WorldWideScience

Sample records for magnetic nozzle experiment

  1. Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments

    Science.gov (United States)

    Sankaran, Kamesh; Polzin, Kurt A.

    2008-01-01

    At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.

  2. Integrity of the Plasma Magnetic Nozzle

    Science.gov (United States)

    Gerwin, Richard A.

    2009-01-01

    This report examines the physics governing certain aspects of plasma propellant flow through a magnetic nozzle, specifically the integrity of the interface between the plasma and the nozzle s magnetic field. The injection of 100s of eV plasma into a magnetic flux nozzle that converts thermal energy into directed thrust is fundamental to enabling 10 000s of seconds specific impulse and 10s of kW/kg specific power piloted interplanetary propulsion. An expression for the initial thickness of the interface is derived and found to be approx.10(exp -2) m. An algorithm is reviewed and applied to compare classical resistivity to gradient-driven microturbulent (anomalous) resistivity, in terms of the spatial rate and time integral of resistive interface broadening, which can then be related to the geometry of the nozzle. An algorithm characterizing plasma temperature, density, and velocity dependencies is derived and found to be comparable to classical resistivity at local plasma temperatures of approx. 200 eV. Macroscopic flute-mode instabilities in regions of "adverse magnetic curvature" are discussed; a growth rate formula is derived and found to be one to two e-foldings of the most unstable Rayleigh-Taylor (RT) mode. After establishing the necessity of incorporating the Hall effect into Ohm s law (allowing full Hall current to flow and concomitant plasma rotation), a critical nozzle length expression is derived in which the interface thickness is limited to about 1 ion gyroradius.

  3. Magnetic Nozzle Simulation Studies for Electric Propulsion

    Science.gov (United States)

    Tarditi, Alfonso

    2010-11-01

    Electric Propulsion has recently re-gained interest as one of the key technologies to enable NASA's long-range space missions. Options are being considered also in the field of aneutronic fusion propulsion for high-power electric thrusters. To support these goals the study of the exhaust jet in a plasma thruster acquires a critical importance because the need of high-efficiency generation of thrust. A model of the plasma exhaust has been developed with the 3D magneto-fluid NIMROD code [1] to study the physics of the plasma detachment in correlation with experimentally relevant configurations. The simulations show the role of the plasma diamagnetism and of the magnetic reconnection process in the formation of a detached plasma. Furthermore, in direct fusion-propulsion concepts high-energy (MeV range) fusion products have to be efficiently converted into a slower and denser plasma jet (with specific impulse down to few 1000's seconds, for realistic missions in the Solar System). For this purpose, a two-stage conversion process is being modeled where high-energy ions are non-adiabatically injected and confined into a magnetic duct leading to the magnetic nozzle, transferring most of their energy into their gyro-motion and drifting at slower speed along with the plasma propellant. The propellant acquires then thermal energy that gets converted into the direction of thrust by the magnetic nozzle. [1] C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004).

  4. Numerical Investigation of Plasma Flows in Magnetic Nozzles

    Science.gov (United States)

    Sankaran, Kamesh; Polzin, Kurt A.

    2009-01-01

    Magnetic nozzles are used in many laboratory experiments in which plasma flows are to be confined, cooled, accelerated, or directed. At present, however, there is no generally accepted theoretical description that explains the phenomena of plasma expansion in and detachment from an externally-imposed magnetic field. The latter is an especially important problem in the field of plasma propulsion, where the ionized gas must detach from the applied, solenoidal magnetic field to realize thrust production. In this paper we simulate a plasma flowing in the presence of an applied magnetic field using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The new tool employs the same formulation of the governing equation set, but retains the axial and radial components of magnetic field and the azimuthal component of velocity that were neglected. We aim to compare the computational results with the various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver, and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. 4 A schematic showing the setup used in those experiments is shown. We model this geometry because there is a substantial amount of experimental data that can be compared to our computations, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input

  5. Nozzle

    Science.gov (United States)

    Chen, Alexander G.; Cohen, Jeffrey M.

    2009-06-16

    A fuel injector has a number of groups of nozzles. The groups are generally concentric with an injector axis. Each nozzle defines a gas flowpath having an outlet for discharging a fuel/air mixture jet. There are means for introducing the fuel to the air. One or more groups of the nozzles are oriented to direct the associated jets skew to the injector axis.

  6. Study on driving magnetic field and performance of GMA for nozzle flapper servo valve

    Institute of Scientific and Technical Information of China (English)

    WANG Chuan-li; DING Fan; LI Qi-peng

    2007-01-01

    The structure and principle of the GMM actuator and the new nozzle flapper valve with the GMA were presented. Based on the axis-symmetric FEM model of the GMA,driving magnetic field was computed. And the field distribution for different input currents and variant curves of magnetic flux density along the axis were determined by using FEM.Magnetic flux density of the GMM actuator was practically measured under different input currents. The experiment of output displacement and frequency response of the GMM actuator was carried out under typical working conditions. The experiment results show that the GMA for nozzle flapper servo valve has bigger output displacement and quick response speed. And theoretical basis was presented to further introduce the GMA nozzle flapper valve into two stage electro-hydraulic servo valve.

  7. Ambipolar ion acceleration in an expanding magnetic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Longmier, Benjamin W; Carter, Mark D; Cassady, Leonard D; Chancery, William J; Diaz, Franklin R Chang; Glover, Tim W; Ilin, Andrew V; McCaskill, Greg E; Olsen, Chris S; Squire, Jared P [Ad Astra Rocket Company, 141 W. Bay Area Blvd, Webster, TX (United States); Bering, Edgar A III [Department of Physics and Department of Electrical and Computer Engineering, University of Houston, 617 Science and Research Building 1, Houston, TX (United States); Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Dr., Madison, WI (United States)

    2011-02-15

    The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR (registered)) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s{sup -1} argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 x 10{sup 20} m{sup -3} and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 10{sup 4} to 10{sup 5} {lambda}{sub De} depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 10{sup 15} m{sup -3} and 2 x 10{sup -5} Torr, respectively, in a 150 m{sup 3} vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.

  8. Development of Numerical Tools for the Investigation of Plasma Detachment from Magnetic Nozzles

    Science.gov (United States)

    Sankaran, Kamesh; Polzin, Kurt A.

    2007-01-01

    A multidimensional numerical simulation framework aimed at investigating the process of plasma detachment from a magnetic nozzle is introduced. An existing numerical code based on a magnetohydrodynamic formulation of the plasma flow equations that accounts for various dispersive and dissipative processes in plasmas was significantly enhanced to allow for the modeling of axisymmetric domains containing three.dimensiunai momentum and magnetic flux vectors. A separate magnetostatic solver was used to simulate the applied magnetic field topologies found in various nozzle experiments. Numerical results from a magnetic diffusion test problem in which all three components of the magnetic field were present exhibit excellent quantitative agreement with the analytical solution, and the lack of numerical instabilities due to fluctuations in the value of del(raised dot)B indicate that the conservative MHD framework with dissipative effects is well-suited for multi-dimensional analysis of magnetic nozzles. Further studies will focus on modeling literature experiments both for the purpose of code validation and to extract physical insight regarding the mechanisms driving detachment.

  9. Non-local electron energy probability function in a plasma expanding along a magnetic nozzle.

    Directory of Open Access Journals (Sweden)

    Roderick William Boswell

    2015-03-01

    Full Text Available Electron energy probability functions (eepfs have been measured along the axis of low pressure plasma expanding in a magnetic nozzle. The eepf at the maximum magnetic field of the nozzle shows a depleted tail commencing at an energy corresponding to the measured potential drop in the magnetic nozzle. The eepfs measured along the axis demonstrate that the potential and kinetic energies of the electrons are conserved and confirm the non-local collisionless kinetics of the electron dynamics.

  10. MHD Simulations of the Plasma Flow in the Magnetic Nozzle

    Science.gov (United States)

    Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.

    2013-01-01

    The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the

  11. Magnetic Nozzles for Plasma Thrusters: Acceleration, Thrust, and Detachment Mechanisms

    Science.gov (United States)

    2011-10-01

    was supported by Gobierno de España, ESP-2007-62694. Publisher Identifier S XXXX-XXXXXXX-X Simulation of plasma flows in divergent magnetic nozzles...Manuscript received ----- M. Merino and E. Ahedo are with the Universidad Politécnica de Madrid, Spain. Work was supported by Gobierno de España, ESP...tion thereon. Additional support came from the Gobierno de España (Project AYA-2010-16699). The authors thank Pro- fessor Martı́nez-Sánchez for his

  12. Contactless steering of a plasma jet with a 3D magnetic nozzle

    Science.gov (United States)

    Merino, Mario; Ahedo, Eduardo

    2017-09-01

    A 3D, steerable magnetic nozzle (MN) is presented that enables contactless thrust vector control of a plasma jet without any moving parts. The concept represents a substantial simplification over current plasma thruster gimbaled platforms, and requires only a small modification in thrusters that already have a MN. The characteristics of the plasma expansion in the 3D magnetic field and the deflection performance of the device are characterized with a fully magnetized plasma model, suggesting that thrust deflections of 5° -10° are readily achievable.

  13. Experimental identification of an azimuthal current in a magnetic nozzle of a radiofrequency plasma thruster

    Science.gov (United States)

    Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira

    2016-10-01

    The azimuthal plasma current in a magnetic nozzle of a radiofrequency plasma thruster is experimentally identified by measuring the plasma-induced magnetic field. The axial plasma momentum increases over about 20 cm downstream of the thruster exit due to the Lorentz force arising from the azimuthal current. The measured current shows that the azimuthal current is given by the sum of the electron diamagnetic drift and \\mathbf{E}× \\mathbf{B} drift currents, where the latter component decreases with an increase in the magnetic field strength; hence the azimuthal current approaches the electron diamagnetic drift one for the strong magnetic field. The Lorentz force calculated from the measured azimuthal plasma current and the radial magnetic field is smaller than the directly measured force exerted to the magnetic field, which indicates the existence of a non-negligible Lorentz force in the source tube.

  14. Numerical Investigation of Near-Field Plasma Flows in Magnetic Nozzles

    Science.gov (United States)

    Sankaran, Kamesh; Polzin, Kurt A.

    2009-01-01

    The development and application of a multidimensional numerical simulation code for investigating near-field plasma processes in magnetic nozzles are presented. The code calculates the time-dependent evolution of all three spatial components of both the magnetic field and velocity in a plasma flow, and includes physical models of relevant transport phenomena. It has been applied to an investigation of the behavior of plasma flows found in high-power thrusters, employing a realistic magnetic nozzle configuration. Simulation of a channel-flow case where the flow was super-Alfvenic has demonstrated that such a flow produces adequate back-emf to significantly alter the shape of the total magnetic field, preventing the flow from curving back to the magnetic field coil in the near-field region. Results from this simulation can be insightful in predicting far-field behavior and can be used as a set of self-consistent boundary conditions for far-field simulations. Future investigations will focus on cases where the inlet flow is sub-Alfvenic and where the flow is allowed to freely expand in the radial direction once it is downstream of the coil.

  15. Magnetic Resonance Imaging measurements of a water spray upstream and downstream of a spray nozzle exit orifice

    Science.gov (United States)

    Mastikhin, Igor; Arbabi, Aidin; Bade, Kyle M.

    2016-05-01

    Sprays are dynamic collections of droplets dispersed in a gas, with many industrial and agricultural applications. Quantitative characterization is essential for understanding processes of spray formation and dynamics. There exists a wide range of measurement techniques to characterize sprays, from direct imaging to phase Doppler interferometry to X-rays, which provide detailed information on spray characteristics in the "far-nozzle" region (≫10 diameters of the nozzle). However, traditional methods are limited in their ability to characterize the "near-nozzle" region where the fluid may be inside the nozzle, optically dense, or incompletely atomized. Magnetic Resonance Imaging (MRI) presents potential as a non-invasive technique that is capable of measuring optically inaccessible fluid in a quantitative fashion. In this work, MRI measurements of the spray generated by ceramic flat-fan nozzles were performed. A wide range of flow speeds in the system (0.2 to >25 m/s) necessitated short encoding times. A 3D Conical SPRITE and motion-sensitized 3D Conical SPRITE were employed. The signal from water inside the nozzle was well-characterized, both via proton density and velocity measurements. The signal outside the nozzle, in the near-nozzle region, was detectable, corresponding to the expected flat-fan spray pattern up to 3 mm away. The results demonstrate the potential of MRI for measuring spray characteristics in areas inaccessible by other methods.

  16. Experimental determination of plasma detachment from the diverging magnetic nozzle of the VASIMR VX-200 Electric Thruster

    Science.gov (United States)

    Olsen, Christopher; Squire, Jared; Longmier, Benjamin; Ballenger, Maxwell; Cassady, Leonard; Carter, Mark; Ilin, Andrew; Cloutier, Paul; Bering, Edgar; Giambusso, Matthew; Ad Astra Rocket Company Team; Rice University Collaboration; University of Houston Collaboration

    2011-10-01

    Theories of magnetized plasma detachment in an expanding magnetic field have been lacking detailed experimental evidence. Recent experiments using a 200 kW class electric rocket (VX-200), run at 100 kW using argon and a peak magnetic field of 2 T, produced ion energies greater than 100 eV with a flux of 2x1022 ions/s in a 150 m3 vacuum facility. Ion-neutral charge exchange effects were reduced and the resultant data show evidence of plasma detachment in a diverging magnetic field on a scale length of 2 m. The detachment is confirmed using multiple plasma diagnostics and magnetic nozzle topologies. Spatial maps of the data are compared to simulations from a particle detachment model, ParTraj, as well as MHD detachment theory. ParTraj, when compared to experiment, is shown to be more consistent in describing the data. Unless the MHD models are modified to incorporation two-fluid effects, single fluid MHD theory is inconsistent with the observations.

  17. Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle

    Science.gov (United States)

    Higginson, D. P.; Revet, G.; Khiar, B.; Béard, J.; Blecher, M.; Borghesi, M.; Burdonov, K.; Chen, S. N.; Filippov, E.; Khaghani, D.; Naughton, K.; Pépin, H.; Pikuz, S.; Portugall, O.; Riconda, C.; Riquier, R.; Ryazantsev, S. N.; Skobelev, I. Yu.; Soloviev, A.; Starodubtsev, M.; Vinci, T.; Willi, O.; Ciardi, A.; Fuchs, J.

    2017-06-01

    The collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure when the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M ∼ 20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (1012-1013 W/cm2), target materials and orientations of the magnetic field. Plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.

  18. Design and optimization of a gas-puff nozzle for staged Z-pinch experiments using computational fluid dynamics simulations

    Science.gov (United States)

    Valenzuela, J. C.; Krasheninnikov, I.; Beg, F. N.; Wessel, F.; Rahman, H.; Ney, P.; Presura, R.; McKee, E.; Darling, T.; Covington, A.

    2015-11-01

    Previous experimental work on staged Z-pinches demonstrated that gas liners can efficiently couple energy and implode uniformly a target-plasma. A 1.5 MA, 1 μs current driver was used to implode a magnetized, Kr liner onto a D + target, producing 1010 neutrons per shot and providing clear evidence of enhanced pinch stability. Time-of-flight data suggest that primary and secondary neutrons were produced. MHD simulations show that in Zebra, a 1.5MA and 100ns rise-time current driver, high fusion gain can be attained when the optimum liner and plasma target conditions are used. In this work we present the design and optimization of a liner-on-target nozzle to be fielded in Zebra and demonstrate high fusion gain at 1 MA current level. The nozzle is composed of an annular high atomic number gas-puff and an on-axis plasma gun that will deliver the ionized deuterium target. The nozzle optimization was carried out using the computational fluid dynamics (CFD) code fluent and the MHD code Mach2. The CFD simulation produces density and temperature profiles, as a function of the nozzle shapes and gas conditions, which are then used in Mach2 to find the optimum plasma liner implosion-pinch conditions. Funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.

  19. LHCb experiment magnets

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The leading members of the LHCb magnet project, from left to right: Pierre-Ange Giudici, who organized and supervised the industrial production of the coils; Marcello Losasso, who performed the 3D calculations to optimise the magnetic field; Olivier Jamet, responsible for the 3D design; Jean Renaud, in charge of the magnet assembly, and Wilfried Flegel, project leader. The LHCb detector will investigate matter-antimatter differences in B mesons at the LHC. The coils of the detector's huge dipole magnet are seen here in April 2004.

  20. Magnetic Repulsion: An Introductory Experiment

    Science.gov (United States)

    Romer, Alfred

    1973-01-01

    Discusses the use of a balance assembled from standard laboratory components to conduct an experiment on the repulsion between two bar magnets. Includes an analysis of data on the two-pole and four-pole models. (CC)

  1. Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors

    Science.gov (United States)

    Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei

    2016-09-01

    In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.

  2. Transient Two-Phase Flow in Slide-Gate Nozzle and Mold of Continuous Steel Slab Casting with and without Double-Ruler Electro-Magnetic Braking

    Science.gov (United States)

    Cho, Seong-Mook; Thomas, Brian G.; Kim, Seon-Hyo

    2016-10-01

    Transient mold flow could produce undesirable surface instabilities and slag entrainments, leading to the formation of defects during continuous slab casting of steel. In this work, two Large Eddy Simulations coupled with Discrete Phase Model are run, with and without MagnetoHydroDynamic model, to gain new insights into the surface variations of molten steel-argon gas flow with anisotropic turbulence in the slide-gate nozzle and the mold, with and without double-ruler Electro-Magnetic Braking (EMBr). The model calculations are validated with plant measurements, and applied to investigate the flow variations related to the slide gate on nozzle swirl, jet wobbling, and surface flow variations by quantifying the variations of velocity, horizontal angle, and vertical angle of the transient flow. Transient flow in the slide-gate nozzle bottom is almost always swirling, alternating chaotically between clockwise and counter-clockwise rotation. The clockwise swirl, caused by stronger flow down the same side of the nozzle as the open area near the Outside Radius side of the slide-gate middle plate, produces faster jet flow and higher velocity flow across the top surface of the mold. Counter-clockwise swirl produces slower jet and surface flow, but with more variations. The double-ruler EMBr decreases the asymmetry and duration of velocity variations during nozzle swirl flipping, resulting in less flow variations in the jet and across the surface in the mold.

  3. Understanding the mixing process in 3D microfluidic nozzle/diffuser systems: simulations and experiments

    Science.gov (United States)

    Sayah, Abdeljalil; Gijs, Martin A. M.

    2016-11-01

    We characterise computationally and experimentally a three-dimensional (3D) microfluidic passive mixer for various Reynolds numbers ranging from 1 to 100, corresponding to primary flow rates of 10-870 µl min-1. The 3D mixing channel is composed of multiple curved segments: circular arcs situated in the substrate plane and curved nozzle/diffuser elements normal to the substrate plane. Numerical simulation provides a detailed understanding of the mixing mechanism resulting from the geometrical topology of the mixer. These Comsol software-based simulations reveal the development of two secondary flows perpendicular to the primary flow: a swirling flow resulting from tangential injection of the flow into the nozzle holes and Dean vortices present in the circular arcs. These phenomena are particularly important at a Reynolds number larger than 30, where mixing occurs by chaotic advection. Experimentally, the 3D mixer is fabricated in a monolithic glass substrate by powder blasting machining, exploiting eroding powder beams at various angles of impact with respect to the substrate plane. Experimental mixing was characterised using two coloured dyes, showing nearly perfect mixing for a microfluidic footprint of the order of a few mm2, in good agreement with the simulations.

  4. Contrast Experiment of the Spray Characteristics of Four Atomizing Nozzle%4种脱硫喷嘴雾化特性对比试验

    Institute of Scientific and Technical Information of China (English)

    刘定平; 李史栋

    2013-01-01

    对目前湿法烟气脱硫系统中常用的4种机械式雾化喷嘴进行了雾化试验,采用高速数码摄影法对4种喷嘴在不同压力下的喷雾状况进行测试,并用ImageJ软件处理,得到各喷嘴在不同工况下的粒径、粒径分布和雾化角等特性.研究结果表明:4种喷嘴雾化粒径随液压的增大呈减小趋势,其中螺旋喷嘴雾化粒径最小,扇形喷嘴雾化粒径最大;螺旋喷嘴、空心锥喷嘴和扇形喷嘴的雾化角随液压增大变化不大,较为稳定,实心锥喷嘴雾化角随液压增大而增大,螺旋喷嘴与扇形喷嘴的雾化角较大,空心锥喷嘴的雾化角最小;各喷嘴在小于0.2MPa的液压下粒径分布不均匀,当达到0.2MPa后粒径分布较为均匀.综合结构特点和雾化特性,螺旋喷嘴较适用于火电厂湿法烟气脱硫系统.%A series of atomization experiments is done for four commonly used atomizing nozzles in wet flue gas desulfurization. A high speed digital camera is used to take the atomization photos under different hydraulic pressure and the photos are analysised with ImageJ. Then get the spray particle, distribution of the spray particle and the spray angle. The results of the experiments show that the pray particles of four kinds of nozzle become smaller with the increase of the hydraulic pressure. The pray particle of spiral nozzle is smallest and that of fan-shaped nozzle is largest. The spray angles of spiral nozzle,fan-shaped nozzle and hollow cone nozzle are relatively stable with the increase of the hydraulic pressure. And that of Solid cone nozzle becomes larger with the increase of the hydraulic pressure. The spray angles of Spiral nozzle and Fan-shaped nozzle are relatively larger and the spray angle of Hollow cone nozzle is smallest. The spray particles of all the four kinds of nozzle are unevenly distributed under 0.2MPa and are relatively evenly distributed above 0. 2MPa. Comprehensively considering the structural characteristics

  5. Magnet operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  6. Magnet operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  7. Scramjet Nozzles

    Science.gov (United States)

    2010-09-01

    integration et gestion thermique ) 14. ABSTRACT The lecture is given in four parts, each being a step in the process of nozzle design, and within each part...project and applied to the conceptual design of a Mach 3.5 transport aircraft. The result is depicted in figure 4. The central feature of the concept is

  8. Gas only nozzle

    Science.gov (United States)

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  9. Reconnection experiments including 3D magnetic nulls

    Science.gov (United States)

    Le, A.; Egedal, J.; Vrublevskis, A.

    2010-11-01

    A rich collection of magnetic reconnection scenarios is possible in three dimensions depending on the topological and geometric structure of the magnetic field [1]. In recent experiments at the Versatile Toroidal Facility (VTF) three-dimensional effects were essential even in nearly axisymmetric plasmas with a non-vanishing toroidal field [2]. To explore reconnection in 3D geometries including magnetic null points, a new adjustable set of coils will be installed in the vacuum chamber of VTF. The range of vacuum magnetic field topologies attainable in VTF will be explored numerically. Plasma reconnection experiments will be run in these configurations, and measurements will be presented if available. [4pt] [1] CE Parnell, et al., (2009) ``Three-Dimensional Magnetic Reconnection, in Magnetic Coupling between the Interior and the Atmosphere of the Sun,'' eds. S.S. Hasan and R.J. Rutten, Springer-Verlag, Heidelberg, Berlin. [0ex] [2] Katz, N. et al., (2010) Phys. Rev. Lett. 104, 255004.

  10. Magnetic Levitation Experiments with the Electrodynamic Wheel

    Science.gov (United States)

    Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian

    Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  11. Experiments on a modular magnetic refrigeration device

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Jensen, Jesper Buch; Bahl, Christian

    2012-01-01

    of different experiments. The test device is of the reciprocating type, and the magnetic field source is provided by a permanent Halbach magnet assembly with an average flux density of 1.03 Tesla. This work presents experimental results for flat plate regenerators made of gadolinium and sintered compounds...

  12. Model experiment of swirl effect in bottomless immersion nozzle on molten steel flow in slab CC mold; Slag CC igatanai ryudoni oyobosu sokonashi shinseki nozzle nai deno senkai ryudo koka ni kansuru mizu model jikken

    Energy Technology Data Exchange (ETDEWEB)

    Yokoya, S.; Takagi, S. [Nippon Institute of Technology, Saitama (Japan)

    2000-04-01

    The characteristics of molten steel jet flowing out from the Immersion nozzle in the continuous casting mold control the flow pattern in the mold thereby strongly influencing the quality and productivity of the cast steel slabs. We proposed a new method to establish a reasonable flow pattern in the mold by imparting a swirling motion to the flow in the immersion nozzle without the bottom. The following results were obtained from a water model study. (1) A quite stable swirling flow being established in the immersion nozzle without the bottom when the swirling velocity exceeded a critical value of 0.8 m/s, under this condition there existed no separation on the inner wall of the immersion nozzle. (2) When the swirling velocity was higher than 0.8 m/s, the fluid on the symmetry plane of the immersion nozzle moved along the curved inner wall of the nozzle. Accordingly, the outlet-flow was directed outwards as well as downwards, while a weak upward flow, i.e., inflow was observed around the vertical nozzle axis near the outlet of the nozzle. As a whole, the fluid flow near the guide plane of the nozzle was directed downwards. (3) The fluctuation of the surface flow, i.e., the flow on the meniscus of the mold was strongly suppressed due to the appearance of the S-shaped flow pattern in the transverse sections. As a result, swirl motions around the immersion nozzle were also suppressed. In addition, both the fluctuations of the mean velocity components and the turbulence components of the flow in the mold became very small, being preferable conditions for continuous casting. (author)

  13. Reconnection experiments with 3D magnetic nulls

    Science.gov (United States)

    Vrublevskis, A.; Egedal, J.; Le, A.; Montag, P.

    2011-10-01

    Three-dimensional effects have been crucial in explaining experiments at the Versatile Toroidal Facility (VTF) even in nominal axisymmetric plasmas with a non-vanishing toroidal field. In general, depending on the topological and geometric structure of the magnetic field, a rich collection of magnetic reconnection scenarios is possible in three dimensions. The new adjustable set of coils in VTF allows exploring reconnection in 2D and 3D geometries including configurations with magnetic null points. We present results of a numerical and experimental investigation of magnetic field topologies attainable in VTF. This work was supported by NSF CAREER Award 0844620.

  14. Frozen Chemistry Effects on Nozzle Performance Simulations

    Science.gov (United States)

    Yoder, Dennis A.; Georgiadis, Nicholas J.; O'Gara, Michael R.

    2009-01-01

    Simulations of exhaust nozzle flows are typically conducted assuming the gas is calorically perfect, and typically modeled as air. However the gas inside a real nozzle is generally composed of combustion products whose thermodynamic properties may differ. In this study, the effect of gas model assumption on exhaust nozzle simulations is examined. The three methods considered model the nozzle exhaust gas as calorically perfect air, a calorically perfect exhaust gas mixture, and a frozen exhaust gas mixture. In the latter case the individual non-reacting species are tracked and modeled as a gas which is only thermally perfect. Performance parameters such as mass flow rate, gross thrust, and thrust coefficient are compared as are mean flow and turbulence profiles in the jet plume region. Nozzles which operate at low temperatures or have low subsonic exit Mach numbers experience relatively minor temperature variations inside the nozzle, and may be modeled as a calorically perfect gas. In those which operate at the opposite extreme conditions, variations in the thermodynamic properties can lead to different expansion behavior within the nozzle. Modeling these cases as a perfect exhaust gas flow rather than air captures much of the flow features of the frozen chemistry simulations. Use of the exhaust gas reduces the nozzle mass flow rate, but has little effect on the gross thrust. When reporting nozzle thrust coefficient results, however, it is important to use the appropriate gas model assumptions to compute the ideal exit velocity. Otherwise the values obtained may be an overly optimistic estimate of nozzle performance.

  15. Experiments with Coler magnetic current apparatus

    Science.gov (United States)

    Ludwig, T.

    Experiments with a replica of the famous Coler "Magnetstromapparat" (magnetic current apparatus) were conducted. The replica was built at the same institute at the Technical University of Berlin where the original was tested by Prof. Kloss in 1925. The details of the setup will be presented in this paper. The investigation of the Coler device was done with modern methods. The output was measured with a digital multi meter (DMM) and a digital storage oscilloscope (DSO). The results of the measurements will be presented. Did Coler convert vacuum fluctuations via magnetic, electric and acoustic resonance into electricity? There is a strong connection between magnetism and quantum field radiation energy. The magnetic moment of the electron is in part an energy exchange with the radiation field. The energy output of the Coler apparatus is measured. Furthermore the dynamics of the ferromagnetic magnets that Coler reported as the working principle of his device was investigated with magnetic force microscopy (MFM) and the spectroscopy mode of an atomic force microscope (AFM). The magnetic and acoustic resonance was investigated with magnetic force microscopy (MFM). The connection between ZPE and magnetism will be discussed as well as the perspective of using magnetic systems as a means to convert vacuum fluctuations into usable electricity.

  16. Magnetic flux array for spontaneous magnetic reconnection experiments.

    Science.gov (United States)

    Kesich, A; Bonde, J; Egedal, J; Fox, W; Goodwin, R; Katz, N; Le, A

    2008-06-01

    Experimental investigation of reconnection in magnetized plasmas relies on accurate characterization of the evolving magnetic fields. In experimental configurations where the plasma dynamics are reproducible, magnetic data can be collected in multiple discharges and combined to provide spatially resolved profiles of the plasma dynamics. However, in experiments on spontaneous magnetic reconnection recently undertaken at the Versatile Toroidal Facility at MIT, the reconnection process is not reproducible and all information on the plasma must be collected in a single discharge. This paper describes a newly developed magnetic flux array which directly measures the toroidal component of the magnetic vector potential, A(phi). From the measured A(phi), the magnetic field geometry, current density, and reconnection rate are readily obtained, facilitating studies of the three-dimensional dynamics of spontaneous magnetic reconnection. The novel design of the probe array allows for accurate characterization of profiles of A(phi) at multiple toroidal angles using a relatively small number of signal channels and with minimal disturbance of the plasma.

  17. Teaching Representation Translations with Magnetic Field Experiments

    Science.gov (United States)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and measurement of the spatial variation of magnetic field components along a line near magnets. We describe the experimental tasks, various difficulties students have throughout, and ways this lab makes even their incorrect predictions better. We suggest that developing lab activities of this nature brings a new dimension to the ways students learn and interact with field concepts.

  18. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  19. Performance experiment of rotary hydraulic atomizing nozzle for aerial spraying application%航空施药旋转液力雾化喷头性能试验

    Institute of Scientific and Technical Information of China (English)

    茹煜; 金兰; 周宏平; 贾志成

    2014-01-01

    and analyzed for error in other literature. Its experimental system error displayed was less than 1%, so the test results obtained through this platform are reliable. The results shown here provide a theoretical basis and technical support for the mounting of this novel UAV spray device-the rotary hydraulic atomizing nozzle-onto an UAV to perform relative experiments to improve UAV operating quality and spraying efficiency in the future.

  20. Magnetic field homogeneity for neutron EDM experiment

    Science.gov (United States)

    Anderson, Melissa

    2016-09-01

    The neutron electric dipole moment (nEDM) is an observable which, if non-zero, would violate time-reversal symmetry, and thereby charge-parity symmetry of nature. New sources of CP violation beyond those found in the standard model of particle physics are already tightly constrained by nEDM measurements. Our future nEDM experiment seeks to improve the precision on the nEDM by a factor of 30, using a new ultracold neutron (UCN) source that is being constructed at TRIUMF. Systematic errors in the nEDM experiment are driven by magnetic field inhomogeneity and instability. The goal field inhomogeneity averaged over the experimental measurement cell (order of 1 m) is 1 nT/m, at a total magnetic field of 1 microTesla. This equates to roughly 10-3 homogeneity. A particularly challenging aspect of the design problem is that nearby magnetic materials will also affect the magnetic inhomogeneity, and this must be taken into account in completing the design. This poster will present the design methodology and status of the main coil for the experiment where we use FEA software (COMSOL) to simulate and analyze the magnetic field. Natural Sciences and Engineering Research Council.

  1. A magnet system for HEP experiments

    CERN Document Server

    Gaddi, A

    2012-01-01

    This chapter describes the sequence of steps that lead to the design of a magnet system for modern HEP detectors. We start looking to the main types of magnets used in HEP experiments, along with some basic formulae to set the main parameters, such as ampere-turns, impedance and stored energy. A section is dedicated to the description of the iron yoke, with emphasis on magnet-detector integration and assembly, steel characteristics, stray field issues and alternative design. In the second part of the chapter we start looking at a brief history of superconducting magnets and a comparison between warm and superconducting ones. Following that, we describe the commonly used superconducting cables, the conductor design and technology and the winding techniques. A section of the chapter is dedicated to the cryogenic design, vacuum insulation and other ancillary systems. We also describe the power circuit, with the power supply unit, the current leads, the current measurement devices and other instruments and safety...

  2. Forces between permanent magnets: experiments and model

    Science.gov (United States)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  3. Magnetohydrodynamic experiments on cosmic magnetic fields

    CERN Document Server

    Stefani, Frank; Gerbeth, Gunter

    2008-01-01

    It is widely known that cosmic magnetic fields, including the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale liquid sodium facilities in Riga and Karlsruhe. Recently, self-excitation was also obtained in the French "von Karman sodium" (VKS) experiment. An MRI-like mode was found on the background of a turbulent spherical Couette flow at the University of Maryland. Evidence for MRI as the first instability of an hydrodynamica...

  4. Teaching Representation Translations with Magnetic Field Experiments

    Science.gov (United States)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and…

  5. Teaching Representation Translations with Magnetic Field Experiments

    Science.gov (United States)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and…

  6. Laval nozzles for cluster-jet targets

    Energy Technology Data Exchange (ETDEWEB)

    Hergemoeller, Ann-Katrin; Bonaventura, Daniel; Grieser, Silke; Koehler, Esperanza; Taeschner, Alexander; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2014-07-01

    Cluster-jet targets are highly suited as internal targets for storage ring experiments. Here the target beam itself is produced by the expansion of pre-cooled gases within fine Laval nozzles. With such targets high and constant target beam thicknesses can be achieved and adjusted continuously during operation. At the prototype cluster-jet target for the PANDA experiment, which was built up and set successfully into operation at the University of Muenster, density structures within the cluster beam directly behind the nozzle have been observed. Therefore, a tilting system was installed, allowing for an adjustment of the nozzle system relative to the experimental setup. With this installation target densities of more than 2 x 10{sup 15} atoms/cm{sup 2} at a distance of 2.1 m behind the nozzle were achieved. To study the impact of the Laval nozzle geometry on the beam structures and the achievable density, an improved nozzle production method was established. With this technique it is possible to produce with high efficiency fine micrometer-sized nozzles with variable geometries, e.g. different opening angles, opening diameters or lengths of the exit trumpet. The method for the production of Laval nozzles are presented, and new perspectives are discussed.

  7. Spiral cooled fuel nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Timothy; Schilp, Reinhard

    2012-09-25

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  8. Experimental investigation of flow through planar double divergent nozzles

    Science.gov (United States)

    Arora, Rajat; Vaidyanathan, Aravind

    2015-07-01

    Dual bell nozzle is one of the feasible and cost effective techniques for altitude adaptation. Planar double divergent nozzle with a rectangular cross section was designed for two different NPR's to simulate and investigate the flow regimes similar to those inside the dual bell nozzle. Measurements involved flow visualization using Schlieren technique and wall static pressure measurements. The flow transition between the two nozzles at the respective inflection points and the formation of recirculation region due to flow separation was analyzed in detail. Cold flow tests were performed on the double divergent nozzle in the over-expanded conditions to study the shock wave characteristics. The results obtained from the two independent double divergent nozzles were compared with those obtained from a single divergent nozzle of the same area ratio. From the experiments it was observed that inflection angle played a key role in defining the type of shock structures existing inside the double divergent nozzles.

  9. Magnetic Monopole Search with the SLIM Experiment

    CERN Document Server

    Medinaceli, E

    2008-01-01

    The SLIM experiment was an array of 427 m^2 of nuclear track detectors, exposed at a high altitude laboratory (Chacaltaya, Bolivia, 5230 m a.s.l.), for ~4.22 years. SLIM was sensitive to downgoing intermediate mass magnetic monopoles with masses in the range 10^5 to 10^12 GeV. The analysis of the full detector gives a flux upper limit of 1.3x10^{-15} 1/(cm^2*s*sr) (90% C.L.) for downgoing fast intermediate magnetic monopoles.

  10. Magnetic processes in astrophysics theory, simulations, experiments

    CERN Document Server

    Rüdiger, Günther; Hollerbach, Rainer

    2013-01-01

    In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore the motion of electrically conducting fluids, the so-called dynamo effect, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial to the formation of the stars, and discuss promising experiments currently being designed to investigate some of the relevant physics in the laboratory. This interdisciplinary approach will appeal to a wide audience in physics, astrophysics and geophysics. This second edition covers such add

  11. Flow and Noise from Septa Nozzles

    Science.gov (United States)

    Zaman, K. B. M. Q.; Bridges, J. E.

    2017-01-01

    Flow and noise fields are explored for the concept of distributed propulsion. A model-scale experiment is performed with an 8:1 aspect ratio rectangular nozzle that is divided into six passages by five septa. The septa geometries are created by placing plastic inserts within the nozzle. It is found that the noise radiation from the septa nozzle can be significantly lower than that from the baseline rectangular nozzle. The reduction of noise is inferred to be due to the introduction of streamwise vortices in the flow. The streamwise vortices are produced by secondary flow within each passage. Thus, the geometry of the internal passages of the septa nozzle can have a large influence. The flow evolution is profoundly affected by slight changes in the geometry. These conclusions are reached by mostly experimental results of the flowfield aided by brief numerical simulations.

  12. Magnetic Flux Compression Experiments Using Plasma Armatures

    Science.gov (United States)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2003-01-01

    Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

  13. VINETA II: a linear magnetic reconnection experiment.

    Science.gov (United States)

    Bohlin, H; Von Stechow, A; Rahbarnia, K; Grulke, O; Klinger, T

    2014-02-01

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

  14. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    Science.gov (United States)

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  15. CFD Analysis On The Performance Of Wind Turbine With Nozzles

    Directory of Open Access Journals (Sweden)

    Chunkyraj Kh

    2015-08-01

    Full Text Available In this paper an effort has been made in dealing with fluid characteristic that enters a converging nozzle and analysis of the nozzle is carried out using Computational Fluid Dynamics package ANSYS WORKBENCH 14.5. The paper is the continuation of earlier work Analytical and Experimental performance evaluation of Wind turbine with Nozzles. First the CFD analysis will be carried out on nozzle in-front of wind turbine where streamline velocity at the exit volume flow rate in the nozzle and pressure distribution across the nozzle will be studied. Experiments were conducted on the Wind turbine with nozzles and the corresponding power output at different air speed and different size of nozzles were calculated. Different shapes and dimensions with special contours and profiles of nozzles were studied. It was observed that the special contour nozzles have superior outlet velocity and low pressure at nozzle exit the design has maximum Kinetic energy. These indicators conclude that the contraction designed with the new profile is a good enhancing of the nozzle performance.

  16. Magnetic Compression Experiment at General Fusion

    Science.gov (United States)

    Dunlea, Carl; Howard, Stephen; Epp, Kelly; Zawalski, Wade; Kim, Charlson; Fusion Team, General

    2016-10-01

    The magnetic compression experiment at General Fusion was designed as a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. The experiment has external coils to keep the CT off the outer wall (levitation) and then rapidly compress it inwards. Experiments used a variety of levitation/compression field profiles. The optimal configuration was seen to improve levitated CT lifetime by around 50% over that with the original design field. Suppression of impurity influx to the plasma is thought to be a significant factor in the improvement, as supported by spectrometer data. Improved levitation field may reduce the amount of edge plasma and current that intersects the insulating outer wall during the formation process. Higher formation current and stuffing field, and correspondingly higher CT flux, was possible with the improved configuration. Significant field and density compression factors were routinely observed. The level of MHD activity was reduced, and lifetime was increased further by matching the decay rate of the levitation field to that of the CT fields. Details of experimental results and comparisons to equilibrium models and MHD simulations will be presented.

  17. Fluid Flow in Continuous Casting Mold with a Configured Nozzle

    Institute of Scientific and Technical Information of China (English)

    王镭; 沈厚发; 柳百成

    2004-01-01

    The influence of a configured nozzle on the turbulent fluid flow in a continuous casting mold was investigated using the simulation program Visual Cast, which used the finite difference method and the SIMPLER algorithm. CAD software was used to construct the complicated nozzle in the calculational region. The simulation accuracy was validated by comparison with the classic driven cavity flow problem. The simulation results agree well with water modeling experiments. The simulations show that the velocity distribution at the nozzle port is uneven and the jet faces downward more than the nozzle outlet. Simulations with a configured nozzle and the inlet velocity at the nozzle entrance give precise results and overcome the traditional difficulty in determining the nozzle outlet velocity.

  18. Magnetized laboratory plasma jets: Experiment and simulation

    Science.gov (United States)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  19. New insights into nucleation. Pressure trace measurements and the first small angle X-ray scattering experiments in a supersonic laval nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.

    2007-07-01

    Homogeneous nucleation rates of the n-alcohols and the n-alkanes have been determined by combining information from two sets of supersonic Laval nozzle expansion experiments under identical conditions. The nucleation rates J=N/{delta}t{sub Jmax} for the n-alcohols are in the range of 1.10{sup 17}nozzle expansion. A good agreement between the experimental results and those available in literature is found by applying Hale's scaling formalism [Hale, B., Phys. Rev. A 33, 4256 (1986); Hale, B., Metall. Trans. A 23, 1863 (1992)]. The scaling parameters from this work are also in good agreement with those shown by Rusyniak et al. [Rusyniak, M., M. S. El-Shall, J. Phys. Chem. B 105, 11873 (2001)] and Brus et al. [Brus, D., V. Zdimal F. Stratmann, J. Chem Phys. 124, 164306 (2006)]. In the first experiment static pressure measurements were conducted for the n-alkanes to determine the condensible partial pressure, temperature, supersaturation, characteristic time, and the expansion rate corresponding to the maximum nucleation rate. Characteristic times in the range of 13{<=}{delta}t{sub Jmax}/{mu}s{<=}34 were found. In the second set of experiments, the first flow rate resolved Small Angle X-ray Scattering experiments are conducted to determine the particle number density for both substance classes. Particle number densities in the range of 1.10{sup 12}

  20. Gas only nozzle fuel tip

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  1. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    Nozzle reaction and hose tension are analyzed using conservation of fluid momentum and assuming steady, inviscid flow and a flexible hose in frictionless contact with the ground. An expression that is independent of the bend angle is derived for the hose tension. If this tension is exceeded owing...... to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  2. Magnetized plasma jets in experiment and simulation

    Science.gov (United States)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  3. Experiments in Nuclear Magnetic Resonance Microscopy

    Science.gov (United States)

    Lee, Yong; Lu, Wei; Choi, J.-H.; Chia, H. J.; Mirsaidov, U. M.; Guchhait, S.; Cambou, A. D.; Cardenas, R.; Park, K.; Markert, J. T.

    2006-03-01

    We report our group's effort in the construction of an 8-T, ^3 He cryostat based nuclear magnetic resonance force microscope (NMRFM). The probe has two independent 3-D of piezoelectric x-y-z positioners for precise positioning of a fiber optic interferometer and a sample/gradient-producing magnet with respect to a micro-cantilever. The piezoelectric positioners have a very uniform controllable step size with virtually no backlash. A novel RF tuning circuit board design is implemented which allows us to simply swap out one RF component board with another for experiments involving different nuclear species. We successfully fabricated and are characterizing 50μm x50μm x0.2μm double torsional oscillators. We have also been characterizing ultrasoft cantilevers whose spring constant is on the order of 10-4 N/m. We also report NMRFM data for ammonium dihydrogen phosphate(ADP) at room temperature using our 1.2-T system. Observed features include the correct shift of the NMR peak with carrier frequency, increases in signal amplitude with both RF field strength and frequency modulation amplitude, and signal oscillation (spin nutation) as a function of tipping RF pulse length. Experiments in progress on NH4MgF3 (at 1.2 T) and MgB2 (at 8.1 T) will also be briefly reviewed. Robert A. Welch Foundation grant No.F-1191 and the National Science Foundation grant No. DMR-0210383.

  4. Transition nozzle combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier

    2016-11-29

    The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the second portion of the cooling flow.

  5. Wear characterization of abrasive waterjet nozzles and nozzle materials

    Science.gov (United States)

    Nanduri, Madhusarathi

    Parameters that influence nozzle wear in the abrasive water jet (AWJ) environment were identified and classified into nozzle geometric, AWJ system, and nozzle material categories. Regular and accelerated wear test procedures were developed to study nozzle wear under actual and simulated conditions, respectively. Long term tests, using garnet abrasive, were conducted to validate the accelerated test procedure. In addition to exit diameter growth, two new measures of wear, nozzle weight loss and nozzle bore profiles were shown to be invaluable in characterizing and explaining the phenomena of nozzle wear. By conducting nozzle wear tests, the effects of nozzle geometric, and AWJ system parameters on nozzle wear were systematically investigated. An empirical model was developed for nozzle weight loss rate. To understand the response of nozzle materials under varying AWJ system conditions, erosion tests were conducted on samples of typical nozzle materials. The effect of factors such as jet impingement angle, abrasive type, abrasive size, abrasive flow rate, water pressure, traverse speed, and target material was evaluated. Scanning electron microscopy was performed on eroded samples as well as worn nozzles to understand the wear mechanisms. The dominant wear mechanism observed was grain pullout. Erosion models were reviewed and along the lines of classical erosion theories a semi-empirical model, suitable for erosion of nozzle materials under AWJ impact, was developed. The erosion data correlated very well with the developed model. Finally, the cutting efficiency of AWJ nozzles was investigated in conjunction with nozzle wear. The cutting efficiency of a nozzle deteriorates as it wears. There is a direct correlation between nozzle wear and cutting efficiency. The operating conditions that produce the most efficient jets also cause the most wear in the nozzle.

  6. Magnetic Field Saturation in the Riga Dynamo Experiment

    CERN Document Server

    Gailitis, A; Platacis, E; Dementev, S; Cifersons, A; Gerbeth, G; Gundrum, T; Stefani, F; Christen, M; Will, G; Gailitis, Agris; Lielausis, Olgerts; Platacis, Ernests; Dement'ev, Sergej; Cifersons, Arnis; Gerbeth, Gunter; Gundrum, Thomas; Stefani, Frank; Christen, Michael; Will, Gotthard

    2001-01-01

    After the dynamo experiment in November 1999 had shown magnetic field self-excitation in a spiraling liquid metal flow, in a second series of experiments emphasis was placed on the magnetic field saturation regime as the next principal step in the dynamo process. The dependence of the strength of the magnetic field on the rotation rate is studied. Various features of the saturated magnetic field are outlined and possible saturation mechanisms are discussed.

  7. Navier-Stokes predictions of multifunction nozzle flows

    Science.gov (United States)

    Wilmoth, Richard G.; Leavitt, Laurence D.

    1987-10-01

    A two-dimensional, Navier-Stokes code developed by Imlay based on the implicit, finite-volume method of MacCormack has been applied to the prediction of the flow fields and performance of several nonaxisymmetric, convergent-divergent nozzles with and without thrust vectoring. Comparisons of predictions with experiment show that the Navier-Stokes code can accurately predict both the flow fields and performance for nonaxisymmetric nozzles where the flow is predominantly two-dimensional and at nozzle pressure ratios at or above the design values. Discrepancies between predictions and experiment are noted at lower nozzle pressure ratios where separation typically occurs in portions of the nozzle. The overall trends versus parameters such as nozzle pressure ratio, flap angle, and vector angle were generally predicted correctly.

  8. 钵苗在鸭嘴式栽植机构中的运动微分方程及应用试验%Motion differential equations of seedling in duckbilled planting nozzle and its application experiment

    Institute of Scientific and Technical Information of China (English)

    陈建能; 夏旭东; 王英; 严江军; 章鹏华

    2015-01-01

    the analysis. The movement of seedling in planting nozzle was also studied by using high-speed camera and video processing technology. The measured time from seedling entering the planting nozzle to seedling leaving the planting nozzle basically agrees well with the calculated time. It shows that the differential equations and the calculation are correct. The analysis and experiment also show that the seedling can fall into the hole successfully, when the seedling is thrown into the planting nozzle with the angle of 55° between axis of seedling and horizontal plane, and velocity of seedling’s barycenter is 1.5 m/s, and the angle between velocity direction of seedling’s barycenter and horizontal plane is 68°, and the velocity of this planting mechanism is less than 147 r/min. This provides design consideration of the maximum speed for planting mechanism.%随着机械化栽植速度的提高,为避免在栽植过程中,钵苗在栽植机构的栽植嘴内运动时间过长而无法及时落入苗沟或穴坑造成栽植失败,并对下一循环的栽植产生不利影响,该文将钵苗相对栽植嘴的运动分为与栽植嘴壁面碰撞、平面运动和沿栽植嘴壁面下滑3个阶段,分别建立了各阶段钵苗的运动微分方程。选择穴盘规格为128孔、苗龄为2~3片真叶、土钵含水率63%左右的西兰花钵苗,利用所建立的钵苗运动微分方程计算得到了变形椭圆齿轮行星轮系栽植机构作业时钵苗与栽植嘴之间的相对运动、相互作用力和钵苗从进入到离开栽植嘴的时间。利用高速摄影及其视频处理技术对钵苗在变形椭圆齿轮行星轮系栽植机构栽植嘴中的运动进行了试验研究,得到的钵苗从进入到离开栽植嘴时间与理论分析基本吻合,可见模型的建立及其计算是正确的。同时分析得到当投苗时钵苗轴线与水平面夹角为55°、质心速度为1.5 m/s、质心速度与水平面夹角为68°时,

  9. Metal atomization spray nozzle

    Science.gov (United States)

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  10. Transonic swirling nozzle flow

    Science.gov (United States)

    Keith, Theo G., Jr.; Pawlas, Gary E.

    1991-06-01

    A numerical model of viscous transonic swirling flow in axisymmetric nozzles is developed. MacCormack's implicit Gauss-Seidel method is applied to the thin-layer Navier-Stokes equations in transformed coordinates. Numerical results are compared with experimental data to validate the method. The effect of swirl and viscosity on nozzle performance are demonstrated by examining wall pressures, Mach contours, and integral parameters.

  11. Through an Annular Turbine Nozzle

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    1995-01-01

    is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect is localized to the immediate neighborhood of the involved blades. The effects on the wakes and on the inviscid flow are discussed separately. The mean velocities show a strong sensitivity to the changes of the pitch, which is due to a potential flow effect rather than a viscous effect.

  12. Minimizing magnetic fields for precision experiments

    CERN Document Server

    Altarev, I; Lins, T; Marino, M G; Nießen, B; Petzoldt, G; Reisner, M; Stuiber, S; Sturm, M; Singh, J T; Taubenheim, B; Rohrer, H K; Schläpfer, U

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  13. Biannular Airbreathing Nozzle Rig (BANR) facility checkout and plug nozzle performance test data

    Science.gov (United States)

    Cummings, Chase B.

    2010-09-01

    The motivation for development of a supersonic business jet (SSBJ) platform lies in its ability to create a paradigm shift in the speed and reach of commercial, private, and government travel. A full understanding of the performance capabilities of exhaust nozzle configurations intended for use in potential SSBJ propulsion systems is critical to the design of an aircraft of this type. Purdue University's newly operational Biannular Airbreathing Nozzle Rig (BANR) is a highly capable facility devoted to the testing of subscale nozzles of this type. The high accuracy, six-axis force measurement system and complementary mass flowrate measurement capabilities of the BANR facility make it rather ideally suited for exhaust nozzle performance appraisal. Detailed accounts pertaining to methods utilized in the proper checkout of these diagnostic capabilities are contained herein. Efforts to quantify uncertainties associated with critical BANR test measurements are recounted, as well. Results of a second hot-fire test campaign of a subscale Gulfstream Aerospace Corporation (GAC) axisymmetric, shrouded plug nozzle are presented. Determined test article performance parameters (nozzle thrust efficiencies and discharge coefficients) are compared to those of a previous test campaign and numerical simulations of the experimental set-up. Recently acquired data is compared to published findings pertaining to plug nozzle experiments of similar scale and operating range. Suggestions relating to the future advancement and improvement of the BANR facility are provided. Lessons learned with regards to test operations and calibration procedures are divulged in an attempt to aid future facility users, as well.

  14. Experimental study of subsonic microjet escaping from a rectangular nozzle

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.

    2016-10-01

    The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.

  15. Nozzle fabrication technique

    Science.gov (United States)

    Wells, Dennis L. (Inventor)

    1988-01-01

    This invention relates to techniques for fabricating hour glass throat or convergent divergent nozzle shapes, and more particularly to new and improved techniques for forming rocket nozzles from electrically conductive material and forming cooling channels in the wall thereof. The concept of positioning a block of electrically conductive material so that its axis is set at a predetermined skew angle with relation to a travelling electron discharge machine electrode and thereafter revolving the body about its own axis to generate a hyperbolic surface of revolution, either internal or external is novel. The method will generate a rocket nozzle which may be provided with cooling channels using the same control and positioning system. The configuration of the cooling channels so produced are unique and novel. Also the method is adaptable to nonmetallic material using analogous cutting tools, such as, water jet, laser, abrasive wire and hot wire.

  16. Plants and Magnetism: Experiments with Biomagnetism

    Science.gov (United States)

    McCormack, Alan J.

    1972-01-01

    Phenomenon of effect of magnetic field on plant growth provides wide opportunities for research in classrooms. Using moderately powerful magnets, seed growth patterns can be observed in pre-germination treatment, germination period exposure and under many other conditions. Such research may enable understanding magnetotropism more clearly. (PS)

  17. Fun with magnets Experiments and Ideas

    CERN Document Server

    Davis, Claire

    2001-01-01

    This booklet has been produced as part of an Engineering and Physical Sciences Research Council (EPSRC) funded project under the heading of the Public Partnerships in Science. Magnets and magnetism appear in various places in the National Curriculum and the booklet provides ideas on some ways in which these topics can be approached.

  18. Laboratory experiments and numerical simulations on magnetic instabilities

    CERN Document Server

    Stefani, F; Kasprzyk, Ch; Paredes, A; Ruediger, G; Seilmayer, M

    2016-01-01

    Magnetic fields of planets, stars and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can play an active role in cosmic structure formation by destabilizing rotational flows that would be otherwise hydrodynamically stable. For a long time, both hydromagnetic dynamo action as well as magnetically triggered flow instabilities had been the subject of purely theoretical research. Meanwhile, however, the dynamo effect has been observed in large-scale liquid sodium experiments in Riga, Karlsruhe and Cadarache. In this paper, we summarize the results of some smaller liquid metal experiments devoted to various magnetic instabilities such as the helical and the azimuthal magnetorotational instability, the Tayler instability, and the different instabilities that appear in a magnetized spherical Couette flow. We conclude with an outlook on a large scale Tayler-Couette experiment using liquid sodium, and on the prospects to observe magnetically triggered ...

  19. Compressible vortex loops: Effect of nozzle geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zare-Behtash, H. [School of MACE, University of Manchester, M60 1QD (United Kingdom)], E-mail: h.zare-behtash@postgrad.manchester.ac.uk; Kontis, K. [School of MACE, University of Manchester, M60 1QD (United Kingdom)], E-mail: k.kontis@manchester.ac.uk; Gongora-Orozco, N. [School of MACE, University of Manchester, M60 1QD (United Kingdom); Takayama, K. [Tohoku University, Shock Wave Research Centre, Sendai 980-8577 (Japan)

    2009-06-15

    Vortex loops are fundamental building blocks of supersonic free jets. Isolating them allows for an easier study and better understanding of such flows. The present study looks at the behaviour of compressible vortex loops of different shapes, generated due to the diffraction of a shock wave from a shock tube with different exit nozzle geometries. These include a 15 mm diameter circular nozzle, two elliptical nozzles with minor to major axis ratios of 0.4 and 0.6, a 30 x 30 mm square nozzle, and finally two exotic nozzles resembling a pair of lips with minor to major axis ratios of 0.2 and 0.5. The experiments were performed for diaphragm pressure ratios of P{sub 4}/P{sub 1}=4, 8, and 12, with P{sub 4} and P{sub 1} being the pressures within the high pressure and low pressure compartments of the shock tube, respectively. High-speed schlieren photography as well as PIV measurements of both stream-wise and head-on flows have been conducted.

  20. Prospective of ultradispersic magnetic particles in biological experiments in microgravity

    Science.gov (United States)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Malashin, S.

    All organisms on Earth use gravity for their lifecycles. Microgravity disturbs the lifecycles significantly: orientation ability is damaged, thermo and mass exchange processes are changed, adaptation mechanisms are destroyed. A recovering the normal life cycle of organism in future long-term mission requires an artificial gravity which is complicate and not realistic with present technologies. We propose to use a magnetic properties of the biological objects for recovering of the gravity-dependent biological processes in organism during space flight. Based on result of magnetic properties investigation in gravity-sensitive plant cells, we have prepared and carried out the experiments on space station MIR. For the experiments, Magnitogravistat device was designed and installed on the station. The aim of the experiment was to replace a gravity factor of plant with a magnetic factor. The magnetic effect is based on the fact, that a magnetic particle of V volume is under the force F=ΔæVHgradH in the magnetic gradient gradH, where Δæ is the difference between the magnetic susceptibility of particle and media. When the particles are placed into the cell, the cell can be managed by the magnetic field. In laboratory experiment the iron-carbon particles of 1-2 um with nanostructurised surface and high adsorption properties have been used. The particles can be suspended in water and adsorbed chemicals including cell metabolites. In strong magnetic field, the particles can be agglomerated and the liquid substrate can be replaced. The local magnetic field near the particles can influence on cell processes. The magnetic field causes a cell differentiation and can influence on cell proliferation. A new space experiment with magnetic particles is planned to get a knowledge on cell influence and to improve a cell metabolism.

  1. The TICTOP nozzle: a new nozzle contouring concept

    Science.gov (United States)

    Frey, Manuel; Makowka, Konrad; Aichner, Thomas

    2016-10-01

    Currently, mainly two types of nozzle contouring methods are applied in space propulsion: the truncated ideal contour (TIC) and the thrust-optimized parabola (TOP). This article presents a new nozzle contouring method called TICTOP, combining elements of TIC and TOP design. The resulting nozzle is shock-free as the TIC and therefore does not induce restricted shock separation leading to excessive side-loads. Simultaneously, the TICTOP nozzle will allow higher nozzle wall exit pressures and hence give a better separation margin than is the case for a TIC. Hence, this new nozzle type combines the good properties of TIC and TOP nozzles and eliminates their drawbacks. It is especially suited for first stage application in launchers where flow separation and side-loads are design drivers.

  2. Design of a Compact Coaxial Magnetized Plasma Gun for Magnetic Bubble Expansion Experiments

    Science.gov (United States)

    2009-06-01

    COAXIAL MAGNETIZED PLASMA GUN FOR MAGNETIC BUBBLE EXPANSION EXPERIMENTS Y. Zhang1, A. G. Lynn1, S. C. Hsu2, M. Gilmore1, C... coaxial magnetized plasma gun and its associated hardware systems are discussed in detail. The plasma gun is used for experimental studies of...and coaxial plasma guns - which is the method employed in this work. The first coaxial plasma gun experiment was performed five decades ago by

  3. The Effect of Nozzle Trailing Edge Thickness on Jet Noise

    Science.gov (United States)

    Henderson, Brenda; Kinzie, Kevin; Haskin, Henry

    2004-01-01

    The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.

  4. Introduction to Frustrated Magnetism Materials, Experiments, Theory

    CERN Document Server

    Lacroix, Claudine; Mila, Frédéric

    2011-01-01

    The field of Highly Frustrated Magnetism has developed and expanded considerably over the last 15 years. Originating with canonical geometric frustration of interactions, it today extends over other phenomena with many degrees of freedom, including magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. It is also demonstrated that the concept of frustration impacts many other fields in physics beyond magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, which encompass solid-state chemistry as well as experimental and theoretical physics.

  5. Simple Experiments on Magnetism and Electricity...from Edison.

    Science.gov (United States)

    Schultz, Robert F.

    Background information, lists of materials needed and procedures used are provided for 16 simple experiments on electricity and magnetism. These experiments are organized into sections dealing with: (1) Edison's carbon experiments (building a galvanometer, investigating the variable conductivity of carbon, and examining the carbon transmitter…

  6. 多喷头组合变量喷药系统的设计与试验%Design and experiment of variable spraying system based on multiple combined nozzles

    Institute of Scientific and Technical Information of China (English)

    徐艳蕾; 包佳林; 付大平; 朱炽阳

    2016-01-01

    , strainer, diaphragm pump, safety valve, spraying divider, drip-proof nozzle, pipeline, and so on. Mathematical model of spraying network was established by using fluid network theory; and we analyzed the flow resistance of the system. In this paper, using machine vision system for collection and analysis of field crops, we made out the distribution level of weeds through the analysis of the weed ratio in the field crop with controlling the corresponding nozzle on or off. Such a design method not only achieved the function that system could do variable spraying according to the actual distribution of weed, but also greatly improved the image processing speed of the system, which enabled the whole system to achieve real-time collecting and processing. When variable spraying system was working, host system collected data, and then it disposed the distribution information of weeds, and passed the decision-making information after treating to MCU. Finally, MCU processing decision-making information was used to control the electromagnetic valve of switch state combination, and switch state combination of nozzle was controlled. Different combinations were formed by different size of nozzle in order to realize the function of variable spraying. At the same time, in the process of operation, the information feedback module was designed for the system such as Holzer flow, speed, pressure and liquid level. The liquid crystal display module could display spraying system working condition in real time. Also, in the process of system designing and debugging, we adopted the process of modular design. In this way, it not only simplified the debugging workload, but also made it easier to conduct the maintenance and upgrade of programs. In the end, in order to verify the feasibility and validity of the variable spraying system of multiple nozzle combination, this experiment was carried out on the spray performance comprehensive test bench. By analyzing the test data, it indicates that

  7. Experiment and analysis of performance parameters for refraction nozzle in vent wash exhaust hood%运水烟罩内折射式喷头性能参数分析及试验

    Institute of Scientific and Technical Information of China (English)

    何红勤; 袁寿其; 袁建平; 张杰; 刘晓凡

    2009-01-01

    In order to reduce the effect of cooking fume pollution on environment,the influence on the cooking fume′s cleaning effect of avent wash exhaust hood by the atomizing characteristic of nozzle was discussed. The experiments of the globoidal sector and the angle including 115°,120°,135°,140°,150° of direct sector refraction nozzle were carried out. Several parameters, i.e., velocity of flow, range of the nozzle, spray area, size of grain, and water distribution for the six refraction nozzles were measured under five pressures. The atomization performance was analyzed. The relations between these parameters were determined. Through the experiments it was found that the inlet pressure is directly proportional to the velocity of flow, range of the nozzle and spray area. The inlet pressure is inversely proportional to the size of grain. The best working pressure of the vent wash exhaust hood is 0.30 MPa. The cooking fume′s clea-ning effect of direct sector is better than globoidal sector refraction nozzle. The angle of 120°was selected for straight refractive nozzle. Its uniformity coefficient, atomization and spray area are the best.%为了降低油烟对环境的污染,研究了运水烟罩内固定喷头的喷射雾化特性对运水烟罩油烟净化效果的影响.对弧面扇形折射式喷头和折射锥角分别为115°,120°,135°,140°和150°的直面扇形折射式喷头进行试验研究,测量了这6个不同型号的折射式喷头在5种不同工作压力下的流速、射程、喷洒面积、粒径大小以及水量分布等参数的变化情况,分析了雾化性能,探寻各参数之间的关系及变化规律.结果表明:流速、射程、喷洒面积均与工作压力成正比;雨滴粒径大小与工作压力成反比;喷头的最佳工作压力为0.30 MPa;直面折射式喷头比弧面折射式喷头油烟净化效果好;120°折射直面扇形喷头水量分布最均匀,雾化效果最好,喷洒面积最大.

  8. Nozzle cooling of hot surfaces with various orientations

    Directory of Open Access Journals (Sweden)

    Horsky Jaroslav

    2012-04-01

    Full Text Available The aim of this research is an investigation of hot surface orientation influence on heat transfer during cooling by a nozzle. Two types of nozzles were used for the experiments (air-mist nozzle and hydraulic nozzle. A test plate was cooled in three positions – top, side and bottom position. The aim was to simulate a cooling situation in the secondary zone of a continuous casting machine. Temperature was measured in seven locations under the cooled surface by thermocouples. These data were used for an inverse heat conduction problem and then boundary conditions were computed. These boundary conditions are represented by surface temperature, heat transfer coefficient and heat flux. Results from an inverse calculation were compared in each position of thermocouples separately. The total cooling intensity was specified for all configurations of nozzles and test plate orientation. Results are summarised in a graphical and numerical format.

  9. Influence of different developer nozzle types on the photomask performance

    Science.gov (United States)

    Schmädicke, Cindy; Feicke, Axel; Herrmann, Mark; Bürgel, Christian

    2016-05-01

    The long-term development of electronics obliges increasingly tighter specifications for photomasks to meet the requirements of continuing miniaturization. We report on the influence of two different linear drive nozzle types A and B used for conducting the develop process on important mask properties, which comprise CD uniformity (CDU), loading behaviour, mean to target (MTT), iso-dense bias, line width roughness (LWR), linearity, resolution and defectivity. The results are presented for different resists, resist thicknesses and blank materials. First, the most important recipe parameters to ensure the best develop performance are defined and experimentally determined. Those critical factors are the nozzle scan speed over the mask, the develop time, the distance between nozzle and mask surface and the flow rate of the medium. It is demonstrated how these parameters can significantly affect the develop process performance. Dark loss experiments reveal that a more uniform resist removal takes place with the B kind of nozzle compared to that achieved with nozzle A. Based on the mask properties, the performances of two different nozzle types are compared. It is found that improvements with the B like nozzle can be achieved for CDU and loading. The presented nozzle type shows a promising approach to meet the requirements of future electronics.

  10. Operational experience with forced cooled superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D.P., E-mail: denis.ivanov30@mail.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Kolbasov, B.N., E-mail: kolbasov@nfi.kiae.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Anashkin, I.O.; Khvostenko, P.P. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Pan, W.J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Pradhan, S.; Sharma, A.N. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Song, Y.T.; Weng, P.D. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2013-10-15

    Highlights: ► Seventeen breakdowns happened in the fusion facilities with forced cooled superconducting magnets (FCSMs). ► The breakdowns always began on the electric, cryogenic and diagnostic communications (ECDCs) and never on the coils. ► In all the FCSMs the ECDCs were always insulated worse than the coils. ► For reliable operation of ITER organization team should essentially improve the ECDC insulation. ► Use of stainless steel grounded casings filled up with solid insulation over all the ECDCs is the best way to get reliable insulation. -- Abstract: Force-cooled concept has been chosen for ITER superconducting magnet to get reliable coil insulation using vacuum-pressure impregnation (VPI) technology. However 17 breakdowns occurred during operation of six magnets of this type or their single coil tests at operating voltage < 3 kV, while ITER needs 12 kV. All the breakdowns started on electric, cryogenic and diagnostic communications (ECDCs) by the high voltage induced at fast current variations in magnets concurrently with vacuum deterioration, but never on the coils, though sometimes the latter were damaged too. It suggests that simple wrap insulation currently employed on ECDCs and planned to be used in ITER is unacceptable. Upgrade of the ECDC insulation to the same level as on the coils is evidently needed. This could be done by covering each one from ECDCs with vacuum-tight grounded stainless steel casings filled up with solid insulator using VPI-technology. Such an insulation will be insensitive to in-cryostat conditions, excluding helium leaks and considerably simplifying the tests thus allowing saving time and cost. However it is not accepted in ITER design yet. So guarantee of breakdown prevention is not available.

  11. Modeling HEDLA magnetic field generation experiments on laser facilities

    Science.gov (United States)

    Fatenejad, M.; Bell, A. R.; Benuzzi-Mounaix, A.; Crowston, R.; Drake, R. P.; Flocke, N.; Gregori, G.; Koenig, M.; Krauland, C.; Lamb, D.; Lee, D.; Marques, J. R.; Meinecke, J.; Miniati, F.; Murphy, C. D.; Park, H.-S.; Pelka, A.; Ravasio, A.; Remington, B.; Reville, B.; Scopatz, A.; Tzeferacos, P.; Weide, K.; Woolsey, N.; Young, R.; Yurchak, R.

    2013-03-01

    The Flash Center is engaged in a collaboration to simulate laser driven experiments aimed at understanding the generation and amplification of cosmological magnetic fields using the FLASH code. In these experiments a laser illuminates a solid plastic or graphite target launching an asymmetric blast wave into a chamber which contains either Helium or Argon at millibar pressures. Induction coils placed several centimeters away from the target detect large scale magnetic fields on the order of tens to hundreds of Gauss. The time dependence of the magnetic field is consistent with generation via the Biermann battery mechanism near the blast wave. Attempts to perform simulations of these experiments using the FLASH code have uncovered previously unreported numerical difficulties in modeling the Biermann battery mechanism near shock waves which can lead to the production of large non-physical magnetic fields. We report on these difficulties and offer a potential solution.

  12. Superconducting dipole magnet for the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Kurilkin P.

    2017-01-01

    Full Text Available The scientific goal of the CBM (Compressed Baryonic Matter experiment at FAIR (Darmstadt is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. The magnet will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. The results of the development of dipole magnet of the CBM experiment are presented.

  13. Enhancement of the steady-state magnetization in TROSY experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riek, Roland [Institut fuer Molekularbiologie und Biophysik Eidgenoessische Technische Hochschule Hoenggerberg (Switzerland)], E-mail: rr@mol.biol.ethz.ch

    2001-10-15

    Under the condition that the longitudinal relaxation time of spin I is shorter than the longitudinal relaxation time of spin S the steady-state magnetization in [S,I]-TROSY-type experiments can be enhanced by intermediate storage of a part of the steady-state magnetization of spin I on spin S with a pulse sequence element during the relaxation delay. It is demonstrated with samples ranging in size from the 1 kDa cyclosporin to the 110 kDa {sup 15}N,{sup 2}H-labeled dihydroneopterin Aldolase that intermediate storage of steady-state magnetization in a [{sup 15}N,{sup 1}H]-TROSY experiment yields a signal gain of 10-25%. The method proposed here for intermediate storage of steady-state magnetization can be implemented in any [{sup 15}N,{sup 1}H]-TROSY-type experiments.

  14. Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields

    Science.gov (United States)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.

  15. Noise of Embedded High Aspect Ratio Nozzles

    Science.gov (United States)

    Bridges, James E.

    2011-01-01

    A family of high aspect ratio nozzles were designed to provide a parametric database of canonical embedded propulsion concepts. Nozzle throat geometries with aspect ratios of 2:1, 4:1, and 8:1 were chosen, all with convergent nozzle areas. The transition from the typical round duct to the rectangular nozzle was designed very carefully to produce a flow at the nozzle exit that was uniform and free from swirl. Once the basic rectangular nozzles were designed, external features common to embedded propulsion systems were added: extended lower lip (a.k.a. bevel, aft deck), differing sidewalls, and chevrons. For the latter detailed Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) simulations were made to predict the thrust performance and to optimize parameters such as bevel length, and chevron penetration and azimuthal curvature. Seventeen of these nozzles were fabricated at a scale providing a 2.13 inch diameter equivalent area throat." ! The seventeen nozzles were tested for far-field noise and a few data were presented here on the effect of aspect ratio, bevel length, and chevron count and penetration. The sound field of the 2:1 aspect ratio rectangular jet was very nearly axisymmetric, but the 4:1 and 8:1 were not, the noise on their minor axes being louder than the major axes. Adding bevel length increased the noise of these nozzles, especially on their minor axes, both toward the long and short sides of the beveled nozzle. Chevrons were only added to the 2:1 rectangular jet. Adding 4 chevrons per wide side produced some decrease at aft angles, but increased the high frequency noise at right angles to the jet flow. This trend increased with increasing chevron penetration. Doubling the number of chevrons while maintaining their penetration decreased these effects. Empirical models of the parametric effect of these nozzles were constructed and quantify the trends stated above." Because it is the objective of the Supersonics Project that

  16. Magnetized and Flat Beam Experiment at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Hyun, J. [Sokendai, Tsukuba; Mihalcea, D. [NIU, DeKalb; Piot, P. [NICADD, DeKalb; Sen, T. [Fermilab; Thangaraj, C. [Fermilab

    2017-05-22

    A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated or “magnetized” electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (“flat”) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab’s Accelerator Science and Technology (FAST) facility. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.

  17. Magnetic properties of ferromagnetic nanowire arrays: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ghaddar, A; Gieraltowski, J [Laboratoire de Magnetisme de Bretagne, UBO, CNRS-FRE 3117, C. S. 93837 Brest Cedex 3 (France); Gloaguen, F, E-mail: abbas.ghaddar@univ-brest.f [Laboratoire de Chimie, Electrochimie Moleculaire et Chimie Analytique, UBO, CNRS-UMR 6521, C. S. 93837 Brest Cedex 3 (France)

    2010-01-01

    Magnetic nanowires are good candidates for microwave filters, sensors and data storage applications. An investigation of magnetic properties of single-component nanowires as a function of diameter and aspect ratio is performed in this work. Nickel nanowire (with 15 and 100 nm diameter and 6000 nm length) are grown with electrodeposition in polycarbonates templates. Two reversal modes (coherent and curling) are studied versus nanowire diameter. Magnetostatic interaction among wires and its effect on nanowire magnetic properties is also studied. Using vibrating magnetometer (VSM) and X-band ferromagnetic resonance (FMR) experiments at room temperature we infer that the interaction field H{sub c} value may vary significantly and may cause a change of magnetic easy axis orientation along geometrical wire axis (for large diameter) to an easy magnetic plane perpendicular to the nanowire axis (for small diameter).

  18. Simple and Compact Nozzle Design for Laser Vaporization Sources

    CERN Document Server

    Kokish, M G; Odom, B C

    2015-01-01

    We have developed and implemented a compact transparent nozzle for use in laser vaporization sources. This nozzle eliminates the need for an ablation aperture, allowing for a more intense molecular beam. We use this nozzle to prepare a molecular beam of aluminum monohydride (AlH) suitable for ion trap loading of AlH$^+$ via photoionization in ultra-high vacuum. We demonstrate stable AlH production over hour time scales using a liquid ablation target. The long-term stability, low heat load and fast ion production rate of this source are well-suited to molecular ion experiments employing destructive state readout schemes requiring frequent trap reloading.

  19. Effusive Atomic Oven Nozzle Design Using a Microcapillary Array

    CERN Document Server

    Senaratne, Ruwan; Geiger, Zachary A; Fujiwara, Kurt M; Lebedev, Vyacheslav; Weld, David M

    2014-01-01

    We present a simple and inexpensive design for a multichannel effusive oven nozzle which provides improved atomic beam collimation and thus extended oven lifetimes. Using this design we demonstrate an atomic lithium source suitable for trapped-atom experiments. At a nozzle temperature of 525$^{\\circ}$C the total atomic beam flux directly after the nozzle is $1.2 \\times 10^{14}$ atoms per second with a peak beam intensity greater than $5.0 \\times 10^{16}$ atoms per second per steradian. This suggests an oven lifetime of several centuries of continuous operation.

  20. Fuel nozzle tube retention

    Energy Technology Data Exchange (ETDEWEB)

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  1. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2007-10-15

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm{sup 2} at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode.

  2. The instrumented magnets for the OPERA experiment construction and commissioning

    CERN Document Server

    Adinolfi Falcone, R; Cazes, A; Peiro, G

    2007-01-01

    The design and construction of the 990-ton gapless iron magnets for the OPERA experiment represent a major challenge from the point of view of mechanics, electric and heat engineering. Two of such magnets have been built in a deep underground hall of the Gran Sasso laboratories between 2003 and 2006 and they have been switched on for the first time in March 2006. In this paper we discuss the construction and characterization of these devices. First experience with the CNGS beam are also reported.

  3. Elliptic nozzle aspect ratio effect on controlled jet propagation

    Science.gov (United States)

    Aravindh Kumar, S. M.; Rathakrishnan, Ethirajan

    2017-04-01

    The present study deals with the control of a Mach 2 elliptic jet from a convergent-divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121-33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle.

  4. Precision magnetic field mapping for CERN experiment NA62

    Science.gov (United States)

    Fry, John R.; Ruggiero, Giuseppe; Bergsma, Felix

    2016-12-01

    In the CERN experiment NA62, low-mass straw-tube tracking-chambers have been designed to operate in vacuum and, in conjunction with precisely mapped magnetic fields, enable the determination of the trajectories of the charged decay products of a 75 GeV/c K+ with high accuracy. This is particularly important for the crucial measurement of the branching fraction for the decay K+ → π + ν ν, which has the potential to reveal BSM physics. The charged particles passing through the magnetic field of a dipole magnet receive a transverse-momentum kick, ΔP T = 270 MeV/c, which the physics requires to be determined to better than one part in a thousand. This puts stringent constraints on the required accuracy and precision of the magnetic field components at all points through which charged particles pass. Before reaching the dipole magnet the particles travel through an evacuated steel tank of length 90 m, where residual magnetic fields of typical size 50 μT modify the trajectories of the charged particles and require measurement with a precision of better than 10 μT. In this paper we describe in detail the different approaches to the measurement and analysis of the magnetic field for the two regions, the corrections to the raw data necessary to produce the final field map, and the physics validation procedures showing that the required accuracy and precision of the field maps have been achieved.

  5. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  6. Vacuum magnetic linear birefringence using pulsed fields: the BMV experiment

    CERN Document Server

    Cadène, A; Fouché, M; Battesti, R; Rizzo, C

    2013-01-01

    In this letter we present the measurement of the vacuum magnetic birefringence obtained using the first generation setup of the BMV experiment. In particular, we detail our procedure of data acquisition and our analysis which takes into account the symmetry properties of raw data with respect to the orientation of the magnetic field and the sign of the cavity birefringence. Our current value of vacuum magnetic linear birefringence k_CM was obtained with about 100 magnetic pulses and a maximum field of 6.5 T. We get k_CM = (-7.4 \\pm 8.7).10^{-21} T^{-2} at 3 sigma confidence level. Our result is a clear validation of our innovative experimental method.

  7. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Da Sol; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of); Lee, Hyun Seop [Tongmyong University, Busan (Korea, Republic of)

    2015-12-15

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  8. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    Science.gov (United States)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  9. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    Science.gov (United States)

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  10. Flame Interactions and Thermoacoustics in Multiple-Nozzle Combustors

    Science.gov (United States)

    Dolan, Brian

    The first major chapter of original research (Chapter 3) examines thermoacoustic oscillations in a low-emission staged multiple-nozzle lean direct injection (MLDI) combustor. This experimental program investigated a relatively practical combustor sector that was designed and built as part of a commercial development program. The research questions are both practical, such as under what conditions the combustor can be safely operated, and fundamental, including what is most significant to driving the combustion oscillations in this system. A comprehensive survey of operating conditions finds that the low-emission (and low-stability) intermediate and outer stages are necessary to drive significant thermoacoustics. Phase-averaged and time-resolved OH* imaging show that dramatic periodic strengthening and weakening of the reaction zone downstream of the low-emission combustion stages. An acoustic modal analysis shows the pressure wave shapes and identifies the dominant thermoacoustic behavior as the first longitudinal mode for this combustor geometry. Finally, a discussion of the likely significant coupling mechanisms is given. Periodic reaction zone behavior in the low-emission fuel stages is the primary contributor to unsteady heat release. Differences between the fuel stages in the air swirler design, the fuel number of the injectors, the lean blowout point, and the nominal operating conditions all likely contribute to the limit cycle behavior of the low-emission stages. Chapter 4 investigates the effects of interaction between two adjacent swirl-stabilized nozzles using experimental and numerical tools. These studies are more fundamental; while the nozzle hardware is the same as the lean direct injection nozzles used in the MLDI combustion concept, the findings are generally applicable to other swirl-stabilized combustion systems as well. Much of the work utilizes a new experiment where the distance between nozzles was varied to change the level of interaction

  11. Serrating Nozzle Surfaces for Complete Transfer of Droplets

    Science.gov (United States)

    Kim, Chang-Jin " CJ" Yi, Uichong

    2010-01-01

    print surface. The basic principle of the present method is to reduce the liquid-solid surface energy of the nozzle to a level sufficiently below the intrinsic solid-liquid surface energy of the nozzle material so that the droplet is not pulled apart and, instead, the entire droplet volume becomes transferred to the print surface. In this method, the liquid-solid surface energy is reduced by introducing artificial surface roughness in the form of micromachined serrations on the inner nozzle surface (see figure). The method was tested in experiments on soft printing of DNA solutions and of deionized water through 0.5-mm-diameter nozzles, of which some were not serrated, some were partially serrated, and some were fully serrated. In the nozzles without serrations, transfer was incomplete; that is, residual liquids remained in the nozzles after printing. However, in every nozzle in which at least half the inner surface was serrated, complete transfer of droplets to the print surface was achieved.

  12. Demonstration of thermonuclear conditions in Magnetized Liner Inertial Fusion experiments

    Science.gov (United States)

    Gomez, Matthew

    2014-10-01

    The Magnetized Liner Inertial Fusion concept utilizes a magnetic field and laser heating to relax the implosion requirements to achieve inertial confinement fusion. The first experiments to test the concept were recently conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z coils. Despite the relatively slow implosion velocity (70 km/s) in these experiments, electron and ion temperatures at stagnation were approximately 3 keV, and thermonuclear DD neutron yields up to 2e12 have been produced. X-ray emission from the fuel at stagnation had a width ranging from 60-120 microns over a roughly 6 mm height and lasted approximately 2 ns. X-ray spectra from these experiments are consistent with a stagnation density of the hot fuel equal to 0.4 g/cm3 . In these experiments 1-5e10 secondary DT neutrons were produced. Given that the areal density of the plasma was approximately 2 mg/cm2, this indicates the stagnation plasma was significantly magnetized. This is consistent with the anisotropy observed in the DT neutron time of flight spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and DD yields greater than 1e10. An additional control experiment where the fuel contained a sufficient dopant fraction to radiate away the laser energy deposited in the fuel also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  13. Unsteady magnetic reconnection in laboratory experiments with current sheets

    Science.gov (United States)

    Frank, Anna

    2009-11-01

    According to present notion, unsteady magnetic reconnection in current sheets (CS) is basic to dramatic natural phenomena: solar and stellar flares, substorms in the Earth and other planetary magnetospheres, as well as to disruptive instabilities in tokamak plasmas. We present a review of laboratory experiments studying evolution of CS formed in 3D and 2D magnetic configurations with an X line, in the CS-3D device. Usually CS exists during an extended period in a metastable stage, without essential changes of its structure and parameters. Under certain conditions this stage may be suddenly interrupted by unsteady phase of magnetic reconnection, which manifests itself in a rapid change of the magnetic field topology, current redistribution, excitation of pulsed electric fields, and other dynamic effects. The unsteady phase results in effective conversion of magnetic energy into the energy of plasma and accelerated particles, and may finally bring about the CS disruption. In the context of the solar flares, a metastable CS is associated with a pre-flare situation, while CS disruption -- with the flare itself. The physical mechanisms triggering the unsteady magnetic reconnection in the laboratory produced current sheets are discussed. Supported by the Russian Foundation for Basic Research (project # 09-02-00971).

  14. Numerical Modeling of a Magnetic Flux Compression Experiment

    Science.gov (United States)

    Makhin, Volodymyr; Bauer, Bruno S.; Awe, Thomas J.; Fuelling, Stephan; Goodrich, Tasha; Lindemuth, Irvin R.; Siemon, Richard E.; Garanin, Sergei F.

    2007-06-01

    A possible plasma target for Magnetized Target Fusion (MTF) is a stable diffuse z-pinch in a toroidal cavity, like that in MAGO experiments. To examine key phenomena of such MTF systems, a magnetic flux compression experiment with this geometry is under design. The experiment is modeled with 3 codes: a slug model, the 1D Lagrangian RAVEN code, and the 1D or 2D Eulerian Magneto-Hydro-Radiative-Dynamics-Research (MHRDR) MHD simulation. Even without injection of plasma, high- Z wall plasma is generated by eddy-current Ohmic heating from MG fields. A significant fraction of the available liner kinetic energy goes into Ohmic heating and compression of liner and central-core material. Despite these losses, efficiency of liner compression, expressed as compressed magnetic energy relative to liner kinetic energy, can be close to 50%. With initial fluctuations (1%) imposed on the liner and central conductor density, 2D modeling manifests liner intrusions, caused by the m = 0 Rayleigh-Taylor instability during liner deceleration, and central conductor distortions, caused by the m = 0 curvature-driven MHD instability. At many locations, these modes reduce the gap between the liner and the central core by about a factor of two, to of order 1 mm, at the time of peak magnetic field.

  15. Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling

    Science.gov (United States)

    Braman, K. E.; Ruf, J. H.

    2015-01-01

    Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated using RANS and URANS for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and for four approximations of the supersonic film injection geometry, each of which was created with a different simplification of the test article geometry. The results show that although a reasonable match to experiment can be obtained with varying levels of geometric fidelity, the modeling choices made do not fully represent the physics of flow separation in a TIC nozzle with film cooling.

  16. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  17. Ion energy recovery experiment based on magnetic electro suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.; Stirling, W.L.; Dagenhart, W.K.; Barber, G.C.; Ponte, N.S.

    1980-05-01

    A proof-of-principle experiment on direct recovery of residual hydrogen ions based on a magnetic electron suppression scheme is described. Ions extracted from a source plasma a few kilovolts above the ground potential (approx. 20 A) are accelerated to 40 keV by a negative potential maintained on a neutralizer gas cell. As the residual ions exit the gas cell, they are deflected from the neutral beam by a magnetic field that also suppresses gas cell electrons and then recovered on a ground-potential surface. Under optimum conditions, a recovery efficiency (the ratio of the net recovered current to the available full-energy ion current) of 80% +- 20% has been obtained. Magnetic suppression of the beam plasma electrons was rather easily achieved; however, handling the fractional-energy ions originating from molecular species (H/sub 2//sup +/ and H/sub 3//sup +/) proved to be extremely important to recovery efficiency.

  18. Diagnosing Magnetized Liner Inertial Fusion experiments on Z

    Science.gov (United States)

    Hansen, Stephanie

    2014-10-01

    Recent Magnetized Liner Inertial Fusion (MagLIF) experiments performed at Sandia's Z facility have demonstrated DD fusion neutron yields above 1012 and effective confinement of charged fusion products by the flux-compressed magnetic field signaled by >1010 secondary DT neutrons. The neutron diagnostics are complemented by an extensive suite of visible and x-ray diagnostics providing power, imaging, and spectroscopic data. This talk will present analyses of emission and absorption features from the imploding and stagnating plasma that provide a consistent picture of the magnetic drive and the temperatures, densities, mix, and gradients in the fuel and liner at stagnation. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  19. Final results of magnetic monopole searches with the MACRO experiment

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Kumar, A; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Matteuzzi, D; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2002-01-01

    We present the final results obtained by the MACRO experiment in the search for GUT magnetic monopoles in the penetrating cosmic radiation, for the range 4*10/sup -5/< beta <1. Several searches with all the MACRO sub-detectors (i.e. scintillation counters, limited streamer tubes and nuclear track detectors) were performed, both in stand alone and combined ways. No candidates were detected and a 90% Confidence Level (C.L.) upper limit to the local magnetic monopole flux was set at the level of 1.4*10/sup -16/ cm/sup -2/ s/sup -1/ sr /sup -1/. This result is the first experimental limit obtained in direct searches which is well below the Parker bound in the whole beta range in which GUT magnetic monopoles are expected. (37 refs).

  20. Experiments on Inductive Magnetic Levitation with a Circular Halbach Array

    Science.gov (United States)

    Bean, Ian; Goncz, Doug; Raymer, Austin; Specht, Jason; Zalles, Ricardo; Majewski, Walerian

    2013-03-01

    Using a ring Halbach array, we are investigating a repulsive levitating force and a drag force acting on the magnet from a ring of inductors rotating below the magnet. After measuring induced currents, voltages and magnetic fields in the individual inductors (in the form of short solenoids), we investigated the dependence of lift/drag forces on the speed of relative rotation. The ratio of lift to drag increases with the angular velocity, as expected from a related theory of the induction effects in a linear motion. We are experimenting with the shape and density of inductors, and their material, in an attempt to maximize the lift at a minimal velocity of rotation. Eventually this design could have applications as frictionless bearings or as frictionless gear in a wide range of systems, especially in machinery that cannot be easily accessed.

  1. PAR Analysis of HSR Nozzles

    Science.gov (United States)

    Georgiadis, Nicholas J.

    1999-01-01

    Only recently has computational fluid dynamics (CFD) been relied upon to predict the flow details of advanced nozzle concepts. Computer hardware technology and flow solving techniques are advancing rapidly and CFD is now being used to analyze such complex flows. Validation studies are needed to assess the accuracy, reliability, and cost of such CFD analyses. At NASA Lewis, the PARC2D/3D full Navier-Stokes (FNS) codes are being applied to HSR-type nozzles. This report presents the results of two such PARC FNS analyses. The first is an analysis of the Pratt and Whitney 2D mixer-ejector nozzle, conducted by Dr. Yunho Choi (formerly of Sverdrup Technology-NASA Lewis Group). The second is an analysis of NASA-Langley's axisymmetric single flow plug nozzle, conducted by the author.

  2. Development and operational experience of magnetic horn system for T2K experiment

    CERN Document Server

    Sekiguchi, T; Fujii, Y; Hagiwara, M; Hasegawa, T; Hayashi, K; Ishida, T; Ishii, T; Kobayashi, H; Kobayashi, T; Koike, S; Koseki, K; Maruyama, T; Matsumoto, H; Nakadaira, T; Nakamura, K; Nakayoshi, K; Nishikawa, K; Oyama, Y; Sakashita, K; Shibata, M; Suzuki, Y; Tada, M; Takahashi, K; Tsukamoto, T; Yamada, Y; Yamanoi, Y; Yamaoka, H; Ichikawa, A K; Kubo, H; Butcher, Z; Coleman, S; Missert, A; Spitz, J; Zimmerman, E D; Tzanov, M; Bartoszek, L

    2015-01-01

    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and $6.63\\times10^{20}$ protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the $\

  3. Experiments of cylindrical isentropic compression by ultrahigh magnetic field

    Directory of Open Access Journals (Sweden)

    Gu Zhuowei

    2015-01-01

    Full Text Available The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5–6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.

  4. Limits on the neutrino magnetic moment from the MUNU experiment

    CERN Document Server

    Daraktchieva, Z; Link, O; Amsler, Claude; Avenier, M; Broggini, C; Busto, J; Cerna, C; Gervasio, G; Jeanneret, J B; Jonkmans, G; Koang, D H; Lebrun, D; Ould-Saada, F; Puglierin, G; Stutz, A; Tadsen, A; Vuilleumier, J L

    2003-01-01

    The MUNU experiment was carried out at the Bugey nuclear power reactor. The aim was the study of electron antineutrino-electron elastic scattering at low energy. The recoil electrons were recorded in a gas time projection chamber, immersed in a tank filled with liquid scintillator serving as veto detector, suppressing in particular Compton electrons. The measured electron recoil spectrum is presented. Upper limits on the neutrino magnetic moment were derived and are discussed.

  5. UCLA-KIAE focusing permanent magnet undulator for SASE experiment

    Science.gov (United States)

    Osmanov, N.; Tolmachev, S.; Varfolomeev, A.; Varfolomeev, A. A.; Frigola, P.; Hogan, M.; Pellegrini, C.; Carr, R.; Lidia, S.

    1998-02-01

    A description of a new 2 m undulator is presented which was specially designed and manufactured for a SASE mode FEL experiment. It is a one section two plane focusing permanent magnet construction. The uniform period length is 2.06 cm, total number of periods is 98. The peak field on the axis is 5.4 kG for a 5 mm gap.

  6. Recent experiments in inverse kinematics with the magnetic spectrometer PRISMA

    Directory of Open Access Journals (Sweden)

    Fioretto E.

    2016-01-01

    Full Text Available In the last period, two classes of experiments have been carried out with the large acceptance magnetic spectrometer PRISMA. In particular, the one- and two-neutron transfer processes at energies ranging from the Coulomb barrier to deep below it and the population of exotic neutron rich nuclei in the A~130 and A~200 mass regions have been studied. Both kinds of experiments have been performed in inverse kinematics identifying in A, Z and velocity the light target-like recoils with PRISMA placed at very forward angles in order to have, at the same time, high efficiency and good energy and mass resolutions.

  7. Gravitropic mechanisms derived from space experiments and magnetic gradients.

    Science.gov (United States)

    Hasenstein, Karl H.; Park, Myoung Ryoul

    2016-07-01

    Gravitropism is the result of a complex sequence of events that begins with the movement of dense particles, typically starch-filled amyloplasts in response to reorientation. Although these organelles change positions, it is not clear whether the critical signal is derived from sedimentation or dynamic interactions of amyloplasts with relevant membranes. Substituting gravity by high-gradient magnetic fields (HGMF) provides a localized stimulus for diamagnetic starch that is specific for amyloplasts and comparable to gravity without affecting other organelles. Experiments with Brassica rapa showed induction of root curvature by HGMF when roots moved sufficiently close to the magnetic gradient-inducing foci. The focused and short-range effectiveness of HGMFs provided a gravity-like stimulus and affected related gene expression. Root curvature was sensitive to the mutual alignment between roots and HGMF direction. Unrelated to any HGMF effects, the size of amyloplasts in space-grown roots increased by 30% compared to ground controls and suggests enhanced sensitivity in a gravity-reduced environment. Accompanying gene transcription studies showed greater differences between HGMF-exposed and space controls than between space and ground controls. This observation may lead to the identification of gravitropism-relevant genes. However, space grown roots showed stronger transcription of common reference genes such as actin and ubiquitin in magnetic fields than in non-magnetic conditions. In contrast, α-amylase, glucokinase and PIN encoding genes were transcribed stronger under non-magnetic conditions than under HGMF. The large number of comparisons between space, ground, and HGMF prompted the assessment of transcription differences between root segments, root-shoot junction, and seeds. Because presumed transcription of reference genes varied more than genes of interest, changes in gene expression cannot be based on reference genes. The data provide an example of complex

  8. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Hess, M. H. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); and others

    2015-05-15

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10{sup 12} have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm{sup 3}. In these experiments, up to 5 × 10{sup 10} secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm{sup 2}, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10{sup 10}. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  9. Effect of Grid and Straight-throat on Flow Characteristics in Two-Phase Nozzle for Absorption Refrigerating Machine

    Science.gov (United States)

    Lee, Yoonhwan; Dang, Chaobin; Hihara, Eiji

    The purpose of this research is to improve the performance of convergent-divergent nozzle for initially subcooled LiBr aqueous solution. The decline in the nozzle efficiency is due to pressure undershoot at nozzle throat and slip between liquid and vapor. We performed experiments using nozzle with grid near the throat and straight-throat. The following results were abtained : (1) Turbulence by grid near the throat has no effect on the slip between liquid and vapor in divergent nozzle flow. (2) The occurrence of cavitation in straight-throat decrease pressure undershoot at throat and slip between liquid and vapor by turbulence and mixing.

  10. Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments

    Science.gov (United States)

    Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J.

    2016-07-01

    Studies with transplanted tumors in animals and clinical trials have provided the proof-of-concept of magnetic hyperthermia (MH) therapy of cancers using iron oxide nanoparticles. Interestingly, in several studies, the application of an alternating magnetic field (AMF) to tumor cells having internalized and accumulated magnetic nanoparticles (MNPs) into their lysosomes can induce cell death without detectable temperature increase. To explain these results, among other hypotheses, it was proposed that cell death could be due to the high-frequency translational motion of MNPs under the influence of the AMF gradient generated involuntarily by most inductors. Such mechanical actions of MNPs might cause cellular damages and participate in the induction of cell death under MH conditions. To test this hypothesis, we developed a setup maximizing this effect. It is composed of an anti-Helmholtz coil and two permanent magnets, which produce an AMF gradient and a superimposed static MF. We have measured the MNP heating power and treated tumor cells by a standard AMF and by an AMF gradient, on which was added or not a static magnetic field. We showed that the presence of a static magnetic field prevents MNP heating and cell death in standard MH conditions. The heating power of MNPs in an AMF gradient is weak, position-dependent, and related to the presence of a non-zero AMF. Under an AMF gradient and a static field, no MNP heating and cell death were measured. Consequently, the hypothesis that translational motions could be involved in cell death during MH experiments is ruled out by our experiments.

  11. Nozzle geometry for organic vapor jet printing

    Science.gov (United States)

    Forrest, Stephen R; McGraw, Gregory

    2015-01-13

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  12. Diagnosing magnetized liner inertial fusion experiments on Z

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S. B., E-mail: sbhanse@sandia.gov; Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  13. Optimal Liner Material for Near Term Magnetized Liner Fusion Experiments

    Science.gov (United States)

    Slutz, Stephen

    2012-10-01

    Substantial fusion yields are predicted with existing pulsed power machines driving cylindrical liner implosions with preheated and magnetized deuterium-tritium [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)]. Experiments are planned using the Z accelerator to drive these implosions. However, the peak current, the laser heating energy, and the applied magnetic field will be less than optimal. We present simulations which show, that under these conditions, the yield can be improved significantly by decreasing the density of the liner material, e.g. Lithium substituted for Beryllium. Furthermore, the simulations show that decreasing the liner density allows the use of very low aspect ratio (R/δR) liners, while still obtaining interesting yields. Low aspect ratio liners should be more robust to the Rayleigh-Taylor instability.

  14. "Smart" Magnetic Fluids Experiment Operated on the International Space Station

    Science.gov (United States)

    Agui, Juan H.; Lekan, Jack F.

    2004-01-01

    InSPACE is a microgravity fluid physics experiment that was operated on the International Space Station (ISS) in the Microgravity Science Glovebox from late March 2003 through early July 2003. (InSPACE is an acronym for Investigating the Structure of Paramagnetic Aggregates From Colloidal Emulsions.) The purpose of the experiment is to obtain fundamental data of the complex properties of an exciting class of smart materials termed magnetorheological (MR) fluids. MR fluids are suspensions, or colloids, comprised of small (micrometer-sized) superparamagnetic particles in a nonmagnetic medium. Colloids are suspensions of very small particles suspended in a liquid. (Examples of other colloids are blood, milk, and paint.) These controllable fluids can quickly transition into a nearly solid state when exposed to a magnetic field and return to their original liquid state when the magnetic field is removed. Controlling the strength of the magnetic field can control the relative stiffness of these fluids. MR fluids can be used to improve or develop new seat suspensions, robotics, clutches, airplane landing gear, and vibration damping systems. The principal investigator for InSPACE is Professor Alice P. Gast of the Massachusetts Institute of Technology (MIT). The InSPACE hardware was developed at the NASA Glenn Research Center. The InSPACE samples were delivered to the ISS in November 2002, on the Space Shuttle Endeavour, on Space Station Utilization Flight UF-2/STS113. Operations began on March 31, 2003, with the processing of three different particle size samples at multiple test parameters. This investigation focused on determining the structural organization of MR colloidal aggregates when exposed to a pulsing magnetic field. On Earth, the aggregates take the shape of footballs with spiky tips. This characteristic shape may be influenced by the pull of gravity, which causes most particles initially suspended in the fluid to sediment, (i.e., settle and collect at the

  15. Magnetic Monopole Search at high altitude with the SLIM experiment

    CERN Document Server

    Balestra, S; Cozzi, M; Errico, M; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Mandrioli, G; Marcellini, S; Margiotta, A; Medinaceli, E; Patrizii, L; Pinfold, J L; Popa, V; Qureshi, I E; Saavedra, O; Sahnoun, Z; Sirri, G; Spurio, M; Togo, V; Velarde, A; Zanini, A

    2008-01-01

    The SLIM experiment was a large array of nuclear track detectors located at the Chacaltaya high altitude Laboratory (5230 m a.s.l.). The detector was in particular sensitive to Intermediate Mass Magnetic Monopoles, with masses 10^5 < M <10^{12} GeV. From the analysis of the full detector exposed for more than 4 years a flux upper limit of 1.3 x 10^{-15} cm^{-2} s^{-1} sr^{-1} for downgoing fast Intermediate Mass Monopoles was established at the 90% C.L.

  16. Magnetized Plasma Experiments Using Thermionic- Thermoelectronic Plasma Emitter

    Science.gov (United States)

    Kawamori, Eiichirou; Cheng, C. Z.; Fujikawa, Nobuko; Lee, Jyun-Yi; Peng, Albert

    2008-11-01

    We are developing a magnetic mirror device, which is the first magnetized plasma device in Taiwan, to explore basic plasma sciences relevant to fusion, space and astrophysical plasmas. Our research subjects include electromagnetically induced transparency (EIT), Alfven wave physics, and plasma turbulence. A large diameter (> 200 mm) plasma emitter1, which utilizes thermionic- thermoelectronic emission from a mixture of LaB6 (Lanthanum-hexaboride) and beta-eucryptite (lithium type aluminosylicate) powders, is employed as a plasma source because of its production ability of fully ionized plasma and controllability of plasma emission rate. The plasma emitter has been installed recently and investigation of its characteristics will be started. The employment of beta-eucryptite in plasma emitter is the first experimental test because such investigation of beta-eucryptite has previously been used only for Li+-ion source2. Our plan for magnetized plasma experiments and results of the plasma emitter investigation will be presented. 1. K. Saeki, S. Iizuka, N. Sato, and Y. Hatta, Appl. Phys. Lett., 37, 1980, pp. 37-38. 2. M. Ueda, R. R. Silva, R. M. Oliveira, H. Iguchi, J. Fujita and K. Kadota, J. Phys. D: Appl. Phys. 30 1997, pp. 2711--2716.

  17. Millimeter-Gap Magnetically Insulated Transmission Line Power Flow Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hutsel, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stoltzfus, Brian S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fowler, William E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LeChien, Keith R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mazarakis, Michael G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, James K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mulville, Thomas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Savage, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stygar, William A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McKenney, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Peter A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacRunnels, Diego J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Finis W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Porter, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs). The platform was driven by the 400-GW Mykonos-V accelerator. The experiments conducted quantify the current loss in a millimeter-gap MITL with respect to vacuum conditions in the MITL for two different gap distances, 1.0 and 1.3 mm. The current loss for each gap was measured for three different vacuum pump down times. As a ride along experiment, multiple shots were conducted with each set of hardware to determine if there was a conditioning effect to increase current delivery on subsequent shots. The experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps. The 1.0 mm gap resulted in current loss of 40%-60% of peak current. The 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps. The experiments result s indicate that the vacuum pressure or pump down time did not have a significant effect on the measured current loss at vacuum pressures between 1e-4 and 1e-5 Torr. Additionally, there was not repeatable evidence of a conditioning effect that reduced current loss for subsequent full-energy shots on a given set of hardware. It should be noted that the experiments conducted likely did not have large loss contributions due to ion emission from the anode due to the relatively small current densi-ties (25-40 kA/cm) in the MITL that limited the anode temperature rise due to ohmic heating. The results and conclusions from these experiments may have limited applicability to MITLs of high current density (>400 kA/cm) used in the convolute and load region of the Z which experience temperature increases of >400° C and generate ion emission from anode surfaces.

  18. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  19. The magnetized steel and scintillator calorimeters of the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Michael, : D.G.

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the 'atmospheric neutrino' sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  20. Magnetic Field Experiment on Yinghuo-1 at Mars

    Science.gov (United States)

    Zhao, Hua

    Magnetic Field Experiment on Yinghuo-1 at Mars Hua Zhao, G. W. Zhu, J. D. Wang, M. F. Yu, L. Li, Y. Q. Sun, S. W. Chen, H. Z. Liao, and B. Zhou Center for Space Science and Applied Research (CSSAR), Chinese Academy of Sciences, Beijing, China Abstract: A micro-satellite, Yinghuo-1, would be launched with Phobos-Grunt in October, 2009 to investigate the space environment around Mars. YH-1 and Phobos-Grunt forms a twopoint measurement configuration in the Martian space environment, and equipped with similar magnetic field and plasma detecting payload on two spacecraft would give some coordinated exploration around Mars. YH-1 would orbit Mars with periapsis of 800 km above the Martian surface, and apoapsis about 80000 km to the center of Mars. The orbit inclination is in the range of 0—7o to the Martian equator. A flux-gate type magnetometer, with two sensors, is developed for YH-1 spacecraft. Two sensors are mounted on one-side of the deployable solar panel with a radial separation about 45 cm to function as a gradiometer to minimize the affects of platform remanence. The dynamic range of √ magnetometer is with a 16-bit ADC converter, and the the noise level is better than 0.01 nT/ Hz, to measure three-component magnetic field from DC to 10Hz. Flux-gate magnetometer would work together with the Plasma Package onboard of YH-1 to investigate the Martian bow shock, magnetosheath, magnetic pileup region (MPR). A detail description of the flux-gate magnetometer is presented in this paper, with some test and calibration results.

  1. A few simple classroom experiments with a permanent U-shaped magnet

    Science.gov (United States)

    Babović, Miloš; Babović, Vukota

    2017-01-01

    A few simple experiments in the magnetic field of a permanent U-shaped magnet are described. Among them, pin oscillations inside the magnet are particularly interesting. These easy to perform and amusing measurements can help pupils understand magnetic phenomena and mutually connect knowledge of various physics branches.

  2. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Energy Technology Data Exchange (ETDEWEB)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  3. Kinetic energy of rainfall simulation nozzles

    Science.gov (United States)

    Different spray nozzles are used frequently to simulate natural rain for soil erosion and chemical transport, particularly phosphorous (P), studies. Oscillating VeeJet nozzles are used mostly in soil erosion research while constant spray FullJet nozzles are commonly used for P transport. Several ch...

  4. Design and testing of low-divergence elliptical-jet nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Rouly, Etienne; Warkentin, Andrew; Bauer, Robert [Dalhousie University, Halifax (China)

    2015-05-15

    A novel approach was developed to design and fabricate nozzles to produce high-pressure low-divergence fluid jets. Rapid-prototype fabrication allowed for myriad experiments investigating effects of different geometric characteristics of nozzle internal geometry on jet divergence angle and fluid distribution. Nozzle apertures were elliptical in shape with aspect ratios between 1.00 and 2.45. The resulting nozzle designs were tested and the lowest elliptical jet divergence angle was 0.4 degrees. Nozzle pressures and flowrates ranged from 0.32 to 4.45 MPa and 13.6 to 37.9 LPM, respectively. CimCool CimTech 310 machining fluid was used in all experiments at a Brix concentration of 6.6 percent.

  5. Nozzle Bricks and Well Bricks

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Peng Xigao

    2011-01-01

    1 Scope This standard specifies the classification,brand,technical requirements,test methods,inspection rules,marking,packing,transportation,storage,and quality certificate of nozzle bricks and well bricks.This standard is applicable to unfired and fired products.

  6. Nozzle for electric dispersion reactor

    Science.gov (United States)

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.

    1995-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  7. Advanced nozzle characterization for hydrogen fluoride overtone chemical lasers

    Science.gov (United States)

    Duncan, William A.; Patterson, Stanley P.; Graves, Bruce R.; Sollee, Jeffrey L.; Yonehara, Gordon N.; Dering, John P.

    1992-07-01

    The parametric characterization and optimization of the hypersonic, low-temperature (HYLTE) nozzle concept for the hydrogen fluoride (HF) overtone and HF fundamental performance are reviewed. The HF fundamental space-based laser for weapons systems is considered to be more mature, nearer term potential application than the overtone. Emphasis is placed on the Task 3 advanced gain generator technology configurations (AGGTC) aimed at a thorough characterization in the fundamental regime. The experiments were based on advanced multilayer dielectric coatings on uncooled silicon substrates. It is concluded that the Task 3 AGGTC hardware functioned quite well in optimizing the performance of the HYLTE nozzle concept.

  8. Simulating radiative shocks in nozzle shock tubes

    Science.gov (United States)

    van der Holst, B.; Tóth, G.; Sokolov, I. V.; Daldorff, L. K. S.; Powell, K. G.; Drake, R. P.

    2012-06-01

    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1 ns. Later times are calculated with the CRASH code. CRASH solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The synthetic radiographs produced can be used for comparison with future nozzle experiments at high-energy-density laser facilities.

  9. Optimized Magnetic Nozzles for MPD Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to enable ambitious human and robotic exploration missions...

  10. Plasma Detachment Mechanisms in Propulsive Magnetic Nozzles

    Science.gov (United States)

    2013-03-07

    this research was provided by the Gobierno de Espa~na (Project AYA-2010-61699). 1E. Ahedo and M. Merino, “Two-dimensional supersonic plasma accelera...must be emphasized that they have no direct influence on the forma - tion of the QDL itself nor the magnitude of the potential jump across it, which...reprints for Governmental purpose notwithstanding any copyright notation hereon. Additional support for this research was provided by the Gobierno de

  11. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    Science.gov (United States)

    Stallard, B. W.; Hooper, E. B.; Woodruff, S.; Bulmer, R. H.; Hill, D. N.; McLean, H. S.; Wood, R. D.

    2003-07-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX.

  12. Spectrometer magnet for experiment NA4 (deep inelastic muon scattering)

    CERN Multimedia

    1977-01-01

    This is one section of the toroidal-field spectrometer magnet of experiment NA4 (deep inelastic muon scattering), shown here during the installation period and later located in the North Area of the SPS. To see all 4 sections, select 7709201. Igor Savin from Dubna looks at what his lab had provided: the huge iron disks were machined at and provided by Dubna. Multi-Wire Proportional Chambers were installed in the gaps between the packs of 4 disks. When the beam from the SPS struck the target (to the right in this picture), the iron would quickly stop the hadronic shower, whilst the muons would go on, performing oscillations in the toroidal field. NA4 was a CERN-Dubna-Munich-Saclay (later also Bologna) collaboration, spokesman: Carlo Rubbia.

  13. Comments on Pellet Ablation in Hot Plasmas and the Problem of Magnetic Shielding

    DEFF Research Database (Denmark)

    Chang, C. T.

    1979-01-01

    Clarifications are provided concerning the consistency of a previously formulated magnetic nozzle model in connection with pellet ablation.......Clarifications are provided concerning the consistency of a previously formulated magnetic nozzle model in connection with pellet ablation....

  14. Controllable deposition distance of aligned pattern via dual-nozzle near-field electrospinning

    Science.gov (United States)

    Wang, Zhifeng; Chen, Xindu; Zeng, Jun; Liang, Feng; Wu, Peixuan; Wang, Han

    2017-03-01

    For large area micro/nano pattern printing, multi-nozzle electrohydrodynamic (EHD) printing setup is an efficient method to boost productivity in near-field electrospinning (NFES) process. And controlling EHD multi-jet accurate deposition under the interaction of nozzles and other parameters are crucial concerns during the process. The influence and sensitivity of various parameters such as the needle length, needle spacing, electrode-to-collector distance, voltage etc. on the direct-write patterning performance was investigated by orthogonal experiments with dual-nozzle NFES setup, and then the deposition distance estimated based on a novel model was compared with measurement results and proven. More controllable deposition distance and much denser of aligned naofiber can be achieved by rotating the dual-nozzle setup. This study can be greatly contributed to estimate the deposition distance and helpful to guide the multi-nozzle NFES process to accurate direct-write pattern in manufacturing process in future.

  15. Numerical Optimization of converging diverging miniature cavitating nozzles

    Science.gov (United States)

    Chavan, Kanchan; Bhingole, B.; Raut, J.; Pandit, A. B.

    2015-12-01

    The work focuses on the numerical optimization of converging diverging cavitating nozzles through nozzle dimensions and wall shape. The objective is to develop design rules for the geometry of cavitating nozzles for desired end-use. Two main aspects of nozzle design which affects the cavitation have been studied i.e. end dimensions of the geometry (i.e. angle and/or curvature of the inlet, outlet and the throat and the lengths of the converging and diverging sections) and wall curvatures(concave or convex). Angle of convergence at the inlet was found to control the cavity growth whereas angle of divergence of the exit controls the collapse of cavity. CFD simulations were carried out for the straight line converging and diverging sections by varying converging and diverging angles to study its effect on the collapse pressure generated by the cavity. Optimized geometry configurations were obtained on the basis of maximum Cavitational Efficacy Ratio (CER)i.e. cavity collapse pressure generated for a given permanent pressure drop across the system. With increasing capabilities in machining and fabrication, it is possible to exploit the effect of wall curvature to create nozzles with further increase in the CER. Effect of wall curvature has been studied for the straight, concave and convex shapes. Curvature has been varied and effect of concave and convex wall curvatures vis-à-vis straight walls studied for fixed converging and diverging angles.It is concluded that concave converging-diverging nozzles with converging angle of 20° and diverging angle of 5° with the radius of curvature 0.03 m and 0.1530 m respectively gives maximum CER. Preliminary experiments using optimized geometry are indicating similar trends and are currently being carried out. Refinements of the CFD technique using two phase flow simulations are planned.

  16. A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    Science.gov (United States)

    Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2005-01-01

    A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.

  17. Nozzle optimization for water jet propulsion with a positive displacement pump

    Science.gov (United States)

    Yang, You-sheng; Xie, Ying-chun; Nie, Song-lin

    2014-06-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  18. Nozzle Optimization for Water Jet Propulsion with A Positive Displacement Pump

    Institute of Scientific and Technical Information of China (English)

    杨友胜; 谢迎春; 聂松林

    2014-01-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  19. Spray nozzle for fire control

    Science.gov (United States)

    Papavergos, Panayiotis G.

    1990-09-01

    The design of a spray nozzle for fire control is described. It produces a spray of gas and liquid having an oval transverse cross section and it comprises a mixing chamber with an oval transverse cross section adapted to induce a toroidal mixing pattern in pressurized gas and liquid introduced to the mixing chamber through a plurality of inlets. In a preferred embodiment the mixing chamber is toroidal. The spray nozzle produces an oval spray pattern for more efficient wetting of narrow passages and is suitable for fire control systems in vehicles or other confined spaces. Vehicles to which this invention may be applied include trains, armoured vehicles, ships, hovercraft, submarines, oil rigs, and most preferably, aircraft.

  20. PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.; Frate, Franco C.

    2011-01-01

    Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.

  1. Computational modeling of joint U.S.-Russian experiments relevant to magnetic compression/magnetized target fusion (MAGO/MTF)

    Energy Technology Data Exchange (ETDEWEB)

    Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.; Lindemuth, I.R. [Los Alamos National Lab., NM (United States)

    1997-12-31

    Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growth in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.

  2. High Magnetic field generation for laser-plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H

    2006-05-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

  3. Coherent entropy induced and acoustic noise separation in compact nozzles

    Science.gov (United States)

    Tao, Wenjie; Schuller, Thierry; Huet, Maxime; Richecoeur, Franck

    2017-04-01

    A method to separate entropy induced noise from an acoustic pressure wave in an harmonically perturbed flow through a nozzle is presented. It is tested on an original experimental setup generating simultaneously acoustic and temperature fluctuations in an air flow that is accelerated by a convergent nozzle. The setup mimics the direct and indirect noise contributions to the acoustic pressure field in a confined combustion chamber by producing synchronized acoustic and temperature fluctuations, without dealing with the complexity of the combustion process. It allows generating temperature fluctuations with amplitude up to 10 K in the frequency range from 10 to 100 Hz. The noise separation technique uses experiments with and without temperature fluctuations to determine the relative level of acoustic and entropy fluctuations in the system and to identify the nozzle response to these forcing waves. It requires multi-point measurements of acoustic pressure and temperature. The separation method is first validated with direct numerical simulations of the nonlinear Euler equations. These simulations are used to investigate the conditions for which the separation technique is valid and yield similar trends as the experiments for the investigated flow operating conditions. The separation method then gives successfully the acoustic reflection coefficient but does not recover the same entropy reflection coefficient as predicted by the compact nozzle theory due to the sensitivity of the method to signal noises in the explored experimental conditions. This methodology provides a framework for experimental investigation of direct and indirect combustion noises originating from synchronized perturbations.

  4. Scaling experiments on a magnetically insulated thermionic vacuum switch

    Energy Technology Data Exchange (ETDEWEB)

    Eninger, J.E.; Vanderberg, B.H. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Industrial Electrotechnology

    1994-12-31

    Magnetic insulation of the electron flow in a cylindrical thermionic vacuum diode has been proposed as a way to achieve a fast high-voltage high-power opening switch. The expected performance of this type of device can be derived from a set of basic scaling laws combined with empirical relationships obtained from experimental studies. Switch losses are mainly due to anode dissipation W{sub a}, which can be normalized to the transferred pulse energy. Leakage current and switch hold-off voltage depend on device geometry, materials, vacuum conditions etc and must be determined experimentally. For this purpose, the MX-1 experiment has been designed and operated. This device is basically a smooth-bore cylindrical magnetron with a 5 cm radius, 400 cm{sup 2} area thermionic dispenser cathode separated from the coaxial water-cooled anode by a few mm wide gap. This design allows pulsed operation at up to {approximately}100 kV, {approximately}4 kA and average power levels of {approximately}1 MW. The MX-1 switch is used as an opening switch to produce 1--2 {mu}s long square pulses from an inductive storage PFN. The current-voltage characteristics of the switch are determined as a function of the applied magnetic field and load condition. Plasma wave measurements are performed to investigate the stability of the electron flow. Results are summarized in the form of scaling diagrams for the important switch parameters, showing possible performance levels and physical and technical limitations identified as far in this work.

  5. Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model

    DEFF Research Database (Denmark)

    Kinch, K.M.; Merrison, J.P.; Gunnlaugsson, H.P.;

    2006-01-01

    Motivated by questions raised by the magnetic properties experiments on the NASA Mars Pathfinder and Mars Exploration Rover (MER) missions, we have studied in detail the capture of airborne magnetic dust by permanent magnets using a computational fluid dynamics (CFD) model supported by laboratory...

  6. The Magnetic Sentences Industry Game: A Competitive In-Class Experience of Business-Level Strategy

    Science.gov (United States)

    Casile, Maureen; Wheeler, Jane V.

    2005-01-01

    The Magnetic Sentences Industry Game is a high-energy in-class exercise designed to help students gain hands-on experience with setting, implementing, evaluating, and revising business-level strategy. Students compete in teams to create and market sentences using Magnetic Poetry (a product of Magnetic Poetry, Inc.). Revenues earned are highly…

  7. The Magnetic Sentences Industry Game: A Competitive In-Class Experience of Business-Level Strategy

    Science.gov (United States)

    Casile, Maureen; Wheeler, Jane V.

    2005-01-01

    The Magnetic Sentences Industry Game is a high-energy in-class exercise designed to help students gain hands-on experience with setting, implementing, evaluating, and revising business-level strategy. Students compete in teams to create and market sentences using Magnetic Poetry (a product of Magnetic Poetry, Inc.). Revenues earned are highly…

  8. Tools and Setups for Experiments with AC and Rotating Magnetic Fields

    Science.gov (United States)

    Ponikvar, D.

    2010-01-01

    A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several…

  9. Effects of Nonuniform Blade Pitch on the Flow Through an Annular Turbine Nozzle

    OpenAIRE

    1995-01-01

    This paper discusses flow measurement results both upstream and downstream of a transonic annular gas turbine nozzle with a nonuniform pitch. The downstream measurements are performed in the plane where the leading edge of the rotor blade is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect ...

  10. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  11. Simulation of a Downsized FDM Nozzle

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pimentel, Rodrigo; Pedersen, David B.

    2015-01-01

    This document discusses the simulat-ion of a downsized nozzle for fused deposition modelling (FDM), namely the E3D HotEnd Extruder with manufactured diameters of 200-400 μm in the nozzle tip. The nozzle has been simulated in terms of heat transfer and fluid flow giving an insight into the physical...... validated. This kind of simulations is facing multiple problems connected to the description of the material properties with temperature and pressure dependency....

  12. The history of IFMFC - The accumulated knowledge and experience of the magnetic force control with IFMFC

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tsueo [Tokyo Metropolitan University, Tokyo (Japan)

    2016-03-15

    The history of IFMFC (International Forum on Magnetic Force Control) shows the usefulness of the magnetic force control in the fields of the environment and material resource in Japan, Korea and China. The IFMFC started in 2010 and has been organized in every year. This paper shows the application of the magnetic force control in each countries with the accumulated knowledge and experience of the magnetic force control with IFMFC.

  13. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Heaney, M.B. (California Univ., Berkeley, CA (USA). Dept. of Physics Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  14. Nuclear magnetic resonance experiments with DC SQUID amplifiers

    Science.gov (United States)

    Heaney, M. B.

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting Quantum Interference Devices) with Nb/Al2O3/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 10(exp 17) in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  15. Numerical simulation on turbulent flow field in convergent-divergent nozzle

    Institute of Scientific and Technical Information of China (English)

    LU Yi-yu; LIO Yong; LI Xiao-hong; FANG Yong; ZHAO Jian-xin

    2009-01-01

    Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow field in convergent-divergent nozzle. Theory analysis and experiment results of mass flow rates conclude that the RNG κ-ε model is the most suitable model. The pressure distribution in the convergent-divergent nozzle was revealed by computational fluid dynamic (CFD) simulating on the turbulent flow field under different pressure conditions. The growing conditions of cavitation bubbles were shown; meanwhile, the phenomena in the experiment could be explained. The differential pressure between the upstream and downstream in nozzle throat section can improve the cavitating effect of cavitation water jet.

  16. A new design of foam spray nozzle used for precise dust control in underground coal mines

    Institute of Scientific and Technical Information of China (English)

    Han Fangwei; Wang Deming; Jiang Jiaxing; Zhu Xiaolong

    2016-01-01

    In order to improve the utilization rate of foam, an arc jet nozzle was designed for precise dust control. Through theoretical analysis, the different demands of foam were compared amongst arc jets, flat jets and full cone jets when the dust source was covered identically by foam. It is proved that foam consumption was least when an arc jet was used. Foam production capability of an arc jet nozzle under different con-ditions was investigated through experiments. The results show that with the gas liquid ratio (GLR) increasing, the spray state of an arc jet nozzle presents successively water jet, foam jet and mist. Under a reasonable working condition range of foam production and a fixed GLR, foam production quan-tity increases at first, and then decreases with the increase of liquid supply quantity. When the inner diameter of the nozzle is 14 mm, the best GLR is 30 and the optimum liquid supply quantity is 0.375 m3/h. The results of field experiments show that the total dust and respirable dust suppression effi-ciency of arc jet nozzles is 85.8%and 82.6%respectively, which are 1.39 and 1.37 times higher than the full cone nozzles and 1.20 and 1.19 times higher than the flat nozzles.

  17. The effect of nozzle layout on droplet ejection of a piezo-electrically actuated micro-atomizer

    Institute of Scientific and Technical Information of China (English)

    Yanying Feng; Zhaoying Zhou; Junhua Zhu; Guibin Du

    2007-01-01

    We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was first built for this piezoelectric-liquid-structure coupling system to characterize the acoustic wave propagation in the liquid chamber, which determined the droplet formation out of nozzles. The modal analysis was carried out numerically to predict resonant frequencies and simulate the corresponding pressure wave field. By comparing the amplitude contours of pressure wave on the liquid-solid interface at nozzle inlets with the designed nozzle layout, behaviors of the device under different vibration modes can be predicted. Experimentally, an impedance analyzer was used to measure the resonant frequencies of the system. Three types of atomizers with different nozzle layouts were fabricated for measuring the effect of nozzle distribution on the ejection performance. The visualization experiment of droplet generation was carried out and volume flow rates of these devices were measured. The good agreement between the experiment and the prediction proved that only the increase of nozzles may not enhance the droplet generation and a design of nozzle distribution from a viewpoint of frequency is necessary for a resonant related atomizer.

  18. Magnetic helicity in stellar dynamos new numerical experiments

    CERN Document Server

    Brandenburg, A; Subramanian, K

    2002-01-01

    The theory of large scale dynamos is reviewed with particular emphasis on the problem of magnetic helicity conservation in the presence of closed and open boundaries. It is concluded that in solar and stellar large scale dynamos the production and destruction of magnetic helicity during one cycle may still be accomplished by ordinary Spitzer resistivity. This is mainly because of geometric effects causing significant magnetic helicity cancellation on each hemisphere, but also partly because the generation of toroidal field by shear does not involve the production of magnetic helicity. A number of alternatives are discussed and dismissed. These include open boundaries which lead to preferential loss of large scale magnetic helicity together with large scale magnetic fields. It is also shown that artificially induced losses of small scale field do not accelerate the production of large scale (poloidal) field. In fact, resistively limited evolution towards saturation is also found at intermediate scales before t...

  19. RAT magnet experiment on the Mars Exploration Rovers: Spirit and Opportunity beyond sol 500

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Goetz, Walter; Chan, Marjorie A.;

    2011-01-01

    The Rock Abrasion Tool (RAT) magnet experiment on the Mars Exploration Rovers was designed to collect dust from rocks ground by the RAT of the two rovers on the surface of Mars. The dust collected on the magnets is now a mixture of dust from many grindings. Here the new data from the experiment a...

  20. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  1. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  2. MAGNETIC STRIPS TO SIMULATE LAYERED BRITTLE SOLIDS IN CLEAVAGE AND FRACTURE EXPERIMENTS

    Institute of Scientific and Technical Information of China (English)

    Francisco G.Emmerich; Alfredo G.Cunha; Carlos M.A.Girelli; Arnobio I.Vassem

    2008-01-01

    A characteristic of the fracture and cleavage experiments is that they are usually intrinsically destructive.Cracks do not completely heal in an unstressed system,even in crystals such as mica.Here,we used magnetic solids composed of magnetic strips for the non-destructive cleavage and brittle fracture experiments.Between the magnetic strips materials with different mechanical characteristics can be inserted,such as Teflon or foam strips,to change the mechanical properties of the solid.For the cleavage experiments,we developed an apparatus where parameters such as the main involved force can be measured easily.By inserting flaws,the magnetic solid can be used in dynamic fracture experiments,with the advantages of simulating macroscopically a non-destructive experiment in an easier way,that happen in real materials with much higher velocities.The apparatus and the used magnetic solid may be useful for demonstrations of fractures in classes.

  3. Reconnection experiments with 3D magnetic nulls in different topologies

    Science.gov (United States)

    Vrublevskis, A.; Egedal, J.; Le, A.

    2012-10-01

    Magnetic reconnection has been predominantly investigated in two dimensions. However, depending on the topology and geometry of the magnetic field, a rich collection of magnetic reconnection scenarios is possible in 3D including reconnection at magnetic nulls. At the Versatile Toroidal Facility (VTF) we have implemented a new magnetic geometry with a pair of 3D null points in the background toroidal field. We form a flux rope along the background field and observe it to rapidly restructure and rewire as the nulls develop. We can adjust the topology of the configuration from one where a field line connects the nulls to one where the nulls are no longer linked. A suit of diagnostics will be deployed and results presented for how the topology affects the dynamics of the flux rope.

  4. A study of magnetic moments of CeRh3B2 by X-ray magnetic diffraction experiments

    Science.gov (United States)

    Ito, M.; Suzuki, K.; Tadenuma, T.; Nagayasu, R.; Sakurai, Y.; Onuki, Y.; Nishibori, E.; Sakata, M.

    2014-04-01

    X-ray magnetic diffraction experiments of a ferromagnetic rare-earth compound CeRh3B2 have been performed, and the spin and orbital magnetic form factors have been measured. Density distributions of the spin and orbital magnetic moments in real space have been obtained by using Maximum Entropy Method. Low peaks at Rh sites as well as high peaks at Ce sites are observed in these distribution maps. We have estimated the spin and orbital magnetic moments at the Ce and Rh sites in the distribution maps, and have obtained small but nonnegligible spin and orbital magnetic moments of Rh. This is probably the first experimental evidence showing existence of the spin and orbital moments of Rh in this compound.

  5. Autowaves in a dc complex plasma confined behind a de Laval nozzle

    CERN Document Server

    Fink, M A; Schwabe, M; Thoma, M H; Höfner, H; Thomas, H M; Morfill, G E

    2013-01-01

    Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly ionized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 {\\mu}m. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.

  6. Radical recombination in a hydrocarbon-fueled scramjet nozzle

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoyuan

    2014-12-01

    Full Text Available To reveal the radical recombination process in the scramjet nozzle flow and study the effects of various factors of the recombination, weighted essentially non-oscillatory (WENO schemes are applied to solve the decoupled two-dimensional Euler equations with chemical reactions to simulate the hydrocarbon-fueled scramjet nozzle flow. The accuracy of the numerical method is verified with the measurements obtained by a shock tunnel experiment. The overall model length is nearly 0.5 m, with inlet static temperatures ranging from 2000 K to 3000 K, inlet static pressures ranging from 75 kPa to 175 kPa, and inlet Mach numbers of 2.0 ± 0.4 are involved. The fraction Damkohler number is defined as functions of static temperature and pressure to analyze the radical recombination progresses. Preliminary results indicate that the energy releasing process depends on different chemical reaction processes and species group contributions. In hydrocarbon-fueled scramjet nozzle flow, reactions with H have the greatest contribution during the chemical equilibrium shift. The contrast and analysis of the simulation results show that the radical recombination processes influenced by inflow conditions and nozzle scales are consistent with Damkohler numbers and potential dissociation energy release. The increase of inlet static temperature improves both of them, thus making the chemical non-equilibrium effects on the nozzle performance more significant. While the increase of inlet static pressure improves the former one and reduces the latter, it exerts little influence on the chemical non-equilibrium effects.

  7. Production, properties, and probing of Laval nozzles for cluster-jet targets

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Silke; Bonaventura, Daniel; Hergemoeller, Ann-Katrin; Hetz, Benjamin; Hordt, Fabian; Koehler, Esperanza; Taeschner, Alexander; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2015-07-01

    A cluster-jet target achieves high and constant beam densities, which can be adjusted during operation. Therefore, it is highly eligible for storage ring experiments. By the expansion of pre-cooled gases within fine Laval nozzles a cluster source produces a continuous flow of cryogenic solid clusters. Essential for the production of clusters are the properties of the Laval nozzle. The production of such a nozzle with its complex inner geometry represents a major technical challenge. To ensure the production of these fine Laval nozzles for future internal targets, an improved production process based on the initial CERN production was recently developed at the University of Muenster. Systematic investigations on Laval nozzles with modified geometries will clarify the outstanding questions of the cluster production process. Moreover, this is very important for the deeper understanding of the cluster beam characteristics, in particular: the density, velocity, and mass, affected by the geometry of the nozzle. The production process and initial measurements with these new nozzles at the anti PANDA cluster-jet target prototype is presented and discussed.

  8. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    Science.gov (United States)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  9. Magnetic MAX phases from theory and experiments; a review

    Science.gov (United States)

    Ingason, A. S.; Dahlqvist, M.; Rosen, J.

    2016-11-01

    This review presents MAX phases (M is a transition metal, A an A-group element, X is C or N), known for their unique combination of ceramic/metallic properties, as a recently uncovered family of novel magnetic nanolaminates. The first created magnetic MAX phases were predicted through evaluation of phase stability using density functional theory, and subsequently synthesized as heteroepitaxial thin films. All magnetic MAX phases reported to date, in bulk or thin film form, are based on Cr and/or Mn, and they include (Cr,Mn)2AlC, (Cr,Mn)2GeC, (Cr,Mn)2GaC, (Mo,Mn)2GaC, (V,Mn)3GaC2, Cr2AlC, Cr2GeC and Mn2GaC. A variety of magnetic properties have been found, such as ferromagnetic response well above room temperature and structural changes linked to magnetic anisotropy. In this paper, theoretical as well as experimental work performed on these materials to date is critically reviewed, in terms of methods used, results acquired, and conclusions drawn. Open questions concerning magnetic characteristics are discussed, and an outlook focused on new materials, superstructures, property tailoring and further synthesis and characterization is presented.

  10. Magnetic MAX phases from theory and experiments; a review.

    Science.gov (United States)

    Ingason, A S; Dahlqvist, M; Rosen, J

    2016-11-02

    This review presents MAX phases (M is a transition metal, A an A-group element, X is C or N), known for their unique combination of ceramic/metallic properties, as a recently uncovered family of novel magnetic nanolaminates. The first created magnetic MAX phases were predicted through evaluation of phase stability using density functional theory, and subsequently synthesized as heteroepitaxial thin films. All magnetic MAX phases reported to date, in bulk or thin film form, are based on Cr and/or Mn, and they include (Cr,Mn)2AlC, (Cr,Mn)2GeC, (Cr,Mn)2GaC, (Mo,Mn)2GaC, (V,Mn)3GaC2, Cr2AlC, Cr2GeC and Mn2GaC. A variety of magnetic properties have been found, such as ferromagnetic response well above room temperature and structural changes linked to magnetic anisotropy. In this paper, theoretical as well as experimental work performed on these materials to date is critically reviewed, in terms of methods used, results acquired, and conclusions drawn. Open questions concerning magnetic characteristics are discussed, and an outlook focused on new materials, superstructures, property tailoring and further synthesis and characterization is presented.

  11. External Cylindrical Nozzle with Controlled Vacuum

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2015-01-01

    Full Text Available There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice

  12. Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle

    Science.gov (United States)

    Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured

  13. Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle

    Science.gov (United States)

    Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon

    Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become

  14. Tools and setups for experiments with AC and rotating magnetic fields

    Science.gov (United States)

    Ponikvar, D.

    2010-09-01

    A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several experiments and describes setups and tools which are easy to obtain and work with. Free software is offered to generate the required signals by a personal computer. The experiments can be implemented in introductory physics courses on electromagnetism for undergraduates or specialized courses at high schools.

  15. Quasi-static magnetic measurements to predict specific absorption rates in magnetic fluid hyperthermia experiments

    OpenAIRE

    Coral, DF; Zelis, PM; de Sousa, ME; Muraca, D.; Lassalle, V.; Nicolas, P.; Ferreira,ML.; van Raap, MBF

    2014-01-01

    In this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific...

  16. Pump-probe SAXS experiments on ultrafast demagnetization of magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pfau, B.; Schaffert, S.; Mohanty, J.; Geilhufe, J.; Flewett, S.; Eisebitt, S. [IOAP, Technische Universitaet Berlin (Germany); Buettner, F. [IOAP, Technische Universitaet Berlin (Germany); Paul Scherrer Institut, Villigen (Switzerland); Mueller, L.; Gutt, C.; Al-Shemmary, A.; Duesterer, S.; Redlin, H.; Gruebel, G. [HASYLAB, DESY, Hamburg (Germany); Vodungbo, B. [ENSTA ParisTech, Ecole Polytechnique, Palaiseau (France); Luening, J. [Universite Pierre et Marie Curie, Paris (France); Stickler, D.; Froemter, R.; Oepen, H.P. [Universitaet Hamburg (Germany); Schlotter, W.F. [LCLS, SLAC, Menlo Park (United States)

    2011-07-01

    We have investigated the ultrafast optical demagnetization of domain patterns in magnetic multilayers with perpendicular magnetic anisotropy in an infrared-pump x-ray-probe experiment. As a probe we used small angle x-ray scattering which, via x-ray magnetic circular dichroism at the Co M-edge, allows us to simultaneously obtain information on the magnitude of the local magnetization and the characteristic length scale of the magnetic domains. The free-electron laser source FLASH at Hamburg was tuned to deliver {lambda}=20.9nm x-ray pulses of approx. 25 fs duration which were synchronized to an infrared fs laser for pump-probe experiments with sub-ps time resolution. In addition to ultrafast demagnetization, we observe sub-ps structural changes of the magnetic domain configuration. Models to explain this ultrafast structural change will be discussed.

  17. Extrude Honing Abrasive Slurry and Its Honing Experiments for Fuel Jet Nozzle%喷油嘴微喷孔挤压研磨液及其试验研究

    Institute of Scientific and Technical Information of China (English)

    黄颖; 张向军; 李勇; 李晓民

    2011-01-01

    The abrasive flow machining has become a key process for the advanced diesel engines to finish the final surface of fuel injector nozzle. Abrasive slurry was compounded by the method of oil-water emulsion. According to the principles of abrasive flow machining, a kind of abrasive slurry with good performance in suspension and cutting was explored and compounded, whose abrasive particles are brown alumina, and particle size range is 0. 4~50 μm. In addition, a test -bed was built for extruding honing the fuel injector nozzle. Then, the variations of the flow coefficient were measured and a series of the process parameters involved in the extruding honing technology for the fuel injector nozzle were studied experimentally. The injector nozzles were extruding honed under different times and pressures. With the increase of processing time, the effect was gradually saturated. With the increese of pressure, the wear of the device was serious. Tes-ting results indicated that 5 min and 10 Mpa are the best process parameters. The fuel injector nozzles were reamed in the process but didn't exceed 2%.%挤压研磨工艺已经成为高端柴油机喷油嘴微喷孔加工的最终表面成形的关键工序.根据磨料流加工的原理采用油水乳浊液的方式,配制了具有良好分散性能和切削性能的研磨剂,其磨料颗粒为棕刚玉,粒度范围0.4~50 μm,搭建了喷油嘴微喷孔挤压研磨的试验台,测量其流量因数的变化,对喷油嘴微喷孔挤压研磨工艺中的时间、压力因素进行了试验研究.随加工时间增加,研磨效果趋于饱和,随加工压力增加,对设备磨损加剧,试验结果表明,加工时间5 min,加工压力10 MPa为最佳工艺参数.挤压研磨过程中,造成了喷油嘴微喷孔孔径的扩大,但是不超过2%.

  18. Reconnection Experiments with Flux Ropes near 3D Magnetic Nulls

    Science.gov (United States)

    Vrublevskis, A.; Egedal, J.; Le, A.

    2012-12-01

    Magnetic reconnection has been predominantly investigated in two dimensions. However, depending on the topology and geometry of the magnetic field, a rich collection of magnetic reconnection scenarios is possible in 3D including reconnection at magnetic nulls. Nulls have been reported in the solar corona [1] and in Earth's magnetosphere [2], yet there are a limited number of laboratory observations. At the Versatile Toroidal Facility (VTF) we have implemented a new magnetic geometry with a pair of 3D null points in the background toroidal field. We form a flux rope along the background field and observe it to rapidly restructure and rewire as the nulls develop. We can adjust the topology of the configuration from one where a field line connects the nulls to one where the nulls are no longer linked. A suit of diagnostics will be deployed and results presented for the dynamics of the flux rope. [1] Fletcher et al., Astrophys. J. 554, 451(2001) [2] Xiao et al., Nat. Phys. 2, 478 (2006)

  19. Backhopping in magnetic tunnel junctions: Micromagnetic approach and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Frankowski, Marek, E-mail: wsong@unb.ca; Skowroński, Witold; Czapkiewicz, Maciej; Stobiecki, Tomasz

    2015-01-15

    Micromagnetic simulations of Current Induced Magnetization Switching (CIMS) loops in CoFeB/MgO/CoFeB exchange-biased Magnetic Tunnel Junctions (MTJ) are discussed. Our model uses the Landau–Lifshitz–Gilbert equation with the Slonczewski's Spin-Transfer-Torque (STT) component. The current density for STT is calculated from the applied bias voltage and tunnel magnetoresistance which depends on the local magnetization vectors arrangement. We take into account the change in the anti-parallel state resistance with increasing bias voltage. Using such model we investigate influence of the interlayer exchange coupling, between free and reference layers across the barrier, on the backhopping effect in anti-parallel to parallel switching. We compare our simulated CIMS loops with the experimental data obtained from MTJs with different MgO barrier thicknesses. - Highlights: • We model Current Induced Magnetization Switching in magnetic tunnel junctions. • We investigate interlayer exchange coupling influence on backhopping effect. • Experimental results are reproduced with good qualitative agreement. • Ferromagnetic coupling decreases backhopping occurrence probability.

  20. Search for GUT magnetic monopoles and nuclearites with the MACRO experiment

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kumar, A; Kyriazopoulou, S; Lamanna, E; Lane, C; Larocci, E; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maarou, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Matteuzzi, D; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R; 10.1016/S1350-4487(03)00140-9

    2003-01-01

    We present the final results obtained by the MACRO experiment in the search for GUT magnetic monopoles and nuclearites. Several searches were performed with different subdetectors, i.e. scintillation counters, limited streamer tubes and nuclear track detectors. No magnetic monopole or nuclearite candidates were found. The MACRO upper limit to the local flux of GUT magnetic monopoles is at the level of 1.4*10/sup -16/ cm/sup -2/s/sup -1/sr/sup -1/.

  1. Experiments on second- and third-harmonic generation from magnetic metamaterials.

    Science.gov (United States)

    Klein, Matthias W; Wegener, Martin; Feth, Nils; Linden, Stefan

    2007-04-16

    Photonic metamaterials could provide optical nonlinearities far exceeding those of natural substances due to the combined action of (magnetic) resonances and local-field enhancements. Here, we present our experiments on second- and third-harmonic generation from magnetic metamaterials composed of nanoscale gold split-ring resonators and from control samples for excitation with 170-fs pulses centered at 1.5-microm wavelength. The strongest nonlinear signals are found for resonances with magnetic-dipole character.

  2. Analysis and experiment of eddy current loss in Homopolar magnetic bearings with laminated rotor cores

    Science.gov (United States)

    Jinji, Sun; Dong, Chen

    2013-08-01

    This paper analyses the eddy current loss in Homopolar magnetic bearings with laminated rotor cores produced by the high speed rotation in order to reduce the power loss for the aerospace applications. The analytical model of rotational power loss is proposed in Homopolar magnetic bearings with laminated rotor cores considering the magnetic circuit difference between Homopolar and Heteropolar magnetic bearings. Therefore, the eddy current power loss can be calculated accurately using the analytical model by magnetic field solutions according to the distribution of magnetic fields around the pole surface and boundary conditions at the surface of the rotor cores. The measurement method of rotational power loss in Homopolar magnetic bearing is proposed, and the results of the theoretical analysis are verified by experiments in the prototype MSCMG. The experimental results show the correctness of calculation results.

  3. Improved magnetization alignment schemes for spin-lock relaxation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D. Flemming; Kay, Lewis E. [University of Toronto, Departments of Medical Genetics, Biochemistry and Chemistry (Canada)], E-mail: kay@pound.med.utoronto.ca

    2007-04-15

    A pair of pulse schemes that spin-lock magnetization efficiently are presented. The design of the sequences benefited from a particularly simple relation that is derived describing to first order the evolution of any magnetization component due to the application of an off-resonance 90{sup o} pulse. The sequences are shown theoretically and experimentally to significantly outperform the 90{sup o}-delay-90{sup o} element that is often used in current applications. It is shown that alignment of magnetization to within 1{sup o} of the effective field can be obtained over a bandwidth extending between [-{omega}{sub SL}, {omega}{sub SL}], where {omega}{sub SL} is the strength of the spin-lock field using a simple scheme that is an order of magnitude shorter than an adiabatic pulse that might also be used for a similar purpose.

  4. Overview of the magnetic properties experiments onboard the two Mars Exploration Rovers, Spirit and Opportunity

    Science.gov (United States)

    Leer, K.; Bertelsen, P.; Goetz, W.; Hviid, S. F.; Madsen, D. E.; Madsen, M. B.; Olsen, M.; The, A.

    2007-05-01

    The two Mars Exploration Rovers, Spirit and Opportunity, are each equipped with seven magnets designed for three different purposes: 1. The Filter and Capture magnets collect dust from the atmosphere. The dust can be investigated by the science instruments on the robotic arm and imaged by the Panoramic Camera. Analyzes of the dust shows that the magnetic component in the martian dust is magnetite, hematite together with paramagnetic and possibly superparamagnetic compounds is responsible for the yellowish color of the dust and the presence of olivine shows that the dust is formed without any appreciable presence of water. 2. The ring shaped Sweep magnet is design to detect non-magnetic particles. The experiment has been negative so far, showing that all particles must be composite and magnetic. This experience has been used to design a new camera calibration target for the Phoenix 2007, the sweep effect significantly preventing the calibration target to get dusty during the mission. 3. The Rock Abrasion Tool magnets are design to support the Mössbauer measurements on rocks giving additional information about the magnetic minerals contained in rocks. We here report on the results from the rovers and the neer future prospective for magnetic properties experiments on Mars.

  5. Reverse Circulation Drilling Method Based on a Supersonic Nozzle for Dust Control

    Directory of Open Access Journals (Sweden)

    Dongyu Wu

    2016-12-01

    Full Text Available To reduce dust generated from drilling processes, a reverse circulation drilling method based on a supersonic nozzle is proposed. The suction performance is evaluated by the entrainment ratio. A series of preliminary laboratory experiments based on orthogonal experimental design were conducted to test the suction performance and reveal the main factors. Computational fluid dynamics (CFD were conducted to thoroughly understand the interaction mechanism of the flows. The Schlieren technique was further carried out to reveal the flow characteristic of the nozzle. The results show that the supersonic nozzle can significantly improve the reverse circulation effect. A high entrainment ratio up to 0.76 was achieved, which implied strong suction performance. The CFD results agreed well with experimental data with a maximum difference of 17%. This work presents the great potential for supersonic nozzles and reverse circulation in dust control, which is significant to protect the envrionment and people’s health.

  6. Magnetic separation in microfluidic systems using microfabricated electromagnets - Experiments and simulations

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Hansen, Ole; Bruus, Henrik;

    2005-01-01

    We present experiments and simulations of magnetic separation of magnetic beads in a microfluidic channel. The separation is obtained by microfabricated electromagnets. The results of our simulations using FEMLAB and Mathematica are compared with experimental results obtained using our own microf...... microfabricated systems. (c) 2005 Elsevier B.V. All rights reserved....

  7. Rotation of the solenoid magnet of the CMS experiment before the insertion into its cryostat

    CERN Multimedia

    Patrice Loiez

    2005-01-01

    At one side of the 27 km ring of the future Large Hadron Collider (LHC), the 230 tonne solenoid magnet for the CMS experiment has been rotated through 90° prior to insertion into its cryostat - the jacket that will cool the magnet to 4.2 K (-269° C).

  8. Using Experiment and Computer Modeling to Determine the Off-Axis Magnetic Field of a Solenoid

    Science.gov (United States)

    Lietor-Santos, Juan Jose

    2014-01-01

    The study of the ideal solenoid is a common topic among introductory-based physics textbooks and a typical current arrangement in laboratory hands-on experiences where the magnetic field inside a solenoid is determined at different currents and at different distances from its center using a magnetic probe. It additionally provides a very simple…

  9. A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment

    CERN Document Server

    Nouri, N; Brown, M A; Carr, R; Filippone, B; Osthelder, C; Plaster, B; Slutsky, S; Swank, C

    2015-01-01

    We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.

  10. Jet noise suppression by porous plug nozzles

    Science.gov (United States)

    Bauer, A. B.; Kibens, V.; Wlezien, R. W.

    1982-01-01

    Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.

  11. Fastrac Nozzle Design, Performance and Development

    Science.gov (United States)

    Peters, Warren; Rogers, Pat; Lawrence, Tim; Davis, Darrell; DAgostino, Mark; Brown, Andy

    2000-01-01

    With the goal of lowering the cost of payload to orbit, NASA/MSFC (Marshall Space Flight Center) researched ways to decrease the complexity and cost of an engine system and its components for a small two-stage booster vehicle. The composite nozzle for this Fastrac Engine was designed, built and tested by MSFC with fabrication support and engineering from Thiokol-SEHO (Science and Engineering Huntsville Operation). The Fastrac nozzle uses materials, fabrication processes and design features that are inexpensive, simple and easily manufactured. As the low cost nozzle (and injector) design matured through the subscale tests and into full scale hot fire testing, X-34 chose the Fastrac engine for the propulsion plant for the X-34. Modifications were made to nozzle design in order to meet the new flight requirements. The nozzle design has evolved through subscale testing and manufacturing demonstrations to full CFD (Computational Fluid Dynamics), thermal, thermomechanical and dynamic analysis and the required component and engine system tests to validate the design. The Fastrac nozzle is now in final development hot fire testing and has successfully accumulated 66 hot fire tests and 1804 seconds on 18 different nozzles.

  12. Acoustics and Aeroperformance of Nozzles With Screwdriver Shaped and Axisymmetric Plugs

    Science.gov (United States)

    Gilinsky, M.; Kouznetsov, V. M.; Nark, D. M.

    1998-01-01

    The recent experimental and numerical tests of corrugated nozzles have shown some acoustic and thrust benefits relative to traditional round nozzles. For example, a Bluebell nozzle which was obtained by 3D nozzle design incorporating a corrugated cross section nozzle shape with a sinusoidal lip line nozzle edge, can provide an acoustic benefit up to 4dB with about a 1% thrust augmentation. In references, this effect was explained as being the result of the corrugated design producing more efficient mixing of the exhausted jet with ambient air. Based on this argument, the authors have proposed the application of this concept for a centerbody (plug) which can form several vortices downstream from the centerbody. Several different corrugated designs are proposed and described in detail in this paper. The main design is a Screwdriver shaped centerbody or plug (SCR) which was tested experimentally and numerically. The acoustic tests were conducted in the anechoic chamber of the Central AeroHydrodynamics Institute (TsAGI, Moscow) under Civilian Research and Development Foundation (CRDF) grant. These experiments have shown an essential acoustic benefit of about 10-13% with the application of the co-annular nozzles by comparison with the reference round nozzle with the same mass flow rate. However, the expected acoustic benefits with the application of the 4-petal Screwdriver shaped centerbody were not obtained by comparison with the reference axisymmetric centerbody (CON) having the same length and the same cross section areas at the same distance from the nozzle throat. Moreover, for some angles (Theta = 60 deg and 90 deg) noise increase was observed (about 1-3%). These tests will be continued with the goal of obtaining better acoustic results. In particular, acoustic characteristics are hoped to be improved by moving t lie centerbody into the nozzle and using penetrable walls for the SCR and/or for the main nozzle. Preliminary results for such approach are very

  13. Computational and experimental study on supersonic film cooling for liquid rocket nozzle applications

    Directory of Open Access Journals (Sweden)

    Vijayakumar Vishnu

    2015-01-01

    Full Text Available An experimental and computational investigation of supersonic film cooling (SFC was conducted on a subscale model of a rocket engine nozzle. A computational model of a convergent-divergent nozzle was generated, incorporating a secondary injection module for film cooling in the divergent section. Computational Fluid Dynamic (CFD simulations were run on the model and different injection configurations were analyzed. The CFD simulations also analyzed the parameters that influence film cooling effectiveness. Subsequent to the CFD analysis and literature survey an angled injection configuration was found to be more effective, therefore the hardware was fabricated for the same. The fabricated nozzle was later fixed to an Air-Kerosene combustor and numerous sets of experiments were conducted in order to ascertain the effect on film cooling on the nozzle wall. The film coolant employed was gaseous Nitrogen. The results showed substantial cooling along the walls and a considerable reduction in heat transfer from the combustion gas to the wall of the nozzle. Finally the computational model was validated using the experimental results. There was fairly good agreement between the predicted nozzle wall temperature and the value obtained through experiments.

  14. New bounds on neutrino electric millicharge from GEMMA experiment on neutrino magnetic moment

    CERN Document Server

    Brudanin, Victor B; Starostin, Alexander S; Studenikin, Alexander I

    2014-01-01

    Using the new limit on the neutrino anomalous magnetic moment recently obtained by GEMMA experiment we get an order-of-magnitude estimation for possible new direct upper bound on the neutrino electric millicharge $\\mid q_{\

  15. The Effect of Nozzle Types and Time of Herbicide Incorporation in Soil on Corn (Zea mays L. Weed Control

    Directory of Open Access Journals (Sweden)

    K Gerami

    2012-09-01

    Full Text Available This experiment was conducted to study the effect of nozzle types and the time of herbicide incorporation in soil on weed control, using split plot design by randomized block design. The main plots were soil and herbicide mixing time and the subplots were nozzle types with three replications. This study was performed in Karaj station of Seed and Plant Improvement Institute, located 25 km west of Tehran, in 2008. Treatments were including: T-Jet standard nozzle, Flood-Jet nozzle and Air induction nozzle as well as mixing with the soil immediately, three, six and nine hours after spraying. The parameters were measured includes: the number of weeds before spraying, 15 days and 30 days after spraying; dry weed at two stages of 15 and 30 days after the spraying; and yield of corn. The results revealed that the spraying quality coefficient was greater for T-jet nozzle compared to the other types. However Flood-jet nozzle had a wide range of corn weeds control in comparison to other treatments. Regardless of the nozzle type, the immediate incorporation of herbicide in soil after spraying significantly increased the yield. The time of herbicide incorporation in soil and poison intermixture with soil, from zero to 4.5 hours after spraying was superior to the other times. This was mainly due to different weeds reactions to the times of herbicide incorporation in soil after spraying, and also treatments effect on yield and weed dry weight. Combined data analysis showed that treatment combination of T-Jet nozzle (with time of herbicide incorporation in soil immediately and three hours after spraying, Flood-jet nozzle (with time of herbicide incorporation in soil immediately after spraying and air induction nozzle (with time of herbicide incorporation in soil immediately, three and six hours after spraying produced the highest yield than the other treatment combinations.

  16. Reference layer exchange in spin transfer torque experiment using magnetic-coated nanometric point contacts

    Science.gov (United States)

    Cunha, R. O.; Baptista, D. L.; Heinemann, M.; Kuhn, M. F.; Schmidt, J. E.; Pereira, L. G.

    2012-09-01

    We investigate the importance of using nanotips on a point contact spin-transfer torque (STT) experiment. A systematic analysis comparing the STT in a magnetic thin film in current-perpendicular-to-plane (CPP) geometry sample for magnetic coated and uncoated tungsten nanotips is shown. The STT effect presents a reverse resistance to current behavior when using a magnetic coating layer on the nanotips. We demonstrate that the magnetic layer on the tip may assume the role of a polarizer layer. This effect opens up the possibility of exploiting simpler architectures in STT-based devices, such as STT-random access memory (STT-RAM).

  17. A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets

    CERN Document Server

    Hsu, S C

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting magnetic topology is dependent on the details of magnetic helicity injection, namely the force-free state eigenvalue alpha_gun imposed by the coaxial gun.

  18. Nuclear thermal rocket nozzle testing and evaluation program

    Science.gov (United States)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.

  19. Method of cooling gas only nozzle fuel tip

    Science.gov (United States)

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  20. Magnetic behavior of the giant Heisenberg molecular magnet Mo_72Fe_30: Classical theory and experiment

    Science.gov (United States)

    Luban, Marshall; Modler, Robert; Axenovich, Maria; Canfield, Paul; Bud'Ko, Sergey; Schröder, Christian; Schnack, Jürgen; Müller, Achim; Kögerler, Paul; Harrison, Neil

    2001-03-01

    The Keplerate species Mo_72Fe_30 containing 30 high-spin Fe^3+ ions, is by far the largest paramagnetic molecule synthesized to date, and it serves as an effective building block and prototype for a new class of diverse molybdenum-oxygen based compounds. These substances are of importance for identifying the most pertinent criteria for the passage from microscopic to macroscopic magnetism, and for their potential as molecular-based electronic and magnetic devices. We report excellent agreement, from room temperature down to 0.1 K, and for magnetic fields up to 60 Tesla between our theoretical results based on the classical Heisenberg model and our measurements of its magnetic properties.

  1. submitter The Ultra-Stable Magnet of the Mark II Experiment

    CERN Document Server

    Tommasini, D; Eichenberger, A; Vorotszhov, A

    2016-01-01

    A new watt balance experiment is under development at the Federal Institute of Metrology (METAS, Switzerland). Its scope is to link the mass unit to the Plank constant in order to set a new definition of the kilogram, which is no longer based on the international prototype. The experiment is performed in two steps with the same setup and requires that the magnetic field produced in the two steps by the magnet fitted in the setup remains stable within few parts per $10^8$. This paper describes the design, manufacture, and characterization of this magnet, which is performed through a collaboration between METAS and CERN.

  2. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Directory of Open Access Journals (Sweden)

    Nishio K.

    2013-11-01

    Full Text Available The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  3. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Science.gov (United States)

    Nishio, K.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Ide, T.; Kuwada, M.; Koga, M.; Kato, T.; Norimatsu, T.; Gregory, C.; Woolsey, N.; Murphy, C.; Gregori, G.; Schaar, K.; Diziere, A.; Koenig, M.; Pelka, A.; Wang, S.; Dong, Q.; Li, Y.; Takabe, H.

    2013-11-01

    The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII) HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness) is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2˜0.3 T) perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ˜150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  4. Loading experiment and thermal analysis for conduction cooled magnet of SMES system

    Institute of Scientific and Technical Information of China (English)

    Gang WU; Huiling WANG; Jiangbo XIE; Yan ZHAO; Yuejin TANG; Jindong LI; Jing SHI

    2009-01-01

    China's first 35kJ high temperature superconducting magnetic energy storage (SMES) system with an experiment equipment was depicted. The dynamic heat analysis of the magnet of the SMES was conducted through the current load test on the directly cooled conduction magnet. The research results were as follows:when the converter charges and discharges the magnet for energy storage, the hysteresis loss is the main part of power loss, and contributes significantly to temperature rise;reducing the current frequency at the side of direct current is conducive to restraining temperature rise. The optimizing factors of the cool-guide structure were analyzed based on the heat stability theory, and it was found that the heat transfer of its key part (at the top of the magnet) must be strengthened to reduce the axial temperature difference of the magnet.

  5. Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment

    CERN Document Server

    Bernauer, J C; Elbakian, G; Gavrilov, G; Goerrissen, N; Hasel, D K; Henderson, B S; Holler, Y; Karyan, G; Ludwig, J; Marukyan, H; Naryshkin, Y; O'Connor, C; Russell, R L; Schmidt, A; Schneekloth, U; Suvorov, K; Veretennikov, D

    2016-01-01

    The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values....

  6. Integrated Composite Rocket Nozzle Extension Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  7. Engagement in RNs working in Magnet®-designated hospitals: exploring the significance of work experience.

    Science.gov (United States)

    Hagedorn Wonder, Amy

    2012-12-01

    This study analyzed and evaluated the relationships between work engagement (WE) and work experience among acute-care RNs in Magnet®-designated hospitals. The organizational structures of Magnet-designated hospitals are recognized to promote RN engagement, yet limited knowledge exists on engendering engagement to the same degree in all nurses. The study used a descriptive, correlational design. A convenience sample of RNs (n = 220) completed 2 surveys to measure WE, RN experience, and unit longevity (years of experience in the current setting). Significant relationships were found between WE and RN experience in any setting, within the consistent organizational structures of Magnet-designated hospitals. This study highlights the importance of organizational structures and the significance of RN experience in creating engagement among nurses. Enhancing engagement in the RN workforce facilitates retention and improved outcomes for patients, nurses, and organizations.

  8. Design of a new type vapor recovery system nozzle

    Science.gov (United States)

    Fu, S. H.; Cao, G. J.; Zhang, D. S.

    2016-05-01

    To settle the problem of low-efficiency recovery for Vapor recovery system nozzle, this paper advances a purely mechanical structure of the self-sealing refueling VRS nozzle. The structure, operating principle and controlled process of the nozzle is given. And an application of the nozzle is discussed. All indicated that the nozzle has a reasonable structure, can fuel and vapor recovery simultaneous start and stop. And thus improve the recovery efficiency and reduce oil leakage.

  9. Mapping the omega-effect in the DTS magnetized spherical Couette flow experiment

    CERN Document Server

    Nataf, Henri-Claude

    2012-01-01

    The DTS experiment is a spherical Couette flow experiment with an imposed dipolar magnetic field. Liquid sodium is used as a working fluid. In a series of measurement campaigns, we have obtained data on the mean axisymmetric velocity, the mean induced magnetic field and electric potentials. All these quantities are coupled through the induction equation. In particular, a strong omega-effect is produced by differential rotation within the fluid shell, inducing a significant azimuthal magnetic field. Taking advantage of the simple spherical geometry of the experiment, I expand the azimuthal and meridional fields into Legendre polynomials and derive the expressions that permit to relate all measurements to the radial functions of the velocity field for each harmonic degree. For small magnetic Reynolds numbers Rm the relations are linear, and the toroidal and poloidal equations decouple. Selecting a set of measurements for a given rotation frequency of the inner sphere (Rm = 9.4), I invert simultaneously the velo...

  10. Calibrating feedwater flow nozzles in-situ

    Energy Technology Data Exchange (ETDEWEB)

    Caudill, M. [Tri-State Generation and Transmission, Inc., Montrose, CA (United States); Diaz-Tous, I.; Murphy, S.; Leggett, M.; Crandall, C. [ENCOR-AMERICA, Inc., Mountain View, CA (United States)

    1996-05-01

    This paper presents a new method for in-situ calibration of feedwater flow nozzles wherein feedwater flow is determined indirectly by performing a high accuracy heat balance around the highest-pressure feedwater heater. It is often difficult to reliably measure feedwater flow. Over the life of a power plant, the feedwater nozzle can accumulate deposits, erode, or suffer other damage that can render the original nozzle calibration inaccurate. Recalibration of installed feedwater flow nozzles is expensive and time consuming. Traditionally, the nozzle is cut out of the piping and sent to a laboratory for recalibration, which can be an especially difficult, expensive, and time-consuming task when involving high pressure feedwater lines. ENCOR-AMERICA, INC. has developed an accurate and cost-effective method of calibrating feedwater nozzles in-situ as previously reported at the 1994 EPRI Heat Rate Improvement Conference. In this method, feedwater flow and differential pressure across the nozzle are measured concurrently. The feedwater flow is determined indirectly by performing a heat balance around the highest-pressure feedwater heater. Extraction steam to the feedwater heater is measured by use of a high accuracy turbine flowmeter. The meters used have been calibrated at an independent laboratory with a primary or secondary device traceable to the NIST. In this paper, a new variation on the above method is reported. The new approach measures the heater drains and vent flows instead of the extraction steam flow. Test theory and instrumentation will be discussed. Results of in-situ feedwater nozzle calibration tests performed at two units owned by Tri-State Generation and Transmission Association will be presented.

  11. "School Adopts an Experiment": The Magnetic Levitation of Superconductors

    Science.gov (United States)

    Gallitto, Aurelio Agliolo

    2010-01-01

    The event "School adopts an experiment" is an event targeted at high schools and secondary schools. It is based on a tight and direct collaboration between researchers and school students and teachers. Several schools were involved in the event by "adopting" an experiment in physics research laboratories. Groups of selected students were first…

  12. "School Adopts an Experiment": The Magnetic Levitation of Superconductors

    Science.gov (United States)

    Gallitto, Aurelio Agliolo

    2010-01-01

    The event "School adopts an experiment" is an event targeted at high schools and secondary schools. It is based on a tight and direct collaboration between researchers and school students and teachers. Several schools were involved in the event by "adopting" an experiment in physics research laboratories. Groups of selected students were first…

  13. 'School adopts an experiment': the magnetic levitation of superconductors

    Science.gov (United States)

    Agliolo Gallitto, Aurelio

    2010-09-01

    The event 'School adopts an experiment' is an event targeted at high schools and secondary schools. It is based on a tight and direct collaboration between researchers and school students and teachers. Several schools were involved in the event by 'adopting' an experiment in physics research laboratories. Groups of selected students were first trained by university researchers, then they demonstrated the experiments to other students and teachers during the event. Students who adopted an experiment acquired knowledge of the subjects connected with the experiment in a most impressive way compared with the usual didactics at school. Further positive points were: (i) to establish a close and direct collaboration between university researchers and high-school students and teachers; (ii) to give school students the opportunity to visit physics research laboratories.

  14. Optical studies of the flow start-up processes in four convergent-divergent nozzles

    Science.gov (United States)

    Opalka, Klaus O.

    1991-03-01

    In the context of design studies for the U.S. Large Blast/Thermal Simulator, BRL has sponsored optical studies of the flow start-up in convergent-divergent nozzles which have the flow-initiating diaphragm located in the nozzle throat. The experiments were performed in the 200 mm shock tube at the Ernst-Mach Institute in Freiburg (Breisgau), West-Germany. The scope of the studies included divergent nozzles with half cone angles of 6, 16, 45 and 90 deg tested at seven diaphragm pressure ratios ranging from 4 to 188 and resulting in shock strengths ranging from 1.4 to 4.4. Results were summarized in graphs of significant parameters, e.g., shock formation time, flow start-up period, flow expansion angle, and shock strength versus the driver pressure ratio and further compared with numerical results obtained with the BRL-Q1D hydrocode. The numerical-experimental comparison shows qualitative agreement. The flow phenomena are generally reproduced by the computations as long as they are not strongly dependent on viscous effects. The study shows that a pressure loss of 10 percent is connected to the presence of a large area discontinuity at the exit plane of the nozzle throat when no divergent nozzle is attached. Results suggest that a 45 deg divergent nozzle may present an acceptable compromise for minimizing these pressure losses by reducing the associated area discontinuities.

  15. Application of Optical Measurement Techniques During Fabrication and Testing of Liquid Rocket Nozzles

    Science.gov (United States)

    Gradl, Paul R.

    2015-01-01

    This paper presents a series of optical measurement techniques that were developed for use during large-scale fabrication and testing of nozzle components. A thorough understanding of hardware throughout the fabrication cycle and hotfire testing is critical to meet component design intent. Regeneratively cooled nozzles and associated tooling require tight control of tolerances during the fabrication process to ensure optimal performance. Additionally, changes in geometry during testing can affect performance of the nozzle and mating components. Structured light scanning and digital image correlation techniques were used to collect data during the fabrication and test of nozzles, in addition to other engine components. This data was used to analyze deformations data during machining, heat treatment, assembly and testing operations. A series of feasibility experiments were conducted for these techniques that led to use on full scale nozzles during the J-2X upper stage engine program in addition to other engine development programs. This paper discusses the methods and results of these measurement techniques throughout the nozzle life cycle and application to other components.

  16. Experimental investigation on the near flow field of dual stream nozzles

    Science.gov (United States)

    Sudhakar, S.; Karthikeyan, N.; Ashwin Kumar, S.

    2017-04-01

    An experimental investigation was carried out to investigate the effect of beveling of primary nozzle exit in the near field of a dual stream nozzle flow. Two exit geometry configurations of primary stream nozzle viz., (a) circular (b) bevel along with one exit geometry of the secondary stream-circular, were studied. Experiments were carried out at both subsonic and supersonic primary nozzle operating conditions Mp=0.96 and 1.2. The secondary nozzle exit Mach number was maintained at 0.65 and 0.85 respectively to maintain the velocity ratio of 0.7 between the primary and secondary jet. The by-pass ratio for this investigation is maintained at 2.0. Flow visualization using retro-reflective shadowgraph technique was used for the qualitative visualization of the near flow field at the Mach number of 1.2. The mean and turbulent quantities in near flow field were obtained using particle image Velocimetry (2D-PIV). The flow visualization and PIV investigations show significant change in mean and turbulent quantities brought about in the near field due to the beveling of the primary nozzle. PIV results show increase in the potential core length and reduction in turbulence levels in the potential core by the secondary flow regardless of the jet exit geometry. A differential trend is seen in the shear layer growth and the turbulence characteristics between the shorter and longer lips sides of the beveled nozzle. In the dual stream configurations, bevel nozzle shows lower Reynolds stress values than the circular one except in the shorter lip side at the larger downstream locations.

  17. Performance Prediction of Darrieus-Type Hydroturbine with Inlet Nozzle Operated in Open Water Channels

    Science.gov (United States)

    Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.

    2016-11-01

    Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.

  18. Development of Thermal Barriers For Solid Rocket Motor Nozzle Joints

    Science.gov (United States)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    2000-01-01

    Joints in the Space Shuttle solid rocket motors are sealed by O-rings to contain combustion gases inside the rocket that reach pressures of up to 900 psi and temperatures of up to 5500 F. To provide protection for the O-rings, the motors are insulated with either phenolic or rubber insulation. Gaps in the joints leading up to the O-rings are filled with polysulfide joint-fill compounds as an additional level of protection. The current RSRM nozzle-to-case joint design incorporating primary, secondary, and wiper O-rings experiences gas paths through the joint-fill compound to the innermost wiper O-ring in about one out of every seven motors. Although this does not pose a safety hazard to the motor, it is an undesirable condition that NASA and rocket manufacturer Thiokol want to eliminate. Each nozzle-to-case joint gas path results in extensive reviews and evaluation before flights can be resumed. Thiokol and NASA Marshall are currently working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design that has been used successfully in the field and igniter joint. They are also planning to incorporate the NASA Glenn braided carbon fiber thermal barrier into the joint. The thermal barrier would act as an additional level of protection for the O-rings and allow the elimination of the joint-fill compound from the joint.

  19. SU-E-J-233: A Facility for Radiobiological Experiments in a Large Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, M; Heaton, R; Keller, H [Princess Margaret Hospital, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Wouters, B [Ontario Cancer Institute, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Jaffray, D [Princess Margaret Hospital, Toronto, ON (Canada); Ontario Cancer Institute, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2014-06-01

    Purpose: There is considerable interest in developing medical linear accelerators with integrated image guidance by MRI. Less work has been done on the fundamental biology of cell survival in the presence of a strong magnetic field. The purpose of this work is to describe an experimental system capable of measuring cell survival response in the types of MRI-linac systems currently under development. Methods: We have integrated a cobalt irradiator with a solenoid magnet. The solenoid magnet has inner diameter of 10 cm. To enable measurement of the biological effects as a function of depth, we are utilizing the sliced gel technique, in which cells are embedded and fixed within a gelatin matrix. Irradiated cells at defined positions (sub mm resolution) can subsequently be recovered and assessed for cell survival or other biological effects. Results: The magnetic field profile in the solenoid has a peak magnetic field 36 cm below the top edge of the magnet bore and can be placed at and SAD of 100 cm. At a solenoid current of 35 A, the peak magnetic field is 0.25 T. The dose rate of the cobalt irradiator is 16 cGy/min at 100 cm SAD. EBT3 film was used to demonstrate the system functionality. It was irradiated at 1 cm depth at 100 cm SSD with a 4×4 field to 1.5 Gy in a 0.25 T magnetic field. The dose profile was similar between this film and the control exposure without magnetic field. Conclusion: Integrating a cobalt irradiator with a high field magnet is demonstrated. The magnetic field at the cobalt defining head was minimal and did not interfere with the functioning of this unit. Cell survival experiments can be reproduced exactly in the presence or absence of a magnetic field since a resistive magnet is used.

  20. Threshold photoemission magnetic circular dichroism of perpendicularly magnetized Ni films on Cu(001): theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kronseder, Matthias; Guenther, Stefan; Woltersdorf, Georg; Back, Christian H. [Universitaet Regensburg, Regensburg (Germany)

    2011-07-01

    Threshold photoemission magnetic circular dichroism (TP-MCD) for perpendicularly magnetized Ni films on Cu(001) was measured with a total electron yield method. This dichroism was used to observe the magnetic domain structure of these samples in a photoemission electron microscope. A spin-polarized relativistic Korringa-Kohn-Rostoker Green's function calculation including a dynamical mean field theory approach within the one-step-photoemission model reproduces the measured asymmetry in the photocurrents for left and right circularly polarized light. In addition, a three-step photoemission model calculation based on the same ab-initio calculation is used to quantitatively explain the MCD effect near the photoemission threshold. Furthermore, the dependence of the MCD-asymmetry on the polarization state of the incoming photons is theoretically computed and experimentally verified.

  1. Simulating radiative shocks in nozzle shock tubes

    CERN Document Server

    van der Holst, B; Sokolov, I V; Daldorff, L K S; Powell, K G; Drake, R P

    2011-01-01

    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties a...

  2. Magnetic field reversals: the geodynamo, laboratory experiments and models (Lewis Fry Richardson Medal Lecture)

    Science.gov (United States)

    Fauve, S.

    2009-04-01

    I will first compare reversals of Earth's magnetic field known from palaeomagnetic data to the ones observed in a laboratory experiment for the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Despite major differences between the flow in Earth's core and in the experiment, both systems display reversals that share a lot of similar properties. I will understand them using a simple model in the framework of low dynamical system theory. Finally, I will discuss what can be learnt from numerical simulations.

  3. Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: Modeling, simulation and experiment

    Science.gov (United States)

    Masoumi, Masoud; Wang, Ya

    2016-10-01

    This paper investigates a magnetic levitation characteristic used in a vibration based energy harvester, called repulsive magnetic scavenger (RMS). The RMS is capable of harvesting ocean wave energy with a unique repelling permanent magnet array, which provides a stronger and more uniform magnetic field, compared to its attracting magnetic counterparts. The levitating magnets are stacked together around a threaded rod so that the same pole is facing each other. Two fixed magnets placed with one at each end of the RMS provides a collocated harvesting and braking mechanism in the face of high amplitude vibrations. Magnets in the levitated magnet stack are separated by pole pieces which are made of metals to intensify the magnetic field strength. The effect of the thickness and the use of different materials with different permeability for pole pieces is also studied to obtain an optimal energy harvesting efficiency. Moreover, the procedure to find the restoring force applied to the levitating magnet stack is demonstrated. Then, the Duffing vibration equation of the harvester is solved and the frequency response function is calculated for various force amplitudes and electrical damping so as to investigate the effect of these parameters on the response of the system. Furthermore, the effect of the maximum displacement of the moving magnet stack on the natural frequency of the device is studied. And finally, Faraday's law is employed to estimate the output voltage and power of the system under the specified input excitation force. Experiments show that the output emf voltage of the manufactured prototype reaches up to 42 V for an excitation force with the frequency of 9 Hz and the maximum amplitude of 3.4 g.

  4. Parametric study of solar thermal rocket nozzle performance

    Science.gov (United States)

    Pearson, J. Boise; Landrum, D. Brian; Hawk, Clark W.

    1995-01-01

    This paper details a numerical investigation of performance losses in low-thrust solar thermal rocket nozzles. The effects of nozzle geometry on three types of losses were studied; finite rate dissociation-recombination kinetic losses, two dimensional axisymmetric divergence losses, and compressible viscous boundary layer losses. Short nozzle lengths and supersonic flow produce short residence times in the nozzle and a nearly frozen flow, resulting in large kinetic losses. Variations in geometry have a minimal effect on kinetic losses. Divergence losses are relatively small, and careful shaping of the nozzle can nearly eliminate them. The boundary layer in these small nozzles can grow to a major fraction of nozzle radius, and cause large losses. These losses are attributed to viscous drag on the nozzle walls and flow blockage by the boundary layer, especially in the throat region. Careful shaping of the nozzle can produce a significant reduction in viscous losses.

  5. Experiments on the margin of beam induced quenches a superconducting quadrupole magnet in the LHC

    CERN Document Server

    Bracco, C; Bednarek, M J; Nebot Del Busto, E; Goddard, B; Holzer, E B; Nordt, A; Sapinski, M; Schmidt, R; Solfaroli Camillocci, M; Zerlauth, M

    2012-01-01

    Protection of LHC equipment relies on a complex system of collimators to capture injected and circulating beam in case of LHC kicker magnet failures. However, for specific failures of the injection kickers, the beam can graze the injection protection collimators and induce quenches of downstream superconducting magnets. This occurred twice during 2011 operation and cannot be excluded during future operation. Tests were performed during Machine Development periods of the LHC to assess the quench margin of the quadrupole located just downstream of the last injection protection collimator in point 8. In addition to the existing Quench Protection System, a special monitoring instrumentation was installed at this magnet to detect any resistance increase below the quench limit. The correlation between the magnet and Beam Loss Monitor signals was analysed for different beam intensities and magnet currents. The results of the experiments are presented.

  6. Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment.

    Science.gov (United States)

    Laguerre, R; Nore, C; Ribeiro, A; Léorat, J; Guermond, J-L; Plunian, F

    2008-09-05

    In the von Kármán Sodium 2 (VKS2) successful dynamo experiment of September 2006, the observed magnetic field showed a strong axisymmetric component, implying that nonaxisymmetric components of the flow field were acting. By modeling the induction effect of the spiraling flow between the blades of the impellers in a kinematic dynamo code, we find that the axisymmetric magnetic mode is excited. The control parameters are the magnetic Reynolds number of the mean flow, the coefficient measuring the induction effect alpha, and the type of boundary conditions. We show that using realistic values of alpha, the observed critical magnetic Reynolds number, Rm;{c} approximately 32, can be reached easily with ferromagnetic boundary conditions. We conjecture that the dynamo action achieved in this experiment may not be related to the turbulence in the bulk of the flow, but rather to the alpha effect induced by the impellers.

  7. Nozzle assembly for an earth boring drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Madigan, J. A.

    1985-09-24

    A nozzle assembly for an earth boring drill bit of the type adapted to receive drilling fluid under pressure and having a nozzle bore in the bottom thereof positioned closely adjacent the well bore bottom when the bit is in engagement therewith with the bore having inner and outer portions. The nozzle assembly comprises a generally cylindrical nozzle member of abrasion and erosion resistant material, selected from a plurality of such members, each being of the same outer diameter but having passaging therein of different cross-sectional area. The nozzle member is adapted to be fitted in the inner portion of the nozzle bore in sealing relationship therewith for forming a first seal for the nozzle assembly. The nozzle assembly further comprises a locknut, separate from the nozzle member, for detachbably securing the nozzle member in the nozzle bore, formed at least in part of an abrasion and erosion resistant material. The locknut has a threaded side wall engageable with the outer portion of the nozzle bore, and an aperture therethrough for enabling a stream of drilling fluid from the nozzle member to flow therethrough and being so configured in section as to receive a tool for turning the lockout to install it in and remove it from the nozzle bore.

  8. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  9. New limits on Magnetic Monopoles searches from accelerator and non-accelerator experiments

    CERN Document Server

    Cozzi, M

    2007-01-01

    Here the status of the searches for ``classical Dirac'' Magnetic Monopoles (MMs) at accelerators and for GUT MMs in the cosmic radiation is discussed. We present recent analysis for ``classical Dirac'' monopoles at accelerators and the lowest flux upper limit for Magnetic Monopoles in the mass range 10$^{5}$ - 10$^{12}$ GeV obtained with the SLIM experiment at the Chacaltaya High Altitude Laboratory (5290 m a.s.l.).

  10. Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field

    CERN Document Server

    Kolosnitsyn, N I

    2015-01-01

    Brief review of principal ideas in respect of the high frequency gravitational radiation generated and detected in the laboratory condition is presented. Interaction of electro-magnetic and gravitational waves into a strong magnetic field is considered as a more promising variant of the laboratory GW-Hertz experiment. The formulae of the direct and inverse Gertsenshtein-Zeldovich effect are derived. Numerical estimates are given and a discussion of a possibility of observation of these effects in a lab is carried out.

  11. A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  12. Upper Stage Engine Composite Nozzle Extensions

    Science.gov (United States)

    Valentine, Peter G.; Allen, Lee R.; Gradl, Paul R.; Greene, Sandra E.; Sullivan, Brian J.; Weller, Leslie J.; Koenig, John R.; Cuneo, Jacques C.; Thompson, James; Brown, Aaron; hide

    2015-01-01

    Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and United States Air Force (USAF) requirements, as well as broader industry needs. Recent and on-going efforts at the Marshall Space Flight Center (MSFC) are aimed at both (a) further developing the technology and databases for nozzle extensions fabricated from specific CC materials, and (b) developing and demonstrating low-cost capabilities for testing composite nozzle extensions. At present, materials development work is concentrating on developing a database for lyocell-based C-C that can be used for upper stage engine nozzle extension design, modeling, and analysis efforts. Lyocell-based C-C behaves in a manner similar to rayon-based CC, but does not have the environmental issues associated with the use of rayon. Future work will also further investigate technology and database gaps and needs for more-established polyacrylonitrile- (PAN-) based C-C's. As a low-cost means of being able to rapidly test and screen nozzle extension materials and structures, MSFC has recently established and demonstrated a test rig at MSFC's Test Stand (TS) 115 for testing subscale nozzle extensions with 3.5-inch inside diameters at the attachment plane. Test durations of up to 120 seconds have been demonstrated using oxygen/hydrogen propellants. Other propellant combinations, including the use of hydrocarbon fuels, can be used if desired. Another test capability being developed will allow the testing of larger nozzle extensions (13.5- inch inside diameters at the attachment plane) in environments more similar to those of actual oxygen/hydrogen upper stage engines. Two C-C nozzle extensions (one lyocell-based, one PAN-based) have been fabricated for testing with the larger

  13. A magnetic pulse does not affect homing pigeon navigation: a GPS tracking experiment.

    Science.gov (United States)

    Holland, Richard; Filannino, Caterina; Gagliardo, Anna

    2013-06-15

    The cues by which homing pigeons are able to return to a home loft after displacement to unfamiliar release sites remain debated. A number of experiments in which migratory birds have been treated with a magnetic pulse have produced a disruption in their orientation, which argues that a ferrimagnetic sense is used for navigation in birds. One previous experiment has also indicated an effect of magnetic pulses on homing pigeon navigation, although with inconsistent results. Previous studies have shown that some magnetic-related information is transmitted by the trigeminal nerve to the brain in some bird species, including the homing pigeon. The function of this information is still unclear. It has been suggested that this information is important for navigation. Previous studies with trigeminal nerve lesioned homing pigeons have clearly shown that the lack of trigeminally mediated information, even if magnetic, is not crucial for homing performance. However, this result does not completely exclude the possibility that other ferrimagnetic receptors in the homing pigeon play a role in navigation. Additionally, recent studies on homing pigeons suggested the existence of a ferrimagnetic sense in a novel location presumably located in the inner ear (lagena). In the present study, we tested whether any ferrimagnetic magnetoreceptors, irrespective of their location in the bird's head, are involved in pigeons' homing. To do this, we treated homing pigeons with a strong magnetic pulse before release, tracked birds with GPS loggers and analyzed whether this treatment affected homing performance. In the single previous magnetic pulse experiment on homing pigeons, only initial orientation at a release site was considered and the results were inconsistent. We observed no effect of the magnetic pulse at any of the sites used on initial orientation, homing performance, tortuosity or track efficiency, which does not support a role for the ferrimagnetic sense in homing pigeon

  14. Experience with a Pre-Series Superfluid Helium Test Bench for LHC Magnets

    CERN Document Server

    Benda, V; Schouten, J A

    2000-01-01

    The Large Hadron Collider (LHC) under construction at CERN is based on the use of high-field superconducting magnets operating in superfluid helium. For the validation of the machine dipoles and quadrupoles, a magnet test plant is under construction requiring 12 so-called Cryogenic Feeder Units (CFU). Based on experience done at CERN, two pre-series CFUs were designed and built by industry and are currently in use prior to final series delivery. This presentation describes the features of a CFU, its typical characteristics and the experience acquired with the first units.

  15. Discharge coefficient of small sonic nozzles

    Directory of Open Access Journals (Sweden)

    Yin Zhao-Qin

    2014-01-01

    Full Text Available The purpose of this investigation is to understand flow characteristics in mini/micro sonic nozzles, in order to precisely measure and control miniscule flowrates. Experimental and numerical simulation methods have been used to study critical flow Venturi nozzles. The results show that the nozzle’s size and shape influence gas flow characteristics which leading the boundary layer thickness to change, and then impact on the discharge coefficient. With the diameter of sonic nozzle throat decreasing, the discharge coefficient reduces. The maximum discharge coefficient exits in the condition of the inlet surface radius being double the throat diameter. The longer the diffuser section, the smaller the discharge coefficient becomes. Diffuser angle affects the discharge coefficient slightly.

  16. New inlet nozzle assembly: C Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Calkin, J.F.

    1960-10-19

    The use of self-supported fuel elements in ribless Zircaloy-2 tubes at C-Reactor requires some inlet nozzle modification to allow charging of the larger overall diameter fuel pieces. A new nozzle assembly has been developed (by Equipment Development Operation -- IPD) which will allow use of the new fuel pieces and at the same time increase the reliability of the header-to-tube piping and reduce pumping power losses. Flow test data were requested for the new assembly and the results of these tests are presented herein. This report also presents a comparison of the header to tube energy losses for the various reactor inlet nozzle assemblies which are currently used on the Hanford production reactors.

  17. Exploration of Experiment on Measuring Magnetic Permeability of Soft Magnetic Materials%软磁材料磁导率测量实验探索

    Institute of Scientific and Technical Information of China (English)

    董向成; 吴学勇

    2016-01-01

    软磁材料磁滞回线细长,计算精度不高时忽略其磁滞,可定义磁感应强度与磁场强度的比为磁导率。利用霍尔效应实验仪对螺线管加载软磁材料前后一端的磁感应强度进行测量,计算出该端点处的磁场强度即可计算出该种软磁材料的磁导率,实验表明在材料磁饱和后,磁导率迅速降低。%Since the hysteresis loop of the soft magnetic material is thin,in the case of calculation accuracy is not high that the magnetic hysteresis can be neglected,so magnetic permeability can be defined as the ratio of magnetic induction and magnetic field strength.under the condition with and without the iron core,magnetic in-duction intensity can be measured at one end of the solenoid by Hall effect experiment instrument,calculate magnetic field intensity on the axis of the solenoid,then the magnetic permeability of the soft magnetic matrial can be calculated based on the magnetic intensity.Afer the materia reach the magnetic saturation,experiments show that the magnetic permeability is rapidly decreased.

  18. Improvement of combustion in a direct injection diesel engine by micro-hole nozzle; Micro hole nozzle wo mochiita chokusetsu funshashiki diesel kikan no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M. [Keio University, Tokyo (Japan); Kobori, S. [Tokyo Institute of Technology, Tokyo (Japan); Iida, N. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    2000-07-25

    In an attempt to promote the atomization of fuel spray and the mixing of fuel and air in diesel engines, a micro-hole nozzle which has orifices with a diameter smaller than 0.10mm was developed. In this study, the combustion tests were carried out using a single cylinder diesel engine equipped with a micro-hole nozzle and a common rail type high-pressure fuel injection system. A comparison with the results of a conventional nozzle experiment showed that the peak of initial premixed combustion increased, but the peak of diffusion combustion decreased. As a result, when nozzle orifice diameter become small from {phi} 0.15 mm to {phi} 0.10 mm, the combustion was accompanied by smokeless with the same levels of NO{sub x} emission and fuel economy. And results of a comparison the toroidal type chamber with the shallow dish type chamber revealed that the optimization of combustion chamber is necessary for the increase of the injection stage with increasing of the number of nozzle orifice. If an orifice diameter becomes {phi} 0.06 mm, the diffusion combustion can not be observed and the combustion is formed of only premixed combustion. The combustion in the case of {phi} 0.06 mm was accompanied with the drastic deterioration of fuel economy, smoke and HC with all over load. But the micro-hole nozzle has a potential for the formation of the lean and homogeneous premixed mixture until the fuel-air mixture ignites. (author)

  19. Development of Reactor Vessel Bottom Mount Instrumentation Nozzle Routine Inspection Device

    Energy Technology Data Exchange (ETDEWEB)

    Khaled, Atya Ahmed Abdallah; Ihn, Namgung [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    The primary coolant water of pressurized water reactors has created cracks in j-weld of penetrations with Alloy 600 through a process called primary water stress corrosion cracking. On October 6, 2013, BMI nozzle number 3 at Palo Verde Unit 3 (PVNGS-3) exhibited small white de-posits around the annulus. Nozzle attachment to the RV lower head is by J-groove weld to the inside penetration of the nozzle and the weld material is of Alloy 600 material. Above two cases clearly show the necessity of routine inspection of RV lower head penetration during refueling outage. Nondestructive inspection is generally performed to detect fine cracks or defects that may develop during operation. Defects usually occur at weld regions, hence most non-destructive inspection is to scan and check any defects or crack in the weld region. BMI nozzles at the bottom head of a nuclear reactor vessel (RV) are one of such area for inspection. But BMI nozzles have not been inspected during regular refuel outage due to the relative small size of BMI nozzle and limited impact of the consequences of BMI leak. However, there is growing concern since there have been leaks at nuclear power plants (NPPs) as well as recent operating experience. In this study, we propose a system that is conveniently used for nondestructive inspection of BMI nozzles during regular refueling outage without removing all the reactor internals. A 3D model of the inspection system was also developed along with the RV and internals which permits a virtual 3D simulation to check the design concept and usability of the system.

  20. Combustor nozzles in gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  1. High Precision Magnetic Field Scanning System for the New Muon g-2 Experiment

    Science.gov (United States)

    Hong, Ran; Muon g-2 collaboration Collaboration

    2017-01-01

    The New Muon g-2 Experiment (E989) at Fermilab will measure the anomalous magnetic moment of muon aμ aiming at a precision of 140 ppb. This new experiment will shed light on the long-standing 3.5 standard deviation between the previous muon g-2 measurement (E821) at Brookhaven National Laboratory and the Standard Model calculation, and potentially discover new physics. The New Muon g-2 Experiment measures the precession frequency of muon in a uniform magnetic field, and the magnetic field experienced by the muons needs to be measured with a precision better than 70 ppb. For the measurement of the magnetic field in the muon storage region, the former trolley system from E821 with 17 NMR probes was refurbished and upgraded with new electronics, probes and a modern motion control system. A test solenoid magnet was set up at Argonne National Laboratory for calibrating the NMR probes and the precision studies of systematic uncertainties. In this presentation, we will describe the trolley motion control scheme, the trolley position measurement methods, the electronic system for activating and reading the NMR probes and the test solenoid facility.

  2. Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, J.C. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Diefenbach, J. [Hampton University, Hampton, VA (United States); Elbakian, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Gavrilov, G. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Goerrissen, N. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Hasell, D.K.; Henderson, B.S. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Holler, Y. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Karyan, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Ludwig, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Marukyan, H. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Naryshkin, Y. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); O' Connor, C.; Russell, R.L.; Schmidt, A. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Schneekloth, U. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Suvorov, K.; Veretennikov, D. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    2016-07-01

    The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme (Lekien and Marsden, 2005 [1]). This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroidal axis.

  3. Lightweight Nozzle Extension for Liquid Rocket Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ARES J-2X requires a large nozzle extension. Currently, a metallic nozzle extension is being considered with carbon-carbon composite as a backup. In Phase 1,...

  4. Simulating Magnetic Reconnection Experiment (MRX) with a Guide Field using Fluid Code, HiFi

    Science.gov (United States)

    Budner, Tamas; Chen, Yangao; Meier, Eric; Ji, Hantao; MRX Team

    2015-11-01

    Magnetic reconnection is a phenomenon that occurs in plasmas when magnetic field lines effectively ``break'' and reconnect resulting in a different topological configuration. In this process, energy that was once stored in the magnetic field is transfered into the thermal velocity of the particles, effectively heating the plasma. MRX at the Princeton Plasma Physics Laboratory creates the conditions under which reconnection can occur by initially ramping the current in two adjacent coils and then rapidly decreasing with and without a guide magnetic field along the reconnecting current. We simulate this experiment using a fluid code called HiFi, an implicit and adaptive high order spectral element modeling framework, and compare our results to experimental data from MRX. The purpose is to identify physics behind the observed reconnection process for the field line break and the resultant plasma heating.

  5. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    Science.gov (United States)

    Manuel, M. J.-E.; Kuranz, C. C.; Rasmus, A. M.; Klein, S. R.; MacDonald, M. J.; Trantham, M. R.; Fein, J. R.; Belancourt, P. X.; Young, R. P.; Keiter, P. A.; Drake, R. P.; Pollock, B. B.; Park, J.; Hazi, A. U.; Williams, G. J.; Chen, H.

    2015-12-01

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysical systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. This result is a topic of ongoing investigation.

  6. Quench calculations for the superconducting dipole magnet of CBM experiment at FAIR

    Science.gov (United States)

    Kurilkin, P.; Akishin, P.; Bychkov, A.; Floch, E.; Gusakov, Yu.; Ladygin, V.; Malakhov, A.; Moritz, G.; Ramakers, H.; Senger, P.; Shabunov, A.; Szwangruber, P.; Toral, F.

    2016-08-01

    The scientific mission of the Compressed Baryonic Matter (CBM) experiment is the study of the nuclear matter properties at the high baryon densities in heavy ion collisions at the Facility of Antiproton and Ion Research (FAIR) in Darmstadt. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. It will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. This paper presents quench modeling and evaluation of candidate protection schemes for the CBM dipole magnet. Two quench programs based on finite-difference method were used in simulation. One of them is currently used at GSI, and the other based on CIEMAT (Madrid, Spain) was modified to perform quench calculation for the CBM magnet.

  7. Cogging torque optimization in surface-mounted permanent-magnet motors by using design of experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbaszadeh, K., E-mail: Abbaszadeh@kntu.ac.ir [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Rezaee Alam, F.; Saied, S.A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Graphical abstract: Magnet segment arrangement in cross section view of one pole for PM machine. Display Omitted Highlights: {yields} Magnet segmentation is an effective method for the cogging torque reduction. {yields} We have used the magnet segmentation method based on the design of experiment. {yields} We have used the RSM design of the design of experiment method. {yields} We have solved optimization via surrogate models like the polynomial regression. {yields} A significant reduction of the cogging torque is obtained by using RSM. - Abstract: One of the important challenges in design of the PM electrical machines is to reduce the cogging torque. In this paper, in order to reduce the cogging torque, a new method for designing of the motor magnets is introduced to optimize of a six pole BLDC motor by using design of experiment (DOE) method. In this method the machine magnets consist of several identical segments which are shifted to a definite angle from each other. Design of experiment (DOE) methodology is used for a screening of the design space and for the generation of approximation models using response surface techniques. In this paper, optimization is often solved via surrogate models, that is, through the construction of response surface models (RSM) like polynomial regression. The experiments were performed based on the response surface methodology (RSM), as a statistical design of experiment approach, in order to investigate the effect of parameters on the response variations. In this investigation, the optimal shifting angles (factors) were identified to minimize the cogging torque. A significant reduction of cogging torque can be achieved with this approach after only a few evaluations of the coupled FE model.

  8. Electromagnetic characterization of the 990 ton gapless magnets for the OPERA experiment

    CERN Document Server

    Cazes, A; Dulach, B; Iungo, F; Incurvati, M; Orecchini, D; Peiro, G; Sanelli, C; Terranova, F; Ventura, M

    2007-01-01

    The instrumented targets of the OPERA neutrino experiment are complemented by two massive spectrometers based on gapless iron magnets. In 2006, a systematic assessment of their electromagnetic properties have been carried out. In this document, we report the results of such characterization and demonstrate that the achieved performance fulfill the physics requirements for the study of νμ→ντ oscillations.

  9. A New Density Operator Formalism for Describing Nuclear Magnetic Resonance Experiments

    Institute of Scientific and Technical Information of China (English)

    林东海; 吴钦义

    1994-01-01

    A density operator formalism has been proposed to describe the evolution of two-spin-1/2 systems in nuclear magnetic resonance experiments:The formalism is particularly convenient and has distinct physical meaning for describing the evolution of spin systems under the Hamiltonian containing non-commutable terms. Some examples are presented to demonstrate the new formalism.

  10. Transrectal ultrasonography and magnetic resonance imaging in the staging of rectal cancer. Effect of experience

    DEFF Research Database (Denmark)

    Rafaelsen, Søren R; Sørensen, Torben; Jakobsen, Anders

    2008-01-01

    OBJECTIVE: To evaluate the effect of experience on preoperative staging of rectal cancer using magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS). MATERIAL AND METHODS: From January 2002 to May 2006, 134 consecutive patients with biopsy-proven rectal cancer were examined with a 1....... In addition to this supervision, the person responsible for staging should be trained through a defined training programme....

  11. Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experiment

    NARCIS (Netherlands)

    Kenjereš, S.; Hanjalić, K.; Renaudier, S.; Stefani, F.; Gerbeth, G.; Gailitis, A.

    2006-01-01

    Magnetic fields of planets, stars, and galaxies result from self-excitation in moving electroconducting fluids, also known as the dynamo effect. This phenomenon was recently experimentally confirmed in the Riga dynamo experiment [ A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000) ; A. Gailitis et

  12. FLASH MHD simulations of experiments that study shock-generated magnetic fields

    Science.gov (United States)

    Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.

    2015-12-01

    We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.

  13. Internal performance characteristics of vectored axisymmetric ejector nozzles

    Science.gov (United States)

    Lamb, Milton

    1993-01-01

    A series of vectoring axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at NASA-Langley Research Center. These ejector nozzles used convergent-divergent nozzles as the primary nozzles. The model geometric variables investigated were primary nozzle throat area, primary nozzle expansion ratio, effective ejector expansion ratio (ratio of shroud exit area to primary nozzle throat area), ratio of minimum ejector area to primary nozzle throat area, ratio of ejector upper slot height to lower slot height (measured on the vertical centerline), and thrust vector angle. The primary nozzle pressure ratio was varied from 2.0 to 10.0 depending upon primary nozzle throat area. The corrected ejector-to-primary nozzle weight-flow ratio was varied from 0 (no secondary flow) to approximately 0.21 (21 percent of primary weight-flow rate) depending on ejector nozzle configuration. In addition to the internal performance and pumping characteristics, static pressures were obtained on the shroud walls.

  14. Integrated Ceramic Matrix Composite and Carbon/Carbon Structures for Large Rocket Engine Nozzles and Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low-cost access to space demands durable, cost-effective, efficient, and low-weight propulsion systems. Key components include rocket engine nozzles and nozzle...

  15. Experimental analysis on the influence of nozzle geometry over the dispersion of liquid n-dodecane sprays

    Directory of Open Access Journals (Sweden)

    Raul ePayri

    2015-10-01

    Full Text Available Understanding and controlling mixing and combustion processes is fundamental in order to face the challenges set by the ever more demanding pollutant regulations and fuel consumption standards of direct injection diesel engines. The fundamentals of these processes haven been long studied by the diesel spray community from both experimental and numerical perspectives. However, certain topics such as the influence of nozzle geometry over the spray atomization, mixing and combustion process are still not completely well understood and predicted by numerical models. The present study seeks to contribute to the current understanding of this subject, by performing state-of-the-art optical diagnostics to liquid sprays injected through two singe-hole nozzles of different conicity. The experiments were carried out in a nitrogen-filled constant-pressure-flow facility. Back pressures were set to produce the desired engine-like density conditions in the chamber, at room temperature. The experimental setup consists in a diffused back illumination setup with a fast pulsed LED light source and a high-speed camera. The diagnostics focused on detecting the liquid spray contour and evaluating the influence of nozzle geometry over the time-resolved and quasi-steady response of the spray dispersion, at similar injection conditions. Results show a clear influence of nozzle geometry on spray contour fluctuations, where the cylindrical nozzle seems to produce larger dispersion in both time-resolved fluctuations and quasi-steady values, when compared to the conical nozzle. This evidences that the turbulence and radial velocity profiles originated at the cylindrical nozzle geometry are able to affect not only the microscopic scales inside the nozzle, but also macroscopic scales such as the steady spray. Observations from this study indicate that the effects of the flow characteristics within the nozzle are carried on to the first millimeters of the spray, in which the

  16. Biological Experiments in Microgravity Conditions Using Magnetic Micro- and Nano-Particles

    Science.gov (United States)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Kuznetsov, Oleg

    2016-07-01

    Gravity affects all living organisms on Earth, and plays a role in multiple processes in them. In microgravity conditions (e.g., on board of a spacecraft) many of these processes are disturbed, e.g., spatial orientation is lost, mass and heat exchange is distorted, many adaptive mechanisms no longer function, etc. Negation of these adverse effects by creation of pseudo-gravity to by centrifugation is complicated, expensive and unpractical. We propose to use naturally occurring magnetic heterogeneity of all living cells and high gradient magnetic fields as an alternative approach to negating the adverse effects of microgravity on living systems. In non-uniform magnetic field, magnetically heterogeneous objects experience a system of ponderomotive forces. For a weak magnetic particle, the net ponderomotive magnetic force: Fm = Δχ•V•grad(H2/2), where Δχ is the difference of susceptibilities of the particle and the surrounding media, V is the volume of the particle, grad(H2/2) is the dynamic factor of the magnetic field. We studied magnetic heterogeneity of plant gravity receptor cells, prepared and conducted experiments on board of the space station "Mir" on providing a gravity-like stimulus for flax seedlings using high gradient magnetic field ("Magnetogravistat" experiment). Later, a more sophisticated version of this experiment was flown on STS-107. These experiments provided new data on the mechanisms of plant gravity reception and created a method for substituting gravity for a living organism by a force of a different physical nature, to negate the adverse effects of microgravity. Since the ponderomotive force is proportional to the dynamic factor of the field grad(H2/2), the stronger the field, and the faster it changes over distance, the higher is the dynamic factor and the stronger the ponderomotive force. Therefore, in the small vicinity of a small ferromagnetic particle (preferably metallic micro or nano-particles), the forces are very significant

  17. Numerical study of steady turbulent flow through bifurcated nozzles in continuous casting

    Science.gov (United States)

    Najjar, Fady M.; Thomas, Brian G.; Hershey, Donald E.

    1995-08-01

    Bifurcated nozzles are used in continuous casting of molten steel, where they influence the quality of the cast steel slabs. The present study performs two-dimensional (2-D) and three-dimensional (3-D) simulations of steady turbulent (K- ɛ) flow in bifurcated nozzles, using a finite-element (FIDAP) model, which has been verified previously with water model experiments. The effects of nozzle design and casting process operating variables on the jet characteristics exiting the nozzle are investigated. The nozzle design parameters studied include the shape, angle, height, width, and thickness of the ports and the bottom geometry. The process operating practices include inlet velocity profile and angle as well as port curvature caused by erosion or inclusion buildup. Results show that the jet angle is controlled mainly by the port angle but is steeper with larger port area and thinner walls. The degree of swirl is increased by larger or rounder ports. The effective port area, where there is no recirculation, is increased by smaller or curved ports. Flow asymmetry is more severe with skewed or angled inlet conditions or unequal port sizes. Turbulence levels in the jet are higher with higher casting speed and smaller ports.

  18. Energy consumption of large space atrium under nozzle outlet during winter season

    Institute of Scientific and Technical Information of China (English)

    赵惠忠; 林志芬; 陈飞; 黄晨; 张敏; 王丽慧

    2009-01-01

    Based on the thermal and velocity layer’s theory,the experimental setup was established on large space atrium under nozzle outlet. A series of winter experiments were accomplished and the following conclusions could be drawn. At the sunny day of winter in Shanghai,the thermal and velocity layer are similar. The height of the both layer is 10-30 mm,and the temperature gratitude is 5-10 ℃ /m. Decreasing the angle of the nozzle outlet can increase the layer height dramatically. The maximum temperature difference of the occupant zone has relation with the angle of the nozzle outlet. The less the angle of the nozzle outlet is set,the greater the temperature difference is. The occupant temperature differences at these angles of the nozzle outlet are 5.1-4.4 ℃. The velocity of the wind is 0.02 and 0.17 m/s and they can accord with design demand. So,it can decrease the temperature gratitude by about 30% and it can save 10%-15% energy consumption.

  19. Measuring concentricity and coaxial tolerance of nozzle and cavity with tool microscope

    Science.gov (United States)

    Lu, Xizhao; Jiang, Feng; Ye, Ruifang; Lei, Tingping

    2016-01-01

    While the equipment of Micro-jet wave-guided laser was assembled, high-precision of concentricity and coaxiality between nozzle and cavity are required, which directly or indirectly influent the laser coupling precision of nozzle, the micro-jet stability and the steady length of micro-jet as well. As a result, the measurement of concentricity and coaxiality is important to improve the processing quality of Micro-jet wave-guided laser Through the new digital universal tool microscope measuring both ends of micro nozzle and diameter of nozzle, more resolution the other hand, the backlight detection the edge of nozzle is utilized. When the position of the center of a circle is indirect measured and then find out the concentricity through the uncertainty of the measurement and calculation method. V shaped groove is utilized to make certain its position. Otherwise, digital imaging through setting fixture and the use of new digital universal tool microscope and processed by software, which will cause to reduce measurement human error in tradition, after that, error theory analysis will be carried out, uncertainty theory will be utilized to make the experiment more sure at the same time. Above all, the reliability of data is obtained, compared with the traditional measurement methods are more accurate. Therefore, the processing quality of laser drilling will be enhanced significantly.

  20. Aggregate breakup in a contracting nozzle.

    Science.gov (United States)

    Soos, Miroslav; Ehrl, Lyonel; Bäbler, Matthäus U; Morbidelli, Massimo

    2010-01-05

    The breakup of dense aggregates in an extensional flow was investigated experimentally. The flow was realized by pumping the suspension containing the aggregates through a contracting nozzle. Variation of the cluster mass distribution during the breakage process was measured by small-angle light scattering. Because of the large size of primary particles and the dense aggregate structure image analysis was used to determine the shape and structure of the produced fragments. It was found, that neither aggregate structure, characterized by a fractal dimension d(f) = 2.7, nor shape, characterized by an average aspect ratio equal to 1.5, was affected by breakage. Several passes through the nozzle were required to reach the steady state. This is explained by the radial variation of the hydrodynamic stresses at the nozzle entrance, characterized through computational fluid dynamics, which implies that only the fraction of aggregates whose strength is smaller than the local hydrodynamic stress is broken during one pass through the nozzle. Scaling of the steady-state aggregate size as a function of the hydrodynamic stress was used to determine the aggregate strength.

  1. Orbiter Water Dump Nozzles Redesign Lessons Learned

    Science.gov (United States)

    Rotter, Hank

    2017-01-01

    Hank Rotter, NASA Technical Fellow for Environmental Control and Life Support System, will provide the causes and lessons learned for the two Space Shuttle Orbiter water dump icicles that formed on the side of the Orbiter. He will present the root causes and the criticality of these icicles, along with the redesign of the water dump nozzles and lessons learned during the redesign phase.

  2. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  3. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti (

  4. Microalgal cell disruption via ultrasonic nozzle spraying.

    Science.gov (United States)

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  5. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  6. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  7. Fabrication of Microglass Nozzle for Microdroplet Jetting

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2015-02-01

    Full Text Available An ejection aperture nozzle is the essential part for all microdrop generation techniques. The diameter size, the flow channel geometry, and fluid impedance are the key factors affecting the ejection capacity. A novel low-cost fabrication method of microglass nozzle involving four steps is developed in this work. In the first heating step, the glass pipette is melted and pulled. Then, the second heating step is to determine the tip cone angle and modify the flow channel geometry. The desired included angle is usually of 30~45 degrees. Fine grind can determine the exact diameter of the hole. Postheating step is the final process and it can reduce the sharpness of the edges of the hole. Micronozzles with hole diameters varying from 30 to 100 µm are fabricated by the homemade inexpensive and easy-to-operate setup. Hydrophobic treating method of microglass nozzle to ensure stable and accurate injection is also introduced in this work. According to the jetting results of aqueous solution, UV curing adhesive, and solder, the fabricated microglass nozzle can satisfy the need of microdroplet jetting of multimaterials.

  8. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles. Part 2: Applications

    Science.gov (United States)

    Thomas, P. D.

    1980-01-01

    A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.

  9. 3D printing of gas jet nozzles for laser-plasma accelerators

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V.

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée.

  10. 3D printing of gas jet nozzles for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-07-15

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the SALLE JAUNE terawatt laser at Laboratoire d’Optique Appliquée.

  11. A cryogenic supersonic nozzle apparatus to study homogeneous nucleation of Ar and other simple molecules.

    Science.gov (United States)

    Sinha, Somnath; Laksmono, Hartawan; Wyslouzil, Barbara E

    2008-11-01

    We present a supersonic nozzle apparatus to study homogeneous nucleation of argon and other simple molecules. Experiments can be conducted with pure condensable vapor or with condensable vapor-carrier gas mixtures. The flow through the nozzle is continuous, and expansions typically start at temperatures T(0) in the range of 100tube and fin heat exchanger by evaporating liquid nitrogen on the tube side. The nozzle sidewalls are also cooled with liquid nitrogen to maintain them at a temperature approximately 20 K higher than the stagnation temperature. Static pressure measurements detect the onset of condensation, and the other properties of the flow are derived by integrating the diabatic flow equations. We present sample experimental results for pure argon where at the onset of condensation, temperatures T(on) range from 47.5

  12. 3D printing of gas jet nozzles for laser-plasma accelerators

    CERN Document Server

    Döpp, A; Thaury, C; Gautier, J; Phuoc, K Ta; Malka, V

    2016-01-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular it was reported that appropriate density tailoring can result in improved injection, acceleration and collimation of laser-accelerated electron beams. To achieve such profiles innovative target designs are required. For this purpose we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling (FDM) to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliqu\\'ee.

  13. Sub-Alfvenic inlet boundary conditions for axisymmetric MHD nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Cassibry, J T [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Wu, S T [Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2007-09-07

    There are numerous electromagnetic accelerator concepts which require plasma expansion through a magnetic nozzle. If the inlet flow is slower than one or all of the outgoing characteristics, namely, the Alfven, slow and fast magnetosonic speeds, then the number of inlet conditions which could be arbitrarily specified are reduced by the number of outgoing characteristics (up to three). We derive the axisymmetric compatibility equations using the method of projected characteristics for the inlet conditions in the z-plane to assure the boundary conditions being consistent with flow properties. We make simplifications to the equations assuming that the inlet Alfven speed is much faster than the sonic and slow magnetosonic speeds. We compare results for various inlet boundary conditions, including a modified Lax-Wendroff implementation of the compatibility equations, first order extrapolation and arbitrarily specifying the inlet conditions, in order to assess the stability and accuracy of various approaches.

  14. Optical and magnetic properties of a transparent garnet film for atomic physics experiments

    Directory of Open Access Journals (Sweden)

    Mari Saito

    2016-12-01

    Full Text Available We investigated the optical and magnetic properties of a transparent magnetic garnet with a particular focus on its applications to atomic physics experiments. The garnet film used in this study was a magnetically soft material that was originally designed for a Faraday rotator at optical communication wavelengths in the near infrared region. The film had a thickness of 2.1 μm and a small optical loss at a wavelength of λ=780 nm resonant with Rb atoms. The Faraday effect was also small and, thus, barely affected the polarization of light at λ=780 nm. In contrast, large Faraday rotation angles at shorter wavelengths enabled us to visualize magnetic domains, which were perpendicularly magnetized in alternate directions with a period of 3.6 μm. We confirmed the generation of an evanescent wave on the garnet film, which can be used for the optical observation and manipulation of atoms on the surface of the film. Finally, we demonstrated a magnetic mirror for laser-cooled Rb atoms using the garnet film.

  15. Reference layer exchange in spin transfer torque experiment using magnetic-coated nanometric point contacts

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, R.O., E-mail: rafaelotoniel@gmail.com [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970 (Brazil); Baptista, D.L.; Heinemann, M.; Kuhn, M.F.; Schmidt, J.E.; Pereira, L.G. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970 (Brazil)

    2012-09-15

    We investigate the importance of using nanotips on a point contact spin-transfer torque (STT) experiment. A systematic analysis comparing the STT in a magnetic thin film in current-perpendicular-to-plane (CPP) geometry sample for magnetic coated and uncoated tungsten nanotips is shown. The STT effect presents a reverse resistance to current behavior when using a magnetic coating layer on the nanotips. We demonstrate that the magnetic layer on the tip may assume the role of a polarizer layer. This effect opens up the possibility of exploiting simpler architectures in STT-based devices, such as STT-random access memory (STT-RAM). - Highlights: Black-Right-Pointing-Pointer We investigated the spin-transfer torque (STT) effect using point contacts. Black-Right-Pointing-Pointer Tungsten nanotips were fabricated by electrochemical process. Black-Right-Pointing-Pointer Influence of the use of magnetic coating tips on STT effect was studied. Black-Right-Pointing-Pointer We observed that the magnetic layer on the tip may assume the role of a polarizer layer.

  16. Optical and magnetic properties of a transparent garnet film for atomic physics experiments

    Science.gov (United States)

    Saito, Mari; Tajima, Ryoichi; Kiyosawa, Ryota; Nagata, Yugo; Shimada, Hiroyuki; Ishibashi, Takayuki; Hatakeyama, Atsushi

    2016-12-01

    We investigated the optical and magnetic properties of a transparent magnetic garnet with a particular focus on its applications to atomic physics experiments. The garnet film used in this study was a magnetically soft material that was originally designed for a Faraday rotator at optical communication wavelengths in the near infrared region. The film had a thickness of 2.1 μm and a small optical loss at a wavelength of λ =780 nm resonant with Rb atoms. The Faraday effect was also small and, thus, barely affected the polarization of light at λ =780 nm. In contrast, large Faraday rotation angles at shorter wavelengths enabled us to visualize magnetic domains, which were perpendicularly magnetized in alternate directions with a period of 3.6 μm. We confirmed the generation of an evanescent wave on the garnet film, which can be used for the optical observation and manipulation of atoms on the surface of the film. Finally, we demonstrated a magnetic mirror for laser-cooled Rb atoms using the garnet film.

  17. Laboratory experiments investigating magnetic field production via the Weibel instability in interpenetrating plasma flows

    Science.gov (United States)

    Huntington, Channing; Fiuza, Frederico; Ross, James Steven; Zylstra, Alex; Pollock, Brad; Drake, R. Paul; Froula, Dustin; Gregori, Gianluca; Kugland, Nathan; Kuranz, Carolyn; Levy, Matthew; Li, Chikang; Meinecke, Jena; Petrasso, Richard; Remington, Bruce; Ryutov, Dmitri; Sakawa, Youichi; Spitkovsky, Anatoly; Takabe, Hideke; Turnbull, David; Park, Hye-Sook

    2015-08-01

    Astrophysical collisionless shocks are often associated with the presence of strong magnetic fields in a plasma flow. The magnetic fields required for shock formation may either be initially present, for example in supernova remnants or young galaxies, or they may be self-generated in systems such as gamma-ray bursts (GRBs). In the case of GRB outflows, the intense magnetic fields are greater than those seeded by the GRB progenitor or produced by misaligned density and temperature gradients in the plasma flow (the Biermann-battery effect). The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability efficiently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. This result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Measurements of fusion neutrons from Magnetized Liner Inertial Fusion Experiments on the Z accelerator

    Science.gov (United States)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E. C.; Awe, T. J.; Torres, J. A.; Jones, B.; Bur, J. A.; Cooper, G. W.; Styron, J. D.; Glebov, V. Yu.

    2015-11-01

    Strong evidence of thermonuclear neutron production has been observed during Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z accelerator. So far, these experiments have utilized deuterium fuel and produced primary DD fusion neutron yields up to 2e12 with electron and ion stagnation temperatures in the 2-3 keV range. We present MagLIF neutron measurements and compare to other data and implosion simulations. In addition to primary DD and secondary DT yields and ion temperatures, other complex physics regarding the degree of fuel magnetization and liner density are elucidated by the neutron measurements. Neutron diagnostic development for deuterium and future deuterium-tritium fuel experiments are also discussed. Sandia is sponsored by the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  19. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  20. Experiments on the transportation of a magnetized plasma stream in the GOL-3 facility

    Science.gov (United States)

    Postupaev, V. V.; Batkin, V. I.; Burdakov, A. V.; Ivanov, I. A.; Kuklin, K. N.; Mekler, K. I.; Rovenskikh, A. F.

    2016-04-01

    The program of the deep upgrade of the GOL-3 multiple-mirror trap is presented. The upgrade is aimed at creating a new GOL-NB open trap located at the GOL-3 site and intended to directly demonstrate the efficiency of using multiple-mirror magnetic cells to improve longitudinal plasma confinement in a gasdynamic open trap. The GOL-NB device will consist of a new central trap, adjoint cells with a multiple-mirror magnetic field, and end tanks (magnetic flux expanders). Plasma in the central trap will be heated by neutral beam injection with a power of up to 1.5 MW and duration of 1 ms. At present, physical experiments directed at developing plasma technologies that are novel for this facility are being carried out using the 6-m-long autonomous part of the GOL-3 solenoid. The aim of this work was to develop a method for filling the central trap with a low-temperature start plasma. Transportation of a plasma stream from an arc source over a distance of 3 m in a uniform magnetic field with an induction of 0.5-4.5 T is demonstrated. In these experiments, the axial plasma density was (1-4) × 1020 m-3 and the mirror ratio varied from 5 to 60. In general, the experiments confirmed the correctness of the adopted decisions for the start plasma source of the GOL-NB device.

  1. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Science.gov (United States)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  2. Design of a Superconducting Magnet System for the AEGIS Experiment at CERN

    CERN Document Server

    Dudarev, A; ten Kate, H; Perini, D

    2011-01-01

    The new AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) Experiment will be installed in the Antiproton Decelerator hall at CERN. The main goal is to measure the Earth's gravitational acceleration of antihydrogen atoms. The experiment consists of two high-homogeneity solenoids placed on the same axis. The 5 T magnet is part of a cylindrical Penning trap to catch and to accumulate antiprotons delivered by the decelerator. The antihydrogen is then produced in the 1 T region where sub-kelvin antiproton temperatures provided by the dilution refrigerator are required to form a slowly-moving beam of antihydrogen. The helium bath cooled superconducting magnets; the different traps and the dilution refrigerator are integrated in a common cryostat with an internal vacuum barrier between the insulating cryogenic vacuum and the very high beam vacuum. In addition, the magnet system has to guarantee a smooth transition between the 5 T and the 1 T magnetic field areas required for a loss-free transfer o...

  3. Active cancellation of stray magnetic fields in a Bose-Einstein condensation experiment

    Science.gov (United States)

    Dedman, C. J.; Dall, R. G.; Byron, L. J.; Truscott, A. G.

    2007-02-01

    A method of active field cancellation is described, which greatly reduces the stray magnetic field within the trap region of a Bose-Einstein condensation experiment. An array of six single-axis magnetic sensors is used to interpolate the field at the trap center, thus avoiding the impractical requirement of placing the sensor within the trap. The system actively suppresses all frequencies from dc to approximately 3000 Hz, and the performance is superior to conventional active Helmholtz cancellation systems. A method of reducing the field gradient, by driving the six Helmholtz coils independently, is also investigated.

  4. Development of a Silicon Carbide Molecular Beam Nozzle for Simulation Planetary Flybys and Low-Earth Orbit

    Science.gov (United States)

    Patrick, E. L.; Earle, G. D.; Kasprzak, W. T.; Mahaffy, Paul R.

    2008-01-01

    From commercial origins as a molybdenum molecular beam nozzle, a ceramic nozzle of silicon carbide (SiC) was developed for space environment simulation. The nozzle is mechanically stable under extreme conditions of temperature and pressure. A heated, continuous, supersonically-expanded hydrogen beam with a 1% argon seed produced an argon beam component of nearly 4 km/s, with an argon flux exceeding 1x1014 /cm2.s. This nozzle was part of a molecular beam machine used in the Atmospheric Experiments Branch at NASA Goddard Space Flight Center to characterize the performance of the University of Texas at Dallas Ram Wind Sensor (RWS) aboard the Air Force Communications/Navigation Outage Forecasting System (C/NOFS) launched in the Spring of 2008.

  5. Characterization of large-area photomultipliers under low magnetic fields: Design and performance of the magnetic shielding for the Double Chooz neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, E.; Cerrada, M.; Fernandez-Bedoya, C.; Gil-Botella, I. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Palomares, C., E-mail: mc.palomares@ciemat.e [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Rodriguez, I.; Toral, F.; Verdugo, A. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain)

    2010-09-21

    A precise quantitative measurement of the effect of low magnetic fields in Hamamatsu R7081 photomultipliers has been performed. These large-area photomultipliers will be used in the Double Chooz neutrino experiment. A magnetic shielding has been developed for these photomultipliers. Its design and performance is also reported in this paper.

  6. Experimental and CFD analysis of nozzle position of subsonic ejector

    Institute of Scientific and Technical Information of China (English)

    Xilai ZHANG; Shiping JIN; Suyi HUANG; Guoqing TIAN

    2009-01-01

    The influence of nozzle position on the performance of an ejector was analyzed qualitatively with free jet flow model. Experimental investigations and computational fluid dynamics (CFD) analysis of the nozzle position of the subsonic ejector were also conducted. The results show that there is an optimum nozzle position for the ejector. The ejecting coefficient reaches its maximum when the nozzle is positioned at the optimum and decreases when deviating. Moreover, the nozzle position of an ejector is not a fixed value, but is influenced greatly by the flow parameters. Considering the complexity of the ejector, CFD is reckoned as a useful tool in the design of ejectors.

  7. Performance characterization of a permanent-magnet helicon plasma thruster

    Science.gov (United States)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod

    2012-10-01

    Helicon plasma thrusters operated at a few kWs of rf power is an active area of an international research. Recent experiments have clarified part of the thrust-generation mechanisms. Thrust components which have been identified include an electron pressure inside the source region and a Lorentz force due to an electron diamagnetic drift current and a radial component of the applied magnetic field. The use of permanent magnets (PMs) instead of solenoids is one of the solutions for improving the thruster efficiency because it does not require electricity for the magnetic nozzle formation. Here the thrust imparted from a permanent-magnet helicon plasma thruster is directly measured using a pendulum thrust balance. The source consists of permanent magnet (PM) arrays, a double turn rf loop antenna powered by a 13.56 MHz rf generator and a glass source tube. The PM arrays provide a magnetic nozzle near the open exit of the source and two configurations, which have maximum field strengths of about 100 and 270 G, are tested. A thrust of 15 mN, specific impulse of 2000 sec and a thrust efficiency of 8 percent are presently obtained for 2 kW of input power, 24 sccm flow rate of argon and the stronger magnetic field configuration.

  8. Flow dynamics and magnetic induction in the von-Karman plasma experiment

    CERN Document Server

    Plihon, Nicolas; Palermo, Francesco; Morales, Jorge A; Bos, Wouter; Godeferd, Fabien S; Bourgoin, Mickaël; Pinton, Jean-François; Moulin, M; Aanesland, Ane

    2014-01-01

    The von-Karman plasma experiment is a novel versatile experimental device designed to explore the dynamics of basic magnetic induction processes and the dynamics of flows driven in weakly magnetized plasmas. A high-density plasma column (10^16 - 10^19 particles.m^-3) is created by two radio-frequency plasma sources located at each end of a 1 m long linear device. Flows are driven through JxB azimuthal torques created from independently controlled emissive cathodes. The device has been designed such that magnetic induction processes and turbulent plasma dynamics can be studied from a variety of time-averaged axisymmetric flows in a cylinder. MHD simulations implementing volume-penalization support the experimental development to design the most efficient flow-driving schemes and understand the flow dynamics. Preliminary experimental results show that a rotating motion of up to nearly 1 km/s is controlled by the JxB azimuthal torque.

  9. Magnetic monopole searches with the MoEDAL experiment at the LHC

    CERN Document Server

    Pinfold, J; Lacarrère, D; Mermod, P; Katre, A

    2014-01-01

    The magnetic monopole appears in theories of spontaneous ga uge symmetry breaking and its existence would explain the quantisation of electric charg e. MoEDAL is the latest approved LHC experiment, designed to search directly for monopoles. It h as now taken data for the first time. The MoEDAL detectors are based on two complementary techniq ues: nuclear-track detectors are sensitive to the high-ionisation signature expected fr om a monopole, and the new magnetic monopole trapper (MMT) relies on the stopping and trapping o f monopoles inside an aluminium array which is then analysed with a superconducting magneto meter. Preliminary results obtained with a subset of the MoEDAL MMT test array deployed in 2012 are presented, where monopoles with charge above the fundamental unit magnetic charge or ma ss above 1.5 TeV are probed for the first time at the LHC

  10. Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience)

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, Teresa [The Children' s Hospital of Philadelphia, Radiology Department, Center for Fetal Diagnosis and Treatment, Philadelphia, PA (United States); Jaramillo, Diego; Roberts, Timothy Paul Leslie; Zarnow, Deborah; Johnson, Ann Michelle; Delgado, Jorge; Vossough, Arastoo [The Children' s Hospital of Philadelphia, Radiology Department, Philadelphia, PA (United States); Rubesova, Erika [Stanford University, Department of Radiology, Lucile Packard Children' s Hospital, Stanford, CA (United States)

    2014-04-15

    Several attempts have been made at imaging the fetus at 3 T as part of the continuous search for increased image signal and better anatomical delineation of the developing fetus. Until very recently, imaging of the fetus at 3 T has been disappointing, with numerous artifacts impeding image analysis. Better magnets and coils and improved technology now allow imaging of the fetus at greater magnetic strength, some hurdles in the shape of imaging artifacts notwithstanding. In this paper we present the preliminary experience of evaluating the developing fetus at 3 T and discuss several artifacts encountered and techniques to decrease them, as well as safety concerns associated with scanning the fetus at higher magnetic strength. (orig.)

  11. Passive control experiment of building with spacious first story by magnet-friction energy dissipation device

    Institute of Scientific and Technical Information of China (English)

    LI Qing-xiang; WANG Wei

    2005-01-01

    Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipation devices ( EMF), a 5-story steel frame model with spacious first story is designed and made according to a scale of 1/4. The magnet-friction energy dissipation devices can realize continuously varied controlling force, with rapid response and reverse recognition. Therefore, they overcome shortcomings usually found in energy dissipation devices whose force models are invariable. The two kinds of devices were fixed on the flexible first story of the structure model, and the shaking table tests have been carried out, respectively. In these tests,the performance of the devices and their effectiveness in structural control were confirmed. In this paper, the test results and analysis are discussed.

  12. Experiment of dynamic property and transient magnetic effects of coal during deformation and fracture

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-wu; WEI Shan-yang; WANG Xue-ying; LIU Ji-kun; LEI Dong-ji

    2012-01-01

    Combining separated SHPB test device of φ50 mm with ZDKT-type 1 transient magnetic resonance test system,long drop bar of 400 mm was used to impact coal specimens at four different speeds:1.275,3.287,6.251,and 7.404 m/s.The change in waveform,the dynamic mechanical properties,and the generated effect of transient field during the coal deformation and fracture under the loads were discussed and analyzed.While magnetic signals during the coal fracture firstly needed EEMD,decomposition then had a FFT with Data Demon.The main results of the experiment are the following:the main frequency of magnetic signals was between 220 and 450 kHz and the instantaneous frequency during the damage of coal would have the instantaneous jump.

  13. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment

    Science.gov (United States)

    Li, L.; Hirota, M.; Ouchi, K.; Saito, T.

    2016-03-01

    Shock vector control (SVC) in a converging-diverging nozzle with a rectangular cross-section is discussed as a fluidic thrust vectoring (FTV) method. The interaction between the primary nozzle flow and the secondary jet is examined using experiments and numerical simulations. The relationships between FTV parameters [nozzle pressure ratio (NPR) and secondary jet pressure ratio (SPR)] and FTV performance (thrust pitching angle and thrust pitching moment) are investigated. The experiments are conducted with an NPR of up to 10 and an SPR of up to 2.7. Numerical simulations of the nozzle flow are performed using a Navier-Stokes solver with input parameters set to match the experimental conditions. The thrust pitching angle and moment computed from the force-moment balance are used to evaluate FTV performance. The experiment and numerical results indicate that the FTV parameters (NPR and SPR) directly affect FTV performance. Conventionally, FTV performance evaluated by the common method using thrust pitching angle is highly dependent on the location of evaluation. Hence, in this study, we show that the thrust pitching moment, a parameter which is independent of the location, is the appropriate figure of merit to evaluate the performance of FTV systems.

  14. Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling

    Science.gov (United States)

    Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong

    2015-01-01

    Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of

  15. Real-Time Analysis of Magnetic Hyperthermia Experiments on Living Cells under a Confocal Microscope.

    Science.gov (United States)

    Connord, Vincent; Clerc, Pascal; Hallali, Nicolas; El Hajj Diab, Darine; Fourmy, Daniel; Gigoux, Véronique; Carrey, Julian

    2015-05-01

    Combining high-frequency alternating magnetic fields (AMF) and magnetic nanoparticles (MNPs) is an efficient way to induce biological responses through several approaches: magnetic hyperthermia, drug release, controls of gene expression and neurons, or activation of chemical reactions. So far, these experiments cannot be analyzed in real-time during the AMF application. A miniaturized electromagnet fitting under a confocal microscope is built, which produces an AMF of frequency and amplitude similar to the ones used in magnetic hyperthermia. AMF application induces massive damages to tumoral cells having incorporated nanoparticles into their lysosomes without affecting the others. Using this setup, real-time analyses of molecular events occurring during AMF application are performed. Lysosome membrane permeabilization and reactive oxygen species production are detected after only 30 min of AMF application, demonstrating they occur at an early stage in the cascade of events leading eventually to cell death. Additionally, lysosomes self-assembling into needle-shaped organization under the influence of AMF is observed in real-time. This experimental approach will permit to get a deeper insight into the physical, molecular, and biological process occurring in several innovative techniques used in nanomedecine based on the combined use of MNPs and high-frequency magnetic fields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Turbulent magnetic Prandtl numbers obtained with MHD Taylor-Couette flow experiments

    CERN Document Server

    Gellert, M

    2008-01-01

    The stability problem of MHD Taylor-Couette flows with toroidal magnetic fields is considered in dependence on the magnetic Prandtl number. Only the most uniform (but not current-free) field with B\\_in = B\\_out has been considered. For high enough Hartmann numbers the toroidal field is always unstable. Rigid rotation, however, stabilizes the magnetic (kink-)instability. The axial current which drives the instability is reduced by the electromotive force induced by the instability itself. Numerical simulations are presented to probe this effect as a possibility to measure the turbulent conductivity in a laboratory. It is shown numerically that in a sodium experiment (without rotation) an eddy diffusivity 4 times the molecular diffusivity appears resulting in a potential difference of ~34 mV/m. If the cylinders are rotating then also the eddy viscosity can be measured. Nonlinear simulations of the instability lead to a turbulent magnetic Prandtl number of 2.1 for a molecular magnetic Prandtl number of 0.01. The...

  17. Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX)

    Science.gov (United States)

    Koelfgen, Syri J.; Eskridge, Richard; Lee, Michael H.; Martin, Adam; Hawk, Clark W.; Fimognan, Peter

    2004-01-01

    The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. A plasmoid is a plasma with an imbedded closed magnetic field structure. The shape and magnetic field structure of the translating plasmoids have been measured with of an array of magnetic field probes. Six sets of two B-dot probes were constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes are wound on a square G10 form, and have an average (calibrated) NA of 9.37 x l0(exp -5) square meters, where N is the number of turns and A is the cross-sectional area. The probes were calibrated with a Helmholtz coil, driven by a high-voltage pulser to measure NA, and by a signal generator to determine the probe's frequency response. The plasmoid electron number density n(sub e) electron temperature T(sub e), and velocity ratio v/c(sub m), (where v is the bulk plasma flow velocity and c(sub m), is the ion thermal speed) have also been measured with a quadruple Langmuir probe. The Langmuir probe tips are 10 mm long, 20-mil diameter stainless steel wire, housed in a 6-inch long 4-bore aluminum rod. Measurements on PTX with argon and hydrogen from the magnetic field probes and quadruple Langmuir probe will be presented in this paper.

  18. Design and Status of the Dipole Spectrometer Magnet for the ALICE Experiment

    CERN Document Server

    Bartenev, V D; Datskov, V I; Koshurnikov, E; Shabounov, A; Shishov, Yu A; Swoboda, Detlef; Vodopyanov, A S

    2000-01-01

    Proposal of abstract for MT16, Tallahesse, Florida, 26th September to 2nd October 1999.A large Dipole Magnet is required for the Muon Arm Spectrometer of the ALICE experiment at the LHC.The absence of strong requirements on the symmetry and homogeneity of the magnetic field has lead to a design dominated by economic and feasibility considerations.In March 1997 the decision was taken to build a resistive dipole magnet for the muon spectrometer of the ALICE experiment. Since then, design work has been pursued in JINR/Russia and at CERN. While a common concept has been adopted for the construction of the steel core, two different proposals have been made for the manufacturing technology of the excitation coils. In both cases, however, the conductor material will be Aluminium.The general concept of the dipole magnet is based on a window frame return yoke, fabricated from low carbon steel sheets. The flat vertical poles follow the defined acceptance angle of 9 degrees. The excitation coils are of saddle type. The ...

  19. Utilisation of the magnetic sensor in a smartphone for facile magnetostatics experiment: magnetic field due to electrical current in straight and loop wires

    Science.gov (United States)

    Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper reports on the result of a research into the utilisation of a smartphone for the study of magnetostatics on the basis of experiments. The use of such a device gives great measurement result and thus it can replace magnetic sensor tools that are relatively expensive. For the best experimental result, firstly the position of the magnetic sensor in the smartphone has to be considered by way of value mapping of a magnetic field due to permanent magnet. The magnetostatics experiment investigated in this research was the measurement of magnetic field due to electrical currents in two shapes of wire, straight and looped. The current flow, the distance between the observation point and the wire, and the diameter of the loop were the variable parameters investigated to test the smartphone’s capabilities as a measurement tool. To evaluate the experimental results, the measured data were compared with theoretical values that were calculated by using both an analytical and a numerical approach. According to the experiment results, the measured data had good agreement with the results from the analytical and the numerical approach. This means that the use of the magnetic sensor in a smartphone in physics experiments is viable, especially for magnetic field measurement.

  20. Conclusions from 12 Years Operational Experience of the Cryoplants for the Superconducting Magnets of the LEP Experiments

    CERN Document Server

    Barth, K; Delikaris, D; Passardi, Giorgio

    2002-01-01

    The Large Electron Positron Collider (LEP) has ended its last physics run in November 2000, and it is at present being dismantled to liberate the tunnel for the Large Hadron Collider (LHC) project to be completed by end of 2005. The cryogenic systems for the superconducting solenoid and focusing quadrupoles for the two LEP experiments, ALEPH and DELPHI, each supplying a cooling power of 800 W/4.5 K entropy equivalent, have accumulated more then 100'000 hours of running time. The paper summarises the 12 years cryogenic experience in the various operating modes: cool-down, steady state, recovery after energy fast dump, utilities failures and warm-up of the superconducting magnets. The detailed operation statistics is presented and compared to the other CERN cryogenic systems. Emphasis is given to the technical analysis of the fault conditions and of their consequences on the helium refrigeration production time in view of the future operation of the LHC cryogenics.

  1. The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity

    CERN Document Server

    Della Valle, F; Ejlli, A; Gastaldi, U; Messineo, G; Zavattini, G; Pengo, R; Ruoso, G

    2015-01-01

    Vacuum magnetic birefringence was predicted long time ago and is still lacking a direct experimental confirmation. Several experimental efforts are striving to reach this goal, and the sequence of results promises a success in the next few years. This measurement generally is accompanied by the search for hypothetical light particles that couple to two photons. The PVLAS experiment employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In this paper we report on the latest experimental results of this experiment. The data are analysed taking into account the intrinsic birefringence of the dielectric mirrors of the cavity. Besides the limit on the vacuum magnetic birefringence, the measurements also allow the model-independent exclusion of new regions in the parameter space of axion-like and milli-charged particles. In particular, these last limits hold also for all types of neutrinos, resulting in a laboratory limit on their charge.

  2. Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

    Science.gov (United States)

    Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A. R.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E. M.; Emig, J.; Flocke, N.; Fiuza, F.; Forest, C. B.; Foster, J.; Graziani, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Ryu, D.; Ryutov, D.; Weide, K.; White, T. G.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Froula, D. H.; Gregori, G.; Lamb, D. Q.

    2017-04-01

    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.

  3. Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Tzeferacos, P. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Rigby, A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bott, A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bell, A. R. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bingham, R. [Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom; Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom; Casner, A. [CEA, DAM, DIF, F-91297 Arpajon, France; Cattaneo, F. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Churazov, E. M. [Max Planck Institute for Astrophysics, D-85741 Garching, Germany; Space Research Institute (IKI), Moscow 117997, Russia; Emig, J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Flocke, N. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Fiuza, F. [SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA; Forest, C. B. [Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Foster, J. [AWE, Aldermaston, Reading, West Berkshire, RG7 4PR, United Kingdom; Graziani, C. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Koenig, M. [Laboratoire pour l' Utilisation de Lasers Intenses, UMR7605, CNRS CEA, Université Paris VI Ecole Polytechnique, France; Li, C. -K. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Meinecke, J. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Petrasso, R. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Park, H. -S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Ross, J. S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Ryu, D. [Department of Physics, UNIST, Ulsan 689-798, South Korea; Ryutov, D. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Weide, K. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; White, T. G. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Reville, B. [School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom; Miniati, F. [Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland; Schekochihin, A. A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Gregori, G. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Lamb, D. Q. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA

    2017-03-22

    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.

  4. The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity

    Energy Technology Data Exchange (ETDEWEB)

    Della Valle, Federico; Milotti, Edoardo [INFN, Trieste (Italy); Universita di Trieste, Dipt. di Fisica, Trieste (Italy); Ejlli, Aldo; Messineo, Giuseppe; Zavattini, Guido [INFN, Ferrara (Italy); Universita di Ferrara, Dipt. di Fisica e Scienze della Terra, Ferrara (Italy); Gastaldi, Ugo [INFN, Ferrara (Italy); Pengo, Ruggero; Ruoso, Giuseppe [INFN, Lab. Nazionale di Legnaro, Legnaro (Italy)

    2016-01-15

    Vacuum magnetic birefringence was predicted long time ago and is still lacking a direct experimental confirmation. Several experimental efforts are striving to reach this goal, and the sequence of results promises a success in the next few years. This measurement generally is accompanied by the search for hypothetical light particles that couple to two photons. The PVLAS experiment employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In this paper we report on the latest experimental results of this experiment. The data are analysed taking into account the intrinsic birefringence of the dielectric mirrors of the cavity. Besides a new limit on the vacuum magnetic birefringence, the measurements also allow the model-independent exclusion of new regions in the parameter space of axion-like and milli-charged particles. In particular, these last limits hold also for all types of neutrinos, resulting in a laboratory limit on their charge. (orig.)

  5. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    Science.gov (United States)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  6. Anomalous Heating and Plasmoid Formation in a Driven Magnetic Reconnection Experiment

    CERN Document Server

    Hare, J D; Lebedev, S V; Loureiro, N F; Ciardi, A; Burdiak, G C; Chittenden, J P; Clayson, T; Garcia, C; Niasse, N; Robinson, T; Smith, R A; Stuart, N; Suzuki-Vidal, F; Swadling, G F; Ma, J; Wu, J; Yang, Q

    2016-01-01

    We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields $(B=3$ T), advected by supersonic, sub-Alfv\\'enic carbon plasma flows $(V_{in}=50$ km/s), are brought together and mutually annihilate inside a thin current layer ($\\delta=0.6$ mm). Temporally and spatially resolved optical diagnostics, including interferometry, Faraday rotation imaging and Thomson scattering, allow us to determine the structure and dynamics of this layer, the nature of the inflows and outflows and the detailed energy partition during the reconnection process. We measure high electron and ion temperatures $(T_e=100$ eV, $T_i=600$ eV), far in excess of what can be attributed to classical (Spitzer) resistive and viscous dissipation. We observe the repeated formation and ejection of plasmoids, which we interpret as evidence of two-fluid effects in our experiment.

  7. Fully Coupled Aero-Thermochemical-Elastic Simulations of an Eroding Graphite Nozzle

    Science.gov (United States)

    Blades, E. L.; Reveles, N. D.; Nucci, M.; Maclean, M.

    2017-01-01

    A multiphysics simulation capability has been developed that incorporates mutual interactions between aerodynamics, structural response from aero/thermal loading, ablation/pyrolysis, heating, and surface-to-surface radiation to perform high-fidelity, fully coupled aerothermoelastic ablation simulations, which to date had been unattainable. The multiphysics framework couples CHAR (a 3-D implicit charring ablator solver), Loci/CHEM (a computational fluid dynamics solver for high-speed chemically reacting flows), and Abaqus (a nonlinear structural dynamics solver) to create a fully coupled aerothermoelastic charring ablative solver. The solvers are tightly coupled in a fully integrated fashion to resolve the effects of the ablation pyrolysis and charring process and chemistry products upon the flow field, the changes in surface geometry due to recession upon the flow field, and thermal-structural analysis of the body from the induced aerodynamic heating from the flow field. The multiphysics framework was successfully demonstrated on a solid rocket motor graphite nozzle erosion application. Comparisons were made with available experimental data that measured the throat erosion during the motor firing. The erosion data is well characterized, as the test rig was equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle initially undergoes a nozzle contraction due to thermal expansion before ablation effects are able to widen the throat. A series of parameters studies were conducted using the coupled simulation capability to determine the sensitivity of the nozzle erosion to different parameters. The parameter studies included the shape of the nozzle throat (flat versus rounded), the material properties, the effect of the choice of turbulence model, and the inclusion or exclusion of the mechanical thermal expansion. Overall, the predicted results match

  8. PDE Nozzle Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  9. Composite nozzle design for reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, G.R.; Allison, D.K.

    1984-01-24

    A composite nozzle is described for a fuel assembly adapted for installation on the upper or lower end thereof and which is constructed from two components. The first component includes a casting weldment or forging designed to carry handling loads, support fuel assembly weight and flow loads, and interface with structural members of both the fuel assembly and reactor internal structures. The second component of the nozzle consists of a thin stamped bore machine flow plate adapted for attachment to the casting body. The plate is designed to prevent fuel rods from being ejected from the core and provide orifices for coolant flow to a predetermined value and pressure drop which is consistent with the flow at other locations in the core.

  10. Scoring sacroiliac joints by magnetic resonance imaging. A multiple-reader reliability experiment

    DEFF Research Database (Denmark)

    Landewe, Robert B.M.; Hermann, Kay Geert A; Van Der Heijde, Desiree M.F.M

    2005-01-01

    Magnetic resonance imaging (MRI) of the sacroiliac (SI) joints and the spine is increasingly important in the assessment of inflammatory activity and structural damage in clinical trials with patients with ankylosing spondylitis (AS). We investigated inter-reader reliability and sensitivity...... systems. Sensitivity to change differed per reader, but in general was somewhat better for the comprehensive SPARCC system. This experiment under 'real life,' far from optimal conditions demonstrates the feasibility of scoring exercises for method comparison, provides evidence for the reliability...

  11. Development of 2D/3D equilibrium codes for magnetically confined fusion experiments

    OpenAIRE

    2013-01-01

    The present work is the result of a three-year Ph.D. research project carried out at Consorzio RFX on magnetically confined plasmas. Research on controlled thermonuclear fusion is currently being pursued by many countries throughout the world, thanks to its promise of a relatively clean and abundant energy source. The next steps for the international community are the construction and operation of a large device, ITER, considered as the last fusion physics experiment with respect to the tokam...

  12. Scoring sacroiliac joints by magnetic resonance imaging. A multiple-reader reliability experiment

    DEFF Research Database (Denmark)

    Landewe, Robert B.M.; Hermann, Kay Geert A; Van Der Heijde, Desiree M.F.M

    2005-01-01

    Magnetic resonance imaging (MRI) of the sacroiliac (SI) joints and the spine is increasingly important in the assessment of inflammatory activity and structural damage in clinical trials with patients with ankylosing spondylitis (AS). We investigated inter-reader reliability and sensitivity...... systems. Sensitivity to change differed per reader, but in general was somewhat better for the comprehensive SPARCC system. This experiment under 'real life,' far from optimal conditions demonstrates the feasibility of scoring exercises for method comparison, provides evidence for the reliability...

  13. Oil Spill Remediation Using Magnetic Particles: An Experiment in Environmental Technology

    Science.gov (United States)

    Orbell, John D.; Godhino, Leroy; Bigger, Stephen W.; Nguyen, Thi Man; Ngeh, Lawrence N.

    1997-12-01

    A simple experiment is described in which the potential of commercially available steel pellets coated with polyethylene (PE) or poly(vinylchloride) (PVC) to remediate an oil spill is demonstrated. Polymer-coated particles are weighed, immersed in oil, magnetically harvested and the remaining oil is weighed in order to enable students to quantitatively investigate the adsorption process. The possibility of recycling the beads and reclaiming the oil is also demonstrated.

  14. Jet Engine Exhaust Nozzle Flow Effector

    Science.gov (United States)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  15. Dual Nozzle Aerodynamic and Cooling Analysis Study.

    Science.gov (United States)

    1981-02-27

    ALRC Irwin Alber , Consultant Jim Duey, ALRC Joe Hoffman, Purdue University This report presents the Summary, Section I - Introduction, Section II...SCISEARCH. Papers which referred to the works of Korst, Bauer, and Alber were sought in this way. 19 I III, A, Literature Survey (cont.) The second...Point ’rfil Fna! ’w Turnino Annie Wall Anile at Attachrient Pnint hpar I ivPr ’hir r, ,ioz f Nnze Area Datioi P - Primary Nozzle Throa! Radius F Pati

  16. Research on and Design of a Self-Propelled Nozzle for the Tree-Type Drilling Technique in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-12-01

    Full Text Available Due to the increasing depths of coal mines and the low permeability of some coal seams, conventional methods of gas drainage in underground mines are facing many problems. To improve gas extraction, a new technique using water jets to drill tree-type boreholes in coal seams is proposed. A self-propelled water-jet drilling nozzle was designed to drill these boreholes. The configuration of the self-propelled nozzle was optimized by conducting drilling experiments and self-propelling force measurements. Experimental results show that the optimal self-propelled nozzle has a forward orifice axial angle at 25°, a radial angle at 90°, a center distance of 1.5 mm, and backward pointing orifices with an axial angle of 25°. The self-propelling force generated by the jets of the nozzle with 30 MPa pump pressure can reach 29.8 N, enough to pull the hose and the nozzle forward without any external forces. The nozzle can drill at speeds up to 41.5 m/h with pump pressures at 30 MPa. The radial angles of the forward orifices improve the rock breaking performance of the nozzle and, with the correct angle, the rock breaking area of the orifices overlap to produce a connecting hole. The diameter of boreholes drilled by this nozzle can reach 35.2 mm. The nozzle design can be used as the basis for designing other self-propelled nozzles. The drilling experiments demonstrate the feasibility of using the tree-type drilling technique in underground mines.

  17. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  18. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Kim, Namhyo; Sun, Kai; Corbett, Gary; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffery L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro

    2014-01-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  19. Assessment of NASA and RAE viscous-inviscid interaction methods for predicting transonic flow over nozzle afterbodies

    Science.gov (United States)

    Putnam, L. E.; Hodges, J.

    1983-01-01

    The Langley Research Center of the National Aeronautics and Space Administration and the Royal Aircraft Establishment have undertaken a cooperative program to conduct an assessment of their patched viscous-inviscid interaction methods for predicting the transonic flow over nozzle afterbodies. The assessment was made by comparing the predictions of the two methods with experimental pressure distributions and boattail pressure drag for several convergent circular-arc nozzle configurations. Comparisons of the predictions of the two methods with the experimental data showed that both methods provided good predictions of the flow characteristics of nozzles with attached boundary layer flow. The RAE method also provided reasonable predictions of the pressure distributions and drag for the nozzles investigated that had separated boundary layers. The NASA method provided good predictions of the pressure distribution on separated flow nozzles that had relatively thin boundary layers. However, the NASA method was in poor agreement with experiment for separated nozzles with thick boundary layers due primarily to deficiencies in the method used to predict the separation location.

  20. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  1. Experimental Research on Micro-nozzle Applied on Micro-propulsion Systems based on MEMS

    Science.gov (United States)

    Bao-jun, Zhang; Xing-chen, Li; Yi-yong, Huang; Xiang-ming, Xu

    2017-03-01

    In order to study the influence of the structural parameters of micro thruster applied in micro satellite attitude adjustment and orbital maneuver on its propulsion performance, this paper considers the factors influencing the performance of the thruster, and utilizes the orthogonal test design to obtain nine groups of micro-nozzles with different structural parameters. We processed this series of micro nozzles through MEMS (Micro-Electro-Mechanical Systems) technology. The micro-nozzles are made of single crystal silicon and glass through the anode bonding, and the electric heating wire is creatively processed through MEMS in the thrust chamber to improve the performance of the micro thruster. Experiments were carried out in a vacuum chamber. Finally, we analyse the experimental results by analysis of variance and analysis of range. The experimental results show that the performance of the micro nozzle is optimal when the semi-shrinking angle is 30 degrees, the semi-expansion angle is 15 degrees and the area ratio is 6.22. Meantime, the experiment verifies that it is feasible to improve the propulsive performance of micro-propulsion system through electronic heater strip.

  2. Cryogenic Considerations for Superconducting Magnet Design for the Material Plasma Exposure eXperiment

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Demko, Dr. Jonathan A [LeTourneau University, Texas; Lumsdaine, Arnold [ORNL; Caughman, John B [ORNL; Goulding, Richard Howell [ORNL; McGinnis, William Dean [ORNL; Bjorholm, Thomas P [ORNL; Rapp, Juergen [ORNL

    2015-01-01

    In order to determine long term performance of plasma facing components such as diverters and first walls for fusion devices, next generation plasma generators are needed. A Material Plasma Exposure eXperiment (MPEX) has been proposed to address this need through the generation of plasmas in front of the target with electron temperatures of 1-15 eV and electron densities of 1020 to 1021 m-3. Heat fluxes on target diverters could reach 20 MW/m2. In order generate this plasma, a unique radio frequency helicon source and heating of electrons and ions through Electron Bernstein Wave (EBW) and Ion Cyclotron Resonance Heating (ICRH) has been proposed. MPEX requires a series of magnets with non-uniform central fields up to 2 T over a 5m length in the heating and transport region and 1 T uniform central field over a 1-m length on a diameter of 1.3 m. Given the field requirements, superconducting magnets are under consideration for MPEX. In order to determine the best construction method for the magnets, the cryogenic refrigeration has been analyzed with respect to cooldown and operational performance criteria for open-cycle and closed-cycle systems, capital and operating costs of these system, and maturity of supporting technology such as cryocoolers. These systems will be compared within the context of commercially available magnet constructions to determine the most economical method for MPEX operation. The current state of the MPEX magnet design including details on possible superconducting magnet configurations will be presented.

  3. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  4. Optimization of the Loading Process of the QUIC Magnetic Trap for the Experiment of Bose-Einstein Condensation

    Institute of Scientific and Technical Information of China (English)

    CHEN Shuai; ZHOU Xiao-Ji; YANG Fan; XIA Lin; WANG Yi-Qiu; CHEN Xu-Zong

    2004-01-01

    @@ The magnetic quadrupole-Ioffe configuration (QUIC) trap in our Bose-Einstein condensation experiment is introduced. The magnetic trap loading process after laser cooling is analysed and the optimization of the loading process is studied experimentally. Calculation of the magnetic field explains the loss of the atoms during the loading process of the QUIC trap. The number of atoms loaded in the QUIC trap is increased by 40%o after optimization in comparison with the normal loading process.

  5. Octet Baryon Magnetic Moments from Lattice QCD: Approaching Experiment from the Three-Flavor Symmetric Point

    CERN Document Server

    Parreno, Assumpta; Tiburzi, Brian C; Wilhelm, Jonas; Chang, Emmanuel; Detmold, William; Orginos, Kostas

    2016-01-01

    Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is ~ 800 MeV, and the other corresponding to a pion mass ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determine magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-Nc limit of QCD are studied; and, in one case, the quark model prediction is sig...

  6. Ramp-rate limitation experiments in support of the TPX magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S.; Schultz, J.H.; Takayasu, Makoto; Michael, P.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Shen, S. [Lawrence Livermore National Lab., CA (United States); Vysotsky, V. [Kurchatov Inst., Moscow (Russian Federation); Warnes, W. [Oregon State Univ., Eugene, OR (United States)

    1995-12-31

    Fast magnetic field change is required for full-size tokamak reactors. The poloidal field magnets are usually ramped to full field at 1.2 T/s, and see pulsed fields of up to 20 T/s during plasma initiation. A new facility has been constructed at M.I.T. that simulates the expected operating conditions of the Tokamak Physics Experiment (TPX) magnets. New features in this facility include (1) a superconducting pulse coil that can superimpose high ramp-down rates, up to 25 T/s, (2 T in 80 msec) on a background field up to 5 T, (2) new power supplies that can supply high rates of dI/dt and dB/dt to the sample under test and the pulse coil, and (3) a forced-flow supercritical helium system that can simulate cooling conditions within the winding pack. The first sample tested in the facility is a 27-strand sub-cable, using 3.1:1 copper, noncopper ratio Nb{sub 3}Sn superconductor, typical of the strands to be used in ten of the poloidal field system magnets. This paper presents the first experimental results on the ramp rate limitation of the sub-size cable sample of TPX PF coil conductor. The transient stability at high ramp rate fields will be discussed.

  7. Experiments with low energy ion beam transport into toroidal magnetic fields

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The stellarator-type storage ring for accumulation of multi- Ampere proton and ion beams with energies in the range of $100~AkeV$ to $1~AMeV$ is designed at Frankfurt university. The main idea for beam confinement with high transversal momentum acceptance was presented in EPAC2006. This ring is typically suited for experiments in plasma physics and nuclear astrophysics. The accumulator ring with a closed longitudinal magnetic field is foreseen with a strength up to $6-8~T$. The experiments with two room temperature 30 degree toroids are needed. The beam transport experiments in toroidal magnetic fields were first described in EPAC2008 within the framework of a proposed low energy ion storage ring. The test setup aims on developing a ring injection system with two beam lines representing the main beam line and the injection line. The primary beam line for the experiments was installed and successfully commissioned in 2009. A special diagnostics probe for \\textit{"in situ"} ion beam detection was installed.This...

  8. A soft magnetic material for power supply systems of high energy physics experiments

    Directory of Open Access Journals (Sweden)

    Ghisolfi E.

    2013-01-01

    Full Text Available Most of the high energy physics experiments require their detectors to be embedded in a high intensity magnetic field. In particular the biggest of them, ATLAS, running in the CERN Large Hadron Collider (LHC particle accelerator, generates a field of 2 T by means of a gigantic toroidal magnet working in open air. Its future phase 2 upgrade plans to move the DC/DC power supplies from the present positions on the external balconies directly on the detectors, where the field is of the order of 1 T. This presentation describes the development of samples made of special magnetic material for inductor cores suitable to work in such an environment. Starting from iron-silicon powders, at FN plant a plastic forming process, based on powder extrusion, injection moulding and sintering, was developed. To get the best compromise between the forming process requirements (good coupling among the metallic powder and the organic components to assure the right mouldability and the debinding and sintering conditions, several mixtures (with different percentages and kind of organic additives were experimented. A proper mould was designed and realized to get torous-shaped prototypes. The preliminary results of the physical-microstructural characterization performed on the first prototypes made will be shown.

  9. Magnetic flux compression experiments on the Z pulsed-power accelerator

    Science.gov (United States)

    McBride, R. D.; Gomez, M. R.; Hansen, S. B.; Jennings, C. A.; Bliss, D. E.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; Martin, M. R.; Sinars, D. B.; Greenly, J. B.; Intrator, T. P.; Weber, T. E.

    2014-10-01

    We report on the progress made to date for diagnosing magnetic flux compression on Z. Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using Z's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, Bz(0), supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by Bz (t) =Bz (0) × [ R (0) / R (t) ]2 , where R is the liner's inner surface radius. With perfect flux conservation, Bz and dBz/dt values exceeding 104 T and 1012 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report our latest efforts to do so using three primary techniques: (1) micro B-dot probes, (2) streaked visible Zeeman spectroscopy, and (3) fiber-based Faraday rotation. We will also briefly highlight some recent developments using neutron diagnostics (ratio of secondary DT to primary DD neutrons and secondary DT neutron energy spectra) to assess the degree of magnetization in fully integrated magnetized liner inertial fusion (MagLIF) experiments on Z. This project was funded in part by Sandia's LDRD program and US DOE-NNSA Contract DE-AC04-94AL85000.

  10. Results from colliding magnetized plasma jet experiments executed at the Trident laser facility

    Science.gov (United States)

    Manuel, M. J.-E.; Rasmus, A. M.; Kurnaz, C. C.; Klein, S. R.; Davis, J. S.; Drake, R. P.; Montgomery, D. S.; Hsu, S. C.; Adams, C. S.; Pollock, B. B.

    2015-11-01

    The interaction of high-velocity plasma flows in a background magnetic field has applications in pulsed-power and fusion schemes, as well as astrophysical environments, such as accretion systems and stellar mass ejections into the magnetosphere. Experiments recently executed at the Trident Laser Facility at the Los Alamos National Laboratory investigated the effects of an expanding aluminum plasma flow into a uniform 4.5-Tesla magnetic field created using a solenoid designed and manufactured at the University of Michigan. Opposing-target experiments demonstrate interesting collisional behavior between the two magnetized flows. Preliminary interferometry and Faraday rotation measurements will be presented and discussed. This work is funded by the U.S Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Astrophysical Observatory for NASA under contract NAS8-03060.

  11. Fluidized-bed calciner with combustion nozzle and shroud

    Science.gov (United States)

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  12. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32

    Science.gov (United States)

    Kummer, K.; Fondacaro, A.; Jimenez, E.; Velez-Fort, E.; Amorese, A.; Aspbury, M.; Yakhou-Harris, F.; van der Linden, P.; Brookes, N. B.

    2016-01-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014. PMID:26917134

  13. X-ray speckle experiments on the persistence and disintegration of magnetic memory

    Science.gov (United States)

    Pierce, Michael Scott

    Beautiful theories based on random microscopic disorder have been developed over the past ten years. My goal was to directly compare these theories with precise experiments. To do so, I first developed and then applied coherent x-ray speckle metrology to a series of thin multilayer perpendicular magnetic materials. To directly observe the effects of disorder, increasing degrees of disorder was deliberately introduced into a series of magnetic films. I used coherent x-rays, produced at the Advanced Light Source at Lawrence Berkeley National Laboratory, to generate highly speckled magnetic scattering patterns. The scattering patterns provided both the ensemble average characteristics of the magnetic domains, but were also directly sensitive to the microscopic magnetic domains. The apparently "random" arrangement of the speckles is due to the exact configuration of the magnetic domains in the sample. In effect, each speckle pattern acts as a unique fingerprint for the magnetic domain configuration. Small changes in the domain structure change the speckles, and comparison of the different speckle patterns provides a quantitative determination of how much the domain structure has changed. My experiments quickly answered one longstanding question: How is the magnetic domain configuration at one point on the major hysteresis loop related to the configurations at the same point on the loop during subsequent cycles? This is called microscopic return point memory (RPM). I found the RPM is partial and imperfect in the disordered samples, and completely absent when the disorder was not present. I also introduced and answered a second important, new question: How are the magnetic domains at one point on the major hysteresis loop related to the domains at the complementary point, the inversion symmetric point on the loop, during the same and during subsequent cycles? This is called microscopic complementary point memory (CPM). I found the CPM is also partial and imperfect in the

  14. Hydrodynamic Study of a Submerged Entry Nozzle with Flow Modifiers

    Science.gov (United States)

    Real-Ramirez, Cesar Augusto; Miranda-Tello, Raul; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Gonzalez-Trejo, Jesus

    2016-12-01

    The fluid flow modifier technology for continuous casting process was evaluated through numerical simulations and physical experiments in this work. In the casting of steel into the mold, the process presents liquid surface instabilities which extend along the primary cooling stage. By the use of trapezoid elements installed on the external walls of the submerged nozzle, it was observed that it is possible to obtain symmetry conditions at the top of the mold and prevent high level fluctuations. The flow modifiers have equidistant holes in the submerged surface to reduce the velocity of the liquid surface by energy and mass transfer between the generated quadrants. A flow modifier drilled with a 25 pct of the submerged surface provides stability in the mold and structural stability of the proposal is guaranteed.

  15. A cooled avalanche photodiode detector for X-ray magnetic diffraction experiments

    CERN Document Server

    Kishimoto, S; Ito, M

    2001-01-01

    A cooled avalanche photodiode (APD) detector was developed for X-ray magnetic diffraction experiments. A stack of four silicon APDs was cooled down to 243 K by a thermoelectric cooler. The energy widths of 0.89 and 1.55 keV (FWHM) were obtained for 8.05 keV X-rays at 1x10 sup 6 s sup - sup 1 and for 16.53 keV X-rays at 2x10 sup 6 s sup - sup 1 , respectively. Test measurements of X-ray magnetic diffraction were executed using a terbium single crystal and white synchrotron radiation. A peak width of (1 0 3) reflection (5.4 keV) was roughly three times wider than that with a high-purity germanium detector.

  16. Engineering status of the superconducting end cap toroid magnets for the ATLAS experiment at LHC

    CERN Document Server

    Baynham, D Elwyn; Carr, F S; Courthold, M J D; Cragg, D A; Densham, C J; Evans, D; Holtom, E; Rochford, J; Sole, D; Towndrow, Edwin F; Warner, G P

    2000-01-01

    The ATLAS experiment at LHC, CERN will utilise a large, superconducting, air-cored toroid magnet system for precision muon measurements. The magnet system will consist of a long barrel and two end-cap toroids. Each end-cap toroid will contain eight racetrack coils mounted as a single cold mass in cryostat vessel of ~10 m diameter. The project has now moved from the design/specification stage into the fabrication phase. This paper presents the engineering status of the cold masses and vacuum vessels that are under fabrication in industry. Final designs of cold mass supports, cryogenic systems and control/protection systems are presented. Planning for toroid integration, test and installation is described. (3 refs).

  17. Calibration of High Precision Robot Arm for the Crafting of Magnets for Use in Neutron Experiments

    Science.gov (United States)

    Riley, Benjamin; Crawford, Christopher

    2017-01-01

    The magnetic scalar potential can be used to design precision magnetic fields with surface currents in arbitrary geometry. We are using this technique to design holding field coils for spin transport of neutrons and 3He atoms into the measurement cell of the SNS EDM experiment. We construct holding field coils as three-dimensional printed circuits boards using a Staubli RX130 6-axis industrial robotic arm to etch the circuit. While the arm has a 35-micron repeatability position, the absolute accuracy depends on calibration of transformation matrices between each link, characterized by Denavit-Hartenberg parameters. After factors such as coordinate system degeneracies and free parameters are taken into account, there are 29 parameters that must be calibrated. The robot model, calibration method, and results are presented in this poster.

  18. Analysis and modelling of the magnetic and plasma profiles during PPCD experiments in RFX

    Science.gov (United States)

    Puiatti, M. E.; Cappello, S.; Lorenzini, R.; Martini, S.; Ortolani, S.; Paccagnella, R.; Sattin, F.; Terranova, D.; Bolzonella, T.; Buffa, A.; Canton, A.; Carraro, L.; Escande, D. F.; Garzotti, L.; Innocente, P.; Marrelli, L.; Martines, E.; Scarin, P.; Spizzo, G.; Valisa, M.; Zanca, P.; Antoni, V.; Apolloni, L.; Bagatin, M.; Baker, W.; Barana, O.; Bettella, D.; Bettini, P.; Cavazzana, R.; Cavinato, M.; Chitarin, G.; Cravotta, A.; D'Angelo, F.; Dal Bello, S.; DeLorenzi, A.; Desideri, D.; Fiorentin, P.; Franz, P.; Frassinetti, L.; Gaio, E.; Giudicotti, L.; Gnesotto, F.; Grando, L.; Guo, S. C.; Luchetta, A.; Malesani, G.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Martin, P.; Masiello, A.; Milani, F.; Moresco, M.; Murari, A.; Nielsen, P.; Pasqualotto, R.; Pégourie, B.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Pomaro, N.; Preti, G.; Regnoli, G.; Rostagni, G.; Serianni, G.; Sonato, P.; Spada, E.; Spolaore, M.; Taliercio, C.; Telesca, G.; Toigo, V.; Vianello, N.; Zaccaria, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zollino, G.; Zuin, M.

    2003-10-01

    In this paper, we analyse the main features of the pulsed poloidal current drive (PPCD) technique, used in the reversed field pinch configuration to achieve improved confinement conditions. In the RFX experiment, PPCD corresponds to a decrease of the magnetic fluctuations, to a peaking of the temperature profile, and to a reduced transport and plasma-wall interaction. A three-dimensional MHD nonlinear code and one-dimensional time-dependent transport models have been applied to study the effect of PPCD on the magnetic and plasma profiles. The three-dimensional MHD simulations show that the external inductive drive pinches and peaks the current profile driving the configuration through a transient phase, where the spontaneous turbulent dynamo action is quenched. The one-dimensional transport codes indicate that the experimental profile modifications associated with PPCD are consistent with a reduction of the stochastic transport.

  19. Tapping Magnet®'s Culture of Innovation to Improve the Patient Experience.

    Science.gov (United States)

    Rainer, Jennifer

    2017-01-01

    As incentives grow for healthcare organizations to improve the patient experience, an increasing number choose to add consumers directly into their leadership structures. In this final installment about the value of patient and family advisory councils, the senior director of quality at a large, Magnet®-recognized Texas hospital explains how tapping into a well-established Magnet culture helped the organization adopt innovative approaches that produced positive change. Based on an interview with the author, she notes that seeing basic issues through patients' eyes challenged long-held beliefs and led to improvements in a wide variety of areas. A discussion of the next frontier for patient and family advisory councils focuses on the small but growing number of hospitals that bring community members to the table to openly share, dissect, and improve issues of quality and safety.

  20. Setup of a separator magnet and an RFQ-buncher for the TRIGA-SPEC experiment

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, T.; Blaum, K. [Physikalisches Institut, Universitaet Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Block, M.; Herfurth, F. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Eberhardt, K. [Institut fuer Kernchemie, Universitaet Mainz (Germany); Eibach, M.; Smorra, C. [Physikalisches Institut, Universitaet Heidelberg (Germany); Institut fuer Kernchemie, Universitaet Mainz (Germany); Ketelaer, J.; Knuth, K. [Institut fuer Physik, Universitaet Mainz (Germany); Lunney, D. [CSNSM, Universite de Paris Sud, Orsay (France); Nagy, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Noertershaeuser, W. [Institut fuer Kernchemie, Universitaet Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2010-07-01

    Precise experimental data of the ground-state properties of heavy nuclides are required to test the predictive power of nuclear mass models and to support nucleosythesis calculations of the astrophysical r-process. The TRIGA-TRAP mass spectrometer and the TRIGA-LASER laser spectroscopy setup, forming the TRIGA-SPEC experiment, were recently installed at the research reactor TRIGA Mainz in order to perform high-precision measurements of the ground state properties of short-lived neutron-rich radionuclides. The radionuclides are produced by thermal neutron-induced fission in an actinoide target inside the reactor, extracted by a gas-jet system, and ionized by an ECR ion source. The ions of interest will then be mass-separated in a 90 dipole magnet. An RFQ buncher is being installed to accumulate, cool and bunch the ion beam. The status of the implementation of the dipole magnet and the RFQ buncher is presented.

  1. Scoring inflammatory activity of the spine by magnetic resonance imaging in ankylosing spondylitis: a multireader experiment

    DEFF Research Database (Denmark)

    Lukas, Cédric; Braun, Jürgen; van der Heijde, Désirée

    2007-01-01

    OBJECTIVE: Magnetic resonance imaging (MRI) of the spine is increasingly important in the assessment of inflammatory activity in clinical trials with patients with ankylosing spondylitis (AS). We investigated feasibility, inter-reader reliability, sensitivity to change, and discriminatory ability...... the Ankylosing Spondylitis spine Magnetic Resonance Imaging-activity [ASspiMRI-a, grading activity (0-6) per vertebral unit in 23 units]; the Berlin modification of the ASspiMRI-a; and the Spondyloarthritis Research Consortium of Canada (SPARCC) scoring system, which scores the 6 vertebral units considered......) assessed by Z-scores was good and comparable among methods. CONCLUSION: This experiment demonstrates the feasibility of multiple-reader MRI scoring exercises for method comparison, provides evidence for the feasibility, reliability, sensitivity to change, and discriminatory capacity of all 3 tested scoring...

  2. Numerical experiments modeling the buoyancy of bubbles in a vertical plane layer of a magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tsebers, A.O.

    1985-12-01

    The buoyancy of elliptical bubbles in the absence of surface tension are determined through a numerical experiment as a function of the semiaxis ratio, and the results are found to be in good agreement with the well-known Taylor-Saffman solution. Particular attention is given to the effect of the motion of bubbles on the development of a MHD instability in a transverse magnetic field, and it is shown that this motion stabilizes the development of perturbations in the motion direction and intensifies perturbations in the direction transverse to the motion. It is further shown that in the presence of a magnetic field, the configurations of the buoyant bubbles are not determined uniquely by physical parameters but also depend on their initial profiles. 6 references.

  3. Thrust ripple optimization and experiment for a permanent magnet linear synchronous motor

    Institute of Scientific and Technical Information of China (English)

    XU Yue-tong; FU Jian-zhong; CHEN Zi-chen

    2006-01-01

    Thrust ripple such as end force,slot force and normal force are key factors that affect the properties of permanent magnet linear synchronous motors (PMLSM).According to different mechanics and analytical models,end force resulting from open magnetic circuit of PMLSM was greatly decreased by optimizing the length of the PMLSM mover.Slot force caused by slot effect was greatly reduced by using fraction slot structure,and normal force was calculated through the finite element method (FEM).After thrust ripple was calculated,its uniform formula was obtained through Fourier series nonlinear regression.An experimental system was set up to measure thrust ripple,and experiment results demonstrated that experimental force ripple was quite in line with that calculated by the fitting formula.The optimal theory and analysis method is effective,and the obtained formula can be utilized to compensate thrust ripple in practical applications and improve the motion performance of PMLSM.

  4. Optimization of Profile and Material of Abrasive Water Jet Nozzle

    Science.gov (United States)

    Anand Bala Selwin, K. P.; Ramachandran, S.

    2017-05-01

    The objective of this work is to study the behaviour of the abrasive water jet nozzle with different profiles and materials. Taguchi-Grey relational analysis optimization technique is used to optimize the value with different material and different profiles. Initially the 3D models of the nozzle are modelled with different profiles by changing the tapered inlet angle of the nozzle. The different profile models are analysed with different materials and the results are optimized. The optimized results would give the better result taking wear and machining behaviour of the nozzle.

  5. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  6. Flow separation in rocket nozzles under high altitude condition

    Science.gov (United States)

    Stark, R.; Génin, C.

    2017-01-01

    The knowledge of flow separation in rocket nozzles is crucial for rocket engine design and optimum performance. Typically, flow separation is studied under sea-level conditions. However, this disregards the change of the ambient density during ascent of a launcher. The ambient flow properties are an important factor concerning the design of altitude-adaptive rocket nozzles like the dual bell nozzle. For this reason an experimental study was carried out to study the influence of the ambient density on flow separation within conventional nozzles.

  7. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  8. Evaluation of nozzle shapes for an optical flow meter

    Science.gov (United States)

    Sheikholeslami, M. Z.; Patel, B. R.

    1992-05-01

    Numerical modeling is performed for turbulent flow in axisymmetric nozzles using Creare's computer program FLUENT/BFC. The primary objective of the project was to assist Spectron Development Laboratories in selecting an optimum nozzle shape for an optical flowmeter. The nozzle performance is evaluated for various length to diameter ratios, area contraction ratios, and Reynolds numbers. The computations have demonstrated that a cubic profile nozzle with length to diameter ratio of 1.6 and area contraction ratio of 6.2 can decrease the velocity profile non-uniformity from 15 percent at the entrance to 1 percent at the exit. The configuration is recommended for further investigation.

  9. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  10. Low Cost Carbon-Carbon Rocket Nozzle Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This development will provide an inexpensive vacuum nozzle manufacturing option for NOFBXTM monopropellant systems that are currently being developed under NASA SBIR...

  11. Use of movable high-field-strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: preliminary experience.

    LENUS (Irish Health Repository)

    Leuthardt, Eric C

    2011-07-01

    Awake craniotomy with electrocortical mapping and intraoperative magnetic resonance imaging (iMRI) are established techniques for maximizing tumor resection and preserving function, but there has been little experience combining these methodologies.

  12. Application of Optimization Techniques to Design of Unconventional Rocket Nozzle Configurations

    Science.gov (United States)

    Follett, W.; Ketchum, A.; Darian, A.; Hsu, Y.

    1996-01-01

    Several current rocket engine concepts such as the bell-annular tri-propellant engine, and the linear aerospike being proposed for the X-33 require unconventional three dimensional rocket nozzles which must conform to rectangular or sector shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, the application of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. The objective of this work is to optimize several different nozzle configurations, including two- and three-dimensional geometries. Methodology includes coupling computational fluid dynamic (CFD) analysis to genetic algorithms and Taguchi methods as well as implementation of a streamline tracing technique. Results of applications are shown for several geometeries including: three dimensional thruster nozzles with round or super elliptic throats and rectangualar exits, two- and three-dimensional thrusters installed within a bell nozzle, and three dimensional thrusters with round throats and sector shaped exits. Due to the novel designs considered for this study, there is little experience which can be used to guide the effort and limit the design space. With a nearly infinite parameter space to explore, simple parametric design studies cannot possibly search the entire design space within the time frame required to impact the design cycle. For this reason, robust and efficient optimization methods are required to explore and exploit the design space to achieve high performance engine designs. Five case studies which examine the application of various techniques in the engineering environment are presented in this paper.

  13. Experimental Studies of the Heat Transfer to RBCC Rocket Nozzles for CFD Application to Design Methodologies

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    1999-01-01

    Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.

  14. Thermo-Structural Response Caused by Structure Gap and Gap Design for Solid Rocket Motor Nozzles

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2016-06-01

    Full Text Available The thermo-structural response of solid rocket motor nozzles is widely investigated in the design of modern rockets, and many factors related to the material properties have been considered. However, little work has been done to evaluate the effects of structure gaps on the generation of flame leaks. In this paper, a numerical simulation was performed by the finite element method to study the thermo-structural response of a typical nozzle with consideration of the structure gap. Initial boundary conditions for thermo-structural simulation were defined by a quasi-1D model, and then coupled simulations of different gap size matching modes were conducted. It was found that frictional interface treatment could efficiently reduce the stress level. Based on the defined flame leak criteria, gap size optimization was carried out, and the best gap matching mode was determined for designing the nozzle. Testing experiment indicated that the simulation results from the proposed method agreed well with the experimental results. It is believed that the simulation method is effective for investigating thermo-structural responses, as well as designing proper gaps for solid rocket motor nozzles.

  15. Jet-Surface Interaction Noise from High-Aspect Ratio Nozzles: Test Summary

    Science.gov (United States)

    Brown, Clifford; Podboy, Gary

    2017-01-01

    Noise and flow data have been acquired for a 16:1 aspect ratio rectangular nozzle exhausting near a simple surface at the NASA Glenn Research Center as part of an ongoing effort to understand, model, and predict the noise produced by current and future concept aircraft employing a tightly integrated engine airframe designs. The particular concept under consideration in this experiment is a blended-wing-body airframe powered by a series of electric fans exhausting through slot nozzle over an aft deck. The exhaust Mach number and surface length were parametrically varied during the test. Far-field noise data were acquired for all nozzle surface geometries and exhaust flow conditions. Phased-array noise source localization data and in-flow pressure data were also acquired for a subset of the isolated (no surface) and surface configurations; these measurements provide data that have proven useful for modeling the jet-surface interaction noise source and the surface effect on the jet-mixing noise in round jets. A summary of the nozzle surface geometry, flow conditions tested, and data collected are presented.

  16. Saturn's Magnetic Field Model: Birotor Dipole From Cassini RPWS and MAG Experiments

    Science.gov (United States)

    Galopeau, P. H. M.

    2016-12-01

    The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR) which were attributed to the northern and southern hemispheres respectively. We believe that the periodic time modulations present in the SKR are mainly due to the rotation of Saturn's inner magnetic field. The existence of a double period implies that the inner field is not only limited to a simple rotation dipole but displays more complex structures having the same time periodicities than the radio emission. In order to build a model of this complex magnetic field, it is absolutely necessary to know the accurate phases of rotation linked with the two periods. The radio observations from the RPWS experiment allow a continuous and accurate follow-up of these rotation phases, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz between July 2004 and June 2012 was performed in order to calculate in the same time the different periodicities and phases. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to have North and South poles rotating around Saturn's axis at two different angular velocities; this dipole is tilted and not centered. 57 Cassini's revolutions, the periapsis of which is less than 5 Saturnian radii, have been selected for this study. For each of these chosen orbits, it is possible to fit with high precision the measurements of the MAG data experiment given by the magnetometers embarked on board Cassini. A nonrotating external magnetic field completes the model. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. These results can be used as a boundary condition for modelling and constraining

  17. Electromagnetic Emissions During Rock-fracturing Experiments Inside Magnetic Field Free Space

    Science.gov (United States)

    Wang, H.; Zhou, J.; Zhu, T.; Jin, H.

    2012-12-01

    Abnormal electromagnetic emission (EME) signal is one type of the most important precursors before earthquake, which has been widely observed and recorded before large earthquake, but the physical mechanism underlying the phenomenon is unclear and under controversy. Monitoring the EME signals during rock-fracturing experiments in laboratory is an effective way to study the phenomena and their underlying mechanism. Electromagnetic noise is everywhere because industrial and civilian electrical equipments have been widely used, which make difficulties to the in-lab experiments and field monitoring. To avoid the interference from electromagnetic noise, electromagnetic experiments must be carried out inside shielded space. Magnetic Field Free Space (MFFS) was constructed by Institute of Geophysics, China Earthquake Administration in 1980s. MFFS is a near-spherical polyhedron 'space' with 26 faces and inside diameter about 2.3 m. It is enclosed by 8-layer permalloy 1J85 for shielding magnetic field and 2-layer purified aluminium for shielding electric field. MFFS mainly shields static magnetic field by a factor of 160-4000 for the magnetic signals with the frequencies ranging from 0.01 Hz to 10 Hz. The intensity of magnetic field inside the space is less than 20 nT and its fluctuation is less than 0.3 nT in 90 hours. MFFS can dramatically shield EME signals in the frequency range of EME antennas utilized in our experiments, (several to ~320) kHz, by at least 90%, based on observation. Rock specimens (granite, marble) were fractured by two ways inside MFFS. 1) Cuboid bulk specimens were drilled, filled with static cracking agent, and then dilated from inside until fracture. 2) Cylindrical rock specimens were stressed until fracture by using a non-magnetic rock testing machine with the maximum testing force 300kN. EME, acoustic emission (AE) and strain signals were collected synchronously by the same data acquisitor, Acoustic Emission Workstation made by Physical Acoustics

  18. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa.

    Science.gov (United States)

    Meier, Thomas; Haase, Jürgen

    2015-12-01

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al2O3), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It is shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.

  19. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Thomas; Haase, Jürgen [Faculty of Physics and Earth Sciences, University of Leipzig, Linnéstrasse 5, Leipzig 04103 (Germany)

    2015-12-15

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al{sub 2}O{sub 3}), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It is shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.

  20. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments [Simulating the MagLIF plasma confinement with smaller-scale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cuneo, M. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrmann, M. C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, D. B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Slutz, S. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-06-20

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. Furthermore, this observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  1. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M.; Saito, A. [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S. [Toyota Motor Corp., Aichi (Japan); Shibata, H. [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y. [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  2. Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

    CERN Document Server

    Aielli, G; Bartoli, B; Bernardini, P; Bi, X J; Bleve, C; Branchini, P; Budano, A; Bussino, S; Melcarne, A K Calabrese; Camarri, P; Cao, Z; Cappa, A; Cardarelli, R; Catalanotti, S; Cattaneo, C; Celio, P; Chen, S Z; Chen, T L; Chen, Y; Creti, P; Cui, S W; Dai, B Z; Staiti, G D'Alí; Danzengluobu,; Dattoli, M; De Mitri, I; Piazzoli, B D'Ettorre; De Vincenzi, M; Di Girolamo, T; Ding, X H; Di Sciascio, G; Feng, C F; Feng, Z Y; Feng, Zhenyong; Galeazzi, F; Galeotti, P; Gargana, R; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Huang, Q; Iacovacci, M; Iuppa, R; James, I; Jia, H Y; Labaciren,; Li, H J; Li, J Y; Li, X X; Liberti, B; Liguori, G; Liu, C; Liu, C Q; Liu, M Y; Liu, J; Lu, H; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Martello, D; Mastroianni, S; Meng, X R; Montini, P; Ning, C C; Pagliaro, A; Panareo, M; Perrone, L; Pistilli, P; Qu, X B; Rossi, E; Ruggieri, F; Saggese, L; Salvini, P; Santonico, R; Shen, P R; Sheng, X D; Shi, F; Stanescu, C; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, B; Wang, H; Wu, C Y; Wu, H R; Yao, Z G; Xu, B; Xue, L; Yan, Y X; Yang, Q Y; Yang, X C; Yuan, A F; Zha, M; Zhang, H M; Zhang, JiLong; Zhang, JianLi; Zhang, L; Zhang, P; Zhang, X Y; Zhang, Y; Zhaxisangzhu,; Zhaxiciren,; Zhou, X X; Zhu, F R; Zhu, Q Q; Zizzi, G

    2011-01-01

    The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.

  3. Alpha Magnetic Spectrometer (AMS02) experiment on the International Space Station (ISS)

    Institute of Scientific and Technical Information of China (English)

    Behcet ALPAT

    2003-01-01

    The Alpha Magnetic Spectrometer experiment is realized in two phases. A precursor flight (STS-91)with a reduced experimental configuration (AMS01) has successfully flown on space shuttle Discovery in June 1998.The final version (AMS02) will be installed on the International Space Station (ISS) as an independent module inearly 2006 for an operational period of three years. The main scientific objectives of AMS02 include the searches forthe antimatter and dark matter in cosmic rays. In this work we will discuss the experimental details as well as the im-proved physics capabilities of AMS02 on ISS.

  4. Search for Intermediate Mass Magnetic Monopoles and Nuclearites with the SLIM experiment

    CERN Document Server

    Cecchini, S; Ferdinando, D D; Cozzi, M; Frutti, M; Giacomelli, G; Kumar, A; Manzoor, S; McDonald, J; Medinaceli, E; Nogales, J; Patrizii, L; Pinfold, J L; Popa, V; Qureshi, I E; Saavedra, O; Sher, G; Shahzad, M I; Spurio, M; Ticona, R; Togo, V; Velarde, A

    2005-01-01

    SLIM is a large area experiment (440 m2) installed at the Chacaltaya cosmic ray laboratory since 2001, and about 100 m2 at Koksil, Himalaya, since 2003. It is devoted to the search for intermediate mass magnetic monopoles (107-1013 GeV/c2) and nuclearites in the cosmic radiation using stacks of CR39 and Makrofol nuclear track detectors. In four years of operation it will reach a sensitivity to a flux of about 10-15 cm-2 s-1 sr-1. We present the results of the calibration of CR39 and Makrofol and the analysis of a first sample of the exposed detector.

  5. Study of Lower Hybrid Frequency Turbulence in the Magnetic Reconnection Experiment (MRX)

    Science.gov (United States)

    Dorfman, S. E.; Ji, H.; Roytershteyn, V.; Yamada, M.; Daughton, W. S.; Yoo, J.; Oz, E.; Tharp, T.; Lawrence, E. E.; Myers, C.

    2010-12-01

    One of the key open questions in magnetic reconnection is the nature of the mechanism that governs the reconnection rate in real astrophysical and laboratory systems. Comparisons between fully kinetic 2-D simulations of the Magnetic Reconnection Experiment (MRX) and experimental data indicate that three-dimensional dynamics, such as current layer disruptions recently observed in MRX, may play a key role in resolving an important discrepancy in the reconnection rate and layer width [1,2,3]. These disruptions are often associated with fluctuations in the lower hybrid frequency range and a rapid local reconnection rate. Fluctuations are observed not only in MRX [4], but also in space [5] and 3-D kinetic simulations. Comparison of fluctuation characteristics between the three domains may shed light on the underlying physics. In both the simulation and the experiments, the fluctuations are related to density gradients across the layer. The frequency range is similarly broadband up to the lower hybrid range, and the phase velocities are comparable in appropriately normalized units. However, while the electron drift speed is comparable to the phase velocity at the layer center in the experiment (consistent with previous MRX results [4]), the drift speed in the simulations is considerably larger. Furthermore, the fluctuations observed in the experiment are fully turbulent with correlation lengths the same order as the wavelength while those observed in the simulations and in space are more coherent. Some discharges also display "O-point" signatures consistent with magnetic island like structures. The present research explores the relationship between the disruptions and fluctuations in the context of the reconnection rate problem. Experiments are ongoing to determine what physics is responsible for the broader current layers (and correspondingly smaller drift speeds) observed in the experiment. [1] Y. Ren, et al., Phys. Plasmas 15, 082113 (2008). [2] S. Dorfman, et al

  6. Versatile controllability of non-axisymmetric magnetic perturbations in KSTAR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyunsun, E-mail: hyunsun@nfri.re.kr; Jeon, Y.M.; Hahn, S.H.; Ahn, H.S.; Bak, J.G.; In, Y.; Kim, J.; Woo, M.H.; Kim, H.S.; Jin, J.K.; Park, B.H.; Yoon, S.W.

    2016-10-15

    Highlights: • A newly upgraded In-Vessel Control Coil(IVCC) system has been installed in KSTAR. • The system consists of broadband power supplies and a current connection patch panel. • The system has been confirmed for various dynamic demands of 3D magnetic field configurations. • It can help expand understanding of the 3D tokamak physics. - Abstract: A newly upgraded IVCC (In-Vessel Control Coil) system equipped with four broadband power supplies, along with a current connection patch panel, are introduced with a discussion of their capabilities on various KSTAR experiments. Until the 2014 KSTAR experimental campaign, the non-axisymmetric field configuration could not be changed in a shot, let alone the limited number of accessible configurations. With the installation of the new power supplies, such restrictions have been greatly reduced. Based on the 2015 KSTAR run-campaign, this new system was confirmed to easily cope with various dynamic demands for toroidal and poloidal phases of the 3D magnetic field in a shot. With newly equipped magnetic sensors, this enables us to extend the operational options and further explore the 3D physics for tokamak plasmas.

  7. Spin flip loss in magnetic confinement of ultracold neutrons for neutron lifetime experiments

    CERN Document Server

    Steyerl, A; Kaufman, C; Müller, G; Malik, S S

    2016-01-01

    We analyze the spin flip loss for ultracold neutrons in magnetic bottles of the type used in experiments aiming at a precise measurement of the neutron lifetime, extending the one-dimensional field model used previously by Steyerl $\\textit{et al.}$ [Phys.Rev.C $\\mathbf{86}$, 065501 (2012)] to two dimensions for cylindrical multipole fields. We also develop a general analysis applicable to three dimensions. Here we apply it to multipole fields and to the bowl-type field configuration used for the Los Alamos UCN$\\tau$ experiment. In all cases considered the spin flip loss calculated exceeds the Majorana estimate by many orders of magnitude but can be suppressed sufficiently by applying a holding field of appropriate magnitude to allow high-precision neutron lifetime measurements, provided other possible sources of systematic error are under control.

  8. Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations

    Science.gov (United States)

    Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.

    2014-10-01

    The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag < 75 μm, temperatures around 3 keV, and isotropic neutron yields up to YnDD = 2 ×1012 from imploded liners reaching peak velocities around 70 km/s over an implosion time of about 60 ns. We present comparisons between the experimental observables and post-shot degraded integrated simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. Complex magnetic field exposure system for in vitro experiments at intermediate frequencies.

    Science.gov (United States)

    Lodato, Rossella; Merla, Caterina; Pinto, Rosanna; Mancini, Sergio; Lopresto, Vanni; Lovisolo, Giorgio A

    2013-04-01

    In occupational environments, an increasing number of electromagnetic sources emitting complex magnetic field waveforms in the range of intermediate frequencies is present, requiring an accurate exposure risk assessment with both in vitro and in vivo experiments. In this article, an in vitro exposure system able to generate complex magnetic flux density B-fields, reproducing signals from actual intermediate frequency sources such as magnetic resonance imaging (MRI) scanners, for instance, is developed and validated. The system consists of a magnetic field generation system and an exposure apparatus realized with a couple of square coils. A wide homogeneity (99.9%) volume of 210 × 210 × 110 mm(3) was obtained within the coils, with the possibility of simultaneous exposure of a large number of standard Petri dishes. The system is able to process any numerical input sequence through a filtering technique aimed at compensating the coils' impedance effect. The B-field, measured in proximity to a 1.5 T MRI bore during a typical examination, was excellently reproduced (cross-correlation index of 0.99). Thus, it confirms the ability of the proposed setup to accurately simulate complex waveforms in the intermediate frequency band. Suitable field levels were also attained. Moreover, a dosimetry index based on the weighted-peak method was evaluated considering the induced E-field on a Petri dish exposed to the reproduced complex B-field. The weighted-peak index was equal to 0.028 for the induced E-field, indicating an exposure level compliant with the basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Bioelectromagnetics 34:211-219, 2013. © 2012 Wiley Periodicals, Inc.

  10. Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array

    Science.gov (United States)

    Salauddin, M.; Park, Jae Y.

    2017-03-01

    We present a dual Halbach array electromagnetic energy harvester that generates significant power from hand shaking vibration. The magnetic-spring configuration is employed for generating sufficient power from the hand motion of irregular and low-frequency vibrations. However, significant power generation at low-frequency vibrations is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density. A prototype was fabricated and tested both using a vibration exciter and by manual hand-shaking. The fabricated device showed resonant behavior during the vibration exciter test. For the vibration exciter test, the prototype device offers a maximum average power of 2.92 mW to a 62 Ω optimum load, at a 6 Hz resonance frequency and under a 0.5 g acceleration. The prototype device is capable of delivering a maximum average power of 2.27 mW from hand shaking. The fabricated device exhibited a normalized power density 0.46 mW cm‑2g‑2 which is very high compared to the current state-of-the-art devices, representing its ability in powering portable and wearable smart devices from extremely low frequency vibration.

  11. Analytical study of nozzle performance for nuclear thermal rockets

    Science.gov (United States)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.

  12. Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    The functions of a regeneratively-cooled nozzle are to (1) expand combustion gases to increase exhaust gas velocity while, (2) maintaining adequate wall temperatures to prevent structural failure, and (3) transfer heat from the hot gases to the coolant fluid to promote injector performance and stability. Regeneratively-cooled nozzles are grouped into two categories: tube-wall nozzles and channel wall nozzles. A channel wall nozzle is designed with an internal liner containing a series of integral coolant channels that are closed out with an external jacket. Manifolds are attached at each end of the nozzle to distribute coolant to and away from the channels. A variety of manufacturing techniques have been explored for channel wall nozzles, including state of the art laser-welded closeouts and pressure-assisted braze closeouts. This paper discusses techniques that NASA MSFC is evaluating for rapid fabrication of channel wall nozzles that address liner fabrication, slotting techniques and liner closeout techniques. Techniques being evaluated for liner fabrication include large-scale additive manufacturing of freeform-deposition structures to create the liner blanks. Abrasive water jet milling is being evaluated for cutting the complex coolant channel geometries. Techniques being considered for rapid closeout of the slotted liners include freeform deposition, explosive bonding and Cold Spray. Each of these techniques, development work and results are discussed in further detail in this paper.

  13. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and

  14. Instability of jet plume from an overexpanded nozzle

    Science.gov (United States)

    Papamoschou, Dimitri

    2005-11-01

    Our study involves the phenomenon of supersonic nozzle flow separation wherein a shock forms inside a convergent-divergent nozzle. Of particular interest is the instability of the jet plume exiting this type of nozzle. A rectangular apparatus of aspect ratio 3.57 and flexible walls enabled a parametric study of the mean and turbulent properties of the jet plume versus nozzle pressure ratio (from 1.2 to 2.0), exit-to-throat area ratio (from 1.0 to 1.8) and wall divergence angle at the nozzle exit (from 0 to 4 deg.) Time-resolved surveys of total pressure were obtained by means of a dynamic Pitot probe. The growth rate of the jet and the peak rms value of total pressure fluctuation near the nozzle exit increase several fold with area ratio. This trend becomes most pronounced for nozzle pressure ratio around 1.6. At fixed area ratio and nozzle pressure ratio, the wall divergence angle has little effect on the instability.

  15. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  16. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and t

  17. Preparation and characterisation of magnetic nanostructured samples for inelastic neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzpaintner, Wolfgang

    2010-06-22

    Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of

  18. Three-Axis Magnetic Field Measurements in the TCSU RMF Current Drive Experiment

    Science.gov (United States)

    Velas, K. M.; Milroy, R. D.

    2011-10-01

    A 3-axis probe was installed on TCSU shortly before its shutdown. The probe has 90 windings that simultaneously measure Br, Bθ, and Bz at 30 radial positions and is fully translatable. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Initially, data has been processed with a 10 kHz low pass filter to capture the steady field. Higher frequency content has more shot-to-shot variability; it is difficult to map this axially. Plans include using a band pass filter to isolate the RMF frequency, which is consistent between shots. It is anticipated that the RMF field, in conjunction with the steady field, will yield a map of the full 3D rotating field structure. The 3- axis probe measurements are used to calculate the end-shorting torque, which opposes the RMF torque. Data from even- and odd-parity experiments will be compared. The NIMROD code has been adapted to simulate the TCSU experiment using boundary conditions adjusted to match both even- and odd-parity experimental conditions. A comparison of the n = 0 components of the calculated fields to the 3- axis probe measurements shows agreement in the magnetic field structure of the FRC as well as in the jet region.

  19. Numerical modeling of laser-driven experiments of colliding jets: Turbulent amplification of seed magnetic fields

    Science.gov (United States)

    Tzeferacos, Petros; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Gregori, Gianluca; Lamb, Donald; Lee, Dongwook; Meinecke, Jena; Scopatz, Anthony; Weide, Klaus

    2014-10-01

    In this study we present high-resolution numerical simulations of laboratory experiments that study the turbulent amplification of magnetic fields generated by laser-driven colliding jets. The radiative magneto-hydrodynamic (MHD) simulations discussed here were performed with the FLASH code and have assisted in the analysis of the experimental results obtained from the Vulcan laser facility. In these experiments, a pair of thin Carbon foils is placed in an Argon-filled chamber and is illuminated to create counter-propagating jets. The jets carry magnetic fields generated by the Biermann battery mechanism and collide to form a highly turbulent region. The interaction is probed using a wealth of diagnostics, including induction coils that are capable of providing the field strength and directionality at a specific point in space. The latter have revealed a significant increase in the field's strength due to turbulent amplification. Our FLASH simulations have allowed us to reproduce the experimental findings and to disentangle the complex processes and dynamics involved in the colliding flows. This work was supported in part at the University of Chicago by DOE NNSA ASC.

  20. Self-generated magnetic fields in direct-drive implosion experiments

    Science.gov (United States)

    Igumenshchev, I. V.; Zylstra, A. B.; Li, C. K.; Nilson, P. M.; Goncharov, V. N.; Petrasso, R. D.

    2014-06-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA Laser Facility were investigated employing radiography with ˜10- to 60-MeV protons. The experiment used plastic-shell targets with imposed surface defects (glue spots, wires, and mount stalks), which enhance self-generated fields. The fields were measured during the 1-ns laser drive with an on-target intensity ˜1015 W/cm2. Proton radiographs show multiple ring-like structures produced by electric fields ˜107 V/cm and fine structures from surface defects, indicating self-generated fields up to ˜3 MG. These electric and magnetic fields show good agreement with two-dimensional magnetohydrodynamic simulations when the latter include the ∇Te × ∇ne source, Nernst convection, and anisotropic resistivity. The simulations predict that self-generated fields affect heat fluxes in the conduction zone and, through this, affect the growth of local perturbations.

  1. DIRAC detector experiment: the vacuum chamber (blue), beginning of the flat chamber (yellow), magnetic screen (orange) in front of the magnet. The vacuum tube for the primary proton beam is below (sil ver color)

    CERN Multimedia

    Patrice Loïez

    1999-01-01

    DIRAC detector experiment: the vacuum chamber (blue), beginning of the flat chamber (yellow), magnetic screen (orange) in front of the magnet. The vacuum tube for the primary proton beam is below (sil ver color)

  2. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    Science.gov (United States)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  3. Acquisition procedures, processing methodologies and preliminary results of magnetic and ROV data collected during the TOMO-ETNA experiment

    Directory of Open Access Journals (Sweden)

    Danilo Cavallaro

    2016-09-01

    Full Text Available The TOMO-ETNA experiment was devised for the investigation of the continental and oceanic crust beneath Mt. Etna volcano and northeastern Sicily up to the Aeolian Islands, through an active source study. In this experiment, a large amount of geophysical data was collected both inland and in the Ionian and Tyrrhenian Seas for identifying the major geological and structural features offshore Mt. Etna and NE Sicily. One of the oceanographic cruises organized within the TOMO-ETNA experiment was carried out on the hydrographic vessel “Galatea” by Italian Navy. During the cruise a detailed magnetic survey and a set of ROV (remotely operated vehicle dives were performed offshore Mt. Etna. The magnetic survey allowed the compilation of a preliminary magnetic map revealing a clear direct relationship between volcanic structures and high frequency magnetic anomalies. Significant positive magnetic anomalies were identified offshore the Timpa area and along the easternmost portion of the Riposto Ridge and correlated to a primitive volcanic edifice and to shallow volcanic bodies, respectively. On the whole, the magnetic anomaly map highlights a clear SW-NE decreasing trend, where high amplitude positive magnetic anomaly pattern of the SW sector passes, northeastwardly, to a main negative one. ROV dives permitted to directly explore the shallowest sectors of the Riposto Ridge and to collect several videos and seafloor samples, allowing us to identify some locally developed volcanic manifestations.

  4. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  5. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  6. Use of calophyllum inophyllum biofuel blended with diesel in DI diesel engine modified with nozzle holes and its size

    Science.gov (United States)

    Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.

    2016-05-01

    Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.

  7. A Basic Study on the Ejection of ICI Nozzle under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Rae; Bae, Ji Hoon; Bang, Kwang Hyun [Korea Maritime and Ocean University, Busan (Korea, Republic of); Park, Jong Woong [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    Nozzle injection should be blocked because it affect to the environment if its melting core exposes outside. The purpose of this study is to carry out the thermos mechanical analysis due to debris relocation under severe accidents and to predict the nozzle ejection calculated considering the contact between the nozzle and lower head, and the supports of pipe cables. As a result of analyzing process of severe accidents, there was melting reaction between nozzle and the lower head. In this situation, we might predict the non-uniform contact region of nozzle hole of lower head and nozzle outside, delaying ejection of nozzles. But after melting, the average remaining length of the nozzle was 120mm and the maximum vertical displacement of lower nozzle near the weld is 3.3mm so there would be no nozzle this model, because the cable supports restrains the vertical displacement of nozzle.

  8. Investigation of convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft

    Science.gov (United States)

    Berrier, B. L.; Re, R. J.

    1980-01-01

    An investigation was conducted of isolated convergent-divergent nozzles to determine the effect of several design parameters on nozzle performance. Tests were conducted using high pressure air for propulsion simulation at Mach numbers from 0.60 to 2.86 at an angle of attack of 0 deg and at nozzle pressure ratios from jet off to 46.0. Three power settings (dry, partial afterburning, and maximum afterburning), three nozzle lengths, and nozzle expansion ratios from 1.22 to 2.24 were investigated. In addition, the effects of nozzle throat radius and a cusp in the external boattail geometry were studied. The results of this study indicate that, for nozzles operating near design conditions, increasing nozzle length increases nozzle thrust-minus-drag performance. Nozzle throat radius and an external boattail cusp had negligible effects on nozzle drag or internal performance.

  9. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    Science.gov (United States)

    Salazar Mejía, C.; Ghorbani Zavareh, M.; Nayak, A. K.; Skourski, Y.; Wosnitza, J.; Felser, C.; Nicklas, M.

    2015-05-01

    The present pulsed high-magnetic-field study on Ni50Mn35In15 gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  10. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Nayak, A. K.; Felser, C.; Nicklas, M. [Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Ghorbani Zavareh, M.; Wosnitza, J. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Institut für Festkörperphysik, TU Dresden, 01062 Dresden (Germany); Skourski, Y. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany)

    2015-05-07

    The present pulsed high-magnetic-field study on Ni{sub 50}Mn{sub 35}In{sub 15} gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  11. Accessing interior magnetic field vector components in neutron electric dipole moment experiments via exterior measurements, I. Boundary-value techniques

    CERN Document Server

    Plaster, B

    2013-01-01

    We propose a new concept for determining the interior magnetic field vector components in neutron electric dipole moment experiments. If a closed three-dimensional boundary surface surrounding the fiducial volume of an experiment can be defined such that its interior encloses no currents or sources of magnetization, each of the interior vector field components and the magnetic scalar potential will satisfy a Laplace equation. Therefore, if either the vector field components or the normal derivative of the scalar potential can be measured on the surface of this boundary, thus defining a Dirichlet or Neumann boundary-value problem, respectively, the interior vector field components or the scalar potential (and, thus, the field components via the gradient of the potential) can be uniquely determined via solution of the Laplace equation. We discuss the applicability of this technique to the determination of the interior magnetic field components during the operating phase of neutron electric dipole moment experim...

  12. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  13. Thrust vectoring effects of a transverse gas injection into a supersonic cross flow of an axisymmetric convergent-divergent nozzle

    Science.gov (United States)

    Zmijanovic, V.; Lago, V.; Leger, L.; Depussay, E.; Sellam, M.; Chpoun, A.

    2013-03-01

    The transverse gas injection into the main supersonic flow of an axisymmetric convergent-divergent (C-D) propulsive nozzle is investigated for the fluidic thrust vectoring (FTV) possibilities as the segment part of the CNES "Perseus" project. Truncated ideal contour and conical C-D nozzles with different position and angle of the secondary circular injection port are selected as test models in the current numerical and experimental study. Analytical approach revealed parameters which affect the FTV efficiency, these criterions are further numerically explored and results data of the conical nozzle test cases are compared and coupled with the ones from experiments. It is found that upstream inclined injection has positive effect on vectoring capabilities and that with moderate secondary to primary mass-flow ratios, ranging around 5%, pertinent vector side force is possible to be achieved.

  14. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  15. A finite difference method with periodic boundary conditions for simulations of diffusion-weighted magnetic resonance experiments in tissue.

    Science.gov (United States)

    Russell, Greg; Harkins, Kevin D; Secomb, Timothy W; Galons, Jean-Philippe; Trouard, Theodore P

    2012-02-21

    A new finite difference (FD) method for calculating the time evolution of complex transverse magnetization in diffusion-weighted magnetic resonance imaging and spectroscopy experiments is described that incorporates periodic boundary conditions. The new FD method relaxes restrictions on the allowable time step size employed in modeling which can significantly reduce computation time for simulations of large physical extent and allow for more complex, physiologically relevant, geometries to be simulated.

  16. The BMV experiment : a novel apparatus to study the propagation of light in a transverse magnetic field

    CERN Document Server

    Battesti, Remy; Batut, Sebastien; Robilliard, Cecile; Bailly, Gilles; Michel, Christophe; Nardone, Marc; Pinard, Laurent; Portugall, Oliver; Trenec, Gerard; Mackowski, Jean-Marie; Rikken, Geert L J A; Vigue, Jacques; Rizzo, Carlo

    2007-01-01

    In this paper, we describe in detail the BMV (Bir\\'efringence Magn\\'etique du Vide) experiment, a novel apparatus to study the propagation of light in a transverse magnetic field. It is based on a very high finesse Fabry-Perot cavity and on pulsed magnets specially designed for this purpose. We justify our technical choices and we present the current status and perspectives.

  17. Hard X-Ray Burst Detected From Caltech Plasma Jet Experiment Magnetic Reconnection Event

    Science.gov (United States)

    Marshall, Ryan S.; Bellan, Paul M.

    2016-10-01

    In the Caltech plasma jet experiment a 100 kA MHD driven jet becomes kink unstable leading to a Rayleigh-Taylor instability that quickly causes a magnetic reconnection event. Movies show that the Rayleigh-Taylor instability is simultaneous with voltage spikes across the electrodes that provide the current that drives the jet. Hard x-rays between 4 keV and 9 keV have now been observed using an x-ray scintillator detector mounted just outside of a kapton window on the vacuum chamber. Preliminary results indicate that the timing of the x-ray burst coincides with a voltage spike on the electrodes occurring in association with the Rayleigh-Taylor event. The x-ray signal accompanies the voltage spike and Rayleigh-Taylor event in approximately 50% of the shots. A possible explanation for why the x-ray signal is sometimes missing is that the magnetic reconnection event may be localized to a specific region of the plasma outside the line of sight of the scintillator. The x-ray signal has also been seen accompanying the voltage spike when no Rayleigh-Taylor is observed. This may be due to the interframe timing on the camera being longer than the very short duration of the Rayleigh-Taylor instability.

  18. On magnetization of quark-gluon plasma at the LHC experiment energies

    CERN Document Server

    Skalozub, V

    2016-01-01

    Large scale chromomagnetic, B_3, B_8, and usual magnetic,H, fields have to be generated in QCD after the deconfinement phase transition (DPT) at temperatures T larger than deconfinement temperature T_d. The two former fields are created spontaneously due to asymptotic freedom of gluon intaractions. Whereas H is produced due to either the feature of quarks to possess both electric and color charges or a vacuum polarization in this case. At the polarization, the vacuum quark loops mix the external fields. As a result, B_3, B_8 become the sources generating H. The latter field appears at $T$ much lower than the electroweak phase transition temperature T_ew. This mechanism should exhibit itself at the LHC experiments on heavy ion collisions. It operates at the one-loop diagram level for an effective potential. The created fields are temperature dependent and occupying the macroscopic volume of quark-gluon plasma. The magnetization influences different processes and may serve as a signal for the DPT.

  19. Baby MIND: a magnetized segmented neutrino detector for the WAGASCI experiment

    Science.gov (United States)

    Antonova, M.; Asfandiyarov, R.; Bayes, R.; Benoit, P.; Blondel, A.; Bogomilov, M.; Bross, A.; Cadoux, F.; Cervera, A.; Chikuma, N.; Dudarev, A.; Ekelöf, T.; Favre, Y.; Fedotov, S.; Hallsjö, S.-P.; Izmaylov, A.; Karadzhov, Y.; Khabibullin, M.; Khotyantsev, A.; Kleymenova, A.; Koga, T.; Kostin, A.; Kudenko, Y.; Likhacheva, V.; Martinez, B.; Matev, R.; Medvedeva, M.; Mefodiev, A.; Minamino, A.; Mineev, O.; Nessi, M.; Nicola, L.; Noah, E.; Ovsiannikova, T.; Pais Da Silva, H.; Parsa, S.; Rayner, M.; Rolando, G.; Shaykhiev, A.; Simion, P.; Soler, F. J. P.; Suvorov, S.; Tsenov, R.; Ten Kate, H.; Vankova-Kirilova, G.; Yershov, N.

    2017-07-01

    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.

  20. A Cryogen-free Cryostat for Scientific Experiment in Pulsed High Magnetic Fields

    Science.gov (United States)

    Wang, Shaoliang; Li, Liang; Zuo, Huakun; Liu, Mengyu; Peng, Tao

    Traditional cryostats for scientific experiments in pulsed high magnetic fields use liquid helium as the cooling source. To reduce the running cost and to increase the operational efficiency, a cryogen-free cryostat based on a GM cryocooler has been developed for a 60 T pulsed field measurement cell at Wuhan National High Magnetic Field Center. A double layer temperature-control insert was designed to obtain a stable temperature in the sample chamber of the cryostat. In order to eliminate the sample temperature fluctuation caused by the eddy current heating during the pulse, the inner layer is made from a fiberglass tubing with an epoxy coating. Different from the traditional cryostat, the sample and the temperature controller are not immerged in the 4He bath. Instead, they are separated by helium gas under sub-atmospheric pressure, which makes the heat transfer smoother. At the sample position, a resistance heater wound with antiparallel wires is mounted on the inner layer to heat the sample. Using the temperature-control insert, the temperature can be controlled with an accuracy of ±0.01 K in the range of 1.4 K-20 K, and ±0.05 K between 20 K and 300 K.

  1. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  2. Washer-Gun Plasma Source for Magnetic Reconnection Experiments on VTF

    Science.gov (United States)

    Vrublevskis, A.; Egedal, J.; Fox, W.; Katz, N.; Le, A.; Porkolab, M.

    2009-11-01

    We present a recently built electrostatic washer-gun plasma source for the Versatile Toroidal Facility (VTF). The source produces plasmas with estimated densities of ˜10^19 m^- 3 and electron temperatures of ˜5-20 eV. The present plasma source for VTF is microwave-induced electron cyclotron resonant breakdown and requires a strong toroidal magnetic field, which acts as a guide field in reconnection experiments. The gun will allow reconnection experiments with no guide field. The source is based on the design developed by Sterling Scientific [1, 2]. To operate, gas is injected into a channel formed by a stack of alternating molybdenum and boron nitride washers with a molybdenum electrode washer at each end. A capacitor bank is discharged through these electrodes and the gas. The resulting plasma escapes the channel into the main chamber of the experiment. If available, we will present data on argon plasma produced by the gun inside the VTF. [1ex] [1] G. Fiksel, et al., Plasma Sources Sci. Technol., 5, 78 (1996)[0ex] [2] D. Hartog et al., Plasma Sources Sci. Technol., 6, 492 (1997)

  3. Wide Variety of Experiments Using a Cryogen-Free 27.5 T Hybrid Magnet and a Cryogen-Free 18.1 T Superconducting Magnet

    Science.gov (United States)

    Watanabe, K.; Awaji, S.; Oguro, H.

    2013-03-01

    A cryogen-free hybrid magnet without liquid helium for operation, generating 27.5 T in a 32 mm room temperature bore of an 8 MW water-cooled resistive insert magnet in an 8.5 T background field of a cryogen-free superconducting outsert magnet, is being operated for basic research at low temperatures down to 17 mK in combination with a dilution refrigerator. In addition, we are developing functional materials using a differential thermal analysis DTA at high temperatures up to 1473 K in high fields up to 27 T. This cryogen-free hybrid magnet will be upgraded to generate 29 T by improving the outer superconducting magnet. A cryogen-free 18.1 T superconducting magnet with a 52 mm room temperature experimental bore, consisting of a Bi2Sr2Ca2Cu3O10 (Bi2223) insert coil, has been developed using a GM-JT cryocooler. Recently, bronze-tape-laminated Bi2223 has revealed excellent irreversible stress tolerance of 250 MPa at 77 K. In addition, the critical current properties for recent Bi2223 tapes are largely improved from 200 to 400 A/cm-width at 77 K in a self-field. Therefore, the stainless steel reinforcement tape incorporated for the previous Bi2223 insert coil is no longer needed for a new Bi2223 one. A new Bi2223 insert coil with almost the same size as the existing insert coil can generate two times higher fields at the elevated operation current from 162 to 191 A. An upgraded cryogen-free superconducting magnet can offer a long-term experiment at the constant magnetic field of 20 T for an in-field heat-treatment investigation.

  4. Final results on the neutrino magnetic moment from the MUNU experiment

    CERN Document Server

    Daraktchieva, Z; Avenier, M; Broggini, C; Busto, J; Cerna, C; Juget, F R; Koang, D H; Lamblin, J; Lebrun, D; Link, O; Puglierin, G; Stutz, A; Tadsen, A; Vuilleumier, J L; Zacek, V

    2005-01-01

    The MUNU detector was designed to study neutrino-electron elastic scattering at low energy. The central component is a Time Projection Chamber filled with CF4 gas, surrounded by an anti-Compton detector. The experiment was carried out at the Bugey (France) nuclear reactor. In this paper we present the final analysis of the data recorded at 3 bar and 1 bar pressure. Both the energy and the scattering angle of the recoil electron are measured. From the 3 bar data a new upper limit on the neutrino magnetic moment was derived. At 1 bar electron tracks down to 150 keV were reconstructed, demonstrating the potentiality of the experimental technique for future applications in low energy neutrino physics.

  5. Experiments and simulations of particle flows in a magnetized dust torus

    Energy Technology Data Exchange (ETDEWEB)

    Reichenstein, T.; Wilms, J.; Greiner, F.; Piel, A. [IEAP, Christian-Albrechts-Universitaet, Kiel (Germany); Melzer, A. [Institut fuer Physik, Universitaet Greifswald (Germany)

    2012-11-15

    An overview is given of the confinement and dynamical phenomena observed in experiments and simulations of magnetized dust tori. Due to the presence of gravity, a strongly inhomogeneous velocity field is found along the circumference of the torus. The simulations show that the dust flow, which is unsheared and nearly incompressible, exhibits a distinct shell structure, which can be understood by rapid frictional cooling and strong Coulomb coupling. At lower frictional damping, the symmetry of the flow can be spontaneously broken, leading to a region of strong velocity shear and excitation of Kelvin-Helmholtz instabilities. New experimental evidence of counterflows is found (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Stationary magnetic shear reversal during Lower Hybrid experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Joffrin, E.; Kazarian-Vibert, F.; Moreau, D.; Peysson, Y.; Bibet, P. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Ferron, J.; Kupfer, K. [General Atomics, San Diego, CA (United States)] [and others

    1996-01-01

    Stable and stationary states with hollow current density profiles have been achieved with Lower Hybrid Current Drive (LHCD) during Lower Hybrid (LH) wave accessibility experiments. By analysing the bounded propagation domain in phase space which naturally limits the central penetration and absorption of the waves, off-axis LH power deposition has been realized in a reproducible manner. The resulting current density profile modifications have led to a global confinement enhancement attributed to the formation of an internal `transport barrier` in the central reversed shear region where the electron thermal diffusivity is reduced to its neoclassical collisional level. The multiple-pass LH wave propagation in the weak Landau damping and reversed magnetic shear regime is also investigated in the framework of a statistical theory and the experimental validation of this theory is discussed. (author). 37 refs.

  7. Experiments on the magnetic coupling in a small scale counter rotating marine current turbine

    Science.gov (United States)

    Kim, I. C.; Lee, N. J.; Wata, J.; Hyun, B. S.; Lee, Y. H.

    2016-05-01

    Modern economies are dependent on energy consumption to ensure growth or sustainable development. Renewable energy sources provide a source of energy that can provide energy security and is renewable. Tidal energy is more predictable than other sources or renewable energy like the sun or wind. Horizontal axis marine current turbines are currently the most advanced and commercially feasible option for tidal current convertors. A dual rotor turbine is theoretically able to produce more power than a single rotor turbine at the same fluid velocity. Previous experiments for a counter rotating dual rotor horizontal axis marine current turbine used a mechanical oil seal coupling that caused mechanical losses when water entered through small gaps at the shaft. A new magnetic coupling assembly eliminates the need for a shaft to connect physically with the internal mechanisms and is water tight. This reduces mechanical losses in the system and the effect on the dual rotor performance is presented in this paper.

  8. Application of LBB to a nozzle-pipe interface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  9. Double resonance experiments in low magnetic field: dynamic polarization of protons by (14)N and measurement of low NQR frequencies.

    Science.gov (United States)

    Seliger, J; Zagar, V

    2009-08-01

    The possibilities of dynamically polarizing proton spin system via the quadrupole (14)N spin system in low magnetic field are analyzed. The increase of the proton magnetization is calculated. The polarization rate of the proton spin system is related to the transition probabilities per unit time between the (14)N quadrupole energy levels and proton energy levels. The experiments performed in 1,3,5-triazine confirm the results of the theoretical analysis. A new double resonance technique is proposed for the measurement of nuclear quadrupole resonance frequencies nu(Q) of the order of 100kHz and lower. The technique is based on magnetic field cycling between a high and a low static magnetic field and observation of the proton NMR signal in the high magnetic field. In the low magnetic field the quadrupole nuclei and protons resonantly interact at the proton Larmor frequency nu(H)=nu(Q)/2. The quadrupole nuclei are simultaneously excited by a resonant rf magnetic field oriented along the direction of the low static magnetic field. The experimental procedure is described and the sensitivity of the new technique is estimated. Some examples of the measurement of low (14)N and (2)H nuclear quadrupole resonance frequencies are presented.

  10. Influences of hydrodynamic conditions, nozzle geometry on appearance of high submerged cavitating jets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2013-01-01

    Full Text Available Based on visualization results of highly-submerged cavitating water jet obtained with digital camera, the influences of related parameters such as: injection pressure, nozzle diameter and geometry, nozzle mounting (for convergent / divergent flow, cavitation number and exit jet velocity, were investigated. In addition, the influence of visualization system position was also studied. All the parameters have been found to be of strong influence on the jet appearance and performance. Both hydro-dynamical and geometrical parameters are playing the main role in behavior and intensity of cavitation phenomenon produced by cavitating jet generator. Based on our considerable previous experience in working with cavitating jet generator, the working conditions were chosen in order to obtain measurable phenomenon. [Projekat Ministarstva nauke Republike Srbije, br. TR35046

  11. Effects of conical nozzle configuration on impulse coupling coefficient in repetitively-pulsed laser propulsion

    Institute of Scientific and Technical Information of China (English)

    CAO Zheng-rui; HONG Yan-ji; WEN Ming

    2009-01-01

    A dimensionless factor was introduced to deduce the analytic expression of impulse coupling coefficient for conical nozzles in the case of spherical symmetry, and a high precision impact pendulum system was used to measure impulse coupling coefficients of 15 conical nozzles with different cone angles and lengths. The expression was corrected according to experi-mental values. The results indicate that: 1) impulse coupling coefficient increases firstly and then decreases with augment of dimensionless length when cone angle is fixed;2) impulse coupling coefficient decreases monotonously with augment of cone angle when dimensionless length is fixed;3) it is of great importance for improving impulse coupling coefficient to increase the rate of laser energy deposition.

  12. Magnetic field and quadruple Langmuir probe measurements in the plume of the plasmoid thruster experiment

    Science.gov (United States)

    Koelfgen, Syri Jo

    The development of high specific impulse rocket engines is essential for fast and efficient space travel. The plasmoid thruster, a novel propulsion concept with the potential for producing a high specific impulse, was investigated in light of this need. This pulsed inductive rocket utilizes the Lorentz force to accelerate plasmoids and produce thrust. The Plasmoid Thruster Experiment (PTX) was designed to experimentally evaluate the thruster concept. PTX operates by producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. Measurements of the plasmoid magnetic fields, electron temperature (Te), electron number density (n e) and Mach number (M) were taken in the PTX plume with a B˙ probe array and a quadruple Langmuir probe. The measurements were used for calculating exit velocity and Isp. High-speed photographs were also obtained for capturing images of the plasmoids and estimating their velocity. The magnetic field data showed behavior characteristic of plasmoids, such as the occurrence of the maximum axial magnetic field on axis and magnetic field reversal. The quadruple Langmuir probe data revealed several factors that influence thruster operation, including propellant choice, supply pressure and propellant injection timing (tpuff). For Ar propellant at supply pressures of 14--34 psig and tpuff = 2200 mus, Te ranged from 2--7 eV, ne ranged from 1.5 x 1020 m-3 to 3.5 x 1020 m-3, and M ranged from 3.3--3.8 in PTX. For H2 propellant, T e ranged from 15--27 eV, ne ranged from 0.8 x 1020 m-3 to 1.5 x 1020 m-3, and M ranged from 1.4--2.6, for supply pressures of 9--38 psig and tpuff = 1200--2400 mus. Analysis of the plume measurements yielded high thruster exit velocities, indicating that the plasmoid thruster can produce a high Isp. Velocities of 24 km/s, 35 km/s and 46 km/s were calculated for supply pressures of 38 psig, 24 psig and 9 psig of H2 propellant, respectively. These exit velocities deliver Isp values of 2,400 s, 3,500 s and 4

  13. Sound Propagation Experiments in a Magnetic Field in Superfluid HELIUM-3-B

    Science.gov (United States)

    Shivaram, Bellave S.

    A high resolution acoustic impedance technique has been used to investigate the order parameter collective modes in superfluid ('3)He-B. Theoretically, a classification of the collective modes in the B-phase based on a total angular momentum quantum number, J, is appropriate. In agreement with earlier experiments the J = 2 real mode or the real squashing mode has been observed to split into five components in small magnetic fields. However, contrary to earlier theoretical estimates, the Zeeman shifts have been found to become extremely nonlinear as the magnetic field is increased. The extent of nonlinearity is larger at low pressures and at temperatures close to T(,c). The nonlinear Zeeman shifts have subsequently been explained as the result of the distortion of the B-phase energy gap. In addition to gap distortion the coupling between the same J(,z) substates of the different J modes are also found to contribute to the nonlinearity and in this sense the nonlinear evolution of the real squashing mode constitutes the observation of the Paschen-Back effect in ('3)He-B. A comparison of the observed Zeeman shifts with the theoretical expressions has yielded a wealth of information about particle -particle and particle-hole interaction effects in superfluid ('3)He. In the limit T (--->) T(,c) and in a large enough magnetic field the real squashing mode has been found to possess additional structure. The J(,z) = 0 substate of the real squashing mode has been observed to split into a doublet above a threshold field. The separation between the two components of the doublet is of the order of 100 -200 kHz and remains independent of the magnetic field. The origin of the doublet has remained a mystery and possibly indicates the presence of an additional degree of freedom in the superfluid order parameter. Further, at extremely small fields the effects due to dispersion of the real squashing modes have been found to be important. The magnitude of the dispersion induced mode

  14. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

    Energy Technology Data Exchange (ETDEWEB)

    Beyerlein, K. R.; Heymann, M.; Kirian, R. [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Adriano, L.; Bajt, S., E-mail: sasa.bajt@desy.de [Photon Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Knoška, J. [Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg (Germany); Wilde, F. [Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht (Germany); Chapman, H. N. [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg (Germany); Centre for Ultrafast Imaging, Notkestraße 85, 22607 Hamburg (Germany)

    2015-12-15

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.

  15. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  16. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  17. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  18. Probabilistic assessment of space nuclear propulsion system nozzle

    Science.gov (United States)

    Shah, Ashwin R.; Ball, Richard D.; Chamis, Christos C.

    1994-01-01

    In assessing the reliability of a space nuclear propulsion system (SNPS) nozzle, uncertainties associated with the following design parameters were considered: geometry, boundary conditions, material behavior, and thermal and pressure loads. A preliminary assessment of the reliability was performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), a finite-element computer code developed at the NASA Lewis Research Center. The sensitivity of the nozzle reliability to the uncertainties in the random variables was quantified. With respect to the effective stress, preliminary results showed that the nozzle spatial geometry uncertainties have the most significant effect at low probabilities whereas the inner wall temperature has the most significant effect at higher probabilities.

  19. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 magnetic field, droplet rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  20. A review on nozzle wear in abrasive water jet machining application

    Science.gov (United States)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  1. Study on Flow Field Characteristics of Nozzle Water Jet in Hydraulic cutting

    Science.gov (United States)

    Liao, Wen-tao; Deng, Xiao-yu

    2017-08-01

    Based on the theory of hydrodynamics, a mathematical model of nozzle water jet flow field in hydraulic cutting is established. By numerical simulation, the effects of nozzle convergence angle, nozzle outlet diameter and cylindrical section length on water jet flow impact is obtained, and the influence of three factors on the nozzle water jet flow field is analyzed. The optimal nozzle parameters are obtained by simulation as follows: convergence angle is 13 °, cylindrical section length is 8 mm and nozzle outlet diameter is 2 mm. Under this optimal nozzle parameters, hydraulic cutting has the best comprehensive effect.

  2. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  3. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  4. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  5. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  6. Development of a polarization resolved spectroscopic diagnostic for measurements of the magnetic field in the Caltech coaxial magnetized plasma jet experiment

    Science.gov (United States)

    Shikama, Taiichi; Bellan, Paul M.

    2011-11-01

    Measurements of the magnetic field strength in current-carrying magnetically confined plasmas are necessary for understanding the underlying physics governing the dynamical behavior. Such a measurement would be particularly useful in the Caltech coaxial magnetized plasma gun, an experiment used for fundamental studies relevant to spheromak formation, astrophysical jet formation/propagation, solar coronal physics, and the general behavior of twisted magnetic flux tubes that intercept a boundary. In order to measure the field strength in the Caltech experiment, a non-perturbing spectroscopic method is being implemented to observe the Zeeman splitting in the emission spectra. The method is based on polarization-resolving spectroscopy of the Zeeman-split σ components, a technique previously used in both solar and laboratory plasmas. We have designed and constructed an optical system that can simultaneously detect left- and right-circularly polarized emission with both high throughput and small extinction ratio. The system will be used on the 489.5 nm NII line, chosen because of its simple Zeeman structure and minimal Stark broadening.

  7. The CGEM-IT of the BESIII experiment: project update and test results in magnetic field

    Science.gov (United States)

    Mezzadri, G.

    2016-08-01

    The BESIII experiment is a multi-purpose detector operating on the electron- positron collider BEPCII in Beijing. Since 2008, the world's largest sample of J/ψ, ψ’ were collected. Due to increasing luminosity, the inner drift chamber is showing signs of aging. In 2014, an upgrade was proposed by the Italian collaboration based on the Cylindrical Gas Electron Multipliers (CGEM) technology, developed within the KLOE-II experiment, but with several new features and innovations. In this contribution, an overview of the project will be presented. Preliminary results of a beam test will be shown, with particular focus on the detector performance in magnetic field, with different configurations of electric field. A new readout mode, the µTPC readout, will also be described. The project has been recognized as a Significant Research Project within the Executive Programme for Scientific and Technological Cooperation between Italy and P.R.C for the years 2013-2015, and more recently has been selected as one of the project funded by the European Commission within the call H2020- MSCA-RISE-2014.

  8. Empirical compensation function for eddy current effects in pulsed field gradient nuclear magnetic resonance experiments.

    Science.gov (United States)

    Zhu, X X; Macdonald, P M

    1995-05-01

    An empirical compensation function for the correction of eddy current effects in the Stejskal-Tanner pulsed-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiments has been established. Eddy currents may arise as a result of the application of sharp and strong gradient pulses and may cause severe distortion of the NMR signals. In this method, the length of one gradient pulse is altered to compensate for the eddy current effects. The compensation is considered to be ideal when the position and the phase of the spin-echo maximum obtained from an aqueous solution of poly(ethylene glycol) (PEG) is the same in the presence and absence of a gradient pulse in the PGSE pulse sequence. We first characterized the functional dependence of the length of the required compensation on the three principal variables in the PGSE experiment: the gradient strength, the duration of the gradient pulse, and the interval between the two gradient pulses. Subsequently, we derived a model which successfully describes the general relationship between these variables and the size of the induced eddy current. The parameters extracted from fitting the model to the experimental compensation data may be used to predict the correct compensation for any combination of the three principal variables.

  9. On a possible observation of the chiral magnetic effect in the RHIC BES experiments

    CERN Document Server

    Toneev, V D; Bratkovskaya, E L; Cassing, W; Konchakovski, V P; Voloshin, S A

    2011-01-01

    In terms of the hadron-string-dynamics (HSD) approach we investigate the correlation function in the azimuthal angle $\\psi$ of charged hadrons that is expected to be sensitive to a signal of local strong parity violation. Our analysis of Au+Au collisions is based on the recent STAR data within the RHIC Beam-Energy-Scan (BES) program. The HSD model reasonably reproduces STAR data for $\\sqrt{s_{NN}}=$7.7 GeV, while there are some deviations from the experiment at the collision energy of 11.5 GeV and an increase of deviations between theory and experiment at $\\sqrt{s_{NN}}=$39 GeV. For reference, the results for $\\sqrt{s_{NN}}=$ 200 GeV are given as well. The role of the retarded electromagnetic field is discussed and a compensation effect for the action of its electric and magnetic components is pointed out. We conclude that the recent RHIC BES data at $\\sqrt{s_{NN}}=$7.7 and 11.5 GeV can be understood on the hadronic level without involving the idea of a strong parity violation; however, at $\\sqrt{s_{NN}}\\sim$...

  10. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy) of the...

  11. An evaluation of nozzle afterbody code - AR02P

    Science.gov (United States)

    Guyton, F. C.

    1986-07-01

    A project was undertaken to develop a computational fluid dynamics (CFD) code for use in nozzle afterbody analysis. Objectives were to create a three-dimensional code capable of calculating afterbody flows with accuracy quantitatively close to the Navier-Stokes solutions, but which would use significantly fewer computer resources. The resulting program coupled an inverse boundary-layer routine with an Euler code and incorporated a jet plume. Calculations were made for the axisymmetric AGARD 15-deg boattail afterbody with variations in nozzle pressure ratio for Mach numbers 0.6 and 0.9, and compared with experimental results. The code predicted drag changes with NPR which showed the proper variations, but the code did not provide the accuracy required for typical nozzle afterbody analysis. (NPR = Nozzle total pressure to free stream static pressure ratio.)

  12. Altitude Compensating Nozzle Transonic Performance Flight Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Altitude compensating nozzles continue to be of interest for use on future launch vehicle boosters and upper stages because of their higher mission average Isp and...

  13. Improvement of Flow Quality in NAL Chofu Mach 10 Nozzle

    Science.gov (United States)

    Lacey, John; Inoue, Yasutoshi; Higashida, Akio; Inoue, Manabu; Ishizaka, Kouichi; Korte, John J.

    2002-01-01

    As a result of CFD analysis and remachining of the nozzle, the flow quality of the Mach 10 Hypersonic Wind Tunnel at NAL Chofu, Japan was improved. The subsequent test results validated the CFD analytical predictions by NASA and MHL.

  14. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  15. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    Science.gov (United States)

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  16. Flashback detection sensor for lean premix fuel nozzles

    Science.gov (United States)

    Thornton, Jimmy Dean; Richards, George Alan; Straub, Douglas L.; Liese, Eric Arnold; Trader, Jr., John Lee; Fasching, George Edward

    2002-08-06

    A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.

  17. Design of a continuously variable Mach-number nozzle

    Institute of Scientific and Technical Information of China (English)

    郭善广; 王振国; 赵玉新

    2015-01-01

    A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Mach- numbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of 3.0nozzle. The computed results indicate that exit uniform flow is obtained with 1.19% of the maximal Mach-number deviation at the nozzle exit. The present design method achieves the continuously variable Mach-number flow during a wind tunnel running.

  18. Noise Characteristics of Overexpanded Jets from Convergent-Divergent Nozzles

    Science.gov (United States)

    Zaman, K. B. M. Q.

    2008-01-01

    A broadband noise component occurring in the overexpanded flow regime with convergent-divergent nozzles is identified. Relative to a convergent nozzle, at same pressure ratios, this excess noise can lead to a large increase in the overall sound pressure levels. Several features distinguish it from the more familiar broadband shock associated noise. Unlike the latter, it is observed even at shallow polar locations and there is no noticeable shift of the spectral content in frequency with observation angle. The amplitudes are found to be more pronounced with nozzles having larger half-angle of the divergent section. The noise apparently occurs when a shock resides within the divergent section of the nozzle and results from random unsteady motion of the shock.

  19. Improvement of Flow Quality in NAL Chofu Mach 10 Nozzle

    Science.gov (United States)

    Lacey, John; Inoue, Yasutoshi; Higashida, Akio; Inoue, Manabu; Ishizaka, Kouichi; Korte, John J.

    2002-01-01

    As a result of CFD analysis and remachining of the nozzle, the flow quality of the Mach 10 Hypersonic Wind Tunnel at NAL Chofu, Japan was improved. The subsequent test results validated the CFD analytical predictions by NASA and MHL.

  20. Comparison of simulation and experiment on levitation force between GdBCO bulk superconductor and superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S., E-mail: satoshi@sum.sd.keio.ac.j [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nagashima, K.; Seino, H. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan); Murakami, T.; Sawa, K. [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2009-10-15

    High temperature bulk superconductors have significant potential for various engineering applications such as a flywheel energy storage system. This system is expected to decrease the energy loss by using bulk superconductors for the bearing. Recently, the authors have developed a new superconducting magnet to realize large levitation force. In this system, the axial component of magnetic field is canceled each other but the radial component of magnetic field expects to be enhanced. Thus, it was expected that the large levitation force can be realized and its time relaxation will be decreased. And in the previous paper, the levitation force and its time relaxation were measured under the various conditions by using this new magnet. But it is difficult to consider what phenomenon has happened in the bulk from only experimental results. In addition the quantitative evaluation cannot be done only by the experimental results, for example, the influence of the magnetic field penetration and magnetic distribution around a bulk superconductor on the maximum force and so on. Thus, in this paper, the authors simulated the levitation force of bulk superconductor by using ELF/MAGIC, which is a three-dimensional electromagnetic analytical software. In the simulation the bulk was considered as a rigid body and the simulation was executed under the same conditions and model with the experiment. The distribution of magnetic field and the levitation force were obtained and discussed.

  1. Feasibility evaluation of the monolithic braided ablative nozzle

    Science.gov (United States)

    Director, Mark N.; McPherson, Douglass J., Sr.

    1992-02-01

    The feasibility of the monolithic braided ablative nozzle was evaluated as part of an independent research and development (IR&D) program complementary to the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC) Low-Cost, High-Reliability Case, Insulation and Nozzle for Large Solid Rocket Motors (LOCCIN) Program. The monolithic braided ablative nozzle is a new concept that utilizes a continuous, ablative, monolithic flame surface that extends from the nozzle entrance, through the throat, to the exit plane. The flame surface is fabricated using a Through-the-Thickness braided carbon-fiber preform, which is impregnated with a phenolic or phenolic-like resin. During operation, the braided-carbon fiber/resin material ablates, leaving the structural backside at temperatures which are sufficiently low to preclude the need for any additional insulative materials. The monolithic braided nozzle derives its potential for low life cycle cost through the use of automated processing, one-component fabrication, low material scrap, low process scrap, inexpensive raw materials, and simplified case attachment. It also has the potential for high reliability because its construction prevents delamination, has no nozzle bondlines or leak paths along the flame surface, is amenable to simplified analysis, and is readily inspectable. In addition, the braided construction has inherent toughness and is damage-tolerant. Two static-firing tests were conducted using subscale, 1.8 - 2.0-inch throat diameter, hardware. Tests were approximately 15 seconds in duration, using a conventional 18 percent aluminum/ammonium perchlorate propellant. The first of these tests evaluated the braided ablative as an integral backside insulator and exit cone; the second test evaluated the monolithic braided ablative as an integral entrance/throat/exit cone nozzle. Both tests met their objectives. Radial ablation rates at the throat were as predicted, approximately 0.017 in

  2. MAGNETS

    Science.gov (United States)

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  3. Simulation and Experimental Study on Cavitating Water Jet Nozzle

    Science.gov (United States)

    Zhou, Wei; He, Kai; Cai, Jiannan; Hu, Shaojie; Li, Jiuhua; Du, Ruxu

    2017-01-01

    Cavitating water jet technology is a new kind of water jet technology with many advantages, such as energy-saving, efficient, environmentally-friendly and so on. Based on the numerical simulation and experimental verification in this paper, the research on cavitating nozzle has been carried out, which includes comparison of the cleaning ability of the cavitating jet and the ordinary jet, and comparison of cavitation effects of different structures of cavitating nozzles.

  4. Influences of Geometric Parameters upon Nozzle Performances in Scramjets

    Institute of Scientific and Technical Information of China (English)

    Li Jianping; Song Wenyan; Xing Ying; Luo Feiteng

    2008-01-01

    This article investigates and presents the influences of geomea'ic parameters of a scramjet exerting upon its nozzle performances. These parameters include divergent angles, total lengths, height ratios, cowl lengths, and cowl angles. The flow field within the scramjet nozzle is simulated numerically by using the CFD software--FLUENT in association with coupled implicit solver and an RNG k-ε tur-bulence model.

  5. Jet-Engine Exhaust Nozzle With Thrust-Directing Flaps

    Science.gov (United States)

    Wing, David J.

    1996-01-01

    Convergent/divergent jet-engine exhaust nozzle has cruciform divergent passage containing flaps that move to deflect flow of exhaust in either or both planes perpendicular to main fore-and-aft axis of undeflected flow. Prototype of thrust-vector-control nozzles installed in advanced, high-performance airplanes to provide large pitching (usually, vertical) and yawing (usually, horizontal) attitude-control forces independent of attitude-control forces produced by usual aerodynamic control surfaces.

  6. Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling

    Science.gov (United States)

    Wang, Hongyan; Tang, Lihua

    2017-03-01

    The operating bandwidth of energy harvesters is one main concern in vibration energy harvesting due to the random and time-varying nature of most vibration sources. Recent research efforts have been made to address this issue including exploiting multimodal structures and nonlinear dynamics. These ideas have yielded some exciting results to leverage the broadband performance. Hybrid configurations combining these ideas are expected to provide an even better operating bandwidth and yet to be studied. In this paper, a bistable two-degree-of-freedom (2-DOF) piezoelectric energy harvester (PEH) with magnetic coupling is proposed, in which a linear parasitic oscillator attached to the main energy harvesting beam is used to generate two resonant peaks and the magnetic coupling is used to generate nonlinear dynamics, thus to achieve broadband electrical outputs. A nonlinear electromechanical model of the proposed harvester is established and the parametric study is conducted for various parasitic oscillator configurations. Experiment is subsequently performed to validate the theoretical analysis. The results indicate that nonlinear responses can appear at any of the two peaks or at both. One strong nonlinear peak in addition to a quasi-linear peak can be achieved by adequate adjustment of the parasitic oscillator. This is advantageous over the optimal linear 2-DOF PEH in terms of wider bandwidth thanks to the involved nonlinear dynamics. In addition, the load resistance has significant influence around the peak with strong nonlinear responses, resulting in evident peak shift. The best power output is accompanied with a shrunk bandwidth due to the peak shift.

  7. On the quantum information processing in nuclear magnetic resonance quantum computing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, E.R. de; Bonk, F.A.; Vidoto, E.L.G.; Bonagamba, T.J. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Sarthour, R.S.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freitas, J.C.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica

    2003-07-01

    Full text: Nuclear Magnetic Resonance appeared in the late nineties to be the most promising candidate to run quantum computing algorithms. An impressive number of experiments demonstrating the implementation of all logic gates and quantum algorithms in systems with a small number of qubits stimulated the general excitement about the technique, and greatly promoted the field. Particularly important were those experiments where entanglement of particles were aimed at. Entanglement is the most fundamental (and weird !) aspect of quantum systems, and is at the basis of quantum teleportation and quantum cryptography, yet impossible to prove in NMR experiments. The hardcore of NMR quantum computing are the so-called pseudo-pure states, upon which radiofrequency (RF) pulses act to implement quantum mechanical unitary transformations, promoting changes in both, Zeeman level populations and coherences in the density matrix. Whereas pseudo-pure states are special non-equilibrium diagonal states, coherences encode information about superposition states. Now, one could safely say that the whole business of quantum computing goes about controlling relative ket phases. In spite of the impossibility to univocally associating a given quantum state to a NMR spectrum, it is possible to demonstrate the phase action of RF pulses over relative ket phases, even if no population changes take place. In this talk these issues will be addressed, and we will show experimental results of our own where this is done in the two-qubit quadrupole nuclei {sup 23}Na in C{sub 10}H{sub 21}NaO{sub 4}S liquid crystal. We demonstrate the reversibility of the Hadamard gate, and of a quantum circuit which generates pseudo-Bell states. The success of the operation reaches almost 100% in the case of the state |01+|10, 80% in the cases of |00> + |01> and |10> + |11>, and 65% for the cat-state |00> + |11>. (author)

  8. The results of the space technological experiments performed with the suprconducting and magnetic alloys

    Science.gov (United States)

    Michailov, B. P.; Torchinova, R. S.; Bychkova, M. I.

    On board the orbital complex "Salyut-6-Soyuz" during long-term near 0-gravity space flight the technological experiments on synthesis of the superconducting MoGa 5, MO 3Ga and Nb 3Sn intermetallic compounds by means of liquid-phase diffusion and on bulk crystallization of the hypoeutectic superconducting Pb-Sn alloy and magnetically ordered Gd 3Co and (Gd 0.2Tb 0.8) 3Co compounds have been performed. During the process of the liquid-phase diffusion considerable changes of the formation of the reaction layers (mechanisms, phase composition, thickness, etc.) in the superconducting Mo-Ga and Nb-Sn systems were observed. MoGa 5, Nb 6Sn 5 and NbSn 2 phases were found in the ground-based samples while in the flight samples the formation of MoGa 5, Mo 3Ga, Nb 3Sn and Nb 6Sn 5 phases was observed. As a result of the changes of the phase composition of the diffusion layers in the flight samples two superconducting transitions at 18.3 and 5.7 K were established (only one transition at 6.9K was measured for the ground-based sample) (Savitsky et al., Izv. Akad. Nauk SSSR, Metals5, 224-232, 1982; Zemskov et al., Izv. Akad. Nauk SSSR, Physics49, 673-680, 1985). Considerable increasing of the critical current measured for the Pb-Sn flight sample has been observed (Savitsky et al., Dokl. Akad. Nauk SSSR257, 102-104, 1981; Zemskov et al., 1985). Better homogeneity and crystal structure perfection of the flight Gd 3Co and (Gd 0.2Tb 0.8) 3Co samples have been established by means of the micro-zonde and low-temperature X-ray technique (Savitsky et al., Acta Astronautica11, 691-696, 1984; Zemskov et al., 1985). Different behaviour of the ground-based and flight samples in the process of magnetization and the displacements of the temperatures of the magnetic phase transitions have been observed.

  9. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  10. Effect of Tabs on a Rectangular Nozzle Studied

    Science.gov (United States)

    2005-01-01

    In a continuing research program, jets from nozzles of different geometries are being investigated with the aim of increasing mixing and spreading in those flows. Flow fields from nozzles with elliptic, rectangular, and other more complex cross-sectional shapes are being studied in comparison to circular nozzles over a wide Mach number range. As noted by previous researchers, noncircular jets usually spread faster than circular jets. Another technique being investigated to increase jet spreading even further for a given nozzle is the use of "tabs" to generate vortices. A typical tab is a triangular-shaped protrusion placed at the nozzle exit, with the base of the triangle touching the nozzle wall and the apex leaning downstream at 45 to the stream direction. This geometry was determined by a parametric study to produce the optimum effect for a given area blockage. The tabs can increase jet spreading significantly. The underlying mechanism traces to a pair of counter-rotating streamwise vortices originating from each tab. These vortex pairs persist in the flow; and with the appropriate number and strength, they can increase spreading.

  11. Fluidic Control of Nozzle Flow: Some Performance Measurements

    Science.gov (United States)

    Federspiel, John; Bangert, Linda; Wing, David; Hawkes, Tim

    1995-01-01

    Results are presented of an experimental program that investigated the use of a secondary air stream to control the amount of flow through a convergent-divergent nozzle. These static tests utilized high pressure, ambient temperature air that was injected at the throat of the nozzle through an annular slot. Multiple injection slot sizes and injection angles were tested. The introduction of secondary flow was made in an opposing direction to the primary flow and the resulting flow field caused the primary stream to react as though the physical throat size had been reduced. The percentage reduction in primary flow rate was generally about twice the injected flow rate. The most effective throttling was achieved by injecting through the smallest slot in an orientation most nearly opposed to the approaching primary flow. Thrust edliciency, as measured by changes in nozzle thrust coefficient, was highest at high nozzle pressure ratios, NPR. The static test results agreed with predictions obtained prior from PABSD, a fully viscous computational fluid dynamics program. Since use of such an injection system on gas turbine engine exhaust nozzles would be primarily at high NPRs, it was concluded that fluidic control holds promise for reducing nozzle weight and complexity on future systems.

  12. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  13. Slip-model Performance for Underexpanded Micro-scale Rocket Nozzle Flows

    Institute of Scientific and Technical Information of China (English)

    José A. Morí(n)igo; José Hermida Quesada; Francisco Caballero Requena

    2007-01-01

    In aerospace Micro-ElectroMechanical Systems (MEMS), the characteristic length scale of the flow approaches the molecular mean free path, thus invalidating the continuum description and enforcing the use of particle methods, like the Direct Simulation Monte Carlo (DSMC), to deal with the non-equilibrium regions. Within the slip-regime (0.01<Kn<~0.1) both approaches, continuum and particle-based, seem to behave well in terms of accuracy. The present study summarizes the implementation and results obtained with a 2nd-order slip boundary condition in a Navier-Stokes solver to address the rarefaction near the nozzle walls. Its assessment and application to a cold-gas micro-scale conical nozzle of 300μm throat diameter, discharging into the low-pressure freestream,constitutes the major aim of the work. The slip-model incorporates the velocity slip with thermal creep and temperature jump, thus permitting to deal with non-isothermal flows as well. Results show that the gas experiences an intense rarefaction in the lip vicinity, pointing to the limits of model validity. Furthermore, a strong Mach deceleration is observed, attributed to the rather thick subsonic boundary layer and supersonic bulk heating caused by the viscous dissipation, in contrast with the expansion to occur in large rocket nozzles during underexpanded operation.

  14. Reusable Solid Rocket Motor - V(RSRMV)Nozzle Forward Nose Ring Thermo-Structural Modeling

    Science.gov (United States)

    Clayton, J. Louie

    2012-01-01

    During the developmental static fire program for NASAs Reusable Solid Rocket Motor-V (RSRMV), an anomalous erosion condition appeared on the nozzle Carbon Cloth Phenolic nose ring that had not been observed in the space shuttle RSRM program. There were regions of augmented erosion located on the bottom of the forward nose ring (FNR) that measured nine tenths of an inch deeper than the surrounding material. Estimates of heating conditions for the RSRMV nozzle based on limited char and erosion data indicate that the total heat loading into the FNR, for the new five segment motor, is about 40-50% higher than the baseline shuttle RSRM nozzle FNR. Fault tree analysis of the augmented erosion condition has lead to a focus on a thermomechanical response of the material that is outside the existing experience base of shuttle CCP materials for this application. This paper provides a sensitivity study of the CCP material thermo-structural response subject to the design constraints and heating conditions unique to the RSRMV Forward Nose Ring application. Modeling techniques are based on 1-D thermal and porous media calculations where in-depth interlaminar loading conditions are calculated and compared to known capabilities at elevated temperatures. Parameters such as heat rate, in-depth pressures and temperature, degree of char, associated with initiation of the mechanical removal process are quantified and compared to a baseline thermo-chemical material removal mode. Conclusions regarding postulated material loss mechanisms are offered.

  15. Experimental and Computational Studies on Coanda Nozzle Flow for the Air Knife Application

    Institute of Scientific and Technical Information of China (English)

    Soon-Bum KWON; Dong-Won LEE; Young-Doo KWON

    2007-01-01

    To control the film thickness of zinc in the process of continuous hot-dip galvanizing, it is known from the early days that the gas wiping through an air knife is the most effective one. The gas wiping using in galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. So, in the present study, the effects of the deflection angle of Coanda nozzle on jet structure and the distribution of impinging pressure at the plate surface are investigated numerically and experimentally. In numerical analysis, the governing equations consisted of three-dimensional time dependent full Navier-Stokes equations, standard k-ε turbulence model to solve turbulent stress and so on are employed. In experiment, 16 channel pressure scanning valve and 3-axis auto traversing unit are used to measure the impinging pressure at the strip surface. As a result, it is found that the smaller the deflection angle for the same nozzle slit of air knife is, the larger the impinging pressure is. To reduce the size of separation bubble and to enhance the cutting ability, it is recommendable to use an air knife with the Coanda nozzle.

  16. Particle Streak Velocimetry of Supersonic Nozzle Flows

    Science.gov (United States)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  17. Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles

    Directory of Open Access Journals (Sweden)

    Xiaodong He

    2017-04-01

    Full Text Available In the process of composite prepreg tape winding, the compaction force could influence the quality of winding products. According to the analysis and experiments, during the winding process of a rocket motor nozzle aft exit cone with a winding angle, there would be an error between the deposition speed of tape layers and the feeding speed of the compaction roller, which could influence the compaction force. Both a lack of compaction and overcompaction related to the feeding of the compaction roller could result in defects of winding nozzles. Thus, a flexible winding system has been developed for rocket motor nozzle winding. In the system, feeding of the compaction roller could be adjusted in real time to achieve an invariable compaction force. According to experiments, the force deformation model of the winding tape is a time-varying system. Thus, a forgetting factor recursive least square based parameter estimation proportional-integral-differential (PID controller has been developed, which could estimate the time-varying parameter and control the compaction force by adjusting the feeding of the compaction roller during the winding process. According to the experimental results, a winding nozzle with fewer voids and a smooth surface could be wounded by the invariable compaction force in the flexible winding system.

  18. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles: Comprehensive data report. [nozzle transfer functions

    Science.gov (United States)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through a coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken (1) to define the test parameters which influence the internal noise radiation; (2) to develop a test methodology which could realistically be used to examine the effects of the test parameters; and (3) to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the jet nozzles. Noise transmission characteristics of a coannular nozzle system were then investigated. In particular, the effects of fan convergence angle, core extension length to annulus height ratio and flow Mach numbers and temperatures were studied. Relevant spectral data only is presented in the form of normalized nozzle transfer function versus nondimensional frequency.

  19. Supersonic gas shell for puff pinch experiments

    Science.gov (United States)

    Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.

    1982-09-01

    An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.

  20. The role of MHD turbulence in magnetic self-excitation: A study of the Madison Dynamo Experiment

    Science.gov (United States)

    Nornberg, Mark D.

    2006-07-01

    Determining the onset conditions for magnetic field growth in magnetohydrodynamics is fundamental to understanding how astrophysical dynamos such as the Earth, the Sun, and the galaxy self-generate magnetic fields. The Madison Dynamo Experiment was constructed to explore the role of turbulence in changing these onset conditions for an impeller-driven flow of liquid sodium. The flow generates intermittent magnetic bursts with the spatial structure predicted from kinematic dynamo theory. A model of the mean flow was constructed from laser Doppler velocimetry measurements of the flow in an identical-scale water experiment. A kinematic eigenvalue code predicted that the flow would generate a predominantly dipolar magnetic field perpendicular to the symmetry axis for sufficiently high impeller speeds. The flow amplifies the magnetic field by stretching field lines. The field lines are then twisted back onto themselves creating a feedback loop for dynamo growth. The same flow was generated in the sodium experiment and was found to amplify an applied magnetic field oriented perpendicular to the drive shaft axis of the experiment. The amplification increased with motor rotation rate as the induced field became more closely aligned with the applied field, though a reduction in the amplitude is attributed to an enhanced resistivity due to turbulent diffusion. The turbulence was characterized by measurements of the velocity and magnetic power spectra. The velocity spectra have a Kolmogorov scaling. The wavenumber at which resistive dissipation range becomes dominant was observed to increase with flow speed indicating that smaller scale magnetic structures were generated. No amplification due to a small-scale dynamo was observed. The intermittent bursts were analyzed using conditional averaging. The growth rate was found to increase linearly with impeller rotation rate resulting in stronger bursts. The average duration decreased so that the bursts continued to satisfy Poisson

  1. Effect of injector configuration in rocket nozzle film cooling

    Science.gov (United States)

    Kumar, A. Lakshya; Pisharady, J. C.; Shine, S. R.

    2016-04-01

    Experimental and numerical investigations are carried out to analyze the effect of coolant injector configuration on overall film cooling performance in a divergent section of a rocket nozzle. Two different injector orientations are investigated: (1) shaped slots with a divergence angle of 15° (semi-divergent injector) (2) fully divergent slot (fully divergent injector). A 2-dimensional, axis-symmetric, multispecies computational model using finite volume formulation has been developed and validated against the experimental data. The experiments provided a consistent set of measurements for cooling effectiveness for different blowing ratios ranging from 3.7 to 6. Results show that the semi divergent configuration leads to higher effectiveness compared to fully divergent slot at all blowing ratios. The spatially averaged effectiveness results show that the difference between the two configurations is significant at higher blowing ratios. The increase in effectiveness was around 2 % at BR = 3.7 whereas it was around 12 % in the case of BR = 6. Numerical results show the presence of secondary flow recirculation zones near the jet exit for both the injectors. An additional recirculation zone present in the case of fully divergent injector caused an increase in mixing of the coolant and mainstream, and a reduction in film cooling performance.

  2. Optimization of current waveform tailoring for magnetically driven isentropic compression experiments

    Science.gov (United States)

    Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Cuneo, M. E.; Haill, T. A.; Davis, J.-P.; Brown, J. L.; Seagle, C. T.; Spielman, R. B.

    2016-06-01

    The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called "bricks," that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.-Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel "current-adder" architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L2 norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.

  3. HEM11 mode magnetically insulated transmission line oscillator: Simulation and experiment

    Institute of Scientific and Technical Information of China (English)

    Wang Dong; Qin Fen; Wen Jie; Chen Dai-Bing; Jin Xiao; An Hai-Shi; Zhang Xin-Kai

    2012-01-01

    A novel magnetically insulated transmission line oscillator (MILO) in which a modified HEM11 mode is taken as its main interaction mode (HEM11 mode MILO) is simulated and experimented in this paper.The excitation of the oscillation mode is made possible by carefully adjusting the arrangement of each resonant cavity in a two-dimensional slow wave structure.The special feature of such a device is that in the slow-wave-structure region,the interaction mode is HEM11 mode which is a TM-like one that could interact with electron beams effectively; and in the coaxial output region,the microwave mode is TE11 mode which has a favourable field density pattern to be directly radiated.Employing an electron beam of about 441 kV and 39.7 kA,the HEM11 mode MILO generates a high power microwave output of about 1.47 GW at 1.45 GHz in particle-in-cell simulation.The power conversion efficiency is about 8.4 % and the generated microwave is in a TE11-like circular polarization mode.In a preliminary experiment investigation,high power microwave is detected from the device with a frequency of 1.46 GHz,an output energy of 43 J-47 J,and a pulse duration of 44 ns-49 ns when the input voltage is 430 kV-450 kV,and the diode current is 37 kA-39 kA.

  4. ELM simulation experiments using transient heat and particle load produced by a magnetized coaxial plasma gun

    Science.gov (United States)

    Shoda, K.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2011-10-01

    It is considered that thermal transient events such as type I edge-localized modes (ELMs) and disruptions will limit the lifetime of plasma-facing components (PFCs) in ITER. It is predicted that the heat load onto the PFCs during type I ELMs in ITER is 0.2-2MJ/m2 with pulse length of ~0.1-1ms. We have investigated interaction between transient heat and particle load and the PFCs by using a magnetized coaxial plasma gun (MCPG) at University of Hyogo. In the experiment, a pulsed plasma with duration of ~0.5ms, incident ion energy of ~30eV, and surface absorbed energy density of ~0.3-0.7MJ/m2 was produced by the MCPG. However, no melting occurred on a tungsten surface exposed to a single plasma pulse of ~0.7MJ/m2, while cracks clearly appeared at the edge part of the W surface. Thus, we have recently started to improve the performance of the MCPG in order to investigate melt layer dynamics of a tungsten surface such as vapor cloud formation. In the modified MCPG, the capacitor bank energy for the plasma discharge is increased from 24.5 kJ to 144 kJ. In the preliminary experiments, the plasmoid with duration of ~0.6 ms, incident ion energy of ~ 40 eV, and the surface absorbed energy density of ~2 MJ/m2 was successfully produced at the gun voltage of 6 kV.

  5. Ion and Electron Heating Characteristics of Magnetic Re- Connection in Mast Tokamak Merging Experiment

    Science.gov (United States)

    Tanabe, Hiroshi; Inomoto, Michiaki; Ono, Yasushi; Yamada, Takuma; Imazawa, Ryota; Cheng, Chio-Zong

    2016-07-01

    We present results of recent studies of high power heating of magnetic reconnection, the fundamental process of several astrophysical events such as solar flare, in the Mega Amp Spherical Tokamak (MAST) - the world largest merging experiment. In addition to the previously reported significant reconnection heating up to ˜1keV [1], detailed local profiles of electron and ion temperature have been measured using a ultra-fine 300 channel Ruby- and a 130 channel YAG-Thomson scattering and a new 32 channel ion Doppler tomography diagnostics [2]. 2D profile measurement of electron temperature revealed highly localized heating structure at the X point with the characteristic scale length of 0.02-0.05m0.3T), a thick layer of closed flux surface surrounding the current sheet sustains the temperature profile for longer time than the electron and ion energy relaxation time ˜4-10ms, finally forming triple peak structures of ion and electron temperatures at the X point and in the downstream. While the peak electron temperature at the X point increases with toroidal field, the bulk electron temperature and the ion temperature in the downstream are unaffected. [1] Y. Ono et.al., Plasma Phys. Control. Fusion 54, 124039 (2012) [2] H. Tanabe et. al., Nucl. Fusion 53, 093027 (2013). [3] H. Tanabe et.al., Phys. Rev. Lett. 115, 215004 (2015)

  6. Magnetic resonance neurography in the management of peripheral trigeminal neuropathy: experience in a tertiary care centre

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Brian; Chhabra, Avneesh [UT Southwestern Medical Center, Department of Radiology, Dallas, TX (United States); Zuniga, John R. [UT Southwestern Medical Center, Department of Oral and Maxillofacial Surgery, Surgery, Neurology and Neurotherapeutics, Dallas, TX (United States); Panchal, Neeraj [University of Pennsylvania, Department of Oral Maxillofacial Surgery, Philadelphia, PA (United States); Cheng, Jonathan [UT Southwestern Medical Center, Department of Plastic Surgery, Dallas, TX (United States)

    2016-10-15

    This tertiary care experience examines the utility of magnetic resonance neurography (MRN) in the management of peripheral trigeminal neuropathies. Seventeen patients with clinically suspected peripheral trigeminal neuropathies (inferior alveolar nerve and lingual nerve) were imaged uniformly with 1.5-T examinations. MRN results were correlated with clinical and surgical findings in operated patients and the impact on clinical management was assessed. Clinical findings included pain (14/17), sensory changes (15/17), motor changes (2/17) and palpable masses (3/17). Inciting events included prior dental surgery (12/17), trauma (1/17) and idiopathic incidents (4/17). Non-affected side nerves and trigeminal nerves in the intracranial and skull base course were normal in all cases. Final diagnoses on affected sides were nerve inflammation (4/17), neuroma in continuity (2/17), LN transection (1/17), scar entrapment (3/17), infectious granuloma (1/17), low-grade injuries (3/17) and no abnormality (3/17). Associated submandibular gland and sublingual gland oedema-like changes were seen in 3/17 cases because of parasympathetic effects. Moderate-to-excellent MRN-surgical correlation was seen in operated (8/17) patients, and neuroma and nerve transection were prospectively identified in all cases. MRN is useful for the diagnostic work-up of suspected peripheral trigeminal neuropathy patients with significant impact on clinical management and moderate-to-excellent correlation with intra-operative findings. (orig.)

  7. Slowing of Magnetic Reconnection Concurrent with Weakening Plasma Inflows and Increasing Collisionality in Strongly Driven Laser-Plasma Experiments.

    Science.gov (United States)

    Rosenberg, M J; Li, C K; Fox, W; Zylstra, A B; Stoeckl, C; Séguin, F H; Frenje, J A; Petrasso, R D

    2015-05-22

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, β≲20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V_{jet}∼20V_{A}) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly driven regime.

  8. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  9. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  10. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  11. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  12. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  13. Study on Characteristics of Different Types of Nozzles for Coal-Water Slurry Atomization

    Institute of Scientific and Technical Information of China (English)

    Kun Yuan; Lifang Chen; Chengkang Wu

    2001-01-01

    Three types of nozzles: a low-pressure multistage nozzle, an effervescent nozzle and a newly developed internal mixing air-blast nozzle, for atomization of Coal-Water Slurry (CWS) were investigated. Influence of CWS properties including surface tension and apparent viscosity on atomization was studied. Comparisons among the nozzles were carried out in terms of spray droplet mean diameter and fuel output. Versatility of each nozzle was investigated and atomization mechanism of each nozzle was analyzed as well. The results showed that the newly developed internal-mixing air-blast nozzle has high fuel output and small mean droplet size in the spray, but the multistage nozzle has high versatility for handling of low quality CWS.

  14. A new X-ray detector for magnetic circular dichroism experiments

    CERN Document Server

    Bateman, J E; Dudzik, E; Laan, G V D; Lipp, J D; Smith, A D; Stephenson, R

    2001-01-01

    X-ray magnetic circular dichroism (XMCD) studies of magnetic 3d transition metal samples require the recording of high quality absorption scans in high magnetic fields using circularly polarised soft X-rays of energies in the range 0.5-1 keV. A Gas Microstrip Detector is described which permits the option of using the X-ray fluorescence signal instead of the usual electron yield signal.

  15. Evolution of the Bounded Magnetized Jet and Comparison with Helimak Experiments

    Science.gov (United States)

    2009-07-15

    divergent from experimental results.43,49 In particular, the linear results for plane Poiseuille flow and plane Couette flow do not mesh well with the...velocity or magnetic field striving to meet the imposed boundary condition. For example, in magnetized plane Poiseuille flow , large Reynolds and...the stability of magnetohydrodynamic MHD plane Poiseuille flow . Early studies of magnetized channel flows are encourag- ing in that they indicate

  16. Luminescence properties of magnetic polarons in EuTe: Theoretical description and experiments in magnetic fields up to 28 T

    Science.gov (United States)

    Henriques, A. B.; Moraes, F. C. D.; Galgano, G. D.; Meaney, A. J.; Christianen, P. C. M.; Maan, J. C.; Abramof, E.; Rappl, P. H. O.

    2014-10-01

    The recent discovery of a polaron-associated zero phonon line in the band-edge photoluminescence of high optical quality EuTe crystals opens up the prospect of answering long-standing questions about the polaron internal structure, thermal stability, and generation efficiency. Here, a Schrödinger equation for the polaron was formulated and resolved by using both variational and self-consistent methods. The theory is in good agreement with measurements of the zero phonon line as a function of magnetic field and temperature, and it could be applied to other polaronic systems. It is deduced that, in EuTe, at 0K, a polaron carries a magnetic moment of 610μB, and its binding energy is 27 meV. However, this binding energy does not carry the usual meaning of thermal stability, because it decreases drastically when the sample is warmed up. For instance, at T =100K, the binding energy is already reduced to only 6 meV. The thermal destruction of a polaron is brought about by thermal fluctuations of the spin lattice that suppress the electron's self-energy. Photoluminescence excitation spectra of EuTe demonstrate that the photogeneration of polarons becomes increasingly inefficient when the energy of the pumping photon is increased above the band gap.

  17. Motion-Corrected Real-Time Cine Magnetic Resonance Imaging of the Heart: Initial Clinical Experience.

    Science.gov (United States)

    Rahsepar, Amir Ali; Saybasili, Haris; Ghasemiesfe, Ahmadreza; Dolan, Ryan S; Shehata, Monda L; Botelho, Marcos P; Markl, Michael; Spottiswoode, Bruce; Collins, Jeremy D; Carr, James C

    2017-08-29

    Free-breathing real-time (RT) imaging can be used in patients with difficulty in breath-holding; however, RT cine imaging typically experiences poor image quality compared with segmented cine imaging because of low resolution. Here, we validate a novel unsupervised motion-corrected (MOCO) reconstruction technique for free-breathing RT cardiac images, called MOCO-RT. Motion-corrected RT uses elastic image registration to generate a single heartbeat of high-quality data from a free-breathing RT acquisition. Segmented balanced steady-state free precession (bSSFP) cine images and free-breathing RT images (Cartesian, TGRAPPA factor 4) were acquired with the same spatial/temporal resolution in 40 patients using clinical 1.5 T magnetic resonance scanners. The respiratory cycle was estimated using the reconstructed RT images, and nonrigid unsupervised motion correction was applied to eliminate breathing motion. Conventional segmented RT and MOCO-RT single-heartbeat cine images were analyzed to evaluate left ventricular (LV) function and volume measurements. Two radiologists scored images for overall image quality, artifact, noise, and wall motion abnormalities. Intraclass correlation coefficient was used to assess the reliability of MOCO-RT measurement. Intraclass correlation coefficient showed excellent reliability (intraclass correlation coefficient ≥ 0.95) of MOCO-RT with segmented cine in measuring LV function, mass, and volume. Comparison of the qualitative ratings indicated comparable image quality for MOCO-RT (4.80 ± 0.35) with segmented cine (4.45 ± 0.88, P = 0.215) and significantly higher than conventional RT techniques (3.51 ± 0.41, P cine (1.51 ± 0.90, P = 0.088 and 1.23 ± 0.45, P = 0.182) were not different. Wall motion abnormality ratings were comparable among different techniques (P = 0.96). The MOCO-RT technique can be used to process conventional free-breathing RT cine images and provides comparable quantitative assessment of LV function and volume

  18. Chemical release experiments to induce F region ionospheric plasma irregularities at the magnetic equator

    Science.gov (United States)

    Sultan, Peter Jared

    1994-01-01

    The largest-scale plasma instability that occurs naturally in the Earth's ionosphere is a turbulent upwelling of the equatorial F region known as equatorial spread-F (ESF). During an ESF event, high plasma density magnetic fluxtubes at the bottomside of the F region are thought to change places with lower plasma density flux-tubes from below in a Rayleigh-Taylor type (heavy fluid over light fluid) instability. This interchange creates a large-scale (10's of km) density perturbation locally, which rapidly penetrates through to the topside of the F region, creating a plume of cascading smaller-scale (meter to centimeter scale) irregularities from the sharp density gradients at the edges of the rising plasma 'bubble'. In a theoretical test of this overall scenario for ESF, a linear instability growth rate is derived following the magnetic fluxtube formalism of Haerendel. Using realistic atmospheric and ionospheric density model inputs, growth rates are calculated for a range of geophysical conditions. Time/altitude domains having positive growth rates are found to coincide with observed time/altitude patterns of ESF occurrence, thus supporting the fluxtube model. The physics also are tested experimentally by the deliberate creation of plasma bubbles in ambient ionospheres that the fluxtube model predicts are susceptible to the Rayleigh-Taylor instability. Two such artificial seed perturbations were generated during the 1990 NASA/Boston University CRRES-at-Kwajalein campaign, when clouds of sulfur hexafluoride (SF6) were released by sounding rockets to initiate plasma recombinations near the bottomside of the equatorial ionosphere. Multiple diagnostics (incoherent scatter radar, high frequency radar, optics, and satellite polarimeters at several sites) were used to monitor the prelaunch status of the ionosphere and the electron depleted regions that resulted from the chemical releases. Small ESF plumes were observed to form in the region of the artificial perturbation

  19. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2013-04-15

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  20. High magnetic shear gain in a liquid sodium stable couette flow experiment A prelude to an alpha - omega dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling [Los Alamos National Laboratory; Li, Jui [Los Alamos National Laboratory; Finn, John [Los Alamos National Laboratory; Pariev, Vladimir [Los Alamos National Laboratory; Beckley, Howard [NM INSTIT. OF MINING AND TECH; Si, Jiahe [NM INSTIT. OF MINING AND TECH.; Martinic, Joe [NM INSTIT. OF MINING AND TECH.; Westpfahl, David [NM INSTIT. OF TECH.; Slutz, James [NM INSTIT. OF MINING AND TECH.; Westrom, Zeb [NM INSTIT. OF TECH.; Klein, Brianna [NM INSTIT. OF MINING AND TECH.

    2010-11-08

    The {Omega}-phase of the liquid sodium {alpha}-{Omega} dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, B{sub {phi}} {approx_equal} 8 x B{sub r} from the radial component of an applied poloidal magnetic field, B{sub r}. This enhanced toroidal field is produced by rotational shear in stable Couette Row within liquid sodium at Rm {approx_equal} 120. The small turbulence in stable Taylor-Couette Row is caused by Ekman Row where ({delta}v/v){sup 2} {approx} 10{sup -3}. This high {Omega}-gain in low turbulence flow contrasts with a smaller {Omega}-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays a diffusive role that enables magnetic flux linkage.