WorldWideScience

Sample records for magnetic nuclei echo

  1. Magnetic moments of odd spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Levon, A.I.; Fedotkin, S.N.; Vdovin, A.I.

    1986-06-01

    Using the quasiparticle-phonon model, the magnetic moments of the ground state and several of the excited states are calculated for spherical nuclei. The polarization of the core is taken into account, by means of 1+ phonons, as well as 2/sup +/ and 3/sup -/ excitations, which give a collective contribution to the magnetic moment.

  2. Echo

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Dustin Yewell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-25

    This document is a white paper marketing proposal for Echo™ is a data analysis platform designed for efficient, robust, and scalable creation and execution of complex workflows. Echo’s analysis management system refers to the ability to track, understand, and reproduce workflows used for arriving at results and decisions. Echo improves on traditional scripted data analysis in MATLAB, Python, R, and other languages to allow analysts to make better use of their time. Additionally, the Echo platform provides a powerful data management and curation solution allowing analysts to quickly find, access, and consume datasets. After two years of development and a first release in early 2016, Echo is now available for use with many data types in a wide range of application domains. Echo provides tools that allow users to focus on data analysis and decisions with confidence that results are reported accurately.

  3. Direct magnetic field estimation based on echo planar raw data.

    Science.gov (United States)

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  4. Magnetization transfer prepared gradient echo MRI for CEST imaging.

    Directory of Open Access Journals (Sweden)

    Zhuozhi Dai

    Full Text Available Chemical exchange saturation transfer (CEST is an emerging MRI contrast mechanism that is capable of noninvasively imaging dilute CEST agents and local properties such as pH and temperature, augmenting the routine MRI methods. However, the routine CEST MRI includes a long RF saturation pulse followed by fast image readout, which is associated with high specific absorption rate and limited spatial resolution. In addition, echo planar imaging (EPI-based fast image readout is prone to image distortion, particularly severe at high field. To address these limitations, we evaluated magnetization transfer (MT prepared gradient echo (GRE MRI for CEST imaging. We proved the feasibility using numerical simulations and experiments in vitro and in vivo. Then we optimized the sequence by serially evaluating the effects of the number of saturation steps, MT saturation power (B1, GRE readout flip angle (FA, and repetition time (TR upon the CEST MRI, and further demonstrated the endogenous amide proton CEST imaging in rats brains (n = 5 that underwent permanent middle cerebral artery occlusion. The CEST images can identify ischemic lesions in the first 3 hours after occlusion. In summary, our study demonstrated that the readily available MT-prepared GRE MRI, if optimized, is CEST-sensitive and remains promising for translational CEST imaging.

  5. Magnetic resonance findings in amyotrophic lateral sclerosis using a spin echo magnetization transfer sequence: preliminary report

    Directory of Open Access Journals (Sweden)

    ROCHA ANTÔNIO JOSÉ DA

    1999-01-01

    Full Text Available We present the magnetic resonance (MR findings of five patients with amyotrophic lateral sclerosis (ALS using a spin-echo sequence with an additional magnetization transfer (MT pulse on T1-weighted images (T1 SE/MT. These findings were absent in the control group and consisted of hyperintensity of the corticospinal tract. Moreover we discuss the principles and the use of this fast but simple MR technique in the diagnosis of ALS

  6. Magnetic Dipole Sum Rules for Odd Nuclei

    CERN Document Server

    Ginocchio, J N

    1997-01-01

    Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are derived within the single-j interacting boson-fermion model. We discuss the physical content and geometric interpretation of these sum rules and apply them to ^{167}Er and ^{161}Dy. We find consistency with the former measurements but not with the latter.

  7. Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA

    Directory of Open Access Journals (Sweden)

    Kindervater J.

    2015-01-01

    Full Text Available We report proof-of-principle measurements at the neutron resonance spin echo spectrometer RESEDA (MLZ under large magnetic fields by means of Modulation of IntEnsity with Zero Effort (MIEZE. Our study demonstrates the feasibility of applying strong magnetic fields up to 17 T at the sample while maintaining unchanged sub-μeV resolution. We find that the MIEZE-spin-echo resolution curve remains essentially unchanged as a function of magnetic field up to the highest fields available, promising access to high fields without need for additional fine-tuning of the instrument. This sets the stage for the experimental investigations of subtle field dependent phenomena, such as magnetic field-driven phase transitions in hard and soft condensed matter physics.

  8. Magnetic Resonance Elastography of the Liver: Qualitative and Quantitative Comparison of Gradient Echo and Spin Echo Echoplanar Imaging Sequences.

    Science.gov (United States)

    Wagner, Mathilde; Besa, Cecilia; Bou Ayache, Jad; Yasar, Temel Kaya; Bane, Octavia; Fung, Maggie; Ehman, Richard L; Taouli, Bachir

    2016-09-01

    The aim of this study was to compare 2-dimensional (2D) gradient recalled echo (GRE) and 2D spin echo echoplanar imaging (SE-EPI) magnetic resonance elastography (MRE) sequences of the liver in terms of image quality and quantitative liver stiffness (LS) measurement. This prospective study involved 50 consecutive subjects (male/female, 33/17; mean age, 58 years) who underwent liver magnetic resonance imaging at 3.0 T including 2 MRE sequences, 2D GRE, and 2D SE-EPI (acquisition time 56 vs 16 seconds, respectively). Image quality scores were assessed by 2 independent observers based on wave propagation and organ coverage on the confidence map (range, 0-15). A third observer measured LS on stiffness maps (in kilopascal). Mean LS values, regions of interest size (based on confidence map), and image quality scores between SE-EPI and GRE-MRE were compared using paired nonparametric Wilcoxon test. Reproducibility of LS values between the 2 sequences was assessed using intraclass coefficient correlation, coefficient of variation, and Bland-Altman limits of agreement. T2* effect on image quality was assessed using partial Spearman correlation. There were 4 cases of failure with GRE-MRE and none with SE-EPI-MRE. Image quality scores and region of interest size were significantly higher using SE-EPI-MRE versus GRE-MRE (P < 0.0001 for both measurements and observers). Liver stiffness measurements were not significantly different between the 2 sequences (3.75 ± 1.87 kPa vs 3.55 ± 1.51 kPa, P = 0.062), were significantly correlated (intraclass coefficient correlation, 0.909), and had excellent reproducibility (coefficient of variation, 10.2%; bias, 0.023; Bland-Altman limits of agreement, -1.19; 1.66 kPa). Image quality scores using GRE-MRE were significantly correlated with T2* while there was no correlation for SE-EPI-MRE. Our data suggest that SE-EPI-MRE may be a better alternative to GRE-MRE. The diagnostic performance of SE-EPI-MRE for detection of liver fibrosis needs

  9. Localization of the cortical motor area by functional magnetic resonance imaging with gradient echo and echo-planar methods, using clinical 1.5 Tesla MR imaging systems.

    Science.gov (United States)

    Nakayama, K

    1997-06-01

    Functional magnetic resonance imaging (MRI) with gradient echo and echo-planar sequences was applied to healthy volunteers and neurological patients to evaluate the feasibility of detecting and localizing the motor cortex. Time course of the change in signal intensity by an alternate repetition of motor task (squeezing hand) and rest periods was also examined. The motor cortex was localized as the area of signal increase in 88.9% of 45 healthy volunteers by gradient echo method, which mainly reflected the cortical vein, and 83.3% of 30 healthy volunteers by echo-planar method, which mainly reflected the cerebral gyrus. Among 21 volunteers who participated in the both studies, success rate in the localization for the motor cortex was 90.5% (21 volunteers) by gradient echo method and 81% (17 volunteers) by echo-planar method. It was also shown from the time course of the change in signal intensity that signal increase in the most significantly activated area generally corresponded with the periods of the motor task, and the latency between the onset of signal increase and the onset of motor task was usually about 4 seconds. In four of 6 patients with brain tumor, the motor cortex was localized, although activated areas were displaced or distorted. The results indicate that fMRI, either with gradient echo or echo-planar sequence, is a useful method for localizing the primary motor area activated during the motor task and clinically available for noninvasive evaluation of the anatomical relation between brain tumors and the motor area before surgical therapy.

  10. The Magnetic Structure of Light Nuclei from Lattice QCD

    CERN Document Server

    Chang, Emmanuel; Orginos, Kostas; Parreno, Assumpta; Savage, Martin J; Tiburzi, Brian C; Beane, Silas R

    2015-01-01

    Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei with $A\\le4$, along with the cross-section for the $M1$ transition $np\\rightarrow d\\gamma$, at the flavor SU(3)-symmetric point where the pion mass is $m_\\pi\\sim 806$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter non-trivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with $\\beta_p=5.22(+0.66/-0.45)(0.23) \\times 10^{-4}$ fm$^3$ and $\\beta_n=1.253(+0.056/-0.067)(0.055) \\times 10^{-4}$ fm$^3$, exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses and its magnetic polarizability, $\\beta...

  11. Carbon-oxygen-neon mass nuclei in superstrong magnetic fields

    Science.gov (United States)

    Stein, Martin; Maruhn, Joachim; Sedrakian, Armen; Reinhard, P.-G.

    2016-09-01

    The properties of 12C,16O, and 20Ne nuclei in strong magnetic fields B ≃1017 G are studied in the context of strongly magnetized neutron stars and white dwarfs. The sky3d code is extended to incorporate the interaction of nucleons with the magnetic field and is utilized to solve the time-independent Hartree-Fock equations with a Skyrme interaction on a Cartesian three-dimensional grid. The numerical solutions demonstrate a number of phenomena, which include a splitting of the energy levels of spin-up and -down nucleons, spontaneous rearrangement of energy levels in 16O at a critical field, which leads to jump-like increases of magnetization and proton current in this nucleus, and evolution of the intrinsically deformed 20Ne nucleus toward a more spherical shape under increasing field strength. Many of the numerical features can be understood within a simple analytical model based on the occupation by the nucleons of the lowest states of the harmonic oscillator in a magnetic field.

  12. Study of Exotic Weakly Bound Nuclei Using Magnetic Analyzer Mavr

    Science.gov (United States)

    Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.

    2016-06-01

    A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ∼1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400 - U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.

  13. Ultrahigh Energy Nuclei Propagation in a Structured, Magnetized Universe

    CERN Document Server

    Armengaud, E; Miniati, F; Armengaud, Eric; Sigl, Guenter; Miniati, Francesco

    2004-01-01

    We compare the propagation of iron and proton nuclei above 10^19 eV in a structured Universe with source and magnetic field distributions obtained from a large scale structure simulation and source densities about 10^(-5) Mpc^(-3). All relevant cosmic ray interactions are taken into account, including photo-disintegration and propagation of secondary products. Iron injection predicts spectral shapes different from proton injection which disagree with existing data below about 30 EeV. Injection of light nuclei or protons must therefore contribute at these energies. However, at higher energies, existing data are consistent with injection of pure iron with spectral indices between 2 and 2.4. This allows a significant recovery of the spectrum above roughly 100 EeV, especially in the case of large deflections. Significant auto-correlation and anisotropy, and considerable cosmic variance are also predicted in this energy range. The mean atomic mass A fluctuates considerably between different scenarios. At energies ...

  14. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  15. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    Science.gov (United States)

    Muzamil, Akhmad; Haries Firmansyah, Achmad

    2017-05-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (pTendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information.

  16. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  17. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging.

    Science.gov (United States)

    Holland, Dominic; Kuperman, Joshua M; Dale, Anders M

    2010-03-01

    Single-shot Echo Planar Imaging (EPI) is one of the most efficient magnetic resonance imaging (MRI) acquisition schemes, producing relatively high-definition images in 100 ms or less. These qualities make it desirable for Diffusion Tensor Imaging (DTI), functional MRI (fMRI), and Dynamic Susceptibility Contrast MRI (DSC-MRI). However, EPI suffers from severe spatial and intensity distortion due to B(0) field inhomogeneity induced by magnetic susceptibility variations. Anatomically accurate, undistorted images are essential for relating DTI and fMRI images with anatomical MRI scans, and for spatial registration with other modalities. We present here a fast, robust, and accurate procedure for correcting EPI images from such spatial and intensity distortions. The method involves acquisition of scans with opposite phase encoding polarities, resulting in opposite spatial distortion patterns, and alignment of the resulting images using a fast nonlinear registration procedure. We show that this method, requiring minimal additional scan time, provides superior accuracy relative to the more commonly used, and more time consuming, field mapping approach. This method is also highly computationally efficient, allowing for direct "real-time" implementation on the MRI scanner. We further demonstrate that the proposed method can be used to recover dropouts in gradient echo (BOLD and DSC-MRI) EPI images.

  18. Evaluation of diamagnetic susceptibility effect on magnetic resonance phase images using gradient echo. On the partial volume effect in calcification

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Toshiharu; Yamada, Naoaki; Yamada, Yukinori; Doi, Toyozo [National Cardiovascular Center, Suita, Osaka (Japan)

    1995-02-01

    To examine the ability of magnetic resonance imaging to visualize the diamagnetic susceptibility effects of calcification, phantom experiments using small lead balls in a dilute solution of copper chloride in water were carried out. Gradient echo phase images of the phantoms were obtained using varying imaging parameters (TR, TE, flip angle, slice thickness), and phase shift due to the lead balls was measured. Five choroid plexuses and three pineal glands with calcification were also examined using gradient echo phase images. As a result, it could be seen that the phase shift increased in proportion to both echo time and the ratio held by lead and calcification in a voxel (partial volume effect), and was independent of repetition time and flip angle. It could be confirmed that the gradient echo phase images are useful for detecting the diamagnetic susceptibility effects of calcification. (author).

  19. Magnetic dipole excitations in nuclei: elementary modes of nucleonic motion

    CERN Document Server

    Heyde, Kris; Richter, Achim

    2010-01-01

    The nucleus is one of the most multi-faceted many-body systems in the universe. It exhibits a multitude of responses depending on the way one 'probes' it. With increasing technical advancements of beams at the various accelerators and of detection systems the nucleus has, over and over again, surprised us by expressing always new ways of 'organized' structures and layers of complexity. Nuclear magnetism is one of those fascinating faces of the atomic nucleus we discuss in the present review. We shall not just limit ourselves to presenting the by now very large data set that has been obtained in the last two decades using various probes, electromagnetic and hadronic alike and that presents ample evidence for a low-lying orbital scissors mode around 3 MeV, albeit fragmented over an energy interval of the order of 1.5 MeV, and higher-lying spin-flip strength in the energy region 5 - 9 MeV in deformed nuclei, nor to the presently discovered evidence for low-lying proton-neutron isovector quadrupole excitations in...

  20. Zero echo time magnetic resonance imaging of contrast-agent-enhanced calcium phosphate bone defect fillers.

    Science.gov (United States)

    Sun, Yi; Ventura, Manuela; Oosterwijk, Egbert; Jansen, John A; Walboomers, X Frank; Heerschap, Arend

    2013-04-01

    Calcium phosphate cements (CPCs) are widely used bone substitutes. However, CPCs have similar radiopacity as natural bone, rendering them difficult to be differentiated in classical X-ray and computed tomography imaging. As conventional magnetic resonance imaging (MRI) of bone is cumbersome, due to low water content and very short T(2) relaxation time, ultra-short echo time (UTE) and zero echo time (ZTE) MRI have been explored for bone visualization. This study examined the possibility to differentiate bone and CPC by MRI. T(1) and T(2)* values determined with UTE MRI showed little difference between bone and CPC; hence, these materials were difficult to separate based on T(1) or T(2) alone. Incorporation of ultra-small particles of iron oxide and gadopentetatedimeglumine (Gd-DTPA; 1 weight percentage [wt%] and 5 wt% respectively) into CPC resulted in visualization of CPC with decreased intensity on ZTE images in in vitro and ex vivo experiments. However, these additions had unfavorable effects on the solidification time and/or mechanical properties of the CPC, with the exception of 1% Gd-DTPA alone. Therefore, we tested this material in an in vivo experiment. The contrast of CPC was enhanced at an early stage postimplantation, and was significantly reduced in the 8 weeks thereafter. This indicates that ZTE imaging with Gd-DTPA as a contrast agent could be a valid radiation-free method to visualize CPC degradation and bone regeneration in preclinical experiments.

  1. First on-line $\\beta$-NMR on oriented nuclei magnetic dipole moments of the $\

    CERN Document Server

    Giles, T; Stone, N J; Van Esbroeck, K; White, G; Wöhr, A; Veskovic, M; Towner, I S; Mantica, P F; Prisciandaro, J I; Morrissey, D J; Fedosseev, V; Mishin, V I; Köster, U; Walters, W B

    2000-01-01

    The first fully on-line use of the angular distribution of $\\beta$ - emission in detection of NMR of nuclei oriented at low temperatures is reported. The magnetic moments of the single valence particle, intermediate mass, isotopes $^{67}$Ni($\

  2. Self-diffusion imaging by spin echo in Earth's magnetic field.

    Science.gov (United States)

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging.

  3. Echo-Planar Imaging: Magnetic Resonance Imaging in a Fraction of a Second

    Science.gov (United States)

    Stehling, Michael K.; Turner, Robert; Mansfield, Peter

    1991-10-01

    Progress has recently been made in implementing magnetic resonance imaging (MRI) techniques that can be used to obtain images in a fraction of a second rather than in minutes. Echo-planar imaging (EPI) uses only one nuclear spin excitation per image and lends itself to a variety of critical medical and scientific applications. Among these are evaluation of cardiac function in real time, mapping of water diffusion and temperature in tissue, mapping of organ blood pool and perfusion, functional imaging of the central nervous system, depiction of blood and cerebrospinal fluid flow dynamics, and movie imaging of the mobile fetus in utero. Through shortened patient examination times, higher patient throughput, and lower cost per MRI examination, EPI may become a powerful tool for early diagnosis of some common and potentially treatable diseases such as ischemic heart disease, stroke, and cancer.

  4. Phase incremented echo train acquisition applied to magnetic resonance pore imaging

    Science.gov (United States)

    Hertel, S. A.; Galvosas, P.

    2017-02-01

    Efficient phase cycling schemes remain a challenge for NMR techniques if the pulse sequences involve a large number of rf-pulses. Especially complex is the Carr Purcell Meiboom Gill (CPMG) pulse sequence where the number of rf-pulses can range from hundreds to several thousands. Our recent implementation of Magnetic Resonance Pore Imaging (MRPI) is based on a CPMG rf-pulse sequence in order to refocus the effect of internal gradients inherent in porous media. While the spin dynamics for spin- 1 / 2 systems in CPMG like experiments are well understood it is still not straight forward to separate the desired pathway from the spectrum of unwanted coherence pathways. In this contribution we apply Phase Incremented Echo Train Acquisition (PIETA) to MRPI. We show how PIETA offers a convenient way to implement a working phase cycling scheme and how it allows one to gain deeper insights into the amplitudes of undesired pathways.

  5. Multiplexing Effect Due to Exposure of the Working Substance of a Spin Echo Processor to Magnetic Field Pulses

    Science.gov (United States)

    Pleshakov, I. V.; Popov, P. S.; Kuzmin, Yu. I.; Dudkin, V. I.

    2016-07-01

    We consider a spin echo processor that uses a magnetically ordered material (ferrite) as a working substance. It is shown that it is possible to achieve suppression of the crosstalk (spurious signals) excited by radio-frequency pulses from different chains arriving at the system if the working substance is affected by sufficiently long magnetic field pulses. Thus, time-division multiplexing of the information processes can be carried out.

  6. Nuclei Measurements with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Heil, Melanie

    2017-03-01

    The exact behavior of nuclei fluxes in cosmic rays and how they relate to each other is important for understanding the production, acceleration and propagation mechanisms of charged cosmic rays. Precise measurements with the Alpha Magnetic Spectrometer on the International Space Station of light nuclei fluxes and their ratios in primary cosmic rays with rigidities from GV to TV are presented. The high statistics of the measurements require detailed studies and in depth understanding of associated systematic uncertainties.

  7. Nuclei Measurements with the Alpha Magnetic Spectrometer on the International Space Station

    Directory of Open Access Journals (Sweden)

    Heil Melanie

    2017-01-01

    Full Text Available The exact behavior of nuclei fluxes in cosmic rays and how they relate to each other is important for understanding the production, acceleration and propagation mechanisms of charged cosmic rays. Precise measurements with the Alpha Magnetic Spectrometer on the International Space Station of light nuclei fluxes and their ratios in primary cosmic rays with rigidities from GV to TV are presented. The high statistics of the measurements require detailed studies and in depth understanding of associated systematic uncertainties.

  8. Magnetic Dipole Sum Rules for Odd-Mass Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J.N.; Leviatan, A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ginocchio, J.N.; Leviatan, A. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), I-38050 Villazano, Trento (Italy)

    1997-08-01

    Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are derived within the single-j interacting boson-fermion model. We discuss the physical content and geometric interpretation of these sum rules and apply them to {sup 167}Er and {sup 161}Dy. We find consistency with the former measurements but not with the latter. {copyright} {ital 1997 } {ital The American Physical Society}

  9. Tissue electrical property mapping from zero echo-time magnetic resonance imaging.

    Science.gov (United States)

    Lee, Seung-Kyun; Bulumulla, Selaka; Wiesinger, Florian; Sacolick, Laura; Sun, Wei; Hancu, Ileana

    2015-02-01

    The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B(1)(+)) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B(1)(+) mapping.

  10. The diagnostic value of magnetic resonance urography using a balanced turbo field echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Cifci, Egemen; Coban, Goekcen [Baskent University Faculty of Medicine, Department of Radiology, Konya (Turkey); Cicek, Tufan; Goenuelalan, Umut [Baskent University Faculty of Medicine, Department of Urology, Konya (Turkey)

    2016-12-15

    The aim of the study was to compare the inter-observer variability and the accuracy of magnetic resonance urography (MRU) using a thin sectional balanced-turbo field echo (B-TFE) sequence for detecting ureteral calculi and to determine the effect of additional factors (size, density and location of the calculus) on the sensitivity and specificity of the MRU. MRU and CT images were evaluated independently by two radiologists according to presence, density and localization of calculi. The degrees of inter-rater agreement for categorical items were evaluated by the Kappa coefficient. According to the 1st and 2nd observers, the sensitivity of MRU was 65.9 %, 71.8 % and the specificity of MRU was 95.9 %, 100 %, respectively. Inter-observer agreement was 84.6 % for stone detection. The larger size had a better effect on detectability (p < 0.05). Also, the higher density had a better impact on detectability (p < 0.05). Our study has shown that B-TFE MRU was useful to detect ureteral calculi. However, B-TFE MRU has low sensitivity and high specificity in comparison with CT images. MRU is a reasonable alternative imaging technique for follow-up periods of selective groups like patients with large urinary stones, children or pregnant patients when ionizing radiation is undesirable. (orig.)

  11. Java-based framework for processing and displaying short-echo-time magnetic resonance spectroscopy signals.

    Science.gov (United States)

    De Neuter, B; Luts, J; Vanhamme, L; Lemmerling, P; Van Huffel, S

    2007-02-01

    Magnetic resonance spectroscopy (MRS) can be used to determine in a non-invasive way the concentrations of certain chemical substances, also called metabolites. The spectra of MRS signals contain peaks that correspond to the metabolites of interest. Short-echo-time signals are characterized by heavily overlapping metabolite peaks and require sophisticated processing methods. To be useful in a clinical environment tools are needed that can process those signals in an accurate and fast way. Therefore, we developed novel processing methods and we designed a freely available and open-source framework (http://www.esat.kuleuven.ac.be/sista/members/biomed) in which the processing methods can be integrated. The framework has a set of abstract classes, called hot spots, and its goal is to provide a general structure and determine the control flow of the program. It provides building blocks or components in order to help developers with integrating their methods in the framework via a plug-in system. The framework is designed with the unified modeling language (UML) and implemented in Java. When a developer implements the framework he gets an application that acts like a simple and user-friendly graphical user interface (GUI) for processing MRS data. This article describes in detail the structure and implementation of the framework and the integration of our processing methods in it.

  12. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    Science.gov (United States)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development

  13. Creation and transmutation of magnetized nuclei at explosively dense matter

    Directory of Open Access Journals (Sweden)

    Kondratyev V. N.

    2012-12-01

    Full Text Available Synthesis of iron group chemical elements is considered for the ultra-magnetized astrophysical plasma in supernovae. Maximum of nucleosynthesis products is shown to shift towards smaller mass numbers approaching titanium due to magnetic modification of nuclear structure. The results are corroborated with an excess of 44Ti revealed from the INTEGRAL mission data.

  14. The diagnostic value of magnetic resonance urography using a balanced turbo field echo sequence.

    Science.gov (United States)

    Çifçi, Egemen; Çoban, Gökçen; Çiçek, Tufan; Gönülalan, Umut

    2016-12-01

    The aim of the study was to compare the inter-observer variability and the accuracy of magnetic resonance urography (MRU) using a thin sectional balanced-turbo field echo (B-TFE) sequence for detecting ureteral calculi and to determine the effect of additional factors (size, density and location of the calculus) on the sensitivity and specificity of the MRU. MRU and CT images were evaluated independently by two radiologists according to presence, density and localization of calculi. The degrees of inter-rater agreement for categorical items were evaluated by the Kappa coefficient. According to the 1st and 2nd observers, the sensitivity of MRU was 65.9 %, 71.8 % and the specificity of MRU was 95.9 %, 100 %, respectively. Inter-observer agreement was 84.6 % for stone detection. The larger size had a better effect on detectability (p MRU was useful to detect ureteral calculi. However, B-TFE MRU has low sensitivity and high specificity in comparison with CT images. MRU is a reasonable alternative imaging technique for follow-up periods of selective groups like patients with large urinary stones, children or pregnant patients when ionizing radiation is undesirable. • According to 1st and 2nd observers, sensitivity of MRU was 65.9 %, 71.8 %, respectively. • According to 1st and 2nd observers, MRU specificity was 95.9 %, 100 %, respectively. • Interobserver agreement was found to be over 84 % for stone detection. • B-TFE sequence provides calculus follow-up without radiation. • Larger calculi and more dense calculi individually have the better effect on detectability.

  15. Simultaneous Quantitative MRI Mapping of T1, T2* and Magnetic Susceptibility with Multi-Echo MP2RAGE

    Science.gov (United States)

    Kober, Tobias; Möller, Harald E.; Schäfer, Andreas

    2017-01-01

    The knowledge of relaxation times is essential for understanding the biophysical mechanisms underlying contrast in magnetic resonance imaging. Quantitative experiments, while offering major advantages in terms of reproducibility, may benefit from simultaneous acquisitions. In this work, we demonstrate the possibility of simultaneously recording relaxation-time and susceptibility maps with a prototype Multi-Echo (ME) Magnetization-Prepared 2 RApid Gradient Echoes (MP2RAGE) sequence. T1 maps can be obtained using the MP2RAGE sequence, which is relatively insensitive to inhomogeneities of the radio-frequency transmit field, B1+. As an extension, multiple gradient echoes can be acquired in each of the MP2RAGE readout blocks, which permits the calculation of T2* and susceptibility maps. We used computer simulations to explore the effects of the parameters on the precision and accuracy of the mapping. In vivo parameter maps up to 0.6 mm nominal resolution were acquired at 7 T in 19 healthy volunteers. Voxel-by-voxel correlations and the test-retest reproducibility were used to assess the reliability of the results. When using optimized paramenters, T1 maps obtained with ME-MP2RAGE and standard MP2RAGE showed excellent agreement for the whole range of values found in brain tissues. Simultaneously obtained T2* and susceptibility maps were of comparable quality as Fast Low-Angle SHot (FLASH) results. The acquisition times were more favorable for the ME-MP2RAGE (≈ 19 min) sequence as opposed to the sum of MP2RAGE (≈ 12 min) and FLASH (≈ 10 min) acquisitions. Without relevant sacrifice in accuracy, precision or flexibility, the multi-echo version may yield advantages in terms of reduced acquisition time and intrinsic co-registration, provided that an appropriate optimization of the acquisition parameters is performed. PMID:28081157

  16. In vivo determination of cerebral hemodynamics and bioenergetics using spin-echo magnetic resonance imaging

    Science.gov (United States)

    Oja, Joni Marcus Eric

    1999-08-01

    It is well known that the transverse relaxation time, T 2, is dependent on the oxygenation state of blood. Two biophysical mechanisms have been proposed to explain this interdependency. In the diffusion model, oxygenation effects are accounted for by water diffusion through field gradients inside and outside, of the erythrocytes, whereas in the exchange model, the oxygenation effect is thought to be due to the exchange of water between erythrocytes and plasma. Careful in vitro studies with blood have shown that the exchange model fits best to the obtained data in preference to the diffusion model. During brain activation, local increases in blood flow exceed the oxygen demand, resulting in less deoxygenated blood in the capillary and venous compartments. Due to this, blood is less paramagnetic in these activated brain regions, lengthening T2, which in turn increases the signal intensities of the corresponding voxels in the MR image. Thus the measured blood-oxygen-level-dependent (BOLD) image contrast is a complex function of many physiological parameters, such as tissue morphometry, blood volume, blood flow, oxygenation and oxygen metabolism. All of these parameters contribute to the tissue magnetization influencing the transverse relaxation rate. Until now, no exact equations have been available which would relate these hemodynamic variables to a single MRI observable parameter, namely T 2, in a manner in which absolute units can be used. A fundamental theory was developed to explain measured spin-echo BOLD effects, and it was tested in animals and humans. In animal studies, blood oxygenation was altered by regulating arterial oxygen or carbon dioxide tension. This resulted in changes in blood volume, flow and blood magnetization, which in turn was reflected in T2. Using analytical expressions derived from the theory, the transverse relaxation rate was related to the oxygen saturation and extraction and quantification of microvascular cerebral blood volume was

  17. Prediction and evaluation of magnetic moments in T =1 /2 , 3/2, and 5/2 mirror nuclei

    Science.gov (United States)

    Mertzimekis, Theo J.

    2016-12-01

    The Buck-Perez analysis of mirror nuclei magnetic moments has been applied on an updated set of data for T =1 /2 ,3 /2 mirror pairs and attempted for the first time for T =5 /2 nuclei. The spin expectation value for mirror nuclei up to mass A =63 has been reexamined. The main purpose is to test Buck-Perez analysis effectiveness as a prediction and—more importantly—an evaluation tool of magnetic moments in mirror nuclei. In this scheme, ambiguous signs of magnetic moments are resolved, evaluations of moments with multiple existing measurements have been performed, and a set of predicted values for missing moments, especially for several neutron-deficient nuclei is produced. A resolution for the case of the 57Cu ground-state magnetic moment is proposed. Overall, the method seems to be promising for future evaluations and planning future measurements.

  18. Determination of magnetic fields in broad line region of active galactic nuclei from polarimetric observations

    Science.gov (United States)

    Piotrovich, Mikhail; Silant'ev, Nikolai; Gnedin, Yuri; Natsvlishvili, Tinatin; Buliga, Stanislava

    2017-02-01

    Magnetic fields play an important role in confining gas clouds in the broad line region (BLR) of active galactic nuclei (AGN) and in maintaining the stability of these clouds. Without magnetic fields the clouds would not be stable, and soon after their formation they would expand and disperse. We show that the strength of the magnetic field can be derived from the polarimetric observations. Estimates of magnetic fields for a number of AGNs are based on the observed polarization degrees of broad Hα lines and nearby continuum. The difference between their values allows us to estimate the magnetic field strength in the BLR using the method developed by Silant'ev et al. (2013). Values of magnetic fields in BLR for a number of AGNs have been derived.

  19. Echoes in Space and Time

    Science.gov (United States)

    Lin, Kang; Lu, Peifen; Ma, Junyang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Zeng, Heping; Wu, Jian; Karras, Gabriel; Siour, Guillaume; Hartmann, Jean-Michel; Faucher, Olivier; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2016-10-01

    Echo in mountains is a well-known phenomenon, where an acoustic pulse is mirrored by the rocks, often with reverberating recurrences. For spin echoes in magnetic resonance and photon echoes in atomic and molecular systems, the role of the mirror is played by a second, time-delayed pulse that is able to reverse the flow of time and recreate the original impulsive event. Recently, alignment and orientation echoes were discussed in terms of rotational-phase-space filamentation, and they were optically observed in laser-excited molecular gases. Here, we observe hitherto unreported fractional echoes of high order, spatially rotated echoes, and the counterintuitive imaginary echoes at negative times. Coincidence Coulomb explosion imaging is used for a direct spatiotemporal analysis of various molecular alignment echoes, and the implications to echo phenomena in other fields of physics are discussed.

  20. Magnetic-field control of photon echo from the electron-trion system in a CdTe quantum well: shuffling coherence between optically accessible and inaccessible states.

    Science.gov (United States)

    Langer, L; Poltavtsev, S V; Yugova, I A; Yakovlev, D R; Karczewski, G; Wojtowicz, T; Kossut, J; Akimov, I A; Bayer, M

    2012-10-12

    We report on magnetic field-induced oscillations of the photon echo signal from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum well. The oscillatory signal is due to Larmor precession of the electron spin about a transverse magnetic field and depends sensitively on the polarization configuration of the exciting and refocusing pulses. The echo amplitude can be fully tuned from the maximum down to zero depending on the time delay between the two pulses and the magnetic-field strength. The results are explained in terms of the optical Bloch equations accounting for the spin level structure of electrons and trions.

  1. Optimization of magnetic flux density measurement using multiple RF receiver coils and multi-echo in MREIT.

    Science.gov (United States)

    Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je

    2014-09-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity

  2. Nuclear structure in strong magnetic fields: nuclei in the crust of a magnetar

    CERN Document Server

    Arteaga, Daniel Pena; Khan, Elias; Ring, Peter

    2011-01-01

    Covariant density functional theory is used to study the effect of strong magnetic fields, up to the limit predicted for neutron stars (for magnetars $B \\approx10^{18}$G), on nuclear structure. All new terms in the equation of motion resulting from time reversal symmetry breaking by the magnetic field and the induced currents, as well as axial deformation, are taken into account in a self-consistent fashion. For nuclei in the iron region of the nuclear chart it is found that fields in the order of magnitude of $10^{17}$G significantly affect bulk properties like masses and radii.

  3. ECHO virus

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to ...

  4. Fractional Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Siour, G; Hartmann, J -M; Faucher, O; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh

    2016-01-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes which appear periodically at delays which are integer multiple of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide the first experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  5. Aortic valve stenotic area calculation from phase contrast cardiovascular magnetic resonance: the importance of short echo time

    Directory of Open Access Journals (Sweden)

    Cowan Brett R

    2009-11-01

    Full Text Available Abstract Background Cardiovascular magnetic resonance (CMR can potentially quantify aortic valve area (AVA in aortic stenosis (AS using a single-slice phase contrast (PC acquisition at valve level: AVA = aortic flow/aortic velocity-time integral (VTI. However, CMR has been shown to underestimate aortic flow in turbulent high velocity jets, due to intra-voxel dephasing. This study investigated the effect of decreasing intra-voxel dephasing by reducing the echo time (TE on AVA estimates in patients with AS. Method 15 patients with moderate or severe AS, were studied with three different TEs (2.8 ms/2.0 ms/1.5 ms, in the main pulmonary artery (MPA, left ventricular outflow tract (LVOT and 0 cm/1 cm/2.5 cm above the aortic valve (AoV. PC estimates of stroke volume (SV were compared with CMR left ventricular SV measurements and PC peak velocity, VTI and AVA were compared with Doppler echocardiography. CMR estimates of AVA obtained by direct planimetry from cine acquisitions were also compared with the echoAVA. Results With a TE of 2.8 ms, the mean PC SV was similar to the ventricular SV at the MPA, LVOT and AoV0 cm (by Bland-Altman analysis bias ± 1.96 SD, 1.3 ± 20.2 mL/-6.8 ± 21.9 mL/6.5 ± 50.7 mL respectively, but was significantly lower at AoV1 and AoV2.5 (-29.3 ± 31.2 mL/-21.1 ± 35.7 mL. PC peak velocity and VTI underestimated Doppler echo estimates by approximately 10% with only moderate agreement. Shortening the TE from 2.8 to 1.5 msec improved the agreement between ventricular SV and PC SV at AoV0 cm (6.5 ± 50.7 mL vs 1.5 ± 37.9 mL respectively but did not satisfactorily improve the PC SV estimate at AoV1 cm and AoV2.5 cm. Agreement of CMR AVA with echoAVA was improved at TE 1.5 ms (0.00 ± 0.39 cm2 versus TE 2.8 (0.11 ± 0.81 cm2. The CMR method which agreed best with echoAVA was direct planimetry (-0.03 cm2 ± 0.24 cm2. Conclusion Agreement of CMR AVA at the aortic valve level with echo AVA improves with a reduced TE of 1.5 ms

  6. Nuclear Spin Echo Decay for the Walstedt-Cheong Mechanism

    Science.gov (United States)

    Coleman, Todd; Recchia, Charles; Seber, Derek; Pennington, Charles

    1997-03-01

    We present calculations of nuclear spin echo decay for the Walstedt-Cheong mechanism(R. E. Walstedt and S. -W. Cheong, Phys. Rev. B 51, 3163 (1995)) in which observed A nuclei are coupled to B nuclei that are experiencing magnetic spin lattice re laxation effects. It has been shown that this mechanism must be taken into account when NMR transverse relaxation rates are being analyzed to provide information on vortex dynamics and electronic spin susceptibility in cuprate superconductors.(R ecchia et al, submitted 1996) We report a method of computing spin echo decays which eliminates the need for numerical simulations and phase distribution approximations(C. H. Recchia, K. Gorny, and C. H. Pennington, Phys. Rev. B 54, 4207 (1996)) and involves the time evolution of normal modes of a relaxation matrix.

  7. Comparison of multi-echo dixon methods with volume interpolated breath-hold gradient magnetic resonance imaging in fat-signal fraction quantification of paravaertebral muscle

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Yeon Hwa; Kim, Hak Sun; Lee, Young Han [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2015-10-15

    To assess whether multi-echo Dixon magnetic resonance (MR) imaging with simultaneous T2{sup *} estimation and correction yields more accurate fat-signal fraction (FF) measurement of the lumbar paravertebral muscles, in comparison with non-T2{sup *}-corrected two-echo Dixon or T2{sup *}-corrected three-echo Dixon, using the FF measurements from single-voxel MR spectroscopy as the reference standard. Sixty patients with low back pain underwent MR imaging with a 1.5T scanner. FF mapping images automatically obtained using T2{sup *}-corrected Dixon technique with two (non-T2{sup *}-corrected), three, and six echoes, were compared with images from single-voxel MR spectroscopy at the paravertebral muscles on levels L4 through L5. FFs were measured directly by two radiologists, who independently drew the region of interest on the mapping images from the three sequences. A total of 117 spectroscopic measurements were performed either bilaterally (57 of 60 subjects) or unilaterally (3 of 60 subjects). The mean spectroscopic FF was 14.3 ± 11.7% (range, 1.9-63.7%). Interobserver agreement was excellent between the two radiologists. Lin's concordance correlation between the spectroscopic findings and all the imaging-based FFs were statistically significant (p < 0.001). FFs obtained from the T2*-corrected six-echo Dixon sequences showed a significantly better concordance with the spectroscopic data, with its concordance correlation coefficient being 0.99 and 0.98 (p < 0.001), as compared with two- or three-echo methods. T2{sup *}-corrected six-echo Dixon sequence would be a better option than two- or three-echo methods for noninvasive quantification of lumbar muscle fat quantification.

  8. A Systematic Review of Non-Echo Planar Diffusion-Weighted Magnetic Resonance Imaging for Detection of Primary and Postoperative Cholesteatoma

    NARCIS (Netherlands)

    van Egmond, Sylvia L; Stegeman, Inge; Grolman, Wilko; Aarts, Mark C J

    OBJECTIVE: To investigate the diagnostic value of non-echo planar diffusion-weighted magnetic resonance imaging (DW-MRI) for primary and recurrent/residual (postoperative) cholesteatoma in adults (≥18 years) after canal wall up surgery. DATA SOURCES: We conducted a systematic search in PubMed,

  9. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffry Todd

    2004-12-21

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  10. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  11. Anomalous thermal decoherence in a quantum magnet measured with neutron spin echo spectroscopy

    Science.gov (United States)

    Groitl, F.; Keller, T.; Rolfs, K.; Tennant, D. A.; Habicht, K.

    2016-04-01

    The effect of temperature dependent asymmetric line broadening is investigated in Cu (NO3)2.2.5 D2O , a model material for a one-dimensional bond alternating Heisenberg chain, using the high resolution neutron-resonance spin echo (NRSE) technique. Inelastic neutron scattering experiments on dispersive excitations including phase sensitive measurements demonstrate the potential of NRSE to resolve line shapes, which are non-Lorentzian, opening up a new and hitherto unexplored class of experiments for the NRSE method beyond standard linewidth measurements. The particular advantage of NRSE is its direct access to the correlations in the time domain without convolution with the resolution function of the background spectrometer. This application of NRSE is very promising and establishes a basis for further experiments on different systems, since the results for Cu(NO3)2. 2.5 D2O are applicable to a broad range of quantum systems.

  12. Lateral diffusion of PEG-Lipid in magnetically aligned bicelles measured using stimulated echo pulsed field gradient 1H NMR.

    Science.gov (United States)

    Soong, Ronald; Macdonald, Peter M

    2005-01-01

    Lateral diffusion measurements of PEG-lipid incorporated into magnetically aligned bicelles are demonstrated using stimulated echo (STE) pulsed field gradient (PFG) proton (1H) nuclear magnetic resonance (NMR) spectroscopy. Bicelles were composed of dimyristoyl phosphatidylcholine (DMPC) plus dihexanoyl phosphatidylcholine (DHPC) (q = DMPC/DHPC molar ratio = 4.5) plus 1 mol % (relative to DMPC) dimyristoyl phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000] (DMPE-PEG 2000) at 25 wt % lipid. 1H NMR STE spectra of perpendicular aligned bicelles contained only resonances assigned to residual HDO and to overlapping contributions from a DMPE-PEG 2000 ethoxy headgroup plus DHPC choline methyl protons. Decay of the latter's STE intensity in the STE PFG 1H NMR experiment (g(z) = 244 G cm(-1)) yielded a DMPE-PEG 2000 (1 mol %, 35 degrees C) lateral diffusion coefficient D = 1.35 x 10(-11) m2 s(-1). Hence, below the "mushroom-to-brush" transition, DMPE-PEG 2000 lateral diffusion is dictated by its DMPE hydrophobic anchor. D was independent of the diffusion time, indicating unrestricted lateral diffusion over root mean-square diffusion distances of microns, supporting the "perforated lamellae" model of bicelle structure under these conditions. Overall, the results demonstrate the feasibility of lateral diffusion measurements in magnetically aligned bicelles using the STE PFG NMR technique.

  13. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    CERN Document Server

    Begelman, Mitchell C

    2016-01-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal ($\\phi-$direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at $R$ to large heights $z > 0.1 R$ and low densities, while leaving a thin dense layer containing most of the mass --- but contributing very little accretion --- around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: th...

  14. Carbon-Oxygen-Neon mass nuclei in super-strong magnetic fields

    CERN Document Server

    Stein, Martin; Sedrakian, Armen; Reinhard, P -G

    2016-01-01

    The properties of carbon, oxygen and neon nuclei in strong magnetic fields $B\\simeq 10^{17}\\,$G are studied in the context of strongly magnetized neutron stars and white dwarfs. The Sky3D code is extended to incorporate the interaction of nucleons with the magnetic field and is utilized to solve the time-independent Hartree-Fock equations with a Skyrme interaction on a Cartesian 3D grid. The numerical solutions demonstrate a number of phenomena, which include a splitting of the energy levels of spin up and down nucleons, spontaneous rearrangment of energy levels in $^{16}O$ at a critical field, which leads to jump-like increase of magnetization and proton current in this nucleus, evolution of the intrinsically deformed $^{20}Ne$ nucleus towards a more spherical shape under increasing field strength. Many of the numerical features can be understood within a simple analytical model based on the occupation by the nucleons of the lowest states of harmonic oscillator in a magnetic field.

  15. Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-echo and multi-shot spirals.

    Science.gov (United States)

    Wu, Bing; Li, Wei; Avram, Alexandru Vlad; Gho, Sung-Min; Liu, Chunlei

    2012-01-02

    Gradient-echo MRI of resonance-frequency shift and T2* values exhibit unique tissue contrast and offer relevant physiological information. However, acquiring 3D-phase images and T2* maps with the standard spoiled gradient echo (SPGR) sequence is lengthy for routine imaging at high-spatial resolution and whole-brain coverage. In addition, with the standard SPGR sequence, optimal signal-to-noise ratio (SNR) cannot be achieved for every tissue type given their distributed resonance frequency and T2* value. To address these two issues, a SNR optimized multi-echo sequence with a stack-of-spiral acquisition is proposed and implemented for achieving fast and simultaneous acquisition of image phase and T2* maps. The analytical behavior of the phase SNR is derived as a function of resonance frequency, T2* and echo time. This relationship is utilized to achieve tissue optimized SNR by combining phase images with different echo times. Simulations and in vivo experiments were designed to verify the theoretical predictions. Using the multi-echo spiral acquisition, whole-brain coverage with 1 mm isotropic resolution can be achieved within 2.5 min, shortening the scan time by a factor of 8. The resulting multi-echo phase map shows similar SNR to that of the standard SPGR. The acquisition can be further accelerated with non-Cartesian parallel imaging. The technique can be readily extended to other multi-shot readout trajectories besides spiral. It may provide a practical acquisition strategy for high resolution and simultaneous 3D mapping of magnetic susceptibility and T2*.

  16. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    Science.gov (United States)

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  17. Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties.

    Science.gov (United States)

    Ma, Ya-Jun; Shao, Hongda; Du, Jiang; Chang, Eric Y

    2016-11-01

    MRI biomarkers such as T2 , T2 * and T1rho have been widely used, but are confounded by the magic angle effect. The purpose of this study is to investigate the use of the two-dimensional ultrashort echo time magnetization transfer (UTE-MT) sequence for potential magic angle independent MR biomarkers. Magnetization transfer was investigated in cadaveric Achilles tendon samples using the UTE-MT sequence at five MT powers and five frequency offsets ranging from 2 to 50 kHz. The protocol was applied at five sample orientations ranging from 0 to 90° relative to the B0 field. The results were analyzed with a two-pool quantitative MT model. Multiple TE data were also acquired and mono-exponential T2 * was calculated for each orientation. Macromolecular proton fractions and exchange rates derived from UTE-MT modeling did not appreciably change between the various orientations, whereas the T2 * relaxation time demonstrated up to a sixfold increase from 0° to 55°. The UTE-MT technique with two-pool modeling shows promise as a clinically compatible technique that is resistant to the magic angle effect. This method provides information on the macromolecular proton pool that cannot be directly obtained by other methods, including regular UTE techniques. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Retrospective comparison of gradient recalled echo R2* and spin-echo R2 magnetic resonance analysis methods for estimating liver iron content in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Serai, Suraj D.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Quinn, Charles T. [Cincinnati Children' s Hospital Medical Center, Division of Hematology, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH (United States); Podberesky, Daniel J. [Nemours Children' s Health System Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States)

    2015-10-15

    Serial surveillance of liver iron concentration (LIC) provides guidance for chelation therapy in patients with iron overload. The diagnosis of iron overload traditionally relies on core liver biopsy, which is limited by invasiveness, sampling error, cost and general poor acceptance by pediatric patients and parents. Thus noninvasive diagnostic methods such as MRI are highly attractive for quantification of liver iron concentration. To compare two MRI-based methods for liver iron quantification in children. 64 studies on 48 children and young adults (age range 4-21 years) were examined by gradient recalled echo (GRE) R2* and spin-echo R2 MRI at 1.5T to evaluate liver iron concentration. Scatter plots and Bland-Altman difference plots were generated to display and assess the relationship between the methods. With the protocols used in this investigation, Bland-Altman agreement between the methods is best when LIC is <20 mg/g dry tissue. Scatter plots show that all values with LIC <20 mg/g dry tissue fall within the 95% prediction limits. Liver iron concentration as determined by the R2* and R2 MR methods is statistically comparable, with no statistical difference between these methods for LIC <20 mg/g. (orig.)

  19. Transcranial magnetic stimulation-induced 'visual echoes' are generated in early visual cortex

    NARCIS (Netherlands)

    Jolij, J.; Lamme, V.A.F.

    2010-01-01

    Transcranial magnetic stimulation (TMS) of the early visual areas can trigger perception of a flash of light, a so-called phosphene. Here we show that a very brief presentation of a stimulus can modulate features of a subsequent TMS-induced phosphene, to a level that participants mistake phosphenes

  20. Transcranial magnetic stimulation-induced 'visual echoes' are generated in early visual cortex

    NARCIS (Netherlands)

    Jolij, J.; Lamme, V.A.F.

    2010-01-01

    Transcranial magnetic stimulation (TMS) of the early visual areas can trigger perception of a flash of light, a so-called phosphene. Here we show that a very brief presentation of a stimulus can modulate features of a subsequent TMS-induced phosphene, to a level that participants mistake phosphenes

  1. Association diastolic function by echo and infarct size by magnetic resonance imaging after STEMI

    DEFF Research Database (Denmark)

    Soeholm, Helle; Lønborg, Jacob Thomsen; Andersen, Mads Jønsson

    2016-01-01

    by echocardiography and myocardial salvage assessed with cardiac magnetic resonance (CMR) imaging in patients with ST-segment elevation MI (STEMI). DESIGN:In a prospective study, echocardiography and CMR were performed in STEMI patients in the early post-MI phase assessing diastolic dysfunction according to E/A and E...

  2. Translational dynamics and magnetic resonance principles of pulsed gradient spin echo NMR

    CERN Document Server

    Callaghan, Paul T

    2011-01-01

    Magnetic resonance can be used to measure how molecules diffuse and flow, thus revealing information about their interactions with the surrounding environment. This book teaches the basic physics behind the method, imparting deeper understanding to the practitioner, whether in academia, industry or medical science.

  3. A rare-earth-magnet ion trap for confining low-Z, bare nuclei

    Science.gov (United States)

    Brewer, Samuel M.; Tan, Joseph N.

    2009-05-01

    Simplifications in the theory for Rydberg states of hydrogenlike ions allow a substantial improvement in the accuracy of predicted levels, which can yield information on the values of fundamental constants and test theory if they can be compared with precision frequency measurements.[1] We consider the trapping of bare nuclei (fully-stripped) to be used in making Rydberg states of one-electron ions with atomic number 1earth permanent magnets, and to model the capture of charge-state-selected ions extracted from an electron beam ion trap (EBIT). An experimental apparatus adapted to the NIST EBIT will also be discussed. Reference: [1] U.D. Jentschura, P.J. Mohr, J.N. Tan, and B.J. Wundt, ``Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions,'' Phys. Rev. Lett. 100, 160404 (2008).

  4. Tilted-foil polarisation and magnetic moments of mirror nuclei at ISOLDE

    CERN Multimedia

    Bordeanu, C; Thundiyamkulathu Baby, L; Lindroos, M

    2002-01-01

    We report here on the first measurement in an experimental program initiated at the ISOLDE facility at CERN for the measurement of magnetic moments of short-lived radionuclides. The 60~keV ISOLDE beam from the GPS separator is boosted in energy by a 200~kV high-voltage platform, on which the whole experiment is mounted, in order to achieve sufficiently high energy for transmission through the foils of a tilted-foil setup. The 520~keV $^{23}$Mg(2$^+$) nuclei are polarized by the tilted foil technique and the resulting 0$^o$ - 180$^o$ $\\beta$- asymmetry is monitored as a function of the frequency of an rf-applied perturbing magnetic field in an NMR setup.\\\\ In this experiment, earlier asymmetry measurements were confirmed and an NMR resonance was observed, corresponding to a preliminary value of the magnetic moment of 0.533(6) n.m., in agreement with a previous measurement. The measured asymmetry as function of NMR frequency and the fitted resonance curve are presented in the figure. During the e...

  5. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    Science.gov (United States)

    Begelman, Mitchell C.; Silk, Joseph

    2016-10-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal (φ -direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ˜ 0.1 R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disk of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ˜0.1 of the Eddington limit.

  6. Specific features and symmetries for magnetic and chiral bands in nuclei

    Science.gov (United States)

    Raduta, A. A.

    2016-09-01

    Magnetic and chiral bands have been a hot subject for more than twenty years. Therefore, quite large volumes of experimental data as well as theoretical descriptions have been accumulated. Although some of the formalisms are not so easy to handle, the results agree impressively well with the data. The objective of this paper is to review the actual status of both experimental and theoretical investigations. Aiming at making this material accessible to a large variety of readers, including young students and researchers, I gave some details on the schematic models which are able to unveil the main features of chirality in nuclei. Also, since most formalisms use a rigid triaxial rotor for the nuclear system's core, I devoted some space to the semi-classical description of the rigid triaxial as well as of the tilted triaxial rotor. In order to answer the question whether the chiral phenomenon is spread over the whole nuclear chart and whether it is specific only to a certain type of nuclei, odd-odd, odd-even or even-even, the current results in the mass regions of A ∼ 60 , 80 , 100 , 130 , 180 , 200 are briefly described for all kinds of odd/even-odd/even systems. The chiral geometry is a sufficient condition for a system of proton-particle, neutron-hole and a triaxial rotor to have the electromagnetic properties of chiral bands. In order to prove that such geometry is not unique for generating magnetic bands with chiral features, I presented a mechanism for a new type of chiral bands. One tries to underline the fact that this rapidly developing field is very successful in pushing forward nuclear structure studies.

  7. Graffiti echoes

    National Research Council Canada - National Science Library

    Purcell, John

    2014-01-01

      Graffiti and street art are a kind of "voice" of the city. From the street-tagged neighborhoods to the grand billboards high in the air, graffiti seems to always echo what is happening in Los Angeles...

  8. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 T.

    Science.gov (United States)

    Johnson, Kevin; Sharma, Puneet; Oshinski, John

    2008-01-01

    A validation study and early results for non-invasive, in vivo measurement of coronary artery blood flow using phase contrast magnetic resonance imaging (PC-MRI) at 3.0T is presented. Accuracy of coronary artery blood flow measurements by phase contrast MRI is limited by heart and respiratory motion as well as the small size of the coronary arteries. In this study, a navigator echo gated, cine phase velocity mapping technique is described to obtain time-resolved velocity and flow waveforms of small diameter vessels at 3.0T. Phantom experiments using steady, laminar flow are presented to validate the technique and show flow rates measured by 3.0T phase contrast MRI to be accurate within 15% of true flow rates. Subsequently, in vivo scans on healthy volunteers yield velocity measurements for blood flow in the right, left anterior descending, and left circumflex arteries. Measurements of average, cross-sectional velocity were obtainable in 224/243 (92%) of the cardiac phases. Time-averaged, cross-sectional velocity of the blood flow was 6.8+/-4.3cm/s in the LAD, 8.0+/-3.8cm/s in the LCX, and 6.0+/-1.6cm/s in the RCA.

  9. High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Chang, Eric Y.; Biswas, Reni; Statum, Sheronda; Chung, Christine B. [Veterans Administration San Diego Healthcare System, Department of Radiology, San Diego, CA (United States); University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Tafur, Monica; Du, Jiang; Healey, Robert [University of California, San Diego, School of Medicine, Department of Radiology, San Diego, CA (United States); Kwack, Kyu-Sung [Ajou University Medical Center, Department of Radiology, Wonchon-dong, Yeongtong-gu, Gyeonggi-do, Suwon (Korea, Republic of)

    2016-03-15

    To implement high-resolution morphologic and quantitative magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ) using ultrashort time-to-echo (UTE) techniques in cadavers and volunteers. This study was approved by the institutional review board. TMJs of cadavers and volunteers were imaged on a 3-T MR system. High-resolution morphologic and quantitative sequences using conventional and UTE techniques were performed in cadaveric TMJs. Morphologic and UTE quantitative sequences were performed in asymptomatic and symptomatic volunteers. Morphologic evaluation demonstrated the TMJ structures in open- and closed-mouth position. UTE techniques facilitated the visualization of the disc and fibrocartilage. Quantitative UTE MRI was successfully performed ex vivo and in vivo, reflecting the degree of degeneration. There was a difference in the mean UTE T2* values between asymptomatic and symptomatic volunteers. MRI evaluation of the TMJ using UTE techniques allows characterization of the internal structure and quantification of the MR properties of the disc. Quantitative UTE MRI can be performed in vivo with short scan times. (orig.)

  10. Antidepressant-like effects of echo-planar magnetic resonance imaging in mice determined using the forced swimming test.

    Science.gov (United States)

    Aksoz, Elif; Aksoz, Tolga; Bilge, S Sirri; Ilkaya, Fatih; Celik, Suleyman; Diren, H Baris

    2008-10-21

    Echo-planar magnetic resonance imaging (EP-MRI), which is novel variant of MRI, is thought to have antidepressant properties in humans and animal models. Using the forced swimming test (FST), we investigated which monoaminergic system in mice is affected by EP-MRI. The short- and long-term effects of EP-MRI on immobility time in the FST and motor activity within a locomotor activity cage were examined. Two groups of mice underwent 20 min of EP-MRI in an MR scanner (Siemens, 1.5 T Symphony) either 23.5 or 1 h before the start of the second session of the FST. In both groups, the immobility duration in the FST was reduced, similar to effective antidepressant drug treatments. Climbing behavior in the 1-h group and swimming behavior in the 23.5-h group increased significantly, similar to that seen after the administration of desipramine (a noradrenaline reuptake inhibitor) and sertraline (a selective serotonin reuptake inhibitor), respectively. The findings support the hypothesis that EP-MRI has an antidepressant-like effect. We suggest that the antidepressant-like effect begins in the early period with noradrenaline systems and is maintained in the late period with serotonin systems.

  11. Magnetization transfer contrast imaging in bovine and human cortical bone applying an ultrashort echo time sequence at 3 Tesla.

    Science.gov (United States)

    Springer, Fabian; Martirosian, Petros; Machann, Jürgen; Schwenzer, Nina F; Claussen, Claus D; Schick, Fritz

    2009-05-01

    Magnetization transfer (MT) contrast imaging reveals interactions between free water molecules and macromolecules in a variety of tissues. The introduction of ultrashort echo time (UTE) sequences to clinical whole-body MR scanners expands the possibility of MT imaging to tissues with extremely fast signal decay such as cortical bone. The aim of this study was to investigate the MT effect of bovine cortical bone in vitro on a 3 Tesla whole-body MR unit. A 3D-UTE sequence with a rectangular-shaped on-resonant excitation pulse and a Gaussian-shaped off-resonant saturation pulse for MT preparation was applied. The flip angle and off-resonance frequency of the MT pulse was systematically varied. Measurements on various samples of bovine cortical bone, agar gel, aqueous manganese chloride solutions, and solid polymeric materials (polyurethane) were performed, followed by preliminary applications on human tibial bone in vivo. Direct on-resonant saturation effects of the MT prepulses were calculated numerically by means of Bloch's equations. Corrected for direct saturation effects dry and fresh bovine cortical bone showed "true" MTR values of 0.26 and 0.21, respectively. In vivo data were obtained from three healthy subjects and showed MTR values of 0.30 +/- 0.08. In vivo studies into MT of cortical bone might have the potential to give new insights in musculoskeletal pathologies.

  12. Fluid echoes in a pure electron plasma.

    Science.gov (United States)

    Yu, J H; O'Neil, T M; Driscoll, C F

    2005-01-21

    Experimental observations of diocotron wave echoes on a magnetized electron column are reported, representing Kelvin wave echoes on a rotating near-ideal fluid. The echoes occur by reversal of an inviscid wave damping process, and the phase-space mixing and unmixing are directly imaged. The basic echo characteristics agree with a simple nonlinear ballistic theory. At late times, the echo is degraded, and the maximal observed echo times agree with a theory of electron-electron collisions acting on separately evolving velocity classes.

  13. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  14. Changes in susceptibility signs on serial T2*-weighted single-shot echo-planar gradient-echo images in acute embolic infarction: comparison with recanalization status on 3D time-of-flight magnetic resonance angiography

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Yuki; Kinoshita, Toshibumi; Kinoshita, Fumiko [Research Institute of Brain and Blood Vessels - Akita, Department of Radiology, Akita (Japan)

    2012-05-15

    The present study compares changes in susceptibility signs on follow-up single-shot echo-planar gradient-echo T2*-weighted images (GRE-EPI) with vascular status on follow-up magnetic resonance angiography (MRA) in acute embolic infarction. Twenty consecutive patients with acute embolic infarction repeatedly underwent MR imaging including GRE-EPI and MRA using a 1.5-T MR superconducting system. All patients underwent initial MR examination within 24 h of onset and follow-up MR imaging within 1 month after onset. Changes in susceptibility signs on follow-up GRE-EPI were compatible with vascular status on follow-up MRA in 19 of the 20 patients. Susceptibility signs disappeared with complete recanalization in 13 patients, migrated with partial recanalization in 3, did not change together with the absence of recanalization in 2, and became extended together with the absence of recanalization in 1. Cerebral hemorrhage obscured susceptibility signs in the one remaining patient. Susceptibility signs on follow-up GRE-EPI can reflect changes in an acute embolus, such as recanalization or migration, in this study. Serial GRE-EPI in acute embolism complements the diagnostic certainty of MRA by directly detecting an embolus as a susceptibility sign. (orig.)

  15. A Magnetic Alpha-Omega Dynamo in Active Galactic Nuclei Disks: II. Magnetic Field Generation, Theories and Simulations

    CERN Document Server

    Pariev, V I; Finn, J M; Pariev, Vladimir I.; Colgate, Stirling A.; Finn, John M.

    2006-01-01

    It is shown that a dynamo can operate in an Active Galactic Nuclei accretion disk due to the Keplerian shear and due to the helical motions of expanding and twisting plumes of plasma heated by many star passages through the disk. Each plume rotates a fraction of the toroidal flux into poloidal flux, always in the same direction, through a finite angle, and proportional to its diameter. The predicted growth rate of poloidal magnetic flux, based upon two analytic approaches and numerical simulations, leads to a rapid exponentiation of a seed field, \\sim 0.1 to \\sim 0.01 per Keplerian period of the inner part of the disk. The initial value of the seed field may therefore be arbitrarily small yet reach, through dynamo gain, saturation very early in the disk history. Because of tidal disruption of stars close to the black hole, the maximum growth rate occurs at a radius of about 100 gravitational radii from the central object. The generated mean magnetic field, a quadrupole field, has predominantly even parity so ...

  16. VSOP's Legacy for our Understanding of Magnetic Fields in Active Galactic Nuclei

    Science.gov (United States)

    Gabuzda, D. C.

    2009-08-01

    Although relatively few polarisation-sensitive observations were carried out with VSOP, they have had a profound effect on our picture of the compact central regions of radio emission in Active Galactic Nuclei (AGN). The extra resolution provided by these images at relatively low frequencies provided new information about the ``core'' polarisation observed in ground-based images, indicating that this polarised emission is, in many cases, associated with newly emerging jet components, rather than the intrinsically optically thick core. A joint analysis of VSOP and VLBA polarisation observations near in time revealed the first observation of the theoretically predicted 90-degree rotation in polarisation angle associated with the transition from the optically thick to the optically thin regime. Perhaps most significantly, and quite unforeseen, VSOP polarisation observations provided the first clear evidence that at least some of the polarisation associated with the jets of AGN is associated with the ``intrinsic'' magnetic fields of the jets themselves, rather than local phenomena, such as shock compression or shear interaction with the surrounding medium. These extremely important VSOP polarisation observations have had a profound influence on subsequent work in this field, leading to a whole new series of VLBI studies focusing on the possibility that many AGN jets may have helical magnetic fields - which could come about naturally via the combined effect of the rotation of the central supermassive black hole and accretion disk and the jet outflow. These studies, in turn, provide crucial new links with theoretical investigations and concepts, making it possible for VLBI observations to seriously address for the first time such fundamental questions as the launching and collimation mechanisms for the jets. Key VSOP polarisation observations and the fundamentally new studies to which they have led are reviewed.

  17. Gradient-echo magnetic resonance imaging study of pancreatic iron overload in young Egyptian beta-thalassemia major patients and effect of splenectomy

    Directory of Open Access Journals (Sweden)

    Matter Randa M

    2010-04-01

    Full Text Available Abstract Background Thalassemic patients suffer from diabetes mellitus secondary to hemosiderosis. Aims The study aimed to evaluate pancreatic iron overload by T2*-weighted Gradient-echo magnetic resonance imaging (MRI in young beta-thalassemia major patients and to correlate it with glucose disturbances, hepatic hemosiderosis, serum ferritin and splenectomy. Methods Forty thalassemic patients (20 non diabetic, 10 diabetic, and 10 with impaired glucose tolerance were recruited from Pediatric Hematology Clinic, in addition to 20 healthy controls. All patients underwent clinical assessment and laboratory investigations included complete blood count, liver function tests, serum ferritin and oral glucose tolerance test (OGTT. A T2*-weighted gradient-echo sequence MRI was performed with 1.5 T scanner and signal intensity ratio (SIR of the liver and the pancreas to noise were calculated. Results Significant reduction in signal intensity ratio (SIR of the liver and the pancreas was shown in thalassemic patients compared to controls (P Conclusions pancreatic siderosis can be detected by T2* gradient-echo MRI since childhood in thalassemic patients, and is more evident in patients with abnormal glucose tolerance. After splenectomy, iron deposition may be accelerated in the pancreas. Follow up of thalassemic patients using pancreatic MRI together with intensive chelation therapy may help to prevent the development of overt diabetes.

  18. A Systematic Review of Non-Echo Planar Diffusion-Weighted Magnetic Resonance Imaging for Detection of Primary and Postoperative Cholesteatoma.

    Science.gov (United States)

    van Egmond, Sylvia L; Stegeman, Inge; Grolman, Wilko; Aarts, Mark C J

    2016-02-01

    To investigate the diagnostic value of non-echo planar diffusion-weighted magnetic resonance imaging (DW-MRI) for primary and recurrent/residual (postoperative) cholesteatoma in adults (≥18 years) after canal wall up surgery. We conducted a systematic search in PubMed, Embase, and Cochrane up to October 22, 2014. All studies investigating non-echo planar DW-MRI for primary and postoperative cholesteatoma were selected and critically appraised for relevance and validity. In total, 779 unique articles were identified, of which 23 articles were included for critical appraisal. Seven articles met our criteria for relevance and validity for postoperative cholesteatoma. Four studies were additionally included for subgroup analysis of primary cases only. Ranges of sensitivity, specificity, positive predictive value, and negative predictive value yielded 43%-92%, 58%-100%, 50%-100% and 64%-100%, respectively. Results for primary subgroup analysis were 83%-100%, 50%-100%, 85%-100%, and 50%-100%, respectively. Results for subgroup analysis for only postoperative cases yielded 80%-82%, 90%-100%, 96%-100%, 64%-85%, respectively. Despite a higher prevalence of cholesteatoma in the primary cases, there was no clinical difference in added value of DW-MRI between primary and postoperative cases. We found a high predictive value of non-echo planar DW-MRI for the detection of primary and postoperative cholesteatoma. Given the moderate quality of evidence, we strongly recommend both the use of non-echo planar DW-MRI scans for the follow-up after cholesteatoma surgery, and when the correct diagnosis is questioned in primary preoperative cases. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  19. Mixed model phase evolution for correction of magnetic field inhomogeneity effects in 3D quantitative gradient echo-based MRI

    DEFF Research Database (Denmark)

    Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib

    2017-01-01

    and at the paranasal sinuses, however, this assumption is often broken. Herein, we explored a novel model that considers both linear and stochastic dependences of the phase evolution with echo time in the presence of weak and strong macroscopic field inhomogeneities. We tested the performance of the model at large...

  20. Molecular echoes in space and time

    CERN Document Server

    Lin, Kang; Ma, Junyang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Zeng, Heping; Wu, Jian; Karras, Gabriel; Siour, Guillaume; Hartmann, Jean-Michel; Faucher, Olivier; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh

    2016-01-01

    Mountain echoes are a well-known phenomenon, where an impulse excitation is mirrored by the rocks to generate a replica of the original stimulus, often with reverberating recurrences. For spin echoes in magnetic resonance and photon echoes in atomic and molecular systems the role of the mirror is played by a second, time delayed pulse which is able to reverse the ow of time and recreate the original event. Recently, laser-induced rotational alignment and orientation echoes were introduced for molecular gases, and discussed in terms of rotational-phase-space filamentation. Here we present, for the first time, a direct spatiotemporal analysis of various molecular alignment echoes by means of coincidence Coulomb explosion imaging. We observe hitherto unreported spatially rotated echoes, that depend on the polarization direction of the pump pulses, and find surprising imaginary echoes at negative times.

  1. Assessment of cerebral venous sinus ‎thrombosis using T2*-weighted ‎gradient echo magnetic resonance ‎imaging sequences

    Directory of Open Access Journals (Sweden)

    Fatemeh Bidar

    2016-04-01

    Full Text Available Background: The purpose of this study is to demonstrate the advantages of gradient echo (GRE sequences in the detection and characterization of cerebral venous sinus thrombosis compared to conventional magnetic resonance sequences.Methods: A total of 17 patients with cerebral venous thrombosis (CVT were evaluated using different magnetic resonance imaging (MRI sequences. The MRI sequences included T1-weighted spin echo (SE imaging, -weighted turbo SE (TSE, fluid attenuated inversion recovery (FLAIR, -weighted conventional GRE, and diffusion weighted imaging (DWI. MR venography (MRV images were obtained as the golden standard.Results: Venous sinus thrombosis was best detectable in -weighted conventional GRE sequences in all patients except in one case. Venous thrombosis was undetectable in DWI. -weighted GRE sequences were superior to -weighted TSE, T1-weighted SE, and FLAIR. Enhanced MRV was successful in displaying the location of thrombosis.Conclusion: -weighted conventional GRE sequences are probably the best method for the assessment of cerebral venous sinus thrombosis. The mentioned method is non-invasive; therefore, it can be employed in the clinical evaluation of cerebral venous sinus thrombosis.

  2. Echo project

    DEFF Research Database (Denmark)

    Gfader, Verina; Carson, Rebecca; Kraus, Chris

    2016-01-01

    team to both present the printed matter in the format of running a book stall, and stage a discursive event at the Classroom. Echo reverberates some of the encounters and debates there, with new commissioned chapters propelling a ongoing correspondence across urban environs: An essay on the General...... Intellect and Financialization sets a conceptual ground for rethinking subjective freedom; an encounter with Another LA opens out a multitude of cartographies - revealing more discreet and politically dynamic movements in the urban grid; there are glimpses of Machine Project’s events, a visual story around...

  3. Echo project

    DEFF Research Database (Denmark)

    Gfader, Verina; Carson, Rebecca; Kraus, Chris

    Echo project (ed. by Verina Gfader and Ruth Höflich) is an online publication and community board that developed from a visit to the Los Angeles Art Book fair in January 2014. It was on the occasion of a prior book project, titled Prospectus, that the editorial team had been invited by the LAABF...... Intellect and Financialization sets a conceptual ground for rethinking subjective freedom; an encounter with Another LA opens out a multitude of cartographies - revealing more discreet and politically dynamic movements in the urban grid; there are glimpses of Machine Project’s events, a visual story around...

  4. Single-Shot Magnetic Resonance Imaging of a Moving Object Based on the High-Speed Spiral-Scan Echo Planner Technique at 4.7 T

    Institute of Scientific and Technical Information of China (English)

    卢广; 刘买利; 李丽云; 叶朝辉

    2002-01-01

    The single-shot spiral magnetic resonance imaging (MRI) technique was implemented and optimized on a Bruker Biospec47/30 scanner. The technique includes the pulse sequence for generation and detection of the k-space MRI signal (free induction decay (FID)), and PC-based programs for the data grid and image reconstruction.The temporal resolution is 70ms (14 images per second), which consists of a data acquisition time as short as 13.7 ms, a spin-echo time of 13.6 ms and a magnetization recovery time of 43 ms. This makes it possible to take real-time images of moving objects. The technique is demonstrated using a pendulum (tube) filled with water.

  5. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M. [Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Seelos, K.; Yousry, T. [Department of Neuroradiology, Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Exner, H. [Institute for Medical Epidemiology, Klinikum Grosshadern, University of Munich, Munich (Germany); Rosen, B.R. [Department of Radiology, Massachusetts General Hospital, NMR Center, Charlestown, MA (United States)

    1999-09-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.) With 3 figs., 3 tabs., 27 refs.

  6. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  7. Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields.

    Science.gov (United States)

    Hoerr, Verena; Nagelmann, Nina; Nauerth, Arno; Kuhlmann, Michael T; Stypmann, Jörg; Faber, Cornelius

    2013-07-04

    To overcome flow and electrocardiogram-trigger artifacts in cardiovascular magnetic resonance (CMR), we have implemented a cardiac and respiratory self-gated cine ultra-short echo time (UTE) sequence. We have assessed its performance in healthy mice by comparing the results with those obtained with a self-gated cine fast low angle shot (FLASH) sequence and with echocardiography. 2D self-gated cine UTE (TE/TR = 314 μs/6.2 ms, resolution: 129 × 129 μm, scan time per slice: 5 min 5 sec) and self-gated cine FLASH (TE/TR = 3 ms/6.2 ms, resolution: 129 × 129 μm, scan time per slice: 4 min 49 sec) images were acquired at 9.4 T. Volume of the left and right ventricular (LV, RV) myocardium as well as the end-diastolic and -systolic volume was segmented manually in MR images and myocardial mass, stroke volume (SV), ejection fraction (EF) and cardiac output (CO) were determined. Statistical differences were analyzed by using Student t test and Bland-Altman analyses. Self-gated cine UTE provided high quality images with high contrast-to-noise ratio (CNR) also for the RV myocardium (CNRblood-myocardium = 25.5 ± 7.8). Compared to cine FLASH, susceptibility, motion, and flow artifacts were considerably reduced due to the short TE of 314 μs. The aortic valve was clearly discernible over the entire cardiac cycle. Myocardial mass, SV, EF and CO determined by self-gated UTE were identical to the values measured with self-gated FLASH and showed good agreement to the results obtained by echocardiography. Self-gated UTE allows for robust measurement of cardiac parameters of diagnostic interest. Image quality is superior to self-gated FLASH, rendering the method a powerful alternative for the assessment of cardiac function at high magnetic fields.

  8. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: A histologically controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Zilkens, Christoph, E-mail: christoph.zilkens@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Miese, Falk, E-mail: falk.miese@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstraße 5, D-40225 Dusseldorf (Germany); Herten, Monika, E-mail: Moherten@web.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Kurzidem, Sabine, E-mail: sabine.kurzidem@uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Jäger, Marcus [Univ Essen, Medical Faculty, Department of Orthopaedic Surgery, D-45147 Essen (Germany); König, Dietmar, E-mail: Dietmarpierre.koenig@lvr.de [LVR Clinic for Orthopedic Surgery, D-41749 Viersen (Germany); Antoch, Gerald, E-mail: antoch@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstraße 5, D-40225 Dusseldorf (Germany); Krauspe, Rüdiger, E-mail: krauspe@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Bittersohl, Bernd, E-mail: bernd.bittersohl@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany)

    2013-02-15

    Objective: To validate gradient-echo three-dimensional (3D) delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) by means of histological analyses in the assessment of hip joint cartilage. Materials and methods: Twenty-one femoral head specimens collected from 21 patients (7 males, 14 females, mean age: 60.9 ± 9.6 years; range: 37.6–77.3 years), who underwent total hip replacement for symptomatic hip joint osteoarthritis, underwent MRI and histological assessment. A region of 2 cm{sup 2} at the weight-bearing area was marked with four pins to enable multi-planar MRI reformatting to be matched with histological sections. MRI was performed at 3 T with a 3D double-echo steady-state (DESS) sequence for morphological cartilage assessment and 3D Volumetric Interpolated Breathhold Examination (VIBE) for T1{sub Gd} mapping. Histological sections were evaluated according to the Mankin score system. Total Mankin score, grade of toluidine staining (sensitive for glycosaminoglycan content) and a modified Mankin score classification system with four sub-groups of cartilage damage were correlated with MRI data. Results: Spearman's rho correlation analyses revealed a statistically significant correlation between T1{sub Gd} mapping and histological analyses in all categories including total Mankin score (r = −0.658, p-value ≤ 0.001), toluidine staining (r = −0.802, p-value < 0.001) and modified Mankin score (r = −0.716, p-value < 0.001). The correlation between morphological MRI and histological cartilage assessment was statistically significant but inferior to the biochemical cartilage MRI (r-values ranging from −0.411 to 0.525, p-values < 0.001). Conclusions: Gradient-echo dGEMRIC is reliable while offering the unique features of high image resolution and 3D biochemically sensitive MRI for the assessment of early cartilage degeneration.

  9. Electric quadrupole and magnetic dipole moments of odd nuclei near the magic ones in a self-consistent approach

    CERN Document Server

    Co', G; Anguiano, M; Bernard, R N; Lallena, A M

    2015-01-01

    We present a model which describes the properties of odd-even nuclei with one nucleon more, or less, with respect to the magic number. In addition to the effects related to the unpaired nucleon, we consider those produced by the excitation of the closed shell core. By using a single particle basis generated with Hartree-Fock calculations, we describe the polarization of the doubly magic-core with Random Phase Approximation collective wave functions. In every step of the calculation, and for all the nuclei considered, we use the same finite-range nucleon-nucleon interaction. We apply our model to the evaluation of electric quadrupole and magnetic dipole moments of odd-even nuclei around oxygen, calcium, zirconium, tin and lead isotopes. Our Random Phase Approximation description of the polarization of the core improves the agreement with experimental data with respect to the predictions of the independent particle model. We compare our results with those obtained in first-order perturbation theory, with those ...

  10. Hippocampal Microbleed on a Post-Mortem T2*-Weighted Gradient-Echo 7.0-Tesla Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    J. De Reuck

    2011-09-01

    Full Text Available The present post-mortem study of a brain from an Alzheimer patient showed on a T2*-weighted gradient-echo 7.0-T MRI of a coronal brain section a hyposignal in the hippocampus, suggesting a microbleed. On the corresponding histological examination, only iron deposits around the granular cellular layer and in blood vessel walls of the hippocampus were observed without evidence of a bleeding. This case report illustrates that the detection of microbleeds on MRI has to be interpreted with caution.

  11. Are Spine--Sheath Polarization Structures in the Jets of Active Galactic Nuclei Associated with Helical Magnetic Fields?

    CERN Document Server

    Gabuzda, Denise C; O'Neill, Eamonn L

    2014-01-01

    One possible origin for polarization structures across jets of Active Galactic Nuclei (AGNs) with a central "spine" of orthogonal magnetic field and a "sheath" of longitudinal magnetic field along one or both edges of the jet is the presence of a helical jet magnetic field. Simultaneous Very Long Baseline Array (VLBA) polarization observations of AGN displaying partial or full spine--sheath polarization structures were obtained at 4.6, 5.0, 7.9, 8.9, 12.9 and 15.4 GHz, in order to search for additional evidence for helical jet magnetic fields, such as transverse Faraday rotation gradients (due to the systematic change in the line-of-sight magnetic-field component across the jet). Results for eight sources displaying monotonic transverse Faraday rotation gradients with significances $\\geq 3\\sigma$ are presented here. Reversals in the directions of the transverse RM gradients with distance from the core or with time are detected in three of these AGNs. These can be interpreted as evidence for a nested helical m...

  12. Sensitizing solid state nuclear magnetic resonance of dilute nuclei by spin-diffusion assisted polarization transfers.

    Science.gov (United States)

    Lupulescu, Adonis; Frydman, Lucio

    2011-10-01

    Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice.

  13. Magnetic resonance in cartilaginous lesions of the knee joint with three-dimensional gradient-echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, M.F.; Bongartz, G.; Erlemann, R.; Gaebert, K.; Stoeber, U.; Peters, P.E.; Strobel, M.; Pauly, T.

    1988-10-01

    Diagnosis of chondromalacia of the patellofemoral joint using three-dimensional gradient-echo sequences was investigated in 41 patients, with arthroscopic verification in 25 patients. In vitro examinations in human caderveric patellae were performed in order to determine optimal imaging parameters. FLASH (T/sub R/=40 ms, T/sub E/=10 ms, flip angle=30/sup 0/) and FISP (T/sub R/=40 ms, T/sub E/=10 ms, flip angle=40/sup 0/) were used in clinical studies. The therapeutically relevant differentiation of major and minor degrees of chondromalacia seems to be possible. 30/sup 0/ FLASH-images in the axial plane proved to be the most efficacious technique for the diagnosis of chondromalacia. (orig./GDG).

  14. Magnetic resonance urography in pediatrics: utilization of ultrafast single-shot spin echo sequences; Urografia por resonancia magnetic en pediatria: utilizacion de las secuencias ultrarrapidas single shot en eco del espin

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Martin, J.; Duran, C. [Unidad de Diagnostico por la Imagen de Alta Tecnologia (UDIAT). Sabadell (Spain); Rigol, S.; Rojo, J. C. [Corporacion Sanatiaria Parc Tauli. Sabadell (Spain)

    1999-07-01

    To determine the value of magnetic resonance urography (MRU) using ultrafast single-shot (SS) rapid acquisition with relaxation enhancement (RARE) and half-Fourier (HF) SS-RARE (SS-HF-RARE or HASTE) in the evaluation of congenital urinary tract anomalies in pediatric patients, and their possible application as alternatives to intravenous urography (IVU). Eighteen children (11 boys and 7 girls) aged 2 months to 15 years (mean: 5 years) with a total of 19 congenital urinary tract anomalies were studies by MU using SS-RARE and HASTE sequences in a 1 Tesla scanner. All the patients had previously been studies by ultrasound (US) and IVU. Twelve patients required anesthesia. The images were acquired by means of a HASTE sequence with multisection technique (TR, infinite; TE{sub e}f, 87 msec; echo train, 128; interval between echoes, 10.9 msec; total acquisition time, 13 sections/12 seconds), and SS-RARE (TR, infinite; TE{sub e}f, 1.100 msec; echo train, 240, and acquisition time, 7 seconds). Four radiologists evaluated the images independently; two who reviewed the IV images in consensus and two who reviewed the MRU images in consensus. The images were evaluated to assess the dilatation of the urinary tract and their utility in detecting the level and cause of the obstruction. MRU images revealed the urinary tract dilation, the level of the obstruction and the type of anomaly in 18 patients (100%), while IVU provided this information in only 10 [ sensitivity, 53%, 95% confidence interval (29%, 76%)]. The mean time required for MRU was 20 minutes (range: 7 to 30 minutes), while that of IVU was 1,242 minutes (range: 45 to 1,440 minutes). MRU using ultrafast single-short spin echo sequences is a rapid and effective technique that permits and excellent evaluation of congenital urinary tract anomalies in pediatric patients and does not require the administration of contrast media or ionizing radiation. (Author) 10 refs.

  15. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Zhang, E-mail: hbtjzj@yahoo.com.cn [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Lang, Chen, E-mail: langc731@yahoo.com.cn [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Qiu-Xia, Wang, E-mail: guaiqiuqiu1981@163.com [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Rong, Liu, E-mail: rongr007@yahoo.com.cn [Department of Ophthalmology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Xin, Luo, E-mail: hoyoho2000@sina.com [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Wen-Zhen, Zhu, E-mail: zhuwenzhen@hotmail.com [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Li-Ming, Xia, E-mail: limingxia@tjh.tjmu.edu.cn [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Jian-Pin, Qi, E-mail: qijp2k01@yahoo.com [Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); He, Wang, E-mail: he.wang@ge.com [GE Healthcare, 1 Build, 2F C109, 1 Hua TuoRoad, Zhang Jiang Hi-Tech Park, Shanghai 201203 (China)

    2013-09-15

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery.

  16. Evaluation of intracranial neoplasia and noninfectious meningoencephalitis in dogs by use of short echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla.

    Science.gov (United States)

    Carrera, Inés; Richter, Henning; Beckmann, Katrin; Meier, Dieter; Dennler, Matthias; Kircher, Patrick R

    2016-05-01

    OBJECTIVE To investigate metabolite concentrations of the brains of dogs with intracranial neoplasia or noninfectious meningoencephalitis by use of short echo time, single voxel proton magnetic resonance spectroscopy ((1)H MRS) at 3.0 T. ANIMALS 29 dogs with intracranial lesions (14 with neoplasia [3 oligodendromas, 3 glioblastomas multiformes, 3 astrocytomas, 2 lymphomas, and 3 meningiomas] and 15 is with noninfectious meningoencephalitis) and 10 healthy control dogs. PROCEDURES Short echo time, single voxel (1)H-MRS at 3.0 T was performed on neoplastic and noninfectious inflammatory intracranial lesions identified with conventional MRI. Metabolites of interest included N-acetyl aspartate (NAA), total choline, creatine, myoinositol, the glutamine-glutamate complex (Glx), glutathione, taurine, lactate, and lipids. Data were analyzed with postprocessing fitting algorithm software. Metabolite concentrations relative to brain water content were calculated and compared with results for the healthy control dogs, which had been previously evaluated with the same (1)H MRS technique. RESULTS NAA, creatine, and Glx concentrations were reduced in the brains of dogs with neoplasia and noninfectious meningoencephalitis, whereas choline concentration was increased. Concentrations of these metabolites differed significantly between dogs with neoplasia and dogs with noninfectious meningoencephalitis. Concentrations of NAA, creatine, and Glx were significantly lower in dogs with neoplasia, whereas the concentration of choline was significantly higher in dogs with neoplasia. Lipids were predominantly found in dogs with high-grade intra-axial neoplasia, meningioma, and necrotizing meningoencephalitis. A high concentration of taurine was found in 10 of 15 dogs with noninfectious meningoencephalitis. CONCLUSIONS AND CLINICAL RELEVANCE (1)H MRS provided additional metabolic information about intracranial neoplasia and noninfectious meningoencephalitis in dogs.

  17. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Posse, S; Dager, S R; Richards, T L; Yuan, C; Ogg, R; Artru, A A; Müller-Gärtner, H W; Hayes, C

    1997-06-01

    A new rapid spectroscopic imaging technique with improved sensitivity and lipid suppression, referred to as Proton Echo Planar Spectroscopic Imaging (PEPSI), has been developed to measure the 2-dimensional distribution of brain lactate increases during hyperventilation on a conventional clinical scanner equipped with a head surface coil phased array. PEPSI images (nominal voxel size: 1.125 cm3) in five healthy subjects from an axial section approximately 20 mm inferior to the intercommissural line were obtained during an 8.5-min baseline period of normocapnia and during the final 8.5 min of a 10-min period of capnometry-controlled hyperventilation (end-tidal PCO2 of 20 mmHg). The lactate/N-acetyl aspartate signal increased significantly from baseline during hyperventilation for the insular cortex, temporal cortex, and occipital regions of both the right and left hemisphere, but not in the basal ganglia. Regional or hemispheric right-to-left differences were not found. The study extends previous work using single-voxel MR spectroscopy to dynamically study hyperventilation effects on brain metabolism.

  18. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences

    Energy Technology Data Exchange (ETDEWEB)

    Altahawi, Faysal F.; Blount, Kevin J.; Omar, Imran M. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Morley, Nicholas P. [Marshfield Clinic, Department of Radiology, Marshfield, WI (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-01-15

    To compare a faster, new, high-resolution accelerated 3D-fast-spin-echo (3D-FSE) acquisition sequence (CS-SPACE) to traditional 2D and high-resolution 3D sequences for knee 3-T magnetic resonance imaging (MRI). Twenty patients received knee MRIs that included routine 2D (T1, PD ± FS, T2-FS; 0.5 x 0.5 x 3 mm{sup 3}; ∝10 min), traditional 3D FSE (SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝7.5 min), and accelerated 3D-FSE prototype (CS-SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝5 min) acquisitions on a 3-T MRI system (Siemens MAGNETOM Skyra). Three musculoskeletal radiologists (MSKRs) prospectively and independently reviewed the studies with graded surveys comparing image and diagnostic quality. Tissue-specific signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were also compared. MSKR-perceived diagnostic quality of cartilage was significantly higher for CS-SPACE than for SPACE and 2D sequences (p < 0.001). Assessment of diagnostic quality of menisci and synovial fluid was higher for CS-SPACE than for SPACE (p < 0.001). CS-SPACE was not significantly different from SPACE but had lower assessments than 2D sequences for evaluation of bones, ligaments, muscles, and fat (p ≤ 0.004). 3D sequences had higher spatial resolution, but lower overall assessed contrast (p < 0.001). Overall image quality from CS-SPACE was assessed as higher than SPACE (p = 0.007), but lower than 2D sequences (p < 0.001). Compared to SPACE, CS-SPACE had higher fluid SNR and CNR against all other tissues (all p < 0.001). The CS-SPACE prototype allows for faster isotropic acquisitions of knee MRIs over currently used protocols. High fluid-to-cartilage CNR and higher spatial resolution over routine 2D sequences may present a valuable role for CS-SPACE in the evaluation of cartilage and menisci. (orig.)

  19. Magnetically elevated accretion discs in active galactic nuclei: broad emission-line regions and associated star formation

    Science.gov (United States)

    Begelman, Mitchell C.; Silk, Joseph

    2017-01-01

    We propose that the accretion discs fueling active galactic nuclei (AGN) are supported vertically against gravity by a strong toroidal (φ-direction) magnetic field that develops naturally as the result of an accretion disc dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ≳ 0.1R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disc model leads naturally to the formation of a broad emission-line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disc models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disc models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission-line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disc of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ≳ 0.1 of the Eddington limit.

  20. Functional turbo spin echo magnetic resonance imaging versus tomography for evaluating cervical spine involvement in rheumatoid arthritis

    NARCIS (Netherlands)

    Oostveen, JCM; Roozeboom, AR; van de Laar, MAFJ; Heeres, J; den Boer, JA; Lindeboom, SF

    1998-01-01

    Study Design. Comparison of findings in plain radiography and conventional tomography with findings in plain radiography and magnetic resonance imaging of the upper cervical spine in consecutive patients with rheumatoid arthritis and with known or suspected abnormalities of the cervical spine. Objec

  1. Decoherence of spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Prosen, Tomaz [Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia)]. E-mail: prosen@fiz.uni-lj.si; Seligman, Thomas H. [Centro de Ciencias Fisicas, University of Mexico (UNAM), Cuernavaca (Mexico)]. E-mail: seligman@fis.unam.mx

    2002-06-07

    We define a quantity, the so-called purity fidelity, which measures the rate of dynamical irreversibility due to decoherence, observed e.g. in echo experiments, in the presence of an arbitrary small perturbation of the total (system + environment) Hamiltonian. We derive a linear response formula for the purity fidelity in terms of integrated time correlation functions of the perturbation. Our relation predicts, similar to the case of fidelity decay, that the faster the decay of purity fidelity the slower is the decay of time correlations. In particular, we find exponential decay in quantum mixing regime and faster, initially quadratic and later typically Gaussian decay in the regime of non-ergodic, e.g. integrable quantum dynamics. We illustrate our approach by an analytical calculation and numerical experiments in the Ising spin 1/2 chain kicked with tilted homogeneous magnetic field where part of the chain is interpreted as a system under observation and part as an environment. (author)

  2. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: creation and evolution of coherences.

    Science.gov (United States)

    Ashbrook, Sharon E; Wimperis, Stephen

    2004-02-08

    Spin-locking of half-integer quadrupolar nuclei, such as 23Na (I=3/2) and 27Al (I=5/2), is of renewed interest owing to the development of variants of the multiple-quantum and satellite-transition magic angle spinning (MAS) nuclear magnetic resonance experiments that either utilize spin-locking directly or offer the possibility that spin-locked states may arise. However, the large magnitude and, under MAS, the time dependence of the quadrupolar interaction often result in complex spin-locking phenomena that are not widely understood. Here we show that, following the application of a spin-locking pulse, a variety of coherence transfer processes occur on a time scale of approximately 1/omegaQ before the spin system settles down into a spin-locked state which may itself be time dependent if MAS is performed. We show theoretically for both spin I=3/2 and 5/2 nuclei that the spin-locked state created by this initial rapid dephasing typically consists of a variety of single- and multiple-quantum coherences and nonequilibrium population states and we discuss the subsequent evolution of these under MAS. In contrast to previous work, we consider spin-locking using a wide range of radio frequency field strengths, i.e., a range that covers both the "strong-field" (omega1 > omegaQPAS and "weak-field" (omega1 spin-locking experiments on NaNO2, NaNO3, and Al(acac)3, under both static and MAS conditions, are used to illustrate and confirm the results of the theoretical discussion.

  3. Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Allansdotter-Johnsson Ase

    2009-01-01

    Full Text Available Abstract Background Knowledge about age-specific normal values for left ventricular mass (LVM, end-diastolic volume (EDV, end-systolic volume (ESV, stroke volume (SV and ejection fraction (EF by cardiac magnetic resonance imaging (CMR is of importance to differentiate between health and disease and to assess the severity of disease. The aims of the study were to determine age and gender specific normal reference values and to explore the normal physiological variation of these parameters from adolescence to late adulthood, in a cross sectional study. Methods Gradient echo CMR was performed at 1.5 T in 96 healthy volunteers (11–81 years, 50 male. Gender-specific analysis of parameters was undertaken in both absolute values and adjusted for body surface area (BSA. Results Age and gender specific normal ranges for LV volumes, mass and function are presented from the second through the eighth decade of life. LVM, ESV and EDV rose during adolescence and declined in adulthood. SV and EF decreased with age. Compared to adult females, adult males had higher BSA-adjusted values of EDV (p = 0.006 and ESV (p Conclusion LV volumes, mass and function vary over a broad age range in healthy individuals. LV volumes and mass both rise in adolescence and decline with age. EF showed a rapid decline in adolescence compared to changes throughout adulthood. These findings demonstrate the need for age and gender specific normal ranges for clinical use.

  4. Visual discrimination among patients with depression and schizophrenia and healthy individuals using semiquantitative color-coded fast spin-echo T1-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Makoto; Kudo, Kohsuke; Narumi, Shinsuke [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Shibata, Eri; Ohtsuka, Kotaro; Endoh, Jin; Sakai, Akio [Iwate Medical University, Department of Neuropsychiatry, Morioka (Japan)

    2010-02-15

    Fast spin-echo (FSE) T1-weighted (T1W) magnetic resonance imaging (MRI) at 3T, which is sensitive to neuromelanin-related contrast, can quantitatively detect signal alterations in the locus ceruleus (LC) and the substantia nigra pars compacta (SNc) of depressive and schizophrenic patients; however, its qualitative diagnostic performance remains unknown. We investigated whether visual interpretation of semiquantitative color maps can be used for discriminating between depressive and schizophrenic patients and healthy individuals. We retrospectively examined 23 patients with major depression, 23 patients with schizophrenia, and 23 age-matched healthy controls by using a FSE-T1W MRI technique. Semiquantitative color maps of sections through the LC and SNc were visually interpreted by nine raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. The area under the ROC curve (Az), which reflects the performance in differentiating between depressive patients and controls, was 0.88, and the sensitivity and specificity at the maximum likelihood were 76% and 83%, respectively. In contrast, the Az value, sensitivity, and specificity values between schizophrenics and controls and between depressives and schizophrenics were 0.66 and 0.69, 42% and 48%, and 82% and 84%, respectively. Semiquantitative, color-coded FSE-T1W MRI at 3T can be used for visually differentiating depressive patients from healthy individuals with a substantially high likelihood, but this technique cannot be applied to distinguish schizophrenic patients from the other two groups. (orig.)

  5. Feasibility of three-dimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Zhong, Yu-min; Zhang, Hong; Lin, Yi; Zhu, Ming [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Shanghai Children' s Medical Center, Shanghai (China); Nie, Quan-min; Guo, Lie-mei; Yang, Xi [Shanghai Jiao Tong University School of Medicine, Department of Neurosurgery Ren Ji Hospital, Shanghai (China); Chen, Wei-bo; Dai, Yong-ming [Philips Healthcare, Shanghai (China); Xu, Jian-rong [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ren Ji Hospital, Shanghai (China)

    2016-01-15

    To investigate the feasibility of ultrashort echo time (UTE) magnetic resonance imaging (MRI) for the diagnosis of skull fractures. The skull fracture models of ten Bama pigs and 364 patients with craniocerebral trauma were subjected to computed tomography (CT), UTE and conventional MRI sequences. The accuracy of UTE imaging in skull fracture diagnosis was analysed using receiver operating characteristic (ROC) curve analysis, McNemar's test and Kappa values. Differences among CT, UTE imaging and anatomical measurement (AM) values for linear fractures (LFs) and depressed fractures (DFs) were compared using one-way ANOVA and a paired-samples t-test. UTE imaging clearly demonstrated skull structures and fractures. The accuracy, validity and reliability of UTE MRI were excellent, with no significant differences between expert readings (P > 0.05; Kappa, 0.899). The values obtained for 42 LFs and 13 DFs in the ten specimens were not significantly different among CT, UTE MRI and AMs, while those obtained for 55 LFs and ten DFs in 44 patients were not significantly different between CT and UTE MRI (P > 0.05). UTE MRI sequences are feasible for the evaluation of skull structures and fractures, with no radiation exposure, particularly for paediatric and pregnant patients. (orig.)

  6. The alpha magnetic spectrometer silicon tracker: Performance results with protons and helium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), E-28040 Madrid (Spain); Alpat, B.; Ambrosi, G. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Azzarello, Ph. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland); Battiston, R.; Bertucci, B. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Bolmont, J. [Laboratoire de Physique Theorique et Astroparticules, IN2P3/CNRS, Universite de Montpellier II, F-34095 Montpellier (France); Bourquin, M. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland); Burger, W.J. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy)], E-mail: william.burger@cern.ch; Capell, M. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cardano, F. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Chang, Y.H. [National Central University, Jhungli 320, Taiwan (China); Choutko, V. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cortina, E. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland); Dinu, N. [Institute for Space Science (ISS), R-76900 Bucharest (Romania); Esposito, G.; Fiandrini, E. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Haas, D. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland); Haino, S. [INFN Sezione di Perugia and Universita degli Studi di Perugia, I-06100 Perugia (Italy); Hakobyan, H. [Universite de Geneve, CH-1211, Geneve 4 (Switzerland)] (and others)

    2008-08-11

    The Alpha Magnetic Spectrometer is designed for a long duration measurement of the cosmic-ray spectra at an altitude of 400 km. The particle rigidity and specific energy loss are measured by a silicon tracker located in a 0.8 T field. Ground results for the position resolution, detection efficiency and charge determination for singly and doubly charged relativistic particles are presented and discussed in the context of the spaceborne detector.

  7. Geometric spin echo under zero field

    Science.gov (United States)

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-01-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936

  8. Orientation and Alignment Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Hartmann, J -M; Faucher, O; Gershnabel, E; Prior, Y; Averbukh, I Sh

    2015-01-01

    We present what is probably the simplest classical system featuring the echo phenomenon - a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation/alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_2 molecules excited by a pair of femtosecond laser pulses.

  9. Magnetization transfer in human achilles tendon assessed by a 3D ultrashort echo time sequence. Quantitative examinations in healthy volunteers at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Syha, R.; Grosse, U.; Springer, F. [Tuebingen Univ. (Germany). Diagnostic and Interventional Radiology; Tuebingen Univ. (Germany). Section on Experimental Radiology; Martirosian, P.; Schick, F. [Tuebingen Univ. (Germany). Section on Experimental Radiology; Ketelsen, D.; Claussen, C.D. [Tuebingen Univ. (Germany). Diagnostic and Interventional Radiology

    2011-11-15

    Magnetization transfer contrast (MTC) imaging provides insight into interactions between free and bounded water. Newly developed ultrashort echo time (UTE) sequences implemented on whole-body magnetic resonance (MR) scanners allow MTC imaging in tissues with extremely fast signal decay such as tendons. The aim of this study was to develop a technique for the quantification of the MT effect in healthy Achilles tendons in-vivo at 3 Tesla. 16 normal tendons of volunteers with no history of tendinopathy were examined using a 3D-UTE sequence with a rectangular on-resonant excitation pulse and a Fermi-shaped off-resonant MT preparation pulse. The frequency of the MT pulse was varied from 1 to 5 kHz. MT effects were calculated in terms of the MT ratio (MTR) between measurements without and with MT preparation. Direct saturation effects of MT preparation on the signal intensity were evaluated using numerical simulation of Bloch equations. One patient with tendinopathy was examined to exemplarily show changes of MTR under pathologic conditions. Calculation of MTR data was feasible in all examined tendons and showed a decrease from 0.53 {+-} 0.05 to 0.25 {+-} 0.03 (1 kHz to 5 kHz) for healthy volunteers. Evaluation of variation with gender and dominance of ankle revealed no significant differences (p > 0.05). In contrast, the patient with confirmed tendinopathy showed MTR values between 0.36 (1 kHz) and 0.19 (5 kHz). MT effects in human Achilles tendons can be reliably assessed in-vivo using a 3D UTE sequence at 3 T. All healthy tendons showed similar MTR values (coefficient of variation 10.0 {+-} 1.2 %). The examined patient showed a clearly different MT effect revealing a changed microstructure in the case of tendinopathy. (orig.)

  10. Comparison of Superparamagnetic Iron Oxide Labeling Efficiency between Poly-L-Lysine and Protamine Sulfate for Human Mesenchymal Stem Cells: Quantitative Analysis Using Multi-Echo T2 Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Ji Yeon; Lee, Jeong Hyun; Lee, Chang Kyung; Shin, Ji Hoon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-02-15

    To quantify in vitro labeling efficiency of protamine sulfate (PS) and poly-L-lysine (PLL) for labeling of human mesenchymal stem cells (hMSCs) with superparamagnetic iron oxide (SPIO) using multi-echo T2 magnetic resonance (MR) imaging at 4.7 T. The hMSCs were incubated with SPIO-PS or SPIO-PLL complexes. Their effects on the cell metabolism and differentiation capability were evaluated, respectively. The decrease of iron concentrations in the labeled cells were assessed immediately, and at 4 d after labeling using multi-echo T2 MR imaging at 4.7 T. The results were compared with those of Prussian blue colorimetry. The hMSCs were labeled more efficiently by SPIO-PLL than SPIO-PS without any significant effect on cell metabolism and differentiation capabilities. It was feasible to quantify the iron concentrations in SPIO-agarose-phantoms and in agarose mixture with the labeled cells from T2 maps obtained from multi-echo T2 MRI. However, the iron concentration of the labeled cells was significantly higher by T2-maps than the results of Prussian blue colorimetry. The hMSCs can be effectively labeled with SPIO-PLL complexes more than with SPIO-PS without significant change in cell metabolism and differentiation. In vitro quantification of the iron concentrations of the labeled is feasible from multi-echo T2 MRI, but needs further investigation.

  11. Gaussian-approximation formalism for evaluating decay of NMR spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Recchia, C.H.; Gorny, K.; Pennington, C.H. [Department of Physics, The Ohio State University, 174 W. 18th Ave., Columbus, Ohio 43210 (United States)

    1996-08-01

    We present a formalism for evaluating the amplitude of the NMR spin echo and stimulated echo as a function of pulse spacings, for situations in which the nuclear spins experience an effective longitudinal magnetic field {ital h}{sub {ital z}}({ital t}) resulting from an arbitrary number of independent sources, each characterized by its own arbitrary time correlation function. The distribution of accumulated phase angles for the ensemble of nuclear spins at the time of the echo is approximated as a Gaussian. The development of the formalism is motivated by the need to understand the transverse relaxation of {sup 89}Y in YBa{sub 2}Cu{sub 3}O{sub 7}, in which the {sup 89}Y experiences {sup 63,65}Cu dipolar fields which fluctuate due to {sup 63,65}Cu {ital T}{sub 1} processes. The formalism is applied successfully to this example, and to the case of nuclei diffusing in a spatially varying magnetic field. Then we examine a situation in which the approximation fails{emdash}the classic problem of chemical exchange in dimethylformamide, where the methyl protons experience a chemical shift which fluctuates between two discrete values. In this case the Gaussian approximation yields a monotonic decay of the echo amplitude with increasing pulse spacing, while the exact solution yields distinct {open_quote}{open_quote}beats{close_quote}{close_quote} in the echo height, which we confirm experimentally. In light of this final example the limits of validity of the approximation are discussed. {copyright} {ital 1996 The American Physical Society.}

  12. Identification of heavy nuclei by combination of magnetic analysis time of flight and energy measurements

    CERN Document Server

    Stéphan, C; Garron, J P; Jacmart, J C; Poffé, N; Tassan-Got, L

    1976-01-01

    The addition of a time of flight measurement to a Delta E-E telescope set up in the focal plane of a magnetic spectrometer improves the identification of very heavy ions. The Delta E silicon detector is 8 mu thick. The time of flight is measured between a thin plastic scintillator at the entrance of the spectrometer and the Delta E detector, which gives a flight path of 3 m. In order to compensate for the different lengths of the trajectories, the plastic is bent at 15 degrees along the mean trajectory. In these conditions, one has obtained a time resolution of 0.7 ns with a solid angle of 1.8 10/sup -3/ sr (horizontal 2 degrees , vertical 3 degrees ). In these conditions, preliminary results already give an unambiguous identification up to mass approximately=100.

  13. Two-dimensional Nutation Echo Nuclear Quadrupole Resonance Spectroscopy

    Science.gov (United States)

    Harbison, Gerard S.; Slokenbergs, Andris

    1990-04-01

    We discuss two new two-dimensional nuclear quadrupole resonance experiments, both based on the principle of nutation spectroscopy, which can be used to determine the asymmetry parameter, and thus the full quadrupolar tensor, of spin-3/2 nuclei at zero applied magnetic field. The first experiment is a simple nutation pulse sequence in which the first time period (t1) is the duration of the radiofrequency exciting pulse; and the second (t2) is the normal free-precession of a quadrupolar nucleus at zero-field. After double Fourier-transformation, the result is a 2 D spectrum in which the first frequency dimension is the nutation spectrum for the quadrupolar nucleus at zero-field. For polycrystalline samples this sequence generates powder lineshapes; the position of the singularities, in these lineshapes can be used to determine the asymmetry parameters η in a very straightforward manner, η has previously only been obtainable using Zeeman perturbed NQR methods. The second sequence is the same nutation experiment with a spin-echo pulse added. The virtue of this refocussing pulse is that it allows acquisition of nutation spectra from samples with arbitrary inhomogeneous linewidth; thus, asymmetry parameters can be determined even where the quadrupolar resonance is wider than the bandwidth of the spectrometer. Experimental examples of 35Cl, 81Br and 63Cu nutation and nutation-echo spectra are presented.

  14. Three-dimensional Relativistic MHD Simulations of Active Galactic Nuclei Jets: Magnetic Kink Instability and Fanaroff-Riley Dichotomy

    CERN Document Server

    Tchekhovskoy, Alexander

    2015-01-01

    Active galactic nuclei jets are thought to form in the immediate vicinity of the event horizons of supermassive black holes. Therefore, jets could be excellent probes of general relativity. However, in practice, using jets to infer near-black hole physics is not straightforward since the cause of their most basic morphological features is not understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and wiggly and FRII jets being longer and more stable. Here, we carry out 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic jets propagating through the ambient medium. Because in flat density cores of galaxies ($n \\propto r^{-\\alpha}$ with $\\alpha < 2$) the mass per unit distance ahead of the jets increases with distance, the jets slow down and collimate into smaller opening angles. This makes the jets more vulnerable to the 3D magnetic kink ("corkscrew") instability, which develops faster ...

  15. Connecting Magnetic Towers with Faraday Rotation Gradients in Active Galactic Nuclei Jets

    CERN Document Server

    Mahmud, Mehreen; Murphy, Eoin; Gabuzda, Denise C; Hallahan, Redmond

    2013-01-01

    The idea that systematic Faraday Rotation gradients across the parsec-scale jets of AGNs can reveal the presence of helical magnetic (B) fields has been around since the early 1990s. These gradients are taken to be due to the systematic variation of the line of sight-B-field across the jet. We present here the parsec-scale Faraday Rotation distributions for the BL Lac objects 0716+714 and 1749+701, based on polarization data obtained with the Very Long Baseline Array (VLBA) at two wavelengths near each of the 2cm, 4cm and 6cm bands (0716+714) and at four wavelengths in the range 18-22 cm (1749+701). The Rotation Measure (RM) maps for both these sources indicate systematic gradients across their jets, as expected if these jets have helical B fields. The significance of these transverse RM gradients is > 3 sigma in all cases. We present the results of Monte Carlo simulations directly demonstrating the possibility of observing such transverse RM gradients even if the intrinsic jet structure is much narrower than...

  16. Precise measurement of magnetic moment of short-lived β-emitting nuclei 12B (Iπ= 1+, T1/2 = 20.18 ms)

    Institute of Scientific and Technical Information of China (English)

    K.; Matsuta; T.; Minamisono; ZHU; Shengyun; ZHOU; Dongmei

    2004-01-01

    The spin polarized β-emitting nuclei 12B (Iπ = 1+, T1/2 = 20.18 ms) were produced by the nuclear reaction 11B(d, p) 12B and by the selection technique of the incident deuteron energy and the 12B recoil angle following the nuclear reaction. The nuclear magnetic moment of the short-lived nuclei 12B was measured by β-NMR with the β-NMR and β-NQR setup established for the first time in China. The nuclear magnetic moment of 12B was determined to be μ = 0.99993 ± 0.00048 nm or g = 0.99993 ± 0.00048 after the precise correction of the Knight shift.

  17. Half Fourier single-shot turbo spin-echo magnetic resonance urography for the evaluation of suspected renal colic in pregnancy.

    Science.gov (United States)

    Mullins, Jeffrey K; Semins, Michelle J; Hyams, Elias S; Bohlman, Mark E; Matlaga, Brian R

    2012-06-01

    To report our experience with magnetic resonance urography (MRU) in pregnant women suspected of having obstructing upper tract calculi. The diagnosis of an upper tract calculus in the pregnant woman can be challenging. Recent evidence suggests that MRU can be used to effectively evaluate renal colic. From 2008-2011, 9 pregnant women were referred for evaluation of suspected renal colic caused by an obstructing upper tract stone. All patients underwent MRU with a half Fourier single-shot turbo spin-echo (HASTE) protocol. Medical records and imaging studies were reviewed for demographic and clinical data as well as outcome measures. The mean age of the subjects was 25 years (range 20-34); average gestational age of the fetus was 23 weeks (range 9-36). In all cases, a renal ultrasound was the initial imaging study obtained, with nondiagnostic findings. HASTE MRU detected 4 ureteral stones and 4 cases of physiological hydronephrosis of pregnancy. In one case, interpretation of the MRU was limited as a result of patient motion. Of the patients with obstructing stones, 1 required endourologic management during her pregnancy and 3 were followed conservatively. No adverse events related to MRU occurred. HASTE MRU is an informative imaging study for pregnant women with suspected upper tract stone disease. Information gathered from this study augments that gained from alternative modalities, and aids in medical decision-making. The lack of ionizing radiation exposure, coupled with the capture of detailed anatomic imaging, makes HASTE MRU a particularly useful study in this setting. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Differentiation between simple cyst and hepatic hemangioma utilizing T2-weighted magnetic resonance imaging with gradient-echo (b-FFE) technique

    Energy Technology Data Exchange (ETDEWEB)

    Burim, Carolina Valente; D' Ippolito, Giuseppe [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: scoposl@uol.com.br; Pecci Neto, Luiz; Torlai, Fabiola Goda; Tiferes, Dario Ariel [Laboratorio Fleury, Sao Paulo, SP (Brazil). Centro de Medicina Diagnostica

    2008-11-15

    Objective: to establish the role of MRI T2-weighted sequences in the differentiation between simple cysts and hepatic hemangiomas. Materials and methods: a double-blinded, prospective, observational, cross sectional study evaluated 52 patients with 91 hepatic lesions (34 simple cysts and 57 hemangiomas) submitted to abdominal magnetic resonance imaging. The combined analysis of all sequences was considered as the golden-standard. TSE sequences with long echo trains and b-FFE sequences were subjectively analyzed by two independent observers for differentiating cysts from hemangiomas. The kappa test ({kappa}) was utilized in the analysis of the methods accuracy and inter- and intra-observer agreement (p < 0.05{sup *}). Results: cysts and hemangiomas dimensions ranged respectively between 0.5 and 6.5 cm (mean 1.89 cm), and 0.8 and 11 cm (mean = 2.62 cm). The analysis of the sequences with long-TE and the golden-standard demonstrated a non-statistically significant agreement (k: 0.00-0.10). The agreement between the evaluation of the b-FFE sequence and the golden-standard ranged from substantial ({kappa}: 0.62-0.71) to almost perfect ({kappa}: 0.86) for both observers. The inter- and intra-observer agreement for the b-FFE sequence ranged from substantial ({kappa}: 0.62-0.70) to almost perfect ({kappa}: 0.85-0.91). Conclusion: T2-weighted images acquired with the b-FFE technique present a high accuracy and reproducibility in the differentiation between cysts and hepatic hemangiomas. (author)

  19. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas

    DEFF Research Database (Denmark)

    Saygin, Z M; Kliemann, D; Iglesias, J. E.

    2017-01-01

    The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high...

  20. T2{sup *} mapping from multi-echo dixon sequence on gadoxetic acid-enhanced magnetic resonance imaging for the hepatic fat quantification: Can it be used for hepatic function assessment?

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun Suk; Lee, Jeong Min; Yoon, Jeong Hee; Kang, Hyo Jin; Lee, Sang Min; Yang, Hyun Kyung; Han, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-08-01

    To evaluate the diagnostic value of T2{sup *} mapping using 3D multi-echo Dixon gradient echo acquisition on gadoxetic acid-enhanced liver magnetic resonance imaging (MRI) as a tool to evaluate hepatic function. This retrospective study was approved by the IRB and the requirement of informed consent was waived. 242 patients who underwent liver MRIs, including 3D multi-echo Dixon fast gradient-recalled echo (GRE) sequence at 3T, before and after administration of gadoxetic acid, were included. Based on clinico-laboratory manifestation, the patients were classified as having normal liver function (NLF, n = 50), mild liver damage (MLD, n = 143), or severe liver damage (SLD, n = 30). The 3D multi-echo Dixon GRE sequence was obtained before, and 10 minutes after, gadoxetic acid administration. Pre- and post-contrast T2{sup *} values, as well as T2{sup *} reduction rates, were measured from T2{sup *} maps, and compared among the three groups. There was a significant difference in T2{sup *} reduction rates between the NLF and SLD groups (−0.2 ± 4.9% vs. 5.0 ± 6.9%, p = 0.002), and between the MLD and SLD groups (3.2 ± 6.0% vs. 5.0 ± 6.9%, p = 0.003). However, there was no significant difference in both the pre- and post-contrast T2{sup *} values among different liver function groups (p = 0.735 and 0.131, respectively). A receiver operating characteristic (ROC) curve analysis showed that the area under the ROC curve for using T2{sup *} reduction rates to differentiate the SLD group from the NLF group was 0.74 (95% confidence interval: 0.63–0.83). Incorporation of T2{sup *} mapping using 3D multi-echo Dixon GRE sequence in gadoxetic acid-enhanced liver MRI protocol may provide supplemental information for liver function deterioration in patients with SLD.

  1. Superheavy nuclei

    CERN Document Server

    Sáro, S

    2003-01-01

    Experiments leading to transuranium and far transuranium nuclei as far as element 106 (seaborgium) are described. Physical knowledge derived from experimental data at this stage of complete synthesis nuclear reactions since the 1980s is analyzed. The effect of the shell structure on the stability of the nuclei, the extra-push effect, and the effect of isospin are discussed. Experiments leading to the synthesis of nuclei with Z = 107 - 112 by cold fusion are also described, as are hot fusion reactions resulting in superheavy nuclei Z = 114, 116 where, however, confirmation is only pending. Current state of the art in this area is also highlighted

  2. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    Directory of Open Access Journals (Sweden)

    Stefan Hindel

    Full Text Available The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles

  3. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    Science.gov (United States)

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the

  4. Happy birthday Echo!

    CERN Multimedia

    Staff Association

    2010-01-01

    You are reading the number hundred and one (no. 101) edition of our bulletin Echo. Just over four years ago, on 27th March 2006, the first untitled edition was published (Fig. 1 on the left). The title Echo appeared on the second edition on 10th April 2006 (Fig. 1 in the centre). Today (see Fig. 1 on the right), the layout is slightly different, but the structure of each edition has remained more or less the same: an editorial informing you of the important issues, followed by articles on club life, cultural activities (exhibitions and conferences), information from GAC-EPA, and special offers for our members.     Fig. 1 : Nos. 1, 2 and 100 of our twice-monthly publication Echo Echo was created in March 2006 when, much to our regret, CERN official communication and that of your representatives were separated. November 2009 saw a return to normal practice, and since then the CERN st...

  5. Facilities | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. Spin-echo spectroscopy with ultracold neutrons

    CERN Document Server

    Afach, S; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H -C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cunic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-01-01

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B_0 | = 1uT magnetic field. We demonstrate a gravity-dependent spin dephasing by applying small vertical magnetic field gradients. The method gives access to the energy spectrum of stored UCNs, which can be crucial for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron.

  7. Validation of Blood Volume Fraction Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscle.

    Science.gov (United States)

    Hindel, Stefan; Söhner, Anika; Maaß, Marc; Sauerwein, Wolfgang; Möllmann, Dorothe; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz

    2017-01-01

    The purpose of this study was to assess the accuracy of fractional blood volume (vb) estimates in low-perfused and low-vascularized tissue using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The results of different MRI methods were compared with histology to evaluate the accuracy of these methods under clinical conditions. vb was estimated by DCE-MRI using a 3D gradient echo sequence with k-space undersampling in five muscle groups in the hind leg of 9 female pigs. Two gadolinium-based contrast agents (CA) were used: a rapidly extravasating, extracellular, gadolinium-based, low-molecular-weight contrast agent (LMCA, gadoterate meglumine) and an extracellular, gadolinium-based, albumin-binding, slowly extravasating blood pool contrast agent (BPCA, gadofosveset trisodium). LMCA data were evaluated using the extended Tofts model (ETM) and the two-compartment exchange model (2CXM). The images acquired with administration of the BPCA were used to evaluate the accuracy of vb estimation with a bolus deconvolution technique (BD) and a method we call equilibrium MRI (EqMRI). The latter calculates the ratio of the magnitude of the relaxation rate change in the tissue curve at an approximate equilibrium state to the height of the same area of the arterial input function (AIF). Immunohistochemical staining with isolectin was used to label endothelium. A light microscope was used to estimate the fractional vascular area by relating the vascular region to the total tissue region (immunohistochemical vessel staining, IHVS). In addition, the percentage fraction of vascular volume was determined by multiplying the microvascular density (MVD) with the average estimated capillary lumen, [Formula: see text], where d = 8μm is the assumed capillary diameter (microvascular density estimation, MVDE). Except for ETM values, highly significant correlations were found between most of the MRI methods investigated. In the cranial thigh, for example, the vb medians

  8. Validation of Blood Volume Fraction Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscle

    Science.gov (United States)

    Söhner, Anika; Maaß, Marc; Sauerwein, Wolfgang; Möllmann, Dorothe; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz

    2017-01-01

    The purpose of this study was to assess the accuracy of fractional blood volume (vb) estimates in low-perfused and low-vascularized tissue using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The results of different MRI methods were compared with histology to evaluate the accuracy of these methods under clinical conditions. vb was estimated by DCE-MRI using a 3D gradient echo sequence with k-space undersampling in five muscle groups in the hind leg of 9 female pigs. Two gadolinium-based contrast agents (CA) were used: a rapidly extravasating, extracellular, gadolinium-based, low-molecular-weight contrast agent (LMCA, gadoterate meglumine) and an extracellular, gadolinium-based, albumin-binding, slowly extravasating blood pool contrast agent (BPCA, gadofosveset trisodium). LMCA data were evaluated using the extended Tofts model (ETM) and the two-compartment exchange model (2CXM). The images acquired with administration of the BPCA were used to evaluate the accuracy of vb estimation with a bolus deconvolution technique (BD) and a method we call equilibrium MRI (EqMRI). The latter calculates the ratio of the magnitude of the relaxation rate change in the tissue curve at an approximate equilibrium state to the height of the same area of the arterial input function (AIF). Immunohistochemical staining with isolectin was used to label endothelium. A light microscope was used to estimate the fractional vascular area by relating the vascular region to the total tissue region (immunohistochemical vessel staining, IHVS). In addition, the percentage fraction of vascular volume was determined by multiplying the microvascular density (MVD) with the average estimated capillary lumen, π(d2)2, where d = 8μm is the assumed capillary diameter (microvascular density estimation, MVDE). Except for ETM values, highly significant correlations were found between most of the MRI methods investigated. In the cranial thigh, for example, the vb medians (interquartile range

  9. The innermost regions of relativistic jets and their magnetic fields in radio-loud Active Galactic Nuclei

    CERN Document Server

    Donnarumma, I; Costamante, L; D'Ammando, F; Giovannini, G; Giommi, P; Giroletti, M; Grandi, P; Jorstad, S G; Marscher, A P; Orienti, M; Pacciani, L; Savolainen, T; Stamerra, A; Tavecchio, F; Torresi, E; Tramacere, A; Turriziani, S; Vercellone, S; Zech, A

    2015-01-01

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of radio-loud Active Galactic Nuclei. For a summary, we refer to the paper.

  10. Subjective and objective image qualities: a comparison of sagittal T2 weighted spin-echo and turbo-spin-eco sequences in magnetic resonance imaging of the spine by use of a subjective ranking system

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, G. [Institut fuer diagnostische Radiologie, Departement Radiologie, Universitaetskliniken, Kantonsspital Basel (Switzerland); Mader, I. [Radiologische Gemeinschaftspraxis Dres. Siems, Grossmann, Bayreuth (Germany); Proske, M. [Klinikum Rosenheim (Germany). Inst. fuer Diagnostische Radiologie

    1998-12-31

    We evaluated the subjective image impression of two different magnetic resonance (MR) sequences by using a subjective ranking system. This ranking system was based on 20 criteria describing several tissue characteristics such as the signal intensity of normal anatomical structures and the changes of signal intensities and shape of lesions as well as artefacts. MR of the vertebral spine was performed in 48 female and 52 male patients (mean age 44.8 years) referred consecutively for investigation of a back problem. Ninety-six pathologies were found in 82 patients. Sagittal and axial T1 weighted spin-echo before and after administration of Gadolinium (Gd-DOTA), and sagittal T2 weighted spin-echo (T2wSE) and Turbo-spin-echo (TSE) sequences were performed by means of surface coils. Using the subjective ranking system the sagittal T2wSE and sagittal TSE were compared. Both sequences were suitable for identification of normal anatomy and pathologic changes and there was no trend for increased detection of disease by one imaging sequence over the other. We found that sagittal TSE sequences can replace sagittal T2wSE sequences in spinal MR and that artefacts at the cervical and lumbar spine are less frequent using TSE, thus confirming previous studies. In this study, our ranking system reveiled, that there are differences between the subjective judgement of image qualities and objective measurement of SNR. However, this approach may not be helpful to compare two different MR sequences as it is limited to the anatomical area investigated and is time consuming. The subjective image impression, i.e. the quality of images, may not always be represented by physical parameters such as a signal-to-noise ratio (SNR), radiologists should try to define influences of image quality also by subjective parameters. (orig.)

  11. The scissors mode and other magnetic and electric dipole excitations in the transitional nuclei {sup 178,180}Hf

    Energy Technology Data Exchange (ETDEWEB)

    Pietralla, N. [Koeln Univ. (Germany). Inst. fuer Kernphysik; Beck, O. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Besserer, J. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Brentano, P. von [Koeln Univ. (Germany). Inst. fuer Kernphysik; Eckert, T. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Fischer, R. [Koeln Univ. (Germany). Inst. fuer Kernphysik; Fransen, C. [Koeln Univ. (Germany). Inst. fuer Kernphysik; Herzberg, R.-D. [Koeln Univ. (Germany). Inst. fuer Kernphysik; Jaeger, D. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Jolos, R.V. [Koeln Univ. (Germany). Inst. fuer Kernphysik]|[Bogoliubov Theoretical Laboratory, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Kneissl, U. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Krischok, B. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Margraf, J. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Maser, H. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Nord, A. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Pitz, H.H. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Rittner, M. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Schiller, A. [Institut fuer Strahlenphysik, Universitaet Stuttgart, 70569 Stuttgart (Germany); Zilges, A. [Koeln Univ. (Germany). Inst. fuer Kernphysik]|[WNSL, Yale University, P.O. Box 208124, New Haven, CT 06520-8124 (United States)

    1997-05-26

    Photon scattering experiments have been performed on the heavy deformed nuclei {sup 178,180}Hf using an E{sub {gamma}}<4 MeV bremsstrahlung beam as a continuous energy photon source. Numerous dipole excitations have been identified from the spectra of high-resolution Ge {gamma} detectors. Spins, K quantum numbers, dipole excitation strengths, and level widths, have been extracted from the scattering cross sections. From the measured level widths lifetimes of 67 levels can be deduced. The excitation strength of the scissor mode is discussed and extends the systematics from the neighboring rare earth nuclei. Besides the {Delta}K=1 excitations other dipole excitations have been observed that are distinguished from the scissor mode states by their different decay behavior. (orig.).

  12. Improved Echo cancellation in VOIP

    Directory of Open Access Journals (Sweden)

    Patrashiya Magdolina Halder

    2011-11-01

    Full Text Available VoIP (voice over internet protocol is very popular communication technology of this century and has played tremendous role in communication system. It is preferred by all because it deploys many benefits it uses Internet protocol (IP networks to deliver multimedia information such as speech over a data network. VoIP system can be configured in these connection modes respectively; PC to PC, Telephony to Telephony and PC to Telephony. Echo is very annoying problem which occurs in VoIP and echo reduces the voice quality of VoIP. It is not possible to remove echo 100% from echoed signal because if echo is tried to be eliminated completely then the attempt may distort the main signal. That is why echo cannot be eliminated echo perfectly but the echo to a tolerable range. Clipping is not a good solution to suppress echo because part of speech may erroneously removed. Besides an NLP does not respond rapidly enough and also confuses the fading of the voice level at the end of a sentence with a residual echo. This paper has proposed echo cancellation in VoIP that has been tested and verified by MATLAB. The goal was to suppress echo without clipping and distorting the main signal. By the help of MATLAB program the echo is minimized to enduring level so that the received signal seems echo free. The percentage of suppressing echo varies with the amplitude of the main signal. With regarding the amplitude variation in received (echo free signal the proposed method performs better in finding the echo free signal than the other conventional system.

  13. Magnetic resonance imaging of the sacroiliac joints in patients with suspected spondyloarthritis. Comparison of turbo spin-echo and gradient-echo sequences for the detection of structural alterations; MRT-Bildgebung der Sakroiliakalgelenke bei Verdacht auf Spondyloarthritis. Vergleich von Turbospinecho- und Gradientenechosequenzen zum Nachweis struktureller Veraenderungen

    Energy Technology Data Exchange (ETDEWEB)

    Dornia, C.; Hoffstetter, P. [Universitaetsklinikum Regensburg (Germany). Inst. fuer Roentgendiagnostik; Asklepios Klinikum, Bad Abbach (Germany). Inst. fuer Roentgendiagnostik; Fleck, M. [Universitaetsklinikum Regensburg (Germany). Klinik fuer Innere Medizin I; Asklepios Klinikum, Bad Abbach (Germany). Klinik fuer Rheumatologie und Klinische Immunologie; Hartung, W. [Asklepios Klinikum, Bad Abbach (Germany). Klinik fuer Rheumatologie und Klinische Immunologie; Niessen, C.; Stroszczynski, C. [Universitaetsklinikum Regensburg (Germany). Inst. fuer Roentgendiagnostik

    2015-02-15

    Magnetic resonance imaging (MRI) is the method of choice for the evaluation of spondyloarthritis (SpA). According to the guidelines of the Assessment of Spondyloarthritis International Society (ASAS) and Outcome Measures in Rheumatology (OMERACT), MRI findings in SpA of the spine and the sacroiliac joints (SIJ) are classified as inflammatory and structural alterations. Modern gradient-echo sequences (GRE) are recommended for optimized detection of structural alterations of the SIJ. We assess the benefit of GRE in the detection of structural alterations of the SIJ in comparison to conventional turbo spin-echo sequences (TSE). Retrospective study of 114 patients who received MRI of the SIJ for the evaluation of SpA. Structural alterations of the SIJ were assessed by two blinded readers separately for T1 TSE and T2{sup *} GRE. The findings were classified according to a previously published chronicity score separately for both sides and sequences. Interobserver reliability was calculated with Cohen's Kappa, and the significance of findings was assessed with the Wilcoxon test. P-values < 0.05 were required for statistical significance. 68 of 114 (60%) patients showed SpA-typical findings of the SIJ. The average chronicity score for GRE (score 3.3) was significantly higher than for TSE (score 2.6), p=0.001. The Kappa-values for the interobserver reliability were 0.86-0.90 without any statistically significant differences between both sides and sequences. Both T1 TSE and T2{sup *} GRE showed a high interobserver reliability in the detection of structural alterations in patients with SpA. However, T2{sup *} GRE detected significantly more structural alterations than T1 TSE and should be an integral part of a modern MRI protocol for the diagnostic workup of patients with suspected SpA.

  14. Excitation of spin echo by pulses with linear frequency modulation

    Science.gov (United States)

    Baruzdin, S. A.

    2015-03-01

    The excitation of a spin echo by two pulses with linear frequency modulation, upon which the pulse parameters ensure maximal compression of the response in time, is considered. The frequency of the excitation pulses was changed by a step law, approximating its linear rise. The transfer matrix of the state of the spin system for pulses with linear frequency modulation is found by solving the Bloch equations. The shape of the envelope of the spin echo in thin magnetic cobalt films, as well as the dependence of the echo amplitude on the parameters of the excitation pulses, is determined. The amplitudes of the excitation pulses, which ensure the excitation of the echo maximal amplitude for various values of the frequency deviation, are found. It is shown that the use of pulses with linear frequency modulation makes it possible to obtain the same echo amplitude as with the use of simple excitation pulses for a substantially smaller amplitude and power of excitation pulses.

  15. Experimental observation of fractional echoes

    Science.gov (United States)

    Karras, G.; Hertz, E.; Billard, F.; Lavorel, B.; Siour, G.; Hartmann, J.-M.; Faucher, O.; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2016-09-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes, which appear periodically at delays which are integer multiples of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  16. Eldor spin echoes and slow motions

    Science.gov (United States)

    Hornak, Joseph P.; Freed, Jack H.

    1983-10-01

    It is shown how an ELDOR technique based upon spin echoes and rapid stepping of the magnetic field may be employed to measure rotational correlation times, τ R for very slow motions. Experiments on PD-Tempone in 85% glycerol/ D 2O at low temperatures led to τ R values of 10 -4 to 10 -5 s obtained with a simple analysis of the data.

  17. Echo: skin stress test

    Science.gov (United States)

    1960-01-01

    Skin Stress Test of the 12-foot satellite built as a prototype of the full-scale Echo satellite. The 12-foot diameter of the sphere was chosen because that was the ceiling height in the Langley model shop. The proposal to build the 12-foot satellite was made in November 1957. - Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, pp. 170-171.

  18. Spin echo in synchrotrons

    Science.gov (United States)

    Chao, Alexander W.; Courant, Ernest D.

    2007-01-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis

  19. Spin Echo in Synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alexander W.; /SLAC; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving

  20. Fast T2 mapping of the patellar articular cartilage with gradient and spin-echo magnetic resonance imaging at 1.5 T: validation and initial clinical experience in patients with osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Quaia, Emilio; Ukmar, Maja; Rossi, Alexia; Cova, Maria A. [University of Trieste, Department of Radiology, Cattinara Hospital, Trieste (Italy); Toffanin, Renato [ARCHES, Castellana, Grotte (Italy); Guglielmi, Giuseppe [University of Foggia, Department of Radiology, Foggia (Italy); Scientific Institute ' Casa Sollievo della Sofferenza' , Department of Radiology, San Giovanni Rotondo (Italy); Martinelli, Bruno [University of Trieste, Department of Traumatology and Orthopaedics, Trieste (Italy)

    2008-06-15

    To evaluate the T2 mapping of patellar articular cartilage in patients with osteoarthritis using gradient and spin-echo (GRASE) magnetic resonance (MR) imaging. After the imaging of a phantom consisting of two sealed 50-ml test objects with different concentrations (30% and 90% weight/volume) of copper sulphate, the T2 mapping of patellar articular cartilage was performed in 35 patients (21 male and 14 female; mean age {+-} SD 42 {+-} 17 years) with moderate degree of patellar osteoarthritis. Turbo-spin-echo (TSE) (TR milliseconds/minimum-maximum TE milliseconds 3,000/15-120; total acquisition time 5 min 52 s) and GRASE (TR milliseconds/minimum-maximum TE milliseconds 3,000/15-120; total acquisition time 1 min 51 s) were employed. In each patient patellar cartilage was segmented at nine locations (three superior, three central, and three inferior) by manually defined regions of interest. T2 relaxation times were calculated using a linear fit applied to the logarithm of signal intensity decay. In the phantom the T2 values measured by GRASE were similar to those measured by MR spectroscopy (test object 1: 48.1 ms vs 51 ms; test object 2: 66.8 ms vs 71 ms; P>0.05, Wilcoxon test). In patients GRASE and TSE-derived T2 values demonstrated good agreement (mean difference {+-} SD, 1.81 {+-} 3.63 ms). The within-patient coefficient of variation was 22% for TSE and 23% for GRASE. Fast T2 mapping of the patellar articular cartilage can be performed with GRASE within a third of the time of that of standard sequences. (orig.)

  1. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    Science.gov (United States)

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  2. Analysis of random noise, coil inhomogeneity, and ghost artifacts in spin echo imaging on a 1.5 T commercial magnetic resonance imager

    Science.gov (United States)

    Chandra, Ramesh; Rusinek, Henry

    1990-05-01

    Noise in spin echo (SE) images in MRI consists of random and structured components Structured noise arises mainly from the non-uniformity of the B1 field. We have studied these errors using a cylindrical phantom. Random noise analysis by subtraction of a 4,9, or 25 points smoothed image from the original image showed small but significant differences between the three methods, though it was uniform over the phantom and changed little with time over a span of 8 months. The rf coil nonuniformity ( coefficient of variation,CV) in two areas of interest (ROI). a central area (40 cm2) and a ring outside the central region (130 cm2) was measured to be 21% and 45% respectively for the saddle coil and 1 5% and 6.0% respectively for the bird cage coil Using the first day flood image for correction of the later images. CV in the two ROI's of the corrected images were 1.3% and 2.2% for the saddle coil respectively and 0.9% and 1.6% respectively.

  3. The Promise of Future VSOP-2 Observations for Studies of Helical Magnetic Fields and Their Evolution in Active Galactic Nuclei

    Science.gov (United States)

    Mahmud, M.; Gabuzda, D.

    2009-08-01

    We present here results of an observational search for Faraday Rotation Measure (RM) gradients transverse to the VLBI jet direction in a sample of BL Lac objects that provide evidence for the presence of helical magnetic fields wrapped around the jets. This project has revealed new transverse RM gradients in several sources. In at least three sources, we observe new features, such as reversal of the transverse RM gradient with time or distance from the core. We discuss how these gradients could potentially be used to infer the intrinsic magnetic field configuration of the region surrounding the central black hole (e.g. dipolar, quadropolar; Blandford 2008). The use of 8 GHz VSOP-2 polarization observations in combination with ground VLBI polarization observations at higher frequencies will give us even higher angular resolution to probe in the central regions of the jet, enabling more accurate determination of the RM gradients on smaller scales, and could help identify possible counter-jets in some sources, which could provide a test for the magnetic field configuration of the black hole.

  4. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Kenkel, David; Boss, Andreas; Manoliu, Andrei; Andreisek, Gustav; Runge, Val M.; Guggenberger, Roman [University Hospital of Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Piccirelli, Marco [University Hospital of Zurich, Department of Neuroradiology, Zurich (Switzerland); Bhat, Himanshu [Siemens Medical Solutions USA Inc, Charlestown, MA (United States)

    2016-06-15

    To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm{sup 2}; 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm{sup 2}/s; twofold acceleration: 1.016 ± 0.123 mm{sup 2}/s; threefold acceleration: 0.979 ± 0.153 mm{sup 2}/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. (orig.)

  5. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  6. Loschmidt echo and time reversal in complex systems.

    Science.gov (United States)

    Goussev, Arseni; Jalabert, Rodolfo A; Pastawski, Horacio M; Wisniacki, Diego A

    2016-06-13

    Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years.

  7. Dissecting a Light Echo

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow. When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time. As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  8. Hydrogen-bonding studies of pyridine and 0-phenylphenol with coal asphaltenes by multi-nuclei magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Schweighardt, F.K.; Friedel, R.A.; Retcofsky, H.L.

    1976-01-01

    Proton, carbon, and nitrogen-14 nuclear magnetic resonance studies are reported of hydrogen bonding between the OH proton of o-phenylphenol (OPP) and the nitrogen electron donor of pyridine (Py). Data are also reported on the hydrogen bonding of the acid and base components of coal-derived asphaltenes with the model system. Determination was made of the equilibrium constant of the 1:1 complex between OPP and Py from the proton NMR studies. Qualitative results are reported from the /sup 13/C and /sup 14/N studies of the model system (OPP-Py) with the individual asphaltene fractions. Because of the recent renewed interest in coal liquefaction this investigation may provide a starting point for future research. 7 figures.

  9. Study of Interaction of Low-Energy Antiprotons with H$^{2}$,He$^{3}$,He$^{4}$,Ne-Nuclei Using a Streamer Chamber in Magnetic Field

    CERN Multimedia

    2002-01-01

    The aim of this experiment is the systematic study of the interaction between low-energy antiprotons and the H|2,~He|3,~He|4,~Ne-nuclei using a self shunted streamer chamber in a magnetic field exposed to the antiproton beam of the LEAR facility. The properties of the self shunted streamer chamber, which allows the use of the filling gas (hydrogen, helium, neon at a pressure of l~atm) as a target, permit to carry out experiments also in the very low-energy region. \\\\ \\\\ The experimental apparatus is suitable for a large programme of measurements. We plan to measure the @*H|2 cross section and the spectator momentum distributions at @* momenta lower than 250~MeV/c, where data are lacking. It is interesting to study for the first time the @*He|3 and @*He|4 interactions measuring the cross sections and the emitted particle distributions. Among other things the knowledge of the branching ratio of the @*He|4 annihilation channels clarifies some open cosmological questions. The study of the process of nuclear absor...

  10. Use of earth field spin echo NMR to search for liquid minerals

    Science.gov (United States)

    Stoeffl, Wolfgang

    2001-01-01

    An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.

  11. Comparison of 3D Maximum intensity projection (MIP reconstruction and 2D T2 Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE sequence in magnetic resonance cholangiopancreatography

    Directory of Open Access Journals (Sweden)

    Fuad Julardžija

    2014-04-01

    Full Text Available Introduction: Magnetic resonance cholangiopancreatography (MRCP is a method that allows noninvasive visualization of pancreatobiliary tree and does not require contrast application. It is a modern method based on heavily T2-weighted imaging (hydrography, which uses bile and pancreatic secretions as a natural contrast medium. Certain weaknesses in quality of demonstration of pancreatobiliary tract can be observed in addition to its good characteristics. Our aim was to compare the 3D Maximum intensity projection (MIP reconstruction and 2D T2 Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE sequence in magnetic resonance cholangiopancreatography.Methods: During the period of one year 51 patients underwent MRCP on 3T „Trio“ system. Patients of different sex and age structure were included, both outpatient and hospitalized. 3D MIP reconstruction and 2D T2 haste sequence were used according to standard scanning protocols.Results: There were 45.1% (n= 23 male and 54.9% (n=28 female patients, age range from 17 to 81 years. 2D T2 haste sequence was more susceptible to respiratory artifacts presence in 64% patients, compared to 3D MIP reconstruction with standard error (0.09, result significance indication (p=0.129 and confidence interval (0.46 to 0.81. 2D T2 haste sequences is more sensitive and superior for pancreatic duct demonstration compared to 3D MIP reconstruction with standard error (0.07, result significance indication (p=0.01 and confidence interval (0.59 to 0.87Conclusion: In order to make qualitative demonstration and analysis of hepatobiliary and pancreatic system on MR, both 2D T2 haste sequence in transversal plane and 3D MIP reconstruction are required.

  12. Manifestation of the geometric phase in neutron spin-echo experiments

    NARCIS (Netherlands)

    Kraan, W.H.; Grigoriev, S.V.; Rekveldt, M.T.

    2010-01-01

    We show how the geometric (Berry’s) phase becomes manifest on adiabatic rotation of the polarization vector in the magnetic field configuration in the arms in a neutron spin echo (NSE) experiment.When the neutron beam used is monochromatic, a geometric phase collected in one spin-echo arm can be exa

  13. The impact of spin coupling signal loss on fat content characterization in multi-echo acquisitions with different echo spacing.

    Science.gov (United States)

    Nikiforaki, K; Manikis, G C; Boursianis, T; Marias, K; Karantanas, A; Maris, T G

    2017-05-01

    This study aimed to assess the effect of echo spacing in transverse magnetization (T2) signal decay of gel and fat (oil) samples. Additionally, we assess the feasibility of using spin coupling as a determinant of fat content. Phantoms of known T2 values, as well as vegetable oil phantoms, were scanned at 1.5T scanner with a multi echo FSE sequence of variable echo spacing above and below the empirical threshold of 20ms for echo train signal modulation (6.7, 13.6, 26.8, and 40ms). T2 values were calculated from monoexponential fitting of the data. Relative signal loss between the four acquisitions of different echo spacing was calculated. Agreement in the T2 values of water gel phantom was observed in all acquisitions as opposed to fat phantom (oil) samples. Relative differences in signal intensity between two successive sequences of different echo spacing on composite fat/water regions of interest was found to be linearly correlated to fat fraction of the ROI. The sample specific degree of signal loss that was observed between different fat samples (vegetable oils) can be attributed to the composition of each sample in J coupled fat components. Hence, spin coupling may be used as a determinant of fat content. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    Science.gov (United States)

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences.

  15. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  16. X-ray echo spectroscopy

    CERN Document Server

    Shvyd'ko, Yuri

    2015-01-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1--0.02-meV ultra-high-resolution IXS applications (resolving power $> 10^8$) with broadband $\\simeq$~5--13~meV dispersing systems are introduced featuring more than $10^3$ signal e...

  17. X-ray Echo Spectroscopy.

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  18. Prospective intraindividual comparison between respiratory-triggered balanced steady-state free precession and breath-hold gradient-echo and time-of-flight magnetic resonance imaging for assessment of portal and hepatic veins

    Energy Technology Data Exchange (ETDEWEB)

    Willmann, Juergen K.; Goepfert, Kerstin; Lutz, Amelie M.; Marincek, Borut; Weishaupt, Dominik [University Hospital Zurich, Institute of Diagnostic Radiology, Zurich (Switzerland); Nanz, Daniel [University Hospital Zurich, Department of Medical Radiology, Zurich (Switzerland); McCormack, Lucas; Petrowsky, Henrik [University Hospital Zurich, Department of Visceral and Transplantation Surgery, Zurich (Switzerland); Seifert, Burkhardt [University of Zurich, Department of Biostatistics, Zurich (Switzerland); Hervo, Patrice [GE Healthcare, Buc Cedex (France)

    2007-01-15

    The purpose of this study was to compare respiratory-triggered balanced steady-state free precession (bSSFP) with breath-hold contrast-enhanced dynamic two-dimensional (2D) gradient-echo (GRE) and time-of-flight (TOF) magnetic resonance imaging (MRI) for portal and hepatic vein visualization and assessment of portal and hepatic venous variants. Sixty patients with liver disease underwent nonenhanced bSSFP and contrast-enhanced GRE, bSSFP, and TOF imaging. Contrast-to-noise ratios (CNRs) for portal and hepatic veins were measured. Two readers rated the quality of portal and hepatic vein visualization on a 5-point Likert scale. The diagnostic performance of each MRI series in the detection of portal and hepatic venous variants was assessed in 40/60 patients who also underwent contrast-enhanced multidetector-row computed tomography (MDCT). CNRs for portal and hepatic veins were highest on contrast-enhanced bSSFP images. Image quality of portal and hepatic veins was rated higher for nonenhanced bSSFP than for contrast-enhanced GRE (p<0.03) and TOF (p<0.003) and higher for contrast-enhanced than for nonenhanced bSSFP (p<0.003). Compared with MDCT, portal and hepatic venous variants were identified with an accuracy of 99% on bSSFP images, with an excellent interobserver agreement ({kappa}=0.97). Compared with MDCT, presence of surgically important portal and hepatic venous anatomical variants can be predicted with high accuracy on bSSFP images. (orig.)

  19. Echo particle image velocimetry.

    Science.gov (United States)

    DeMarchi, Nicholas; White, Christopher

    2012-12-27

    The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.(1) Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.(2) For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.(3,4,5,6) In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine(7) with a PC running commercial particle image velocimetry (PIV) software(8) is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported. For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.) For a typical EPIV experiment, the frame rate is between 20-60 fps

  20. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Science.gov (United States)

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  1. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  2. 29Si NMR spin-echo decay in YbRh2Si2

    Science.gov (United States)

    Kambe, S.; Sakai, H.; Tokunaga, Y.; Hattori, T.; Lapertot, G.; Matsuda, T. D.; Knebel, G.; Flouquet, J.; Walstedt, R. E.

    2016-02-01

    29Si nuclear magnetic resonance (NMR) has been measured in a 29Si-enriched single crystal sample of YbRh2Si2. The spin-echo decay for applied field H ∥, ⊥ the c-axes has been measured at 100 K. A clear spin-echo decay oscillation is observed for both cases, possibly reflecting the Ruderman-Kittel (RK) interaction. Since the observed oscillation frequency depends on the direction of applied magnetic field, anisotropic RK coupling and pseudo-dipolar (PD) interactions may not be negligible in this compound. The origin of spin-echo decay oscillations is discussed.

  3. On the theory of proton solid echo in polymer melts

    CERN Document Server

    Fatkullin, N; Mattea, C; Stapf, S

    2015-01-01

    Based on a modified Anderson-Weiss approximation (N. Fatkullin, A. Gubaidullin, C. Mattea, S.Stapf, J. Chem. Phys. 137 (2012), 224907) an improved theory of proton spin solid echo in polymer melts is formulated, taking into account contribution from intermolecular magnetic dipole-dipole interactions. The solid echo build-up function defined by the relation , where , and are the respective signals arising from ( ),( ) and ( ) spin echo experiments, where is an operator rotating the spin system on the angle relatively axis , is investigated. It is shown that the intermolecular part of this function at short times , where is a characteristic time for flip-flop transitions between proton spins, contains information about the relative mean squared displacements of polymer segments at different macromolecules, opening up a new opportunity for obtaining information about polymer dynamics in the millisecond regime.

  4. Stellar Echo Imaging of Exoplanets

    Science.gov (United States)

    Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron

    2016-01-01

    All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.

  5. Correction of phase errors in quantitative water-fat imaging using a monopolar time-interleaved multi-echo gradient echo sequence.

    Science.gov (United States)

    Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C

    2017-09-01

    To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Multiple locations of peptides in the hydrocarbon core of gel-phase membranes revealed by peptide (13)C to lipid (2)H rotational-echo double-resonance solid-state nuclear magnetic resonance.

    Science.gov (United States)

    Xie, Li; Jia, Lihui; Liang, Shuang; Weliky, David P

    2015-01-27

    Membrane locations of peptides and proteins are often critical to their functions. Solid-state rotational-echo double-resonance (REDOR) nuclear magnetic resonance is applied to probe the locations of two peptides via peptide (13)CO to lipid (2)H distance measurements. The peptides are KALP, an α-helical membrane-spanning peptide, and HFP, the β-sheet N-terminal fusion peptide of the HIV gp41 fusion protein that plays an important role in HIV-host cell membrane fusion. Both peptides are shown to have at least two distinct locations within the hydrocarbon core of gel-phase membranes. The multiple locations are attributed to snorkeling of lysine side chains for KALP and to the distribution of antiparallel β-sheet registries for HFP. The relative population of each location is also quantitated. To the best of our knowledge, this is the first clear experimental support of multiple peptide locations within the membrane hydrocarbon core. These data are for gel-phase membranes, but the approach should work for liquid-ordered membranes containing cholesterol and may be applicable to liquid-disordered membranes with appropriate additional analysis to take into account protein and lipid motion. This paper also describes the methodological development of (13)CO-(2)H REDOR using the lyophilized I4 peptide that is α-helical and (13)CO-labeled at A9 and (2)Hα-labeled at A8. The I4 spins are well-approximated as an ensemble of isolated (13)CO-(2)H spin pairs each separated by 5.0 Å with a 37 Hz dipolar coupling. A pulse sequence with rectangular 100 kHz (2)H π pulses results in rapid and extensive buildup of REDOR (ΔS/S0) with a dephasing time (τ). The buildup is well-fit by a simple exponential function with a rate of 24 Hz and an extent close to 1. These parameter values reflect nonradiative transitions between the (2)H spin states during the dephasing period. Each spin pair spends approximately two-thirds of its time in the (13)CO-(2)H (m = ±1) states and

  7. Dance of the Light Echoes

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version This composite image from NASA's Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A (center) and its surrounding 'light echoes' -- dances of light through dusty clouds, created when stars blast apart. The light echoes are colored and the surrounding clouds of dust are gray. In figure 1, dramatic changes are highlighted in phenomena referred to as light echoes (colored areas) around the Cassiopeia A supernova remnant (center). Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. In figure 1, this apparent motion can be seen here by the shift in colored dust clumps Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 11,000 light-years away in the northern constellation Cassiopeia. This composite consists of six processed images taken over a time span of three years. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Bluer colors represent an earlier time and redder ones, a later time. The progression of the light echo through the dust can be seen here by the shift in colored dust clumps. This light echo is the largest ever seen

  8. Theory of electron spin echoes in solids

    CERN Document Server

    Asadullina, N Y; Asadullin, Y Y

    2002-01-01

    We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published resul...

  9. Challenges in neutron spin echo spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, C., E-mail: c.pappas@tudelft.n [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Lelievre-Berna, E.; Falus, P.; Farago, B. [Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Bentley, P. [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Moskvin, E. [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); PNPI, 188300 Gatchina, Leningrad District (Russian Federation); Krist, Th. [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); Grigoriev, S. [PNPI, 188300 Gatchina, Leningrad District (Russian Federation)

    2009-09-01

    With the new brilliant neutron sources and the developments of novel optical elements, neutron spin echo (NSE) spectroscopy evolves to tackle new problems and scientific fields. The new developments pave the way to complex experimental set-ups such as the intensity modulated variant of NSE (IMNSE), a powerful technique which was introduced some 20 years ago but found limited use up to now. With the new compact supermirror or He{sup 3} polarizers IMNSE becomes attractive for a broad range of applications in magnetism, soft matter and biology. A novel development along this line is the polarimetric NSE technique, which combines IMNSE and the zero-field polarimeter Cryopad to access components of the scattered polarization that are transverse to the incoming polarization. Polarimetric NSE is the method of choice for studying chiral fluctuations, as illustrated by new results on the reference helimagnet MnSi.

  10. Dual-rail optical gradient echo memory

    CERN Document Server

    Higginbottom, Daniel B; Campbell, Geoff T; Hosseini, Mahdi; Cao, Ming Tao; Sparkes, Ben M; Bernu, Julian; Robins, Nick P; Lam, Ping Koy; Buchler, Ben C

    2016-01-01

    We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6 degrees phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration.

  11. Review of the ultrashort echo time magnetic resonance imaging of cortical bone∗%核磁共振骨皮质成像关键技术研究进展

    Institute of Scientific and Technical Information of China (English)

    包尚联; 杜江; 高嵩†

    2013-01-01

    The evaluation of bone quality, especially cortical bone, is very important for diagnosing and treating the bone diseases. Because of the rapidly aging population of the global society, noninvasively, precisely and feasibly evaluating the bone quality has become a hot topic in the contemporary medical physics studies. Among the several available methods of evaluation, the bone mineral density (BMD) measured with dual-energy X-ray absorptiometry is currently considered to be the gold standard in clinical applications. However, the BMD is limited by its incapability of assessing the organic matrix, microstructure, porosity and perfusion of bone. In addition, the BMD can neither provide a definite diagnose of osteoporosis nor predict fractures precisely. Cortical bone shows near zero signal with all conventional clinical magnetic resonance imaging (MRI) sequences, because of the rapid decay of the magnetic resonance signal in the bone. Due to the recently developed theories, methods and hardware, ultrashort time echo (UTE) sequences with nominal TE of less than 100 µs have aroused the increasing research interest. In this paper an introduction to the basic physics of UTE MRI of cortical bone is presented. The newly proposed qualitative and quantitative UTE MRI methods are reviewed with an introduction to the research work in the authors’ laboratory. The features, application scopes and limitations of those methods are also summarized. Finally, the authors point out the directions and steps of further studies. The paper will be helpful for understanding theoretical research and the clinical applications of UTE imaging of cortical bone.%  骨质量尤其是骨皮质质量的评价方法对骨病的诊断和治疗有重要意义。随着社会快速老龄化,如何非侵入地获得准确实用的骨质量评价指标已成为医学物理领域亟待解决的热点问题。目前有多种骨质量评价方法,其中双能X射线吸收法获得的骨矿密度

  12. SIMULATION STUDY ON AIRBORNE SAR ECHO SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Bao Houbing; Liu Zhao

    2004-01-01

    Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.

  13. Simultaneous perfusion and permeability measurements using combined spin- and gradient-echo MRI.

    Science.gov (United States)

    Schmiedeskamp, Heiko; Andre, Jalal B; Straka, Matus; Christen, Thomas; Nagpal, Seema; Recht, Lawrence; Thomas, Reena P; Zaharchuk, Greg; Bammer, Roland

    2013-05-01

    The purpose of this study was to estimate magnetic resonance imaging-based brain perfusion parameters from combined multiecho spin-echo and gradient-echo acquisitions, to correct them for T₁₋, T₂₋, and T₂₋*-related contrast agent (CA) extravasation effects, and to simultaneously determine vascular permeability. Perfusion data were acquired using a combined multiecho spin- and gradient-echo (SAGE) echo-planar imaging sequence, which was corrected for CA extravasation effects using pharmacokinetic modeling. The presented method was validated in simulations and brain tumor patients, and compared with uncorrected single-echo and multiecho data. In the presence of CA extravasation, uncorrected single-echo data resulted in underestimated CA concentrations, leading to underestimated single-echo cerebral blood volume (CBV) and mean transit time (MTT). In contrast, uncorrected multiecho data resulted in overestimations of CA concentrations, CBV, and MTT. The correction of CA extravasation effects resulted in CBV and MTT estimates that were more consistent with the underlying tissue characteristics. Spin-echo perfusion data showed reduced large-vessel blooming effects, facilitating better distinction between increased CBV due to active tumor progression and elevated CBV due to the presence of cortical vessels in tumor proximity. Furthermore, extracted permeability parameters were in good agreement with elevated T1-weighted postcontrast signal values.

  14. Nuclear quadrupole resonance echoes from hexamethylenetetramine.

    Science.gov (United States)

    Ota, Go; Itozaki, Hideo

    2006-10-01

    We investigated the echo phenomenon of nuclear quadrupole resonance (NQR) from hexamethylenetetramine (HMT). We detected the pure NQR echo signal of HMT with a short pulse interval. The intensity of the echo signal increased as the pulse interval time was decreased. We observed that a clean echo signal was generated even when the pulse interval was shorter than the decay time constant T(2)(*). Since the short interval time gives a strong echo, our result insists that shorter interval time is preferred for the NQR detection.

  15. Fast Echo Canceller in IP Telephony Gateway

    Institute of Scientific and Technical Information of China (English)

    黄永峰; 李星

    2003-01-01

    The length of the echo path in the IP telephony system is very long. Generally, the echo canceller is implemented on the IP telephony gateway which needs to perform concurrently multi-channel echo cancellation and voice compression. Hence, the most key technique to design the echo canceller is to reduce greatly the computational requirement. For this reason a number of innovative features to implement a fast echo canceller are presented. The key components of this canceller include: the separation of adaptive and cancel filters, non-real-time adaptation and real-time cancellation, sharing VAD algorithms with the speech codec, the incorporation of delay indexing with zero coefficients, and windowing the adaptive filter coefficients to reduce the cost of DSP during the cancellation. Finally, the performance of the echo canceller is summarized; the results of evaluation show that the performance gains for echo cancellation are significant.

  16. Longitudinal collective echoes in coasting particle beams

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khateeb

    2003-01-01

    Full Text Available Longitudinal ballistic and collective beam echoes with diffusion effects are investigated theoretically. In the presence of the space-charge impedance, the collective echo amplitude is obtained as a closed form expression. In contrast to the ballistic case, the collective echo amplitude consists of one maximum at time t_{echo}. The echo amplitude grows up and damps down with a rate proportional to the Landau damping rate of space-charge waves. The effect of weak diffusion is found to modify the ballistic and the collective echo amplitudes in the same manner. This effect of diffusion was confirmed using a “noiseless,” grid-based simulation code. As a first application the amount of numerical diffusion in our simulation code was determined using the echo effect.

  17. Theory of quantum Loschmidt echoes

    CERN Document Server

    Prosen, T; Znidaric, M; Prosen, Tomaz; Seligman, Thomas H.; Znidaric, Marko

    2003-01-01

    In this paper we review our recent work on the theoretical approach to quantum Loschmidt echoes, i.e. various properties of the so called echo dynamics -- the composition of forward and backward time evolutions generated by two slightly different Hamiltonians, such as the state autocorrelation function (fidelity) and the purity of a reduced density matrix traced over a subsystem (purity fidelity). Our main theoretical result is a linear response formalism, expressing the fidelity and purity fidelity in terms of integrated time autocorrelation function of the generator of the perturbation. Surprisingly, this relation predicts that the decay of fidelity is the slower the faster the decay of correlations. In particular for a static (time-independent) perturbation, and for non-ergodic and non-mixing dynamics where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale 1/delta as opposed to mixing dynamics where the fidelity is found to decay...

  18. Echo-Enabled Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  19. Echo-Enabled Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  20. Independence of echo-threshold and echo-delay in the barn owl.

    Directory of Open Access Journals (Sweden)

    Brian S Nelson

    Full Text Available Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound.

  1. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms1 , while the other group had significantly larger velocities, of the order of 700 ms1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  2. Coupling a CLOVER detector array with the PRISMA magnetic spectrometer. Investigation of moderately neutron-rich nuclei populated by multinucleon transfer and deep inelastic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gadea, A.; Napoli, D.R.; Angelis, G. de; Stefanini, A.M.; Corradi, L.; Axiotis, M.; Berti, L.; Fioretto, E.; Kroell, T.; Latina, A.; Marginean, N.; Maron, G.; Martinez, T.; Rosso, D.; Rusu, C.; Toniolo, N.; Szilner, S.; Trotta, M. [Laboratori Nazionali di Legnaro Padova (Italy); Menegazzo, R.; Bazzacco, D. [Dipartimento di Fisica, Universita di Padova (Italy); INFN, Sezione di Padova (Italy); Beghini, S.; Bellato, M.; Brandolini, F.; Farnea, E.; Isocrate, R.; Lenzi, S.M.; Lunardi, S.; Montagnoli, G.; Pavan, P.; Rossi Alvarez, C.; Scarlassara, F.; Ur, C.; Blasi, N.; Bracco, A.; Camera, F.; Leoni, S.; Million, B.; Pignanelli, M.; Pollarolo, G.; DeRosa, A.; Inglima, G.; La Commara, M.; La Rana, G.; Pierroutsakou, D.; Romoli, M.; Sandoli, M.; Bizzeti, P.G.; Bizzeti-Sona, A.M.; Lo Bianco, G.; Petrache, C.M.; Zucchiatti, A.; Cocconi, P.; Quintana, B.; Beck, C.; Curien, D.; Duchene, G.; Haas, F.; Medina, P.; Papka, P.; Durell, J.; Freeman, S.J.; Smith, A.; Varley, B.; Fayz, K.; Pucknell, V.; Simpson, J.; Gelletly, W.; Regan, P.

    2004-04-01

    Following the commissioning of the PRISMA large-acceptance spectrometer, installed at the Laboratori Nazionali di Legnaro (LNL), an international nuclear-structure collaboration has started to develop a large {gamma}-ray setup to be installed in the target position of the spectrometer. The array is based on the EUROBALL composite CLOVER detectors. In this contribution the CLOVER detector array is described and its expected performance figures discussed. This new setup, by using the high-intensity heavy-ion beams provided by the LNL ALPI linac, will push the study of nuclear structure towards moderately neutron-rich nuclei by means of quasi-elastic and deep inelastic reactions. (orig.)

  3. Principles of spin-echo modulation by J-couplings in magic-angle-spinning solid-state NMR.

    Science.gov (United States)

    Duma, Luminita; Lai, Wai Cheu; Carravetta, Marina; Emsley, Lyndon; Brown, Steven P; Levitt, Malcolm H

    2004-06-21

    In magic-angle-spinning solid-state NMR, the homonuclear J-couplings between pairs of spin-1/2 nuclei may be determined by studying the modulation of the spin echo induced by a pi-pulse, as a function of the echo duration. We present the theory of J-induced spin-echo modulation in magic-angle-spinning solids, and derive a set of modulation regimes which apply under different experimental conditions. In most cases, the dominant spin-echo modulation frequency is exactly equal to the J-coupling. Somewhat surprisingly, the chemical shift anisotropies and dipole-dipole couplings tend to stabilise--rather than abscure--the J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing 13C spin pairs.

  4. Fast spin echo vs conventional spin echo in cervical spine imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gillams, A.R.; Soto, J.A.; Carter, A.P. [Department of Radiology, Boston University Medical School and Boston City Hospital Imaging Foundation, Boston, MA 02118 (United States)

    1997-10-01

    The major attraction of fast-spin-echo (FSE) imaging is reduced acquisition time; however, careful review of the literature reveals many weaknesses: phase-encoded blurring, truncation artefact, bright fat signal, reduced magnetic susceptibility and increased motion artefact. Our aim was a prospective, blinded comparison of FSE and conventional spin echo (CSE) in the cervical spine. Both sequences were performed in 43 patients (19 males and 24 females; mean age 45 years, range 15-66 years). Twenty-eight patients were studied at 1.5 T and 15 at 0.5 T. Typical sequence parameters were: at 1.5 T, TR/TE 2000/90 CSE and 3000/120 FSE, and at 0.5 T, 2200/80 CSE and 2800/120 FSE. Time saved on the FSE was used to increase the matrix and the number of acquisitions. Two neuroradiologists evaluated the images for pathology, artefacts, disc signal intensity, thecal sac compression and image quality. Ten patients had cord lesions; 2 (20%) were missed on CSE. In 4 of 10 patients with moderate/severe thecal sac compression, the degree of stenosis was apparently exaggerated on CSE. The mean degree of confidence for the CSE sequences was 1.8 and for the FSE 1.1, where 1 is optimal. For cervical spine imaging, FSE should be preferred to CSE. (orig.). With 3 figs.

  5. Neutron resonance spin echo with longitudinal DC fields

    Science.gov (United States)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  6. Is Echo a complex adaptive system?

    Science.gov (United States)

    Smith, R M; Bedau, M A

    2000-01-01

    We evaluate whether John Holland's Echo model exemplifies his theory of complex adaptive systems. After reviewing Holland's theory of complex adaptive systems and describing his Escho model, we describe and explain the characteristic evolutionary behavior observed in a series of Echo model runs. We conclude that Echo lacks the diversity of hierarchically organized aggregates that typify complex adaptive systems, and we explore possible explanations for this failure.

  7. Loschmidt echo for quantum metrology

    Science.gov (United States)

    Macrı, Tommaso; Smerzi, Augusto; Pezzè, Luca

    2016-07-01

    We propose a versatile Loschmidt echo protocol to detect and quantify multiparticle entanglement. It allows us to extract the quantum Fisher information for arbitrary pure states, and finds direct application in quantum metrology. In particular, the protocol applies to states that are generally difficult to characterize, as non-Gaussian states, and states that are not symmetric under particle exchange. We focus on atomic systems, including trapped ions, polar molecules, and Rydberg atoms, where entanglement is generated dynamically via long-range interaction, and show that the protocol is stable against experimental detection errors.

  8. Diffusion measurement from observed transverse beam echoes

    Science.gov (United States)

    Sen, Tanaji; Fischer, Wolfram

    2017-01-01

    We study the measurement of transverse diffusion through beam echoes. We revisit earlier observations of echoes in the Relativistic Heavy Ion Collider and apply an updated theoretical model to these measurements. We consider three possible models for the diffusion coefficient and show that only one is consistent with measured echo amplitudes and pulse widths. This model allows us to parameterize the diffusion coefficients as functions of the bunch charge. We demonstrate that echoes can be used to measure diffusion much quicker than present methods and could be useful to a variety of hadron synchrotrons.

  9. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. [Vanderbilt Medical Center (United States)

    2015-06-15

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  10. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    Science.gov (United States)

    Georgii, R.; Kindervater, J.; Pfleiderer, C.; Böni, P.

    2016-11-01

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  11. Minimum complexity echo state network.

    Science.gov (United States)

    Rodan, Ali; Tino, Peter

    2011-01-01

    Reservoir computing (RC) refers to a new class of state-space models with a fixed state transition structure (the reservoir) and an adaptable readout form the state space. The reservoir is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be exploited by the reservoir-to-output readout mapping. The field of RC has been growing rapidly with many successful applications. However, RC has been criticized for not being principled enough. Reservoir construction is largely driven by a series of randomized model-building stages, with both researchers and practitioners having to rely on a series of trials and errors. To initialize a systematic study of the field, we concentrate on one of the most popular classes of RC methods, namely echo state network, and ask: What is the minimal complexity of reservoir construction for obtaining competitive models and what is the memory capacity (MC) of such simplified reservoirs? On a number of widely used time series benchmarks of different origin and characteristics, as well as by conducting a theoretical analysis we show that a simple deterministically constructed cycle reservoir is comparable to the standard echo state network methodology. The (short-term) MC of linear cyclic reservoirs can be made arbitrarily close to the proved optimal value.

  12. How to misuse echo contrast

    Directory of Open Access Journals (Sweden)

    Missios Anna

    2009-01-01

    Full Text Available Abstract Background Primary intracardiac tumours are rare, there are however several entities that can mimic tumours. Contrast echocardiography has been suggested to aid the differentiation of various suspected masses. We present a case where transthoracic echocardiography completely misdiagnosed a left atrial mass, partly due to use of echo contrast. Case presentation An 80 year-old woman was referred for transthoracic echocardiography because of one-month duration of worsening of dyspnoea. Transthoracic echocardiography displayed a large echodense mass in the left atrium. Intravenous injection of contrast (SonoVue, Bracco Inc., It indicated contrast-enhancement of the structure, suggesting tumour. Transesophageal echocardiography revealed, however, a completely normal finding in the left atrium. Subsequent gastroscopy examination showed a hiatal hernia. Conclusion It is noteworthy that the transthoracic echocardiographic exam completely misdiagnosed what seemed like a left atrial mass, which in part was an effect of the use of echo contrast. This example highlights that liberal use of transoesophageal echocardiography is often warranted if optimal display of cardiac structures is desired.

  13. Comparative study between the Spin-echo and 3-D fast imaging techniques in the Knee evaluation with magnetic resonance. Estudio comparativo entre las tecnicas de Spin-Eco ecogradiente 3D, en la evaluacion de la rodilla con resonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Oleaga Zufiria, L.; Ibaez Zubiarrain, A.; Grande Icaran, J.; Vela Martin, A.C.; Cintora Leon, E.; Grau Garcia, M.; Grande Icaran, D. (Hospital Civil de Bilbao. Servicio de Radiodiagnostico. Bilbao (Spain))

    1993-01-01

    We have carried out a retrospective analysis of the results of magnetic resonance (MR) studies in 20 patients, comparing two different sequences. We compared a 2-D spin-echo (SE2D) sequence with a 3-D fast imaging with steady-state precession (FISP3D) sequence in the attempt to compare the reliability of each in the detection of knee injuries. Arthroscopy was employed as a control technique. Our study revealed no statistically significant difference between the two sequences, although the overall sensitivity for the detection of meniscal lesions was slightly greater with the FISP3D sequence; however, the reliability in the detection of ruptures of the posterior cruciate ligament is less with this sequence than with the SE2D sequence. Both sequences showed very low sensitivity in the detection of hyaline cartilage injuries. (Author) 14 refs.

  14. Photon echo relaxation in molecular mixed crystals

    NARCIS (Netherlands)

    Aartsma, Thijs Jitse

    1978-01-01

    In dit proefschrift worden foton-echo experimenten beschreven, toegepast op molekulaire mengkristallen. De primaire doelstelling van het onderzoek was om met behulp van foton-echo experimenten nieuwe informatie te verkrijgen over de relaxatie processen die optreden in molekulaire mengkristallen bij

  15. A Magnetic Alpha-Omega Dynamo in Active Galactic Nuclei Disks: I. The Hydrodynamics of Star-Disk Collisions and Keplerian Flow

    CERN Document Server

    Pariev, V I; Pariev, Vladimir I.; Colgate, Stirling A.

    2006-01-01

    A magnetic field dynamo in the inner regions of the accretion disk surrounding the supermassive black holes in AGNs may be the mechanism for the generation of magnetic fields in galaxies and in extragalactic space. We argue that the two coherent motions produced by 1) the Keplerian motion and 2) star-disk collisions, numerous in the inner region of AGN accretion disks, are both basic to the formation of a robust, coherent dynamo and consequently the generation of large scale magnetic fields. They are frequent enough to account for an integrated dynamo gain, e^{10^{9}} at 100 gravitational radii of a central black hole, many orders of magnitude greater than required to amplify any seed field no matter how small. The existence of extra-galactic, coherent, large scale magnetic fields whose energies greatly exceed all but massive black hole energies is recognized. In paper II (Pariev, Colgate, and Finn 2006) we argue that in order to produce a dynamo that can access the free energy of black hole formation and pro...

  16. Theory of electron spin echoes in solids

    Energy Technology Data Exchange (ETDEWEB)

    Asadullina, N.Ya.; Asadullin, T.Ya.; Asadullin, Ya.Ya. [Kazan State Technical University, Department of General Physics, Karl Marx Street 10, Kazan (Russian Federation)

    2002-11-04

    We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published results it is deduced that the instantaneous diffusion mechanism is ineffective.

  17. High-resolution nuclear magnetic resonance of quadrupolar nuclei in solids; Resonance magnetique nucleaire haute-resolution des noyaux quadrupolaires dans les solides

    Energy Technology Data Exchange (ETDEWEB)

    Charpentier, Th

    1998-10-23

    After a brief review of existing methods in high-resolution NMR of quadrupolar nuclei, the manipulation of multi-quantum coherencies by radiofrequency pulses is studied. Results are then applied to the determination of optimal conditions for performing the recently introduced multiple-quantum magic-angle experiment (MQMAS). The principles of this new method, the different pulse sequences and the data processing are described in detail. Applications on aluminum hydrates and cement pastes show the improvements of this new technique over the previous ones. In a second part, after an investigation of the Floquet theory, a new formalism has been devised for studying the behavior of a spin submitted to a strong quadrupolar interaction and radiofrequency field in a rotating sample. This formalism is then applied to a quantitative study of the phenomenon of rotational induced adiabatic transfer of coherencies (RIACT). The extension of our theoretical approach to two-dimensional experiments provides a powerful tool for quantitative analyses of MQMAS spectra. Agreement between experimental data and simulations demonstrates the reliability of our approach. Preliminary results concerning the application of MQMAS spectroscopy, using our simulation programs, to structural study of amorphous materials are presented. The third and last part presents a theoretical and experimental investigation of dipolar order in a rotating sample. Two theoretical models are described, the first for the slow spinning speed regime where an adiabatic approximation can be made, and the second for the fast spinning speed regime. (author)

  18. Theory of Quantum Loschmidt Echoes

    Science.gov (United States)

    Prosen, T.; Seligman, T. H.; Žnidarič, M.

    In this paper we review our recent work on the theoretical approach to quantum Loschmidt echoes, i.e., various properties of the so-called echo dynamics -- the composition of forward and backward time evolutions generated by two slightly different Hamiltonians, such as the state autocorrelation function (fidelity) and the purity of a reduced density matrix traced over a subsystem (purity fidelity). Our main theoretical result is a linear response formalism, expressing the fidelity and purity fidelity in terms of integrated time autocorrelation function of the generator of the perturbation. Surprisingly, this relation predicts that the decay of fidelity is the slower the faster the decay of correlations. In particular for a static (time-independent) perturbation, and for non-ergodic and non-mixing dynamics where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale ∝ 1/δ as opposed to mixing dynamics where the fidelity is found to decay exponentially on a time-scale ∝ 1/δ2, where δ is a strength of perturbation. A detailed discussion of a semi-classical regime of small effective values of Planck constant hbar is given where classical correlation functions can be used to predict quantum fidelity decay. Note that the correct and intuitively expected classical stability behavior is recovered in the classical limit hbarto 0, as the two limits δto 0 and hbarto 0 do not commute. The theoretical results are demonstrated numerically for two models, the quantized kicked top and the multi-level Jaynes Cummings model. Our method can for example be applied to the stability analysis of quantum computation and quantum information processing.

  19. Quarks in finite nuclei

    CERN Document Server

    Guichon, P A M; Thomas, A W

    1996-01-01

    We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.

  20. Demonstration of improved sensitivity of echo interferometers to gravitational acceleration

    CERN Document Server

    Mok, C; Carew, A; Berthiaume, R; Beattie, S; Kumarakrishnan, A

    2013-01-01

    We have developed two configurations of an echo interferometer that rely on standing wave excitation of a laser-cooled sample of rubidium atoms that measures acceleration. For a two-pulse configuration, the interferometer signal is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. For a three-pulse stimulated echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature leading to a longer experimental timescale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms timescal...

  1. Development of Large Area Emulsion Chamber Methods with a Super Conducting Magnet for Observation of Cosmic Ray Nuclei from 1 GeV to 1,000 TeV (Emulsion Techniques)

    Science.gov (United States)

    Takahashi, Yoshiyuki; Gregory, John C.; Tominaga, Taka; Dong, Bei Lei

    1997-01-01

    The research developed the fundamental techniques of the emulsion chamber methods that permit measurements of the composition and energy spectra of cosmic rays at energies ranging from 1 GeV/n to over 1,000 TeV/n. The research program consisted of exploring new principles and techniques in measuring very high energy cosmic nuclei with large-area emulsion chambers for high statistics experiments. These tasks have been accomplished and their use was essential in successful analysis of the balloon-borne emulsion chamber experiments up to 10(exp 14) eV. It also provided the fundamental technologies for designing large-area detectors that are aimed at measuring the composition at above 1015 eV region. The latter is now partially succeeded by a NASA Mission Concept, Advanced Cosmic Composition Experiments on the Space Station (ACCESS). The cosmic ray group at the University of Alabama in Huntsville has performed technological R & D as well as contributing to the Japanese-American-Emulsion-Chamber-Experiments (JACEE) Collaboration with the regular data analysis. While primary research support for other institutions' efforts in the JACEE experiments came from NSF and DOE, primary support for the University of Alabama in Huntsville was this contract. Supplemental tasks to standardize the data base and hardware upgrades (automatized microscope) had this institutions cooperation. Investigation of new techniques in this program consisted of development of a fast calorimetry, magnetic/scattering selection of high momentum tracks for a pairmeter, and high statistics momentum measurements for low energy nuclei (E < 1 TeV/n). The highest energy calorimetry and a pairmeter have been considered as strawman instruments by the GOAL (Galactic Origin and Acceleration Limit) proposal of the NASA Cosmic Ray Working Group for long- duration balloon flights. We accomplished the objectives of the GOAL program with three circumpolar, Antarctic JACEE balloon flights during 1992 - 1994.

  2. T dependence of nuclear spin-echo decay at low temperatures in YbRh2Si2

    Science.gov (United States)

    Kambe, S.; Sakai, H.; Tokunaga, Y.; Hattori, T.; Lapertot, G.; Matsuda, T. D.; Knebel, G.; Flouquet, J.; Walstedt, R. E.

    2017-05-01

    The authors report 29Si nuclear spin-echo oscillations and decay measurements on a single crystal of YbRh2Si2 . These quantities are found to be T independent from 300 K down to ˜20 K, showing, however, a strong T dependence below 20 K. These results indicate that electronic states near the Fermi level are modified at low temperatures. The observed spin-echo oscillations can be interpreted with the Ruderman-Kittel and pseudodipolar interactions between nearest-neighbor Si nuclei driven by conduction electron scattering at the Fermi surface. Possible modifications to the Fermi surface at low temperatures are discussed.

  3. Increased BOLD sensitivity in the orbitofrontal cortex using slice-dependent echo times at 3 T.

    Science.gov (United States)

    Domsch, Sebastian; Linke, Julia; Heiler, Patrick M; Kroll, Alexander; Flor, Herta; Wessa, Michèle; Schad, Lothar R

    2013-02-01

    Functional magnetic resonance imaging (fMRI) exploits the blood oxygenation level dependent (BOLD) effect to detect neuronal activation related to various experimental paradigms. Some of these, such as reversal learning, involve the orbitofrontal cortex and its interaction with other brain regions like the amygdala, striatum or dorsolateral prefrontal cortex. These paradigms are commonly investigated with event-related methods and gradient echo-planar imaging (EPI) with short echo time of 27 ms. However, susceptibility-induced signal losses and image distortions in the orbitofrontal cortex are still a problem for this optimized sequence as this brain region consists of several slices with different optimal echo times. An EPI sequence with slice-dependent echo times is suitable to maximize BOLD sensitivity in all slices and might thus improve signal detection in the orbitofrontal cortex. To test this hypothesis, we first optimized echo times via BOLD sensitivity simulation. Second, we measured 12 healthy volunteers using a standard EPI sequence with an echo time of 27 ms and a modified EPI sequence with echo times ranging from 22 ms to 47 ms. In the orbitofrontal cortex, the number of activated voxels increased from 87 ± 44 to 549 ± 83 and the maximal t-value increased from 4.4 ± 0.3 to 5.4 ± 0.3 when the modified EPI was used. We conclude that an EPI with slice-dependent echo times may be a valuable tool to mitigate susceptibility artifacts in event-related whole-brain fMRI studies with a focus on the orbitofrontal cortex.

  4. Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo.

    Directory of Open Access Journals (Sweden)

    David Milford

    Full Text Available T2 relaxometry has become an important tool in quantitative MRI. Little focus has been put on the effect of the refocusing flip angle upon the offset parameter, which was introduced to account for a signal floor due to noise or to long T2 components. The aim of this study was to show that B1 imperfections contribute significantly to the offset. We further introduce a simple method to reduce the systematic error in T2 by discarding the first echo and using the offset fitting approach.Signal curves of T2 relaxometry were simulated based on extended phase graph theory and evaluated for 4 different methods (inclusion and exclusion of the first echo, while fitting with and without the offset. We further performed T2 relaxometry in a phantom at 9.4T magnetic resonance imaging scanner and used the same methods for post-processing as in the extended phase graph simulated data. Single spin echo sequences were used to determine the correct T2 time.The simulation data showed that the systematic error in T2 and the offset depends on the refocusing pulse, the echo spacing and the echo train length. The systematic error could be reduced by discarding the first echo. Further reduction of the systematic T2 error was reached by using the offset as fitting parameter. The phantom experiments confirmed these findings.The fitted offset parameter in T2 relaxometry is influenced by imperfect refocusing pulses. Using the offset as a fitting parameter and discarding the first echo is a fast and easy method to minimize the error in T2, particularly for low to intermediate echo train length.

  5. Evidence for {open_quotes}magnetic rotation{close_quotes} in nuclei: New results on the M1-bands of {sup 198,199}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.M. [Lawrence Berkeley National Lab., CA (United States)

    1996-12-31

    Lifetimes of states in four of the M1-bands in {sup 198,199}Pb have been determined through a Doppler Shift Attenuation Method measurement performed using the Gammasphere array. The deduced B(M1) values, which are a sensitive probe of the underlying mechanism for generating these sequences, show remarkable agreement with Tilted Axis Cranking (TAC) calculations. Evidence is also presented for the possible termination of the bands. The results represent clear evidence for a new concept in nuclear excitations: {open_quote}magnetic rotation{close_quote}.

  6. Sparse adaptive filters for echo cancellation

    CERN Document Server

    Paleologu, Constantin

    2011-01-01

    Adaptive filters with a large number of coefficients are usually involved in both network and acoustic echo cancellation. Consequently, it is important to improve the convergence rate and tracking of the conventional algorithms used for these applications. This can be achieved by exploiting the sparseness character of the echo paths. Identification of sparse impulse responses was addressed mainly in the last decade with the development of the so-called ``proportionate''-type algorithms. The goal of this book is to present the most important sparse adaptive filters developed for echo cancellati

  7. MRI of intraosseous fistulous systems and sequesters in chronic osteomyelitis with standard spin echo sequences, highly selective chemical-shift imaging, diffusion weighted imaging, and magnetization-transfer; MRT-Darstellung intraossaerer Sequester und Fistelsysteme bei chronischer Osteomyelitis durch Standardsequenzen, hochselektive Chemical-Shift-Bildgebung, Diffusionsgewichtung und Magnetisierungstransfer

    Energy Technology Data Exchange (ETDEWEB)

    Bitzer, M.; Hartmann, J.; Geist-Barth, B.; Stern, W.; Seemann, M.; Pereira, P.; Claussen, C.D. [Abteilung fuer Radiologische Diagnostik, Klinikum der Eberhart-Karls-Universitaet Tuebingen (Germany); Schick, F. [Sektion fuer Experimentelle Radiologie, Klinikum der Eberhard-Karls-Universitaet Tuebingen (Germany); Krackhardt, T. [Berufsgenossenschaftliche Klinik, Tuebingen (Germany); Morgalla, M. [Chirurgische Klinik, Klinikum der Eberhard-Karls-Universitaet Tuebingen (Germany)

    2002-11-01

    Purpose: To study and test the impact of modern MRI techniques in diagnostic imaging in the evaluation of intra-osseous fistulous systems and sequesters. Materials and Methods: In a prospective study, nine patients with chronic osteomyelitis of the legs were examined by MRI. Patients with clinical signs of osteomyelitis requiring surgery were included in the study. T1-weighted spin echo (SE) sequences, proton density (PD) and T2-weighted fast spin echo (FSE) sequences, water- and fat-selective FSE sequences, and diffusion weighted (DW) PSIF sequences were used preoperatively. Furthermore, magnetizing transfer (MT) with gradient echo (GRE) sequences was evaluated. Results: Water selective sequences revealed the highest sensitivity for the detection of fistulas (100%), providing the best delineation of the extent of the entire fistulous systems. Fat-selective sequences (sensitivity 55.6%) and T1-weighted sequences (sensitivity 77.8%) displayed fistulas as hypointense bands, which, however, cannot be well differentiated from cortical bone in the transcortical areas. PD and T2-weighted images were found to have a poor sensitivity (55.6% and 66.7%) for fistulas in any location. The sensitivity of water-selective sequences to demonstrate intraosseous sequesters was 100%. The sensitivity was low for the other sequences. In 4 of 5 patients with surgically proven infection, DW and MT revealed an abnormal spatial distribution, with high diffusion in the central parts of the fistulas and high MT effect peripherally surrounding a weak MT effect centrally. (orig.) [German] Zielsetzung: Die vorliegende Arbeit soll die Moeglichkeiten des Einsatzes spezieller Sequenztechniken der MRT bei der Diagnostik von intraossaeren Fisteln und Sequestern pruefen und beschreiben. Material und Methode: In einer prospektiven Studie wurden 9 Patienten mit chronischen Osteomyelitiden der unteren Extremitaeten kernspintomographisch untersucht. Die MRT-Befunde wurden qualitativ anhand der Operations

  8. Measurement of gravitation-induced quantum interference for neutrons in a spin-echo spectrometer

    NARCIS (Netherlands)

    De Haan, V.O.; Plomp, J.; Van Well, A.A.; Rekveldt, M.T.; Hasegawa, Y.H.; Dalgliesh, R.M.; Steinke, N.J.

    2014-01-01

    With a neutron spin-echo reflectometer (OffSpec at ISIS, UK) it is possible to measure the gravitation-induced quantum phase difference between the two spin states of the neutron wave function in a magnetic field. In the small-angle approximation, this phase depends linearly on the inclination angle

  9. Scattering Of Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  10. EChO - Exoplanet Characterisation Observatory

    CERN Document Server

    Tinetti, G; Henning, T; Meyer, M; Micela, G; Ribas, I; Stam, D; Swain, M; Krause, O; Ollivier, M; Pace, E; Swinyard, B; Aylward, A; van Boekel, R; Coradini, A; Encrenaz, T; Snellen, I; Zapatero-Osorio, M R; Bouwman, J; Cho, J Y-K; Foresto, V Coudé du; Guillot, T; Lopez-Morales, M; Mueller-Wodarg, I; Palle, E; Selsis, F; Sozzetti, A; Ade, P A R; Achilleos, N; Adriani, A; Agnor, C B; Afonso, C; Prieto, C Allende; Bakos, G; Barber, R J; Barlow, M; Bernath, P; Bezard, B; Bordé, P; Brown, L R; Cassan, A; Cavarroc, C; Ciaravella, A; Cockell, C O U; Coustenis, A; Danielski, C; Decin, L; De Kok, R; Demangeon, O; Deroo, P; Doel, P; Drossart, P; Fletcher, L N; Focardi, M; Forget, F; Fossey, S; Fouqué, P; Frith, J; Galand, M; Gaulme, P; Hernández, J I González; Grasset, O; Grassi, D; Grenfell, J L; Griffin, M J; Griffith, C A; Grözinger, U; Guedel, M; Guio, P; Hainaut, O; Hargreaves, R; Hauschildt, P H; Heng, K; Heyrovsky, D; Hueso, R; Irwin, P; Kaltenegger, L; Kervella, P; Kipping, D; Koskinen, T T; Kovács, G; La Barbera, A; Lammer, H; Lellouch, E; Leto, G; Morales, M Lopez; Valverde, M A Lopez; Lopez-Puertas, M; Lovis, C; Maggio, A; Maillard, J P; Prado, J Maldonado; Marquette, J B; Martin-Torres, F J; Maxted, P; Miller, S; Molinari, S; Montes, D; Moro-Martin, A; Moses, J I; Mousis, O; Tuong, N Nguyen; Nelson, R; Orton, G S; Pantin, E; Pascale, E; Pezzuto, S; Pinfield, D; Poretti, E; Prinja, R; Prisinzano, L; Rees, J M; Reiners, A; Samuel, B; Sanchez-Lavega, A; Forcada, J Sanz; Sasselov, D; Savini, G; Sicardy, B; Smith, A; Stixrude, L; Strazzulla, G; Tennyson, J; Tessenyi, M; Vasisht, G; Vinatier, S; Viti, S; Waldmann, I; White, G J; Widemann, T; Wordsworth, R; Yelle, R; Yung, Y; Yurchenko, S N

    2011-01-01

    A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO -the Exoplanet Characterisation Observatory- is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. EChO will build on observations by Hubble, Spitzer and groundbased telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. EChO will simultaneously observe a broad enough spectral region -from the visible to the mid-IR- to constrain from one single spectrum the temperature structure of the atmosphere and the abundances of the major molecular species. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules to retrieve the composition and temperature str...

  11. Air Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Air Act (CAA).

  12. Echo State Condition at the Critical Point

    Directory of Open Access Journals (Sweden)

    Norbert Michael Mayer

    2016-12-01

    Full Text Available Recurrent networks with transfer functions that fulfil the Lipschitz continuity with K = 1 may be echo state networks if certain limitations on the recurrent connectivity are applied. It has been shown that it is sufficient if the largest singular value of the recurrent connectivity is smaller than 1. The main achievement of this paper is a proof under which conditions the network is an echo state network even if the largest singular value is one. It turns out that in this critical case the exact shape of the transfer function plays a decisive role in determining whether the network still fulfills the echo state condition. In addition, several examples with one-neuron networks are outlined to illustrate effects of critical connectivity. Moreover, within the manuscript a mathematical definition for a critical echo state network is suggested.

  13. Time Delay Estimation Algoritms for Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Kirill Sakhnov

    2011-01-01

    Full Text Available The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper.

  14. Hazardous Waste Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Resource Conservation and Recovery Act (RCRA).

  15. Enforcement and Compliance History Online (ECHO) Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide. Its features range from simple to advanced,...

  16. Water Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Water Act (CWA).

  17. Air Pollutant Report | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Air Pollutant Report Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. Drinking Water Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. Analyze Trends: State Hazardous Waste Dashboard | ECHO ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Analyze Trends: Pesticide Dashboard | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. Water Pollution Search | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. Criminal Enforcement Case Report Data Dictionary | ECHO ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. The Rhythms of Echo. Variations on Repetition

    Directory of Open Access Journals (Sweden)

    Rosa María Aradra Sánchez

    2015-04-01

    Full Text Available This paper presents a study on the echo as metric and rhetorical procedure. It makes a brief tour through some of the poetic manifestations of echo in the Spanish literary tradition, and a brief tour through the attention that metric theory has paid to this phenomenon. Then it stops at the possibilities that rhetoric offers for its analysis from the generic approach of the discursive repetition phenomena.

  5. Anharmonic vibrations in nuclei

    CERN Document Server

    Fallot, M; Andrés, M V; Catara, F; Lanza, E G; Scarpaci, J A; Chomaz, Ph.

    2003-01-01

    In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.

  6. The shapes of nuclei

    CERN Document Server

    Bertsch, G F

    2016-01-01

    Gerry Brown initiated some early studies on the coexistence of different nuclear shapes. The subject has continued to be of interest and is crucial for understanding nuclear fission. We now have a very good picture of the potential energy surface with respect to shape degrees of freedom in heavy nuclei, but the dynamics remain problematic. In contrast, the early studies on light nuclei were quite successful in describing the mixing between shapes. Perhaps a new approach in the spirit of the old calculations could better elucidate the character of the fission dynamics and explain phenomena that current theory does not model well.

  7. X-ray echo spectroscopy (Conference Presentation)

    Science.gov (United States)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  8. On the Search for Quasar Light Echoes

    CERN Document Server

    Visbal, Eli

    2007-01-01

    The UV radiation from a quasar leaves a characteristic pattern in the distribution of ionized hydrogen throughout the surrounding space. This pattern or light echo propagates through the intergalactic medium at the speed of light, and can be observed by its imprint on the Ly-alpha forest spectra of background sources. As the echo persists after the quasar has switched off, it offers the possibility of searching for dead quasars, and constraining their luminosities and lifetimes. We outline a technique to search for and characterize these light echoes. To test the method, we create artificial Ly-alpha forest spectra from cosmological simulations at z=3, apply light echoes and search for them. We show how the simulations can also be used to quantify the significance level of any detection. We find that light echoes from the brightest quasars could be found in observational data. With absorption line spectra of 100 redshift z~3-3.5 quasars or galaxies in a 1 square degree area, we expect that ~10 echoes from qua...

  9. Optimized, Unequal Pulse Spacing in Multiple Echo Sequences Improves Refocusing

    CERN Document Server

    Jenista, Elizabeth; Branca, Rosa; Warren, Warren

    2009-01-01

    A recent quantum computing paper (G. S. Uhrig, Phys Rev Lett 98 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two level system coupled to a bath. The spacings in what has been called a UDD sequence differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different timescales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T2-weighted contrast than do CPMG sequences with the same number of pulses an...

  10. Modification of meson properties in the vicinty of nuclei

    Directory of Open Access Journals (Sweden)

    Filip Peter

    2014-01-01

    Full Text Available We suggest that modification of meson properties (lifetimes and branching ratios can occur due to the interaction of constituent quark magnetic moments with strong magnetic fields present in the close vicinity of nuclei. A superposition of (J =0 and (J =1, mz =0 particle-antiparticle quantum states (as observed for ortho-Positronium may occur also in the case of quarkonium states J/Ψ, ηc ϒ, ηb in heavy ion collisions. We speculate on possible modification of η(548 meson properties (related to C parity and CP violation in strong magnetic fields which are present in the vicinity of nuclei.

  11. 90°-Flip-angle three-dimensional double-echo steady-state (3D-DESS) magnetic resonance imaging of the knee: Isovoxel cartilage imaging at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Susumu, E-mail: smoyari@yahoo.co.jp [Ishikawa Clinic, 46-1 Shimokamo-Umenoki-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-0851 (Japan); Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80, Kodatsuno, Kanazawa 920-0942 (Japan); Miki, Yukio, E-mail: yukio.miki@med.osaka-cu.ac.jp [Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Kanagaki, Mitsunori, E-mail: mitsuk@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507 (Japan); Matsuno, Yukako, E-mail: ynoma2000jp@yahoo.co.jp [Oike Clinic, 11 Nishinokyo-Shimoai-cho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8436 (Japan); Miyati, Tosiaki, E-mail: ramiyati@mhs.mp.kanazawa-u.ac.jp [Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80, Kodatsuno, Kanazawa 920-0942 (Japan)

    2014-08-15

    Purpose: The purpose of this study was to investigate whether 3D-double echo steady state (3D-DESS) with improved contrast by setting the FA (Flip angle) at 90° is useful in 3D isotropic cartilage imaging of the knee at 3 T. Materials and methods: Imaging was performed in 10 healthy volunteers using 3 methods: with 3D-DESS using FA of 25° and 90°, and with true fast imaging with steady-state precession (True-FISP). The signal-to-noise ratio (SNR) of the synovial fluid and cartilage, and contrast-to-noise ratio (CNR) were measured, and mean values were compared. Visual assessment of artifacts was performed with the cartilage divided into 6 regions. Results: There were no significant differences in synovial fluid SNR in the comparison between FA-90° 3D-DESS and True-FISP (P = 0.364). A significantly higher cartilage SNR was observed with FA-90° 3D-DESS than with True-FISP (P = 0.031). There were no significant differences in synovial fluid-cartilage CNR between FA-90° 3D-DESS and True-FISP (P = 0.892). In the evaluation of artifacts, FA-90° 3D-DESS imaging showed a significantly higher score than True-FISP imaging in the patella and trochlea cartilage (P < 0.001, P < 0.002). Conclusions: FA-90° 3D-DESS is useful in 3D isotropic cartilage imaging of the knee at 3 T.

  12. Echoes from a Dying Star

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    When a passing star is torn apart by a supermassive black hole, it emits a flare of X-ray, ultraviolet, and optical light. What can we learn from the infrared echo of a violent disruption like this one?Stellar DestructionOptical (black triangles) and infrared (blue circles and red squares) observations of F010042237. Day 0 marks the day the optical emission peaked. The infrared emission rises steadily through the end of the data. [Dou et al. 2017]Tidal disruption events occur when a star passes within the tidal radius of a supermassive black hole. After tidal forces pull the star apart, much of the stellar matter falls onto the black hole, radiating briefly in X-ray, ultraviolet and optical as it accretes. This signature rise and gradual fall of emission has allowed us to detect dozens of tidal disruption events thus far.One of the recently discovered candidate events is a little puzzling. Not only does the candidate in ultraluminous infrared galaxy F010042237 have an unusual host most disruptions occur in galaxies that are no longer star-forming, in contrast to this one but its optical light curve also shows an unusually long decay time.Now mid-infrared observations of this event have beenpresented by a team of scientists led by Liming Dou (Guangzhou University and Department of Education, Guangdong Province, China), revealing why this disruption is behaving unusually.Schematic of a convex dusty ring (red bows) that absorbs UV photons and re-emits in the infrared. It simultaneously scatters UV and optical photons into our line of sight. The dashed lines illustrate the delays at lags of 60 days, 1, 2, 3, 4, and 5 years. [Adapted from Dou et al. 2017]A Dusty Solution?The optical flare from F010042237s nucleus peaked in 2010, so Dou and collaborators obtained archival mid-infrared data from the WISE and NEOWISE missions from 2010 to 2016. The data show that the galaxy is quiescent in mid-infrared in 2010 but in data from three years later, the infrared emission has

  13. Elusive active galactic nuclei

    NARCIS (Netherlands)

    Maiolino, R; Comastri, A; Gilli, R; Nagar, NM; Bianchi, S; Boker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M

    2003-01-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically 'elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtai

  14. A new spin-oriented nuclei facility: POLAREX

    Directory of Open Access Journals (Sweden)

    Etilé A.

    2014-03-01

    Full Text Available Using the On-Line Nuclear Orientation method, POLAREX (POLARization of EXotic nuclei is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows to measure nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at Accélérateur Linéaire auprés du Tandem d’Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program.

  15. High-field QCPMG NMR of strontium nuclei in natural minerals.

    Science.gov (United States)

    Bowers, Geoffrey M; Lipton, Andrew S; Mueller, Karl T

    2006-02-01

    The only stable NMR-active isotope of strontium, (87)Sr, is a spin-9/2 quadrupolar nucleus that has a low gyromagnetic ratio, a low natural abundance, and a large nuclear electric quadrupole moment. In this work, we utilize the quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) pulse sequence and a 21.14 T NMR spectrometer at the Pacific Northwest National Laboratory to characterize the strontium sites in the natural minerals strontianite (SrCO(3)) and celestine (SrSO(4)). QCPMG at 21.14 T was found to provide sensitivity enhancements of roughly two orders of magnitude over Hahn-echo experiments at an 11.74 T magnetic field. We extracted the quadrupolar parameters for the strontium nuclei through iterative simulations of the experimental spectra with the SIMPSON program by Bak, Rasmussen, and Nielsen. The data show that the quadrupolar parameters of (87)Sr appear to be highly sensitive to the symmetry of the strontium coordination environment and can thus provide information about the strontium binding environment in complex systems.

  16. Comparison of dB/dt between EPI and spin-echo pulse sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Akio [Kyoto City Hospital (Japan); Hongoh, Takaharu; Inoue, Hiroshi; Yamazaki, Masaru; Higashida, Mitsuharu

    2001-04-01

    In MR imaging, the time-varying magnetic field associated with gradients induces electric fields in the human body and may stimulate nerves and even the heart. The time rate of change in gradient magnetic fields on echo planar imaging (EPI) needs to exceed 20 mT/ms. EPI has recently become more widely used in the clinical field, and the protection of patient safety during MR scans has become an issue. However dB/dt as an index of the time-varying magnetic field is not displayed on the operating monitor. Therefore dB/dt of various scan techniques was measured using a search coil and storage oscilloscope, according to the IEC standard method. The results demonstrated that dB/dt of EPI, spin-echo, and field-echo techniques are much the same. Thus, the possibility of a risk to health resulting from EPI scanning is the same as that for other scanning techniques that use a high-performance MRI system. Therefore, even with spin-echo scanning, it is necessary to consider biological change in patients. (author)

  17. Three-dimensional-fast imaging employing steady-state acquisition and T2-weighted fast spin-echo magnetic resonance sequences on visualization of cranial nerves Ⅲ-Ⅻ

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Because of the small diameter and complex anatomic course of the cranial nerves except for the optic nerve,mgeminal nerve,facial nerve,and cochlear and vestibular nerve,other cranial nerves are difficult to be visualized in magnetic resonance imaging (MRI) scanning with conventional thickness (5-10 mm).

  18. Shape Deformations in Atomic Nuclei

    CERN Document Server

    Hamamoto, Ikuko

    2011-01-01

    The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.

  19. Echo planar diffusion-weighted imaging: possibilities and considerations with 12- and 32-channel head coils.

    Science.gov (United States)

    Morelli, John N; Saettele, Megan R; Rangaswamy, Rajesh A; Vu, Lan; Gerdes, Clint M; Zhang, Wei; Ai, Fei

    2012-01-01

    Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss) and an approach to readout-segmented (rs) echo planar imaging (EPI) are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  20. Echo Planar Diffusion-Weighted Imaging: Possibilities and Considerations with 12- and 32-Channel Head Coils

    Directory of Open Access Journals (Sweden)

    John N Morelli

    2012-01-01

    Full Text Available Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss and an approach to readout-segmented (rs echo planar imaging (EPI are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  1. Ultra High Energy Nuclei Propagation

    CERN Document Server

    Aloisio, Roberto

    2008-01-01

    We discuss the problem of ultra high energy nuclei propagation in astrophysical backgrounds. We present a new analytical computation scheme based on the hypothesis of continuos energy losses in a kinetic formulation of the particles propagation. This scheme enables the computation of the fluxes of ultra high energy nuclei as well as the fluxes of secondaries (nuclei and nucleons) produced by the process of photo-disintegration suffered by nuclei.

  2. On the factors controlling occurrence of F-region coherent echoes

    Directory of Open Access Journals (Sweden)

    D. W. Danskin

    Full Text Available Several factors are known to control the HF echo occurrence rate, including electron density distribution in the ionosphere (affecting the propagation path of the radar wave, D-region radio wave absorption, and ionospheric irregularity intensity. In this study, we consider 4 days of CUTLASS Finland radar observations over an area where the EISCAT incoherent scatter radar has continuously monitored ionospheric parameters. We illustrate that for the event under consideration, the D-region absorption was not the major factor affecting the echo appearance. We show that the electron density distribution and the radar frequency selection were much more significant factors. The electron density magnitude affects the echo occurrence in two different ways. For small F-region densities, a minimum value of 1 × 1011 m-3 is required to have sufficient radio wave refraction so that the orthogonality (with the magnetic field lines condition is met. For too large densities, radio wave strong "over-refraction" leads to the ionospheric echo disappearance. We estimate that the over-refraction is important for densities greater than 4 × 1011 m-3. We also investigated the backscatter power and the electric field magnitude relationship and found no obvious relationship contrary to the expectation that the gradient-drift plasma instability would lead to stronger irregularity intensity/echo power for larger electric fields.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; auroral ionosphere

  3. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  4. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  5. Fat/water separation in single acquisition steady-state free precession using multiple echo radial trajectories.

    Science.gov (United States)

    Lu, Aiming; Grist, Thomas M; Block, Walter F

    2005-11-01

    Phase detection in fully refocused SSFP imaging has recently allowed fat/water separation without preparing the magnetization or using multiple acquisitions. Instead, it exploits the phase difference between fat and water at an echo time at the midpoint of the TR. To minimize the TR for improved robustness to B0 inhomogeneity, a 3D projection acquisition collecting two half echoes at the beginning and end of each excitation was previously implemented. Since echoes are not formed at the midpoint of the TR, this method still requires two passes of k-space for fat/water separation. A new method is presented to linearly combine the half echoes to separate fat and water in a single acquisition. Separation using phase detection provides superior contrast between fat and water voxels. Results from high resolution angiography and musculoskeletal studies with improved robustness to inhomogeneity and a 50% scan time reduction compared to the two pass method are presented.

  6. Symmetries in Nuclei

    CERN Document Server

    Van Isacker, P

    2010-01-01

    The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.

  7. On Quasibound N* Nuclei

    CERN Document Server

    Kelkar, N G; Moskal, P

    2015-01-01

    The possibility for the existence of unstable bound states of the S11 nucleon resonance N$^*$(1535) and nuclei is investigated. These quasibound states are speculated to be closely related to the existence of the quasibound states of the eta mesons and nuclei. Within a simple model for the N N$^*$ interaction involving a pion and eta meson exchange, N$^*$-nucleus potentials for N*-$^3$He and N*-$^{24}$Mg are evaluated and found to be of a Woods-Saxon like form which supports two to three bound states. In case of N*-$^3$He, one state bound by only a few keV and another by 4 MeV is found. The results are however quite sensitive to the N N$^*$ $\\pi$ and N N$^*$ $\\eta$ vertex parameters. A rough estimate of the width of these states, based on the mean free path of the exchanged mesons in the nuclei leads to very broad states with $\\Gamma \\sim$ 80 and 110 MeV for N*-$^3$He and N*-$^{24}$Mg respectively.

  8. Transient Loschmidt echo in quenched Ising chains

    Science.gov (United States)

    Lupo, Carla; Schiró, Marco

    2016-07-01

    We study the response to sudden local perturbations of highly excited quantum Ising spin chains. The key quantity encoding this response is the overlap between time-dependent wave functions, which we write as a transient Loschmidt Echo. Its asymptotics at long time differences contain crucial information about the structure of the highly excited nonequilibrium environment induced by the quench. We compute the echo perturbatively for a weak local quench but for arbitrarily large global quench, using a cumulant expansion. Our perturbative results suggest that the echo decays exponentially, rather than power law as in the low-energy orthogonality catastrophe, a further example of quench-induced decoherence already found in the case of quenched Luttinger liquids. The emerging decoherence scale is set by the strength of the local potential and the bulk excitation energy.

  9. Multi-Echo-Based Echo-Planar Spectroscopic Imaging Using a 3T MRI Scanner

    Directory of Open Access Journals (Sweden)

    Jon K. Furuyama

    2011-10-01

    Full Text Available The use of spin-echoes has been employed in an Echo-Planar Spectroscopic Imaging (EPSI sequence to collect multiple phase encoded lines within a single TR in a Multi-Echo-based Echo-Planar Spectroscopic Imaging technique (MEEPSI. Despite the T2 dependence on the amplitude of the spin-echoes, the Full Width at Half Maximum (FWHM of the derived multi-echo Point Spread Function (PSF is shown to decrease, indicating an improved overall spatial resolution without requiring any additional scan time. The improved spatial resolution is demonstrated in the one-dimensional (1D spatial profiles of the N-Acetyl Aspartate (NAA singlet along the phase encode dimension in a gray matter phantom. Although the improved spatial resolution comes at the expense of spectral resolution, it is shown in vivo that peak broadening due to T2* decay is more significant than the loss of resolution from using spin-echoes and therefore does not affect the ability to quantify metabolites using the LCModel fitting algorithm.

  10. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    Full Text Available Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders. In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.

  11. Evolution of entanglement under echo dynamics

    Science.gov (United States)

    Prosen, Tomaž; Seligman, Thomas H.; Žnidarič, Marko

    2003-04-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.

  12. Anomalous echoes observed with the EISCAT UHF radar at 100-km altitude

    Directory of Open Access Journals (Sweden)

    E. Malnes

    Full Text Available We have observed a number of strong echoes with the European incoherent-scatter (EISCAT UHF (930-MHz radar at angles 83.5° and 78.6° with the geomagnetic field and at about 100-km altitude north in the auroral zone. The echoes are short-lived and occur in single 2- or 10-s data dumps. They are offset by 125–130 kHz with respect to the transmitted frequency. In most cases the offset compares well with the frequency of gyro lines in the incoherent-scatter spectrum, as given by the standard linear dispersion relation. But sometimes the measured offsets deviate significantly from the model calculations, and the interpretation in terms of gyro lines becomes questionable. The discrepancy could possibly be explained by local deviations in the magnetic field from the model (IGRF 1987, which are generated by incoming particle beams. A more serious problem with the gyro-line theory is how the line can be excited at altitudes where the collisional damping is substantial. The high intensity and short lifetime of the signal point to a fast-growing plasma instability as the likely excitation mechanism, if the gyro-line interpretation is correct. The cause of the instability could be the same particle beams as those causing the disturbances in the magnetic field. Alternatively, the observations may be interpreted as meteor head echoes. The large Doppler shifts, the short lifetimes and the altitudes of the signals support this explanation. The main difficulty is that the distribution of measured offsets appears to be different in magnetically active conditions and in less active conditions. Also, the occurrence of echoes does not seem to follow the expected changes in meteor density. More observations in different conditions are needed to decide between the two interpretations. As it is, we are inclined to believe in the meteor head echo theory, the objections to the gyro-line theory being more fundamental.

  13. Electric dipole moments of neutron-odd nuclei

    Science.gov (United States)

    Fujita, Takehisa; Oshima, Sachiko

    2012-09-01

    We systematically calculate the electric dipole moments (EDMs) of neutron-odd nuclei with even protons in a phenomenological shell model picture. We first derive the relation between the EDM and the magnetic moment operators by making use of the core polarization scheme. This relation enables us to calculate the EDM of neutron-odd nuclei using the experimental values of the magnetic moments. From the calculations, one may find the best atomic system suitable for future EDM experiments where the estimations are made for doubly ionized atoms.

  14. Skyrmions and Nuclei

    Science.gov (United States)

    Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.

    We review recent work on the modelling of atomic nuclei as quantised Skyrmions, using Skyrme's original model with pion fields only. Skyrmions are topological soliton solutions, whose conserved topological charge B is identified with the baryon number of a nucleus. Apart from an energy and length scale, the Skyrme model has just one dimensionless parameter m, proportional to the pion mass. It has been found that a good fit to experimental nuclear data requires m to be of order 1. The Skyrmions for B up to 7 have been known for some time, and are qualitatively insensitive to whether m is zero or of order 1. However, for baryon numbers B = 8 and above, the Skyrmions have quite a compact structure for m of order 1, rather than the hollow polyhedral structure found when m = 0. One finds for baryon numbers which are multiples of four, that the Skyrmions are composed of B = 4 sub-units, as in the α-particle model of nuclei. The rational map ansatz gives a useful approximation to the Skyrmion solutions for all baryon numbers when m = 0. For m of order 1, it gives a good approximation for baryon numbers up to 7, and generalisations of this ansatz are helpful for higher baryon numbers. We briefly review the work from the 1980s and 90s on the semiclassical rigidbody quantisation of Skyrmions for B = 1, 2, 3 and 4. We then discuss more recent work extending this method to B = 6, 7, 8, 10 and 12. We determine the quantum states of the Skyrmions, finding their spins, isospins and parities, and compare with the experimental data on the ground and excited states of nuclei up to mass number 12.

  15. Asymmetric radar echo patterns from insects

    Science.gov (United States)

    Radar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to diffe...

  16. Picosecond Photon Echoes Detected by Optical Mixing

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1978-01-01

    Picosecond photon echoes are shown to be easily detected by optical mixing. The synchronized picosecond excitation and probe pulses are generated by amplifying pulses from two dye lasers, synchronously pumped by a mode-locked argon-ion laser. The technique is used to study optical dephasing in the o

  17. Pesticide Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).

  18. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  19. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  20. Visibility of comet nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ney, E.P.

    1982-01-22

    Photography of the nucleus of comet Halley is the goal of several planned space missions. The nucleus of a comet is surrounded by a cloud of dust particles. If this cloud is optically thick, it will prevent observation of the nuclear surface. Broadband photometry of nine comets has been analyzed to determine the visibility of their nuclei. Only in the case of comet West near perihelion was the dust dense enough to interfere with imaging. Comparison of the visual brightness of the well-observed comets with that of Halley in 1910 leads to the conclusion that the nucleus of Halley can be imaged without significant obscuration by the dust.

  1. Echo voltage reflected by turtle on various angles

    OpenAIRE

    Sunardi Sunardi; Anton Yudhana; Azrul Mahfurdz; Sharipah Salwa Mohamed

    2015-01-01

    This research proposes the acoustic measurement by using echo sounder for green turtle detection of 1 year, 12 and 18 years. Various positions or angles of turtles are head, tail, shell, lung, left and right side. MATLAB software and echo sounder are used to analyse the frequency and the response of the turtle as echo voltage and target strength parameter. Based on the experiment and analysis have been conducted, the bigger size of the turtle, the higher echo voltage and target strength. The ...

  2. Preliminary Results of the Echo-Seeding Experiment ECHO-7 at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D.; Colby, E.; Ding, Y.; Dunning, M.; Frederico, J.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; /SLAC; Corlett, J.; Qiang, J.; Penn, G.; Prestemon, S.; /LBL, Berkeley /LPHE, Lausanne

    2010-06-15

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which are the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.

  3. Cytometric measurement of cell proliferation in echo-guided biopsies from focal lesions of the liver.

    Science.gov (United States)

    Faccioli, S; Chieco, P; Gramantieri, L; Stecca, B A; Bolondi, L

    1996-02-01

    Increased proliferative activity determined in surgical specimens of hepatocellular carcinoma (HCC) has been associated with tumor grade and patient survival. The measurement of cell proliferation in echo-guided biopsies of small focal liver lesions might provide useful information for the early recognition of malignancy and for predicting the aggressiveness of small HCCs. We assessed the diagnostic and prognostic value of cell proliferation in 91 echo-guided needle biopsies of focal liver lesions using the monoclonal antibody Ki-67, which detects a human nuclear antigen that is present in proliferating cells. Measurements were performed by image cytometry as the percentage of Ki-67 positive hepatocytes nuclei over total hepatocyte nuclei in the biopsy. At the histological examination, 27 lesions were diagnosed as chronic hepatitis, 10 as cirrhosis, 11 as macroregenerative nodule, and 43 as HCC in cirrhotic liver. Although the highest Ki-67 values (> 20%) were found in less-differentiated HCCs, most well-differentiated HCCs and nine borderline nodules were completely devoid of Ki-67-positive hepatocytes. A sustained Ki-67 labeling (up to 16%) was found in hepatitis and cirrhosis, similar to that found in several malignant tumors. In the HCC subset, Ki-67 labeling was strongly correlated to the Edmondson-Steiner histological grade. However, survival analysis did not indicate a better outcome for those patients with low-proliferating tumors.

  4. Ultrasonic echo signal fetures of dissimilar material bonding joints

    Institute of Scientific and Technical Information of China (English)

    GANG Tie(刚铁); Yasuo TAKAHASHI

    2004-01-01

    An ultrasonic evaluation method of echo feature of diffusion bond joint between two dissimilar materials is presented. The echo signal was acquired by an automatic ultrasonic C-scan test system. It is found that the intensity of echo and its phase can be used to evaluate the joint quality, and interface products of dissimilar materials bonding can be evaluated by ultrasonic method.

  5. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  6. Segmental dynamics of polyethylene-alt-propylene studied by NMR spin echo techniques

    Science.gov (United States)

    Lozovoi, A.; Mattea, C.; Hofmann, M.; Saalwaechter, K.; Fatkullin, N.; Stapf, S.

    2017-06-01

    Segmental dynamics of a highly entangled melt of linear polyethylene-alt-propylene with a molecular weight of 200 kDa was studied with a novel proton nuclear magnetic resonance (NMR) approach based upon 1H → 2H isotope dilution as applied to a solid-echo build-up function ISE(t), which is constructed from the NMR spin echo signals arising from the Hahn echo (HE) and two variations of the solid-echo pulse sequence. The isotope dilution enables the separation of inter- and intramolecular contributions to this function and allows one to extract the segmental mean-squared displacements in the millisecond time range, which is hardly accessible by other experimental methods. The proposed technique in combination with time-temperature superposition yields information about segmental translation in polyethylene-alt-propylene over 6 decades in time from 10-6 s up to 1 s. The time dependence of the mean-squared displacement obtained in this time range clearly shows three regimes of power law with exponents, which are in good agreement with the tube-reptation model predictions for the Rouse model, incoherent reptation and coherent reptation regimes. The results at short times coincide with the fast-field cycling relaxometry and neutron spin echo data, yet, significantly extending the probed time range. Furthermore, the obtained data are verified as well by the use of the dipolar-correlation effect on the Hahn echo, which was developed before by the co-authors. At the same time, the amplitude ratio of the intermolecular part of the proton dynamic dipole-dipole correlation function over the intramolecular part obtained from the experimental data is not in agreement with the predictions of the tube-reptation model for the regimes of incoherent and coherent reptation.

  7. Elusive Active Galactic Nuclei

    CERN Document Server

    Maiolino, R; Gilli, R; Nagar, N M; Bianchi, S; Böker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M

    2003-01-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically "elusive". X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive AGN in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 10^24 cm^-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN, the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical Narrow Line Region. Elusive AGN may contribute significantly to the 30 keV bump of the X-ray background.

  8. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    Toshimi Suda

    2014-11-01

    A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.

  9. Diffusion-Weighted Imaging with Dual-Echo Echo-Planar Imaging for Better Sensitivity to Acute Stroke

    Science.gov (United States)

    Holdsworth, S.J.; Yeom, K.W.; Antonucci, M.U.; Andre, J.B.; Rosenberg, J.; Aksoy, M.; Straka, M.; Fischbein, N.J.; Bammer, R.; Moseley, M.E.; Zaharchuk, G.; Skare, S.

    2015-01-01

    BACKGROUND AND PURPOSE Parallel imaging facilitates the acquisition of echo-planar images with a reduced TE, enabling the incorporation of an additional image at a later TE. Here we investigated the use of a parallel imaging–enhanced dual-echo EPI sequence to improve lesion conspicuity in diffusion-weighted imaging. MATERIALS AND METHODS Parallel imaging–enhanced dual-echo DWI data were acquired in 50 consecutive patients suspected of stroke at 1.5T. The dual-echo acquisition included 2 EPI for 1 diffusion-preparation period (echo 1 [TE = 48 ms] and echo 2 [TE = 105 ms]). Three neuroradiologists independently reviewed the 2 echoes by using the routine DWI of our institution as a reference. Images were graded on lesion conspicuity, diagnostic confidence, and image quality. The apparent diffusion coefficient map from echo 1 was used to validate the presence of acute infarction. Relaxivity maps calculated from the 2 echoes were evaluated for potential complementary information. RESULTS Echo 1 and 2 DWIs were rated as better than the reference DWI. While echo 1 had better image quality overall, echo 2 was unanimously favored over both echo 1 and the reference DWI for its high sensitivity in detecting acute infarcts. CONCLUSIONS Parallel imaging–enhanced dual-echo diffusion-weighted EPI is a useful method for evaluating lesions with reduced diffusivity. The long TE of echo 2 produced DWIs that exhibited superior lesion conspicuity compared with images acquired at a shorter TE. Echo 1 provided higher SNR ADC maps for specificity to acute infarction. The relaxivity maps may serve to complement information regarding blood products and mineralization. PMID:24763417

  10. Diagnostic accuracy of dual-echo (in- and opposed-phase) T1-weighted gradient recalled echo for detection and grading of hepatic iron using quantitative and visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Ramanathan, Subramaniyan; Ryan, John; Khanna, Maneesh; Virmani, Vivek; Avruch, Leonard [The University of Ottawa, The Ottawa Hospital, Ottawa, Ontario (Canada)

    2014-07-15

    Detection and quantification of hepatic iron with dual-echo gradient recalled echo (GRE) has been proposed as a rapid alternative to other magnetic resonance imaging (MRI) techniques. Co-existing steatosis and T1 weighting are limitations. This study assesses the accuracy of routine dual-echo GRE. Between 2010 and 2013, 109 consecutive patients underwent multi-echo (ME) MRI and dual-echo GRE for quantification of hepatic iron. Liver iron concentration (LIC) was calculated from ME-MRI. Relative signal intensity (RSI) and fat signal fraction (FSF) were calculated from dual-echo GRE. Four radiologists subjectively evaluated dual-echo GRE (±subtraction). Diagnostic accuracy was compared between techniques and correlated with biopsy using Fisher's exact test, Spearman correlation and regression. The sensitivity of visual detection of iron ranged from 48 to 55 %. Subtraction did not increase sensitivity (p < 0.001). Inter-observer variability was substantial (κ = 0.72). The specificity of visual detection of iron approached 100 % with false-positive diagnoses observed using subtraction. LIC showed a higher correlation with histopathological iron grade (r = 0.94, p < 0.001) compared with RSI (r = 0.65, p = 0.02). Univariate regression showed an association between RSI and LIC (B = 0.98, p < 0.001, CI 0.73-1.23); however, the association was not significant with multi-variate regression including FSF (p = 0.28). Dual-echo GRE has low sensitivity for hepatic iron. Subtraction imaging can result in false-positive diagnoses. (orig.)

  11. Comparison of Quantitative Assessment of BLADE and Isotropic Three-Dimensional Fast Spin Echo Cube (3D T2 SPACE Sequences with Conventional Protocols of wrist Joint at 3 Tesla Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Naghibi

    2016-09-01

    Full Text Available Background Magnetic resonance imaging (MRI of the wrist joint is a useful method in the diagnosis of triangular fibrocartilage complex (TFCC, ligaments and tendons, peripheral nerves, cartilage and carpal tunnel syndrome. However, the evaluation of these small anatomical structures is a topic of investigation. In some instances, the diagnostic indices of MRI in tears and other lesions of cartilage and ligamentous structures are relatively low, so the protocols should be optimized. Objectives In this study, we aim to compare new MRI protocols of 3D T2SPACE, PD BLADE and T2 BLADE with the conventional protocols, including T2 FSE, PD FSE, and T1 FSE in case of signal intensity. Patients and Methods Twenty patients with a history of wrist trauma or suspected wrist lesions were referred by orthopedic hand surgeons and enrolled into the study. All the protocols were carried out on all patients and the images were assessed quantitatively by measurement of signal to noise ratio (SNR and contrast to noise ratio (CNR. Then, these parameters were compared between different protocols. SPSS ver.18 was used for the statistical analyses. Results SNR of the cartilage, TFCC on 3D T2SPACE and T1 FSE was better than other sequences (P < 0.001. SNR of the bone on PD BLADE was significantly higher (P < 0.001 than that of conventional protocols. PD BLADE images showed significantly higher bone- cartilage CNR and bone- TFCC CNR (P < 0.001 to P < 0.001. CNR of cartilage-TFCC on T1 FSE was better than other sequences, but no significant statistical differences were seen. Conclusion High-resolution MR images of the wrist using 3D T2SPACE, PD BLADE and T2 BLADE were superior to those using conventional sequences quantitatively. High-SNR and CNR MR imaging with SPACE and BLADE would be a promising method to diagnose wrist lesions.

  12. Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (True-FISP) and standard 2D sequences.

    Science.gov (United States)

    Welsch, Goetz H; Zak, Lukas; Mamisch, Tallal C; Paul, Dominik; Lauer, Lars; Mauerer, Andreas; Marlovits, Stefan; Trattnig, Siegfried

    2011-01-01

    To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score. Sixty consecutive MR scans on 37 patients (age: 32.8 ± 7.9 years) after matrix-associated autologous chondrocyte transplantation (MACT) of the knee were prospectively included. The 3D MOCART score was assessed using the standard 2D sequences and the multiplanar-reconstruction (MPR) of both isotropic sequences. Statistical, Bonferroni-corrected correlation as well as subjective quality analysis were performed. The correlation of the different sequences was significant for the variables defect fill, cartilage interface, bone interface, surface, subchondral lamina, chondral osteophytes, and effusion (Pearson coefficients 0.514-0.865). Especially between the standard sequences and the 3D True-FISP sequence, the variables structure, signal intensity, subchondral bone, and bone marrow edema revealed lower, not significant, correlation values (0.242-0.383). Subjective quality was good for all sequences (P ≥ 0.05). Artifacts were most often visible on the 3D True-FISP sequence (P < 0.05). Different isotropic sequences can be used for the 3D evaluation of cartilage repair with the benefits of isotropic 3D MRI, MPR, and a significantly reduced scan time, where the 3D PD-SPACE sequence reveals the best results. Copyright © 2010 Wiley-Liss, Inc.

  13. Effective field theory for deformed atomic nuclei

    Science.gov (United States)

    Papenbrock, T.; Weidenmüller, H. A.

    2016-05-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  14. Effective field theory for deformed atomic nuclei

    CERN Document Server

    Papenbrock, T

    2015-01-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  15. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  16. Gluon density in nuclei

    CERN Document Server

    Ayala, A P; Levin, E M

    1996-01-01

    In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.

  17. Pulsars: Gigantic Nuclei

    CERN Document Server

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the {\\em gigantic nucleus} speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  18. Nucleomorphs: enslaved algal nuclei.

    Science.gov (United States)

    Cavalier-Smith, T

    2002-12-01

    Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.

  19. Photon echo study of excitons and excitonic complexes in self-assembled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ikezawa, Michio [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan)]. E-mail: mikezawa@sakura.cc.tsukuba.ac.jp; Nair, Selvakumar [Centre for Nanotechnology, University of Toronto, Toronto M5S 3E3 (Canada); Suto, Fumitaka [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan); Masumoto, Yasuaki [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan); Uchiyama, Chikako [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi 400-8511 (Japan); Aihara, Masaki [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0101 (Japan); Ruda, Harry [Centre for Nanotechnology, University of Toronto, Toronto M5S 3E3 (Canada)

    2007-01-15

    The authors have studied the excitons and excitonic complexes in two kinds of self-assembled quantum dots (QDs) using photon echo measurements. In GaAs strain-induced quantum dots (SIQDs), a pronounced biexcitonic beat with a period of 1 ps is observed. The biexciton binding energy in SIQDs is obtained from the beat period, and its magnetic field dependence is investigated. It is found that the biexciton binding energy is remarkably increased by the lateral confinement and they are almost independent of the applied magnetic field up to 8 T. A theoretical calculation of the biexciton binding energy in SIQDs is presented to explain the observed magnetic field dependence. In charge-tunable InP QDs, the photon echo signal shows dramatic changes depending on the electric bias. The decay profile of the echo intensity is not a single exponential but Gaussian-like function, which indicates non-Markovian nature of the dephasing process in this system. Theoretical calculation is done assuming tunneling induced dephasing mechanism, and it reproduces the experimental results quite well.

  20. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  1. Fusion excitation functions involving transitional nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  2. Study of the interactions of 13.8 GeV/c protons with the heavy nuclei of the emulsions exposed in magnetic fuel of 170 kgauss; Estudio de las interacciones de protones de 13,8 geV/c con los nucleos pesados de emusiones

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Aleixandre, J. L.

    1967-07-01

    145 stars with N{sub h}>8 produced by the interactions of 13.8 GeV/c protons with Ag and Br nuclei have been analysed. The emulsion stack was irradiated in a 170 K gauss magnetic field. Statistical results concerning the main characteristics of the different particles emitted are given and the energy balance is evaluated. The main features of both 24 GeV/c protons and 17 GeV/c {pi}- interactions are compared with those we have found for 13.8 GeV/c protons interactions. (Author) 27 refs.

  3. Light-echo spectroscopy of historic Supernovae

    Science.gov (United States)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  4. Workshop on neutron spin-echo

    Energy Technology Data Exchange (ETDEWEB)

    Aynajian, P.; Habicht, K.; Keller, Th.; Keimer, B.; Mezei, F.; Monkenbusch, M.; Allgaier, J.; Richter, D.; Fetters, L.J.; Muller, K.; Kreiling, S.; Dehnicke, K.; Greiner, A.; Ehlers, G.; Arbe, A.; Colmenero, J.; Richter, D.; Farago, B.; Monkenbusch, M.; Ohl, M.; Butzek, M.; Kozielewski, T.; Monkenbusch, M.; Richter, D.; Pappas, C.; Hillier, A.; Manuel, P.; Cywinski, R.; Bentley, P.; Alba, M.; Mezei, F.; Campbell, I.A.; Zimmermann, U.; Ellis, J.; Jobic, H.; Pickup, R.M.; Pappas, C.; Farago, B.; Cywinski, R.; Haussler, W.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Monkenbusch, M.; Allgaier, J.; Richter, D.; Egger, H.; Hellweg, Th.; Malikova, N.; Cadene, A.; Marry, V.; Dubois, E.; Turq, P.; Gardner, J.S.; Ehlers, G.; Bramwell, St.S.; Grigoriev, S.; Kraan, W.; Rekveldt, T.; Bouwman, W.; Van Dijk, N.; Falus, P.; Vorobiev, A.; Major, J.; Felcher, G.P.; Te-velthuis, S.; Dosch, H.; Vorobiev, A.; Dridi, M.H.; Major, J.; Dosch, H.; Falus, P.; Felcher, G.P.; Te Velthuis, S.G.E.; Bleuel, M.; Broell, M.; Lang, E.; Littrell, K.; Gahler, R.; Lal, J.; Lauter, H.; Toperverg, B.; Lauter, V.; Jernenkov, M.; Stueber, S.; Enderle, M.; Janoschek, M.; Keller, Th.; Klimko, S.; Boeni, P.; Nagao, M.; Yamada, N.; Kawabata, Y.; Seto, H.; Takeda, T.; Yoshizawa, H.; Yoshida, K.; Yamaguchi, T.; Bellissent-Funel, M.C.; Longeville, St

    2005-07-01

    This document gathers the abstracts of most papers presented at the workshop. Neutron spin-echo (NSE) spectroscopy is a well established technique with a growing expert user community, the aim of the meeting was to discuss the latest achievements in neutron spin-echo science and instrumentation. One of the applications presented is the investigation on the microscopic scale of the dynamics of water in montmorillonite clays with Na{sup +} and Cs{sup +} ions in monolayer and bilayer states. The NSE technique has been used in the normal and resonance modes. NSE results show consistently slower dynamics (higher relaxation times) than both time-of-flight technique (TOF) and classical molecular dynamics simulations (MD). In the present TOF and NSE experiments, anisotropy of the water motion in the interlayer is almost impossible to detect, due to the use of powder samples and insufficient resolution. (A.C.)

  5. Wind Shear Target Echo Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Xiaoyang Liu

    2015-01-01

    Full Text Available Wind shear is a dangerous atmospheric phenomenon in aviation. Wind shear is defined as a sudden change of speed or direction of the wind. In order to analyze the influence of wind shear on the efficiency of the airplane, this paper proposes a mathematical model of point target rain echo and weather target signal echo based on Doppler effect. The wind field model is developed in this paper, and the antenna model is also studied by using Bessel function. The spectrum distribution of symmetric and asymmetric wind fields is researched by using the mathematical model proposed in this paper. The simulation results are in accordance with radial velocity component, and the simulation results also confirm the correctness of the established model of antenna.

  6. Quantum Reversibility: Is there an Echo?

    CERN Document Server

    Hiller, M; Cohen, D; Geisel, T; Hiller, Moritz; Kottos, Tsampikos; Cohen, Doron; Geisel, Theo

    2004-01-01

    We study the possibility to undo the quantum mechanical evolution in a time reversal experiment. The naive expectation, as reflected in the common terminology ("Loschmidt echo"), is that maximum compensation results if the reversed dynamics extends to the same time as the forward evolution. We challenge this belief, and demonstrate that the time $t_r$ for maximum return probability is in general shorter. We find that $t_r$ depends on $lambda = eps_evol/eps_prep$, being the ratio of the error in setting the parameters (fields) for the time reversed evolution to the perturbation which is involved in the preparation process. Our results should be observable in spin-echo experiments where the dynamical irreversibility of quantum phases is measured.

  7. Stark echo modulation for quantum memories

    Science.gov (United States)

    Arcangeli, A.; Ferrier, A.; Goldner, Ph.

    2016-06-01

    Quantum memories for optical and microwave photons provide key functionalities in quantum processing and communications. Here we propose a protocol well adapted to solid-state ensemble-based memories coupled to cavities. It is called Stark echo modulation memory (SEMM) and allows large storage bandwidths and low noise. This is achieved in an echo-like sequence combined with phase shifts induced by small electric fields through the linear Stark effect. We investigated the protocol for rare-earth nuclear spins and found a high suppression of unwanted collective emissions that is compatible with single-photon-level operation. Broadband storage together with high fidelity for the Stark retrieval process is also demonstrated. SEMM could be used to store optical or microwave photons in ions and/or spins. This includes nitrogen-vacancy centers in diamond and rare-earth-doped crystals, which are among the most promising solid-state quantum memories.

  8. MRI appearances of the asymptomatic patellar tendon on gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Reiff, D.B. [Dept. of Diagnostic Radiology, St. George`s Hospital, London (United Kingdom); Heenan, S.D. [Dept. of Diagnostic Radiology, St. George`s Hospital, London (United Kingdom); Heron, C.W. [Dept. of Diagnostic Radiology, St. George`s Hospital, London (United Kingdom)

    1995-02-01

    Thickening of the patellar tendon and foci of increased signal intensity have been described as characteristic features of ``jumper`s knee`` (chronic patellar tendinitis) on magnetic resonance imaging (MRI). It was our impression that such appearances may be seen in the patellar tendons of patients without symptoms referable to the anterior part of the knee when using gradient echo images. The appearances of the asymptomatic patellar tendon on three-dimensional gradient echo sequences were studied by retrospectively reviewing the images of 60 patients, none of whom had symptoms related to the anterior part of the knee. The anteroposterior width of the patellar tendon was measured at three levels (superior, middle and inferior) on the central sagittal image of a gradient echo sequence. The relative signal intensities at the same levels were recorded. In 97% of subjects the superior part of the tendon was wider than the midpoint, and in 97% the inferior part was wider than the midpoint. The range of widths was wide, and there was no significant difference between sexes. Focal increased signal intensity in the superior part was shown in 75%, and in the inferior part in 43%. The asymptomatic patellar tendon shows uniform thickness throughout most of its length, but there are focal expansions at the proximal and distal ends. It usually demonstrates low signal on MRI, but may contain foci of increased signal intensity at either or both ends when imaged on gradient-echo sequences. (orig.)

  9. Multi-shot turbo spin-echo for 3D vascular space occupancy imaging.

    Science.gov (United States)

    Cretti, Fabiola R; Summers, Paul E; Porro, Carlo A

    2013-07-01

    Vascular space occupancy (VASO) is a magnetic resonance imaging technique sensitive to cerebral blood volume, and is a potential alternative to the blood oxygenation level dependent (BOLD) sensitive technique as a basis for functional mapping of the neurovascular response to a task. Many implementations of VASO have made use of echo-planar imaging strategies that allow rapid acquisition, but risk introducing potentially confounding BOLD effects. Recently, multi-slice and 3D VASO techniques have been implemented to increase the imaging volume beyond the single slice of early reports. These techniques usually rely, however, on advanced scanner software or hardware not yet available in many centers. In the present study, we have implemented a short-echo time, multi-shot 3D Turbo Spin-Echo (TSE) VASO sequence that provided 8-slice coverage on a routine clinical scanner. The proposed VASO sequence was tested in assessing the response of the human motor cortex during a block design finger tapping task in 10 healthy subjects. Significant VASO responses, inversely correlated with the task, were found at both individual and group level. The location and extent of VASO responses were in close correspondence to those observed using a conventional BOLD acquisition in the same subjects. Although the spatial coverage and temporal resolution achieved were limited, robust and consistent VASO responses were observed. The use of a susceptibility insensitive volumetric TSE VASO sequence may have advantages in locations where conventional BOLD and echo-planar based VASO imaging is compromised.

  10. Toward an In Vivo Neuroimaging Template of Human Brainstem Nuclei of the Ascending Arousal, Autonomic, and Motor Systems.

    Science.gov (United States)

    Bianciardi, Marta; Toschi, Nicola; Edlow, Brian L; Eichner, Cornelius; Setsompop, Kawin; Polimeni, Jonathan R; Brown, Emery N; Kinney, Hannah C; Rosen, Bruce R; Wald, Lawrence L

    2015-12-01

    Brainstem nuclei (Bn) in humans play a crucial role in vital functions, such as arousal, autonomic homeostasis, sensory and motor relay, nociception, sleep, and cranial nerve function, and they have been implicated in a vast array of brain pathologies. However, an in vivo delineation of most human Bn has been elusive because of limited sensitivity and contrast for detecting these small regions using standard neuroimaging methods. To precisely identify several human Bn in vivo, we employed a 7 Tesla scanner equipped with multi-channel receive-coil array, which provided high magnetic resonance imaging sensitivity, and a multi-contrast (diffusion fractional anisotropy and T2-weighted) echo-planar-imaging approach, which provided complementary contrasts for Bn anatomy with matched geometric distortions and resolution. Through a combined examination of 1.3 mm(3) multi-contrast anatomical images acquired in healthy human adults, we semi-automatically generated in vivo probabilistic Bn labels of the ascending arousal (median and dorsal raphe), autonomic (raphe magnus, periaqueductal gray), and motor (inferior olivary nuclei, two subregions of the substantia nigra compatible with pars compacta and pars reticulata, two subregions of the red nucleus, and, in the diencephalon, two subregions of the subthalamic nucleus) systems. These labels constitute a first step toward the development of an in vivo neuroimaging template of Bn in standard space to facilitate future clinical and research investigations of human brainstem function and pathology. Proof-of-concept clinical use of this template is demonstrated in a minimally conscious patient with traumatic brainstem hemorrhages precisely localized to the raphe Bn involved in arousal.

  11. Toward an In Vivo Neuroimaging Template of Human Brainstem Nuclei of the Ascending Arousal, Autonomic, and Motor Systems

    Science.gov (United States)

    Toschi, Nicola; Edlow, Brian L.; Eichner, Cornelius; Setsompop, Kawin; Polimeni, Jonathan R.; Brown, Emery N.; Kinney, Hannah C.; Rosen, Bruce R.; Wald, Lawrence L.

    2015-01-01

    Abstract Brainstem nuclei (Bn) in humans play a crucial role in vital functions, such as arousal, autonomic homeostasis, sensory and motor relay, nociception, sleep, and cranial nerve function, and they have been implicated in a vast array of brain pathologies. However, an in vivo delineation of most human Bn has been elusive because of limited sensitivity and contrast for detecting these small regions using standard neuroimaging methods. To precisely identify several human Bn in vivo, we employed a 7 Tesla scanner equipped with multi-channel receive-coil array, which provided high magnetic resonance imaging sensitivity, and a multi-contrast (diffusion fractional anisotropy and T2-weighted) echo-planar-imaging approach, which provided complementary contrasts for Bn anatomy with matched geometric distortions and resolution. Through a combined examination of 1.3 mm3 multi-contrast anatomical images acquired in healthy human adults, we semi-automatically generated in vivo probabilistic Bn labels of the ascending arousal (median and dorsal raphe), autonomic (raphe magnus, periaqueductal gray), and motor (inferior olivary nuclei, two subregions of the substantia nigra compatible with pars compacta and pars reticulata, two subregions of the red nucleus, and, in the diencephalon, two subregions of the subthalamic nucleus) systems. These labels constitute a first step toward the development of an in vivo neuroimaging template of Bn in standard space to facilitate future clinical and research investigations of human brainstem function and pathology. Proof-of-concept clinical use of this template is demonstrated in a minimally conscious patient with traumatic brainstem hemorrhages precisely localized to the raphe Bn involved in arousal. PMID:26066023

  12. Quarks in Few Body Nuclei

    Science.gov (United States)

    Holt, Roy J.

    2016-03-01

    Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  13. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  14. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model......The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years...

  15. GESTATIONAL ECHO BIOMETRY IN BRACHYCEPHALIC PREGNANT BITCHES

    Directory of Open Access Journals (Sweden)

    Marcus Antônio Rossi Feliciano

    2015-07-01

    Full Text Available Ultrasonography is an accurate pregnancy diagnostic method, besides being completely innocuous for female and fetuses evaluation. The objective of this paper was to determine the reference values for gestational echo biometry of different breeds of bitches. A total of 25 multiparous females were included in the experiment, five English Bulldog bitches, five Pugs and 15 Shih Tzu, weighing 4-25 kg and aged 4-6 years. The echo biometric assessments were performed during the 2nd, 5th, 6th, 7th and 8th weeks of pregnancy, including gestational vesicle diameter, femur length, placenta thickness, parietal diameter, liver, heart and abdominal diameter and area. Early echo biometric study started at the second week of gestation. Measurements like fetal heart and liver diameter and area are still poorly studied, but can provide useful information for early detection of congenital anomalies that may reduce the viability of pregnancy. The significant results (P < 0.001 obtained for biometrics (P < 0.001 of the parietal (r2 = 81% and abdominal diameter (r2 = 86%, abdominal area (r2 = 80%, femur length (r2 = 84%, cardiac length (r2 = 79%, width (r2 = 79%, area (r2 = 82% and volume (r2 = 72% and liver area (r2 = 71% in brachycephalic conceptus may help to assess the development of fetuses, complementing the conventional gestational ultrasound of bitches and become a model for the study in other breeds of dogs and alternative animal species.

  16. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  17. Beta decay and magnetic moments as tools to probe nuclear structure. Study of neutron-rich nuclei around N=40; Decroissance beta et moments magnetiques comme outils pour sonder la structure nucleaire. Etude des noyaux riches en neutrons autour de N=40

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I

    2003-12-01

    The evolution of nuclear structure in nuclei far from the {beta} stability line is one of the 'hot topics' in modern experimental and theoretical nuclear physics. The present thesis is devoted to the study of structure of neutron-rich nuclei around N=40. The evolution of the neutron g9/2 orbital with increasing number of neutrons is one of the key points defining the structure of these nuclei at low excitation energy. We used for this investigation as experimental tools the magnetic dipole moments measurements and the {beta} decay spectroscopy. For the measurement of the gyromagnetic factor of the 9/2{sup +} isomeric state in Fe{sup 61} we have applied the TDPAD method. This method (like most of measurements of nuclear moments) requires an oriented ensemble of nuclei. The orientation of Fe{sup 61m} was achieved via the fragmentation of Ni{sup 64} at 55 MeV/u and the selection of the fragment momentum with the LISE spectrometer at GANIL. The experimental device was specially conceived to preserve the alignment up to the implantation point. The measured value of the g factor was compared with large-scale shell model and Hartree-Fock-Bogoliubov model predictions. The nuclei studied via {beta} decay were produced by the fragmentation of Kr{sup 86} at 58 MeV/u. For the selection of reaction products we used for the first time the LISE2000 spectrometer and for the detection of {gamma} rays four EXOGAM clover detectors. We measured 5 new lifetimes and 4 lifetimes with a higher precision. From the prompt {beta}{gamma} coincidences we identified new states in the daughter nuclei, as it is the case of the first 2{sup +} excited states in Fe{sup 68} and Ni{sup 72}. The results were compared with the predictions of the large-scale shell model. Other transitions were observed for the first time in {beta}{gamma} decay of Ti{sup 60}, Fe{sup 70} and Co{sup 71,73}. (author)

  18. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  19. The cochlear nuclei of snakes.

    Science.gov (United States)

    Miller, M R

    1980-08-15

    The cochlear nuclei of three burrowing snakes (Xenopeltis unicolor, Cylindrophis rufus, and Eryx johni) and three non-burrowing snakes (Epicrates cenchris, Natrix sipedon, and Pituophis catenifer) were studied. The posterior branch of the statoacoustic nerve and its posterior ganglion were destroyed and the degenerated nerve fibers and terminals traced to primary cochlear nuclei in 13 specimens of Pituophis catenifer. All these snake species possess three primary and one secondary cochlear nuclei. The primary cochlear nuclei consist of a small nucleus angularis located at the cerebello-medullary junction and a fairly large nucleus magnocellularis forming a dorsal cap over the cephalic end of the alar eminence. Nucleus magnocellularis may be subdivided into a medially placed group of rounder cells, nucleus magnocellularis medialis, and a laterally placed group of more ovate and paler-staining cells, nucleus magnocellularis lateralis. A small but well-defined secondary nucleus which showed no degenerated nerve terminals after nerve root section, nucleus laminaris, underlies the cephalic part of both nucleus magnocellularis medialis and nucleus magnocellularis lateralis. Larger and better-developed cochlear nuclei were found in burrowing species than in non-burrowing species of snakes. Of the three burrowing species studied, Xenopeltis showed the greatest development of cochlear nuclei; Eryx cochlear nuclei were not quite as large but were better differentiated than in Xenopeltis; and Cylindrophis cochlear nuclei were fairly large but not as well developed nor as well differentiated as in either Xenopeltis or Eryx. The cochlear nuclei of the three non-burrowing snakes, Epicrates, Natrix, and Pituophis, were not as large nor as well developed as those of the burrowing snakes. There is some, but not complete, correlation between cochlear development and papilla basilaris length and number of hair cells. Thus, Xenopeltis and Eryx, with well-developed cochlear nuclei

  20. Quantification of early fatty infiltration of the rotator cuff muscles: comparison of multi-echo Dixon with single-voxel MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Agten, Christoph A.; Rosskopf, Andrea B.; Pfirrmann, Christian W.A. [Balgrist University Hospital, Radiology, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland); Gerber, Christian [Balgrist University Hospital, Orthopaedic Surgery, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland)

    2016-10-15

    To evaluate quantification of early fatty infiltration in supraspinatus muscles with magnetic resonance (MR) imaging using a T2*-corrected multi-echo 3D-gradient-echo Dixon-based sequence (multi-echo Dixon) and compare it to proton-MR-spectroscopy. Sixty subjects (mean age 46 years, 41 men) with good supraspinatus muscle quality on 1.5 T MR imaging were included. Fat percentage (FP) in the supraspinatus muscle was quantified using a multi-echo Dixon compared to single-voxel MR spectroscopy as reference standard. In 18 subjects the multi-echo Dixon was repeated to assess test-retest reliability. Measurements based on multi-echo Dixon were performed by two independent readers by placing regions-of-interest (ROIs) in the supraspinatus muscle corresponding to the MR-spectroscopy voxel. Intraclass and concordance correlation coefficients (ICC/CCC) were used for statistical analysis. Test-retest reliability was substantial for reader 1 (ICC = 0.757) and almost perfect for reader 2 (ICC = 0.873). Inter-reader reliability for multi-echo Dixon was almost perfect (ICC = 0.893, P <.0005). Mean FP in all 60 subjects with multi-echo Dixon was 3.5 ± 1.6 for reader 1, 3.7 ± 1.8 for reader 2, and 2.8 ± 1.4 with MR spectroscopy. Correlation between multi-echo Dixon and MR spectroscopy was moderate (CCC = 0.641). The multi-echo Dixon sequence is a reliable method and comparable to MR-spectroscopy for quantification of low levels of fatty infiltration in the supraspinatus muscle. (orig.)

  1. Correlations of Active Galactic Nuclei with Microquasars

    Institute of Scientific and Technical Information of China (English)

    YE Yong-Chun; ZUO Xue-Qin; WANG Ding-Xiong

    2006-01-01

    Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion disk.The proportions of several quantities of BH systems for both AGNs and microquasars are derived by combining the observational data with CEBZMC. It is shown that the square of the magnetic field at the BH horizon is inversely proportional to the BH mass, while the accretion rate of the disk is proportional to the BH mass. In addition, the very steep emissivity indexes from the recent XMM-Newton observations of the nearby bright Seyfert 1 galaxy MCG-6-30-15 and the microquasars XTE J1650-500 are well fitted by considering the MC effects on the disk radiation. These results suggest strongly the correlations of A GNs with microquasars.

  2. The EChO science case

    Science.gov (United States)

    Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Allard, France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Zapatero-Osorio, Mariarosa; Beaulieu, Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Swain, Mark; Banaszkiewicz, Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; du Foresto, Vincent Coudé; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Ramos Zapata, Gonzalo; Adriani, Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Winter, Berend; Abe, L.; Abreu, M.; Achilleos, N.; Ade, P.; Adybekian, V.; Affer, L.; Agnor, C.; Agundez, M.; Alard, C.; Alcala, J.; Allende Prieto, C.; Alonso Floriano, F. J.; Altieri, F.; Alvarez Iglesias, C. A.; Amado, P.; Andersen, A.; Aylward, A.; Baffa, C.; Bakos, G.; Ballerini, P.; Banaszkiewicz, M.; Barber, R. J.; Barrado, D.; Barton, E. J.; Batista, V.; Bellucci, G.; Belmonte Avilés, J. A.; Berry, D.; Bézard, B.; Biondi, D.; Błęcka, M.; Boisse, I.; Bonfond, B.; Bordé, P.; Börner, P.; Bouy, H.; Brown, L.; Buchhave, L.; Budaj, J.; Bulgarelli, A.; Burleigh, M.; Cabral, A.; Capria, M. T.; Cassan, A.; Cavarroc, C.; Cecchi-Pestellini, C.; Cerulli, R.; Chadney, J.; Chamberlain, S.; Charnoz, S.; Christian Jessen, N.; Ciaravella, A.; Claret, A.; Claudi, R.; Coates, A.; Cole, R.; Collura, A.; Cordier, D.; Covino, E.; Danielski, C.; Damasso, M.; Deeg, H. J.; Delgado-Mena, E.; Del Vecchio, C.; Demangeon, O.; De Sio, A.; De Wit, J.; Dobrijévic, M.; Doel, P.; Dominic, C.; Dorfi, E.; Eales, S.; Eiroa, C.; Espinoza Contreras, M.; Esposito, M.; Eymet, V.; Fabrizio, N.; Fernández, M.; Femenía Castella, B.; Figueira, P.; Filacchione, G.; Fletcher, L.; Focardi, M.; Fossey, S.; Fouqué, P.; Frith, J.; Galand, M.; Gambicorti, L.; Gaulme, P.; García López, R. J.; Garcia-Piquer, A.; Gear, W.; Gerard, J.-C.; Gesa, L.; Giani, E.; Gianotti, F.; Gillon, M.; Giro, E.; Giuranna, M.; Gomez, H.; Gomez-Leal, I.; Gonzalez Hernandez, J.; González Merino, B.; Graczyk, R.; Grassi, D.; Guardia, J.; Guio, P.; Gustin, J.; Hargrave, P.; Haigh, J.; Hébrard, E.; Heiter, U.; Heredero, R. L.; Herrero, E.; Hersant, F.; Heyrovsky, D.; Hollis, M.; Hubert, B.; Hueso, R.; Israelian, G.; Iro, N.; Irwin, P.; Jacquemoud, S.; Jones, G.; Jones, H.; Justtanont, K.; Kehoe, T.; Kerschbaum, F.; Kerins, E.; Kervella, P.; Kipping, D.; Koskinen, T.; Krupp, N.; Lahav, O.; Laken, B.; Lanza, N.; Lellouch, E.; Leto, G.; Licandro Goldaracena, J.; Lithgow-Bertelloni, C.; Liu, S. J.; Lo Cicero, U.; Lodieu, N.; Lognonné, P.; Lopez-Puertas, M.; Lopez-Valverde, M. A.; Lundgaard Rasmussen, I.; Luntzer, A.; Machado, P.; MacTavish, C.; Maggio, A.; Maillard, J.-P.; Magnes, W.; Maldonado, J.; Mall, U.; Marquette, J.-B.; Mauskopf, P.; Massi, F.; Maurin, A.-S.; Medvedev, A.; Michaut, C.; Miles-Paez, P.; Montalto, M.; Montañés Rodríguez, P.; Monteiro, M.; Montes, D.; Morais, H.; Morales, J. C.; Morales-Calderón, M.; Morello, G.; Moro Martín, A.; Moses, J.; Moya Bedon, A.; Murgas Alcaino, F.; Oliva, E.; Orton, G.; Palla, F.; Pancrazzi, M.; Pantin, E.; Parmentier, V.; Parviainen, H.; Peña Ramírez, K. Y.; Peralta, J.; Perez-Hoyos, S.; Petrov, R.; Pezzuto, S.; Pietrzak, R.; Pilat-Lohinger, E.; Piskunov, N.; Prinja, R.; Prisinzano, L.; Polichtchouk, I.; Poretti, E.; Radioti, A.; Ramos, A. A.; Rank-Lüftinger, T.; Read, P.; Readorn, K.; Rebolo López, R.; Rebordão, J.; Rengel, M.; Rezac, L.; Rocchetto, M.; Rodler, F.; Sánchez Béjar, V. J.; Sanchez Lavega, A.; Sanromá, E.; Santos, N.; Sanz Forcada, J.; Scandariato, G.; Schmider, F.-X.; Scholz, A.; Scuderi, S.; Sethenadh, J.; Shore, S.; Showman, A.; Sicardy, B.; Sitek, P.; Smith, A.; Soret, L.; Sousa, S.; Stiepen, A.; Stolarski, M.; Strazzulla, G.; Tabernero, H. M.; Tanga, P.; Tecsa, M.; Temple, J.; Terenzi, L.; Tessenyi, M.; Testi, L.; Thompson, S.; Thrastarson, H.; Tingley, B. W.; Trifoglio, M.; Martín Torres, J.; Tozzi, A.; Turrini, D.; Varley, R.; Vakili, F.; de Val-Borro, M.; Valdivieso, M. L.; Venot, O.; Villaver, E.; Vinatier, S.; Viti, S.; Waldmann, I.; Waltham, D.; Ward-Thompson, D.; Waters, R.; Watkins, C.; Watson, D.; Wawer, P.; Wawrzaszk, A.; White, G.; Widemann, T.; Winek, W.; Wiśniowski, T.; Yelle, R.; Yung, Y.; Yurchenko, S. N.

    2015-12-01

    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10-4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength

  3. Balanced Turbo Field Echo with Extended k-space Sampling: A Fast Technique for the Thoracic Ductography.

    Science.gov (United States)

    Nomura, Takakiyo; Niwa, Tetsu; Kazama, Toshiki; Sekiguchi, Tatsuya; Okazaki, Takashi; Shibukawa, Shuhei; Nishio, Hiroaki; Obara, Makoto; Imai, Yutaka

    2016-10-11

    We evaluated the visibility of the thoracic duct by fast balanced turbo field echo with extended k-space sampling (bTFEe). The thoracic duct of 10 healthy volunteers was scanned by bTFEe using a 1.5-T magnetic resonance imaging (MRI), which was acquired in approximately 2 minutes. Three-dimensional (3D) turbo spin-echo (TSE) was obtained for comparison. The thoracic duct including draining location of the venous system was overall well visualized on bTFEe, compared to TSE.

  4. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  5. Gluon density in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  6. Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei.

    Science.gov (United States)

    Venkatesh, Amrit; Hanrahan, Michael P; Rossini, Aaron J

    Fast magic angle spinning (MAS) and proton detection has found widespread application to enhance the sensitivity of solid-state NMR experiments with spin-1/2 nuclei such as (13)C, (15)N and (29)Si, however, this approach is not yet routinely applied to half-integer quadrupolar nuclei. Here we have investigated the feasibility of using fast MAS and proton detection to enhance the sensitivity of solid-state NMR experiments with half-integer quadrupolar nuclei. The previously described dipolar hetero-nuclear multiple quantum correlation (D-HMQC) and dipolar refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) pulse sequences were used for proton detection of half-integer quadrupolar nuclei. Quantitative comparisons of signal-to-noise ratios and the sensitivity of proton detected D-HMQC and D-RINEPT and direct detection spin echo and quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) solid-state NMR spectra, demonstrate that one dimensional proton detected experiments can provide sensitivity similar to or exceeding that obtainable with direct detection QCPMG experiments. 2D D-HMQC and D-RINEPT experiments provide less sensitivity than QCPMG experiments but proton detected 2D hetero-nuclear correlation solid-state NMR spectra of half-integer nuclei can still be acquired in about the same time as a 1D spin echo spectrum. Notably, the rarely used D-RINEPT pulse sequence is found to provide similar, or better sensitivity than D-HMQC in some cases. Proton detected D-RINEPT benefits from the short longitudinal relaxation times (T1) normally associated with half-integer quadrupolar nuclei, it can be combined with existing signal enhancement methods for quadrupolar nuclei, and t1-noise in the indirect dimension can easily be removed by pre-saturation of the (1)H nuclei. The rapid acquisition of proton detected 2D HETCOR solid-state NMR spectra of a range of half-integer quadrupolar nuclei such as (17)O, (27)Al, (35)Cl and (71)Ga is demonstrated. Copyright

  7. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  8. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  9. Comparison of 2-D turbo spin echo and 3-D gradient echo sequences for the detection of the trigeminal nerve and branches anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Held, P.; Fruend, R.; Seitz, J.; Nitz, W.; Haffke, T.; Hees, H

    2001-01-01

    The aim of this study was to assess the detectability of the trigeminal nerve and its branches using T1 weighted (w.) 3-D magnetization prepared rapid gradient echo (MP-RAGE), T2* w. 3D CISS and T2 w. 2-D turbo spin echo MR sequences. Thirty healthy volunteers were examined for this purpose using a 1.5 Tesla MR unit. The detectability of the trigeminal nerve and Gasser's Ganglion, i.e. structures that are surrounded by liquor was best using 3-D CISS. In the case of the ophthalmic, maxillary and mandibular nerves, the T1 w. 3-D MPRAGE was significantly better than T2* w. CISS and T2 w. 2-D turbo spin echo. The latter yielded the poorest results. We conclude that both high resolution T2* w. and T1 w. 3-D sequences are necessary in order to detect the liquor-surrounded trigeminal nerve and its soft tissue-surrounded branches. We would therefore recommend the inclusion of constructive interference in steady state (CISS) and MP-RAGE in a MR imaging protocol of the trigeminal nerve and its branches.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  12. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  13. Echo time-dependent quantitative susceptibility mapping contains information on tissue properties.

    Science.gov (United States)

    Sood, Surabhi; Urriola, Javier; Reutens, David; O'Brien, Kieran; Bollmann, Steffen; Barth, Markus; Vegh, Viktor

    2017-05-01

    Magnetic susceptibility is a physical property of matter that varies depending on chemical composition and abundance of different molecular species. Interest is growing in mapping of magnetic susceptibility in the human brain using magnetic resonance imaging techniques, but the influences affecting the mapped values are not fully understood. We performed quantitative susceptibility mapping on 7 Tesla (T) multiple echo time gradient recalled echo data and evaluated the trend in 10 regions of the human brain. Temporal plots of susceptibility were performed in the caudate, pallidum, putamen, thalamus, insula, red nucleus, substantia nigra, internal capsule, corpus callosum, and fornix. We implemented an existing three compartment signal model and used optimization to fit the experimental result to assess the influences that could be responsible for our findings. The temporal trend in susceptibility is different for different brain regions, and subsegmentation of specific regions suggests that differences are likely to be attributable to variations in tissue structure and composition. Using a signal model, we verified that a nonlinear temporal behavior in experimentally computed susceptibility within imaging voxels may be the result of the heterogeneous composition of tissue properties. Decomposition of voxel constituents into meaningful parameters may lead to informative measures that reflect changes in tissue microstructure. Magn Reson Med 77:1946-1958, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Repolarization of Negative Muons by Polarized $^{209}$Bi Nuclei

    CERN Document Server

    Kadono, R; Ishikawa, T; Nishiyama, K; Nagamine, K; Yamazaki, T; Bosshard, A; Döbeli, M; van Elmbt, L; Schaad, M; Truöl, P; Bay, A; Perroud, J P; Deutsch, J; Tasiaux, B; Hagn, E

    2016-01-01

    A large $\\mu^-$ polarization was achieved in muonic Bi atoms with the help of the strong hyperfine field in a polarized nuclear target. Using $^{209}$Bi nuclei polarized to ($59\\pm9$)% in ferromagnetic BiMn, we observed a $\\mu$-$e$ decay asymmetry of ($13.1\\pm3.9$)%, which gives $\\mu^-$ polarization per nuclear polarization equal to $-1.07\\pm 0.35$. This value is almost consistent with $-0.792$ calculated for nuclei with spin $I= \\frac{9}{2}$ and a positive magnetic moment under the assumption that the hyperfine interaction becomes effective in the lowest muonic states.

  15. Gamma-Rays from Heavy Nuclei Accelerated in Supernova Remnants

    CERN Document Server

    Caprioli, D; Amato, E

    2010-01-01

    We investigate the theoretical and observational implications of the acceleration of protons and heavier nuclei in supernova remnants (SNRs). By adopting a semi-analytical technique, we study the non-linear interplay among particle acceleration, magnetic field generation and shock dynamics, outlining a self-consistent scenario for the origin of the spectrum of Galactic cosmic rays as produced in this class of sources. Moreover, the inferred chemical abundances suggest nuclei heavier than Hydrogen to be relevant not only in the shock dynamics but also in the calculation of the gamma-ray emission from SNRs due to the decay of neutral pions produced in nuclear interactions.

  16. MRI changes in myocarditis - Evaluation with spin echo, cine MR angiography and contrast enhanced spin echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Roditi, Giles H.; Hartnell, George G.; Cohen, Mylan C

    2000-10-01

    AIM: Myocarditis is probably under-diagnosed with clinical criteria generally used for diagnosis. Magnetic resonance imaging (MRI) has shown promise in detecting heart muscle disorders and we set out to assess the role of cine magnetic resonance angiography (MRA) and contrast enhancement in myocarditis, as there is a need for a non-invasive tool that can aid prognosis and follow-up. MATERIALS AND METHODS: Twenty patients were evaluated with T1 SE pre- and post-gadolinium enhancement and cine MRA. Four patients were histologically proven to have myocarditis, eight others were diagnosed as having myocarditis by clinical criteria and eight did not have myocarditis. Images were evaluated in a blinded fashion for regional wall motion abnormality and contrast enhancement pattern. Analysis of contrast enhancement by signal intensity measurement was also performed. RESULTS: Focal myocardial enhancement with associated regional wall motion abnormality correlated with myocarditis in 10 out of 12 patients, two patients with abnormal focal enhancement alone also clinically had myocarditis. None of the non-myocarditis patients showed abnormal focal enhancement. Enhancement analysis suggests that focal corrected myocardial enhancement of > 40% is abnormal. CONCLUSION: In the correct clinical context, focal myocardial enhancement on spin echo MRI strongly supports a diagnosis of myocarditis, especially when associated with regional wall motion abnormality. Roditi, G.H. (2000)

  17. High speed functional magnetic resonance imaging

    CERN Document Server

    Gibson, A M

    2002-01-01

    The work in this thesis has been undertaken by the except where indicated by reference, within the Magnetic Resonance Centre at the University of Nottingham during the period from October 1998 to October 2001. This thesis documents the implementation and application of a novel high-speed imaging technique, the multi-slice, echo shifted, echo planar imaging technique. This was implemented on the Nottingham 3 T imaging system, for functional magnetic resonance imaging. The technique uses echo shifting over the slices in a multi-slice echo planar imaging acquisition scheme, making the echo time longer than the repetition time per slice. This allows for rapid volumar sampling of the blood oxygen level dependent effect in the human brain. The new high-speed technique was used to investigate the variability of measuring the timing differences between haemodynamic responses, at the same cortical location, to simple cued motor tasks. The technique was also used in an investigation into motor cortex functional connect...

  18. A New Definition and Classification of Echo Questions

    Institute of Scientific and Technical Information of China (English)

    王瑾琼; 张岭

    2014-01-01

    The frequent occurrence of echo questions in people’s daily conversation has not arouse enough interest in linguists yet; meanwhile, different scholars hold different views when it comes to such questions as how far the boundary of echo ques-tions should extend, how they should be classified, etc. The following paper gives the echo question a new definition and classifi-cation. It hopes to provide a more persuasive reference of future researchers.

  19. An Acoustic Echo Cancellation System based on Adaptive Algorithm

    OpenAIRE

    2012-01-01

    Adaptive filtering technique is one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering technique is widely used in many applications, including echo cancellation, adaptive noise cancellation, adaptive beam forming and adaptive equalization. Acoustic echo is a common occurrence in today’s telecommunication systems. The distraction caused by the acoustic echo, reduces the speech quality in the communic...

  20. Pseudospin Dynamical Symetry in Nuclei

    CERN Document Server

    Ginocchio, Joseph N

    2014-01-01

    Pseudospin symmetry has been useful in understanding atomic nuclei. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from this insight into the relativistic origins of pseudospin symmetry. Since in nuclei the sum of the scalar and vector potentials is not zero but is small, we discuss preliminary investigations into the conditions on the potentials to produce partial dynamic pseudospin symmetry. Finally we show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei.

  1. Physics with loosely bound nuclei

    Indian Academy of Sciences (India)

    Chhanda Samanta

    2001-08-01

    The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to find a consistent picture for the unstable nuclei starting from their stable counterparts. Some significant differences in the structure and reaction mechanisms are found.

  2. Decoherence and Spin Echo in Biological Systems

    CERN Document Server

    Nesterov, Alexander I

    2015-01-01

    The spin echo approach is extended to include bio-complexes for which the interaction with dynamical noise is strong. Significant restoration of the free induction decay signal due to homogeneous (decoherence) and inhomogeneous (dephasing) broadening is demonstrated analytically and numerically, for both an individual dimer of interacting chlorophylls and for an ensemble of dimers. This approach is based on an exact and closed system of ordinary differential equations that can be easily solved for a wide range of parameters that are relevant for bio-applications.

  3. Decoherence alias Loschmidt echo of the environment

    CERN Document Server

    Gorin, T; Seligman, T H; Strunz, W T

    2004-01-01

    Entanglement between a quantum system and its environment leads to loss of coherence in the former. In general, the temporal fate of coherences is complicated. Here, we establish the connection between decoherence of a central system and fidelity decay in the environment for a variety of situations, including both, energy conserving and dissipative couplings. We show how properties of unitary time evolution of the environment can be inferred from the non-unitary evolution of coherences in the central system. This opens up promising ways for measuring Loschmidt echoes in a variety of situations.

  4. Preprocessing of ionospheric echo Doppler spectra

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHAO Zhengyu; WANG Feng; SU Fanfan

    2007-01-01

    The real-time information of the distant ionosphere can be acquired by using the Wuhan ionospheric oblique backscattering sounding system(WIOBSS),which adopts a discontinuous wave mechanism.After the characteristics of the ionospheric echo Doppler spectra were analyzed,the signal preprocessing was developed in this paper,which aimed at improving the Doppler spectra.The results indicate that the preprocessing not only makes the system acquire a higher ability of target detection but also suppresses the radio frequency interference by 6-7 dB.

  5. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  7. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  8. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  9. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  10. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    Science.gov (United States)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  11. MAGNETS

    Science.gov (United States)

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  12. Differentiation of breast cancer from fibroadenoma with dual-echo dynamic contrast-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Shiwei Wang

    Full Text Available Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI of the breast is a routinely used imaging method which is highly sensitive for detecting breast malignancy. Specificity, though, remains suboptimal. Dynamic susceptibility contrast magnetic resonance imaging (DSC MRI, an alternative dynamic contrast imaging technique, evaluates perfusion-related parameters unique from DCE MRI. Previous work has shown that the combination of DSC MRI with DCE MRI can improve diagnostic specificity, though an additional administration of intravenous contrast is required. Dual-echo MRI can measure both T1W DCE MRI and T2*W DSC MRI parameters with a single contrast bolus, but has not been previously implemented in breast imaging. We have developed a dual-echo gradient-echo sequence to perform such simultaneous measurements in the breast, and use it to calculate the semi-quantitative T1W and T2*W related parameters such as peak enhancement ratio, time of maximal enhancement, regional blood flow, and regional blood volume in 20 malignant lesions and 10 benign fibroadenomas in 38 patients. Imaging parameters were compared to surgical or biopsy obtained tissue samples. Receiver operating characteristic (ROC curves and area under the ROC curves were calculated for each parameter and combination of parameters. The time of maximal enhancement derived from DCE MRI had a 90% sensitivity and 69% specificity for predicting malignancy. When combined with DSC MRI derived regional blood flow and volume parameters, sensitivity remained unchanged at 90% but specificity increased to 80%. In conclusion, we show that dual-echo MRI with a single administration of contrast agent can simultaneously measure both T1W and T2*W related perfusion and kinetic parameters in the breast and the combination of DCE MRI and DSC MRI parameters improves the diagnostic performance of breast MRI to differentiate breast cancer from benign fibroadenomas.

  13. Symmetry breaking nuclear quadrupole coupling tensor orientation for cesium-133 nuclei located in a mirror plane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Jin Eun [Dept. of Chemistry (BK21 plus) and Research Institute of Natural Science, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Kang Yeol [School of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2016-11-15

    Simultaneous multiple data set fits of all transition peaks of {sup 133}Cs nuclei enabled us to obtain accurate cesium-133 nuclear magnetic resonance (NMR) parameters and Euler angles between the principal axis systems of the chemical shift (CS) and quadrupole coupling (Q) tensors of {sup 133}Cs nuclei in Cs{sub 2}CrO{sub 4} . Although in a previous study of Cs{sub 2}CrO{sub 4} by Power et al. (W. P. Power, S. Mooibroek, R. E. Wasylishen, T. S. Cameron, J. Phys. Chem. 1994, 98, 1552), one central transition was observed for cesium sites 1 and 2 in the {sup 133}Cs NMR spectra and one Euler angle between the CS tensors and Q tensors was obtained as 52° and 7° for cesium sites 1 and 2, respectively, the present single-crystal {sup 133}Cs NMR measurements found two Euler angles (10(2)°, 51.9(1)°, 0°) for site 1 and two central transition peaks for site 2. Three principal components of the CS tensor for Cs1 are oriented along the crystallographic a, b, and c axes, whereas none of the principal components of the Q tensor for Cs1 are oriented along the crystal axes. The principal component V{sub 22} of the Q tensor for Cs1 is tilted 10° from the b axis in the bc plane, and the other two components are not located in the ac plane. Therefore, we have found that the requirement that “the quadrupole coupling tensor for a nucleus located in a mirror plane has one principal axis perpendicular to the mirror plane” cannot be applied to Cs1. On the other hand, δ{sub 11} and V{sub 22} for Cs2 are aligned along the b axis, and the other components of the CS and Q tensors deviate at an angle of 1.4(1)° and 10.1(1)°, respectively, from the a and c axes in the ac plane. A distortion-free powder {sup 133}Cs NMR spectrum of Cs{sub 2}CrO{sub 4} was measured using a solid-state spin echo technique.

  14. Light Echoes of Transients and Variables

    Science.gov (United States)

    Rest, Armin

    2012-04-01

    abstract-type="normal">SummaryTycho Brahe's observations of a supernova in 1572 challenged the contemporaneous European view of the cosmos that the celestial realm was unchanging. 439 years later we have once again seen the light that Tycho saw, as some of the light from the 1572 supernova is reflected off dust and is only now reaching Earth. These light echoes, as well as ones detected from other transients and variables, give us a very rare opportunity in astronomy: direct observation of the cause (the supernova explosion) and the effect (the supernova remnant) of the same astronomical event. Furthermore, in some cases we can compare light echoes at different angles around a supernova remnant, and thus investigate possible asymmetry in the supernova explosion. In addition, in cases where the scattering dust is favorably positioned, the geometric distance to the SN remnant can be determined using polarization measurements. These techniques have been successfully applied to various transients in the last decade, and the talk gave an overview of the scientific results and techniques, with a particular focus on the challenges we will face in the current and upcoming wide-field time-domain surveys.

  15. Caustic echoes from a Schwarzschild black hole

    CERN Document Server

    Zenginoğlu, Anıl

    2012-01-01

    We present the first numerical construction of the scalar Schwarzschild Green function in the time-domain, which reveals several universal features of wave propagation in black hole spacetimes. We demonstrate the trapping of energy near the photon sphere and confirm its exponential decay. The trapped wavefront propagates through caustics resulting in echoes that propagate to infinity. The arrival times and the decay rate of these caustic echoes are consistent with propagation along null geodesics and the large l-limit of quasinormal modes. We show that the four-fold singularity structure of the retarded Green function is due to the well-known action of a Hilbert transform on the trapped wavefront at caustics. A two-fold cycle is obtained for degenerate source-observer configurations along the caustic line, where the energy amplification increases with an inverse power of the scale of the source. Finally, we discuss the tail piece of the solution due to propagation within the light cone, up to and including nu...

  16. Impact echo scanning of concrete and wood

    Science.gov (United States)

    Sack, Dennis A.; Olson, Larry D.; Aouad, Marwan F.

    1995-05-01

    This paper presents an overview of a new nondestructive testing (NDT) system that allows rapid nondestructive assessment of many types of structural materials. The new system is based on scanning impact echo (IE), using a rolling receiver, digitally controlled impact source, and a distance measurement wheel integrated into a system that is capable of performing over 3000 IE tests per hour. The system has been successfully used on both concrete and wood for condition assessment. Previously, impact echo testing has been limited to point-by-point testing at rates of typically 30 - 60 points per hour. The new system is usable on any flat, relatively smooth surface such as floor slabs, pavements, walls, columns, beams, etc. In addition to IE scanning, the new system has recently been expanded to allow the performance of spectral analysis of surface waves (SASW) scanning on concrete and wood. The SASW method allows the measurement of material stiffness (modulus) versus depth, and therefore can give a profile of the material condition versus depth. Included in this paper are brief discussions of the IE and SASW methods, the scanner system hardware, and the software which was developed to enable efficient processing, analysis, and display of the test data and results. Also included are sample data plots and a case history presentation of the use of the system in the field, including one in which 23,000 IE tests were performed on an elevated floor slab in approximately 16 hours of testing time.

  17. The EChO science case

    CERN Document Server

    Tinetti, Giovanna; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Allard, Bruce Swinyard France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Beaulieu, Mariarosa Zapatero-Osorio Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Banaszkiewicz, Mark Swain Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; Foresto, Vincent Coudé du; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Adriani, Gonzalo Ramos Zapata Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Abe, Berend Winter L; Abreu, M; Achilleos, N; Ade, P; Adybekian, V; Affer, L; Agnor, C; Agundez, M; Alard, C; Alcala, J; Prieto, C Allende; Floriano, F J Alonso; Altieri, F; Iglesias, C A Alvarez; Amado, P; Andersen, A; Aylward, A; Baffa, C; Bakos, G; Ballerini, P; Banaszkiewicz, M; Barber, R J; Barrado, D; Barton, E J; Batista, V; Bellucci, G; Avilés, J A Belmonte; Berry, D; Bézard, B; Biondi, D; Błęcka, M; Boisse, I; Bonfond, B; Bordé, P; Börner, P; Bouy, H; Brown, L; Buchhave, L; Budaj, J; Bulgarelli, A; Burleigh, M; Cabral, A; Capria, M T; Cassan, A; Cavarroc, C; Cecchi-Pestellini, C; Cerulli, R; Chadney, J; Chamberlain, S; Charnoz, S; Jessen, N Christian; Ciaravella, A; Claret, A; Claudi, R; Coates, A; Cole, R; Collura, A; Cordier, D; Covino, E; Danielski, C; Damasso, M; Deeg, H J; Delgado-Mena, E; Del Vecchio, C; Demangeon, O; De Sio, A; De Wit, J; Dobrijévic, M; Doel, P; Dominic, C; Dorfi, E; Eales, S; Eiroa, C; Contreras, M Espinoza; Esposito, M; Eymet, V; Fabrizio, N; Fernández, M; Castella, B Femenía; Figueira, P; Filacchione, G; Fletcher, L; Focardi, M; Fossey, S; Fouqué, P; Frith, J; Galand, M; Gambicorti, L; Gaulme, P; López, R J García; Garcia-Piquer, A; Gear, W; Gerard, J -C; Gesa, L; Giani, E; Gianotti, F; Gillon, M; Giro, E; Giuranna, M; Gomez, H; Gomez-Leal, I; Hernandez, J Gonzalez; Merino, B González; Graczyk, R; Grassi, D; Guardia, J; Guio, P; Gustin, J; Hargrave, P; Haigh, J; Hébrard, E; Heiter, U; Heredero, R L; Herrero, E; Hersant, F; Heyrovsky, D; Hollis, M; Hubert, B; Hueso, R; Israelian, G; Iro, N; Irwin, P; Jacquemoud, S; Jones, G; Jones, H; Justtanont, K; Kehoe, T; Kerschbaum, F; Kerins, E; Kervella, P; Kipping, D; Koskinen, T; Krupp, N; Lahav, O; Laken, B; Lanza, N; Lellouch, E; Leto, G; Goldaracena, J Licandro; Lithgow-Bertelloni, C; Liu, S J; Cicero, U Lo; Lodieu, N; Lognonné, P; Lopez-Puertas, M; Lopez-Valverde, M A; Rasmussen, I Lundgaard; Luntzer, A; Machado, P; MacTavish, C; Maggio, A; Maillard, J -P; Magnes, W; Maldonado, J; Mall, U; Marquette, J -B; Mauskopf, P; Massi, F; Maurin, A -S; Medvedev, A; Michaut, C; Miles-Paez, P; Montalto, M; Rodríguez, P Montañés; Monteiro, M; Montes, D; Morais, H; Morales, J C; Morales-Calderón, M; Morello, G; Martín, A Moro; Moses, J; Bedon, A Moya; Alcaino, F Murgas; Oliva, E; Orton, G; Palla, F; Pancrazzi, M; Pantin, E; Parmentier, V; Parviainen, H; Ramírez, K Y Peña; Peralta, J; Perez-Hoyos, S; Petrov, R; Pezzuto, S; Pietrzak, R; Pilat-Lohinger, E; Piskunov, N; Prinja, R; Prisinzano, L; Polichtchouk, I; Poretti, E; Radioti, A; Ramos, A A; Rank-Lüftinger, T; Read, P; Readorn, K; López, R Rebolo; Rebordão, J; Rengel, M; Rezac, L; Rocchetto, M; Rodler, F; Béjar, V J Sánchez; Lavega, A Sanchez; Sanromá, E; Santos, N; Forcada, J Sanz; Scandariato, G; Schmider, F -X; Scholz, A; Scuderi, S; Sethenadh, J; Shore, S; Showman, A; Sicardy, B; Sitek, P; Smith, A; Soret, L; Sousa, S; Stiepen, A; Stolarski, M; Strazzulla, G; Tabernero, H M; Tanga, P; Tecsa, M; Temple, J; Terenzi, L; Tessenyi, M; Testi, L; Thompson, S; Thrastarson, H; Tingley, B W; Trifoglio, M; Torres, J Martín; Tozzi, A; Turrini, D; Varley, R; Vakili, F; de Val-Borro, M; Valdivieso, M L; Venot, O; Villaver, E; Vinatier, S; Viti, S; Waldmann, I; Waltham, D; Ward-Thompson, D; Waters, R; Watkins, C; Watson, D; Wawer, P; Wawrzaszk, A; White, G; Widemann, T; Winek, W; Wiśniowski, T; Yelle, R; Yung, Y; Yurchenko, S N

    2015-01-01

    The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? What causes the exceptional diversity observed as compared to the Solar System? EChO (Exoplanet Characterisation Observatory) has been designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large and diverse planet sample within its four-year mission lifetime. EChO can target the atmospheres of super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300K-3000K) of F to M-type host stars. Over the next ten years, several new ground- and space-based transit surveys will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on find...

  18. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  19. From heavy nuclei to super-heavy nuclei

    CERN Document Server

    Theisen, C

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei.

  20. Access to long-term optical memories using photon echoes retrieved from electron spins in semiconductor quantum wells

    Science.gov (United States)

    Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2016-10-01

    We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.

  1. Long-lasting inverted photon echo and optical memory

    Energy Technology Data Exchange (ETDEWEB)

    Akhmediev, N.N.; Borisov, B.S.; Zuikov, V.A.; Samartsev, V.V.; Stel' makh, M.F.

    1988-06-01

    Experimental results are presented on the formation of the long-lasting inverted stimulated photon echo in the LaF3:Pr(3+) crystal. The physics of this phenomenon is explained on the basis of a three-level model. The feasibility of using this echo effect in the development of optical-memory systems is considered. 18 references.

  2. Picosecond Photon Echoes Stimulated from an Accumulated Grating

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1979-01-01

    It is shown that in optical transitions with a bottleneck, a mode-locked cw dye laser may be used to generate and heterodyne detect picosecond photon echoes. These echoes are stimulated from an accumulated grating in the electronic ground state formed by a train of twin excitation pulses of constant

  3. Mean grain size mapping with single-beam echo sounders

    NARCIS (Netherlands)

    Van Walree, P.A.; Ainslie, M.A.; Simons, D.G.

    2006-01-01

    Echo energies of single-beam echo sounders are inverted for the sediment mean grain size via a combination of theoretical and empirical relationships. In situ measurements of the seafloor mass density have revealed the presence of a thin transition layer between the water and the sediment. Within th

  4. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  5. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  7. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  8. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  9. Echoes from Ancient supernovae in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Suntzeff, N B; Olsen, K; Prieto, J L; Smith, R C; Welch, D L; Becker, A; Bergmann, M; Clocchiatti, A; Cook, K; Garg, A; Huber, M; Miknaitis, G; Minniti, D; Nikolaev, S; Stubbs, C

    2005-06-15

    In principle, historical supernovae could still be visible as scattered-light echoes even centuries later [1, 2]. Searches for surface brightness variations using photographic plates have not recovered any echoes in the regions of historical Galactic supernovae [3]. Using differenced images, our SuperMACHO collaboration has discovered three faint new variable surface brightness complexes with high apparent proper motion pointing back to well-defined positions in the Large Magellanic Cloud (LMC). These correspond to three of the six smallest (and likely youngest) supernova remnants believed to be due to thermonuclear (Type Ia) supernovae [4]. A lower limit to the age of these remnants and echoes is 200 years given the lack of any reported LMC supernovae until 1987. The discovery of historical supernova echoes in the LMC suggests that similar echoes for Galactic supernovae such as Tycho, Kepler, Cas A, or SN1006 could be visible using standard image differencing techniques.

  10. Single-shot gradient-assisted photon echo electronic spectroscopy.

    Science.gov (United States)

    Harel, Elad; Fidler, Andrew F; Engel, Gregory S

    2011-04-28

    Two-dimensional electronic spectroscopy (2D ES) maps the electronic structure of complex systems on a femtosecond time scale. While analogous to multidimensional NMR spectroscopy, 2D optical spectroscopy differs significantly in its implementation. Yet, 2D Fourier spectroscopies still require point-by-point sampling of the time delay between two pulses responsible for creating quantum coherence among states. Unlike NMR, achieving the requisite phase stability at optical frequencies between these pulse pairs remains experimentally challenging. Nonetheless, 2D optical spectroscopy has been successfully demonstrated by combining passive and active phase stabilization along with precise control of optical delays and long-term temperature stability, although the widespread adoption of 2D ES has been significantly hampered by these technical challenges. Here, we exploit an analogy to magnetic resonance imaging (MRI) to demonstrate a single-shot method capable of acquiring the entire 2D spectrum in a single laser shot using only conventional optics. Unlike point-by-point sampling protocols typically used to record 2D spectra, this method, which we call GRadient-Assisted Photon Echo (GRAPE) spectroscopy, largely eliminates phase errors while reducing the acquisition time by orders of magnitude. By incorporating a spatiotemporal encoding of the nonlinear polarization along the excitation frequency axis of the 2D spectrum, GRAPE spectroscopy achieves no loss in signal while simultaneously reducing overall noise. Here, we describe the principles of GRAPE spectroscopy and discuss associated experimental considerations.

  11. Photodissociation of neutron deficient nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2006-03-15

    The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)

  12. Studies of exotic light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, J.

    1976-05-01

    For neutron-deficient nuclei, extension of the T/sub z/ = --3/2 series of strong beta-delayed proton precursors to /sup 61/Ge is discussed. For neutron-excess nuclei, heavy-ion induced, multi-nucleon transfer reaction studies of masses and energy levels of 2sld shell nuclei with T/sub z/ greater than or equal to 5/2 are covered. In addition, preliminary attempts to employ the (/sup 7/Li,/sup 2/He) reaction for the latter studies are shown; a new detection system capable of observing unbound final states as reaction products is demonstrated via investigations of the (..cap alpha..,/sup 2/He) reaction.

  13. Photoproduction of mesons off nuclei

    CERN Document Server

    Krusche, B

    2011-01-01

    Recent results for the photoproduction of mesons off nuclei are reviewed. These experiments have been performed for two major lines of research related to the properties of the strong interaction. The investigation of nucleon resonances requires light nuclei as targets for the extraction of the isospin composition of the electromagnetic excitations. This is done with quasi-free meson photoproduction off the bound neutron and supplemented with the measurement of coherent photoproduction reactions, serving as spin and/or isospin filters. Furthermore, photoproduction from light and heavy nuclei is a very efficient tool for the study of the interactions of mesons with nuclear matter and the in-medium properties of hadrons. Experiments are currently rapidly developing due to the combination of high quality tagged (and polarized) photon beams with state-of-the-art 4pi detectors and polarized targets.

  14. Spin Echo Studies on Cellular Water

    CERN Document Server

    Chang, D C; Nichols, B L; Rorschach, H E

    2014-01-01

    Previous studies indicated that the physical state of cellular water could be significantly different from pure liquid water. To experimentally investigate this possibility, we conducted a series of spin-echo NMR measurements on water protons in rat skeletal muscle. Our result indicated that the spin-lattice relaxation time and the spin-spin relaxation time of cellular water protons are both significantly shorter than that of pure water (by 4.3-fold and 34-fold, respectively). Furthermore, the spin diffusion coefficient of water proton is almost 1/2 of that of pure water. These data suggest that cellular water is in a more ordered state in comparison to pure water.

  15. Echo chambers in the age of misinformation

    CERN Document Server

    Del Vicario, Michela; Zollo, Fabiana; Petroni, Fabio; Scala, Antonio; Caldarelli, Guido; Stanley, H Eugene; Quattrociocchi, Walter

    2015-01-01

    The wide availability of user-provided content in online social media facilitates the aggregation of people around common interests, worldviews, and narratives. Despite the enthusiastic rhetoric on the part of some that this process generates "collective intelligence", the WWW also allows the rapid dissemination of unsubstantiated conspiracy theories that often elicite rapid, large, but naive social responses such as the recent case of Jade Helm 15 -- where a simple military exercise turned out to be perceived as the beginning of the civil war in the US. We study how Facebook users consume information related to two different kinds of narrative: scientific and conspiracy news. We find that although consumers of scientific and conspiracy stories present similar consumption patterns with respect to content, the sizes of the spreading cascades differ. Homogeneity appears to be the primary driver for the diffusion of contents, but each echo chamber has its own cascade dynamics. To mimic these dynamics, we introdu...

  16. Theoretical aspects of nonlinear echo image system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ruiquan; FENG Shaosong

    2003-01-01

    In order to develop the nonlinear echo image system to diagnose pathological changes in biological tissue , a simple physical model to analyse the character of nonlinear reflected wave in biological medium is postulated. The propagation of large amplitude plane sound wave in layered biological media is analysed for the one dimensional case by the method of successive approximation and the expression for the second order wave reflected from any interface of layered biological media is obtained. The relations between the second order reflection coefficients and the nonlinear parameters of medium below the interface are studied in three layers interfaces. Finally, the second order reflection coefficients of four layered media are calculated numerically. The results indicate that the nonlinear parameter B/A of each layer of biological media can be determined by the reflection method.

  17. Dynamic hysteresis between gradient echo and spin echo attenuations in dynamic susceptibility contrast imaging.

    Science.gov (United States)

    Xu, Chao; Kiselev, Valerij G; Möller, Harald E; Fiebach, Jochen B

    2013-04-01

    Perfusion measurements using dynamic susceptibility contrast imaging provide additional information about the mean vessel size of microvasculature when supplemented with a dual gradient echo (GE) - spin echo (SE) contrast. Dynamic increase in the corresponding transverse relaxation rate constant changes, ΔR2GE and ΔR2SE , forms a loop on the (Δ R2SE3/2, ΔR2GE ) plane, rather than a reversible line. The shape of the loop and the direction of its passage differentiate between healthy brain and pathological tissue, such as tumour and ischemic tissue. By considering a tree model of microvasculature, the direction of the loop is found to be influenced mainly by the relative arterial and venous blood volume, as well as the tracer bolus dispersion. A parameter Λ is proposed to characterize the direction and shape of the loop, which might be considered as a novel imaging marker for describing the pathology of cerebrovascular network.

  18. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  19. Octupole shapes in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.

    1994-08-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.

  20. International Symposium on Exotic Nuclei

    CERN Document Server

    Sobolev, Yu G; EXON-2014

    2015-01-01

    The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects. This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).

  1. PDFs from nucleons to nuclei

    CERN Document Server

    Accardi, Alberto

    2016-01-01

    I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  3. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  4. The effect of multiple scattering on the aspect sensitivity and polarization of radio auroral echoes

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, E.F.; Moorcroft, D.R. (Western Ontario, University, London (Canada))

    1992-04-01

    A Monte Carlo model of radio wave scattering in the auroral electrojet has been developed to investigate multiple scattering of radio auroral echoes. Using this model, predictions of the aspect angle behavior of first-, second-, and third-order scattered power have been made. The results indicate that multiple scattering may be an important effect for VHF radars which observe the auroral E region at large magnetic aspect angles. The model shows that linearly polarized radio waves can become depolarized because of multiple scattering if the radio transmitter is horizontally polarized but not if the radio transmitter is vertically polarized. 52 refs.

  5. Development of Instrumentation for Spin-Echo Induced Spatial Beam Modulations

    DEFF Research Database (Denmark)

    Sales, Morten

    Spin-Echo Modulated Small Angle Neutron Scattering in Time-of-Flight mode (ToF SEMSANS) is an emerging technique extending the measurable phase space covered by neutron scattering. Using inclined magnetic field surfaces, (very) small angle scattering from a sample can be mapped into the spin...... Institute Delft, TUDelft, and resolve the modulation using absorption gratings in front of a detector without spatial resolution, i.e. a simple counting detector. Combining this with a virtual copy of the instrument, built using the Monte Carlo Ray-Tracing simulation package McStas, we were able to expand...

  6. Partial Dynamical Symmetries in Nuclei

    CERN Document Server

    Leviatan, A

    2000-01-01

    Partial dynamical symmetries (PDS) are shown to be relevant to the interpretation of the $K=0_2$ band and to the occurrence of F-spin multiplets of ground and scissors bands in deformed nuclei. Hamiltonians with bosonic and fermionic PDS are presented.

  7. Multiphonon giant resonances in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Bortignon, P.F. [Milan Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Milan (Italy); Emling, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1998-07-01

    We review the present knowledge of multiphonon giant resonances in nuclei. Theoretical concepts approaching the intrinsic structure and excitation mechanisms of multi-phonon states are discussed. The available experimental results are summarized, including a brief description of applied techniques. This review emphasizes electromagnetic excitations of double dipole resonances. Open questions and possible routes toward a solution are addressed. (orig.)

  8. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  9. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  10. Low energy + scattering on = nuclei

    Indian Academy of Sciences (India)

    Swapan Das; Arun K Jain

    2003-11-01

    The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.

  11. Thalamus parcellation using multi-modal feature classification and thalamic nuclei priors

    Science.gov (United States)

    Glaister, Jeffrey; Carass, Aaron; Stough, Joshua V.; Calabresi, Peter A.; Prince, Jerry L.

    2016-03-01

    Segmentation of the thalamus and thalamic nuclei is useful to quantify volumetric changes from neurodegenerative diseases. Most thalamus segmentation algorithms only use T1-weighted magnetic resonance images and current thalamic parcellation methods require manual interaction. Smaller nuclei, such as the lateral and medial geniculates, are challenging to locate due to their small size. We propose an automated segmentation algorithm using a set of features derived from diffusion tensor image (DTI) and thalamic nuclei location priors. After extracting features, a hierarchical random forest classifier is trained to locate the thalamus. A second random forest classifies thalamus voxels as belonging to one of six thalamic nuclei classes. The proposed algorithm was tested using a leave-one-out cross validation scheme and compared with state-of-the-art algorithms. The proposed algorithm has a higher Dice score compared to other methods for the whole thalamus and several nuclei.

  12. OPTESIM, a versatile toolbox for numerical simulation of electron spin echo envelope modulation (ESEEM) that features hybrid optimization and statistical assessment of parameters.

    Science.gov (United States)

    Sun, Li; Hernandez-Guzman, Jessica; Warncke, Kurt

    2009-09-01

    Electron spin echo envelope modulation (ESEEM) is a technique of pulsed-electron paramagnetic resonance (EPR) spectroscopy. The analyis of ESEEM data to extract information about the nuclear and electronic structure of a disordered (powder) paramagnetic system requires accurate and efficient numerical simulations. A single coupled nucleus of known nuclear g value (g(N)) and spin I=1 can have up to eight adjustable parameters in the nuclear part of the spin Hamiltonian. We have developed OPTESIM, an ESEEM simulation toolbox, for automated numerical simulation of powder two- and three-pulse one-dimensional ESEEM for arbitrary number (N) and type (I, g(N)) of coupled nuclei, and arbitrary mutual orientations of the hyperfine tensor principal axis systems for N>1. OPTESIM is based in the Matlab environment, and includes the following features: (1) a fast algorithm for translation of the spin Hamiltonian into simulated ESEEM, (2) different optimization methods that can be hybridized to achieve an efficient coarse-to-fine grained search of the parameter space and convergence to a global minimum, (3) statistical analysis of the simulation parameters, which allows the identification of simultaneous confidence regions at specific confidence levels. OPTESIM also includes a geometry-preserving spherical averaging algorithm as default for N>1, and global optimization over multiple experimental conditions, such as the dephasing time (tau) for three-pulse ESEEM, and external magnetic field values. Application examples for simulation of (14)N coupling (N=1, N=2) in biological and chemical model paramagnets are included. Automated, optimized simulations by using OPTESIM lead to a convergence on dramatically shorter time scales, relative to manual simulations.

  13. Pulsed electrically detected magnetic resonance study of spin relaxation and recombination in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fehr, Matthias; Behrends, Jan; Schnegg, Alexander; Lips, Klaus; Rech, Bernd [Helmholtz-Zentrum Berlin, Silizium Photovoltaik, Berlin (Germany); Astakhov, Oleksander; Finger, Friedhelm [Forschungszentrum Juelich (Germany). IEF-5 Photovoltaik

    2009-07-01

    We have investigated the influence of paramagnetic states on electronic transport processes in thin-film pin solar cells with pulsed Electrically Detected Magnetic Resonance (pEDMR) at X-Band frequency and low temperature (10 K). The solar cells consist of an intrinsic microcrystalline absorber layer and amorphous or microcrystalline n/p contacting layers. In addition to the identification of the participating paramagnetic centres by their g-factors, pEDMR can be used to study the dynamics of the electronic processes in detail. We present measurements of modified EPR pulse sequences in order to identify the dominating relaxation mechanisms within correlated solid-state spin-pairs. By this technique a monitoring of the spin and charge motion is possible. In the outlook we present measurements of the electron spin echo envelope and critically discuss modulations in terms of dipolar coupling within the spin-pairs or hyperfine couplings to surrounding nuclei.

  14. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir; Szomolanyi, Pavol [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Bratislava (Slovakia); Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Heule, Rahel; Bieri, Oliver [University of Basel Hospital, Division of Radiological Physics, Department of Radiology, Basel (Switzerland); Trattnig, Siegfried [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria)

    2016-06-15

    To assess the clinical relevance of T{sub 2} relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T{sub 2}-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T{sub 2} mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T{sub 2} values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T{sub 2} values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B{sub 1} and B{sub 0} changes. (orig.)

  15. Oblique echoes at unusually high frequencies in MARSIS-AIS measurements of the topside ionosphere of Mars

    Science.gov (United States)

    Fallows, Kathryn J.; Withers, Paul; Morgan, David

    2016-10-01

    The topside plasma density measurements from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on the Mars Express orbiter have been invaluable for studying the influence of the crustal magnetic fields on the distribution of plasma in the Mars ionosphere. A common feature, especially in the southern crustal field region, is an "oblique echo," or an off-nadir reflection consistent with the spacecraft passing by, or directly above, a localized region with a sharp gradient in electron density. These are often interpreted as regions where the ionosphere is heated by the solar wind fields and plasma which penetrate the ionosphere along vertical field lines.We present a subset of these oblique echoes which are characterized by reflections at frequencies much higher than those from the nadir ionosphere. If these are interpreted in the same way as typical return signals, where the frequency of the reflected signal is assumed to be the plasma frequency at the point of reflection, then these may be the highest plasma densities reported to date at Mars. In two cases, reflections are detected at the maximum sounding frequency of the instrument, 5.5 MHz, which corresponds to electron densities of 3.75x105 cm-3.These features are associated with strong, vertical magnetic fields, as expected for typical oblique echoes. However, they are only observed in regions where there is also an above-average likelihood of the field lines being open to the solar wind. This is consistent with the interpretation that these cusp-like regions can allow for interaction with the solar wind, but it is not yet clear whether these are an extreme case of "typical" oblique echoes, or whether these high-frequency echoes are caused by a unique physical process or observation geometry.

  16. New technique for single-scan T1 measurements using solid echoes. [for spin-lattice relaxation time

    Science.gov (United States)

    Burum, D. P.; Elleman, D. D.; Rhim, W. K.

    1978-01-01

    A simple technique for single-scan T1 measurements in solids is proposed and analyzed for single exponential spin-lattice relaxation. In this technique, the direct spin heating caused by the sampling process is significantly reduced in comparison with conventional techniques by utilizing the 'solid echo' to refocus the magnetization. The applicability of this technique to both the solid and liquid phases is demonstrated.

  17. First HF radar measurements of summer mesopause echoes at SURA

    Directory of Open Access Journals (Sweden)

    A. N. Karashtin

    Full Text Available HF sounding of the mesosphere was first carried out at SURA in summer 1994 at frequencies in the range 8–9 MHz using one of the sub-arrays of the SURA heating facility. The observations had a range resolution of 3 km. Almost all measurements indicated the presence of strong radar returns from altitudes between 83 and 90 km with features very similar to VHF measurements of mesopause summer echoes at mid-latitudes and polar mesopause summer echoes. In contrast to VHF observations, HF mesopause echoes are almost always present.

  18. First HF radar measurements of summer mesopause echoes at SURA

    Science.gov (United States)

    Karashtin, A. N.; Shlyugaev, Y. V.; Abramov, V. I.; Belov, I. F.; Berezin, I. V.; Bychkov, V. V.; Eryshev, E. B.; Komrakov, G. P.

    1997-07-01

    HF sounding of the mesosphere was first carried out at SURA in summer 1994 at frequencies in the range 8-9 MHz using one of the sub-arrays of the SURA heating facility. The observations had a range resolution of 3 km. Almost all measurements indicated the presence of strong radar returns from altitudes between 83 and 90 km with features very similar to VHF measurements of mesopause summer echoes at mid-latitudes and polar mesopause summer echoes. In contrast to VHF observations, HF mesopause echoes are almost always present.

  19. Quantification of hepatic iron concentration in chronic viral hepatitis: usefulness of T2-weighted single-shot spin-echo echo-planar MR imaging.

    Directory of Open Access Journals (Sweden)

    Tatsuyuki Tonan

    Full Text Available OBJECTIVE: To investigate the usefulness of single-shot spin-echo echo-planar imaging (SSEPI sequence for quantifying mild degree of hepatic iron stores in patients with viral hepatitis. METHODS: This retrospective study included 34 patients with chronic viral hepatitis/cirrhosis who had undergone histological investigation and magnetic resonance imaging with T2-weighted gradient-recalled echo sequence (T2-GRE and diffusion-weighted SSEPI sequence with b-factors of 0 s/mm(2 (T2-EPI, 500 s/mm(2 (DW-EPI-500, and 1000 s/mm(2 (DW-EPI-1000. The correlation between the liver-to-muscle signal intensity ratio, which was generated by regions of interest placed in the liver and paraspinous muscles of each sequence image, and the hepatic iron concentration (µmol/g dry liver, which was assessed by spectrophotometry, was analyzed by linear regression using a spline model. Akaike information criterion (AIC was used to select the optimal model. RESULTS: Mean ± standard deviation of the hepatic iron concentration quantified by spectrophotometry was 24.6 ± 16.4 (range, 5.5 to 83.2 µmol/g dry liver. DW-EPI correlated more closely with hepatic iron concentration than T2-GRE (R square values: 0.75 for T2-EPI, 0.69 for DW-EPI-500, 0.62 for DW-EPI-1000, and 0.61 for T2-GRE, respectively, all P<0.0001. Using the AIC, the regression model for T2-EPI generated by spline model was optimal because of lowest cross validation error. CONCLUSION: T2-EPI was sensitive to hepatic iron, and might be a more useful sequence for quantifying mild degree of hepatic iron stores in patients with chronic viral hepatitis.

  20. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C. [Gemini Observatory, Casilla 603, La Serena (Chile); Holhjem, K. [SOAR Telescope, Casilla 603, La Serena (Chile)

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  1. On the deceleration of relativistic jets in active galactic nuclei- I. Radiation drag

    Science.gov (United States)

    Beskin, V. S.; Chernoglazov, A. V.

    2016-12-01

    Deceleration of relativistic jets from active galactic nuclei (AGNs) detected recently by the Monitoring Of Jets in Active galactic nuclei with Very Long Baseline Array Experiments (MOJAVE) team is discussed in connection with the interaction of the jet material with an external photon field. The appropriate energy density of the isotropic photon field necessary to decelerate jets is determined. It is shown that disturbances of the electric potential and magnetic surfaces play an important role in the general dynamics of particle deceleration.

  2. Applications of Floquet-Magnus expansion, average Hamiltonian theory and Fer expansion to study interactions in solid state NMR when irradiated with the magic-echo sequence.

    Science.gov (United States)

    Mananga, Eugene Stephane

    2013-01-01

    This work presents the possibility of applying the Floquet-Magnus expansion and the Fer expansion approaches to the most useful interactions known in solid-state nuclear magnetic resonance using the magic-echo scheme. The results of the effective Hamiltonians of these theories and average Hamiltonian theory are presented.

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  4. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  5. MAGNET

    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  6. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  7. Echoes in X-ray Binaries

    CERN Document Server

    O'Brien, K; Hynes, R; Chen, W; Haswell, C; Still, M

    2002-01-01

    We present a method of analysing the correlated X-ray and optical/UV variability in X-ray binaries, using the observed time delays between the X-ray driving lightcurves and their reprocessed optical echoes. This allows us to determine the distribution of reprocessing sites within the binary. We model the time-delay transfer functions by simulating the distribution of reprocessing regions, using geometrical and binary parameters. We construct best-fit time-delay transfer functions, showing the regions in the binary responsible for the reprocessing of X-rays. We have applied this model to observations of the Soft X-ray Transient, GRO j1655-40. We find the optical variability lags the X-ray variability with a mean time delay of 19.3$pm{2.2}$ seconds. This means that the outer regions of the accretion disc are the dominant reprocessing site in this system. On fitting the data to a simple geometric model, we derive a best-fit disk half-opening angle of 13.5$^{+2.1}_{-2.8}$ degrees, which is similar to that observe...

  8. Decoupled echo state networks with lateral inhibition.

    Science.gov (United States)

    Xue, Yanbo; Yang, Le; Haykin, Simon

    2007-04-01

    Building on some prior work, in this paper we describe a novel structure termed the decoupled echo state network (DESN) involving the use of lateral inhibition. Two low-complexity implementation schemes, namely, the DESN with reservoir prediction (DESN + RP) and DESN with maximum available information (DESN + MaxInfo), are developed: (1) In the multiple superimposed oscillator (MSO) problem, DESN + MaxInfo exhibits three important attributes: lower generalization mean-square error (MSE), better robustness with respect to the random generation of reservoir weight matrix and feedback connections, and robustness to variations in the sparseness of reservoir weight matrix, compared to DESN + RP. (2) For a noiseless nonlinear prediction task, DESN + RP outperforms the DESN + MaxInfo and single reservoir-based ESN approach in terms of lower prediction MSE and better robustness to a change in the number of inputs and sparsity of the reservoir weight matrix. Finally, in a real-life prediction task using noisy sea clutter data, both schemes exhibit higher prediction accuracy and successful design ratio than a conventional ESN with a single reservoir.

  9. Geomagnetic control of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    J. Bremer

    Full Text Available Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E from 1994 until 1997 polar mesosphere summer echoes (PMSE have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E. During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.

    Keywords: Ionosphere (auroral ionosphere - Magnetospheric physics (energetic particles, precipitating - Radio science (remote sensing

  10. Resolution Improvement in Multidimensional Nuclear Magnetic Resonance Spectroscopy of Proteins; Amelioration de la resolution dans la resonance magnetique nucleaire multidimensionnelle des proteines

    Energy Technology Data Exchange (ETDEWEB)

    Duma, L

    2004-07-01

    The work presented in this thesis is concerned with both liquid-state and solid-state nuclear magnetic resonance (NMR) spectroscopy. Most of this work is devoted to the investigation by solid-state NMR of C{sup 13}-enriched compounds with the principal aim of presenting techniques devised for further improving the spectral resolution in multidimensional NMR of microcrystalline proteins. In fully C{sup 13}-labelled compounds, the J-coupling induces a broadening of the carbon lineshapes. We show that spin-state-selective technique called IPAP can be successfully combined with standard polarisation transfer schemes in order to remove the J-broadening in multidimensional solid-state NMR correlation experiments of fully C{sup 13}-enriched proteins. We present subsequently two techniques tailored for liquid-state NMR spectroscopy. The carbon directly detected techniques provide chemical shift information for all backbone hetero-nuclei. They are very attracting for the study of large bio-molecular systems or for the investigation of paramagnetic proteins. In the last part of this thesis, we study the spin-echo J-modulation for homonuclear two-spin 1/2 systems. Under magic-angle spinning, the theory of J-induced spin-echo modulation allows to derive a set of modulation regimes which give a spin-echo modulation exactly equal to the J-coupling. We show that the chemical-shift anisotropy and the dipolar interaction tend to stabilize the spin-echo J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing C{sup 13} spin pairs. (author)

  11. Clinical application of gradient echo sequences with prolonged repetition times

    Energy Technology Data Exchange (ETDEWEB)

    Tiling, R.; Fink, U.; Deimling, M.; Bauer, W.M.; Yousry, T.; Krauss, B.

    1988-09-01

    Studies designed to optimise image contrasts of gradient echo sequences showed, that especially repetition times between 250 and 500 ms in combination with adequate echo times and flip angles provide new image contrasts. The clinical purpose of gradient echo sequences with longer TR was systematically evaluated in 450 patients. A major advantage of GE sequences was the low signal intensity of fat and bone tissue. On the other hand differnt pathologic changes showed a high signal intensity in comparison to T/sub 2/ weighted spin echo sequences as well. With the possibility of multiple slices GE sequences were of outstanding diagnostic value especially in MR of soft tissue and of the musculoskeletal system. T/sub 2/ weighted SE sequences provided no additional informations and could therefore be omitted in a great number of examinations.

  12. Classification of Underwater Target Echoes Based on Auditory Perception Characteristics

    Institute of Scientific and Technical Information of China (English)

    Xiukun Li; Xiangxia Meng; Hang Liu; Mingye Liu

    2014-01-01

    In underwater target detection, the bottom reverberation has some of the same properties as the target echo, which has a great impact on the performance. It is essential to study the difference between target echo and reverberation. In this paper, based on the unique advantage of human listening ability on objects distinction, the Gammatone filter is taken as the auditory model. In addition, time-frequency perception features and auditory spectral features are extracted for active sonar target echo and bottom reverberation separation. The features of the experimental data have good concentration characteristics in the same class and have a large amount of differences between different classes, which shows that this method can effectively distinguish between the target echo and reverberation.

  13. Free-electron lasers: Echoes of photons past

    Science.gov (United States)

    Campbell, Lawrence T.; McNeil, Brian W. J.

    2016-08-01

    High-harmonic generation is an established method to significantly upshift laser photon energies. Now, researchers at the SLAC National Accelerator Laboratory have used echo concepts to generate coherent high-harmonic output from an electron-beam light source.

  14. An Evaluation of HF Ionospheric Backscatter Echoes

    Science.gov (United States)

    1975-11-01

    the Feldstein- Starkov Auroral Belt Model for Various Levels of Magnetic Activity at 1200 Hours I/Jcal Time, Daytime Ionospheric Model A 2-7...Contours of Zero-Degree Aspect Angle for 20 MHz K-Uiyer Kchoes as Viewed from a Midlatitude Location, with the Feldstein- Starkov Auroral Belt Model for...Kchoes as Viewed from a Midlatitude Location, with the Feldstein- Starkov Auroral Belt Model for Various Levels of Magnetic Activity at 1200 Hours

  15. Analyze Trends: State Air Dashboard | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Analyze Trends: Drinking Water Dashboard | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. Analyze Trends: State Water Dashboard | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. TRI and DMR Comparison Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. TRI and DMR Comparison Dashboard (beta) | ECHO | US ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. Preliminary results of the echo-seeding experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D.; Colby, E.; Ding, Y.; Dunning, M.; Frederico, J.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; Corlett, J.; Qiang, J.; Penn, G.; Prestemon, S.; Schlueter, R.; Venturini, M.; Wan, W.; Pernet, P-L.

    2010-05-23

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which are the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.

  1. A local Echo State Property through the largest Lyapunov exponent.

    Science.gov (United States)

    Wainrib, Gilles; Galtier, Mathieu N

    2016-04-01

    Echo State Networks are efficient time-series predictors, which highly depend on the value of the spectral radius of the reservoir connectivity matrix. Based on recent results on the mean field theory of driven random recurrent neural networks, enabling the computation of the largest Lyapunov exponent of an ESN, we develop a cheap algorithm to establish a local and operational version of the Echo State Property.

  2. Scissors Mode in Gd Nuclei

    Directory of Open Access Journals (Sweden)

    Wu C.Y.

    2012-02-01

    Full Text Available Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  3. Scissors Mode in Gd Nuclei

    Science.gov (United States)

    Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Vieira, G. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2012-02-01

    Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1)↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  4. Evolution of active galactic nuclei

    CERN Document Server

    Merloni, Andrea

    2012-01-01

    [Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of ...

  5. Diffusion-weighted imaging in the prostate: an apparent diffusion coefficient comparison of half-Fourier acquisition single-shot turbo spin-echo and echo planar imaging.

    Science.gov (United States)

    Babourina-Brooks, Ben; Cowin, Gary J; Wang, Deming

    2012-02-01

    Prostate cancer detection using diffusion-weighted imaging is highly affected by the accuracy of the apparent diffusion coefficient (ADC) values in an image. Echo planar imaging (EPI) is a fast sequence commonly used for diffusion imaging but has inherent magnetic susceptibility and chemical shift artefacts associated. A diffusion sequence that is less affected by these artefacts is therefore advantageous. The half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence was chosen. The diffusion sequences were compared in image quality, repeatability of the ADC value and the effect on the ADC value with varied b values. Eight volunteers underwent three scans of each sequence, on a 1.5-T Siemens system, using b values of 0, 150, 300, 450, 600, 750, 900 and 1000 s/mm(2). ADC maps were created to address the reproducibility of the ADC value when using two b values compared to eight b values. The ADC value using all b values with the HASTE sequence gave the best performance in all tested categories. Both sequences gave significantly different ADC mean values for two b values compared to when using eight b values (Perror is present when using two b values. HASTE was shown to be an improvement over EPI in terms of repeatability, signal variation within a region of interest and standard deviation over the volunteer set. The improved accuracy of the ADC value in the HASTE sequence makes it potentially a more sensitive tumor detection technique.

  6. Proton scattering from unstable nuclei

    Indian Academy of Sciences (India)

    Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi

    2001-08-01

    Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.

  7. Strange neutral currents in nuclei

    CERN Document Server

    Ressell, M T; Aufderheide, M B; Bloom, S D; Resler, D A

    1995-01-01

    We examine the effects on the nuclear neutral current Gamow-Teller (GT) strength of a finite contribution from a polarized strange quark sea. We perform nuclear shell model calculations of the neutral current GT strength for a number of nuclei likely to be present during stellar core collapse. We compare the GT strength when a finite strange quark contribution is included to the strength without such a contribution. As an example, the process of neutral current nuclear de-excitation via \

  8. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    S K Singh; M Sajjad Athar; Shakeb Ahmad

    2006-04-01

    The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in the nuclear medium. The pion absorption effects have also been taken into account.

  9. Triaxial rotation in atomic nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Shou; GAO Zao-Chun

    2009-01-01

    The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.

  10. Double pion photoproduction in nuclei

    CERN Document Server

    Vicente-Vacas, M J; Gómez-Tejedor, J A; Vicente-Vacas, M J; Oset, E; Gómez Tejedor, J A

    1994-01-01

    Abstract: The inclusive A(gamma,pi+ pi-)X reaction is studied theoretically. A sizeable enhancement of the cross section is found, in comparison with the scaling of the deuteron cross section (sigma_deuteron * A/2). This enhancement is due to the modifications in the nuclear medium of the gamma N ----> pi pi N amplitude and the pion dispersion relation. The enhancement is found to be bigger than the one already observed in the (pi,pi pi) reaction in nuclei.

  11. Continuum spectroscopy of light nuclei

    Directory of Open Access Journals (Sweden)

    Charity R. J.

    2016-01-01

    Full Text Available Resonance spectroscopy of light nuclei is discussed with emphasis on the invariant-mass measurements performed with the HiRA detector. For three-body exit channels, we consider the exact conditions necessary such that the decay can be described as either sequential or prompt. However experimentally, we find some cases where the decay is intermediate between these two limits. Finally, two-proton decay from isobaric analog states is discussed.

  12. Geometric symmetries in light nuclei

    CERN Document Server

    Bijker, Roelof

    2016-01-01

    The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  13. Multiple photon-echo rephasing of coherent matter waves

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ruizhi; Yue, Xuguang; Xu, Xia; Lu, Haichang; Zhou, Xiaoji, E-mail: xjzhou@pku.edu.cn

    2015-03-20

    We investigate the multiple photon echo processes in a Bose–Einstein condensate (BEC) with inhomogeneous momentum broadening. By applying Bragg pulses with adjusted frequency mismatch to induce multiple rephasing, the BEC satisfies the coherence condition for successive superradiance. The atomic system can be efficiently transferred to a high momentum state step by step and emits multiple photon echo signals. These echo signals as a sequence show increasing widths and descending peaks, reflecting a residual dephasing effect due to kinetic-energy phase discrepancy during the population inversions. Our work may contribute to the coherence maintenance for ultracold atomic gas in the quantum information area and the high-precision measurement of atomic momentum width. - Highlights: • A multipulse protocol to induce multiple photon echo rephasing of a BEC is proposed. • Our method is a new and efficient way to transfer the BEC to high momentum modes. • Our method can extend a BEC's coherence time. • The echo sequence is analyzed to study the residual dephasing effect. • The echo decaying is useful in high-precision measurement of BEC's momentum width.

  14. Significance-aware filtering for nonlinear acoustic echo cancellation

    Science.gov (United States)

    Hofmann, Christian; Huemmer, Christian; Guenther, Michael; Kellermann, Walter

    2016-12-01

    This article summarizes and extends the recently proposed concept of Significance-Aware (SA) filtering for nonlinear acoustic echo cancellation. The core idea of SA filtering is to decompose the estimation of the nonlinear echo path into beneficially interacting subsystems, each of which can be adapted with high computational efficiency. The previously proposed SA Hammerstein Group Models (SA-HGMs) decompose the nonlinear acoustic echo path into a direct-path part, modeled by a Hammerstein Group Model (HGM) and a complementary part, modeled by a very efficient Hammerstein model. In this article, we furthermore propose a novel Equalization-based SA (ESA) structure, where the echo path is equalized by a linear filter to allow for an estimation of the loudspeaker nonlinearities by very small and efficient models. Additionally, we provide a novel in-depth analysis of the computational complexity of the previously proposed SA and the novel ESA filters and compare both SA filtering approaches to each other, to adaptive HGMs, and to linear filters, where fast partitioned-block frequency-domain realizations of the competing filter structures are considered. Finally, the echo reduction performance of the proposed SA filtering approaches is verified using real recordings from a commercially available smartphone. Beyond the scope of previous publications on SA-HGMs, the ability of the SA filters to generalize for double-talk situations is explicitly considered as well. The low complexity as well as the good echo reduction performance of both SA filters illustrate the potential of SA filtering in practice.

  15. Polar mesosphere summer echoes during the July 2000 solar protonevent

    Directory of Open Access Journals (Sweden)

    V. Barabash

    2004-03-01

    Full Text Available The influence of the solar proton event (SPE 14–16 July 2000 on Polar Mesosphere Summer Echoes (PMSE is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD at 67°53'N, 21°06'E. The 30MHz Imaging Riometer for Ionospheric Studies IRIS in Kilpisjärvi (69°30'N, 20°47'E registered cosmic radio noise absorption caused by ionisation changes in response to the energetic particle precipitation. An energy deposition/ion-chemical model was used to estimate the density of free electrons and ions in the upper atmosphere. Particle collision frequencies were calculated from the MSISE-90 model. Electric fields were calculated using conductivities from the model and measured magnetic disturbances. The electric field reached a maximum of 91mV/m during the most intensive period of the geomagnetic storm accompanying the SPE. The temperature increase due to Joule and particle heating was calculated, taking into account radiative cooling. The temperature increase at PMSE heights was found to be very small.

    The observed PMSE were rather intensive and extended over the 80–90km height interval. PMSE almost disappeared above 86km at the time of greatest Joule heating on 15 July 2000. Neither ionisation changes, nor Joule/particle heating can explain the PMSE reduction. Transport effects due to the strong electric field are a more likely explanation.

    Key words. Meteorology and atmospheric dynamics (middle atmospheric dynamics, ionosphere (ionospheric disturbances; solar radiation and cosmic ray effects

  16. Evaluating cover depth of steel fiber reinforced concrete using impact-echo testing

    Science.gov (United States)

    Lin, Yu-Feng

    2014-04-01

    The purpose of this research is to estimate of the cover depth of steel fiber reinforced concrete using the impact-echo testing. In order to evaluate the security of the construction, usually need to estimate the cover depth of the reinforced concrete. At present, the examination technique of the cover depth of the reinforced concrete without the steel fiber is mainly applied in the magnetic and electrical methods, its rapid detection and good results. But the research of the reactive powder concrete be gradually progress, with the steel fiber concrete structure will be increased, if should still operate the examination with the magnetic and electrical methods, theoretically the steel fiber will have the interference to its electromagnetism field. Therefore, this research designs four kinds of reinforced concrete plate that include different steel fiber contents, to evaluate test results of estimate of the cover depth of the reinforcing bar. The results showed that: estimate of the cover depth of steel fiber reinforced concrete reinforcing bar using the impact-echo testing, the variety of the steel fiber content does not have much influence, the test measurement error within ± 10%, and the most important source of uncertainty is the velocity of concrete.

  17. Fast all-optical nuclear spin echo technique based on EIT

    Science.gov (United States)

    Walther, Andreas; Nilsson, Adam N.; Li, Qian; Rippe, Lars; Kröll, Stefan

    2016-08-01

    We demonstrate an all-optical Raman spin echo technique, using electromagnetically induced transparency (EIT) to create the pulses required for a spin echo sequence: initialization, pi-rotation, and readout. The first pulse of the sequence induces coherence directly from a mixed state, and the technique is used to measure the nuclear spin coherence of an inhomogeneously broadened ensemble of rare-earth ions (Pr3 +) in a crystal. The rephasing pi-rotation is shown to offer an advantage of combining the rephasing action with the operation of a phase gate, particularly useful in e.g. dynamic decoupling sequences. In contrast to many previous experiments the sequence does not require any preparatory hole burning, which greatly shortens the total duration of the sequence. The effect of the different pulses is characterized by quantum state tomography and compared with simulations. We demonstrate two applications of the technique: compensating the magnetic field across our sample by monitoring T 2 reductions from stray magnetic fields, and measuring coherence times at temperatures up to 11 K, where standard preparation techniques are difficult to implement. We explore the potential of the technique, in particular for systems with much shorter T 2, and other possible applications.

  18. Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor

    Science.gov (United States)

    Gharavipour, M.; Affolderbach, C.; Gruet, F.; Radojičić, I. S.; Krmpot, A. J.; Jelenković, B. M.; Mileti, G.

    2017-06-01

    We introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T 1 and T 2, respectively) of the ‘clock transition’ (52S1/2 | {F}g = 1,{m}F=0> ≤ftrightarrow | {F}g=2,{m}F=0> ) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout.

  19. MRI measurement of blood-brain barrier transport with a rapid acquisition refocused echo (RARE) method

    Science.gov (United States)

    Walton, Jeffrey H; Ng, Kit Fai; Anderson, Steven E; Rutledge, John C

    2015-01-01

    Dynamic Contrast Enhanced (DCE) MRI is increasingly being used to assess changes in capillary permeability. Most quantitative techniques used to measure capillary permeability are based on the Fick equation that requires measurement of signal reflecting both plasma and tissue concentrations of the solute being tested. To date, most Magnetic Resonance Imaging (MRI) methods for acquiring appropriate data quickly rely on gradient recalled echo (GRE) type acquisitions, which work well in clinical low field settings. However, acquiring this type of data on high field small animal preclinical MRIs is problematic due to geometrical distortions from susceptibility mismatch. This problem can be exacerbated when using small animal models to measure blood brain barrier (BBB) permeability, where precise sampling from the superior sagittal sinus (SSS) is commonly used to determine the plasma concentration of the contrast agent. Here we present results demonstrating that a standard saturation recovery rapid acquisition refocused echo (RARE) method is capable of acquiring T1 maps with good spatial and temporal resolution for Patlak analysis (Patlak, 1983) to assess changes in BBB Gd-DTPA permeability following middle cerebral artery occlusion with reperfusion in the rat. This method limits known problems with magnetic susceptibility mismatch and may thus allow greater accuracy in BBB permeability measurement in small animals. PMID:25998382

  20. LRS data processing methods for detection of lunar subsurface echoes

    Science.gov (United States)

    Oshigami, Shoko; Mochizuki, Kengo; Watanabe, Shiho; Watanabe, Toshiki; Yamaguchi, Yasushi; Yamaji, Atsushi; Ono, Takayuki; Kumamoto, Atsushi; Nakagawa, Hiromu; Kobayashi, Takao; Kasahara, Yoshiya

    Lunar Radar Sounder (LRS) is an instrument for one of fifteen science missions of SE- LENE (KAGUYA). LRS is a ground-penetrating FM-CW radar system of HF-band. LRS detects echoes reflected from subsurface discontinuities where dielectric constants of the rocks change. The range resolution of LRS is 75 m in free space, whereas the sampling interval in the flight direction is about 75 m when the spacecraft altitude is 100 km. The primary objective of LRS is to investigate lunar subsurface structures. We plan to perform global soundings by LRS to contribute to studying the evolution of the Moon. In this presentation, we introduce the techniques to process LRS data to produce data products and to detect subsurface echoes. We have two standard data products of LRS under consideration. The time series data of ‘A-scope' which is a plot of signal power spectrum as a function of range derived from of the waveform data are called ‘B-scan'. Because LRS instruments change timing of data recording (measurement delay time) according to the predicted distance between KAGUYA spacecraft and lunar surface, observation range with respect to the spacecraft varies from pulse to pulse. In addition, flight altitude of KAGUYA changes in the range of several tens of kilometers. Therefore a trace of surface nadir echoes in unprocessed B-scan images does not correspond to actual lunar topography. We corrected variations of the measurement delay time and flight altitude of KAGUYA to produce a B-scan data product with the original spatial resolution (BScan high) and a reduced spatial resolution product (BScan low) both in the PDS format. The echo signals in A-scope data might be classified in the following categories; (1) a surface nadir echo, (2) surface off-nadir backscattering echoes, and (3) subsurface echoes. The most intense signal usually comes from the nadir point, when KAGUYA is flying over a level surface. The A-scope data also include various noises resulted from, for example

  1. About AGN ionization echoes, thermal echoes, and ionization deficits in low redshift Lyman-alpha blobs

    CERN Document Server

    Schirmer, Mischa; Levenson, Nancy A; Fu, Hai; Davies, Rebecca L; Keel, William C; Torrey, Paul; Bennert, Vardha N; Pancoast, Anna; Turner, James E H

    2016-01-01

    We report the discovery of 14 Lyman-alpha blobs (LABs) at z~0.3, existing at least 4-7 billion years later in the Universe than all other LABs known. Their optical diameters are 20-70 kpc, and GALEX data imply Ly-alpha luminosities of (0.4-6.3)x10^43 erg/s. Contrary to high-z LABs, they live in low-density areas. They are ionized by AGN, suggesting that cold accretion streams as a power source must deplete between z=2 and z=0.3. We also show that transient AGN naturally explain the ionization deficits observed in many LABs: Their Ly-alpha and X-ray fluxes decorrelate below 10^6 years because of the delayed escape of resonantly scattering Ly-alpha photons. High Ly-alpha luminosities do not require currently powerful AGN, independent of obscuration. Chandra X-ray data reveal intrinsically weak AGN, confirming the luminous optical nebulae as impressive ionization echoes. For the first time, we also report mid-infrared thermal echoes from the dusty tori. We conclude that the AGN have faded by 3-4 orders of magnit...

  2. Measuring light echoes in NGC 4051

    Science.gov (United States)

    Turner, T. J.; Miller, L.; Reeves, J. N.; Braito, V.

    2017-06-01

    Five archived X-ray observations of NGC 4051, taken using the NuSTAR observatory, have been analysed, revealing lags between flux variations in bands covering a wide range of X-ray photon energy. In all pairs of bands compared, the harder band consistently lags the softer band by at least 1000 s, at temporal frequencies ˜5 × 10-5 Hz. In addition, soft-band lags up to 400 s are measured at frequencies ˜2 × 10-4 Hz. Light echoes from an excess of soft band emission in the inner accretion disc cannot explain the lags in these data, as they are seen in cross-correlations with energy bands where the softer band is expected to have no contribution from reflection. The basic properties of the time delays have been parametrized by fitting a top-hat response function that varies with photon energy, taking fully into account the covariance between measured time lag values. The low-frequency hard-band lags and the transition to soft-band lags are consistent with time lags arising as reverberation delays from circumnuclear scattering of X-rays, although greater model complexity is required to explain the entire spectrum of lags. The scattered fraction increases with increasing photon energy as expected, and the scattered fraction is high, indicating the reprocessor to have a global covering fraction ˜50 per cent around the continuum source. Circumnuclear material, possibly associated with a disc wind at a few hundred gravitational radii from the primary X-ray source, may provide suitable reprocessing.

  3. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  4. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Bonel, H. [University Hospital Berne-Inselspital, Freiburgstrasse, Institute of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Frei, K.A.; Raio, L.; Meyer-Wittkopf, M. [University of Berne, Women' s' Hospital, Bern (Switzerland); Remonda, L.; Wiest, R. [University of Berne, Institute of Diagnostic and Interventional Neuroradiology (DIN), Inselspital, Bern (Switzerland)

    2008-04-15

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 {+-} 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 {+-} 0.58 vs. 3.65 {+-} 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 {+-} 7.27 to 19.83 {+-} 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  5. Inclusive quasielastic scattering of polarized electrons from polarized nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Universidad de Granada (Spain). Dept. de Fisica Moderna]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Caballero, J.A. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia]|[Sevilla Univ. (Spain). Dept. de Fisica Atomica, Molecular y Nuclear; Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Moya de Guerra, E. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia

    1996-12-23

    The inclusive quasielastic response functions that appear in the scattering of polarized electrons from polarized nuclei are computed and analyzed for several closed-shell-minus-one nuclei with special attention paid to {sup 39}K. Results are presented using two models for the ejected nucleon - when described by a distorted wave in the continuum shell model or by a plane wave in PWIA with on- and off-shell nucleons. Relativistic effects in kinematics and in the electromagnetic current have been incorporated throughout. Specifically, the recently obtained expansion of the electromagnetic current in powers only of the struck nucleon`s momentum is employed for the on-shell current and the effects of the first-order terms (spin-orbit and convection) are compared with the zeroth-order (charge and magnetization) contributions. The use of polarized inclusive quasielastic electron scattering as a tool for determining near-valence nucleon momentum distributions is discussed. (orig.).

  6. Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization

    Science.gov (United States)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-09-01

    We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.

  7. Single-shot echo-planar imaging with Nyquist ghost compensation: interleaved dual echo with acceleration (IDEA) echo-planar imaging (EPI).

    Science.gov (United States)

    Poser, Benedikt A; Barth, Markus; Goa, Pål-Erik; Deng, Weiran; Stenger, V Andrew

    2013-01-01

    Echo planar imaging (EPI) is most commonly used for blood oxygen level-dependent fMRI, owing to its sensitivity and acquisition speed. A major problem with EPI is Nyquist (N/2) ghosting, most notably at high field. EPI data are acquired under an oscillating readout gradient and hence vulnerable to gradient imperfections such as eddy current delays and off-resonance effects, as these cause inconsistencies between odd and even k-space lines after time reversal. We propose a straightforward and pragmatic method herein termed "interleaved dual echo with acceleration (IDEA) EPI": two k-spaces (echoes) are acquired under the positive and negative readout lobes, respectively, by performing phase encoding blips only before alternate readout gradients. From these two k-spaces, two almost entirely ghost free images per shot can be constructed, without need for phase correction. The doubled echo train length can be compensated by parallel imaging and/or partial Fourier acquisition. The two k-spaces can either be complex averaged during reconstruction, which results in near-perfect cancellation of residual phase errors, or reconstructed into separate images. We demonstrate the efficacy of IDEA EPI and show phantom and in vivo images at both 3 T and 7 T.

  8. A high success rate full-waveform lidar echo decomposition method

    Science.gov (United States)

    Xu, Lijun; Li, Duan; Li, Xiaolu

    2016-01-01

    A full-waveform Light detection and ranging (LiDAR) echo decomposition method is proposed in this paper. In this method, the peak points are used to detect the separated echo components, while the inflection points are combined with corresponding peak points to detect the overlapping echo components. The detected echo components are then sorted according to their energies in a descending order. The sorted echo components are one by one added into the decomposition model according to their orders. For each addition, the parameters of all echo components already added into the decomposition model are iteratively renewed. After renewing, the amplitudes and full width at half maximums of the echo components are compared with pre-set thresholds to determine and remove the false echo components. Both simulation and experiment were carried out to evaluate the proposed method. In simulation, 4000 full-waveform echoes with different numbers and parameters of echo components were generated and decomposed using the proposed and three other commonly used methods. Results show that the proposed method is of the highest success rate, 91.43%. In experiment, 9549 Geoscience Laser Altimeter System (GLAS) echoes for Shennongjia forest district in south China were employed as test echoes. The test echoes were first decomposed using the four methods and the decomposition results were also compared with those provided by the National Snow and Ice Data Center. Comparison results show that the determination coefficient ({{R}2} ) of the proposed method is of the largest mean, 0.6838, and the smallest standard deviation, 0.3588, and the distribution of the number of the echo components decomposed from the GLAS echoes is the most satisfied with the situation of full-waveform echoes from the forest area, implying that the superposition of the echo components decomposed from a full-waveform echo by using the proposed method can best approximate the full-waveform echo.

  9. Tensor Effect on Bubble Nuclei

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-Zhao; GU Jian-Zhong; ZHANG Xi-Zhen; DONG Jian-Min

    2011-01-01

    In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+T, SLy5+Tw and several sets of TIJ parametrizations, I.e. The Skyrme interaction parametrizations including the tensor terms, the proton density distribution in 34Si and 46Ar nuclei is calculated with and without the tensor force. It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force. As to 46Ar, the SLy5+Tw parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-ld3/2 inversion). The inversion mechanism induced by the SLy5+Tw interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+Tw interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.%In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+ T,SLy5+ Tω and several sets of TIJ parametrizations,i.e.the Skyrme interaction pararmetrizations including the tensor terms,the proton density distribution in 34Si and 46 Ar nuclei is calculated with and without the tensor force.It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force.As to 46Ar,the SLy5+ Tω parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-1d3/2 inversion).The inversion mechanism induced by the SLy5+ Tω interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+ Tω interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.The study of exotic nuclear structures has been a hot topic in nuclear physics.[1-4] Exotic nuclei are unstabile,superheavy nuclei,halo nuclei and so forth,whose structures are quite different

  10. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  11. Microscopic properties of superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  12. Breakup Densities of Hot Nuclei.

    Science.gov (United States)

    Viola, Vic

    2006-04-01

    Breakup densities of hot ^197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A .3ex˜x 5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  13. Double pion photoproduction in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Tejedor, J.A. [Departamento de Fisica Teorica, Valencia (Spain); Vicente-Vacas, M.J. [Departamento de Fisica Teorica, Valencia (Spain); Oset, E. [Departamento de Fisica Teorica, Valencia (Spain)

    1995-06-19

    The inclusive A({gamma},{pi}{sup +}{pi}{sup -})X reaction is studied theoretically. A sizable enhancement of the cross section is found, in comparison with the scaling of the deuteron cross section ({sigma}{sub d} A/2). This enhancement is due to the modifications in the nuclear medium of the {gamma}N {yields}{pi}{pi}N amplitude and the pion dispersion relation. The enhancement is found to be bigger than the one already observed in the ({pi},{pi}{pi}) reaction in nuclei. ((orig.)).

  14. Quantitative and qualitative assessment of reactive hematopoietic bone marrow in aplastic anemia using MR spectroscopy with variable echo times

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yasuo; Kumazaki, Tatsuo [Department of Radiology, Nippon Medical School, Tokyo (Japan)

    2002-01-01

    Objective: To assess quantitative and qualitative differences in water components between normal bone marrow and reactive hematopoietic marrow in aplastic anemia using magnetic resonance (MR) spectroscopy with variable echo times (TEs). Design: Water content, T2 value of the water component, and signal change in water related to TE were assessed in normal bone marrow and reactive hematopoietic bone marrow by a stimulated echo acquisition mode with TEs of 30, 45, 60, and 90 ms. Patients: Six patients with aplastic anemia (13-84 years) and seven normal volunteers (25-38 years) were examined. Results and conclusion: Reactive hematopoietic marrow showed significantly higher water content than normal bone marrow. The T2 value of water components tended to be longer in reactive hematopoietic marrow. Water signal ratio related to TE was significantly higher in reactive hematopoietic marrow. These results suggest a quantitative and qualitative difference in water components between normal and reactive hematopoietic bone marrow. (orig.)

  15. Echo 2 - Observations at Fort Churchill of a 4-keV peak in low-level electron precipitation

    Science.gov (United States)

    Arnoldy, R. L.; Hendrickson, R. A.; Winckler, J. R.

    1975-01-01

    The Echo 2 rocket flight launched from Fort Churchill, Manitoba, offered the opportunity to observe high-latitude low-level electron precipitation during quiet magnetic conditions. Although no visual aurora was evident at the time of the flight, an auroral spectrum sharply peaked at a few keV was observed to have intensities from 1 to 2 orders of magnitude lower than peaked spectra typically associated with bright auroral forms. There is a growing body of evidence that relates peaked electron spectra to discrete aurora. The Echo 2 observations show that whatever the mechanism for peaking the electron spectrum in and above discrete forms, it operates over a range of precipitation intensities covering nearly 3 orders of magnitude down to subvisual or near subvisual events.

  16. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.

    Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  17. Dynamic rayed aurora and enhanced ion-acoustic radar echoes

    Directory of Open Access Journals (Sweden)

    E. M. Blixt

    2005-01-01

    Full Text Available The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100eV precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7km away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.

  18. Echo Meadows Project Winter Artificial Recharge.

    Energy Technology Data Exchange (ETDEWEB)

    Ziari, Fred

    2002-12-19

    This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further

  19. Echo Meadows Project Winter Artificial Recharge.

    Energy Technology Data Exchange (ETDEWEB)

    Ziari, Fred

    2002-12-19

    This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further

  20. Pairing correlations in exotic nuclei

    CERN Document Server

    Sagawa, H

    2012-01-01

    The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...

  1. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  2. Thermal instability of cell nuclei

    Science.gov (United States)

    Warmt, Enrico; Kießling, Tobias R.; Stange, Roland; Fritsch, Anatol W.; Zink, Mareike; Käs, Josef A.

    2014-07-01

    DNA is known to be a mechanically and thermally stable structure. In its double stranded form it is densely packed within the cell nucleus and is thermo-resistant up to 70\\:^\\circ {\\rm{C}}. In contrast, we found a sudden loss of cell nuclei integrity at relatively moderate temperatures ranging from 45 to 55\\:^\\circ {\\rm{C}}. In our study, suspended cells held in an optical double beam trap were heated under controlled conditions while monitoring the nuclear shape. At specific critical temperatures, an irreversible sudden shape transition of the nuclei was observed. These temperature induced transitions differ in abundance and intensity for various normal and cancerous epithelial breast cells, which clearly characterizes different cell types. Our results show that temperatures slightly higher than physiological conditions are able to induce instabilities of nuclear structures, eventually leading to cell death. This is a surprising finding since recent thermorheological cell studies have shown that cells have a lower viscosity and are thus more deformable upon temperature increase. Since the nucleus is tightly coupled to the outer cell shape via the cytoskeleton, the force propagation of nuclear reshaping to the cell membrane was investigated in combination with the application of cytoskeletal drugs.

  3. Bone quantitative susceptibility mapping using a chemical species-specific R2* signal model with ultrashort and conventional echo data.

    Science.gov (United States)

    Dimov, Alexey V; Liu, Zhe; Spincemaille, Pascal; Prince, Martin R; Du, Jiang; Wang, Yi

    2017-03-05

    To develop quantitative susceptibility mapping (QSM) of bone using an ultrashort echo time (UTE) gradient echo (GRE) sequence for signal acquisition and a bone-specific effective transverse relaxation rate ( R2*) to model water-fat MR signals for field mapping. Three-dimensional radial UTE data (echo times ≥ 40 μs) was acquired on a 3 Tesla scanner and fitted with a bone-specific signal model to map the chemical species and susceptibility field. Experiments were performed ex vivo on a porcine hoof and in vivo on healthy human subjects (n = 7). For water-fat separation, a bone-specific model assigning R2* decay mostly to water was compared with the standard models that assigned the same decay for both fat and water. In the ex vivo experiment, bone QSM was correlated with CT. Compared with standard models, the bone-specific R2* method significantly reduced errors in the fat fraction within the cortical bone in all tested data sets, leading to reduced artifacts in QSM. Good correlation was found between bone CT and QSM values in the porcine hoof (R(2)  = 0.77). Bone QSM was successfully generated in all subjects. The QSM of bone is feasible using UTE with a conventional echo time GRE acquisition and a bone-specific R2* signal model. Magn Reson Med 000:000-000, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Excited nuclei in neutron star crusts

    CERN Document Server

    Takibayev, Nurgali; Nasirova, Diana

    2012-01-01

    The paper considers the chains of successive electron capture reactions by nuclei of the iron group which take place in the crystal structures of neutron star envelopes. It is shown that as a result of such reactions the daughter nuclei in excited states accumulate within certain layers of neutron star crusts. The phonon model of interactions is proposed between the excited nuclei in the crystalline structure, as well as formation of highly excited nuclear states which emit neutrons and higher energy photons.

  5. Review of metastable states in heavy nuclei

    Science.gov (United States)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  6. Geometry of Superluminal Light-Echo Pair Events

    Science.gov (United States)

    Nemiroff, Robert J.

    2017-01-01

    Light echoes, shadows, and ionization fronts can and do move faster than light, both in the lab and out in the cosmos. In general, though, a single observer cannot tell the speed of such echoes without distance information -- unless a very specific geometry arises: the radial component crosses c. The observer then sees this crossing location as the site where a pair of bright light echoes is created or annihilated. This pair event tells the observer that a precise speed occurs, a speed that does not scale with distance and so can potentially be leveraged to reveal geometry and distance information. A few simple scattering surface geometries are shown illuminated by a point flash, including linear and circular filaments. In practice, useful astronomical flash sources include novae and supernovae, although in theory any uniquely varying source of stellar variability could be sufficient.

  7. Echo-acoustic flow affects flight in bats.

    Science.gov (United States)

    Kugler, Kathrin; Greiter, Wolfgang; Luksch, Harald; Firzlaff, Uwe; Wiegrebe, Lutz

    2016-06-15

    Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages. Specifically, bats' flight between lateral structures is significantly affected by the echo-acoustic salience of those structures, independent of their physical distance. This is true even though echolocation, unlike vision, provides explicit distance cues. Moreover, the bats reduced the echolocation sound levels in stronger flow, probably to compensate for the increased summary target strength of the lateral reflectors. However, bats did not reduce flight velocity under stronger echo-acoustic flow. Our results demonstrate that sensory flow is a ubiquitous principle for flight guidance, independent of the fundamentally different peripheral representation of flow across the senses of vision and echolocation.

  8. Design And Simulation Of An Acoustic Echo Cancellation System For Hand-Free Telecommunication

    Directory of Open Access Journals (Sweden)

    Ein Gyin Pwint

    2015-06-01

    Full Text Available Abstract Acoustic echo cancellation is a common occurrence in todays telecommunication systems. The signal interference caused by acoustic echo is distracting to users and causes a reduction in the quality of the communication. This paper is implementing the overall system of acoustic echo cancellation system using LMS and NLMS algorithms for adaptive filter normalized cross correlation NCC algorithm double talk detector. The result of echo return loss enhancement ERLE and mean squared error MSE which show that how much the amount of echo signal cancelled and the amount of residual error signal for cancelling acoustic echo cancellation on a PC with the help of the MATLAB software.

  9. Photon echo radiated by a polycrystalline and opaque powder

    CERN Document Server

    Beaudoux, F; Ferrier, A; Marino, R; Lejay, J; Chaneliere, O Guillot-Noel T; Gouet, J -L Le; Goldner, Ph

    2010-01-01

    We observe the two- and three-pulse photon echo emission from a scattering powder, obtained by grinding a Pr$^{3+}$:Y$_2$SiO$_5$ rare earth doped single crystal. We show that the collective emission is coherently constructed over several grains. A well defined atomic coherence can therefore be created between randomly placed particles. Observation of photon echo on powders as opposed to bulk materials opens the way to faster material development. More generally, time-domain resonant four-wave mixing offers an attractive approach to investigate coherent propagation in scattering media.

  10. Echoes of Hylas and the Poetics of Allusion in Propertius

    Directory of Open Access Journals (Sweden)

    Mariapia Pietropaolo

    2012-12-01

    Full Text Available For Propertius the myth of Hylas exemplifies a poetics of selective appropriation and transformation by means of echoes and allusions. He brings it into his poetry as an exemplum, both erotic and metapoetic, and offers evidence that his penchant for echoes and allusions is essentially the result of a Hylan poetics of elegy. By using the echoic mode of composition inherent in the myth of Hylas, Propertius illustrates the principle that elegiac poetry is grounded in a complex dialogue of intertextual and intratextual allusion and citations.

  11. Causality and Intervention in the Spin-Echo Experiments

    Directory of Open Access Journals (Sweden)

    Fernanda Samaniego Bañuelos

    2013-09-01

    Full Text Available In the so-called “Spin-Echo Experiments” the behaviour of a spin’s system seems to violate the second law of thermodynamics. For this reason the “Spin-Echo Experiments” are considered of particular interest for the Foundations of Physics. Interventionists have provided a classical explanation (Blatt, 1959; Ridderbos & Redhead, 1998 and a quantum-based explanation (Hemmo & Shenker, 2005 of these experiments. Here both interventionist explanations are assessed by means of the Manipulability Theory of Causal Explanation (Woodward, 2003. It is argued that interventionism would gain explanatory depth by providing functional relations and predicting relaxation times.

  12. Quantum memory in an orthogonal geometry of silenced echo retrieval

    Science.gov (United States)

    Gerasimov, K. I.; Minnegaliev, M. M.; Moiseev, S. A.; Urmancheev, R. V.; Chanelière, T.; Louchet-Chauvet, A.

    2017-08-01

    We experimentally realize a quantum-memory protocol based on retrieval of silenced echo (ROSE) in Tm3+:Y3Al5O12 crystal in an orthogonal geometry of the signal and control light fields. The silenced echo signal revival efficiency of 13% with 36 μs storage time is demonstrated. To achieve that we implemented a high-precision atomic coherence control via amplitude- and phase-modulated laser pulses. We also discuss capabilities of this configuration, ways to increase quantum efficiency and to combine it with a single-mode optical cavity.

  13. Scaling up Echo-State Networks with multiple light scattering

    CERN Document Server

    Dong, Jonathan; Krzakala, Florent; Wainrib, Gilles

    2016-01-01

    Echo-State Networks and Reservoir Computing have been studied for more than a decade. As they provide an elegant yet powerful alternative to traditional computing, researchers have tried to implement them using physical systems, in particular non-linear optical elements, achieving high bandwidth and low power consumption. Here we present a completely different optical implementation of Echo-State Networks using light-scattering materials. As a proof of concept, binary networks have been successfully trained to perform non-linear operations on time series and memory of such networks has been evaluated. This new method is fast, power efficient and easily scalable to very large networks.

  14. All-optical photon echo on a chip

    Science.gov (United States)

    Moiseev, E. S.; Moiseev, S. A.

    2017-01-01

    We demonstrate that a photon echo can be implemented by all-optical means using an array of on-chip high-finesse ring cavities whose parameters are chirped in such a way as to support equidistant spectra of cavity modes. When launched into such a system, a classical or quantum optical signal—even a single-photon field—becomes distributed between individual cavities, giving rise to prominent coherence echo revivals at well-defined delay times, controlled by the chirp of cavity parameters. This effect enables long storage times for high-throughput broadband optical delay and quantum memory.

  15. MPD model for radar echo signal of hypersonic targets

    Directory of Open Access Journals (Sweden)

    Xu Xuefei

    2014-08-01

    Full Text Available The stop-and-go (SAG model is typically used for echo signal received by the radar using linear frequency modulation pulse compression. In this study, the authors demonstrate that this model is not applicable to hypersonic targets. Instead of SAG model, they present a more realistic echo signal model (moving-in-pulse duration (MPD for hypersonic targets. Following that, they evaluate the performances of pulse compression under the SAG and MPD models by theoretical analysis and simulations. They found that the pulse compression gain has an increase of 3 dB by using the MPD model compared with the SAG model in typical cases.

  16. Studies of Unstable Nuclei with Spin-Polarized Proton Target

    Science.gov (United States)

    Sakaguchi, Satoshi; Uesaka, Tomohiro; Wakui, Takashi; Chebotaryov, Sergey; Kawahara, Tomomi; Kawase, Shoichiro; Milman, Evgeniy; Tang, Tsz Leung; Tateishi, Kenichiro; Teranishi, Takashi

    2016-02-01

    Roles of spin-dependent interactions in unstable nuclei have been investigated via the direct reaction of radioactive ions with a solid spin-polarized proton target. The target has a unique advantage of a high polarization of 20-30% under low magnetic field of 0.1 T and at a high temperature of 100 K, which allow us to detect recoil protons with good angular resolution. Present status of on-going experimental studies at intermediate energies, such as proton elastic scattering and (p, 2p) knockout reaction, and new physics opportunities expected with low-energy RI beams are overviewed.

  17. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  18. Three-dimensional ultrashort echo time imaging of solid polymers on a 3-Tesla whole-body MRI scanner.

    Science.gov (United States)

    Springer, Fabian; Martirosian, Petros; Schwenzer, Nina F; Szimtenings, Michael; Kreisler, Peter; Claussen, Claus D; Schick, Fritz

    2008-11-01

    With the introduction of ultrashort echo time (UTE) sequences solid polymeric materials might become visible on clinical whole-body magnetic resonance (MR) scanners. The aim of this study was to characterize solid polymeric materials typically used for instruments in magnetic resonance guided interventions and implants. Relaxation behavior and signal yield were evaluated on a 3-Tesla whole-body MR unit. Nine different commonly used solid polymeric materials were investigated by means of a 3-dimensional (3D) UTE sequence with radial k-space sampling. The investigated polymeric samples with cylindrical shape (length, 150 mm; diameter, 30 mm) were placed in a commercial 8-channel knee coil. For assessment of transverse signal decay (T2*) images with variable echo times (TE) ranging from 0.07 milliseconds to 4.87 milliseconds were recorded. Spin-lattice relaxation time (T1) was calculated for all MR visible polymers with transverse relaxation times higher than T2* = 300 mus using an adapted method applying variable flip angles. Signal-to-noise ratio (SNR) was calculated at the shortest achievable echo time (TE = 0.07 milliseconds) for standardized sequence parameters. All relaxation times and SNR data are given as arithmetic mean values with standard deviations derived from 5 axially oriented slices placed around the isocenter of the coil and magnet. Six of the 9 investigated solid polymers were visible at TE = 0.07 milliseconds. Visible solid polymers showed markedly different SNR values, ie, polyethylene SNR = 1146 +/- 41, polypropylene SNR = 60 +/- 6. Nearly mono-exponential echo time dependent signal decay was observed: Transverse relaxation times differed from T2*=36 +/- 5 mus for polycarbonate to T2*=792 +/- 7 mus for polyvinylchloride (PVC). Two of the investigated solid polymers were applicable to T1 relaxation time calculation. Polyurethane had a spin-lattice relaxation time of T1 = 172 +/- 1 milliseconds, whereas PVC had T1 = 262 +/- 7 milliseconds

  19. T2 selective π Echo-Planar Imaging for porous media MRI

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J.

    2017-04-01

    The π Echo Planar Imaging (PEPI) method has recently been modified to permit proton density imaging of fluids in porous media with moderate T2 and short T2∗ signal components. In many applications, it is desirable to discriminate multiple T2 components within each image voxel. T2 selective imaging is explored in this paper through adiabatic inversion as a magnetization preparation with PEPI readout. When prior information of the sample relaxation times is known, responses of different species to broadband adiabatic inversion pulses can be predicted by Bloch equation simulation. Different relaxation components can be acquired by combining the images with and without inversion preparation pulses. T2 weighting can be easily introduced in the PEPI sequence by shifting the spatial encoding gradients based on its spin echo nature. T2 decay curves can be extracted for each image voxel from a series of T2 weighted images and spatially resolved T2 distributions can be generated. This method is reliable but slow. The two methods were implemented to image porous media samples with PEPI the common basis of spatial resolution. The results of both methods agree remarkably well.

  20. Exact algebraization of the signal equation of spoiled gradient echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dathe, Henning [Department of Orthodontics, Biomechanics Group, University Medical Centre, Goettingen (Germany); Helms, Gunther, E-mail: ghelms@gwdg.d [MR-Research in Neurology and Psychiatry, University Medical Centre, Goettingen (Germany)

    2010-08-07

    The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle {alpha} at a repetition time TR much shorter than the longitudinal relaxation time T{sub 1}. We describe two parameter transformations of {alpha} and TR/T{sub 1}, which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small {alpha} and small TR/T{sub 1} with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in {alpha} and TR/T{sub 1}. This reveals a fundamental relationship between the square of the flip angle and TR/T{sub 1} which characterizes the Ernst angle, constant degree of T{sub 1}-weighting and the influence of the local radio-frequency field.

  1. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    Science.gov (United States)

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements.

  2. [Application of brain diffusion-weighted imaging performed using readout segmentation of long variable echo trains].

    Science.gov (United States)

    Ishida, Go; Oishi, Makoto; Morii, Ken; Hasegawa, Kenji; Saito, Akihiko; Sato, Mitsuya; Takizawa, Osamu; Murata, Katsutoshi; Porter, D A; Matsuzawa, Hitoshi; Fujii, Yukihiko

    2015-01-01

    We report the preliminary use of the readout segmentation of long variable echo trains(RESOLVE)sequence, a novel magnetic resonance(MR)scanning technique based on a readout segmented echo planar imaging(EPI)strategy. RESOLVE enables high-resolution diffusion-weighted imaging(DWI)by minimizing susceptibility distortions and T2* blurring. The software for this sequence was provided by Siemens AG, Germany. Previously, we determined appropriate sequence parameters to obtain sufficiently high-resolution images through phantom studies. Then, we applied the sequence to some clinical cases with neurological disorders and analyzed the RESOLVE-DWI data with diffusion tensor imaging(DTI)techniques. In this article, we report clinical application of the RESOLVE sequence in two cases, one with cerebellar infarction and one with an intracranial epidermoid cyst. In both cases, RESOLVE-DWI clearly exposed structures that were obscured or severely distorted by artifacts on usual single-shot EPI-DWI. DTI analyses for RESOLVE-DWI data provided detailed information about fiber tracts and cranial nerves.

  3. Imaging of Heterogeneous Materials with a Turbo Spin Echo Single-Point Imaging Technique

    Science.gov (United States)

    Beyea, Steven D.; Balcom, Bruce J.; Mastikhin, Igor V.; Bremner, Theodore W.; Armstrong, Robin L.; Grattan-Bellew, Patrick E.

    2000-06-01

    A magnetic resonance imaging method is presented for imaging of heterogeneous broad linewidth materials. This method allows for distortionless relaxation weighted imaging by obtaining multiple phase encoded k-space data points with each RF excitation pulse train. The use of this method, turbo spin echo single-point imaging-(turboSPI), leads to decreased imaging times compared to traditional constant-time imaging techniques, as well as the ability to introduce spin-spin relaxation contrast through the use of longer effective echo times. Imaging times in turboSPI are further decreased through the use of low flip angle steady-state excitation. Two-dimensional images of paramagnetic doped agarose phantoms were obtained, demonstrating the contrast and resolution characteristics of the sequence, and a method for both amplitude and phase deconvolution was demonstrated for use in high-resolution turboSPI imaging. Three-dimensional images of a partially water-saturated porous volcanic aggregate (T2L ≈ 200 ms, Δν1/2 ≈ 2500 Hz) contained in a hardened white Portland cement matrix (T2L ≈ 0.5 ms, Δν1/2 ≈ 2500 Hz) and a water-saturated quartz sand (T2 ≈ 300 ms, T2* ≈ 800 μs) are shown.

  4. First SuperDARN polar mesosphere summer echoes observed at SANAE IV, Antarctica

    Science.gov (United States)

    Ogunjobi, Olakunle; Sivakumar, Venkataraman; Judy; Stephenson, A. E.

    For over 3 decades studies on Polar mesosphere summer echo (PMSE) is ongoing. Its causative mechanism in the Antarctic and Arctic mesopause altitude is yet to be completely understood and is partly due to few observations from Antarctica. Also important were the varied influencing factors across the observable locations. For the first time, we report the PMSE occurrence probability rates over South African National Antarctic Expedition IV (SANAE IV). A comparison is made with observation from SANAE IV magnetic conjugate vicinity, Goose Bay in Arctic region. Here, a new matching coincidence method allowing filtration of possible contaminating echoes is described and implemented for extraction of PMSE during the 2005-2007 summers. In this method, Riometer and Super Dual Auroral Radar Network (SuperDARN) measurements from SANAE IV location are matched to obtain PMSE occurrence probability rate. Whereas the seasonal and diurnal variations followed the known features of PMSE, the percentage difference in probability occurrence rate is found to be remarkable. The SANAE IV probability rate is found to be high for the summer months reaching about 50% peak around the summer solstice. When the coincidence algorithm is relaxed, we found a substantial 30% increase in PMSE occurrence rate at SANAE IV. At this time, about 100% peak is found for Goose Bay. The contribution from the ionospheric D region electron density enhancements to SuperDARN PMSE occurrence rates at locations under auroral regions will be presented.

  5. Shell effects in nuclear magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Kondratyev, V.N.; Maruyama, Toshiki; Chiba, Satoshi [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-08-01

    The magnetization of nuclei in strong magnetic fields associated with magnetars' is considered within the shell model. It is demonstrated that the magnetic field gives rise to a phase-shift of the shell-oscillations in nuclear masses shifting significantly the nuclear magic numbers of the iron region towards smaller mass numbers. Shell-effects are found to result in anomalies of the nuclear magnetization. Such anomalies resemble the behavior associated with a phase transition. (author)

  6. Using Novel Pulse Sequences for Magnetic Resonance Imaging of 31Phosphorus in Hard and Soft Solids

    Science.gov (United States)

    Frey, Merideth A.

    Since its invention in 1973, magnetic resonance imaging (MRI) has become an invaluable tool for clinical medicine, fundamental biomedical research, the physical sciences, and engineering. The vast majority of all MRI studies, in medicine and beyond, detect only the signal from a single nuclear isotope, 1H, in liquid water. Extending the reach of MRI to the study of other elements, and to hard or soft solids, opens new frontiers of discovery. In practice, however, the slower motion of the nuclei in solid environments compared to 1H in water results in much broader magnetic resonance (MR) spectra, limiting both the attainable spatial resolution and the signal-to-noise. Our lab recently discovered a novel nuclear magnetic resonance (NMR) pulse sequence while doing fundamental research related to the 'spins in semiconductors' approach to quantum computing. This sequence can greatly narrow the MR linewidth of solids, and it opens a new path to do high-resolution MRI of various nuclei in solids. In this thesis work, I use our quadratic echo line-narrowing pulse sequence to take the highest resolution MR images of 31P in hard and soft solids using a conventional animal MRI system. I also discuss strategies to accelerate the imaging speed by making use of sparse MRI techniques as well as a new algorithm developed in our lab to do fast and accurate image reconstruction from sparse data. For future work, I propose ways to enhance spatial resolution and speed up imaging as well as discuss the potential applications of this work to a wider range of scientific problems.

  7. Cavitation Nuclei: Experiments and Theory

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go - the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory...... becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer...... us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....

  8. CAVITATION NUCLEI: EXPERIMENTS AND THEORY

    Institute of Scientific and Technical Information of China (English)

    MфRCH K. A.

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfvén said: Theories come and go ─ the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories – and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character.

  9. Inclusive breakup of Borromean nuclei

    CERN Document Server

    Hussein, Mahir S; Frederico, Tobias

    2016-01-01

    We derive the inclusive breakup cross section of a three-fragment projectile nuclei, $a = b +x_1 + x_2$, in the spectator model. The resulting four-body cross section for observing $b$, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula \\cite{Austern1987}, which is proportional to a matrix element of the form, $\\langle\\hat{\\rho}_{{x_1},{x_2}}\\left|\\left[W_{{x_1}} + W_{{x_2}} + W_{3B}\\right]\\right|\\hat{\\rho}_{{x_1}, {x_2}}\\rangle$. The new feature here is the three-body absorption, represented by the imaginary potential, $W_{3B}$. We analyze this type of absorption and supply ideas of how to calculate its contribution.

  10. Formation of $\\phi$ mesic nuclei

    CERN Document Server

    Yamagata-Sekihara, J; Vacas, M J Vicente; Hirenzaki, S

    2010-01-01

    We study the structure and formation of the $\\phi$ mesic nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of its medium modifications to the reaction cross sections. We also estimate the consequences of the uncertainties of the ${\\bar K}$ selfenergy in medium to the $\\phi$-nucleus interaction. We find that it may be possible to see a peak structure in the reaction spectra for the strong attractive potential cases. On the other hand, for strong absorptive interaction cases with relatively weak attractions, it is very difficult to observe clear peaks and we may need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.

  11. Quasifree kaon photoproduction on nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Frank Lee; T. MART; Cornelius Bennhold; Lester Wright

    2001-12-01

    Investigations of the quasifree reaction A({gamma}, K Y)B are presented in the distorted wave impulse approximation (DWIA). For this purpose, we present a revised tree-level model of elementary kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses SU(3) values for the Born couplings and uses resonances consistent with multi-channel analyses. The potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon-nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are obtained for all six production channels. Under selected kinematics these observables are found to be sensitive to the hyperon-nucleus final state interaction. Some polarization observables are found to be insensitive to distortion effects, making them ideal tools to search for possible medium modifications of the elementary amplitude.

  12. On the Radio Dichotomy of Active Galactic Nuclei

    Science.gov (United States)

    Cao, Xinwu

    2016-12-01

    It is still a mystery why only a small fraction of active galactic nuclei (AGNs) contain relativistic jets. A strong magnetic field is a necessary ingredient for jet formation, however, the advection of the external field in a geometrically thin disk is inefficient. Gas with a small angular velocity may fall from the Bondi radius {R}{{B}} nearly freely to the circularization radius {R}{{c}}, and a thin accretion disk is formed within {R}{{c}}. We suggest that the external magnetic field is substantially enhanced in this region, and the magnetic field at {R}{{c}} can be sufficiently strong to drive outflows from the disk if the angular velocity of the gas is low at {R}{{B}}. The magnetic field is efficiently dragged in the disk, because most angular momentum of the disk is removed by the outflows that lead to a significantly high radial velocity. The strong magnetic field formed in this way may accelerate jets in the region near the black hole, either by the Blandford-Payne or/and Blandford-Znajek mechanisms. We suggest that the radio dichotomy of AGNs predominantly originates from the angular velocity of the circumnuclear gas. An AGN will appear as a radio-loud (RL) one if the angular velocity of the circumnuclear gas is lower than a critical value at the Bondi radius, otherwise, it will appear as a radio-quiet (RQ) AGN. This is supported by the observations that RL nuclei are invariably hosted by core galaxies. Our model suggests that the mass growth of the black holes in RL quasars is much faster than that in RQ quasars with the same luminosity, which is consistent with the fact that the massive black holes in RL quasars are systematically a few times heavier than those in their RQ counterparts.

  13. Effective field theory for vibrations in odd-mass nuclei

    CERN Document Server

    Pérez, E A Coello

    2016-01-01

    Heavy even-even nuclei exhibit low-energy collective excitations that are separated in scale from the microscopic (fermion) degrees of freedom. This separation of scale allows us to approach nuclear vibrations within an effective field theory (EFT). In odd-mass nuclei collective and single-particle properties compete at low energies, and this makes their description more challenging. In this article we describe odd-mass nuclei with ground-state spin $I=\\sfrac{1}{2}$ by means of an EFT that couples a fermion to the collective degrees of freedom of an even-even core. The EFT relates observables such as energy levels, electric quadrupole ($E2$) transition strengths, and magnetic dipole ($M1$) moments of the odd-mass nucleus to those of its even-even neighbor, and allows us to quantify theoretical uncertainties. For isotopes of rhodium and silver the theoretical description is consistent with data within experimental and theoretical uncertainties. Several testable predictions are made.

  14. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI.

    Science.gov (United States)

    Klohs, Jan; Deistung, Andreas; Ielacqua, Giovanna D; Seuwen, Aline; Kindler, Diana; Schweser, Ferdinand; Vaas, Markus; Kipar, Anja; Reichenbach, Jürgen R; Rudin, Markus

    2016-09-01

    Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of [Formula: see text] and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and [Formula: see text] values were discernible across several brain regions in 12-month-old arcAβ compared to 6-month-old arcAβ mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher [Formula: see text] and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAβ mice. No differences in [Formula: see text] and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2-8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced [Formula: see text] and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies.

  15. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)

    K P Santhosh

    2014-04-01

    We present here, an overview and progress of the theoretical works on the isomeric state decay, decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing decay chains from the isotopes of the superheavy nuclei = 115 in the range 271 ≤ ≤ 294 and the isotopes of = 117 in the range 270 ≤ ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured decay of nuclei in the range 67 ≤ ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the decay of the superheavy nuclei 271−294115 and 270−301117 predict 4 chains consistently from 284,285,286115 nuclei and 5 chains and 3 chains consistently from 288−291117 and 292117, respectively. We thus hope that these studies on 284−286115 and 288−292117 will be a guide to future experiments.

  16. Isovector multiphonon excitations in near spherical nuclei

    CERN Document Server

    Smirnova, N A; Pietralla, N; Van Isacker, P; Isacker, Piet Van; Mizusaki, Takahiro; Pietralla, Norbert; Smirnova, Nadya A.

    2000-01-01

    The lowest isoscalar and isovector quadrupole and octupole excitations in near spherical nuclei are studied within the the proton-neutron version of the interacting boson model including quadrupole and octupole bosons (sdf-IBM-2). The main decay modes of these states in near spherical nuclei are discussed.

  17. Partial Dynamical Symmetry in Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1996-07-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}

  18. Partial dynamical symmetry in deformed nuclei

    CERN Document Server

    Leviatan, A

    1996-01-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei.

  19. Positron production in collision of heavy nuclei

    CERN Document Server

    Khriplovich, I B

    2016-01-01

    We consider the electromagnetic production of positron in collision of slow heavy nuclei, with the simultaneously produced electron captured by one of the nuclei. The cross-section of the discussed process exceeds essentially the cross-section of $e^+e^-$ production.

  20. RFP for the Comet Nuclei Tour (CONTOUR)

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Madsen, Peter Buch; Betto, Maurizio

    1999-01-01

    This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program.......This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program....

  1. Towards the exact calculation of medium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Joseph Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lonardoni, Diego [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Xiaobao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    The prediction of the structure of light and medium nuclei is crucial to test our knowledge of nuclear interactions. The calculation of the nuclei from two- and three-nucleon interactions obtained from rst principle is, however, one of the most challenging problems for many-body nuclear physics.

  2. Variation of hadron masses in finite nuclei

    CERN Document Server

    Saitô, K; Tsushima, K; Saito, Koichi; Thomas, Anthony W.; Tsushima, Kazuo

    1997-01-01

    Using a self-consistent, Hartree description for both infinite nuclear matter and finite nuclei based on a relativistic quark model (the quark-meson coupling model), we investigate the variation of the masses of the non-strange vector mesons, the hyperons and the nucleon in infinite nuclear matter and in finite nuclei.

  3. Energy Radiation of the Active Galactic Nuclei

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi-Ming; WANG Yong-Jiu

    2004-01-01

    In the Hellings-Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.

  4. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  5. Strengths of gamma-ray transitions in A = 6–44 nuclei (III)

    NARCIS (Netherlands)

    Endt, P.M.

    1979-01-01

    The present tables list the strengths (in Weisskopf units) of over 2400 γ-ray transitions in A = 6–44 nuclei, classified according to character (electric or magnetic, multipolarity, isospin forbiddenness). Selected transitions from unbound states are included. The strengths for isovector E1 and M1 t

  6. Theory of a metrology for the earths magnetic field based on the resonance of polarised atomic nuclei (1962); Theorie d'une metrologie du champ magnetique terrestre basee sur la resonance de noyaux atomiques polarises (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-06-15

    The problems presented by the metrology of the earths field are studied from two points of view. a. The first, purely physical, concerns the study of NMR transducers in their role for the transformation of the magnetic field into a frequency. The possibilities and limitations are outlined. The use of an equivalent model is introduced systematically in the considerations of NMR phenomena, this makes it possible to treat all problems of interaction between a spin system and an electric detection system in a unified form. b. The other point of view concerns the restitution of the nuclear signal frequency in the form of a directly perceptible observable. The treatment of information is considered from a statistical angle, which leads to the study of an optimisation process concerning the linearization of the measurement as well as the minimisation of noise effects. (author) [French] Les problemes que pose la metrologie du champ terrestre sont etudies sous un double aspect: a. L'un, purement physique, concerne l'etude des traducteurs a RMN dans leur role de transformation du champ magnetique en une frequence. On en degage les possibilites et les limitations. L'emploi d'un modele equivalent est introduit de maniere systematique pour rendre compte des phenomenes de RMN, ce qui permet de traiter sous forme unifiee tous les problemes d'interaction entre un systeme de spins et un systeme electrique de detection. b. L'autre aspect concerne la restitution de la frequence du signal nucleaire sous la forme d'une observable directement perceptible. On considere le traitement de l'information sous l'aspect statistique, ce qui amene a etudier un processus d'optimisation concernant la linearisation de la mesure aussi bien que la minimisation des effets des bruits. (auteur)

  7. T2-weighted MRI of the uterus: fast spin echo vs. breath-hold fast spin echo.

    Science.gov (United States)

    Ascher, S M; O'Malley, J; Semelka, R C; Patt, R H; Rajan, S; Thomasson, D

    1999-03-01

    This study compared one routine T2-weighted fast spin echo (T2FSE) sequence with a breath-hold T2FSE (BH T2FSE) sequence of the female pelvis for image quality, uterine anatomy, lesion detection, and signal intensity measurements. Thirty-two consecutive women (mean age 41.7 years) were imaged at 1.5 T with one high-resolution routine T2FSE sequence and one BH T2FSE sequence in the sagittal plane as part of comprehensive pelvic magnetic resonance imaging. The different image sets were rated separately for imaging characteristics (overall image quality, uterine anatomy definition, lesion detection, and free fluid conspicuity) and then compared side by side. The image sets were also compared for artifacts (ghosting, blurring, pulsatility, and chemical shift misregistration). Signal-to-noise (S/N) and signal difference-to-noise (SD/N) ratios were calculated for the different uterine zones, uterine abnormalities, free fluid, rectus abdominis muscle, and bladder. Contrast-to-noise ratios (CNRs) were calculated for uterine abnormalities. Twenty-eight uterine abnormalities were detected in 20 patients and included leiomyomata (13 patients), adenomyosis (7 patients), benign endometrial polyps (6 patients), endometrial carcinoma (1 patient), and pregnancy (1 patient). BH T2FSE was superior or equivalent to T2FSE for overall image quality in 23/32 patients (71.8%), uterine anatomy definition in 19/32 patients (59.3%), and lesion detection in 13/20 patients (65%). BH T2FSE performed less well than T2FSE for free fluid conspicuity in 5/5 (100%) patients. BH T2FSE was equivalent to or less affected than T2FSE for ghosting artifact in 24/32 patients (75%) and blurring artifact in 29/32 patients (90.6%). Pulsatility and chemical shift artifacts were not problematic for either image set. S/N and SD/N were higher for all BH T2FSE determinations compared with T2FSE. For the endometrium, junctional zone, myometrium, and bladder, these differences were statistically significant. There

  8. Comparison of respiratory-triggered 3-D fast spin-echo and single-shot fast spin-echo radial slab MR cholangiopancreatography images in children

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind B.; Almehdar, Abeer; Gupta, Sumeet [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Babyn, Paul S. [Royal University Hospital, Department of Medical Imaging, Saskatoon (Canada)

    2013-09-15

    The two most commonly performed magnetic resonance cholangiopancreatography (MRCP) sequences, 3-D fast spin-echo (3-D FSE) and single-shot fast spin-echo radial slabs (radial slabs), have not been compared in children. The purpose of this study was to compare 3-D FSE and radial slabs MRCP sequences on a 3-T scanner to determine their ability to show various segments of pancreaticobiliary tree and presence of artifacts in children. We reviewed 79 consecutive MRCPs performed in 74 children on a 3-T scanner. We noted visibility of major ducts on 3-D FSE and radial slabs. We noted the order of branching of ducts in the right and left hepatic ducts and the degree of visibility of the pancreatic duct. Statistical analysis was performed using McNemar and signed rank tests. There was no significant difference in the visibility of major bile ducts and the order of branching in the right hepatic lobe between sequences. A higher order of branching in the left lobe was seen on radial slabs than 3-D FSE (mean order of branching 2.82 versus 2.27; P-value = 0.0002). The visibility of pancreatic duct was better on radial slabs as compared to 3-D FSE (mean value of 1.53 vs. 0.90; P-value < 0.0001). 3-D FSE sequence was artifact-free in 25/79 (31.6%) MRCP exams as compared to radial slabs, which were artifact-free in 18/79 (22.8%) MRCP exams (P-value = 0.0001). There is no significant difference in the visibility of major bile ducts between 3-D FSE and radial slab MRCP sequences at 3-T in children. However, radial slab MRCP shows a higher order of branching in the left hepatic lobe and superior visibility of the pancreatic duct than 3-D FSE. (orig.)

  9. Seafloor characterisation using echo peak amplitudes of multibeam hydrosweep system - A preliminary study at Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Sudhakar, T.

    In this paper an interface to acquire 59-beams echo peak amplitudes of the Hydrosweep Multibeam system is established. The echo peak amplitude values collected at varying seabed provinces of Arabian sea are presented. The study reveals...

  10. Characterization of trehalose aqueous solutions by neutron spin echo

    CERN Document Server

    Branca, C; Magazù, S; Maisano, G; Mangione, A; Pappas, C; Triolo, A

    2002-01-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  11. An Extremely Bright Echo Associated With SN 2002hh

    CERN Document Server

    Welch, D L; Campbell, Amy; Barlow, M J; Sugerman, Ben E K; Meixner, Margaret; Bank, S H R

    2007-01-01

    We present new, very late-time optical photometry and spectroscopy of the interesting Type II-P supernova, SN 2002hh, in NGC 6946. Gemini/GMOS-N has been used to acquire visible spectra at six epochs between 2004 August and 2006 July, following the evolution of the SN from age 661 to 1358 days. Few optical spectra of Type II supernovae with ages greater than one year exist. In addition, g'r'i' images were acquired at all six epochs. The spectral and photometric evolution of SN 2002hh has been very unusual. Measures of the brightness of this SN, both in the R and I bands as well as in the H-alpha emission flux, show no significant fading over an interval of nearly two years. The most straightforward explanation for this behavior is that the light being measured comes not only from the SN itself but also from an echo off of nearby dust. Echoes have been detected previously around several SNe but these echoes, at their brightest, were ~8 mag below the maximum brightness of the SN. At V~21 mag, the putative echo ...

  12. LEGUS Discovery of a Light Echo Around Supernova 2012aw

    NARCIS (Netherlands)

    Van Dyk, S.D.; Lee, J.C.; Anderson, J.; Andrews, J.E.; Calzetti, D.; Bright, S.N.; Ubeda, L.; Smith, L.J.; Sabbi, E.; Grebel, E.K.; Herrero, A.; de Mink, S.E.

    2015-01-01

    We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on board the Hubble Space Telescope by the Legacy ExtraGalactic

  13. Improving Multi-Beam Echo Sounder Depth Measurements

    NARCIS (Netherlands)

    Snellen, M.; Ameele, J.J.P. van den; Biersteker, R.; Simons, D.G.

    2006-01-01

    An important research question is how to adequately correct multi-beam echo sounder (MBES) bathymetric data for refraction effects. This is especially relevant for survey areas, like the Maasgeul area off the Dutch coast, where the water column properties and thus the prevailing sound speed profile

  14. Characterization of trehalose aqueous solutions by neutron spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Magazu' , S.; Maisano, G.; Mangione, A. [Dipartimento di Fisica and INFM, Universita di Messina, PO Box 55, 98166 Messina (Italy); Pappas, C.; Triolo, A. [Hahn-Meitner-Institut, BENSC (NI), Glienicker Strasse, 14109 Berlin (Germany)

    2002-07-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  15. Echos, Doubles, and Delusions : Capgras Syndrome in Science and Literature

    NARCIS (Netherlands)

    Draaisma, Douwe

    2009-01-01

    Mark Schluter, the main protagonist in Richard Powers's The Echo Maker (2006), suffers from Capgras Syndrome, a disorder characterized by the patient's delusional belief that his near ones are replaced by doubles. Since its initial identification in 1923, Capgras Syndrome has had a two-stage

  16. Control of spatial correlations between Rydberg excitations using rotary echo

    CERN Document Server

    Thaicharoen, N; Raithel, G

    2016-01-01

    We manipulate correlations between Rydberg excitations in cold atom samples using a rotary-echo technique. The correlations are due to interactions between the Rydberg atoms. In the rotary-echo excitation sequence, the phase of the excitation pulse is flipped at a selected time during the pulse. We measure the resultant change in the spatial pair correlation function of the excitations via direct position-sensitive atom imaging. For zero detuning of the lasers from the interaction-free Rydberg-excitation resonance, the pair-correlation value at the most likely nearest-neighbor Rydberg-atom distance is substantially enhanced when the phase is flipped at the middle of the excitation pulse. In this case, the rotary echo eliminates most uncorrelated (un-paired) atoms, leaving an abundance of correlated atom pairs at the end of the sequence. In off-resonant cases, a complementary behavior is observed. We further characterize the effect of the rotary-echo excitation sequence on the excitation-number statistics of t...

  17. Infrasound - the cause of strong Polar Mesosphere Winter Echoes?

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2006-03-01

    Full Text Available The ESRAD 52-MHz and the EISCAT 224-MHz radars in northern Scandinavia observed thin layers of strongly enhanced radar echoes from the mesosphere (Polar Mesosphere Winter Echoes - PMWE during a solar proton event in November 2004. Using the interferometric capabilities of ESRAD it was found that the scatterers responsible for PMWE show very high horizontal travel speeds, up to 500 ms-1 or more, and high aspect sensitivity, with echo arrival angles spread over as little as 0.3°. ESRAD also detected, on some occasions, discrete scattering regions moving across the field of view with periodicities of a few seconds. The very narrow, vertically directed beam of the more powerful EISCAT radar allowed measurements of the spectral widths of the radar echoes both inside the PMWE and from the background plasma above and below the PMWE. Spectral widths inside the PMWE were found to be indistinguishable from those from the background plasma. We propose that scatter from highly-damped ion-acoustic waves generated by partial reflection of infrasonic waves provides a reasonable explanation of the characteristics of the very strong PMWE reported here.

  18. Echo width of foam supports used in scattering measurements

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen; Solodukhov, V. V.

    1979-01-01

    Theoretically and experimentally determined echo widths of dielectric cylinders having circular, triangular, and quadratic cross sections have been compared. The cylinders were made of foam material having a relative dielectric constant of about 1.035. The purpose of the investigation was to find...

  19. Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin

    Science.gov (United States)

    Kumar, Ajitesh; Karthick Kumar, S. K.; Gupta, Aditya; Goswami, Debabrata

    2011-08-01

    We have studied the coherence and population dynamics of Astaxanthin solution in methanol and acetonitrile by spectrally resolving their photon echo signals. Our experiments indicate that methanol has a much stronger interaction with the ultrafast dynamics of Astaxanthin in comparison to that of acetonitrile.

  20. Echo structures and Target Strength modelling for a synthetic submarine

    NARCIS (Netherlands)

    Schippers, P.; Beerens, S.P.

    2007-01-01

    Since the early nineties, performance modelling of active sonars has been developed at TNO in the ALMOST model, including propagation and sonar processing, based on point targets of given Target Strength. Recently, the modelling was extended with a computation module for target echo structure, resul