The propensity for initiation of γ → α phase transformation was observed to be strongly dependent on the orientation of the γ grain with respect to the ion beam direction and correlates well with the ion channelling differences in the γ orientations studied. Several α variants formed within a single γ orientation and the sputtering rate of the material, after the γ → α transformation, is governed by the orientation of α variants. With increased ion dose, there is an evolution of orientation of the α variants towards a variant of higher Ga"+ channelling. Unique topographical features were observed within each specific γ orientation that can be attributed to the orientation of defects formed during the ion implantation. In most cases, γ and α were related by either Kurdjumov-Sachs (KS) or Nishiyama-Wassermann (NW) orientation relationship (OR) while in few, no known OR's were identified. While our results are consistent with gallium enrichment being the cause for the γ → α phase transformation, some observations also suggest that the strain associated with the presence of gallium atoms in the lattice has a far field stress effect that promotes the phase transformation ahead of gallium penetration.

  12. Structural, vibrational and thermal characterization of phase transformation in L-histidinium bromide monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moura, G.M. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Universidade Federal do Sul e Sudeste do Pará, ICEN, Marabá, PA 68505-080 (Brazil); Carvalho, J.O. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Instituto Federal do Tocantins, Araguaína, TO, 77.826-170 (Brazil); Silva, M.C.D.; Façanha Filho, P.F. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Santos, A.O. dos, E-mail: adenilson1@gmail.com [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil)

    2015-09-01

    L-Histidinium bromide monohydrate (LHBr) single crystal is a nonlinear optical material. In this work the high temperature phase transformation and the thermal stability of single crystals of LHBr was investigated by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry and Raman spectroscopy. The results showed the LHBr phase transformation of orthorhombic (P2{sub 1}2{sub 1}2{sub 1}) to monoclinic system (P 1 2 1) at 120 °C, with the lattice parameters a = 12.162(1) Å, b = 16.821(2) Å, c = 19.477(2) Å and β = 108.56(2)°. These techniques are complementary and confirm the structural phase transformation due to loss water of crystallization. - Highlights: • -histidinium bromide single crystal was grown by slow evaporation technique. • X-ray diffraction characterize the high-temperature phase transformation. • The structural phase transformation occur due to loss of water of crystallization. • The LHBr thermal expansion coefficients exhibit an anisotropic behavior.

  13. Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

    Science.gov (United States)

    Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao

    2014-12-01

    Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.

  14. Current-induced rotational torques in the skyrmion lattice phase of chiral magnets

    NARCIS (Netherlands)

    Everschor, K.; Garst, M.; Duine, R.A.|info:eu-repo/dai/nl/304830127; Rosch, A.

    2011-01-01

    In chiral magnets without inversion symmetry, the magnetic structure can form a lattice of magnetic whirl lines, a two-dimensional skyrmion lattice, stabilized by spin-orbit interactions in a small range of temperatures and magnetic fields. The twist of the magnetization within this phase gives rise

  15. Nondeterministic noiseless amplification via non-symplectic phase space transformations

    International Nuclear Information System (INIS)

    Walk, Nathan; Lund, Austin P; Ralph, Timothy C

    2013-01-01

    We analyse the action of an ideal noiseless linear amplifier operator, g a-hat † a-hat, using the Wigner function phase space representation. In this setting we are able to clarify the gain g for which a physical output is produced when this operator is acted upon inputs other than coherent states. We derive compact closed form expressions for the action of N local amplifiers, with potentially different gains, on arbitrary N-mode Gaussian states and provide several examples of the utility of this formalism for determining important quantities including amplification and the strength and purity of the distilled entanglement, and for optimizing the use of the amplification in quantum information protocols. (paper)

  16. Neutron scattering study of the phase transformation of LaNi3 induced by hydriding

    International Nuclear Information System (INIS)

    Ruan Jinghui; Zeng Xiangxin; Niu Shiwen

    1994-01-01

    The phase transformation of LaNi 3 induced by hydriding and de-hydriding is investigated using the neutron diffraction and the neutron inelastic scattering. The results show that the hydriding sample, LaNi 3 H x , is transformed from crystalline state of the LaNi 3 into amorphous state with a microcrystalline characteristic of LaNi 5 , and the de-hydriding sample produced by LaNi 3 H x dehydrated at 600 degree C is decomposed into new crystalline states composed by LaNi 5 -and La-hydrides. The procedure of phase transformation is that the result of the transformation of LaNi 3 induced by hydriding shows the properties of LaNi 5 -H 2 system

  17. Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides

    International Nuclear Information System (INIS)

    Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V.

    2014-01-01

    Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb 2 Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure

  18. Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V., E-mail: mmanuel@mse.ufl.edu

    2014-11-15

    Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb{sub 2}Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure.

  19. Kinetic boundaries and phase transformations of ice i at high pressure

    Science.gov (United States)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  20. Effect of magnetic soft phase on the magnetic properties of bulk anisotropic Nd2Fe14B/α-Fe nanocomposite permanent magnets

    Science.gov (United States)

    Li, Yuqing; Yue, Ming; Zhao, Guoping; Zhang, Hongguo

    2018-01-01

    The effects of soft phase with different particle sizes and distributions on the Nd2Fe14B/α-Fe nanocomposite magnets have been studied by the micro-magnetism simulation. The calculated results show that smaller and/or scattered distribution of soft phase can benefit to the coercivity (H ci) of the nanocomposite magnets. The magnetization moment evolution during magnetic reversal is systematically analyzed. On the other hand, magnetic properties of anisotropic Nd-Fe-B/α-Fe nanocomposite magnets prepared by hot pressing and hot deformation methods also provide evidences for the calculated results.

  1. Investigating the phase transformations in starch during gelatinisation

    International Nuclear Information System (INIS)

    Tan, I.; Sopade, P.A.; Halley, P.J.

    2003-01-01

    Full text: Starch, a natural polymer of amylose and amylopectin, continues to be a prime material for biodegradable plastic applications as well as many food and non-food uses. Raw starch exists as semicrystalline granules with complex internal supramolecular packing and can be hierarchically organised on four length scales: molecular scale (∼ Angstroms), lamellar structure (∼90 Angstroms); growth rings (∼ 0.1 μm) and the whole granule morphology (∼μm). Starch can be converted into thermoplastic material (TPS) through destructurisation in the presence of plasticisers under specific extrusion conditions. During the transformation of granular starch into TPS, the complex granular supramolecular structure gives rise to the characteristic endothermic first order transition known as gelatinization. Despite advances in research on starch gelatinisation, the precise structural change and transitions involved are still a matter of debate. Moreover, structural variables such as botanical origins, amylose/amylopectin ratio, macromolecular sizes, etc, have been known to influence the physicochemical properties of starch and the transitions it undergoes.While understanding the linkage between structural characteristics and gelatinisation behaviour will provide fundamental knowledge that is critical for the development of next-generation starch biodegradable plastics, this has proved difficult mainly due to poor knowledge of the exact mechanism involved in gelatinisation. This is further complicated by the sketchy idea on the role of structure and organisation of the starch granule. Studies in our laboratory on four types of maize starches with different amylose/amylopectin ratio revealed that although there is a general trend on the variation of gelatinisation parameters with plasticisers concentration, the extent of the variation are different for different types of starch. It was also found that these differences are not a directly related to the variation in

  2. Influence of processing-induced phase transformations on the dissolution of theophylline tablets

    OpenAIRE

    Debnath, Smita; Suryanarayanan, Raj

    2004-01-01

    The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the per-formance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate »hydrate»anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolut...

  3. Extremely low frequency magnetic field measurements in buildings with transformer stations in Switzerland.

    Science.gov (United States)

    Röösli, Martin; Jenni, Daniela; Kheifets, Leeka; Mezei, Gabor

    2011-08-15

    The aim of this study was to evaluate an exposure assessment method that classifies apartments in three exposure categories of extremely low frequency magnetic fields (ELF-MF) based on the location of the apartment relative to the transformer room. We completed measurements in 39 apartments in 18 buildings. In each room of the apartments ELF-MF was concurrently measured with 5 to 6 EMDEX II meters for 10 min. Measured arithmetic mean ELF-MF was 0.59 μT in 8 apartments that were fully adjacent to a transformer room, either directly above the transformer or touching the transformer room wall-to-wall. In apartments that only partly touched the transformer room at corners or edges, average ELF-MF level was 0.14 μT. Average exposure in the remaining apartments was 0.10 μT. Kappa coefficient for exposure classification was 0.64 (95%-CI: 0.45-0.82) if only fully adjacent apartments were considered as highly exposed (>0.4 μT). We found a distinct ELF-MF exposure gradient in buildings with transformer. Exposure classification based on the location of the apartment relative to the transformer room appears feasible. Such an approach considerably reduces effort for exposure assessment and may be used to eliminate selection bias in future epidemiologic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Study of Dielectric Breakdown Performance of Transformer Oil Based Magnetic Nanofluids

    Directory of Open Access Journals (Sweden)

    Yuzhen Lv

    2017-07-01

    Full Text Available Research on the transformer oil-based nanofluids (NFs has been raised expeditiously over the past decade. Although, there is discrepancy in the stated results and inadequate understanding of the mechanisms of improvement of dielectric nanofluids, these nanofluids have emerged as a potential substitute of mineral oils as insulating and heat removal fluids for high voltage equipment. The transformer oil (TO based magnetic fluids (ferrofluids may be regarded as the posterity insulation fluids as they propose inspiring unique prospectus to improve dielectric breakdown strength, as well as heat transfer efficiency, as compared to pure transformer oils. In this work, transformer oil-based magnetic nanofluids (MNFs are prepared by dispersal of Fe3O4 nanoparticles (MNPs into mineral oil as base oil, with various NPs loading from 5 to 80% w/v. The lightning impulse breakdown voltages (BDV measurement was conducted in accordance with IEC 60897 by using needle to sphere electrodes geometry. The test results showed that dispersion of magnetic NPs may improve the insulation strength of MO. With the increment of NPs concentrations, the positive lightning impulse (LI breakdown strength of TO is first raised, up to the highest value at 40% loading, and then tends to decrease at higher concentrations. The outcomes of negative LI breakdown showed that BDV of MNFs, with numerous loadings, were inferior to the breakdown strength of pure MO. The 40% concentration of nanoparticles (optimum concentration was selected, and positive and negative LI breakdown strength was also further studied at different sizes (10 nm, 20 nm, 30 nm and 40 nm of NPs and different electrode gap distances. Augmentation in the BDV of the ferrofluids (FFs is primarily because of dielectric and magnetic features of Fe3O4 nanoaprticles, which act as electron scavengers and decrease the rate of free electrons produced in the ionization process. Research challenges and technical difficulties

  5. Phase-Inductance-Based Position Estimation Method for Interior Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Xin Qiu

    2017-12-01

    Full Text Available This paper presents a phase-inductance-based position estimation method for interior permanent magnet synchronous motors (IPMSMs. According to the characteristics of phase induction of IPMSMs, the corresponding relationship of the rotor position and the phase inductance is obtained. In order to eliminate the effect of the zero-sequence component of phase inductance and reduce the rotor position estimation error, the phase inductance difference is employed. With the iterative computation of inductance vectors, the position plane is further subdivided, and the rotor position is extracted by comparing the amplitudes of inductance vectors. To decrease the consumption of computer resources and increase the practicability, a simplified implementation is also investigated. In this method, the rotor position information is achieved easily, with several basic math operations and logical comparisons of phase inductances, without any coordinate transformation or trigonometric function calculation. Based on this position estimation method, the field orientated control (FOC strategy is established, and the detailed implementation is also provided. A series of experiment results from a prototype demonstrate the correctness and feasibility of the proposed method.

  6. Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties

    International Nuclear Information System (INIS)

    Alizadeh-Sh, M.; Marashi, S.P.H.; Pouranvari, M.

    2014-01-01

    Highlights: • Phase transformations during RSW of AISI430 are detailed. • Grain growth, martensite formation and carbide precipitation are dominant phase transformations. • Failure mode of AISI430 resistance spot welded joints are analyzed. • Larger FZ size provided improved load bearing capacity and energy absorption capability. - Abstract: The paper aims at investigating the process–microstructure–performance relationship in resistance spot welding of AISI 430 ferritic stainless steel. The phase transformations which occur during weld thermal cycle were analyzed in details, based on the physical metallurgy of welding of the ferritic stainless steels. It was found that the microstructure of the fusion zone and the heat affected zone is influenced by different phenomena including grain growth, martensite formation and carbide precipitation. The effects of welding cycle on the mechanical properties of the spot welds in terms of peak load, energy absorption and failure mode are discussed

  7. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  8. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    International Nuclear Information System (INIS)

    Katanchi, B.; Choupani, N.; Khalil-Allafi, J.; Baghani, M.

    2017-01-01

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  9. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Katanchi, B. [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Choupani, N., E-mail: choupani@sut.ac.ir [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advance Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Baghani, M. [School of Mechanical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-14

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  10. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui; Lo, Jonathan; Nutt, Steven; Moradian-Oldak, Janet

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.

  11. Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Hailiang, E-mail: hailiang.fang@kemi.uu.se [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden); Kontos, Sofia [Solid State Physics, Department of Engineering Sciences, Uppsala University (Sweden); Ångström, Jonas; Cedervall, Johan [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden); Svedlindh, Peter; Gunnarsson, Klas [Solid State Physics, Department of Engineering Sciences, Uppsala University (Sweden); Sahlberg, Martin [Inorganic Chemistry, Department of Chemistry – Ångström Laboratory, Uppsala University (Sweden)

    2016-05-15

    The metastable tetragonal τ-phase has been directly obtained from casting Mn{sub 0.54}Al{sub 0.46} and (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} using the drop synthesis method. The as-casted samples were ball milled to decrease the particle size and relaxed at 500 °C for 1 h. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The results reveal that the τ-phase could be directly obtained from drop synthesis. The highest M{sub s} of 117 emu/g was achieved in the (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} where the τ-phase was stabilized by doping with carbon. Carbon doping increased the c/a ratio of the τ-phase as it occupies specific interstitial positions (½, ½, 0) in the structure. Furthermore, ball milling increases the coercivity (H{sub c}) at the expense of a decrease in magnetic saturation (M{sub s}). The increase in coercivity is explained by a decrease of grain size in conjunction with domain wall pinning due to defects introduced during the ball milling process. - Graphical abstract: The tetragonal τ-phase has been directly obtained from casting Mn{sub 0.54}Al{sub 0.46} and (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} using the drop synthesis method. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The highest M{sub s} of 117 emu/g was achieved for (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2} ball milling increases the coercivity (H{sub c}) at the expense of a decrease in magnetic saturation (M{sub s}). - Highlights: • The ferromagnetic τ-phase has been directly obtained from casting. • The highest M{sub s} of 117 emu/g was achieved for (Mn{sub 0.55}Al{sub 0.45}){sub 100}C{sub 2}. • Ball milling increases the coercivity but decreases the magnetic saturation.

  12. Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys

    International Nuclear Information System (INIS)

    Muddle, B.C.; Nie, J.F.; Hugo, G.R.

    1994-01-01

    It has been demonstrated that the theory of martensite crystallography is capable of accounting successfully for the form and crystallography of a range of plate- or lath-shaped transformation products, even when the formation of the product phase involves significant substitutional diffusion. These transformations include the precipitation of metastable hexagonal γ' (Ag 2 Al) plates in disordered face-centered cubic (fcc) solid-solution Al-Ag alloys, the formation of ordered AuCu II plates from disordered fcc solid solution in equiatomic Au-Cu alloys, and the formation of metastable 9R α 1 plates in ordered (B2) Cu-Zn and Ag-Cd alloys. The application of the theory to these transformations is reviewed critically and the features common to them identified. It is confirmed that, in all three transformations, the product phase produces relief at a free surface consistent with an invariant plane-strain shape change and that the transformations are thus properly described as displacive. The agreement between experimental observations and theoretical predictions of the transformation crystallography is in all cases excellent. It is proposed that successful application of the theory implies a growth mechanism in which the coherent or semicoherent, planar interface between parent and product phases maintains its structural identity during migration and that growth proceeds atom by atom in a manner consistent with the maintenance of a correspondence of lattice sites

  13. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    International Nuclear Information System (INIS)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M.

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V 3 Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases

  14. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V{sub 3}Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases.

  15. Quantum phases for a charged particle and electric/magnetic dipole in an electromagnetic field

    Science.gov (United States)

    Kholmetskii, Alexander; Yarman, Tolga

    2017-11-01

    We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic field must be composed from more fundamental quantum phases emerging for moving elementary charges. Using this idea, we have found two new fundamental quantum phases, next to the known magnetic and electric Aharonov-Bohm phases, and discuss their general properties and physical meaning.

  16. MODELING OF THREE-PHASE THREE LEG TRANSFORMER DEVICES FOR ENGINEERING CALCULATIONS OF ASYMMETRICAL MODES FOR DIFFERENT SCHEMES OF WINDING CONNECTIONS

    Directory of Open Access Journals (Sweden)

    Bosneaga V.A

    2013-08-01

    Full Text Available The model is proposed for the calculation and research of steady state asymmetric modes and transients in three-phase three legs transformer devices with arbitrary diagram of windings connection, taking into account the electromagnetic coupling of the windings, located on different legs. Using as an example distribution transformer of 10/0.4 kV calculations and analysis were performed of the most characteristic steady asymmetrical modes, that occur during short circuit, phase failure, unbalanced load for the most common windings connections and, in particular, associated with the occurrence of zero sequence magnetic flow. For the considered regimes and schemes vector diagrams were constructed for currents and voltages as well as for the relative values of magnetic flow, which give a clear idea about their particular features.

  17. Phase-transformation and subgrain-deformation characteristics in a cobalt-based superalloy

    International Nuclear Information System (INIS)

    Benson, M.L.; Reetz, B.; Liaw, P.K.; Reimers, W.; Choo, H.; Brown, D.W.; Saleh, T.A.; Klarstrom, D.L.

    2011-01-01

    Research highlights: → The mechanical behavior of a cobalt-based superalloy was investigated. → Two diffraction techniques were used to study deformation mechanisms of materials. → In-situ neutron diffraction provides the volume-averaged information. → The peak-profile analysis reveals the information on a subgrain level. → The material exhibited a transformation texture for the HCP phase under loading. - Abstract: A complimentary set of experiments, in situ neutron diffraction and ex situ synchrotron X-ray diffraction, were used to study the phase-transformation and subgrain-deformation characteristics of a cobalt-based superalloy. The neutron diffraction indicated a strain-induced phase transformation in the cobalt-based superalloy under uniaxial tension and compression. The synchrotron X-ray diffraction revealed stacking-fault accumulation and twinning under the same loading conditions. The extent of transformation was found to be greater under tension than under compression. Tensile plastic strains below 2% were accommodated by the stacking-fault creation, while those greater than 2% were accommodated by the phase transformation. Twinning was found to be more active under compressive loading than under tensile loading.

  18. High-temperature phase transformation in Cr added TiAl base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abe, E.; Niinobe, K.; Nobuki, M.; Nakamura, M.; Tsujimoto, T.

    1999-07-01

    The authors have investigated a microstructure evolution of a Ti-48Al-3.5Cr (in at.%) alloy at high-temperatures ({gt} 1,473K). In the alloy annealed at 1673K for 1.8ks, followed by air-cooling, a characteristic microstructure with a feathery fashion was uniformly formed. From a cooling-rate-controlling study, it was found that formation of the feathery structure is accomplished during continuous cooling from 1673K to 1573K, within the {alpha} + {gamma} two-phase region. Transmission electron microscopy revealed that the feathery structure is composed of lamellar colonies (5--10{micro}m) which are crystallographically tilted slightly (a few degree) with their neighbors. A surprising fact is that lamellae in each colony are mostly the {gamma} phase with few {alpha}{sub 2} phase less than 5% in volume. This suggests that the feathery structure is a metastable product and has not resulted from the {alpha} {r{underscore}arrow} {alpha} + {gamma} transformation above 1,573 K. Instead, the feathery structure formation should be attributed to the non-equilibrium {alpha} {r{underscore}arrow} {gamma} transformation which occurs at high-temperatures with a small degree of supercooling. The authors discuss this interesting phase transformation in terms of the {alpha} {r{underscore}arrow} {gamma} massive transformation, based on the continuous-cooling-transformation (CCT) diagram constructed for the present alloy.

  19. Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

    Science.gov (United States)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2013-08-01

    A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

  20. Magnetic anomalies across the southern Central Indian Ridge: evidence for a new transform fault

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.; Krishna, K.S.; SubbaRaju, L.V.; Rao, D.G.

    , Vol. 37. No. 4. pp. MT-~a56, 1990. 0198-.0149/90 $3.(gl + 0.00 Pnnled in Great Britain. (~ 1990 Pergartma Ptes6 pie Magnetic anomalies across the southern Central Indian Ridge: evidence for a new transform fault A. K. CHAUBEY,* K. S. KRISHNA,* L. V... to the ridge are identified as sea-floor spreading lineations 2.2A,3.3A and 4. A half spreading rate of 2.2 cm y- t is estimated for the last I0 Ma. The ridge jump between the anomalies 2-2A (approx. 2.5 Ma) and a new left lateral transform fault offsetting...

  1. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    Science.gov (United States)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  2. Anisotropic Exchange Interaction in the Conical Magnetic Phase of Erbium

    DEFF Research Database (Denmark)

    Jensen, J.

    1974-01-01

    From a general two ion spin Hamiltonian, an expression is deduced for the energies of spin waves propagating in a hexagonal solid in which the magnetic moments are ordered in a conical or helical structure. The spin wave dispersion relation in the c direction of Er in its conical magnetic phase...... at 4.5K, which has been studied by Nicklow et al (1971) is reanalysed. In this analysis an alternative kind of anisotropic coupling between the total angular moments (Ji and Jj) on the sites i and j is introduced which is proportional to the following combination of Racah operators: O2, -2(Ji), O2, -2......(Jj), expressed with respect to a coordinate system with the z axis along the c direction. The resulting anisotropy (both the constant and the q dependent part) is reduced by an order of magnitude in comparison with that deduced by Nicklow et al (1971). The constant anisotropy is found to be equal...

  3. Flow regime classification in air-magnetic fluid two-phase flow.

    Science.gov (United States)

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  4. Developing magnetofunctionality: Coupled structural and magnetic phase transition in AlFe{sub 2}B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L.H., E-mail: lhlewis@neu.edu [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); George J. Kostas Research Institute for Homeland Security, Northeastern University, Burlington, MA (United States); Barua, R., E-mail: radhika.barua@gmail.com [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); George J. Kostas Research Institute for Homeland Security, Northeastern University, Burlington, MA (United States); Lejeune, B. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); George J. Kostas Research Institute for Homeland Security, Northeastern University, Burlington, MA (United States)

    2015-11-25

    Understanding correlations between crystal structure and magnetism is key to tuning the response of magnetic materials systems that exhibit large functional effects in response to small excursions in magnetic field or strain. To this end, temperature-dependent structure-magnetic property correlations are reported in samples of AlFe{sub 2}B{sub 2} with the orthorhombic AlMn{sub 2}B{sub 2}-type layered structure as it traverses a thermally-hysteretic first-order magnetic phase change at a transition temperature of T{sub t} = 280 K. Temperature-dependent x-ray diffraction carried out in the temperature range 200 K ≤ T ≤ 298 K reveals that the a and b lattice parameters increase by 0.2% and 0.1% respectively upon heating, while the c lattice parameter decreases by 0.3%, providing a conserved unit cell volume through T{sub t}. A very small volumetric thermal expansion coefficient 4.4 × 10{sup −6}/K is determined in this temperature range that is one order of magnitude smaller than that of aluminum and only slightly larger than that of Invar. The latent heat of transformation associated with this magnetostructural phase transformation is determined as 4.4 J/g, similar to that of other magnetostructural materials. Overall, these features confirm a first-order thermodynamic phase change in the AlFe{sub 2}B{sub 2} system that emphasizes strong coupling between the magnetic spins and the lattice to support potential magnetofunctional applications for energy transformation and harvesting. - Highlights: • AlFe{sub 2}B{sub 2} undergoes a first-order magnetostructural transformation near room temperature. • The AlFe{sub 2}B{sub 2} Curie transition is thermally hysteretic and magnetic field dependent. • XRD reveals a volume-conserved change in the lattice constants of the AlFe{sub 2}B{sub 2} unit cell. • The latent heat of the magnetostructural transformation is determined as 4.4 J/g. • Results emphasize strong coupling between the magnetic spins and the lattice

  5. Extremely low-frequency magnetic fields of transformers and possible biological and health effects.

    Science.gov (United States)

    Sirav, Bahriye; Sezgin, Gaye; Seyhan, Nesrin

    2014-12-01

    Physiological processes in organisms can be influenced by extremely low-frequency (ELF) electromagnetic energy. Biological effect studies have great importance; as well as measurement studies since they provide information on the real exposure situations. In this study, the leakage magnetic fields around a transformer were measured in an apartment building in Küçükçekmece, Istanbul, and the measurement results were evaluated with respect to the international exposure standards. The transformer station was on the bottom floor of a three-floor building. It was found that people living and working in the building were exposed to ELF magnetic fields higher than the threshold magnetic field value of the International Agency for Research on Cancer (IARC). Many people living in this building reported health complaints such as immunological problems of their children. There were child-workers working in the textile factories located in the building. Safe distances or areas for these people should be recommended. Protective measures could be implemented to minimize these exposures. Further residential exposure studies are needed to demonstrate the exposure levels of ELF magnetic fields. Precautions should, therefore, be taken either to reduce leakage or minimize the exposed fields. Shielding techniques should be used to minimize the leakage magnetic fields in such cases.

  6. Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods.

    Science.gov (United States)

    Jung, Insub; Ih, Seongkeun; Yoo, Haneul; Hong, Seunghun; Park, Sungho

    2018-03-14

    In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.

  7. Stability of a laser cavity with non-parabolic phase transformation elements

    CSIR Research Space (South Africa)

    Litvin, IA

    2013-05-01

    Full Text Available aberration in high–power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006). 14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). 15. O. Svelto, Principles of Lasers, 3rd edition.... Consequently the intra-cavity implementation of any non-conventional phase transformation elements or taking into account the thermal lensing which in general has a non-parabolic phase transformation [13], leads to a solution of the complicated Fox...

  8. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    Science.gov (United States)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  9. Effect of extrapolation length on the phase transformation of epitaxial ferroelectric thin films

    International Nuclear Information System (INIS)

    Hu, Z.S.; Tang, M.H.; Wang, J.B.; Zheng, X.J.; Zhou, Y.C.

    2008-01-01

    Effects of extrapolation length on the phase transformation of epitaxial ferroelectric thin films on dissimilar cubic substrates have been studied on the basis of the mean-field Landau-Ginzburg-Devonshire (LGD) thermodynamic theory by taking an uneven distribution of the interior stress with thickness into account. It was found that the polarization of epitaxial ferroelectric thin films is strongly dependent on the extrapolation length of films. The physical origin of the extrapolation length during the phase transformation from paraelectric to ferroelectric was revealed in the case of ferroelectric thin films

  10. Phase-based motion magnification video for monitoring of vital signals using the Hermite transform

    Science.gov (United States)

    Brieva, Jorge; Moya-Albor, Ernesto

    2017-11-01

    In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.

  11. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  12. Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Obukhov, Yuri N.; Shapiro, Ilya L.

    2007-01-01

    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian, we arrive at the equations of motion for the nonrelativistic spinning particle. Two different kinds of gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by a sufficiently strong magnetic field. This result can be relevant for astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry

  13. Numerically Based Phase Transformation Maps for Dissimilar Aluminum Alloys Joined by Friction Stir-Welding

    Directory of Open Access Journals (Sweden)

    Carter Hamilton

    2018-05-01

    Full Text Available Sheets of aluminum 2017A-T451 and 7075-T651 were friction stir-welded in a butt-weld configuration. An existing computational model of the welding process for temperature distribution and material flow was adapted to estimate the phase transformations that occur across the weld zone. Near the weld center, process temperatures are sufficient to fully dissolve the equilibrium η phase in 7075 and partially dissolve the equilibrium S phase in 2017A. Upon cooling, Guinier–Preston (GP and Guinier–Preston–Bagaryatsky (GPB zones re-precipitate, and hardness recovers. Due to the more complete dissolution of the equilibrium phase in 7075, the hardness recovery skews toward whichever side of the weld, i.e., the advancing or retreating side, represents the 7075 workpiece. Phase transformation maps generated by the numerical simulation align not only with the hardness profiles taken across the weld zone, but also with positron lifetimes obtained through positron annihilation lifetime spectroscopy (PALS. Boundaries between the aluminum matrix and the secondary phases provide open volumes to trap positrons; therefore, positron lifetimes across the weld correspond with the phase transformations that occur in 7075 and 2017A during processing.

  14. Phase Transformation of Adefovir Dipivoxil/Succinic Acid Cocrystals Regulated by Polymeric Additives

    Directory of Open Access Journals (Sweden)

    Sungyup Jung

    2013-12-01

    Full Text Available The polymorphic phase transformation in the cocrystallization of adefovir dipivoxil (AD and succinic acid (SUC was investigated. Inspired by biological and biomimetic crystallization, polymeric additives were utilized to control the phase transformation. With addition of poly(acrylic acid, the metastable phase newly identified through the analysis of X-ray diffraction was clearly isolated from the previously reported stable form. Without additives, mixed phases were obtained even at the early stage of cocrystallization. Also, infrared spectroscopy analysis verified the alteration of the hydrogen bonding that was mainly responsible for the cocrystal formation between AD and SUC. The hydrogen bonding in the metastable phase was relatively stronger than that in the stable form, which indicated the locally strong AD/SUC coupling in the initial stage of cocrystallization followed by the overall stabilization during the phase transformation. The stronger hydrogen bonding could be responsible for the faster nucleation of the initially observed metastable phase. The present study demonstrated that the polymeric additives could function as effective regulators for the polymorph-selective cocrystallization.

  15. Phase transformation induced by swift heavy ion irradiation of pure metals

    International Nuclear Information System (INIS)

    Dammak, H.; Dunlop, A.; Lesueur, D.

    1996-01-01

    It is now unambiguously established that high electronic energy deposition (HEED), obtained by swift heavy ion irradiation, plays an important role in the damage processes of pure metallic targets: (i) annealing of the defects created by elastic collisions in Fe, Nb, Ni and Pt, and (ii) creation of additional defects in Co, Fe, Ti and Zr. For Ti, we have recently evidenced by transmission electron microscopy observations that the damage creation by HEED is very important and leads to a phase transformation. Titanium evolves from the equilibrium hcp alpha-phase to the high pressure omega-phase. We studied the influence of three parameters on this phase transformation: ion fluence, electronic stopping power and irradiation temperature. The study of Ti and the results concerning other metals (Fe, Zr, etc.) and the semi-metal Bi allow us to propose criteria to predict in which metals HEED could induce damage: those which undergo a phase transformation under high pressure. As a matter of fact, beryllium is strongly damaged when submitted to HEED and seems to behave very similarly to titanium. The fact that such phase changes from a crystalline form to another form were only observed in those metals in which high pressure phases exist in the pressure-temperature diagram, strongly supports the Coulomb explosion model in which the generation of (i) a shock wave and (ii) collective atomic movements are invoked to account for the observed damage creation. (orig.)

  16. Impact of interplay between magnetic field, transformation strain, and coarsening on variant selection in L10-type FePd

    International Nuclear Information System (INIS)

    Ueshima, N.; Yasuda, H.; Yoshiya, M.; Fukuda, T.; Kakeshita, T.

    2014-01-01

    Variant selection of L1 0 -type ferromagnetic alloys has been numerically investigated using the phase-field modeling, to clarify the phenomena at greater temporal and spatial resolution and to reveal the underlying mechanism. The duration for which the external magnetic field is effective is found to be very short, and variant selection is significantly affected by not only direct response to the external magnetic field but also their interplay between the field, intrinsic transformation strain, and various thermodynamic energy components involved in the course of microstructure evolution. The detailed mechanism of the interplay was quantitatively analyzed in terms of the driving force for the variant selection, by partitioning it into the various energy components. Careful examination of the variant selection at the very early stage revealed that the slight difference in size and configuration of variants during disorder-to-order transition realized by the interplay between transformation strain and external field is essentially needed before proceeding to the latter stage of the variant selection driven by interface energy

  17. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  18. Interactions between magnetic nanoparticles and model lipid bilayers—Fourier transformed infrared spectroscopy (FTIR) studies of the molecular basis of nanotoxicity

    Science.gov (United States)

    Krecisz, M.; Rybka, J. D.; Strugała, A. J.; Skalski, B.; Figlerowicz, M.; Kozak, M.; Giersig, M.

    2016-09-01

    The toxicity of nanoparticles (nanotoxicity) is often associated with their interruption of biological membranes. The effect of polymer-coated magnetic nanoparticles (with different Fe3O4 core sizes and different polymeric coatings) on a model biological membrane system of vesicles formed by dimyristoylphosphatidylcholine (DMPC) was studied. Selected magnetic nanoparticles with core sizes ranging from 3 to 13 nm (in diameter) were characterised by transmission electron microscopy. Samples with 10% DMPC and different nanoparticle concentrations were studied by attenuated total reflectance—Fourier transform infrared spectroscopy to establish the influence of nanoparticles on the phase behaviour of model phospholipid systems.

  19. Effect of grain boundary phase on the magnetization reversal process of nanocrystalline magnet using large-scale micromagnetic simulation

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2018-05-01

    Full Text Available We investigated the effects of grain boundary phases on magnetization reversal in permanent magnets by performing large-scale micromagnetic simulations based on Landau–Lifshitz–Gilbert equation under a periodic boundary. We considered planar grain boundary phases parallel and perpendicular to an easy axis of the permanent magnet and assumed the saturation magnetization and exchange stiffness constant of the grain boundary phase to be 10% and 1%, respectively, for Nd2Fe14B grains. The grain boundary phase parallel to the easy axis effectively inhibits propagation of magnetization reversal. In contrast, the domain wall moves across the grain boundary perpendicular to the easy axis. These properties of the domain wall motion are explained by dipole interaction, which stabilizes the antiparallel magnetic configuration in the direction perpendicular to the magnetization orientation. On the other hand, the magnetization is aligned in the same direction by the dipole interaction parallel to the magnetization orientation. This anisotropy of the effect of the grain boundary phase shows that improvement of the grain boundary phase perpendicular to the easy axis effectively enhances the coercivity of permanent magnets.

  20. Inherited textures in the bcc phase furnish information about the type of transformation from the fcc phase

    International Nuclear Information System (INIS)

    Jung, V.

    1982-07-01

    Drawing annealed cylindric 18/8 Cr Ni steels, which are originally free of textures, produces the transformed phases - hcp and bcc - both showing major texture contributions with increasing stretching of the cylindric specimens. After stretching the original fcc-phase shows two orientations: [100]fcc vertical stroke vertical stroke cylinder axis and [111]fcc vertical stroke vertical stroke cylinder axis, i.e. direction of stress. In both cases the martensitic phase is produced by gliding and shear in the sequence fcc → hcp → bcc by Nishiyama-Wasserman (N-W) or Kurdjumov-Sachs (K-S) transformation in the (111)fcc planes, which enclose a small angle with direction of stress, i.e. cylinder axis. The calculated orientation distributions of the (110)bcc reflex are compared with the distribution measured by neutron diffraction to get information on the bulk material. The special K-S transformation with only 6 (110)bcc orientations shows relatively good agreement with the measured distribution, except at small angles ω between the cylinder axis and the scattering vector. This might be caused by the isotropic fraction of the fcc phase producing an anisotropic (110)bcc orientation distribution. (orig.) [de

  1. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals

    Science.gov (United States)

    Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu

    2018-01-01

    Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.

  2. Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya).

    Science.gov (United States)

    Yi, Haohao; Balan, Etienne; Gervais, Christel; Ségalen, Loïc; Roche, Damien; Person, Alain; Fayon, Franck; Morin, Guillaume; Babonneau, Florence

    2014-09-01

    A series of fossil tooth enamel samples was investigated by Fourier transform infrared (FTIR) spectroscopy, (13)C and (19)F magic-angle spinning nuclear magnetic resonance (MAS NMR) and scanning electron microscopy (SEM). Tooth remains were collected in Mio-Pliocene deposits of the Tugen Hills in Kenya. Significant transformations were observed in fossil enamel as a function of increasing fluorine content (up to 2.8wt.%). FTIR spectroscopy revealed a shift of the ν1 PO4 stretching band to higher frequency. The ν2 CO3 vibrational band showed a decrease in the intensity of the primary B-type carbonate signal, which was replaced by a specific band at 864cm(-1). This last band was ascribed to a specific carbonate environment in which the carbonate group is closely associated to a fluoride ion. The occurrence of this carbonate defect was consistently attested by the observation of two different fluoride signals in the (19)F NMR spectra. One main signal, at ∼-100ppm, is related to structural F ions in the apatite channel and the other, at -88ppm, corresponds to the composite defect. These spectroscopic observations can be understood as resulting from the mixture of two phases: biogenic hydroxylapatite (bioapatite) and secondary fluorapatite. SEM observations of the most altered sample confirmed the extensive replacement of the bioapatite by fluorapatite, resulting from the dissolution of the primary bioapatite followed by the precipitation of carbonate-fluorapatite. The ν2 CO3 IR bands can be efficiently used to monitor the extent of this type of bioapatite transformation during fossilization. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Dynamic transformation of self-assembled structures using anisotropic magnetized hydrogel microparticles

    Science.gov (United States)

    Yoshida, Satoru; Takinoue, Masahiro; Iwase, Eiji; Onoe, Hiroaki

    2016-08-01

    This paper describes a system through which the self-assembly of anisotropic hydrogel microparticles is achieved, which also enables dynamic transformation of the assembled structures. Using a centrifuge-based microfluidic device, anisotropic hydrogel microparticles encapsulating superparamagnetic materials on one side are fabricated, which respond to a magnetic field. We successfully achieve dynamic assembly using these hydrogel microparticles and realize three different self-assembled structures (single and double pearl chain structures, and close-packed structures), which can be transformed to other structures dynamically via tuning of the precessional magnetic field. We believe that the developed system has potential application as an effective platform for a dynamic cell manipulation and cultivation system, in biomimetic autonomous microrobot organization, and that it can facilitate further understanding of the self-organization and complex systems observed in nature.

  4. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M=W, Re, Os)

    International Nuclear Information System (INIS)

    Yamamura, Kazuhiro; Wakeshima, Makoto; Hinatsu, Yukio

    2006-01-01

    Structures and magnetic properties for double perovskites Ba 2 CaMO 6 (M=W, Re, Os) were investigated. Both Ba 2 CaReO 6 and Ba 2 CaWO 6 show structural phase transitions at low temperatures. For Ba 2 CaReO 6 , the second order transition from cubic Fm3-bar m to tetragonal I4/m has been observed near 120K. For Ba 2 CaWO 6 , the space group of the crystal structure is I4/m at 295K and the transition to monoclinic I2/m has been observed between 220K. Magnetic susceptibility measurements show that Ba 2 CaReO 6 (S=1/2) and Ba 2 CaOsO 6 (S=1) transform to an antiferromagnetic state below 15.4 and 51K, respectively. Anomalies corresponding to their structural phase transition and magnetic transition have been also observed through specific heat measurements

  5. The Pegg–Barnett phase operator and the discrete Fourier transform

    International Nuclear Information System (INIS)

    Perez-Leija, Armando; Szameit, Alexander; Andrade-Morales, Luis A; Soto-Eguibar, Francisco; Moya-Cessa, Héctor M

    2016-01-01

    In quantum mechanics the position and momentum operators are related to each other via the Fourier transform. In the same way, here we show that the so-called Pegg–Barnett phase operator can be obtained by the application of the discrete Fourier transform to the number operators defined in a finite-dimensional Hilbert space. Furthermore, we show that the structure of the London–Susskind–Glogower phase operator, whose natural logarithm gives rise to the Pegg–Barnett phase operator, is contained in the Hamiltonian of circular waveguide arrays. Our results may find applications in the development of new finite-dimensional photonic systems with interesting phase-dependent properties. (invited comment)

  6. Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Hu, T.; Wen, C.S.; Lu, J.; Wu, S.L.; Xin, Y.C.; Zhang, W.J.; Chu, C.L.; Chung, J.C.Y.; Yeung, K.W.K.; Kwok, D.T.K.; Chu, Paul K.

    2009-01-01

    The phase constituents and transformation behavior of the martensite B19' NiTi shape memory alloy after undergoing surface mechanical attrition treatment (SMAT) are investigated. SMAT is found to induce the formation of a parent B2 phase from the martensite B19' in the top surface layer. By removing the surface layer-by-layer, X-ray diffraction reveals that the amount of the B2 phase decreases with depth. Differential scanning calorimetry (DSC) further indicates that the deformed martensite in the sub-surface layer up to 300 μm deep exhibits the martensite stabilization effect. The graded phase structure and transformation behavior in the SMATed NiTi specimen can be attributed to the gradient change in strain with depth.

  7. Electronic structure and phase stability during martensitic transformation in Al-doped ZrCu intermetallics

    International Nuclear Information System (INIS)

    Qiu Feng; Shen Ping; Liu Tao; Lin Qiaoli; Jiang Qichuan

    2010-01-01

    Martensitic transformation, phase stability and electronic structure of Al-doped ZrCu intermetallics were investigated by experiments and first-principles calculations using the pseudopotentials plane wave method. The formation energy calculations indicate that the stability of the ZrCu phase increases with the increasing Al content. Al plays a decisive role in controlling the formation and microstructures of the martensite phases in Zr-Cu-Al alloys. The total energy difference between ZrCu (B2) austenite and ZrCu martensite plays an important role in the martensitic transformation. The phase stability is dependent on its electronic structure. The densities of states (DOS) of the intermetallics were discussed in detail.

  8. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    Science.gov (United States)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  9. Phase retrieval from a single fringe pattern by using empirical wavelet transform

    International Nuclear Information System (INIS)

    Guo, Xiaopeng; Zhao, Hong; Wang, Xin

    2015-01-01

    Phase retrieval from a single fringe pattern is one of the key tasks in optical metrology. In this paper, we present a new method for phase retrieval from a single fringe pattern based on empirical wavelet transform. In the proposed method, a fringe pattern can be effectively divided into three components: nonuniform background, fringes and random noise, which are described in different sub-pass. So the phase distribution information can be robustly extracted from fringes representing a fundamental frequency component. In simulation and a practical projection fringes test, the performance of the present method is successfully verified by comparing with the conventional wavelet transform method in terms of both image quality and phase estimation errors. (paper)

  10. Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth

    Energy Technology Data Exchange (ETDEWEB)

    Dorogov, M.V.; Priezzheva, A.N. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Vlassov, S., E-mail: vlassovs@ut.ee [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Kink, I.; Shulga, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Dorogin, L.M. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Lõhmus, R. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Tyurkov, M.N.; Vikarchuk, A.A. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Romanov, A.E. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Ioffe Physical Technical Institute, RAS, Polytechnicheskaya 26, 194021 Saint Petersburg (Russian Federation)

    2015-08-15

    Highlights: • Coatings prepared by Cu microparticle electrodeposition. • Structural and phase transformation in Cu coatings annealed at 400 °C. • Annealing is accompanied by intensive growth of CuO whiskers. • Layered oxide phases (Cu{sub 2}O and CuO) in the coating are characterized. • Formation of volumetric defects in the coating is demonstrated. - Abstract: We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu{sub 2}O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.

  11. Phase unwrapping in digital holography based on non-subsampled contourlet transform

    Science.gov (United States)

    Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-01-01

    In the digital holographic measurement of complex surfaces, phase unwrapping is a critical step for accurate reconstruction. The phases of the complex amplitudes calculated from interferometric holograms are disturbed by speckle noise, thus reliable unwrapping results are difficult to be obtained. Most of existing unwrapping algorithms implement denoising operations first to obtain noise-free phases and then conduct phase unwrapping pixel by pixel. This approach is sensitive to spikes and prone to unreliable results in practice. In this paper, a robust unwrapping algorithm based on the non-subsampled contourlet transform (NSCT) is developed. The multiscale and directional decomposition of NSCT enhances the boundary between adjacent phase levels and henceforth the influence of local noise can be eliminated in the transform domain. The wrapped phase map is segmented into several regions corresponding to different phase levels. Finally, an unwrapped phase map is obtained by elevating the phases of a whole segment instead of individual pixels to avoid unwrapping errors caused by local spikes. This algorithm is suitable for dealing with complex and noisy wavefronts. Its universality and superiority in the digital holographic interferometry have been demonstrated by both numerical analysis and practical experiments.

  12. PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titania nanoparticles

    International Nuclear Information System (INIS)

    Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.

    2015-01-01

    Anatase to rutile phase transformation (ART) of titania nanoparticles is observed at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. The detailed investigations pertaining to the structural, optical and electrochemical properties of the nanosized titania and titania/PVA nanohybrid has been carried out. The crystallite size and crystal structure is confirmed using X-ray diffraction (XRD). Transmission electron microscopic (TEM) image reveals formation of spherical NPs in both the cases. Identification of functional groups is done using Fourier transform infrared spectroscopy (FTIR). The photoluminescence studies showed that emission slightly shifts towards higher wavelength side with remarkable decrease in intensity for TiO 2 /PVA nanocomposite (rutile samples). The remarkable decrease in PL intensity in TiO 2 /PVA nanocomposite (rutile samples) is explained considering the surface passivation during growth process. Ion transportation is monitored via Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements. A significant enhancement of peak cathodic current in case of nanocomposite modified electrode is observed. It is assumed that TiO 2 /PVA (rutile) nanoparticles provided the conducting path for the electrons and hence enhanced the electrochemical reaction. - Graphical abstract: Present work reports anatase to rutile phase transformation (ART) of titania nanoparticles at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. - Highlights: • Low temperature phase transformation of TiO 2 nanoparticles from anatase to rutile. • Role of PVA in phase transformation. • Synthesis of spherical shaped uniformly distributed PVA capped TiO 2 NPs. • Explained the charge transfer process among anatase to rutile phase transformation via luminescence studies. • Enhanced

  13. Spin glass and ferromagnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys: Multicritical points in the magnetic phase diagram

    International Nuclear Information System (INIS)

    Synoradzki, K.; Toliński, T.

    2016-01-01

    We report on the CeNi_4Mn (ferromagnet FM) - CeCu_4Mn (spin-glass SG) transformation leading to a complex magnetic phase diagram (MPD). It is verified that all the Ce(Cu_1_-_xNi_x)_4Mn alloys are isostructural and the transformation is governed only by the Cu-Ni substitution. MPD is built based on the magnetic dc/ac susceptibility measurements and reveals SG formation as well as the region of the coexistence of the FM and SG state in the middle range of the Ni concentration. The complex MPD is explained by clusters formation and a competition of interactions between various crystallographic sites of the hexagonal CaCu_5-type structure, mainly the 3g-3g and 3g-2c interactions. The predominance of the SG state is confirmed by the analysis of the frequency dependence of the ac magnetic susceptibility components and the relaxation of the remanent magnetization. Additionally, the presence of two multicritical points is observed. - Highlights: • We fully characterized the magnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys. • We show the presence of complex magnetic behaviour due to atomic-site disorder. • Magnetic phase diagram revels mixed-phase ground state. • Two multicritical points on magnetic phase diagram occurs.

  14. Overview of the phase diagram of ionic magnetic colloidal dispersions

    International Nuclear Information System (INIS)

    Cousin, F.; Dubois, E.; Cabuil, V.; Boue, F.; Perzynski, R.

    2001-01-01

    We study ionic magnetic colloidal dispersions, which are constituted of γ-Fe 2 O 3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion. The phase diagram PV versus Φ (P: osmotic pressure, V: particle volume, Φ: particle volume fraction) is explored, especially in the range of high Π and high Φ. The osmotic pressure P of the colloidal dispersion is known either by a measurement either because it is imposed during the sample preparation by osmotic compression. The structure of the colloidal dispersion is determined from Small Angle Neutron Scattering. Two regimes can be distinguished. At high pressure, fluid and solid phases can exist. Their structure is governed by strong electrostatic repulsion, the range of which is here evaluated. At low pressure, gas, liquid and glassy solids can exist. Their structure results from a sticky hard sphere potential. (author)

  15. Phase transformation in {delta} Pu alloys at low temperature: In situ dilatometric study

    Energy Technology Data Exchange (ETDEWEB)

    Texier, G; Oudot, B; Platteau, C; Ravat, B; Delaunay, F, E-mail: gwenael.texier@cea.fr, E-mail: benoit.oudot@cea.fr [CEA, DAM, Valduc, Is sur Tille 21120 (France)

    2010-03-15

    The purpose of this work is to precisely study the martensitic transformation in a plutonium-gallium alloy. Thus, the thermodynamics and kinetics of the {delta}{yields}{alpha}'+{delta} phase transformation in a Pu-Ga alloy were studied under isochronal and isothermal conditions. The activation energy of the {delta}{yields}{alpha}'+{delta} phase transformation at a constant cooling rate (0.5 K.min{sup -1}) was determined by using Kissinger and Ozawa models. The average value of the activation energy was found to be at -56 kJ.mol{sup -1}. Dilatometry measurement was also used to trace 'in situ' the entire transformation for several temperatures. The kinetics of the {delta}{yields}{alpha}'+{delta} transformation were modelled under isothermal conditions in the theoretical frame of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. It is proposed that the transformation consists of three stages. The {alpha}' transformation begins with a nucleation of pre-existing embryos. Then, both nucleation and rapid growth of {alpha}' occurs simultaneously and finally, the plates width expend. Apparent activation energies for nucleation and growth transformation were determined from the temperature dependence of the constant K at respectively -34 kJ.mol{sup -1} and -60 kJ.mol{sup -1}. Adler et al. [1] investigated also the thermodynamics and the kinetics of the martensitic transformation in Pu alloys. These nucleation energies were found by modelling of heterogeneous martensitic nucleation via strain interaction with observed superdislocation-like nucleation sites in PuGa alloys. The values obtain by this model was very close to those we find. Investigations in steels alloys indicate that these energies are of the same order for nucleation near dislocation. Then, it could be indicating a strong relationship between these dislocations and martensitic nucleation sites.

  16. Magnetic phase transitions with incommensurate structures in systems with coupled order parameters

    International Nuclear Information System (INIS)

    Izyumov, Yu.A.; Laptev, V.M.; Petrov, S.B.

    1984-01-01

    Modulated magnetic phases are investigated for the case when symmetry does not allow linear by gradients Lifshits invariants and magnetic momenta are converted by two irreducible representations. Possible phase diagrams with participation of incommensurable phases are plotted on the base of Ginsburg-Landau functional for 2 bound parameters of the order. The role of the highest harmonics in spatial distribution of the order parameters is clarified on the example of magnetic phase transitions in Er

  17. New microstructural features occurring during transformation from austenite to ferrite under the kinetic influence of magnetic field in a medium carbon steel

    International Nuclear Information System (INIS)

    Zhang Yudong; He Changshu; Zhao Xiang; Zuo Liang; Esling, Claude; He, Jicheng

    2004-01-01

    The effects of magnetic field on nucleation barrier of the phase transformation from austenite to ferrite at different cooling rates in 42CrMo steel have been investigated. The microstructures of ferrite and pearlite aligned along the magnetic field direction (parallel to the hot-rolling direction) are obtained at a cooling rate of 10 deg. C/min, resulting from the kinetic effects of the applied magnetic field during cooling and the microstructural influences of an inhomogeneous deformation occurring during the previous hot rolling. In this case, the formation of ferrite grains at higher temperatures is attributed mainly to the preferential nucleation at austenite boundaries. However, a fairly uniform microstructure of randomly distributed ferrite and pearlite is formed at a high cooling rate of 46 deg. C/min in the magnetic field of 14 T, as a result of both intergranular and intragranular nucleation at relatively low temperatures. Probing into this issue is helpful to gain a better understanding of kinetic influences of magnetic field on the phase transformation from austenite to ferrite

  18. Lattice instabilities and structural phase transformations in La2CuO4 superconductors and insulators

    International Nuclear Information System (INIS)

    Axe, J.D.

    1991-01-01

    Soft-mode structural phase transformations, common in many perovskite-based materials, are also found in La 2 CuO 4 and structurally related oxides. The resulting phase behavior is rather complex, but is a natural consequence of the degeneracy of the soft phonon order parameters. This paper reviews the structural and lattice-dynamical results and their interpretation based upon mean-field statistical mechanical models

  19. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    International Nuclear Information System (INIS)

    Joergensen, S.I.

    1985-01-01

    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  20. Phase transformation and conductivity in nanocrystal PbS under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gerward, Leif; Secco, R.

    2000-01-01

    The grain-size effect on the phase transition induced by pressure in PbS was studied by in situ high-pressure electrical resistance and synchrotron radiation x-ray powder diffraction measurements. The mean transition pressure of the B1-to-B16 phase transformation was found to be 6.3±1.3 GPa in 8...... in terms of a decrease of energy band gap with increasing pressure. ©2000 American Institute of Physics....