WorldWideScience

Sample records for magnetic nanomaterials nanosensors

  1. Nanosensors and nanomaterials for monitoring glucose in diabetes.

    Science.gov (United States)

    Cash, Kevin J; Clark, Heather A

    2010-12-01

    Worldwide, diabetes is a rapidly growing problem that is managed at the individual level by monitoring and controlling blood glucose levels to minimize the negative effects of the disease. Because of limitations in diagnostic methods, significant research efforts are focused on developing improved methods to measure glucose. Nanotechnology has impacted these efforts by increasing the surface area of sensors, improving the catalytic properties of electrodes and providing nanoscale sensors. Here, we discuss developments in the past several years on both nanosensors that directly measure glucose and nanomaterials that improve glucose sensor function. Finally, we discuss challenges that must be overcome to apply these developments in the clinic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Magnetic nanosensor particles in luminescence upconversion capability.

    Science.gov (United States)

    Wilhelm, Stefan; Hirsch, Thomas; Scheucher, Elisabeth; Mayr, Torsten; Wolfbeis, Otto S

    2011-09-05

    Nanoparticles (NPs) exhibit interesting size-dependent electrical, optical, magnetic, and chemical properties that cannot be observed in their bulk counterparts. The synthesis of NPs (i.e., crystalline particles ranging in size from 1 to 100 nm) has been intensely studied in the past decades. Magnetic nanoparticles (MNPs) form a particularly attractive class of NPs and have found numerous applications such as in magnetic resonance imaging to visualize cancer, cardiovascular, neurological and other diseases. Other uses include drug targeting, tissue imaging, magnetic immobilization, hyperthermia, and magnetic resonance imaging. MNPs, due to their magnetic properties, can be easily separated from (often complex) matrices and manipulated by applying external magnetic field. Near-infrared to visible upconversion luminescent nanoparticles (UCLNPs) form another type of unusual nanoparticles. They are capable of emitting visible light upon NIR light excitation. Lanthanide-doped (Yb, Er) hexagonal NaYF₄ UCLNPs are the most efficient upconversion phosphors known up to now. The use of UCLNPs for in vitro imaging of cancer cells and in vivo imaging in tissues has been demonstrated. UCLNPs show great potential as a new class of luminophores for biological, biomedical, and sensor applications. We are reporting here on our first results on the combination of MNP and UCLNP technology within an ongoing project supported by the DFG and the FWF (Austria).

  3. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng; Fu, Jiecai; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Zhang, Junli

    2018-01-01

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  4. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng

    2018-03-20

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  5. Magnetic characterization techniques for nanomaterials

    CERN Document Server

    2017-01-01

    Sixth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Magnetic Characterization Techniques for Nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  6. Magnetic nanomaterials undamentals, synthesis and applications

    CERN Document Server

    Sellmyer, David J

    2017-01-01

    Timely and comprehensive, this book presents recent advances in magnetic nanomaterials research, covering the latest developments, including the design and preparation of magnetic nanoparticles, their physical and chemical properties as well as their applications in different fields, including biomedicine, magnetic energy storage, wave–absorbing and water remediation. By allowing researchers to get to the forefront developments related to magnetic nanomaterials in various disciplines, this is invaluable reading for the nano, magnetic, energy, medical, and environmental communities.

  7. The Development of Chemical Nanosensors

    Directory of Open Access Journals (Sweden)

    A. J. JIN

    2007-10-01

    Full Text Available This paper presents a study of the chemical nanosensors (CNS for space and environmental applications, safety alert devices, etc. The high-resolution nanosensors are applied to detect the rocket fuel hydrazine leak. The CNS detects changes in the electrical conductivity response during the chemical species presence. When the hydrazine is leaked into air, it immediately dissociates into NO2. As a result, we are actually detecting the NO2 gas in the trace amount from the fuel leakage. In more detail, we will discuss the sensor chips preparation and process control in terms of the resistance range control while depositing the nanomaterials on the sensors. Furthermore, there will be detailed studies of the CNS response to the dry NO2 in the ambient conditions. The inter-digitized electrode sensors are characterized to the variables of NO2 concentration and nanomaterials.

  8. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    Science.gov (United States)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  9. Optimizing Energy Conversion: Magnetic Nano-materials

    Science.gov (United States)

    McIntyre, Dylan; Dann, Martin; Ilie, Carolina C.

    2015-03-01

    We present herein the work started at SUNY Oswego as a part of a SUNY 4E grant. The SUNY 4E Network of Excellence has awarded SUNY Oswego and collaborators a grant to carry out extensive studies on magnetic nanoparticles. The focus of the study is to develop cost effective rare-earth-free magnetic materials that will enhance energy transmission performance of various electrical devices (solar cells, electric cars, hard drives, etc.). The SUNY Oswego team has started the preliminary work for the project and graduate students from the rest of the SUNY 4E team (UB, Alfred College, Albany) will continue the project. The preliminary work concentrates on analyzing the properties of magnetic nanoparticle candidates, calculating molecular orbitals and band gap, and the fabrication of thin films. SUNY 4E Network of Excellence Grant.

  10. Experimentally evaluating the origin of dilute magnetism in nanomaterials

    International Nuclear Information System (INIS)

    Pereira, L M C

    2017-01-01

    Reports of room-temperature ferromagnetism continue to emerge for an ever-growing range of nanomaterials with a small or even vanishing concentration of magnetic atoms. Dilute magnetic semiconductors (DMS) are the most representative class of such materials, but similar magnetic properties have been reported in many others. Challenging our understanding of magnetic order in solids, as well as our ability to experimentally assess it, these remarkable magnetic phenomena have become one of the most controversial topics in magnetism. Various non-intrinsic sources of ferromagnetism (e.g. instrumental artifacts and magnetic contamination) are becoming well documented, and rarely are all of them taken into account when room-temperature ferromagnetism is reported. This topical review is intended to serve as a guide when evaluating to what extent a given data set supports the claim of intrinsic ferromagnetism in dilute nanomaterials. It compiles the most relevant sources of non-intrinsic ferromagnetism which have been reported, as well as guidelines for how to minimize them. It also provides an overview of complementary structural and magnetic characterization techniques which can be combined to provide different levels of scrutiny of the intrinsic nature of experimentally observed ferromagnetism. In particular, it gives some notable examples of how comprehensive studies based on those techniques have led to a remarkably detailed understanding of model DMS materials, with strong evidence of absence of room-temperature ferromagnetism. Although mostly based on DMS research, this review provides a set of guidelines and cautionary notes of broader relevance, including some emerging new fields of dilute nanomagnetism such as magnetically doped 3D topological insulators, 3D Dirac semimetals, and 2D materials. (topical review)

  11. Experimentally evaluating the origin of dilute magnetism in nanomaterials

    Science.gov (United States)

    Pereira, L. M. C.

    2017-10-01

    Reports of room-temperature ferromagnetism continue to emerge for an ever-growing range of nanomaterials with a small or even vanishing concentration of magnetic atoms. Dilute magnetic semiconductors (DMS) are the most representative class of such materials, but similar magnetic properties have been reported in many others. Challenging our understanding of magnetic order in solids, as well as our ability to experimentally assess it, these remarkable magnetic phenomena have become one of the most controversial topics in magnetism. Various non-intrinsic sources of ferromagnetism (e.g. instrumental artifacts and magnetic contamination) are becoming well documented, and rarely are all of them taken into account when room-temperature ferromagnetism is reported. This topical review is intended to serve as a guide when evaluating to what extent a given data set supports the claim of intrinsic ferromagnetism in dilute nanomaterials. It compiles the most relevant sources of non-intrinsic ferromagnetism which have been reported, as well as guidelines for how to minimize them. It also provides an overview of complementary structural and magnetic characterization techniques which can be combined to provide different levels of scrutiny of the intrinsic nature of experimentally observed ferromagnetism. In particular, it gives some notable examples of how comprehensive studies based on those techniques have led to a remarkably detailed understanding of model DMS materials, with strong evidence of absence of room-temperature ferromagnetism. Although mostly based on DMS research, this review provides a set of guidelines and cautionary notes of broader relevance, including some emerging new fields of dilute nanomagnetism such as magnetically doped 3D topological insulators, 3D Dirac semimetals, and 2D materials.

  12. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    Science.gov (United States)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  13. Magnetic scanning gate microscopy of a domain wall nanosensor using microparticle probe

    Energy Technology Data Exchange (ETDEWEB)

    Corte-León, H., E-mail: hector.corte@npl.co.uk [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Gribkov, B. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Krzysteczko, P. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Marchi, F.; Motte, J.-F. [University of Grenoble Alpes, Inst. NEEL, Grenoble F-38042 (France); CNRS, Inst. NEEL, Grenoble F-38042 (France); Schumacher, H.W. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Antonov, V. [Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Kazakova, O. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom)

    2016-02-15

    We apply the magnetic scanning gate microscopy (SGM) technique to study the interaction between a magnetic bead (MB) and a domain wall (DW) trapped in an L-shaped magnetic nanostructure. Magnetic SGM is performed using a custom-made probe, comprising a hard magnetic NdFeB bead of diameter 1.6 µm attached to a standard silicon tip. The MB–DW interaction is detected by measuring changes in the electrical resistance of the device as a function of the tip position. By scanning at different heights, we create a 3D map of the MB–DW interaction and extract the sensing volume for different widths of the nanostructure's arms. It is shown that for 50 nm wide devices the sensing volume is a cone of 880 nm in diameter by 1.4 µm in height, and reduces down to 800 nm in height for 100 nm devices with almost no change in its diameter. - Highlights: • AFM tips with a magnetic bead attached used to test interaction with domain wall. • Domain wall inside a nanostructure affect the electrical resistance. • Recording electrical resistance while scanning with modified AFM probe. • Change of resistance as a function of the position of the magnetic bead. • This allows comparing different devices in a reproducible and controllable way.

  14. A Novel DNA Nanosensor Based on CdSe/ZnS Quantum Dots and Synthesized Fe3O4 Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Roozbeh Hushiarian

    2014-04-01

    Full Text Available Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4 nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.

  15. Nanomaterials and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar BASU

    2011-11-01

    Full Text Available Nanomaterials and nanosensors are two most important iconic words of the modern science & Technology. Though nano technology is relatively a new area of research & development it will soon be included in the most modern electronic circuitry used for advanced computing systems. Since it will provide the potential link between the nanotechnology and the macroscopic world the development is primarily directed towards exploitation of nanotechnology to computer chip miniaturization and vast storage capacity. However, for implementation in the consumer products the present high cost of production must be overcome. There are different ways to make nanosensors e.g. top-down lithography, bottom-up assembly, and self molecular assembly. Consequently, nanomaterials & nanosensors have to be made compatible with the consumer technologies. The progress in detecting and sensing different chemical species with increased accuracy may transform the human society from uncertainty and inaccuracy to more precise and definite world of information. For example, extremely low concentrations of air pollutants or toxic materials in air & water around us can be accurately and economically detected in no time to save the human beings from the serious illnesses. Also, the medical sensors will help in diagnoses of the diseases, their treatment and in predicting the future profile of the individual so that the health insurance companies may exploit the opportunity to grant or to deny the health coverage. Other social issues like privacy invasion and security may be best monitored by the widespread use of the surveillance devices using nanosensors.

  16. Fascinating Magnetic Energy Storage Nanomaterials: A Brief Review.

    Science.gov (United States)

    Sreenivasulu, Kummari V; Srikanth, Vadali V S S

    2017-07-10

    In this brief review, the importance of nanotechnology in developing novel magnetic energy storage materials is discussed. The discussion covers recent patents on permanent magnetic materials and especially covers processing of permanent magnets (rare-earth and rare-earth free magnets), importance of rare-earth permanent magnets and necessity of rare-earth free permanent magnets. Magnetic energy storage materials are those magnetic materials which exhibit very high energy product (BH)max (where B is the magnetic induction in Gauss (G) whereas H is the applied magnetic field in Oersted (Oe)). (BH)max is the direct measure of the ability of a magnetic material to store energy. In this context, processing of magnetic energy storage composite materials constituted by soft and hard magnetic materials played a predominant role in achieving high (BH)max values due to the exchange coupling phenomenon between the soft and hard magnetic phases within the composite. Magnetic energy storage composites are normally composed of rare-earth magnetic materials as well as rare-earth free magnetic materials. Nanotechnology's influence on the enhancement of energy product due to the exchange coupling phenomenon is of great prominence and therefore discussed in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Development of Magnetic Nanomaterials and Devices for Biological Applications

    National Research Council Canada - National Science Library

    O'Connor, Charles J; Hormes, Josef; Bazan, Nicolas

    2007-01-01

    .... Novel bio-compatible ferrofluids of functionalized magnetic nanoparticles suitable for bioconjugation of antibodies or other active biomolecules are developed, prepared, and tested for use in bio...

  18. Magnetic study of Fe-doped CdSe nanomaterials

    International Nuclear Information System (INIS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-01-01

    Nanoparticles of pure and iron (50 %) doped cadmium selenide (CdSe) have been synthesized by soft chemical route. EDAX analysis supports the inclusion of Fe into CdSe nanoparticles. The average particle size of pure and doped CdSe is found to be ∼50 nm from scanning electron microscopy (SEM). Magnetization of the samples are measured under the field cooled (FC) and zero field cooled (ZFC) modes in the temperature range from 5K to 300K applying a magnetic field of 500Oe. Field dependent magnetization (M-H) measurement indicates presence of room temperature (RT) paramagnetism and low temperature (5K) ferromagnetism of the sample.

  19. Development of Magnetic Nanomaterials and Devices for Biological Applications

    Science.gov (United States)

    2007-10-30

    analysis. Suitable crystals for the X-ray diffraction analysis were grown as dark red plates from a saturated hexane solution of [ Co3 (CO)9CCH3] at 4 ºC...Commercially available magnetic nanoparticles are suitable for cell separation where a large number of particles are used to separate a single cell...from a sample. The magnetic moment of these particles is not high enough to enable the separation of single antigen molecules using a single particle

  20. Spectral absorption of unpolarized light through nano-materials in the absence of a magnetic field

    Directory of Open Access Journals (Sweden)

    Luminosu I.

    2008-01-01

    Full Text Available A study of optical properties, such as light absorption, of a colloidal nano-material, provides information on the biphasic, solid - liquid system microstructure. The nano-material under study is a magnetic liquid (ferrofluid. The disperser agent is petroleum mineral oil and the dispersed material is a brown spar powder (nano-particles. The stabilizer is oleic acid. Light absorption through ferrofluid samples reveals the tendency of solid particles in a colloidal solution to form aggregates. The paper emphasizes the linear dependence between the spectral absorption coefficient, concentration and wavelength. The aggregates cause deviations of the extinction coefficient from values according to the Bouger-Lambert-Beer law. Fe3O4 aggregates sized 58.76 nm are formed in the system. The average number of nano-particles forming aggregates is 6. The magnetic liquid to be studied is secure stable and, thus, trustful in technological and biological applications.

  1. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy.

    Science.gov (United States)

    Purushotham, S; Ramanujan, R V

    2010-02-01

    The synthesis, characterization and property evaluation of drug-loaded polymer-coated magnetic nanoparticles (MNPs) relevant to multimodal cancer therapy has been studied. The hyperthermia and controlled drug release characteristics of these particles was examined. Magnetite (Fe(3)O(4))-poly-n-(isopropylacrylamide) (PNIPAM) composite MNPs were synthesized in a core-shell morphology by dispersion polymerization of n-(isopropylacrylamide) chains in the presence of a magnetite ferrofluid. These core-shell composite particles, with a core diameter of approximately 13nm, were loaded with the anti-cancer drug doxorubicin (dox), and the resulting composite nanoparticles (CNPs) exhibit thermoresponsive properties. The magnetic properties of the composite particles are close to those of the uncoated magnetic particles. In an alternating magnetic field (AMF), composite particles loaded with 4.15 wt.% dox exhibit excellent heating properties as well as simultaneous drug release. Drug release testing confirmed that release was much higher above the lower critical solution temperature (LCST) of the CNP, with a release of up to 78.1% of bound dox in 29h. Controlled drug release testing of the particles reveals that the thermoresponsive property can act as an on/off switch by blocking drug release below the LCST. Our work suggests that these dox-loaded polymer-coated MNPs show excellent in vitro hyperthermia and drug release behavior, with the ability to release drugs in the presence of AMF, and the potential to act as agents for combined targeting, hyperthermia and controlled drug release treatment of cancer.

  2. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core-shellcorona...

  3. Anisotropic nanomaterials: Synthesis, optical and magnetic properties, and applications

    Science.gov (United States)

    Banholzer, Matthew John

    As nanoscience and nanotechnology mature, anisotropic metal nanostructures are emerging in a variety of contexts as valuable class of nanostructures due to their distinctive attributes. With unique properties ranging from optical to magnetic and beyond, these structures are useful in many new applications. Chapter two discusses the nanodisk code: a linear array of metal disk pairs that serve as surface-enhanced Raman scattering substrates. These multiplexing structures employ a binary encoding scheme, perform better than previous nanowires designs (in the context of SERS) and are useful for both convert encoding and tagging of substrates (based both on spatial disk position and spectroscopic response) as well as biomolecule detection (e.g. DNA). Chapter three describes the development of improved, silver-based nanodisk code structures. Work was undertaken to generate structures with high yield and reproducibility and to reoptimize the geometry of each disk pair for maximum Raman enhancement. The improved silver structures exhibit greater enhancement than Au structures (leading to lower DNA detection limits), convey additional flexibility, and enable trinary encoding schemes where far more unique structures can be created. Chapter four considers the effect of roughness on the plasmonic properties of nanorod structures and introduces a novel method to smooth the end-surfaces of nanorods structures. The smoothing technique is based upon a two-step process relying upon diffusion control during nanowires growth and selective oxidation after each step of synthesis is complete. Empirical and theoretical work show that smoothed nanostructures have superior and controllable optical properties. Chapter five concerns silica-encapsulated gold nanoprisms. This encapsulation allows these highly sensitive prisms to remain stable and protected in solution, enabling their use as class-leading sensors. Theoretical study complements the empirical work, exploring the effect of

  4. Nanosensors: physical, chemical, and biological

    National Research Council Canada - National Science Library

    Khanna, Vinod Kumar

    2012-01-01

    .... It starts from preliminary ideas and proceeds to state-of-the-art nanosensors. The book provides readers with information on the current state of nanotechnology-enabled sensors as well as their advantages, uniqueness, and limitations...

  5. Different magnetic properties of rhombohedral and cubic Ni2+ doped indium oxide nanomaterials

    Directory of Open Access Journals (Sweden)

    Qingbo Sun

    2011-12-01

    Full Text Available Transition metal ions doped indium oxide nanomaterials were potentially used as a kind of diluted magnetic semiconductors in transparent spintronic devices. In this paper, the influences of Ni2+ doped contents and rhombohedral or cubic crystalline structures of indium oxide on magnetic properties were investigated. We found that the magnetic properties of Ni2+ doped indium oxide could be transferred from room temperature ferromagnetisms to paramagnetic properties with increments of doped contents. Moreover, the different crystalline structures of indium oxide also greatly affected the room temperature ferromagnetisms due to different lattice constants and almost had no effects on their paramagnetic properties. In addition, both the ferromagnetic and paramagnetic properties were demonstrated to be intrinsic and not caused by impurities.

  6. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Reverté, Laia [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain); Prieto-Simón, Beatriz [ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, SA 5095 (Australia); Campàs, Mònica, E-mail: monica.campas@irta.cat [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain)

    2016-02-18

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  7. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    International Nuclear Information System (INIS)

    Reverté, Laia; Prieto-Simón, Beatriz; Campàs, Mònica

    2016-01-01

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  8. Development of Ultrasensitive Plasmonic Nanosensors

    Science.gov (United States)

    Joshi, Gayatribahen K.

    Nanostructures (NSs) based localized surface plasmon resonance (LSPR) sensors have brought a transformation in development of sensing devices due to their ability to detect extremely small changes in surrounding refractive index (R.I.). NS-based LSPR sensing approaches have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of disease, food and environmental analysis, and chemical and biological threat detection. Generally in LSPR spectroscopy, absorption and scattering of light is greatly enhanced at a frequency that excites the NS's LSPR and results in well-defined LSPR extinction peak (lambdaLSPR). This lambdaLSPR is highly dependent on the size, shape, and surrounding R.I. of NSs. Compositional and confirmational change within the surrounding R.I. near the NS could be detected by monitoring the shifts in lambdaLSPR. This thesis specifically focuses on the rational development of the plasmonic nanosensors for various sensing applications by utilizing the LSPR properties of Au NS with prismatic shape. First the chemical synthetic approach that can produce Au nanoprisms, which displayed lambdaLSPR in 650-850 nm range corresponding to 20-50 nm edge lengths has been developed. The chemically synthesized Au nanoprisms were attached to silanized glass substrate and employed as a solid-state sensing platform for the development of label-free plasmonic nanosensors. The size, shape, and surface of nanoprisms were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV-visible spectroscopy. Further, the influence of the structure, size and surface ligand chemistry onto the lambda LSPR of nanoprisms were investigated in detail. Both bulk and local R.I. sensitivity, and the electromagnetic-field (EM-field) decay length were derived for various edge lengths of nanoprisms through measuring the lambda LSPR shifts by UV-visible spectroscopy. Finally, nanoprisms

  9. Facile synthesis of thiol-polyethylene glycol functionalized magnetic titania nanomaterials for highly efficient enrichment of N-linked glycopeptides.

    Science.gov (United States)

    Wang, Jiawen; Yao, Jizong; Sun, Nianrong; Deng, Chunhui

    2017-08-25

    As protein N-glycosylation involved in generation and development of various cancers and diseases, it is vital to capture glycopeptides from complex biological samples for biomarker discovery. In this work, by taking advantages of the interaction between titania and thiol groups, thiol-polyethylene glycol functionalized magnetic titania nanomaterials (denoted as Fe 3 O 4 @TiO 2 @PEG) were firstly fabricated as an excellent hydrophilic adsorbent of N-linked glycopeptides. On one hand, the special interaction of titanium-thiol makes the synthetic manipulation simple and provides a new idea for design and synthesis of novel nanomaterials; on the other hand, strong magnetic response could realize rapid separation and the outstanding hydrophilicity of polyethylene glycol makes Fe 3 O 4 @TiO 2 @PEG nanomaterials show superior performance for glycopeptides enrichment with ultralow limit of detection (0.1mol/μL) and high selectivity (1:100). As a result, 24 and 33 glycopeptides enriched from HRP and IgG digests were identified respectively by MALDI-TOF MS, and 300 glycopeptides corresponding to 106 glycoproteins were recognized from merely 2μL human serum, indicating a great potential of Fe 3 O 4 @TiO 2 @PEG nanomaterials for glycoproteomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nanosensors for neurotransmitters.

    Science.gov (United States)

    Polo, Elena; Kruss, Sebastian

    2016-04-01

    Neurotransmitters are an important class of messenger molecules. They govern chemical communication between cells for example in the brain. The spatiotemporal propagation of these chemical signals is a crucial part of communication between cells. Thus, the spatial aspect of neurotransmitter release is equally important as the mere time-resolved measurement of these substances. In conclusion, without tools that provide the necessary spatiotemporal resolution, chemical signaling via neurotransmitters cannot be studied in greater detail. In this review article we provide a critical overview about sensors/probes that are able to monitor neurotransmitters. Our focus are sensing concepts that provide or could in the future provide the spatiotemporal resolution that is necessary to 'image' dynamic changes of neurotransmitter concentrations around cells. These requirements set the bar for the type of sensors we discuss. The sensor must be small enough (if possible on the nanoscale) to provide the envisioned spatial resolution and it should allow parallel (spatial) detection. In this article we discuss both optical and electrochemical concepts that meet these criteria. We cover techniques that are based on fluorescent building blocks such as nanomaterials, proteins and organic dyes. Additionally, we review electrochemical array techniques and assess limitations and possible future directions.

  11. Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications

    Directory of Open Access Journals (Sweden)

    Yunxiang Gao

    2018-02-01

    Full Text Available Magnetic resonance imaging (MRI is the most powerful tool for deep penetration and high-quality 3D imaging of tissues with anatomical details. However, the sensitivity of the MRI technique is not as good as that of the radioactive or optical imaging methods. Carbon-based nanomaterials have attracted significant attention in biomaterial research in recent decades due to their unique physical properties, versatile functionalization chemistry, as well as excellent biological compatibility. Researchers have employed various carbon nano-allotropes to develop hybrid MRI contrast agents for improved sensitivity. This review summarizes the new research progresses in carbon-based hybrid MRI contrast agents, especially those reported in the past five years. The review will only focus on T2-weighted MRI agents and will be categorized by the different carbon allotrope types and magnetic components. Considering the strong trend in recent bio-nanotechnology research towards multifunctional diagnosis and therapy, carbon-based MRI contrast agents integrated with other imaging modalities or therapeutic functions are also covered.

  12. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics.

    Science.gov (United States)

    Tang, Longhua; Li, Jinghong

    2017-07-28

    Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.

  13. Implantable Nanosensors: Towards Continuous Physiologic Monitoring

    OpenAIRE

    Ruckh, Timothy T.; Clark', Heather A.

    2013-01-01

    Continuous physiologic monitoring would add greatly to both home and clinical medical treatment for chronic conditions. Implantable nanosensors are a promising platform for designing continuous monitoring systems. This feature reviews design considerations and current approaches towards such devices.

  14. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were synthesized from...

  15. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  16. Mesoporous silica (MCM-41)-Fe2O3 as a novel magnetic nanosensor for determination of trace amounts of amino acids.

    Science.gov (United States)

    Hasanzadeh, Mohammad; Shadjou, Nasrin; Omidinia, Eskandar

    2013-08-01

    Magnetic (Fe2O3) mobile crystalline material-41 (MCM-41) was prepared and characterized using transmission electron microscopy (TEM) and nitrogen adsorption-desorption techniques. Due to the large surface area (1213 m(2)g(-1)) and remarkable electrocatalytic properties of MCM-41-Fe2O3, the MCM-41-Fe2O3 modified glassy carbon electrode (MCM-41-Fe2O3/GCE) exhibits potent electrocatalytic activity toward the electro-oxidation of amino acids. MCM-41-Fe2O3/GCE brings new capabilities for electrochemical sensing by combining the advantages of Fe2O3 magnetic nanoparticles and MCM-41 with very large surface area. Cyclic voltammetry, hydrodynamic amperometry and flow injection analysis used to determination of amino acids at higher concentration range. Fast response time, excellent catalytic activity, and ease of preparation are the advantages of the proposed amino acid sensor. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Synthesis, structure and magnetic properties of CoFe_2O_4 nanomaterial by coprecipitation method

    International Nuclear Information System (INIS)

    Nguyen Anh Tien; Hoang Thi Tuyet

    2015-01-01

    CoFe_2O_4 spinel nanomaterial has been synthesized by coprecipitation method through the hydrolysis of Co(II) and Fe(III) cations in boiling water. The results of DTA/TGA/DrTGA, XRD, TEM methods showed that CoFe_2O_4 crystals formed after a calcination at 700 °C exhibited structure of cubic with the particles size of 30-50 nm, H_c = 1526.89 Oe, M_s = 41.703 emu/g, M_r = 19.545 emu/g. (author)

  18. Advanced nanomaterials

    Science.gov (United States)

    Titus, Elby; Ventura, João; Pedro Araújo, João; Campos Gil, João

    2017-12-01

    Nanomaterials provide a remarkably novel outlook to the design and fabrication of materials. The know-how of designing, modelling and fabrication of nanomaterials demands sophisticated experimental and analytical techniques. The major impact of nanomaterials will be in the fields of electronics, energy and medicine. Nanoelectronics hold the promise of improving the quality of life of electronic devices through superior performance, weight reduction and lower power consumption. New energy production systems based on hydrogen, solar and nuclear sources have also benefited immensely from nanomaterials. In modern medicine, nanomaterials research will have great impact on public health care due to better diagnostic methods and design of novel drugs.

  19. Magnetic system for small-angle neutron scattering investigation at YUMO instrument of nanomaterials

    International Nuclear Information System (INIS)

    Balasoiu, M.; Kirilov, A.S.; Kutuzov, S.A.; Smirnov, A.A.; Kuklin, A.I.; Kappel, W.; Cios, M.; Cios, A.

    2009-01-01

    SANS measurements using unpolarized neutron beams are able to provide quantitative information on the magnetic microstructure and the magnitude and microstructure of the magnetic anisotropy of nanomagnetic materials. Here we describe a new magnetic system for SANS at YUMO spectrometer. The system includes 2.5 T electromagnet established on a two-axes goniometric table, power supply, cooling system, PC-based control equipment. Main features of magnetic system are: big changeable gap for the samples (up to 130 mm size), computer controlled horizontal and vertical rotation and sufficiently large space for the sample holders. The system has been developed in cooperation with the INCDIE ICPE-CA (Bucharest) and CIPEC SRL (Bucharest). First experimental results of SANS in ferrofluids and magnetic elastomers obtained at YUMO spectrometer equipped with the new magnetic system are presented

  20. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  1. Bioengineered nanomaterials

    CERN Document Server

    Tiwari, Atul

    2013-01-01

    Many varieties of new, complex diseases are constantly being discovered, which leaves scientists with little choice but to embrace innovative methods for controlling the invasion of life-threatening problems. The use of nanotechnology has given scientists an opportunity to create nanomaterials that could help medical professionals in diagnosing and treating problems quickly and effectively. Bioengineered Nanomaterials presents in-depth information on bioengineered nanomaterials currently being developed in leading research laboratories around the world. In particular, the book focuses on nanom

  2. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    Science.gov (United States)

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  3. Magnetic Control of Fe3O4 Nanomaterial for Fat Ablation in Microchannel

    Directory of Open Access Journals (Sweden)

    Ming Chang

    2015-11-01

    Full Text Available In this study, surface modification of iron (II, III oxide Fe3O4 nanoparticles by oleic acid (OA coating is investigated for the microablation of fat in a microchannel. The nanoparticles are synthesized by the co-precipitation method and then dispersed in organic solvent prior to mixing with the OA. The magnetization, agglomeration, and particle size distribution properties of the OA-coated Fe3O4 nanoparticles are characterized. The surface modification of the Fe3O4 nanoparticles reveals that upon injection into a microchannel, the lipophilicity of the OA coating influences the movement of the nanoparticles across an oil-phase barrier. The motion of the nanoparticles is controlled using an AC magnetic field to induce magnetic torque and a static gradient field to control linear translation. The fat microablation process in a microchannel is demonstrated using an oscillating driving field of less than 1200 Am−1.

  4. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: manoharphd@gmail.com [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)

    2017-03-15

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  5. Influence of Ni-Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Meydan, Turgut [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Nlebedim, Ikenna Cajetan [Ames Laboratory of US Department of Energy, Ames, IA 50011 (United States)

    2012-02-15

    Graphical abstract: Variation of saturation magnetization (M{sub S}) and magnetocrystalline anisotropy coefficient (K{sub 1}) with Ni-Cr content for Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5). Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} are synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer High field regime of M-H loops are modeled using Law of Approach to saturation. Black-Right-Pointing-Pointer A considerable increase in the value of M{sub S} from 148 kA/m to 206 kA/m is achieved Black-Right-Pointing-Pointer {rho}{sup RT} enhanced to the order of 10{sup 9} {Omega}cm at potential operational range around 300 K. -- Abstract: The effect of variation of composition on the structural, morphological, magnetic and electric properties of Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5) nanocrystallites is presented. The samples were prepared by novel polyethylene glycol (PEG) assisted microemulsion method with average crystallite size of 15-47 nm. The microstructure, chemical, and phase analyses of the samples were studied by the scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray fluorescence (ED-XRF), and X-ray diffraction (XRD). Compositional variation greatly affected the magnetic and structural properties. The high-field regimes of the magnetic loops are modelled using the Law of Approach (LOA) to saturation in order to extract information about their anisotropy and the saturation magnetization. Thermal demagnetization measurements are carried out using VSM and significant enhancement of the Curie temperature from 681 K to 832 K has been achieved by substitution of different contents of Ni-Cr. The dc-electrical resistivity ({rho}{sup RT}) at potential operational range around 300 K is increased from 7.5 Multiplication-Sign 10{sup 8} to 4.85 Multiplication-Sign 10{sup 9} {Omega}cm with the increase in Ni-Cr contents

  6. Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Ames

    2011-06-15

    The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

  7. Structure, magnetism, and electron-transport properties of Mn2CrGa-based nanomaterials

    Directory of Open Access Journals (Sweden)

    Wenyong Zhang

    2016-05-01

    Full Text Available Mn2CrGa in the disordered cubic structure has been synthesized using rapid quenching and subsequent annealing. The cubic phase transforms to a stable tetragonal phase when a fraction of Cr or Ga is replaced by Pt or Al, respectively. All samples are ferrimagnetic with high Curie temperatures (Tc; Mn2CrGa exhibits the highest Tc of about 813 K. The tetragonal samples have appreciable values of magnetocrystalline anisotropy energy, which leads to an increase in coercivity (Hc that approaches about 10 kOe in the Pt-doped sample. The Hc linearly increases with a decrease of temperature, concomitant with the anisotropy change with temperature. All samples are metallic and show negative magnetoresistance with room-temperature resistivities on the order of 1 mΩcm. The magnetic properties including high Tc and low magnetic moment suggest that these tetragonal materials have potential for spin-transfer-torque-based devices.

  8. Computational nano-materials design for high-TC ferromagnetism in wide-gap magnetic semiconductors

    International Nuclear Information System (INIS)

    Katayama-Yoshida, H.; Sato, K.; Fukushima, T.; Toyoda, M.; Kizaki, H.; Dinh, V.A.; Dederichs, P.H.

    2007-01-01

    We propose materials design of high-T C wide band-gap dilute magnetic semiconductors (DMSs) based on first-principles calculations by using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method. First, we discuss a unified physical picture of ferromagnetism in II-VI and III-V DMSs and show that DMS family is categorized into two groups depending on the electronic structure. One is the system where Zener's double exchange mechanism dominates in the ferromagnetic interaction, and in the other systems Zener's p-d exchange mechanism dominates. Next, we develop an accurate method for T C calculation for the DMSs and show that the mean field approximation completely fails to predict Curie temperature of DMS in particular for wide-gap DMS where the exchange interaction is short-ranged. The calculated T C of homogeneous DMSs by using the present method agrees very well with available experimental values. For more realistic material design, we simulate spinodal nano-decomposition by applying the Monte Carlo method to the Ising model with ab initio chemical pair interactions between magnetic impurities in DMS. It is found that by controlling the dimensionality of the decomposition various characteristic phases occur in DMS such as 3D Dairiseki-phase and 1D Konbu-phase, and it is suggested that super-paramagnetic blocking phenomena should be important to understand the magnetism of wide-gap DMS. Based on the present simulations for spinodal nano-decomposition, we propose a new crystal growth method of positioning by seeding and shape controlling method in 100 Tera-bit density of nano-magnets in the semiconductor matrix with high-T C (or high-T B )

  9. Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Rajjab [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Alina [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Shahid, Muhammad [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Haider, Sajjad [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia); Malik, Abdul Sattar [Department of Electrical Engineering, University College of Engineering and Technology, Bahauddin Zakariya University, Multan 60800 Pakistan (Pakistan); Sher, Muhammad [Department of Chemistry, University of Sargodha, Sargodha 40100 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); FarooqWarsi, Muhammad, E-mail: farooq.warsi@iub.edu.pk [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2017-05-01

    Nano-sized Zr-Co doped nickel ferrites with nominal composition, NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} (x=0.0, 0.2, 0.4, 0.6, 0.8) were synthesized using the micro-emulsion route. The structural elucidation of the synthesized materials was carried out by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis confirmed face centered cubic (FCC) structure of all compositions of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nanocrystallites. Crystallite size was calculated by Scherrer's formula found in the range 10–15 nm. The variation in lattice parameter as determined by XRD data agreed with size variation of host (Fe{sup 3+}) and guest (Zr{sup 4+} and Co{sup 2+}) cations. FTIR spectra of doped NiFe{sub 2}O{sub 4} exhibited the typical octahedral bands at 528.4 cm{sup −1} which is the characteristic feature of spinel structure of spinel ferrites. The characterized spinel NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites were evaluated for their potential applications by magnetic hysteresis loops and dielectric measurements. The value of saturation magnetization (M{sub s}) decreased from 47.9 to 13.09 emu/g up to x=0.8 with ups and downs fluctuations in between x=0.0 to x=0.8. The high values of Ms of some compositions predicted the potential applications in high density perpendicular recording media and microwave devices. The frequency dependent behavior of permittivity (ε') is recorded and discussed with the help of hopping mechanism of both holes and electrons. The dielectric and magnetic data of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites suggested the potential applications of these ferrite nanoparticles in high frequency and magnetic data storage devices fabrication. - Graphical abstract: Zr-Co doped nickel nano-ferrites were prepared via micro-emulsion method. The crystallite size calculated by scherrer's formula lie in the range 10–15 nm. The saturation magnetization decreases from 47

  10. Applications of nanomaterials in sensors and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Tuantranont, Adisorn (ed.) [National Electronics and Computer Technology Center (NECTEC), Pathumthani (Thailand). Nanoelectronics and MEMS Laboratory

    2013-11-01

    Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.

  11. Nanomaterial Registry

    Data.gov (United States)

    U.S. Department of Health & Human Services — By leveraging and developing a set of Minimal Information About Nanomaterials (MIAN), ontology and standards through a community effort, it has developed a data...

  12. Metal oxide nanosensors using polymeric membranes, enzymes and antibody receptors as ion and molecular recognition elements.

    Science.gov (United States)

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-05-16

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.

  13. Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2014-05-01

    Full Text Available The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.

  14. Nano-biomedical approaches of cancer therapy using carbon based and magnetic nanomaterials

    Science.gov (United States)

    Karmakar, Alokita

    Since the inception of nanoparticles, they have affected almost each and every field of modern science and technology both in terms of research and application. Due to its subcellular level size and ease of modification for biological and medical purposes, nanoparticles have contributed greatly in various field of biomedical reaserch including cancer research. In this dissertation, emphasis has been given on an important area of research of a multi-modal anticancer therapeutic approach using carbon-based and magnetic inorganic nanoparticles. Ethylenediamine functionalized single wall carbon nanotubes (SWNTs) have been used to deliver a functional copy of p53 gene in a plasmid construct, to human breast cancer cell line MCF-7, in order to restore the activity of p53 protein, which in this case is extremely short-lived. The attachment of the plasmid on the SWNTs was determined by atomic force microscopy. The nanutobe has successfully delivered the plasmid into the MCF-7 cell which follows the expression of the p53 protein into the cell as evidenced by the expression of Green fluorescence protein which was tagged to p53 plasmid. Upon expression, the functional activity of the p53 protein was found to be significantly restored as after 72 hours of incubation ~40% of cancer cells were apoptotic. Apoptosis was further determined by caspase assay. In chapter 3, we have used SWNTs to accomplish the targeted delivery by functionalizing it with human epidermal growth factor (EGF). As EGF receptor is over expressed in many of the cancer cells, it is possible to deliver any chemotherapeutic agents selectively to those cancer cells. We used EGF conjugated to SWNTs for targeted delivery to PANC-1 cells. Results indicate EGF-functionalized SWNTs accumulate more into PANC-1 cells compared to only SWNTs only. Upon targeting, Raman spectroscopy and ELIZA assay were used to determine the association and dissociation pattern of the targeted SWCNTs. 2D-Raman mapping was used to show

  15. First step in developing SWNT nano-sensor for C17.2 neural stem cells

    Science.gov (United States)

    Ignatova, Tetyana; Pirbhai, Massooma; Chandrasekar, Swetha; Rotkin, Slava V.; Jedlicka, Sabrina

    Nanomaterials are widely used for biomedical applications and diagnostics, including as drug and gene delivery agents, imaging objects, and biosensors. As single-wall carbon nanotubes (SWNTs) possess a size similar to intracellular components, including fibrillar proteins and some organelles, the potential for use in a wide variety of intracellular applications is significant. However, implementation of an SWNT based nano-sensor is difficult due to lack of understanding of SWNT-cell interaction on both the cellular and molecular level. In this study, C17.2 neural stem cells have been tested after uptake of SWNTs wrapped with ssDNA over a wide variety of time periods, allowing for broad localization of SWNTs inside of the cells over long time periods. The localization data is being used to develop a predictive model of how, upon uptake of SWNT, the cytoskeleton and other cellular structures of the adherent cells is perturbed.

  16. Fluorescent nanosensors for intracellular measurements: synthesis, characterisation, calibration and measurement

    Directory of Open Access Journals (Sweden)

    Arpan Shailesh Desai

    2014-01-01

    Full Text Available Measurement of intracellular acidification is important for understanding fundamental biological pathways as well as developing effective therapeutic strategies. Fluorescent pH nanosensors are an enabling technology for real-time monitoring of intracellular acidification. The physicochemical characteristics of nanosensors can be engineered to target specific cellular compartments and respond to external stimuli. Therefore nanosensors represent a versatile approach for probing biological pathways inside cells. The fundamental components of nanosensors comprise a pH-sensitive fluorophore (signal transducer and a pH-insensitive reference fluorophore (internal standard immobilised in an inert non-toxic matrix. The inert matrix prevents interference of cellular components with the sensing elements as well as minimizing potentially harmful effects of some fluorophores on cell function. Fluorescent nanosensors are synthesised using standard laboratory equipment and are detectable by non-invasive widely accessibly imaging techniques. The outcomes of studies employing this technology are dependent on reliable methodology for performing measurements. In particular special consideration must be given to conditions for sensor calibration, uptake conditions and parameters for image analysis. We describe procedures for: 1 synthesis and characterisation of polyacrylamide and silica based nanosensors 2 nanosensor calibration and 3 performing measurements using fluorescence microscopy.

  17. Novel {beta}-cyclodextrin modified CdTe quantum dots as fluorescence nanosensor for acetylsalicylic acid and metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Algarra, M. [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Campos, B.B.; Aguiar, F.R.; Rodriguez-Borges, J.E. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 169-007 Porto (Portugal); Esteves da Silva, J.C.G., E-mail: jcsilva@fc.up.pt [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 169-007 Porto (Portugal)

    2012-05-01

    {beta}-Cyclodextrin was modified with 11-[(ethoxycarbonyl)thio]undecanoic acid and used as a capping agent, together with mercaptosuccinic acid, to prepare water-stable CdTe quantum dots. The water soluble quantum dot obtained displays fluorescence with a maximum emission at 425 nm (under excitation at 300 nm) with lifetimes of 0.53, 4.8, 181, and 44.1 ns, respectively. The S-{beta}CD-MSA-CdTe can act as a nanoprobe that is due to the affinity of the cyclodextrin moiety for selected substances such as acetylsalicylic acid (ASA) and its metabolites as foreign species. The fluorescence of the S-{beta}CD-MSA-CdTe is enhanced on addition of ASA. Linear calibration plots are observed with ASA in concentrations between 0 and 1 mg/l, with a limit of detection at 8.5 Multiplication-Sign 10{sup -9} mol/l (1.5 ng/ml) and a precision as relative standard deviation of 1% (0.05 mg/l). The interference effect of certain compounds as ascorbic acid and its main metabolites such as salicylic, gentisic and salicyluric acid upon the obtained procedure was studied. Highlights: Black-Right-Pointing-Pointer Nanosensors constituted by CdTe quantum dots capped with modified cyclodextrin. Black-Right-Pointing-Pointer This nanomaterial shows fluorescence properties compatible with a semiconductor quantum dot. Black-Right-Pointing-Pointer The nanosensor shows fluorescence enhancement when inclusion complexes are formed with acetylsalicylic acid. Black-Right-Pointing-Pointer This nanomaterial has nanosensor potential taking into consideration the formation stability of the inclusion complex.

  18. Flexible graphene bio-nanosensor for lactate.

    Science.gov (United States)

    Labroo, Pratima; Cui, Yue

    2013-03-15

    The development of a flexible nanosensor for detecting lactate could expand opportunities for using graphene, both in fundamental studies for a variety of device platforms and in practical applications. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with ultrasensitive sensing capabilities. Lactic acid is important for clinical analysis, sports medicine, and the food industry. Recently, wearable and flexible bioelectronics on plastics have attracted great interest for healthcare, sports and defense applications due to their advantages of being light-weight, bendable, or stretchable. Here, we demonstrate for the first time the development of a flexible graphene-based bio-nanosensor to detect lactate. Our results show that flexible lactate biosensors can be fabricated on a variety of plastic substrates. The sensor can detect lactate sensitively from 0.08 μM to 20 μM with a fast steady-state measuring time of 2s. The sensor can also detect lactate under different mechanical bending conditions, the sensor response decreased as the bending angle and number of bending repetitions increased. We anticipate that these results could open exciting opportunities for fundamental studies of flexible graphene bioelectronics by using other bioreceptors, as well as a variety of wearable, implantable, real-time, or on-site applications in fields ranging from clinical analysis to defense. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Magnetic and luminescent hybrid nanomaterial based on Fe{sub 3}O{sub 4} nanocrystals and GdPO{sub 4}:Eu{sup 3+} nanoneedles

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin; Grzyb, Tomasz; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2012-10-15

    A bifunctional hybrid nanomaterial, which can show magnetic and luminescent properties, was obtained. A magnetic phase was synthesized as a core/shell type composite. Nanocrystalline magnetite, Fe{sub 3}O{sub 4} was used as the core and was encapsulated in a silica shell. The luminescent phase was GdPO{sub 4} doped with Eu{sup 3+} ions, as the emitter. The investigated materials were synthesized using a coprecipitation method. Encapsulated Fe{sub 3}O{sub 4} was 'trapped' in a nano-scaffold composed of GdPO{sub 4} crystalline nanoneedles. When an external magnetic field was applied, this hybrid composite was attracted in one direction. Also, the luminescent phase can move simultaneously with magnetite due to a 'trapping' effect. The structure and morphology of the obtained nanocomposites were examined with the use of transmission electron microscopy and X-ray powder diffraction. Spectroscopic properties of the Eu{sup 3+}-doped nanomaterials were studied by measuring their excitation and emission spectra as well as their luminescence decay times.Graphical Abstract.

  20. ZnO based potentiometric and amperometric nanosensors.

    Science.gov (United States)

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-09-01

    The existence of nanomaterials provides the solid platform for sensing applications due to owing of high sensitivity and a low concentration limit of detection. More likely used nanomaterials for sensing applications includes gold nanoparticles, carbon nanotubes, magnetic nanoparticles such as Fe3O4, quantum dots and metal oxides etc. Recently nanomaterial and biological detection becomes an interdisciplinary field and is very much focussed by the researchers. Among metal oxides ZnO is largely considered due to its less toxic nature, biocompatible, cheap and easy to synthesis. ZnO nanomaterial is highly used for the chemical sensing, especially electrochemical sensing due to its fascinating properties such as high surface to volume ratio, atoxic, biosafe and biocompatible. Moreover, ZnO nanostructures exhibit unique features which could expose a suitable nanoenviroment for the immobilization of proteineous material such as enzymes, DNA, antibodies, etc. and in doing so it retains the biological efficiency of the immobilized bio sensitive material. The following review describes the two different coatings (i.e., ionophore and enzyme) on the surface of ZnO nanorods for the chemical sensing of zinc ion detection, thallium (I) ion detection, and L-lactic acid and the measurement of galactose molecules. ZnO nanorods provide the excellent transducing properties in the generation of strong electrical signals. Moreover, this review is very much focused on the applications of ZnO nanostructures in the sensing field.

  1. In Vivo Histamine Optical Nanosensors

    Directory of Open Access Journals (Sweden)

    Heather A. Clark

    2012-08-01

    Full Text Available In this communication we discuss the development of ionophore based nanosensors for the detection and monitoring of histamine levels in vivo. This approach is based on the use of an amine-reactive, broad spectrum ionophore which is capable of recognizing and binding to histamine. We pair this ionophore with our already established nanosensor platform, and demonstrate in vitro and in vivo monitoring of histamine levels. This approach enables capturing rapid kinetics of histamine after injection, which are more difficult to measure with standard approaches such as blood sampling, especially on small research models. The coupling together of in vivo nanosensors with ionophores such as nonactin provide a way to generate nanosensors for novel targets without the difficult process of designing and synthesizing novel ionophores.

  2. Environmental Risk Assessment of Nanomaterials

    Science.gov (United States)

    Bayramov, A. A.

    In this paper, various aspects of modern nanotechnologies and, as a result, risks of nanomaterials impact on an environment are considered. This very brief review of the First International Conference on Material and Information Sciences in High Technologies (2007, Baku, Azerbaijan) is given. The conference presented many reports that were devoted to nanotechnology in biology and business for the developing World, formation of charged nanoparticles for creation of functional nanostructures, nanoprocessing of carbon nanotubes, magnetic and optical properties of manganese-phosphorus nanowires, ultra-nanocrystalline diamond films, and nanophotonics communications in Azerbaijan. The mathematical methods of simulation of the group, individual and social risks are considered for the purpose of nanomaterials risk reduction and remediation. Lastly, we have conducted studies at a plant of polymeric materials (and nanomaterials), located near Baku. Assessments have been conducted on the individual risk of person affection and constructed the map of equal isolines and zones of individual risk for a plant of polymeric materials (and nanomaterials).

  3. Nanostructure investigation of magnetic nanomaterial Ni0.5Zn0.3Cu0.2Fe2O4 synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Pransisco, Prengki; Shafie, Afza; Guan, Beh Hoe

    2015-01-01

    Magnetic nanomaterial Ni 0.5 Zn 0.3 Cu 0.2 Fe 2 O 4 was successfully prepared by using sol-gel method. Heat treatment on material is always giving defect on properties of material. This paper investigates the effect of heat treatment on nanostructure of magnetic nanomaterial Ni 0.5 Zn 0.3 Cu 0.2 Fe 2 O 4 . According to thermo gravimetric analysis (TGA) that after 600°C there is no more weight loss detected and it was decided as minimum calcination temperature. Intensity, crystallite size, structure, lattice parameter and d-spacing of the material were investigated by using X-ray diffraction (XRD). High resolution transmission electron microscope (HRTEM) was used to examine nanostructure, nanosize, shape and distribution particle of magnetic material Ni 0.5 Zn 0.3 Cu 0.2 Fe 2 O 4 and variable pressure field emission scanning electron microscope (VP-FESEM) was used to investigate the surface morphology and topography of the material. The XRD result shows single-phase cubic spinel structure with average crystallite size in the range of 25.6-95.9 nm, the value of the intensity of the material was increased with increasing temperature, and followed by lattice parameter was increased with increasing calcination temperature, value of d-spacing was relatively decreased with accompanied increasing temperature. From HRTEM result the distribution of particles was tend to be agglomerates with particle size of 7.8-17.68 nm. VP-FESEM result shows that grain size of the material increases with increasing calcination temperature and the surface morphology shows that the material is in hexagonal shape and it was also proved by mapping result which showing the presence each of constituents inside the compound

  4. Nanomaterials for In Vivo Imaging.

    Science.gov (United States)

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.

  5. Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe3O4/SiO2/NH2/PAA/LnF3)

    International Nuclear Information System (INIS)

    Runowski, Marcin; Lis, Stefan

    2016-01-01

    The synthesized magnetite nanoparticles (10–15 nm) were successfully coated with amine modified silica nanoshell, which led to the formation of core/shell type nanostructures (30–50 nm). The as-prepared nanoparticles were surface modified with polyacrylic acid (PAA) via electrostatic interactions of –NH 2 and –COOH groups. Afterwards, the surface PAA molecules acted as complexing agents of the introduced lanthanide (Ln 3+ ) ions. Subsequently, the as-prepared nanostructures were surface decorated with luminescent LnF 3 nanoparticles, forming Eu 3+ or Tb 3+ doped Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3 nanomaterials (50–100 nm). The obtained luminescent–magnetic products exhibited simultaneously bright red or green emission under UV lamp irradiation (λ ex =254 nm), and a response for the applied magnetic field (strong magnet attracts the colloidal particles, dispersed in aqueous medium). After the synthesis, properties of the nanomaterials were investigated by powder X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), infrared spectroscopy (IR) and spectrofluorometry (analysis of excitation/emission spectra and luminescence decay curves). Such advanced nanomaterials can be potentially used in multimodal imaging, targeted therapies and as multifunctional contrast agents, novel luminescent–magnetic tracers, protection of documents, etc. - Highlights: • Luminescent–magnetic nanomaterials Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3 were synthesized. • Core/shell nanostructures were obtained by surface modification of nanoparticles. • Luminescent lanthanide fluoride nanoparticles doped with Eu 3+ and Tb 3+ ions. • Multifunctional core/shell nanostructures exhibited red or green emission. • Nanomaterials formed stable aqueous colloids.

  6. A mathematical model of superparamagnetic iron oxide nanoparticle magnetic behavior to guide the design of novel nanomaterials

    International Nuclear Information System (INIS)

    Ortega, Ryan A.; Giorgio, Todd D.

    2012-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) exhibit unique magnetic properties that make them highly efficacious as MR imaging contrast agents and laboratory diagnostic tools. The complexity of SPION magnetic behavior and the multiple parameters affecting this behavior complicate attempts at fabricating particles suited for a particular purpose. A mathematical model of SPION magnetic properties derived from experimental relationships and first principles can be an effective design tool for predicting particle behavior before materials are fabricated. Here, a novel model of SPION magnetic properties is described, using particle size and applied magnetic field as the primary variable inputs. The model is capable of predicting particle susceptibility and non-linear particle magnetization as well as describing the vector magnetic field produced by a single particle in an applied field. Magnetization values produced by the model agree with recent experimental measurements of particle magnetizations. The model is used to predict the complex magnetic behavior of clustered magnetic particles in simulated in vivo environment; specifically, interactions between the clusters and water molecules. The model shows that larger particles exhibit more linear magnetic behavior and stronger magnetization and that clusters of smaller particles allow for more numerous SPION–water molecule interactions and more uniform cluster magnetizations.

  7. Applications of fiber-optics-based nanosensors to drug discovery.

    Science.gov (United States)

    Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria

    2009-08-01

    Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).

  8. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    International Nuclear Information System (INIS)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-01-01

    Rare earths orthovanadates (REVO 4 ) doped with luminescent lanthanide ions (Ln 3+ ) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu 3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO 4 3− groups to Eu 3+ ions. In the presented study, Fe 3 O 4 @SiO 2 @GdVO 4 :Eu 3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO 4 doped with Ln 3+ . Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells

  9. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Szczeszak, Agata [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Ekner-Grzyb, Anna [Adam Mickiewicz University, Department of Behavioural Ecology, Faculty of Biology (Poland); Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Mrówczyńska, Lucyna [Adam Mickiewicz University, Department of Cell Biology, Faculty of Biology (Poland); Grzyb, Tomasz; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2015-03-15

    Rare earths orthovanadates (REVO{sub 4}) doped with luminescent lanthanide ions (Ln{sup 3+}) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu{sup 3+} ions is well known for its efficient and intense red emission, induced by energy transfer from the VO{sub 4}{sup 3−} groups to Eu{sup 3+} ions. In the presented study, Fe{sub 3}O{sub 4}@SiO{sub 2}@GdVO{sub 4}:Eu{sup 3+} 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO{sub 4} doped with Ln{sup 3+}. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  10. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Science.gov (United States)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-03-01

    Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3- groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  11. Mutagenicity of carbon nanomaterials

    DEFF Research Database (Denmark)

    Wallin, Håkan; Jacobsen, Nicklas Raun; White, Paul A

    2011-01-01

    Carbon nanomaterials such carbon nanotubes, graphene and fullerenes are some the most promising nanomaterials. Although carbon nanomaterials have been reported to possess genotoxic potential, it is imperitive to analyse the data on the genotoxicity of carbon nanomaterials in vivo and in vitro...

  12. Advances in nanomaterials

    CERN Document Server

    Khan, Zishan

    2016-01-01

    This book provides a review of the latest research findings and key applications in the field of nanomaterials. The book contains twelve chapters on different aspects of nanomaterials. It begins with key fundamental concepts to aid readers new to the discipline of nanomaterials, and then moves to the different types of nanomaterials studied. The book includes chapters based on the applications of nanomaterials for nano-biotechnology and solar energy. Overall, the book comprises chapters on a variety of topics on nanomaterials from expert authors across the globe. This book will appeal to researchers and professional alike, and may also be used as a reference for courses in nanomaterials.

  13. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    Science.gov (United States)

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and

  14. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  15. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2015-01-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed......-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation...... at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors.Both approaches provide stable nanosensors with similar pKa profiles and thereby...

  16. Temperature and composition dependence of magnetic properties of cobalt-chromium co-substituted magnesium ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Meydan, Turgut; Melikhov, Yevgen [Wolfson Center for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2012-11-15

    The temperature and composition dependence of magnetic properties of Co-Cr co-substituted magnesium ferrite, Mg{sub 1-x}Co{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x=0.0-0.5), prepared by novel polyethylene glycol assisted microemulsion method, are studied. The synthesized materials are characterized by the Moessbauer spectrometer and standard magnetic measurements. Major hysteresis loops are measured up to the magnetic field of 50 kOe at 300, 200 and 100 K. The high field regimes of these loops are modeled using the Law of Approach to saturation to determine the first-order cubic anisotropy coefficient and saturation magnetization. Both the saturation magnetization and the anisotropy coefficient are observed to increase with the decrease in temperature for all Co-Cr co-substitution levels. Also, both the saturation magnetization and the anisotropy coefficient achieved maximum value at x=0.3 and x=0.2, respectively. Explanation of the observed behavior is proposed in terms of the site occupancy of the co-substituent, Co{sup 2+} and Cr{sup 3+} in the cubic spinel lattice. - Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Co{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} are synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer Co-Cr occupied octahedral site confirmed by the Moessbauer analysis. Black-Right-Pointing-Pointer High field regime of M-H loops are modeled using the Law of Approach to saturation. Black-Right-Pointing-Pointer The values of M{sub S}, M{sub r}, H{sub C} and K{sub 1} are found to increase with decreasing temperature.

  17. Recent applications of nanomaterials in capillary electrophoresis.

    Science.gov (United States)

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  19. Rapid and sensitive detection of clenbuterol using a fluorescence nanosensor based on diazo coupling mechanism

    Science.gov (United States)

    Thanh Hop Tran, Thi; Huong Do, Thi Mai; Hoang, Mai Ha; Tuyen Nguyen, Duc; Le, Quang Tuan; Nghia Nguyen, Duc; Ngo, Trinh Tung

    2015-01-01

    In this paper, the fluorescence resonance energy transfer (FRET) effect has been used for fabrication of nanosensor for the detection of clenbuterol. In the nanosensor, the CdTe quantum dots (QDs) are the donors while the acceptor is the super-macromolecule formed by the diazoation coupling mechanism between diazo clenbuterol and naphthylethylene diamine. Changes in fluorescence intensities of nanosensor were used to determine the clenbuterol concentration. We have successfully fabricated a nanosensor for detection of clenbuterol sensible to clenbuterol concentration of 10-12 g ml-1.

  20. Synthesis of FeNi Alloy Nanomaterials by Proteic Sol-Gel Method: Crystallographic, Morphological, and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Cássio Morilla dos Santos

    2016-01-01

    Full Text Available Proteic Sol-Gel method was used for the synthesis of FeNi alloy at different temperature conditions and flow reduction. The solids were characterized by XRD, H2-TPR, SEM, TEM, Mössbauer spectroscopy, and VSM. It was observed by X-ray diffraction pure FeNi alloy in the samples reduced at 600°C (40 mL/min H2 flow and 700°C (25 mL/min H2 flow. The FeNi alloy presented stability against the oxidizing atmosphere up to 250°C. The morphology exhibited agglomerates relatively spherical and particles in the range of 10–40 nm. Mössbauer spectroscopy showed the presence of disordered ferromagnetic FeNi alloy, and magnetic hysteresis loop revealed a typical behavior of soft magnetic material.

  1. Handbook of nanomaterials properties

    CERN Document Server

    Luo, Dan; Schricker, Scott R; Sigmund, Wolfgang; Zauscher, Stefan

    2014-01-01

    Nanomaterials attract tremendous attention in recent researches. Although extensive research has been done in this field it still lacks a comprehensive reference work that presents data on properties of different Nanomaterials. This Handbook of Nanomaterials Properties will be the first single reference work that brings together the various properties with wide breadth and scope.

  2. Nanosensors-Cellphone Integration for Extended Chemical Sensing Network

    Science.gov (United States)

    Li, Jing

    2011-01-01

    This poster is to present the development of a cellphone sensor network for extended chemical sensing. The nanosensors using carbon nanotubes and other nanostructures are used with low power and high sensitivity for chemical detection. The sensing module has been miniaturized to a small size that can plug in or clip on to a smartphone. The chemical information detected by the nanosensors are acquired by a smartphone and transmitted via cellphone 3g or WiFi network to an internet server. The whole integrated sensing system from sensor to cellphone to a cloud will provide an extended chemical sensing network that can cover nation wide and even cover global wide for early warning of a hazardous event.

  3. Development of nanosensors for studying intracellular phosphate levels

    DEFF Research Database (Denmark)

    Gu, Hong

    -time monitoring of Pi metabolism in living cells, providing a new tool for fluxomics (measurement of metabolic flux), analysis of pathophysiology or changes of Pi during cell activity. Transformation of plants with FLIPs had resulted in only low expression levels. As an alternative a protein transduction domain......Abstract Inorganic phosphate (Pi) is an essential macronutrient that plays a central role in metabolism and signal transduction in plants. Uptake, compartmentation and transport are important players of cellular Pi homeostasis; however, methods to determine the cellular phosphate concentration...... of a substrate-binding protein linked to two fluorescent reporter proteins. Substrate binding changes the conformation of the nanosensor and, hence, the efficiency of fluorescence resonance energy transfer (FRET) between the reporter proteins. The aim of the present project was to develop nanosensors for Pi...

  4. 3D+T motion analysis with nanosensors

    Science.gov (United States)

    Leduc, Jean-Pierre

    2017-09-01

    This paper addresses the problem of motion analysis performed in a signal sampled on an irregular grid spread in 3-dimensional space and time (3D+T). Nanosensors can be randomly scattered in the field to form a "sensor network". Once released, each nanosensor transmits at its own fixed pace information which corresponds to some physical variable measured in the field. Each nanosensor is supposed to have a limited lifetime given by a Poisson-exponential distribution after release. The motion analysis is supported by a model based on a Lie group called the Galilei group that refers to the actual mechanics that takes place on some given geometry. The Galilei group has representations in the Hilbert space of the captured signals. Those representations have the properties to be unitary, irreducible and square-integrable and to enable the existence of admissible continuous wavelets fit for motion analysis. The motion analysis can be considered as a so-called "inverse problem" where the physical model is inferred to estimate the kinematical parameters of interest. The estimation of the kinematical parameters is performed by a gradient algorithm. The gradient algorithm extends in the trajectory determination. Trajectory computation is related to a Lagrangian-Hamiltonian formulation and fits into a neuro-dynamic programming approach that can be implemented in the form of a Q-learning algorithm. Applications relevant for this problem can be found in medical imaging, Earth science, military, and neurophysiology.

  5. Effects of Eu substitution on luminescent and magnetic properties of BaTiO{sub 3} nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S., E-mail: sfuentes@ucn.cl [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Barraza, N. [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Veloso, E. [Laboratorio de Magnetismo, Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta (Chile); Villarroel, R. [Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Llanos, J. [Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile)

    2013-08-25

    Highlight: •We described a new combined method to obtain Eu{sup 3+}-doped BaTiO{sub 3}. •We report the physical and optical properties of Eu{sup 3+}-doped BaTiO{sub 3}. •The synthesis method improves the stabilization of the tetragonal phase of BaTiO{sub 3}:Eu. •The photoluminescence spectra indicate that the Eu{sup 3+} ions occupy an antisymmetric site. •The as prepared phases could be considered as multifunctional materials. -- Abstract: Eu{sup 3+}-doped BaTiO{sub 3} phases were synthesized by combined sol–gel and hydrothermal methods under an oxygen partial pressure of 60 psi. The crystal phases were characterized by X-ray powder diffraction. The Raman spectra as well as the magnetic properties were also investigated. The photoluminescence emission spectra confirm that the samples were efficiently excited by near-UV light. All spectra were dominated by a red emission band due to the electric dipole transition {sup 5}D{sub 0} → {sup 7}F{sub 2}. The dependence of the Raman spectra and optical and magnetic properties on the amount of Eu{sup 3+} incorporated into the phases was also investigated. The number of magnetic domains increased with the concentration of Eu{sup 3+} added. The stabilization of the tetragonal phases was also observed in Eu{sup 3+}-doped samples, and their ferroelectric properties were also maintained, making these phases interesting multifunctional materials for applications in device design.

  6. Wearable Wireless Cardiovascular Monitoring Using Textile-Based Nanosensor and Nanomaterial Systems

    Directory of Open Access Journals (Sweden)

    Prashanth Shyamkumar

    2014-08-01

    Full Text Available Wearable and ultraportable electronics coupled with pervasive computing are poised to revolutionize healthcare services delivery. The potential cost savings in both treatment, as well as preventive care are the focus of several research efforts across the globe. In this review, we describe the motivations behind wearable solutions to real-time cardiovascular monitoring from a perspective of current healthcare services, as well as from a systems design perspective. We identify areas where emerging research is underway, namely: nanotechnology in textile-based wearable monitors and healthcare solutions targeted towards smart devices, like smartphones and tablets.

  7. Price tag in nanomaterials?

    Science.gov (United States)

    Gkika, D. A.; Vordos, N.; Nolan, J. W.; Mitropoulos, A. C.; Vansant, E. F.; Cool, P.; Braet, J.

    2017-05-01

    With the evolution of the field of nanomaterials in the past number of years, it has become apparent that it will be key to future technological developments. However, while there are unlimited research undertakings on nanomaterials, limited research results on nanomaterial costs exist; all in spite of the generous funding that nanotechnology projects have received. There has recently been an exponential increase in the number of studies concerning health-related nanomaterials, considering the various medical applications of nanomaterials that drive medical innovation. This work aims to analyze the effect of the cost factor on acceptability of health-related nanomaterials independently or in relation to material toxicity. It appears that, from the materials studied, those used for cancer treatment applications are more expensive than the ones for drug delivery. The ability to evaluate cost implications improves the ability to undertake research mapping and develop opinions on nanomaterials that can drive innovation.

  8. Internalisation of polymeric nanosensors in mesenchymal stem cells: analysis by flow cytometry and confocal microscopy.

    Science.gov (United States)

    Coupland, Paul G; Fisher, Karen A; Jones, D Rhodri E; Aylott, Jonathan W

    2008-09-10

    The aim of this study was to demonstrate that flow cytometry and confocal microscopy could be applied in a complementary manner to analyse the internalisation of polymeric nanosensors in mesenchymal stem cells (MSC). The two techniques are able to provide en masse data analysis of nanosensors from large cell populations and detailed images of intracellular nanosensor localisation, respectively. The polyacrylamide nanosensors used in this investigation had been modified to contain free amine groups which were subsequently conjugated to Tat peptide, which acted as a delivery vector for nanosensor internalisation. Flow cytometry was used to confirm the health of MSC culture and assess the impact of nanosensor internalisation. MSC were characterised using fluorescently tagged CD cell surface markers that were also used to show that nanosensor internalisation did not negatively impact on MSC culture. Additionally it was shown that flow cytometry can be used to measure fluorophores located both on the cell surface and internalised within the cell. Complementary data was obtained using confocal microscopy to confirm nanosensor internalisation within MSC.

  9. EDITORIAL: Whither nanomaterials? Whither nanomaterials?

    Science.gov (United States)

    Mallouk, Thomas E.; Pinkerton, Fred; Stetson, Ned

    2009-10-01

    As the journal Nanotechnology enters its third decade it is interesting to look back on the field and to think about where it may be headed in the future. The growth of the journal over the past twenty years mirrors that of the field, with exponentially rising numbers of citations and a widening diversity of topics that we identify as nanotechnology. In the early 1990s, Nanotechnology was focused primarily on nanoscale electronics and on scanning probe tools for fabricating and characterizing nanostructures. The synthesis and assembly of nanomaterials was already an active area in chemical research; however, it did not yet intersect strongly with the activities of the physics community, which was interested primarily in new phenomena that emerged on the nanoscale and on the devices that derived from them. In the 1990s there were several key advances that began to bridge this gap. Techniques were developed for making nanocrystals of compound semiconductors, oxides, and metals with very fine control over shape and superstructure. Carbon nanotubes were discovered and their unique electronic properties were demonstrated. Research on the self-assembly of organic molecules on surfaces led to the development of soft lithography and layer-by- layer assembly of materials. The potential to use DNA and then proteins as building blocks of precise assemblies of nanoparticles was explored. These bottom-up structures could not be made by top-down techniques, and their unique properties as components of sensors, electronic devices, biological imaging agents, and drug delivery vehicles began to change the definition of the field. Ten years ago, Inelke Malsch published a study on the scientific trends and organizational dynamics of nanotechology in Europe (1999 Nanotechnology 10 1-7). Scientists from a variety of disciplines were asked which areas of research they would include in the definition of nanotechnology. Although the article concluded with forward-looking thoughts in the

  10. Synthesis and Characterization of Novel Magnetic Nano-Materials and Studying Their Potential Application in Recovery of Metal Ions

    International Nuclear Information System (INIS)

    Moussa, S.I.M.

    2013-01-01

    The release of hazardous pollutants and their dispersion in the environment can cause adverse impacts on both environment and public health. These pollutants are more easily controlled when they are generated than after they are dispersed. Therefore, it is necessity of prime to design treatment processes can remove the contaminants at their source. Recently, many industrial and nuclear activities produce large amounts of wastewaters that contains a variety of contaminants. These contaminants may include toxic metals or radioactive isotopes. The efforts in this work are firstly directed to prepare some materials to be used as sorbents for removal of Sr(II), Cd(II) and Eu(III) radionuclide from waste solutions. The study concerned with the characterization of the prepared sorbents using surface area (BET), FTIR, X-Ray, TG/DTA, SEM and magnetic properties to throw light on its sense when practically used as a decontaminating material in aqueous systems. Also, the work involves the sorption of Sr(II), Cd(II) and Eu(III) ions from aqueous solutions under different experimental conditions to clarify the affinity of these sorbents and to assess main factors affecting the sorption behavior of these species. This is to evaluate the efficiency of these sorbents to be used as decontaminating materials for treatment of hazard wastes and finally to judge the criteria of sorbents selectivity towards the studies solutes.

  11. Biocompatible Nanomaterials and Nanodevices Promising for Biomedical Applications

    Science.gov (United States)

    Firkowska, Izabela; Giannona, Suna; Rojas-Chapana, José A.; Luecke, Klaus; Brüstle, Oliver; Giersig, Michael

    Nanotechnology applied to biology requires a thorough understanding of how molecules, sub-cellular entities, cells, tissues, and organs function and how they are structured. The merging of nanomaterials and life science into hybrids of controlled organization and function is possible, assuming that biology is nanostructured, and therefore man-made nano-materials can structurally mimic nature and complement each other. By taking advantage of their special properties, nanomaterials can stimulate, respond to and interact with target cells and tissues in controlled ways to induce desired physiological responses with a minimum of undesirable effects. To fulfill this goal the fabrication of nano-engineered materials and devices has to consider the design of natural systems. Thus, engineered micro-nano-featured systems can be applied to biology and biomedicine to enable new functionalities and new devices. These include, among others, nanostructured implants providing many advantages over existing, conventional ones, nanodevices for cell manipulation, and nanosensors that would provide reliable information on biological processes and functions.

  12. Nanomaterials in preventive dentistry

    Science.gov (United States)

    Hannig, Matthias; Hannig, Christian

    2010-08-01

    The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

  13. Enzyme mimics of spinel-type CoxNi1−xFe2O4 magnetic nanomaterial for eletroctrocatalytic oxidation of hydrogen peroxide

    International Nuclear Information System (INIS)

    Luo, Liqiang; Zhang, Yuting; Li, Fang; Si, Xiaojing; Ding, Yaping; Deng, Dongmei; Wang, Tianlin

    2013-01-01

    Graphical abstract: -- Highlights: •Spinel-type Co x Ni 1−x Fe 2 O 4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) were synthesized. •Co x Ni 1−x Fe 2 O 4 were first employed as novel enzyme mimic sensing materials of H 2 O 2 . •Co 0.5 Ni 0.5 Fe 2 O 4 /CPE showed excellent electrocatalytic activity to H 2 O 2 . •Co 0.5 Ni 0.5 Fe 2 O 4 /CPE was successfully applied to determine H 2 O 2 in toothpastes. -- Abstract: A series of spinel-type Co x Ni 1−x Fe 2 O 4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H 2 O 2 . X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type Co x Ni 1−x Fe 2 O 4 with different (Co/Ni) molar ratio toward H 2 O 2 oxidation were investigated, and the results demonstrated that Co 0.5 Ni 0.5 Fe 2 O 4 modified carbon paste electrode (Co 0.5 Ni 0.5 Fe 2 O 4 /CPE) possessed the best electrocatalytic activity for H 2 O 2 oxidation. Under optimum conditions, the calibration curve for H 2 O 2 determination on Co 0.5 Ni 0.5 Fe 2 O 4 /CPE was linear in a wide range of 1.0 × 10 −8 –1.0 × 10 −3 M with low detection limit of 3.0 × 10 −9 M (S/N = 3). The proposed Co 0.5 Ni 0.5 Fe 2 O 4 /CPE was also applied to the determination of H 2 O 2 in commercial toothpastes with satisfactory results, indicating that Co x Ni 1−x Fe 2 O 4 is a promising hydrogen peroxidase mimics for the detection of H 2 O 2

  14. Nanomaterials and Retinal Toxicity

    Science.gov (United States)

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  15. Molecular toxicity of nanomaterials.

    Science.gov (United States)

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  16. Towards Safer Nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Baun, Anders

    2014-01-01

    As nanomaterials become more widespread in everything from industrial processes to consumer products, concerns about human and environmental safety are being taken increasingly more seriously. In our research we are working with minimizing the impact and risks of engineered nanomaterials by looking...... or the exposure and optimally both. Examples include the 5 SAFER principles (Morose, 2010) or screenings of early warning signs (Hansen et al., 2013). Taking the full life cycle of nanomaterials into account, the principles of Green chemistry and Green engineering could also prove useful to reduce...... the environmental impact of nanomaterials (Eckelman et al., 2008). Our research interests include the feasibility of “safer-­‐by-­‐design” approaches, the production of greener nanomaterials and operationalization, adaption and creation of frameworks to facilitate safety engineering. Research and insight...

  17. Preparation and characterization of flower-like gold nanomaterials and iron oxide/gold composite nanomaterials

    International Nuclear Information System (INIS)

    Yang Zusing; Lin, Z H; Tang, C-Y; Chang, H-T

    2007-01-01

    We have successfully synthesized flower-like gold nanomaterials and Fe 3 O 4 /Au composite nanomaterials through the use of wet chemical methods in aqueous solution. In the presence of 0.5 mM citrate, 0.313 mM poly(ethylene glycol), and 109.72 mM sodium acetate (NaOAc), we prepared Au nanoflowers (NFs) having diameters ranging from 300 to 400 nm in aqueous solution after the reduction of Au ions at room temperature for 10 min. In the presence of spherical Fe 3 O 4 nanomaterials, we applied a similar synthetic method to prepare Fe 3 O 4 /Au composite nanomaterials, including nanowires (NWs) that have a length of 1.58 μm and a width of 28.3 nm. We conducted energy-dispersive x-ray analysis, scanning electron microscopy, transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, and x-ray powder diffraction measurements to characterize the as-prepared flower-like Au nanomaterials and Fe 3 O 4 /Au composite nanomaterials. From time-evolution TEM measurements, we suggested that Au atoms that were bound to the Fe 3 O 4 nanomaterials grew to form Fe 3 O 4 /Au composite nanomaterials. The as-prepared Au NFs absorbed light strongly in the visible-near-infrared (Vis-NIR) region (500-1200 nm). The Fe 3 O 4 /Au composite nanomaterials had electronic conductivities greater than 100 nA at an applied voltage of 20 mV, which induced a temperature increase of 20.5 ± 0.5 deg. C under an alternating magnetic field (62 μT)

  18. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture

    Energy Technology Data Exchange (ETDEWEB)

    Stanca, S E; Cranfield, C G; Biskup, C [Biomolecular Photonics Group, University Hospital Jena, Teichgraben 8, 07743 Jena (Germany); Nietzsche, S [Centre for Electron Microscopy, University Hospital Jena, Ziegel-muehlenweg 1, 07743 Jena (Germany); Fritzsche, W, E-mail: sarmiza.stanca@mti.uni-jena.de, E-mail: charles.cranfield@mti.uni-jena.de, E-mail: christoph.biskup@mti.uni-jena.de [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena (Germany)

    2010-02-05

    In this study, we describe the design of new ratiometric fluorescent nanosensors, whose architecture is based on a gold core surrounded by a poly(vinyl alcohol)-polyacetal shell. To the gold core, indicator dyes and reference dyes are attached via a cysteine linker. This nanosensor architecture is flexible with regards to the number and types of fluorophore linkages possible. The robust poly(vinyl alcohol)-polyacetal shell protects the fluorophores linked to the core from non-specific interactions with intracellular proteins. The nanosensors developed in this way are biocompatible and can be easily incorporated into mammalian cells without the use of transfection agents. Here, we show the application of these nanosensors for intracellular pH and sodium ion measurements.

  19. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH

    DEFF Research Database (Denmark)

    Søndergaard, Rikke Vicki; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2014-01-01

    Particle-based nanosensors offer a tool for determining the pH in the endosomal-lysosomal system of living cells. Measurements providing absolute values of pH have so far been restricted by the limited sensitivity range of nanosensors, calibration challenges and the complexity of image analysis....... This protocol describes the design and application of a polyacrylamide-based nanosensor (∼60 nm) that covalently incorporates two pH-sensitive fluorophores, fluorescein (FS) and Oregon Green (OG), to broaden the sensitivity range of the sensor (pH 3.1-7.0), and uses the pH-insensitive fluorophore rhodamine...... as a reference fluorophore. The nanosensors are spontaneously taken up via endocytosis and directed to the lysosomes where dynamic changes in pH can be measured with live-cell confocal microscopy. The most important focus areas of the protocol are the choice of pH-sensitive fluorophores, the design...

  20. Development of GaN-based nanosensors using surface charge lithography

    International Nuclear Information System (INIS)

    Popa, Veaceslav; Braniste, Tudor; Volciuc, Olesea; Pavlidis, Dimitris; Sarua, Andrei; Kuball, Martin; Heard, Peter

    2011-01-01

    Semiconductor nanotechnology is a fast developing branch of modern engineering that offers perspectives for the development of electronic devices with superior parameters. A special and important niche in nanotechnology is allocated to the fabrication of nanosensors which are expected to exhibit higher sensitivity in comparison with classical microelectronic sensors. Various aspects of fabrication of GaN based nanosensors using Surface Charge Lithography are discussed and preliminary tests for gas sensors applications are presented.

  1. Production of nanomaterials: physical and chemical technologies

    International Nuclear Information System (INIS)

    Giorgi, Leonardo; Salernitano, Elena

    2015-01-01

    Are define nanomaterials those materials which have at least one dimension in the range between 1 and 100 nm. By the term nanotechnology refers, instead, to the study of phenomena and manipulation of materials at the atomic and molecular level. The materials brought to the nanometric dimensions take particular chemical-physical properties different from the corresponding conventional macro materials. Speaking about the structure of nanoscale, you can check some basic properties materials (eg. Melting temperature, magnetic and electrical properties) without changing its chemical composition. In this perspective are crucial knowledge and control of production processes in order to design and get the nanomaterial more suitable for a specific application. For this purpose, it describes a series of processes of production of nanomaterials with application examples. [it

  2. Carbon nanomaterials for non-volatile memories

    Science.gov (United States)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  3. Characterization of nanomaterials

    International Nuclear Information System (INIS)

    Montone, Amelia; Aurora, Annalisa; Di Girolamo, Giovanni

    2015-01-01

    This paper provides an overview of the main techniques used for the characterization of nanomaterials. The knowledge of some basic characteristics, inherent morphology, microstructure, the distribution phase and chemical composition, it is essential to evaluate the functional properties of nanomaterials and make predictions about their behavior in operation. For the characterization of nanomaterials can be used in both imaging techniques both analytic techniques. Among the first found wide application optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Among the latter some types of spectroscopy and X-ray diffraction (XRD). For each type of material to characterize the choice of the most appropriate technique it is based on the type of details that you want to obtain, and on their scale. In this paper are discussed in detail some examples and the main methods used for the characterization of nanomaterials. [it

  4. Safe use of nanomaterials

    CERN Multimedia

    2013-01-01

    The use of nanomaterials  is on the increase worldwide, including at CERN. The HSE Unit has established a safety guideline to inform you of the main requirements for the safe handling and disposal of nanomaterials at CERN.   A risk assessment tool has also been developed which guides the user through the process of evaluating the risk for his or her activity. Based on the calculated risk level, the tool provides a list of recommended control measures.   We would therefore like to draw your attention to: Safety Guideline C-0-0-5 - Safe handling and disposal of nanomaterials; and Safety Form C-0-0-2 - Nanomaterial Risk Assessment   You can consult all of CERN’s safety rules and guidelines here. Please contact the HSE Unit for any questions you may have.   The HSE Unit

  5. Center for Functional Nanomaterials

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Functional Nanomaterials (CFN) explores the unique properties of materials and processes at the nanoscale. The CFN is a user-oriented research center...

  6. Nanomaterials and Nanochemistry

    CERN Document Server

    Bréchignac, Catherine; Lahmani, Marcel

    2007-01-01

    Nanomaterials are a fast developing field of research and applications lie in many separate domains, such as in hi-tech (optics, electronics, biology, aeronautics), but also in consumer industries (automotive, concrete, surface treatments (including paints), cosmetics, etc.).

  7. Food decontamination using nanomaterials

    Science.gov (United States)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  8. Nanostructure investigation of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Pransisco, Prengki, E-mail: prengkipransisco@gmail.com [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Badan Lingkungan Hidup Derah Kabupaten Empat Lawang South of Sumatera (Indonesia); Shafie, Afza, E-mail: afza@petronas.com.my; Guan, Beh Hoe, E-mail: beh.hoeguan@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} was successfully prepared by using sol-gel method. Heat treatment on material is always giving defect on properties of material. This paper investigates the effect of heat treatment on nanostructure of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4}. According to thermo gravimetric analysis (TGA) that after 600°C there is no more weight loss detected and it was decided as minimum calcination temperature. Intensity, crystallite size, structure, lattice parameter and d-spacing of the material were investigated by using X-ray diffraction (XRD). High resolution transmission electron microscope (HRTEM) was used to examine nanostructure, nanosize, shape and distribution particle of magnetic material Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} and variable pressure field emission scanning electron microscope (VP-FESEM) was used to investigate the surface morphology and topography of the material. The XRD result shows single-phase cubic spinel structure with average crystallite size in the range of 25.6-95.9 nm, the value of the intensity of the material was increased with increasing temperature, and followed by lattice parameter was increased with increasing calcination temperature, value of d-spacing was relatively decreased with accompanied increasing temperature. From HRTEM result the distribution of particles was tend to be agglomerates with particle size of 7.8-17.68 nm. VP-FESEM result shows that grain size of the material increases with increasing calcination temperature and the surface morphology shows that the material is in hexagonal shape and it was also proved by mapping result which showing the presence each of constituents inside the compound.

  9. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    Science.gov (United States)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  10. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays

    Science.gov (United States)

    Lichtenstein, Amir; Havivi, Ehud; Shacham, Ronen; Hahamy, Ehud; Leibovich, Ronit; Pevzner, Alexander; Krivitsky, Vadim; Davivi, Guy; Presman, Igor; Elnathan, Roey; Engel, Yoni; Flaxer, Eli; Patolsky, Fernando

    2014-06-01

    The capability to detect traces of explosives sensitively, selectively and rapidly could be of great benefit for applications relating to civilian national security and military needs. Here, we show that, when chemically modified in a multiplexed mode, nanoelectrical devices arrays enable the supersensitive discriminative detection of explosive species. The fingerprinting of explosives is achieved by pattern recognizing the inherent kinetics, and thermodynamics, of interaction between the chemically modified nanosensors array and the molecular analytes under test. This platform allows for the rapid detection of explosives, from air collected samples, down to the parts-per-quadrillion concentration range, and represents the first nanotechnology-inspired demonstration on the selective supersensitive detection of explosives, including the nitro- and peroxide-derivatives, on a single electronic platform. Furthermore, the ultrahigh sensitivity displayed by our platform may allow the remote detection of various explosives, a task unachieved by existing detection technologies.

  11. Development of a highly sensitive MIP based-QCM nanosensor for selective determination of cholic acid level in body fluids

    International Nuclear Information System (INIS)

    Gültekin, Aytaç; Karanfil, Gamze; Sönmezoğlu, Savaş; Say, Rıdvan

    2014-01-01

    Determination of cholic acid is very important and necessary in body fluids due to its both pharmaceutical and clinical significance. In this study, a quartz crystal microbalance (QCM) nanosensor, which is imprinted cholic acid, has been developed for the assignation of cholic acid. The cholic acid selective memories have been generated on QCM electrode surface by using molecularly imprinted polymer (MIP) based on methacryloylamidohistidine-copper (II) (MAH-Cu(II)) pre-organized monomer. The cholic acid imprinted nanosensor was characterized by atomic force microscopy (AFM) and then analytical performance of the cholic acid imprinted QCM nanosensor was studied. The detection limit was found to be 0.0065 μM with linear range of 0.01–1000 μM. Moreover, the high value of Langmuir constant (b) (7.3 * 10 5 ) obtained by Langmuir graph showed that the cholic acid imprinted nanosensor had quite strong binding sites affinity. At the last step of this procedure, cholic acid levels in body fluids were determined by the prepared imprinted QCM nanosensor. - Graphical abstract: QCM responses of the cholic acid imprinted and non-imprinted nanosensors (C CA = 0.1 μM). - Highlights: • The purpose is to synthesize a new cholic acid imprinted QCM nanosensor by MIP. • Analytical applications of QCM nanosensor were investigated. • The cholic acid levels in body fluids were determined by prepared QCM nanosensor

  12. Dynamic SERS nanosensor for neurotransmitter sensing near neurons.

    Science.gov (United States)

    Lussier, Félix; Brulé, Thibault; Bourque, Marie-Josée; Ducrot, Charles; Trudeau, Louis-Éric; Masson, Jean-François

    2017-12-04

    Current electrophysiology and electrochemistry techniques have provided unprecedented understanding of neuronal activity. However, these techniques are suited to a small, albeit important, panel of neurotransmitters such as glutamate, GABA and dopamine, and these constitute only a subset of the broader range of neurotransmitters involved in brain chemistry. Surface-enhanced Raman scattering (SERS) provides a unique opportunity to detect a broader range of neurotransmitters in close proximity to neurons. Dynamic SERS (D-SERS) nanosensors based on patch-clamp-like nanopipettes decorated with gold nanoraspberries can be located accurately under a microscope using techniques analogous to those used in current electrophysiology or electrochemistry experiments. In this manuscript, we demonstrate that D-SERS can measure in a single experiment ATP, glutamate (glu), acetylcholine (ACh), GABA and dopamine (DA), among other neurotransmitters, with the potential for detecting a greater number of neurotransmitters. The SERS spectra of these neurotransmitters were identified with a barcoding data processing method and time series of the neurotransmitter levels were constructed. The D-SERS nanosensor was then located near cultured mouse dopaminergic neurons. The detection of neurotransmitters was performed in response to a series of K + depolarisations, and allowed the detection of elevated levels of both ATP and dopamine. Control experiments were also performed near glial cells, showing only very low basal detection neurotransmitter events. This paper demonstrates the potential of D-SERS to detect neurotransmitter secretion events near living neurons, but also constitutes a strong proof-of-concept for the broad application of SERS to the detection of secretion events by neurons or other cell types in order to study normal or pathological cell functions.

  13. Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe{sub 3}O{sub 4}/SiO{sub 2}/NH{sub 2}/PAA/LnF{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin; Lis, Stefan, E-mail: blis@amu.edu.pl

    2016-02-15

    The synthesized magnetite nanoparticles (10–15 nm) were successfully coated with amine modified silica nanoshell, which led to the formation of core/shell type nanostructures (30–50 nm). The as-prepared nanoparticles were surface modified with polyacrylic acid (PAA) via electrostatic interactions of –NH{sub 2} and –COOH groups. Afterwards, the surface PAA molecules acted as complexing agents of the introduced lanthanide (Ln{sup 3+}) ions. Subsequently, the as-prepared nanostructures were surface decorated with luminescent LnF{sub 3} nanoparticles, forming Eu{sup 3+} or Tb{sup 3+} doped Fe{sub 3}O{sub 4}/SiO{sub 2}/NH{sub 2}/PAA/LnF{sub 3} nanomaterials (50–100 nm). The obtained luminescent–magnetic products exhibited simultaneously bright red or green emission under UV lamp irradiation (λ{sub ex}=254 nm), and a response for the applied magnetic field (strong magnet attracts the colloidal particles, dispersed in aqueous medium). After the synthesis, properties of the nanomaterials were investigated by powder X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), infrared spectroscopy (IR) and spectrofluorometry (analysis of excitation/emission spectra and luminescence decay curves). Such advanced nanomaterials can be potentially used in multimodal imaging, targeted therapies and as multifunctional contrast agents, novel luminescent–magnetic tracers, protection of documents, etc. - Highlights: • Luminescent–magnetic nanomaterials Fe{sub 3}O{sub 4}/SiO{sub 2}/NH{sub 2}/PAA/LnF{sub 3} were synthesized. • Core/shell nanostructures were obtained by surface modification of nanoparticles. • Luminescent lanthanide fluoride nanoparticles doped with Eu{sup 3+} and Tb{sup 3+} ions. • Multifunctional core/shell nanostructures exhibited red or green emission. • Nanomaterials formed stable aqueous colloids.

  14. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian

    2018-01-30

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  15. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian; Zhang, Lianbin; Wang, Peng

    2018-01-01

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  16. Quadruple labelled dual oxygen and pH-sensitive ratiometric nanosensors

    Directory of Open Access Journals (Sweden)

    Veeren M. Chauhan

    2016-05-01

    Full Text Available Nanosensors capable of simultaneously measuring dissolved oxygen concentrations from 0 to 100% saturation and pH over the full physiological range, from pH 3.5 to 7.5, that advance the methods towards understanding of key biological gradients, were synthesised. A library of water soluble oxygen-sensitive porphyrins, with three substituted charged functional groups and a chemically flexible carboxylate functional group were spectroscopically analysed to assess their sensitivity to changes in dissolved oxygen concentrations as free species in solution and in suspension as nanoparticle conjugates. A platinum cationic porphyrin was taken forward to fabricate ratiometric oxygen-sensitive nanosensors, using 5-(and-6-carboxytetramethylrhodamine (TAMRA as internal standard. In addition, quadruple labelled dual oxygen and pH-sensitive nanosensors were synthesised using the cationic Pt porphyrin, pH-sensitive fluorescein dyes, carboxyfluorescein (FAM and Oregon Green (OG, in a 1:1 ratio, and TAMRA. We envisage the dual oxygen and pH nanosensors will find broad utility in the characterisation of diverse microenvironments, where there are complex interactions between molecular oxygen and pH. Keywords: Fluorescent, Phosphorescent, Nanosensor, Oxygen, pH, Ratiometric, Platinum metalloporphyrin

  17. Nanomaterials for Defense Applications

    Science.gov (United States)

    Turaga, Uday; Singh, Vinitkumar; Lalagiri, Muralidhar; Kiekens, Paul; Ramkumar, Seshadri S.

    Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

  18. LCA of Nanomaterials

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Olsen, Stig Irving

    2018-01-01

    Application of nanomaterials in products has led to an increase in number of nanoproducts introduced to the consumer market. However, along with new and improved products, there is a concern about the potential life cycle environmental impacts. Life cycle assessment is able to include a wide range...... of environmental impacts but, due to data limitations, it is commonly applied with focus on the cradle-to-gate part of the nanoproducts life cycle, neglecting use and disposal of the products. These studies conclude that nanomaterials are more energy demanding and have an inferior environmental profile than...

  19. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2016-08-10

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  20. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    International Nuclear Information System (INIS)

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2016-01-01

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  1. Intracellular signal modulation by nanomaterials.

    Science.gov (United States)

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  2. Advanced Functional Nanomaterials for Biological Processes

    Science.gov (United States)

    2014-01-01

    regeneration based on HA, gold nanoparticles, and graphene. We devised a one-step method in which Au and hydroxyapatite were used as a catalytic system in a...magnetic and spectroscopic properties. They were linked with targeting agents and used for successful Radio- Frequency (RF) driven thermal ablation of...State University (KSU). This work encompassed outstanding research at the nanostructural level and the use of advanced multifunctiona l nanomaterials in

  3. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments

    DEFF Research Database (Denmark)

    Zhang, M.; Søndergaard, Rikke Vicki; Ek, Pramod Kumar

    2015-01-01

    Optical pH nanosensors have been applied for monitoring intracellular pH in real-time for about two decades. However, the pH sensitivity range of most nanosensors is too narrow, and measurements that are on the borderline of this range may not be correct. Furthermore, ratiometric measurements...... of acidic intracellular pH (pH sensor, a fluorophore based nanosensor, with an unprecedented broad measurement range from pH 1.4 to 7.0. In this nanosensor, three p......H-sensitive fluorophores (difluoro-Oregon Green, Oregon Green 488, and fluorescein) and one pH-insensitive fluorophore (Alexa 568) were covalently incorporated into a nanoparticle hydrogel matrix. With this broad range quadruple-labelled nanosensor all physiological relevant pH levels in living cells can be measured...

  4. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  5. Toxicity of nanomaterials

    NARCIS (Netherlands)

    Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie; Forrest, M. Laird; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There

  6. On the Nature of Energy-Feasible Wireless Nanosensor Networks.

    Science.gov (United States)

    Canovas-Carrasco, Sebastian; Garcia-Sanchez, Antonio-Javier; Garcia-Haro, Joan

    2018-04-27

    Electromagnetic nanocommunications, understood as the communication between electronic nanoscale devices through electromagnetic waves in the terahertz band, has attracted increasing attention in recent years. In this regard, several solutions have already been proposed. However, many of them do not sufficiently capture the significance of the limitations in nanodevice energy-gathering and storing capacity. In this paper, we address key factors affecting the energy consumption of nanodevices, highlighting the effect of the communication scheme employed. Then, we also examine how nanodevices are powered, focusing on the main parameters governing the powering nanosystem. Different mathematical expressions are derived to analyze the impact of these parameters on its performance. Based on these expressions, the functionality of a nanogenerator is evaluated to gain insight into the conditions under which a wireless nanosensor network (WNSN) is viable from the energetic point of view. The results reveal that a micrometer-sized piezoelectric system in high-lossy environments (exceeding 100 dB/mm) becomes inoperative for transmission distances over 1.5 mm by its inability to harvest and store the amount of energy required to overcome the path loss.

  7. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu

    2009-12-09

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  8. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu; Yeh, Ping-Hung; Lu, Shih-Yuan; Wang, Zhong Lin

    2009-01-01

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  9. Sensitive plasmonic-photonic nanosensor as a morphologic mask

    Science.gov (United States)

    SalmanOgli, Ahmad; Salimi, Kouroush; Farhadnia, Farshad; Usta, Duygu Deniz

    2017-08-01

    In this study, a new nanosensor is assembled in the form of a phantom model to optically scan the breast for early cancer detection based on the plasmonic and plasmonic-photonic interaction phenomena. Sensing is carried out through a user-friendly method by improving imaging through the traditional optical tomography method. The novelty of the designed sensor is attributed to the coupling of the nanoparticle plasmonic near-field intensity to the far-field region (photonic mode interaction with the near-field plasmon resonance). It is shown that the plasmonic-photonic interaction has a dramatic influence on the gradient image and therefore, the edge detection and segmentation of the image are effectively altered. This is due to the fact that the plasmonic fields of the nanoparticles in the near- and far-field manipulate the field gradient, which leads to a modification of the intensity discontinuities at different interfaces. In fact, it is well-known that the fundamental idea behind edge detection is utilized to detect parts of the image where the intensity varies rapidly. Based on this knowledge, interestingly, it is shown that the segmentation and edge detection of the image are improved by the manipulating optical properties of the mask.

  10. Wireless nanosensors for monitoring concussion of football players

    Science.gov (United States)

    Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.

    2015-04-01

    Football players are more to violent impacts and injuries more than any athlete in any other sport. Concussion or mild traumatic brain injuries were one of the lesser known sports injuries until the last decade. With the advent of modern technologies in medical and engineering disciplines, people are now more aware of concussion detection and prevention. These concussions are often overlooked by football players themselves. The cumulative effect of these mild traumatic brain injuries can cause long-term residual brain dysfunctions. The principle of concussion is based the movement of the brain in the neurocranium and viscerocranium. The brain is encapsulated by the cerebrospinal fluid which acts as a protective layer for the brain. This fluid can protect the brain against minor movements, however, any rapid movements of the brain may mitigate the protective capability of the cerebrospinal fluid. In this paper, we propose a wireless health monitoring helmet that addresses the concerns of the current monitoring methods - it is non-invasive for a football player as helmet is not an additional gear, it is efficient in performance as it is equipped with EEG nanosensors and 3D accelerometer, it does not restrict the movement of the user as it wirelessly communicates to the remote monitoring station, requirement of individual monitoring stations are not required for each player as the ZigBee protocol can couple multiple transmitters with one receiver. A helmet was developed and validated according to the above mentioned parameters.

  11. Nanosensors for a Monitoring System in Intelligent and Active Packaging

    Directory of Open Access Journals (Sweden)

    Guillermo Fuertes

    2016-01-01

    Full Text Available A theoretical wireless nanosensor network (WNSN system that gives information about the food packaging condition is proposed. The protection effectiveness is estimated by measuring many factors, such as the existence of microorganisms, bacteria, gases, and contaminants. This study is focused on the detection of an antimicrobial agent (AA attached on a polymer forming an active integrated package. All monitoring technologies for food conservation are analyzed. Nanobiosensor nanomachine (NM, which converts biological or chemical signals into electrical signals, is used. A mathematical model, which describes the constituent’s emigration from the package to food, is programmed in MatLab software. The results show three nanobiosensors forming a WNSN. The nanobiosensors are able to carry out the average concentration for different spots in the package. This monitoring system shows reading percentages in three degrees and different colors: excellent (green, good (cyan, and lacking (red. To confirm the utility of the model, different simulations are performed. Using the WNSNs, results of AA existing in food package (FP through time were successfully obtained.

  12. Wearable nanosensor systems and their applications in healthcare

    Science.gov (United States)

    Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.

    2017-04-01

    The development of intelligent miniaturized nano-bio-and info-tech based sensors capable of wireless communication will fundamentally change the way we monitor and treat patients with chronic disease and after surgery. These new sensors will allow the monitoring of the patients as they maintain their normal daily activities, and provide warning to healthcare workers when critical events arise. This will facilitate early discharge of patients from hospitals as well as providing reassurance to patients and family that potential problems will be detected at an early stage. The use of continuous monitoring allows both transient and progressive abnormalities to be reliably detected thus avoiding the problems of conventional diagnosis and monitoring methods where by data is captured only for a brief period during hospital/clinic visits. We have been working with a printable organic semiconductor and thin film transistor, and have fabricated and tested various biosensors that can measure important physiological signs before and after surgery. Integrated into "smart" fabrics - garments with wireless technology - and independent e-bandaid sensors, nanosensors in tattoos and socks, minimally invasive implantable devices, the sensor systems will be able to monitor a patient's condition in real time and thus provide point-of-care diagnostics to health-care professionals and greater freedom for patients.

  13. Computational modeling of a carbon nanotube-based DNA nanosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kalantari-Nejad, R; Bahrami, M [Mechanical Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Rafii-Tabar, H [Department of Medical Physics and Biomedical Engineering and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Rungger, I; Sanvito, S, E-mail: mbahrami@aut.ac.ir [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland)

    2010-11-05

    During the last decade the design of biosensors, based on quantum transport in one-dimensional nanostructures, has developed as an active area of research. Here we investigate the sensing capabilities of a DNA nanosensor, designed as a semiconductor single walled carbon nanotube (SWCNT) connected to two gold electrodes and functionalized with a DNA strand acting as a bio-receptor probe. In particular, we have considered both covalent and non-covalent bonding between the DNA probe and the SWCNT. The optimized atomic structure of the sensor is computed both before and after the receptor attaches itself to the target, which consists of another DNA strand. The sensor's electrical conductance and transmission coefficients are calculated at the equilibrium geometries via the non-equilibrium Green's function scheme combined with the density functional theory in the linear response limit. We demonstrate a sensing efficiency of 70% for the covalently bonded bio-receptor probe, which drops to about 19% for the non-covalently bonded one. These results suggest that a SWCNT may be a promising candidate for a bio-molecular FET sensor.

  14. Computational modeling of a carbon nanotube-based DNA nanosensor

    International Nuclear Information System (INIS)

    Kalantari-Nejad, R; Bahrami, M; Rafii-Tabar, H; Rungger, I; Sanvito, S

    2010-01-01

    During the last decade the design of biosensors, based on quantum transport in one-dimensional nanostructures, has developed as an active area of research. Here we investigate the sensing capabilities of a DNA nanosensor, designed as a semiconductor single walled carbon nanotube (SWCNT) connected to two gold electrodes and functionalized with a DNA strand acting as a bio-receptor probe. In particular, we have considered both covalent and non-covalent bonding between the DNA probe and the SWCNT. The optimized atomic structure of the sensor is computed both before and after the receptor attaches itself to the target, which consists of another DNA strand. The sensor's electrical conductance and transmission coefficients are calculated at the equilibrium geometries via the non-equilibrium Green's function scheme combined with the density functional theory in the linear response limit. We demonstrate a sensing efficiency of 70% for the covalently bonded bio-receptor probe, which drops to about 19% for the non-covalently bonded one. These results suggest that a SWCNT may be a promising candidate for a bio-molecular FET sensor.

  15. Ratiometric fluorescent nanosensor based on carbon dots for the detection of mercury ion

    Science.gov (United States)

    Ma, Yusha; Mei, Jing; Bai, Jianliang; Chen, Xu; Ren, Lili

    2018-05-01

    A novel ratiometric fluorescent nanosensor based on carbon dots has been synthesized via bonding rhodamine B hydrazide to the carbon dots surface by an amide reaction. The ratiometric fluorescent nanosensor showed only a single blue fluorescence emission around 450 nm. While, as mercury ion was added, due to the open-ring of rhodamine moiety bonded on the CDs surface, the orange emission of the open-ring rhodamine would increase obviously according to the concentration of mercury ion, resulting in the distinguishable dual emissions at 450 nm and 575 nm under a single 360 excitation wavelength. Meanwhile, the ratiometric fluorescent nanosensor based on carbon dots we prepared is more sensitive to qualitative and semi-quantitative detection of mercury ion in the range of 0–100 μM, because fluorescence changes gradually from blue to orange emission under 365 nm lamp with the increasing of mercury ion in the tested solution.

  16. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle......-linked by an amidation reaction using 3,6,9-trioxaundecandioic acid cross-linker. The cross-linked micelle was functionalized with two pH sensitive fluorophores and one reference fluorophore, which resulted in a highly uniform ratiometric pH nanosensor with a diameter of 29 nm. The use of two sensor fluorophores...... provided a sensor with a very broad measurement range that seems to be influenced by the chemical design of the sensor. Cell experiments show that the sensor is capable of monitoring the pH distributions in HeLa cells....

  17. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    Science.gov (United States)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  18. Following the Dynamics of pH in Endosomes of Live Cells with SERS Nanosensors

    DEFF Research Database (Denmark)

    Kneipp, J.; Kneipp, Harald; Wittig, B.

    2010-01-01

    The surface enhanced Raman scattering (SERS) spectrum of a reporter molecule attached to gold or silver nanostructures, which is pH-sensitive, can deliver information on the local pH in the environment of the nanostructure. Here, we demonstrate the use of a mobile SERS nanosensor made from gold...... nanaoaggregates and 4-mercaptobenzoic acid (pMBA) attached as a reporter for monitoring changes in local pH of the cellular compartments of living NIH/3T3 cells. We show that SERS nanosensors enable the dynamics of local pH in individual live cells to be followed at subendosomal resolution in a timeline...

  19. Surface engineering of graphene-based nanomaterials for biomedical applications.

    Science.gov (United States)

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  20. Ionophore-based optical nanosensors incorporating hydrophobic carbon dots and a pH-sensitive quencher dye for sodium detection.

    Science.gov (United States)

    Galyean, A A; Behr, M R; Cash, K J

    2018-01-21

    Nanosensors present a biological monitoring method that is biocompatible, reversible, and nano-scale, and they offer many advantages over traditional organic indicators. Typical ionophore-based nanosensors incorporate nile-blue derivative pH indicators but suffer from photobleaching while quantum dot alternatives pose a potential toxicity risk. In order to address this challenge, sodium selective nanosensors containing carbon dots and a pH-sensitive quencher molecule were developed based on an ion-exchange theory and a decoupled recognition element from the pH indicator. Carbon dots were synthesized and integrated into nanosensors containing a pH-indicator, an analyte-binding ligand (ionophore), and a charge-balancing additive. These nanosensors are ion-selective against potassium (selectivity coefficient of 0.4) and lithium (selectivity coefficient of 0.9). Reversible nanosensor response to sodium is also demonstrated. The carbon dot nanosensors are resistant to changes in optical properties for at least 12 h and display stable selectivity to physiologically-relevant sodium (alpha = 0.5 of 200 mM NaCl) for a minimum of 6 days.

  1. CE and nanomaterials - Part II: Nanomaterials in CE.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    The scope of this two-part review is to summarize publications dealing with CE and nanomaterials together. This topic can be viewed from two broad perspectives, and this article is trying to highlight these two approaches: (i) CE of nanomaterials, and (ii) nanomaterials in CE. The second part aims at summarization of publications dealing with application of nanomaterials for enhancement of CE performance either in terms of increasing the separation resolution or for improvement of the detection. To increase the resolution, nanomaterials are employed as either surface modification of the capillary wall forming open tubular column or as additives to the separation electrolyte resulting in a pseudostationary phase. Moreover, nanomaterials have proven to be very beneficial for increasing also the sensitivity of detection employed in CE or even they enable the detection (e.g., fluorescent tags of nonfluorescent molecules). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  3. Real-time monitoring of drowsiness through wireless nanosensor systems

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Generally, the bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper reviews the design aspects of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the textile based nanosensors mounted on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through ZigBee communication. This system is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the fatigue level. This approach of using a wireless, real time, dry sensor on a flexible substrate mitigates obtrusiveness that is expected from a wearable system. We have previously presented the results of the aforementioned wearable systems. This paper aims to extend our work conceptually through a review of engineering and medical techniques involved in wearable systems to detect drowsiness.

  4. Nanomaterials in the environment

    Science.gov (United States)

    Mrowiec, Bozena

    2017-11-01

    This paper considers engineered nanomaterials, deliberately engineered and manufactured to have certain properties and have at least one primary dimension of less than 100 nm. Materials produced with the aid of nanotechnologies are used in many areas of everyday life. Researches with nanomaterials have shown that the physiochemical characteristic of particles can influence their effects in biological systems. The field of nanotechnology has created risk for environment and human health. The toxicity of nanoparticles may be affected by different physicochemical properties, including size, shape, chemistry, surface properties, agglomeration, solubility, and charge, as well as effects from attached functional groups and crystalline structure. The greater surface-area-to-mass ratio of nanoparticles makes them generally more reactive than their macro-sized counterparts. Exposure to nanomaterials can occur at different life-cycle stages of the materials and/or products. The knowledge gaps limiting the understanding of the human and environment hazard and risk of nanotechnology should be explained by the scientific investigations for help to protect human and environmental health and to ensure the benefits of the nanotechnology products without excessive risk of this new technology. In this review are presented the proposal measurement methods for NMs characteristic.

  5. Smart nanomaterials for biomedics.

    Science.gov (United States)

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  6. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Carbon Nanodots as Dual-Mode Nanosensors for Selective Detection of Hydrogen Peroxide

    Science.gov (United States)

    Shen, Cheng-Long; Su, Li-Xia; Zang, Jin-Hao; Li, Xin-Jian; Lou, Qing; Shan, Chong-Xin

    2017-07-01

    Hydrogen peroxide (H2O2) is an important product of oxidase-based enzymatic reactions, such as glucose/glucose oxidase (GOD) reaction. Therefore, the probing of generated H2O2 for achieving the detection of various carbohydrates and their oxidases is very significative. Herein, we report one kind of dual-emission carbon nanodots (CDs) that can serve as novel dual-mode nanosensors with both fluorometric and colorimetric output for the selective detection of H2O2. The dual-model nanosensors are established only by the undecorated dual-emission CDs, where significant fluorometric and colorimetric changes are observed with the addition of different concentrations of H2O2 in the CD solution, which benefit to the achievement of the naked-eye detection for H2O2. The mechanism of the nanosensors can be attributed to the fact that the external chemical stimuli like hydroxyl radicals from H2O2 bring about the change of surface properties and the aggregation of CDs, which dominate the emission and absorption of CDs. The constructed dual-mode nanosensors exhibit good biocompatibility and high selectivity toward H2O2 with a linear detection range spanning from 0.05 to 0.5 M and allow the detection of H2O2 as low as 14 mM.

  8. Selection of Aptamers for Metabolic Sensing and Construction of Optical Nanosensors

    DEFF Research Database (Denmark)

    Long, Yi; Pfeiffer, Franziska; Mayer, Günter

    2016-01-01

    Optical nanosensors are based on particles with diameters from 20 to 200 nm containing sensory elements. The latter are comprised of one or more signaling molecules and one or more references, which allow measurements to be ratiometric and hence independent on the amount of sensor. The signaling ...

  9. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    Science.gov (United States)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Magnetic Cluster States in Nanostructured Materials

    International Nuclear Information System (INIS)

    Leslie-Pelecky, Diandra

    2008-01-01

    The goal of this work is to fabricate model nanomaterials with different types of disorder and use atomic-scale characterization and macroscopic magnetization measurements to understand better how specific types of disorder affects macroscopic magnetic behavior. This information can be used to produce magnetic nanomaterials with specific properties for applications such as permanent magnets, soft magnetic material for motors and biomedical applications.

  11. Chip Based Magnetic Imager for Molecular Profiling of Ovarian Cancer Cells

    Science.gov (United States)

    2016-12-01

    Pharmaceuticals ), investors, media leaders, and internationally recognized cancer researchers. Co-PI (Dr. Castro) presented research advances in nanosensors...magnetic resonance (DMR). Similar to clinical MRI , the DMR utilizes magnetic nanoparticles to modulate the spin-spin relaxation time of neighboring...In particular, iron oxide MNPs are degraded into nontoxic iron and oxygen components, and their utilization as magnetic resonance imaging ( MRI

  12. Center for Functional Nanomaterials (CFN)

    Data.gov (United States)

    Federal Laboratory Consortium — The CFN at Brookhaven National Laboratory focuses on understanding the chemical and physical response of nanomaterials to make functional materials such as sensors,...

  13. Biomedical nanomaterials from design to implementation

    CERN Document Server

    Webster, Thomas

    2016-01-01

    Biomedical Nanomaterials brings together the engineering applications and challenges of using nanostructured surfaces and nanomaterials in healthcare in a single source. Each chapter covers important and new information in the biomedical applications of nanomaterials.

  14. Introduction to nanoparticles, nanocomposites, nanomaterials an introduction for beginners

    CERN Document Server

    Vollath, Dieter

    2013-01-01

    Meeting the demand for a readily understandable introduction to nanomaterials and nanotechnology, this textbook specifically addresses the needs of students - and engineers - who need to get the gist of nanoscale phenomena in materials without having to delve too deeply into the physical and chemical details. The book begins with an overview of the consequences of small particle size, such as the growing importance of surface effects, and covers successful, field-tested synthesis techniques of nanomaterials. The largest part of the book is devoted to the particular magnetic, optical, electrical and mechanical properties of materials at the nanoscale, leading on to emerging and already commercialized applications, such as nanofluids in magnetic resonance imaging, high-performance nanocomposites and carbon nanotube-based electronics. Based on the author's experience in teaching nanomaterials courses and adapted, in style and level, for students with only limited background knowledge, the textbook includes fur...

  15. Critical sizes and critical characteristics of nanoclusters, nanostructures and nanomaterials

    International Nuclear Information System (INIS)

    Suzdalev, I.P.

    2005-01-01

    Full text: Critical sizes and characteristics of nanoclusters and nanostructures are introduced as the parameters of nanosystems and nanomaterials. The next critical characteristics are considered: atomic and electronic 'magic number', critical size of cluster nucleation, critical size of melting-freezing of cluster, critical size of quantum (laser) radiation, critical sizes for the single electron conductivity, critical energy and magnetic field for the magnetic tunneling, critical cluster sizes for the giant magnetic resistance, critical size of the first order magnetic phase transition. The critical characteristics are estimated by thermodynamic approaches, by Moessbauer spectroscopy, AFM, heat capacity, SQUID magnetometry and other technique, The influence of cluster-cluster interactions, cluster-matrix interactions and cluster defects on cluster atomic dynamics, cluster melting, cluster critical sizes, Curie or Neel points and the character of magnetic phase transitions were investigated. The applications of critical size and critical characteristic parameters for the nanomaterial characterization are considered

  16. Synthesis and Characterization of a Micelle-Based pH Nanosensor with an Unprecedented Broad Measurement Range

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Feldborg, Lise N.; Almdal, Kristoffer

    2013-01-01

    A new cross-linked micelle pH nanosensor design was investigated. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, poly(ethylene glycol)-b-poly(2-amino ethyl methacrylate)-b-poly(coumarin methacrylate) (PEG-b-PAEMA-b-PCMA), which was synthesized by isolated...... irradiation (320 nm pH nanosensors by binding the pH-sensitive fluorophores oregon green 488 and 2′,7′-bis-(2-carboxyethyl)-5-(and-6......) carboxyfluorescein and a reference fluorophore Alexa 633 to the PAEMA shell region of the micelles. Fluorescence measurements show that these pH nanosensors are sensitive in a surprisingly broad pH range of 3.4–8.0, which is hypothesized to be due to small differences in the individual fluorophores’ local...

  17. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  18. Nanomaterials for biosensing applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael eHolzinger

    2014-08-01

    Full Text Available A biosensor device is defined by its biological, or bioinspired receptor unit with unique specificities towards corresponding analytes. These analytes are often of biological origin like DNAs or proteins from the immune system (antibodies, antigens of diseases or infections. Such analytes can also be simple molecules like glucose or pollutants when a biological receptor unit with particular specificity is available. One of many other challenges in biosensor development is the efficient signal capture of the biological recognition event (transduction. Such transducers translate the interaction of the analyte with the biological element into electrochemical, electrochemiluminescent, magnetic, gravimetric, or optical signals. In order to increase sensitivities and to lower detection limits down to even individual molecules, nanomaterials are promising candidates due to the possibility to immobilize an enhanced quantity of bioreceptor units at reduced volumes and even to act itself as transduction element. Among such nanomaterials, gold nanoparticles, semi-conductor quantum dots, polymer nanoparticles, carbon nanotubes, nanodiamonds, and graphene are intensively studied. Due to the vast evolution of this research field, this review summarizes in a non-exhaustive way the advantages of nanomaterials by focusing on nano-objects which provide further beneficial properties than just an enhanced surface area.

  19. Biomedical Applications of Zinc Oxide Nanomaterials

    Science.gov (United States)

    Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo

    2013-01-01

    Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130

  20. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  1. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  2. Selenium and tellurium nanomaterials

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Zonaro, Emanuele; Lampis, Silvia; Vallini, Giovanni; Turner, Raymond J.

    2018-04-01

    Over the last 40 years, the rapid and exponential growth of nanotechnology led to the development of various synthesis methodologies to generate nanomaterials different in size, shape and composition to be applied in various fields. In particular, nanostructures composed of Selenium (Se) or Tellurium (Te) have attracted increasing interest, due to their intermediate nature between metallic and non-metallic elements, being defined as metalloids. Indeed, this key shared feature of Se and Te allows us the use of their compounds in a variety of applications fields, such as for manufacturing photocells, photographic exposure meters, piezoelectric devices, and thermoelectric materials, to name a few. Considering also that the chemical-physical properties of elements result to be much more emphasized when they are assembled at the nanoscale range, huge efforts have been made to develop highly effective synthesis methods to generate Se- or Te-nanomaterials. In this context, the present book chapter will explore the most used chemical and/or physical methods exploited to generate different morphologies of metalloid-nanostructures, focusing also the attention on the major advantages, drawbacks as well as the safety related to these synthetic procedures.

  3. MAPLE deposition of nanomaterials

    International Nuclear Information System (INIS)

    Caricato, A.P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P.D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-01-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  4. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  5. Greener production of nanomaterials and their applications in catalysis and environmental remediation

    Science.gov (United States)

    Metal nanomaterials have attracted considerable attention because of their unique magnetic, optical, electrical, and catalytic properties and their potential applications in nanoelectronics. There is great interest in synthesizing metal nanoparticles due to their extraordinary pr...

  6. Review on the Synthesis and Applications of Fe3O4 Nanomaterials

    Directory of Open Access Journals (Sweden)

    Xiaodi Liu

    2013-01-01

    Full Text Available Recently, Fe3O4 nanomaterials have attracted tremendous attention because of their favorable electric and magnetic properties. Fe3O4 nanostructures with various morphologies have been successfully synthesized and have been used in many fields such as lithium-ion batteries (LIBs, wastewater treatment, and magnetic resonance imaging (MRI contrast agents. In this paper, we provide an in-depth discussion of recent development of Fe3O4 nanomaterials, including their effective synthetic methods and potential applications.

  7. Plasma processing of nanomaterials

    CERN Document Server

    Sankaran, R Mohan

    2014-01-01

    CRC Press author R. Mohan Sankaran is the winner of the 2011 Peter Mark Memorial Award "… for the development of a tandem plasma synthesis method to grow carbon nanotubes with unprecedented control over the nanotube properties and chirality." -2011 AVS Awards Committee"Readers who want to learn about how nanomaterials are processed, using the most recent methods, will benefit greatly from this book. It contains very recent technical details on plasma processing and synthesis methods used by current researchers developing new nano-based materials, with all the major plasma-based processing techniques used today being thoroughly discussed."-John J. Shea, IEEE Electrical Insulation Magazine, May/June 2013, Vol. 29, No. 3.

  8. Chemically functionalized ZnS quantum dots as new optical nanosensor of herbicides

    Science.gov (United States)

    Masteri-Farahani, M.; Mahdavi, S.; Khanmohammadi, H.

    2018-03-01

    Surface chemical functionalization of ZnS quantum dots (ZnS-QDs) with cysteamine hydrochloride resulted in the preparation of an optical nanosensor for detection of herbicides. Characterization of the functionalized ZnS-QDs was performed with physicochemical methods such as x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive x-ray (EDX) analysis, ultraviolet-visible (UV–vis) and photoluminescence (PL) spectroscopies. The optical band gap of the functionalized ZnS-QDs was determined by using Tauc plot as 4.1 eV. Addition of various herbicides resulted in the linearly fluorescence quenching of the functionalized ZnS-QDs according to the Stern-Volmer equation. The functionalized ZnS-QDs can be used as simple, rapid, and inexpensive nanosensor for practical detection and measurement of various herbicides.

  9. Polymeric pH nanosensor with extended measurement range bearing octaarginine as cell penetrating peptide

    DEFF Research Database (Denmark)

    Ke, Peng; Sun, Honghao; Liu, Mingxing

    2016-01-01

    A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental pH-s......H-sensitive fluorophores in a same nanoparticle. The authors believe that this triple fluorescent pH sensor provides a new tool to pH measurements that can have application in cellular uptake mechanism study and new nanomedicine design.......A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental p...

  10. Nanosensors for label-free measurement of sodium ion fluxes of neuronal cells

    Energy Technology Data Exchange (ETDEWEB)

    Gebinoga, Michael, E-mail: michael.gebinoga@tu-ilmenau.de [ZIK MacroNano Microfluidics and Biosensors, Technical University Ilmenau, P.O. Box 100565, D-98684 Ilmenau (Germany); Silveira, Liele; Cimalla, Irina [ZIK MacroNano Microfluidics and Biosensors, Technical University Ilmenau, P.O. Box 100565, D-98684 Ilmenau (Germany); Dumitrescu, Andreea [University of Pennsylvania - School of Engineering and Applied Science, Philadelphia, PA 19104-6391 (United States); Kittler, Mario; Luebbers, Benedikt; Becker, Annette [ZIK MacroNano Microfluidics and Biosensors, Technical University Ilmenau, P.O. Box 100565, D-98684 Ilmenau (Germany); Lebedev, Vadim [Fraunhofer Institute for Solid State Physics, Tullastr. 7, D-79108 Freiburg (Germany); Schober, Andreas [ZIK MacroNano Microfluidics and Biosensors, Technical University Ilmenau, P.O. Box 100565, D-98684 Ilmenau (Germany)

    2010-05-25

    Novel nanosensors based on aluminium gallium nitrides (AlGaN/GaN) high electron mobility transistors have been of high interest during the last years, especially for their electrical characteristics as open gate field effect transistors. These nanosensors provide a valuable tool for high content screening in drug discovery, cell monitoring and liquid analyses focusing on applications of electrochemical detection technology. Our own measurements with these sensors confirm their pH sensitivity and in addition the possibility of detection of other ions in aqueous media. These measurements deal with the reactions of NG 108-15 (mouse neuroblastoma x rat glioma hybrid) neuronal cells in response to different acetylcholinesterase inhibitors. Our experimental approach shows some advantages. The first advantage is the label-free measurement of ion fluxes, and another advantage is the possibility non-destructively to estimate cell signals.

  11. Nanosensors for label-free measurement of sodium ion fluxes of neuronal cells

    International Nuclear Information System (INIS)

    Gebinoga, Michael; Silveira, Liele; Cimalla, Irina; Dumitrescu, Andreea; Kittler, Mario; Luebbers, Benedikt; Becker, Annette; Lebedev, Vadim; Schober, Andreas

    2010-01-01

    Novel nanosensors based on aluminium gallium nitrides (AlGaN/GaN) high electron mobility transistors have been of high interest during the last years, especially for their electrical characteristics as open gate field effect transistors. These nanosensors provide a valuable tool for high content screening in drug discovery, cell monitoring and liquid analyses focusing on applications of electrochemical detection technology. Our own measurements with these sensors confirm their pH sensitivity and in addition the possibility of detection of other ions in aqueous media. These measurements deal with the reactions of NG 108-15 (mouse neuroblastoma x rat glioma hybrid) neuronal cells in response to different acetylcholinesterase inhibitors. Our experimental approach shows some advantages. The first advantage is the label-free measurement of ion fluxes, and another advantage is the possibility non-destructively to estimate cell signals.

  12. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  13. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection

    Science.gov (United States)

    Zhao, Chunxi; Jiao, Yang; Hu, Feng; Yang, Yaling

    2018-02-01

    In this work, a green, simple, economical method was developed in the synthesis of fluorescent carbon dots using pork as carbon source. The as-prepared carbon dots exhibit exceptional advantages including high fluorescent quantum yield (17.3%) and satisfactory chemical stability. The fluorescence of carbon dots based nanosensor can be selectively and efficiently quenched by uric acid. This phenomenon was used to develop a fluorescent method for facile detection of uric acid within a linear range of 0.1-100 μM and 100-500 μM, with a detection limit of 0.05 μM (S/N = 3). Finally, the proposed method was successfully applied in the determination of uric acid in human serum and urine samples with satisfactory recoveries, which suggested that the new nanosensors have great prospect toward the detection of uric acid in human fluids.

  14. Environmental effects of engineered nanomaterials

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Hartmann, Nanna B.; Brinch, Anna

    This report presents ecotoxicological data and Predicted No-Effect Concentrations (PNECs) for nine selected nanomaterials which are considered to be environmentally relevant due to high usage or how they are used. These data will together with data from other reports/projects be used in an overall...... assessment of the environmental risk of nanomaterials in Denmark. The nine investigated nanomaterials are: Titanium Dioxide, Zinc Oxide, Silver, Carbon Nanotubes, Copper Oxide, Nano Zero Valent Iron, Cerium Dioxide, Quantum Dots and Carbon Black. To support the assessment of the data found in the peer...

  15. Magnetic silica nanomaterials for solid-phase extraction combined with dispersive liquid-liquid microextraction of ultra-trace quantities of plasticizers

    International Nuclear Information System (INIS)

    Yamini, Yadollah; Faraji, Mohammad; Adeli, Mahnaz

    2015-01-01

    We are presenting surface modified magnetic silica nanoparticles (m-Si-NPs) for use in solid-phase extraction combined with dispersive liquid-liquid microextraction (DLLME). The m-Si-NPs were surface-functionalized with octadecyl groups to give a material for the extraction of the plasticizers dibutyl phthalate, di(2-ethylhexyl) adipate and di(2-ethylhexyl) phthalate from water samples. The functionalized m-Si-NPs were characterized by scanning electron microscopy, FTIR spectroscopy, thermal gravimetric analysis, and vibrating sample magnetometry. The results showed that the m-Si-NPs were well functionalized with octadecyl groups. The effects of various experimental variables on the extraction efficiencies were investigated. The analytes were quantified by GC/FID. Under optimal conditions, the calibration plots are linear in the range from 0.01 to 100 μg∙L -1 , and very high enrichment factors (mean value ∼20,000) were obtained. As a result of the high enrichment factors, the detection limits are as low as 2–3 ng∙L -1 . The method was successfully employed to the extraction of the plasticizers from (spiked) water samples, and recoveries are in the order of 93.9 to 106.7 %. The method is low cost, fast, and very sensitive (author)

  16. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors.

    Science.gov (United States)

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.

  17. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor

    Science.gov (United States)

    Datta, Debopam; Sarkar, Ketaki; Mukherjee, Souvik; Meshik, Xenia; Stroscio, Michael A.; Dutta, Mitra

    2017-08-01

    Quantum-dot (QD) based nanosensors are frequently used by researchers to detect small molecules, ions and different biomolecules. In this article, we present a sensor complex/system comprised of deoxyribonucleic acid (DNA) aptamer, gold nanoparticle and semiconductor QD, attached to a graphene oxide (GO) flake for detection of potassium. As reported herein, it is demonstrated that QD-aptamer-quencher nanosensor functions even when tethered to GO, opening the way to future applications where sensing can be accomplished simultaneously with other previously demonstrated applications of GO such as serving as a nanocarrier for drug delivery. Herein, it is demonstrated that the DNA based thrombin binding aptamer used in this study undergoes the conformational change needed for sensing even when the nanosensor complex is anchored to the GO. Analysis with the Hill equation indicates the interaction between aptamer and potassium follows sigmoidal Hill kinetics. It is found that the quenching efficiency of the optical sensor is linear with the logarithm of concentration from 1 pM to 100 nM and decreases for higher concentration due to unavailability of aptamer binding sites. Such a simple and sensitive optical aptasensor with minimum detection capability of 1.96 pM for potassium ion can also be employed in-vitro detection of different physiological ions, pathogens and disease detection methods.

  18. Fabrication of a PANI/Au nanocomposite modified nanoelectrode for sensitive dopamine nanosensor design

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yan; Lin Lingling; Feng Zengfang; Zhou Jianzhang [State Key Laboratory for Physical Chemistry of the Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Lin Zhonghua, E-mail: zhlin@xmu.edu.c [State Key Laboratory for Physical Chemistry of the Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2009-12-15

    Polyaniline/Au nanocomposite modified nanoelectrodes based dopamine nanosensors have been developed. The polyaniline/Au nanocomposite film was deposited at the exposed end of the nanoelectrode tip by a surface-graft polymerization method to fabricate a desired modified nanoelectrode. With this modified method, the nanocomposites firmly adhered on the electrode surface and the modified nanoelectrode still had a sharp tip, which was proved by the scanning electron microscope. The electrochemical measurement shows the polyaniline/Au nanocomposite modified film has a good and stable redox activity in neutral solution. The modified nanoelectrode exhibits the excellent electrocatalytic activity towards the oxidations of ascorbic acid and dopamine in phosphate buffer solution. The separation of anodic peak potential of dopamine and ascorbic acid reaches 250 mV. Differential pulse voltammograms results illustrate that dopamine can be selectively determined in the presence of thousands times higher concentration of ascorbic acid with a wide linear range from 200 to 0.3 muM and the detection limit is 0.1 muM. This study provides a simple method for the construction of dopamine nanosensors that have a good sensitivity, wide linear range and stable response. The nanosensors are hopeful to be applied to the detection of dopamine in vivo.

  19. Fabrication of a PANI/Au nanocomposite modified nanoelectrode for sensitive dopamine nanosensor design

    International Nuclear Information System (INIS)

    Zhang Yan; Lin Lingling; Feng Zengfang; Zhou Jianzhang; Lin Zhonghua

    2009-01-01

    Polyaniline/Au nanocomposite modified nanoelectrodes based dopamine nanosensors have been developed. The polyaniline/Au nanocomposite film was deposited at the exposed end of the nanoelectrode tip by a surface-graft polymerization method to fabricate a desired modified nanoelectrode. With this modified method, the nanocomposites firmly adhered on the electrode surface and the modified nanoelectrode still had a sharp tip, which was proved by the scanning electron microscope. The electrochemical measurement shows the polyaniline/Au nanocomposite modified film has a good and stable redox activity in neutral solution. The modified nanoelectrode exhibits the excellent electrocatalytic activity towards the oxidations of ascorbic acid and dopamine in phosphate buffer solution. The separation of anodic peak potential of dopamine and ascorbic acid reaches 250 mV. Differential pulse voltammograms results illustrate that dopamine can be selectively determined in the presence of thousands times higher concentration of ascorbic acid with a wide linear range from 200 to 0.3 μM and the detection limit is 0.1 μM. This study provides a simple method for the construction of dopamine nanosensors that have a good sensitivity, wide linear range and stable response. The nanosensors are hopeful to be applied to the detection of dopamine in vivo.

  20. Nanotechnologies and Nanomaterials: Scientific, Economic and Political Realia of the New Century

    Directory of Open Access Journals (Sweden)

    Zaporotskova Irina Vladimirovna

    2015-05-01

    Full Text Available The current state and problems of nanotechnology development in the Russian Federation in modern economic, political and scientific conditions are presented. Nanotechnologies and nanomaterials have already been used in all developed countries of the world in the most significant areas of human activity industry, defense, information sphere, radio electronics, energy drinks, transport, biotechnology, medicine. The Government of the Russian Federation formulated the main objectives of scientific and economic community for the development of nanotechnologies in the conditions of the demanded import substitution. In the developed countries the comprehension of the key role of nanotechnologies led to the elaboration of large-scale programs for their development on the basis of state support. Similar programs are adopted more than in thirty countries around the world, including the Russian Federation. The author of the present article studies the current state of nanotech industry in Russia and classifies nanotechnologies according to the intrinsic principle. As a result, four main directions in the field of nanotechnologies are allocated: 1 nanomaterials; 2 photonics, spintronics, nanoelectronics (devices based on the nanoprinciples; 3 nanometrology, nanomanipulators and modeling; 4 nanosensors and nanodetectors. Some perspective scientific and technological projects of nanotech industry development in Russia are also considered. The author points to economic, social, ecological, and scientific and technical opportunities of nanotechnologies development in Russia, as well as their threats.

  1. Optical Properties of Hybrid Nanomaterials

    Indian Academy of Sciences (India)

    owner

    K. George Thomas. Photosciences & Photonics Group. National Institute for Interdisciplinary. Science and Technology (NIIST), CSIR,. Trivandrum- 695 019, INDIA. (kgt@vsnl.com). Optical Properties of Hybrid. Nanomaterials ...

  2. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  3. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  4. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Plasma nanofabrication and nanomaterials safety

    International Nuclear Information System (INIS)

    Han, Z J; Levchenko, I; Kumar, S; Yajadda, M M A; Yick, S; Seo, D H; Martin, P J; Ostrikov, K; Peel, S; Kuncic, Z

    2011-01-01

    The fast advances in nanotechnology have raised increasing concerns related to the safety of nanomaterials when exposed to humans, animals and the environment. However, despite several years of research, the nanomaterials safety field is still in its infancy owing to the complexities of structural and surface properties of these nanomaterials and organism-specific responses to them. Recently, plasma-based technology has been demonstrated as a versatile and effective way for nanofabrication, yet its health and environment-benign nature has not been widely recognized. Here we address the environmental and occupational health and safety effects of various zero- and one-dimensional nanomaterials and elaborate the advantages of using plasmas as a safe nanofabrication tool. These advantages include but are not limited to the production of substrate-bound nanomaterials, the isolation of humans from harmful nanomaterials, and the effective reforming of toxic and flammable gases. It is concluded that plasma nanofabrication can minimize the hazards in the workplace and represents a safe way for future nanofabrication technologies.

  6. Pathophysiologic mechanisms of biomedical nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.

  7. Pathophysiologic mechanisms of biomedical nanomaterials

    International Nuclear Information System (INIS)

    Wang, Liming; Chen, Chunying

    2016-01-01

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs

  8. Nanomaterials for practical functional uses

    International Nuclear Information System (INIS)

    Lines, M.G.

    2008-01-01

    The term nanotechnology, which enjoys wide public use, is a concept that covers a wide range of developments in the field of nanoscale electronic components, along with its decades-old application in nanocarbon-black particles or silicates manufactured using the sol-gel process. When we refer to nanotechnology today, the term is limited to dealing with particles or assemblies whose dimensions range in size from a few nanometres up to around 100 nm. Intensive development work is now being carried out in new fields in many industrial and university research facilities, with the help of nanoscale particles or subassemblies. Along with the already familiar items, this applications-oriented research has covered such new developments as carbon nanotubes or electronic circuits. All materials are composed of grains, which consist of many atoms. Grains of conventional materials vary in size from tens of microns to one or more millimetres. Nanomaterials are no longer merely a laboratory curiosity and have now reached the stage of commercialization being lead by activity, often government supported, in the USA, UK, Japan, Singapore, Malaysia, Taiwan, Korea, Germany and in recent years China and Australia. This is the opening of a whole new science in some respects, and the usefulness to our everyday lives will become increasingly apparent. The potential of nanominerals, as just one sector of nanomaterials technology have some very real and useful outcomes: ·Production of materials and products with new properties. ·Contribution to solutions of environmental problems. ·Improvement of existing technologies and development of new applications. ·Optimisation of primary conditions for practical applications. These materials are revolutionizing the functionality of material systems. Due to the materials very small size, they have some remarkable, and in some cases, novel properties. Significant enhancement of optical, mechanical, electrical, structural and magnetic properties

  9. Nanomaterials for photovoltaic conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Ltaief, A.; Barlier, V.; Boiteux, G.; Bouazizi, A.

    2008-01-01

    A promising route for photovoltaic conversion has emerged from the combination of electroactive nanomaterials and small bandgap polymers. The formation of bulk heterojunctions resulting from the extended interfaces leads to efficient dissociation of the charge pairs generated under sunlight shown by the rapid extinction of the polymer photoluminescence for increasing contents of fullerenes or TiO 2 nanoparticles in MEH-PPV or PVK. Unconventional elaboration routes of the blends have been developed to increase the nanofiller dispersion and inhibit phase separation at high concentration. The size reduction of the acceptor domains led to a complete quenching of the radiative recombinations, obtained by specific solvent processing of MEH-PPV / C 60 nanocomposites or sol gel elaboration of TiO 2 nanoparticles in a PVK film. A simultaneous increase of the photocurrents could be achieved by the dispersion and size optimisation of the nanofillers. In situ generation of silver particles in MEH-PPV provides an example of enhanced charge separation induced by the plasmon resonance at the metal/polymer interface. The strong influence of the molecular morphology on the nanocomposite properties emphasizes the large improvements which can still be gained on the performances of organic solar cells

  10. Regional Knowledge Production in Nanomaterials

    DEFF Research Database (Denmark)

    Grimpe, Christoph; Patuelli, Roberto

    2011-01-01

    Nanomaterials are seen as a key technology for the twenty-first century, and much is expected of them in terms of innovation and economic growth. They could open the way to many radically new applications, which would form the basis of innovative products. As nanomaterials are still in their infa......Nanomaterials are seen as a key technology for the twenty-first century, and much is expected of them in terms of innovation and economic growth. They could open the way to many radically new applications, which would form the basis of innovative products. As nanomaterials are still...... in their infancy, universities, public research institutes and private businesses seem to play a vital role in the innovation process. Existing literature points to the importance of knowledge spillovers between these actors and suggests that the opportunities for these depend on proximity, with increasing...... on nanomaterial patenting. Based on European Patent Office data at the German district level (NUTS-3), we estimate two negative binomial models in a knowledge production function framework and include a spatial filtering approach to adjust for spatial autocorrelation. Our results indicate...

  11. Health hazards associated with nanomaterials.

    Science.gov (United States)

    Pattan, Gurulingappa; Kaul, Gautam

    2014-07-01

    Nanotechnology is a major scientific and economic growth area and presents a variety of hazards for human health and environment. It is widely believed that engineered nanomaterials will be increasingly used in biomedical applications (as therapeutics and as diagnostic tools). However, before these novel materials can be safely applied in a clinical setting, their toxicity needs to be carefully assessed. Nanoscale materials often behave different from the materials with a larger structure, even when the basic material is same. Many mammals get exposed to these nanomaterials, which can reach almost every cell of the mammalian body, causing the cells to respond against nanoparticles (NPs) resulting in cytotoxicity and/or genotoxicity. The important key to understand the toxicity of nanomaterials is that their minute size, smaller than cellular organelles, allows them to penetrate the basic biological structures, disrupting their normal function. There is a wealth of evidence for the noxious and harmful effects of engineered NPs as well as other nanomaterials. The rapid commercialization of nanotechnology field requires thoughtful, attentive environmental, animal and human health safety research and should be an open discussion for broader societal impacts and urgent toxicological oversight action. While 'nanotoxicity' is a relatively new concept to science, this comprehensive review focuses on the nanomaterials exposure through the skin, respiratory tract, and gastrointestinal tract and their mechanism of toxicity and effect on various organs of the body. © The Author(s) 2012.

  12. Synthesis and Application of Graphene Based Nanomaterials

    Science.gov (United States)

    Peng, Zhiwei

    Graphene, a two-dimensional sp2-bonded carbon material, has recently attracted major attention due to its excellent electrical, optical and mechanical properties. Depending on different applications, graphene and its derived hybrid nanomaterials can be synthesized by either bottom-up chemical vapor deposition (CVD) methods for electronics, or various top-down chemical reaction methods for energy generation and storage devices. My thesis begins with the investigation of CVD synthesis of graphene thin films in Chapter 1, including the direct growth of bilayer graphene on insulating substrates and synthesis of "rebar graphene": a hybrid structure with graphene and carbon or boron nitride nanotubes. Chapter 2 discusses the synthesis of nanoribbon-shaped materials and their applications, including splitting of vertically aligned multi-walled carbon nanotube carpets for supercapacitors, synthesis of dispersable ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in magnetic field, graphene nanoribbon/SnO 2 nanocomposite for lithium ion batteries, and enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Next, Chapter 3 discusses graphene coated iron oxide nanomaterials and their use in energy storage applications. Finally, Chapter 4 introduces the development, characterization, and fabrication of laser induced graphene and its application as supercapacitors.

  13. Applied spectroscopy and the science of nanomaterials

    CERN Document Server

    2015-01-01

    This book focuses on several areas of intense topical interest related to applied spectroscopy and the science of nanomaterials. The eleven chapters in the book cover the following areas of interest relating to applied spectroscopy and nanoscience: ·         Raman spectroscopic characterization, modeling and simulation studies of carbon nanotubes, ·         Characterization of plasma discharges using laser optogalvanic spectroscopy, ·         Fluorescence anisotropy in understanding protein conformational disorder and aggregation, ·         Nuclear magnetic resonance spectroscopy in nanomedicine, ·         Calculation of Van der Waals interactions at the nanoscale, ·         Theory and simulation associated with adsorption of gases in nanomaterials, ·         Atom-precise metal nanoclusters, ·         Plasmonic properties of metallic nanostructures, two-dimensional materials, and their composites, ·         Applications of graphe...

  14. Porous substrates filled with nanomaterials

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  15. NANOMATERIALS, NANOTECHNOLOGY: APPLICATIONS, CONSUMER PRODUCTS, AND BENEFITS

    Science.gov (United States)

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environ...

  16. Engineered Nanomaterials Elicit Cellular Stress Responses

    Science.gov (United States)

    Engineered nanomaterials are being developed continuously and incorporated into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on toxicity endpoints without further investigating potential mechanisms or pathway...

  17. Nanomaterials: Opportunities and Challenges for Aerospace

    National Research Council Canada - National Science Library

    Obieta, Isabel; Marcos, J

    2005-01-01

    Nanomaterials are regarded world-wide as key materials of the 21st Century. Also, in aerospace a high potential for nanomaterials applications is postulated and technological breakthroughs are expected in this area...

  18. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Focused ion beam patterned Hall nano-sensors

    International Nuclear Information System (INIS)

    Candini, A.; Gazzadi, G.C.; Di Bona, A.; Affronte, M.; Ercolani, D.; Biasiol, G.; Sorba, L.

    2007-01-01

    By means of focused ion beam milling, we fabricate Hall magnetometers with active areas as small as 100x100nm 2 . The constituent material can either be metallic (Au), semimetallic (Bi) or doped bulk semiconducting (Si doped GaAs). We experimentally show that Au nano-probes can work from room temperature down to liquid helium with magnetic flux sensitivity -1 Φ 0

  20. On MHD nonlinear stretching flow of Powell–Eyring nanomaterial

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This communication addresses the magnetohydrodynamic (MHD flow of Powell–Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell–Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted. Keywords: Powell–Eyring fluid, Magnetohydrodynamics, Nanomaterial, Nonlinear stretching surface

  1. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. Consales

    2008-01-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  2. Progress in electronics and photonics with nanomaterials

    DEFF Research Database (Denmark)

    Mishra, Yogendra Kumar; Murugan, Arul; Kotakoski, Jani

    2017-01-01

    Nanomaterials have been at the center of attraction for almost five decades as their contributions to different disciplines such as electronics, photonics and medicine are enormous. Various kinds of nanomaterials have been developed and are currently utilized in innumerable applications. Neverthe......Nanomaterials have been at the center of attraction for almost five decades as their contributions to different disciplines such as electronics, photonics and medicine are enormous. Various kinds of nanomaterials have been developed and are currently utilized in innumerable applications...

  3. LCA of metal nanomaterial production

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Diaz, Elsa Gabriela Alvarado; Olsen, Stig Irving

    The use of engineered nanomaterials (ENMs) in commercial product has reached a new stage, where consumers in their daily life are frequently encountered with products containing this new material class. Metal and metal-oxide nanomaterials are among the most commonly used ENMs in products. Potential......(OH)2 applied as additives in polypropylene (PP), and the production of PP with conventional additives that provide similar properties as the ENMs. Different scenarios of nanoproducts consisting of metal ENMs and PP were compared with current use of additives in PP products through a detailed cradle...

  4. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  5. Charge-sensitive fluorescent nanosensors created from nanodiamonds

    Czech Academy of Sciences Publication Activity Database

    Petráková, Vladimíra; Řehoř, Ivan; Štursa, Jan; Ledvina, Miroslav; Nesladek, M.; Cígler, Petr

    2015-01-01

    Roč. 7, č. 29 (2015), s. 12307-12311 ISSN 2040-3364 R&D Projects: GA MŠk LM2011019; GA MZd(CZ) NV15-33094A EU Projects: European Commission(XE) 245122 - DINAMO Grant - others:EC Investments in Education Development(XE) CZ.1.07/2.3.00/20.0306 Institutional support: RVO:68378271 ; RVO:61388963 ; RVO:61389005 Keywords : nitrogen-vacancy centers * diamond spins * in-vivo * microscopy * luminescence * resonance * molecule Subject RIV: BM - Solid Matter Physics ; Magnetism; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V); BO - Biophysics (UOCHB-X) Impact factor: 7.760, year: 2015

  6. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    Science.gov (United States)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  7. Nanomaterials: Regulation and Risk Assessment

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Grieger, Khara Deanne; Baun, Anders

    2013-01-01

    , the Water Framework Directive, pharmaceuticals regulation, and the Novel Foods Regulation. Current regulation of nanomaterials entail three overall challenges: 1) limitations in regard to terminology and definitions of key terms such as a “substance,” “novel food,” etc.; 2) safety assessment requirements...

  8. Computational design of safer nanomaterials

    NARCIS (Netherlands)

    Burello, E.

    2015-01-01

    Nanomaterials are expected to find applications in numerous consumer products, posing the challenge to guarantee their safety and environmental sustainability before they can be transferred from research labs to end-consumer products. One emerging solution, called safe design, relies on the

  9. Nanomaterials for fuel cell catalysis

    CSIR Research Space (South Africa)

    Ozoemena, KI

    2016-01-01

    Full Text Available Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art...

  10. Chemical Design of Functional Nanomaterials

    DEFF Research Database (Denmark)

    Egeblad, Kresten

    This thesis deals with a very specific class of functional nanomaterials known as mesoporous zeolites. Zeolites are a class of crystalline aluminosilicate minerals characterized by featuring pores or cavities of molecular dimensions as part of their crystal structure. Mesoporous zeolites are zeol...

  11. Risk of dust explosions of combustible nanomaterials

    International Nuclear Information System (INIS)

    Dobashi, Ritsu

    2009-01-01

    Nanomaterials have several valuable properties and are widely used for various practical applications. However, safety matters are suspected such as the influence on health and environment, and fire and explosion hazards. To minimize the risk of nanomaterials, appropriate understanding of these hazards is indispensable. Nanoparticles of combustible materials have potential hazard of dust explosion accidents. However, the explosion risk of nanomaterials has not yet been understood adequately because of the lack of data for nanomaterials. In this presentation, the risk of dust explosions of nanomaterials is discussed.

  12. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice.

    Science.gov (United States)

    Eren, Tanju; Atar, Necip; Yola, Mehmet Lütfi; Karimi-Maleh, Hassan

    2015-10-15

    Lovastatin (LOV) is a statin, used to lower cholesterol which has been found as a hypolipidemic agent in commercial red yeast rice. In present study, a sensitive molecular imprinted quartz crystal microbalance (QCM) sensor was prepared by fabricating a self-assembling monolayer formation of allylmercaptane on QCM chip surface for selective determination of lovastatin (LOV) in red yeast rice. To prepare molecular imprinted quartz crystal microbalance (QCM) nanosensor, LOV imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoaspartic acid) [p(HEMA-MAAsp)] nanofilm was attached on the modified gold surface of QCM chip. The non-modified and improved surfaces were characterized by using contact angle, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. The imprinted QCM sensor was validated according to the ICH guideline (International Conference on Harmonisation). The linearity range was obtained as 0.10-1.25 nM. The detection limit of the prepared material was calculated as 0.030 nM. The developed QCM nanosensor was successfully used to examine red yeast rice. Furthermore, the stability and repeatability of the prepared QCM nanosensor were studied. The spectacular long-term stability and repeatability of the prepared LOV-imprinted QCM nanosensor make them intriguing for use in QCM sensors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Dual-sensing porphyrin-containing copolymer nanosensor as full-spectrum colorimeter and ultra-sensitive thermometer.

    Science.gov (United States)

    Yan, Qiang; Yuan, Jinying; Kang, Yan; Cai, Zhinan; Zhou, Lilin; Yin, Yingwu

    2010-04-28

    A porphyrin-containing copolymer has dual-sensing in response to metal ions and temperature as a novel nanosensor. Triggered by ions, the sensor exhibits full-color tunable behavior as a cationic detector and colorimeter. Responding to temperature, the sensor displays an "isothermal" thermochromic point as an ultra-sensitive thermometer.

  14. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    Science.gov (United States)

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  15. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection

    Energy Technology Data Exchange (ETDEWEB)

    Yılmaz, Erkut [Department of Chemistry, Aksaray University, 68100 Aksaray (Turkey); Özgür, Erdoğan; Bereli, Nilay; Türkmen, Deniz [Department of Chemistry, Hacettepe University, 06800 Ankara (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Department of Chemistry, Hacettepe University, 06800 Ankara (Turkey)

    2017-04-01

    This study reports a surface plasmon resonance (SPR) based affinity sensor system with the use of molecular imprinted nanoparticles (plastic antibodies) to enhance the pesticide detection. Molecular imprinting based affinity sensor is prepared by the attachment of atrazine (chosen as model pesticide) imprinted nanoparticles onto the gold surface of SPR chip. Recognition element of the affinity sensor is polymerizable form of aspartic acid. The imprinted nanoparticles were characterized via FTIR and zeta-sizer measurements. SPR sensors are characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FTIR) and contact angle measurements. The imprinted nanoparticles showed more sensitivity to atrazine than the non-imprinted ones. Different concentrations of atrazine solutions are applied to SPR system to determine the adsorption kinetics. Langmuir adsorption model is found as the most suitable model for this affinity nanosensor system. In order to show the selectivity of the atrazine-imprinted nanoparticles, competitive adsorption of atrazine, simazine and amitrole is investigated. The results showed that the imprinted nanosensor has high selectivity and sensitivity for atrazine. - Highlights: • SPR based affinity sensor system was developed via molecular imprinting. • Recognition element of the affinity sensor is polymerizable form of an amino acid. • Combination of SPR and MIP offers highly selective sensor with long shelf-life. • Plastic antibody based biomimetic sensors offer relatively cheaper production. • Plastic antibody based biomimetic sensors offer high physical, chemical stability.

  16. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection

    International Nuclear Information System (INIS)

    Yılmaz, Erkut; Özgür, Erdoğan; Bereli, Nilay; Türkmen, Deniz; Denizli, Adil

    2017-01-01

    This study reports a surface plasmon resonance (SPR) based affinity sensor system with the use of molecular imprinted nanoparticles (plastic antibodies) to enhance the pesticide detection. Molecular imprinting based affinity sensor is prepared by the attachment of atrazine (chosen as model pesticide) imprinted nanoparticles onto the gold surface of SPR chip. Recognition element of the affinity sensor is polymerizable form of aspartic acid. The imprinted nanoparticles were characterized via FTIR and zeta-sizer measurements. SPR sensors are characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FTIR) and contact angle measurements. The imprinted nanoparticles showed more sensitivity to atrazine than the non-imprinted ones. Different concentrations of atrazine solutions are applied to SPR system to determine the adsorption kinetics. Langmuir adsorption model is found as the most suitable model for this affinity nanosensor system. In order to show the selectivity of the atrazine-imprinted nanoparticles, competitive adsorption of atrazine, simazine and amitrole is investigated. The results showed that the imprinted nanosensor has high selectivity and sensitivity for atrazine. - Highlights: • SPR based affinity sensor system was developed via molecular imprinting. • Recognition element of the affinity sensor is polymerizable form of an amino acid. • Combination of SPR and MIP offers highly selective sensor with long shelf-life. • Plastic antibody based biomimetic sensors offer relatively cheaper production. • Plastic antibody based biomimetic sensors offer high physical, chemical stability.

  17. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  18. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery.

    Science.gov (United States)

    Chen, Daiqin; Dougherty, Casey A; Zhu, Kaicheng; Hong, Hao

    2015-07-28

    Carbon based nanomaterials have attracted significant attention over the past decades due to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this review, we will summarize the current state-of-the-art applications of carbon nanomaterials in cancer imaging and drug delivery/therapy. The carbon nanomaterials will be categorized into fullerenes, nanotubes, nanohorns, nanodiamonds, nanodots and graphene derivatives based on their morphologies. The chemical conjugation/functionalization strategies of each category will be introduced before focusing on their applications in cancer imaging (fluorescence/bioluminescence, magnetic resonance (MR), positron emission tomography (PET), single-photon emission computed tomography (SPECT), photoacoustic, Raman imaging, etc.) and cargo (chemo/gene/therapy) delivery. The advantages and limitations of each category and the potential clinical utilization of these carbon nanomaterials will be discussed. Multifunctional carbon nanoplatforms have the potential to serve as optimal candidates for image-guided delivery vectors for cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cyborg cells: functionalisation of living cells with polymers and nanomaterials.

    Science.gov (United States)

    Fakhrullin, Rawil F; Zamaleeva, Alsu I; Minullina, Renata T; Konnova, Svetlana A; Paunov, Vesselin N

    2012-06-07

    Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.

  20. Cooperative nanomaterials systems for cancer diagnosis and therapeutics

    Science.gov (United States)

    Park, Ji Ho

    The unique electromagnetic and biologic properties of nanomaterials are being harnessed to build powerful new medical technologies. Particularly, there have been recently increasing interests in cancer nanotechnology, wherein nanomaterials play an important role in ultrasensitive imaging, targeting, and therapy of cancer. However, these nanomaterials typically function as individual units and are designed to independently perform their tasks. In this dissertation, new cooperative nanosystems consisting of two distinct nanomaterials that work together to target, identify, or treat tumors in vivo were studied. In the first two chapters, the synthesis of worm-shaped dextran-coated iron oxide nanoparticles (nanoworms, NW) exhibiting substantial in vivo circulation times and significant tumor targeting when coated with tumor-homing peptides were studied. NWs are also found to display a greater magnetic resonance (MR) response than the spherical nanoparticles. Next, two types of multifunctional nanoparticles were fabricated for simultaneous detection and treatment of cancer. Micellar hybrid nanoparticles (MHN) that contain magnetic nanoparticles, quantum dots, and an anti-cancer drug doxorubicin (DOX) within a single PEG-modified phospholipid micelle were first prepared. Simultaneous multimodal imaging (MR and fluorescence) and targeted drug delivery in vitro and in vivo was performed using DOX-incorporated targeted MHN. Secondly, luminescent porous silicon nanoparticles (LPSINP) that were drug-loadable, biodegradable and relatively non-toxic were prepared. In contrast to most inorganic nanomaterials, LPSINP were degraded in vivo in a relatively short time with no noticeable toxicity. The clearance and degradation of intravenously injected LPSINP in the bladder, liver, and spleen were established by whole-body fluorescence imaging. Finally, two types of cooperative nanomaterials systems to amplify targeting and deliver drugs efficiently to regions of tumor invasion were

  1. Final Report: ''Energetics of Nanomaterials''

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra; Ross, Nancy; Woodfield, Brian F

    2016-01-01

    Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques-namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering-this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of composition and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.

  2. REACH and nanomaterials: current status

    International Nuclear Information System (INIS)

    Alessandrelli, Maria; Di Prospero Fanghella, Paola; Polci, Maria Letizia; Castelli, Stefano; Pettirossi, Flavio

    2015-01-01

    New challenges for regulators are emerging about a specific assessment and appropriate management of the potential risks of nanomaterials. In the framework of European legislation on chemicals, Regulation (EC) No. 1907/2006 REACH aims to ensure the safety of human health and the environment through the collection of information on the physico-chemical characteristics of the substances and on their profile (eco) toxicological and the identification of appropriate risk management linked to 'exposure to these substances without impeding scientific progress and the competitiveness of industry. In order to cover the current shortage of information on the safety of nanomaterials and tackle the acknowledged legal vacuum, are being a rich activities, carried out both by regulators both by stake holders, and discussions on the proposals for adapting the European regulatory framework for chemicals . The European Commission is geared to strengthen the REACH Regulation by means of updates of its annexes. The importance of responding to the regulatory requirements has highlighted the need for cooperation between European organizations, scientists and industries to promote and ensure the safe use of nanomaterials. [it

  3. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    Science.gov (United States)

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  4. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    International Nuclear Information System (INIS)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la; Hamdi, Helmi; White, Jason C.; Bindraban, Prem; Dimkpa, Christian

    2015-01-01

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications

  5. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    Energy Technology Data Exchange (ETDEWEB)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la [The Connecticut Agricultural Experiment Station (United States); Hamdi, Helmi [University of Carthage, Water Research and Technology Center (Tunisia); White, Jason C., E-mail: jason.white@ct.gov [The Connecticut Agricultural Experiment Station (United States); Bindraban, Prem; Dimkpa, Christian [Virtual Fertilizer Research Center (United States)

    2015-02-15

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications.

  6. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  7. Nano-material and method of fabrication

    Science.gov (United States)

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  8. Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2013-09-01

    Full Text Available A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC. The fluorescence of lysozyme-imprinted polymer (Lys-MIP was quenched more strongly by Lys than that of nonimprinted polymer (NIP, which indicated that the Lys-MIP could recognize Lys. The resulted imprinted material has the ability to selectively sense a target protein, and an imprinting factor of 3.34 was achieved. The Lys-MIP also showed selective detection for Lys among other proteins such as cytochrome C (Cyt C, hemoglobin (HB and bovine serum albumin (BSA due to the imprinted sites in the Lys-MIP. This approach combines the high selectivity of surface molecular imprinting technology and fluorescence, and converts binding events into detectable signals by monitoring fluorescence spectra. Therefore, it will have further applications for Lys sensing.

  9. Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring

    Science.gov (United States)

    Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud

    2018-06-01

    In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.

  10. Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo.

    Science.gov (United States)

    Cash, Kevin J; Li, Chiye; Xia, Jun; Wang, Lihong V; Clark, Heather A

    2015-02-24

    Personalized medicine could revolutionize how primary care physicians treat chronic disease and how researchers study fundamental biological questions. To realize this goal, we need to develop more robust, modular tools and imaging approaches for in vivo monitoring of analytes. In this report, we demonstrate that synthetic nanosensors can measure physiologic parameters with photoacoustic contrast, and we apply that platform to continuously track lithium levels in vivo. Photoacoustic imaging achieves imaging depths that are unattainable with fluorescence or multiphoton microscopy. We validated the photoacoustic results that illustrate the superior imaging depth and quality of photoacoustic imaging with optical measurements. This powerful combination of techniques will unlock the ability to measure analyte changes in deep tissue and will open up photoacoustic imaging as a diagnostic tool for continuous physiological tracking of a wide range of analytes.

  11. Application of dental nanomaterials: potential toxicity to the central nervous system.

    Science.gov (United States)

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.

  12. Multi-metal oxide ceramic nanomaterial

    Science.gov (United States)

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  13. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  14. Nanomaterials Toxicity and Cell Death Modalities

    Directory of Open Access Journals (Sweden)

    Daniela De Stefano

    2012-01-01

    Full Text Available In the last decade, the nanotechnology advancement has developed a plethora of novel and intriguing nanomaterial application in many sectors, including research and medicine. However, many risks have been highlighted in their use, particularly related to their unexpected toxicity in vitro and in vivo experimental models. This paper proposes an overview concerning the cell death modalities induced by the major nanomaterials.

  15. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  16. Risk-based classification system of nanomaterials

    International Nuclear Information System (INIS)

    Tervonen, Tommi; Linkov, Igor; Figueira, Jose Rui; Steevens, Jeffery; Chappell, Mark; Merad, Myriam

    2009-01-01

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  17. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  18. Antimicrobial and biocompatible properties of nanomaterials.

    Science.gov (United States)

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  19. Managing the Life Cycle Risks of Nanomaterials

    Science.gov (United States)

    2009-07-01

    Nanomaterials Report Research to date focuses predominantly on aquatic organisms of the oceans or seas; no groundwater or soil exposure scenarios have been...pollution, create medical innovations, or develop new materials based on old concepts (e.g., plastics , thin films, and transistors). As already...Risks of Nanomaterials Report consumption, land use, ozone depletion, global warming, acidification , eutrophication, tropospheric ozone formation

  20. In vitro assessments of nanomaterial toxicity.

    Science.gov (United States)

    Jones, Clinton F; Grainger, David W

    2009-06-21

    Nanotechnology has grown from a scientific interest to a major industry with both commodity and specialty nanomaterial exposure to global populations and ecosystems. Sub-micron materials are currently used in a wide variety of consumer products and in clinical trials as drug delivery carriers and imaging agents. Due to the expected growth in this field and the increasing public exposure to nanomaterials, both from intentional administration and inadvertent contact, improved characterization and reliable toxicity screening tools are required for new and existing nanomaterials. This review discusses current methodologies used to assess nanomaterial physicochemical properties and their in vitro effects. Current methods lack the desired sensitivity, reliability, correlation and sophistication to provide more than limited, often equivocal, pieces of the overall nanomaterial performance parameter space, particularly in realistic physiological or environmental models containing cells, proteins and solutes. Therefore, improved physicochemical nanomaterial assays are needed to provide accurate exposure risk assessments and genuine predictions of in vivo behavior and therapeutic value. Simpler model nanomaterial systems in buffer do not accurately duplicate this complexity or predict in vivo behavior. A diverse portfolio of complementary material characterization tools and bioassays are required to validate nanomaterial properties in physiology.

  1. Risk-based classification system of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tervonen, Tommi, E-mail: t.p.tervonen@rug.n [University of Groningen, Faculty of Economics and Business (Netherlands); Linkov, Igor, E-mail: igor.linkov@usace.army.mi [US Army Research and Development Center (United States); Figueira, Jose Rui, E-mail: figueira@ist.utl.p [Technical University of Lisbon, CEG-IST, Centre for Management Studies, Instituto Superior Tecnico (Portugal); Steevens, Jeffery, E-mail: jeffery.a.steevens@usace.army.mil; Chappell, Mark, E-mail: mark.a.chappell@usace.army.mi [US Army Research and Development Center (United States); Merad, Myriam, E-mail: myriam.merad@ineris.f [INERIS BP 2, Societal Management of Risks Unit/Accidental Risks Division (France)

    2009-05-15

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  2. Diazonium Salt-Based Surface-Enhanced Raman Spectroscopy Nanosensor: Detection and Quantitation of Aromatic Hydrocarbons in Water Samples.

    Science.gov (United States)

    Tijunelyte, Inga; Betelu, Stéphanie; Moreau, Jonathan; Ignatiadis, Ioannis; Berho, Catherine; Lidgi-Guigui, Nathalie; Guénin, Erwann; David, Catalina; Vergnole, Sébastien; Rinnert, Emmanuel; Lamy de la Chapelle, Marc

    2017-05-24

    Here, we present a surface-enhanced Raman spectroscopy (SERS) nanosensor for environmental pollutants detection. This study was conducted on three polycyclic aromatic hydrocarbons (PAHs): benzo[a]pyrene (BaP), fluoranthene (FL), and naphthalene (NAP). SERS substrates were chemically functionalized using 4-dodecyl benzenediazonium-tetrafluoroborate and SERS analyses were conducted to detect the pollutants alone and in mixtures. Compounds were first measured in water-methanol (9:1 volume ratio) samples. Investigation on solutions containing concentrations ranging from 10 -6 g L -1 to 10 -3 g L -1 provided data to plot calibration curves and to determine the performance of the sensor. The calculated limit of detection (LOD) was 0.026 mg L -1 (10 -7 mol L -1 ) for BaP, 0.064 mg L -1 (3.2 × 10 -7 mol L -1 ) for FL, and 3.94 mg L -1 (3.1 × 10 -5 mol L -1 ) for NAP, respectively. The correlation between the calculated LOD values and the octanol-water partition coefficient (K ow ) of the investigated PAHs suggests that the developed nanosensor is particularly suitable for detecting highly non-polar PAH compounds. Measurements conducted on a mixture of the three analytes (i) demonstrated the ability of the developed technology to detect and identify the three analytes in the mixture; (ii) provided the exact quantitation of pollutants in a mixture. Moreover, we optimized the surface regeneration step for the nanosensor.

  3. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  4. Techniques for Investigating Molecular Toxicology of Nanomaterials.

    Science.gov (United States)

    Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong

    2016-06-01

    Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods.

  5. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  6. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  7. Environmental assessment of nanomaterial use in Denmark

    DEFF Research Database (Denmark)

    Kjølholt, Jesper; Gottschalk, Fadri; Brinch, Anna

    This is the concluding report of the project "Nanomaterials – occurrence and effects in the Danish environment" (abbreviated NanoDEN), which part the Danish Government's initiative "Better Control of Nanomaterials" (“Bedre styr på nanomaterialer”) which is administered by the Danish Environmental...... Protection Agency. The projects in NanoDEN have aimed to investigate and generate new environmentally relevant knowledge on of nanomaterials on the Danish market and to assess the possible associated risks to the environment. The results from the sub-projects are summarized in the current report...... and it is assessed whether and how nanomaterials may pose a risk for the environment in Denmark. The assessment is based on investigations of nine selected nanomaterials, which are expected to be environmentally relevant based on knowledge of consumption quantities or how they are used. These data contribute...

  8. Application of nanotechnologies and nanomaterials

    International Nuclear Information System (INIS)

    Vissokov, G.

    2011-01-01

    Full text: In the present report, we give a brief description of the present state, development, and application of nanotechnologies (NT) and nanomaterials (NM) in some key industries, such as chemical industry and power industry (nanocatalysts, and nanocatalysis, hydrogen storage and fuel cells, artificial photosynthesis and Gratzel's cell, energy efficiency, energy storage); fabrication of consolidated nanostructures (ceramic nano-materials, nanostructured coatings, production of low-combustibility plastics, nanostructured hard materials, nanostructures with colossal magnetoresistance); fabrication of ultra-high strength carbon fibres; nano-technologies for environmental protection (adsorption of heavy metals by self-ordered self-organized nano-structure ensembles, photocatalyric purification of liquids, fabrication of mesoporous materials, application of nanoporous polymers for water purification, nanoparticles and environment); medical applications; military applications and fight against terrorism; household applications; energetic and some other [1-7].; In 2010, the European Union and the governments of the USA and Japan each invested over $ 2 billion in nanoscience, which is ample evidence to substantiate the claim that the 21 st century will be the century of nanotechnologies. Some of the optimistic forecasts predict that in 2014 the total revenues from NT will exceed those brought by the information technologies and telecommunications combined. At present, more than 800 companies are involved in R&TD in this field (including giants such as Intel, IBM, Samsung, and Mitsubishi) while more than ten Nobel prizes were awarded for research in nanoscience

  9. Nanomaterials driven energy, environmental and biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F. [Department of Physics, College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 (United States)

    2014-03-31

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  10. Smart Mesoporous Nanomaterials for Antitumor Therapy

    Directory of Open Access Journals (Sweden)

    Marina Martínez-Carmona

    2015-11-01

    Full Text Available The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, etc. or external (temperature, light, magnetic field, etc. stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment.

  11. The Sense-City equipment project: insight into the prototyping and validation of environmental micro- and nanosensors for a sustainable urbanization

    Science.gov (United States)

    Lebental, Bérengère; Angelescu, Dan; Bourouina, Tarik; Bourquin, Frédéric; Cojocaru, Costel-Sorin; Derkx, François; Dumoulin, Jean; Ha, Thi-Lan; Robine, Enric; Van Damme, Henri

    2013-04-01

    While today's galloping urbanization weighs heavily on both People and Environment, the massive instrumentation of urban spaces appears a landmark toward sustainability. Collecting massively distributed information requires the use of high-performance communication systems as well as sensors with very small ecological footprint. Because of their high sensitivity, the wide range of their observables, their energetic self-sufficiency and their low cost, micro- and nano- sensors are particularly well suited to urban metrology. A 8 years, 9 M€ equipment project funded by the French "Programme d'Investissement d'Avenir" starting in 2012, the Sense-City project will offer a suite of high-quality facilities for the design, prototyping and performance assessment of micro- and nanosensors devoted to sustainable urbanization. The scientific program of Sense-City is built around four programs, environmental monitoring, structural health monitoring, energy performances monitoring and people health and exposure monitoring. We present the activities of the consortium partners, IFSTTAR, ESIEE-Paris, CSTB, LPICM, and the prospects brought by Sense-City equipment in terms of sensor prototyping, benchmarking and operation validation. We discuss how the various sensors developed by LPICM and ESIEE (for instance conformable chemical and gas microsensors using nanomaterials at LPICM, miniaturized gas chromatographs or microfluidic lab-on-chip for particles analysis at ESIEE-Paris) can be integrated by IFSTTAR into sensors networks tested by IFSTTAR and CSTB in both lab and urban settings. The massively distributed data are interpreted using advanced physical models and inverse methods in order to monitor water, air or soil quality, infrastructure and network safety, building energy performances as well as people health and exposure. We discuss the shortcomings of evaluating the performances of sensors only in lab conditions or directly in real, urban conditions. As a solution, Sense

  12. A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle@silica mesoporous microsphere for the detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang; Ma, Qiang; Liu, Ziping [Department of Analytical Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012 (China); Wang, Xinyan [Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022 (China); Su, Xingguang, E-mail: suxg@jlu.edu.cn [Department of Analytical Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012 (China)

    2014-08-20

    Highlights: • Design QD-Au NP@silica mesoporous microspheres as a novel enzyme-mimic nanosensor. • Composition of two kinds of nanoparticle can be controlled through silica layers coating. • Our nanosensor for glucose detection has high sensitivity and selectivity. - Abstract: QD-Au NP@silica mesoporous microspheres have been fabricated as a novel enzyme-mimic nanosensor. CdTe quantum dots (QDs) were loaded into the core, and Au nanoparticles (NPs) were encapsulated in the outer mesoporous shell. QDs and Au NPs were separated in the different space of the nanosensor, which prevent the potential energy or electron transfer process between QDs and Au NPs. As biomimetic catalyst, Au NPs in the mesoporous silica shell can catalytically oxidize glucose as glucose oxidase (GOx)-mimicking. The resultant hydrogen peroxide can quench the photoluminescence (PL) signal of QDs in the microsphere core. Therefore the nanosensor based on the decrease of the PL intensity of QDs was established for the glucose detection. The linear range for glucose was in the range of 5–200 μM with a detection limit (3σ) of 1.32 μM.

  13. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  15. A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ

    Science.gov (United States)

    Tang, Yan; Zhang, Wei; Liu, Jia; Zhang, Lei; Huang, Wei; Huo, Fengwei; Tian, Danbi

    2015-03-01

    A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response ranging from 0.025 to 4 mg mL-1 and a detection limit of the lipase as low as 3.47 μg mL-1 were achieved. This strategy circumvents the problems encountered by general enzyme assays that require sophisticated instruments and complicated assembling steps. The methodology can benefit the assays of heterogeneous-catalyzed enzymes.A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response

  16. Defected and Functionalized Germanene based Nanosensors under Sulfur Comprising Gas Exposure

    KAUST Repository

    Hussain, Tanveer

    2018-03-27

    Efficient sensing of sulfur containing toxic gases like H2S and SO2 is of outmost importance due to the adverse effects of these noxious gases. Absence of an efficient 2D based nanosensors capable of anchoring H2S and SO2 with feasible binding and an apparent variation in electronic properties upon the exposure of gas molecules has motivated us to explore the promise of germanene nano sheet (Ge-NS) for this purpose. In the present study, we have performed a comprehensive computational investigation by means of DFT based first principles calculations to envisage the structural, electronic and gas sensing properties of pristine, defected and metal substituted Ge-NS. Our initial screening has revealed that although interaction of SO2 on pristine Ge-NS is within the desirable range, however H2S binding is falling below the required values to guarantee an effective sensing. To improve the binding characteristics, we have considered the interactions between H2S and SO2 with defected and metal substituted Ge-NS. The systematic removals of Ge atoms from a reasonably large super cell lead to mono-vacancy, di-vacancies and tri-vacancies in Ge-NS. Similarly, different transition metals like As, Co, Cu, Fe, Ga, Ge Ni and Zn have been substituted into the monolayer to realize substituted Ge-NS. Our van der Waals corrected DFT calculations have concluded that the vacancy and substitution defects not only improve the binding characteristics but also enhance the sensing propensity of both H2S and SO2. The total and projected density of states show significant variations in electronic properties of pristine and defected Ge-NS before and after the exposure to the gases, which are essential in constituting a signal to be detected by the external circuit of the sensor. We strongly believe that out present work would not only advance the knowledge towards the application of Ge-NS based sensing, but also provide the motivation for the synthesis of an efficient nanosensors for H2S and SO

  17. Assembly of ordered carbon shells on semiconducting nanomaterials

    Science.gov (United States)

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2012-10-02

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  18. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  19. Biogenic nanomaterials from photosynthetic microorganisms.

    Science.gov (United States)

    Jeffryes, Clayton; Agathos, Spiros N; Rorrer, Gregory

    2015-06-01

    The use of algal cell cultures represents a sustainable and environmentally friendly platform for the biogenic production of nanobiomaterials and biocatalysts. For example, advances in the production of biogeneic nanomaterials from algal cell cultures, such as crystalline β-chitin nanofibrils and gold and silver nanoparticles, could enable the 'green' production of biomaterials such as tissue-engineering scaffolds or drug carriers, supercapacitors and optoelectric materials. The in vivo functionalization, as well as newly demonstrated methods of production and modification, of biogenic diatom biosilica have led to the development of organic-inorganic hybrid catalytic systems as well as new biomaterials for drug delivery, biosensors and heavy-metal adsorbents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evanescent wave assisted nanomaterial coating.

    Science.gov (United States)

    Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir

    2013-08-01

    In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness optical fiber probes and other plasmonic circuits.

  1. Nanomaterials for Electronics and Optoelectronics

    Science.gov (United States)

    Koehne, Jessica E.; Meyyappan, M.

    2011-01-01

    Nanomaterials such as carbon nanotubes(CNTs), graphene, and inorganic nanowires(INWs) have shown interesting electronic, mechanical, optical, thermal, and other properties and therefore have been pursued for a variety of applications by the nanotechnology community ranging from electronics to nanocomposites. While the first two are carbon-based materials, the INWs in the literature include silicon, germanium, III-V, II-VI, a variety of oxides, nitrides, antimonides and others. In this talk, first an overview of growth of these three classes of materials by CVD and PECVD will be presented along with results from characterization. Then applications in development of chemical sensors, biosensors, energy storage devices and novel memory architectures will be discussed.

  2. Green chemistry of carbon nanomaterials.

    Science.gov (United States)

    Basiuk, Elena V; Basiuk, Vladimir A

    2014-01-01

    The global trend of looking for more ecologically friendly, "green" techniques manifested itself in the chemistry of carbon nanomaterials. The main principles of green chemistry emphasize how important it is to avoid the use, or at least to reduce the consumption, of organic solvents for a chemical process. And it is precisely this aspect that was systematically addressed and emphasized by our research group since the very beginning of our work on the chemistry of carbon nanomaterials in early 2000s. The present review focuses on the results obtained to date on solvent-free techniques for (mainly covalent) functionalization of fullerene C60, single-walled and multi-walled carbon nanotubes (SWNTs and MWNTs, respectively), as well as nanodiamonds (NDs). We designed a series of simple and fast functionalization protocols based on thermally activated reactions with chemical compounds stable and volatile at 150-200 degrees C under reduced pressure, when not only the reactions take place at a high rate, but also excess reagents are spontaneously removed from the functionalized material, thus making its purification unnecessary. The main two classes of reagents are organic amines and thiols, including bifunctional ones, which can be used in conjunction with different forms of nanocarbons. The resulting chemical processes comprise nucleophilic addition of amines and thiols to fullerene C60 and to defect sites of pristine MWNTs, as well as direct amidation of carboxylic groups of oxidized nanotubes (mainly SWNTs) and ND. In the case of bifunctional amines and thiols, reactions of the second functional group can give rise to cross-linking effects, or be employed for further derivatization steps.

  3. Carbon Nanomaterials for Road Construction

    Directory of Open Access Journals (Sweden)

    Zaporotskova Irina Vladimirovna

    2015-05-01

    Full Text Available The requirement of developing and modernizing the roads in Russia and in the Volgograd region in particular, is based on need of expanding the directions of scientific research on road and transport complexes. They have to be aimed at the development of the theory of transport streams, traffic safety increase, and, first of all, at the application of original methods of road development and modernization, introduction of modern technologies and road-building materials.On the basis of the analysis of the plans for transportation sphere development in the Volgograd region assuming the need to apply the new technologies allowing to create qualitative paving, the authors propose the technology of creating a heavy-duty paving with the use of carbon nanomaterial. The knowledge on strengthening the characteristics of carbon nanotubes is a unique material for nanotechnology development which allowed to assume the analysis of general information about asphalt concrete. The analysis showed that carbon nanotubes can be used for improvement of operational characteristics of asphalt concrete, and it is possible to carry out additives of nanotubes in hot as well as in cold bitumen. The article contains the basic principles of creation of the new road material received by means of bitumen reinforcing by carbon nanotubes. The structures received by the offered technique binding on the basis of the bitumens modified by carbon nanomaterial can be used for coverings and bases on highways of all categories in all road and climatic zones of Russia. The technical result consists in increasing the durability and elasticity of the received asphalt covering, and also the increase of water resistance, heat resistance and frost resistance, the expansion of temperature range of its laying in the field of negative temperatures.

  4. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  5. Performance Enhancement of Carbon Nanomaterials for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Amin M. Saleem

    2016-01-01

    Full Text Available Carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene are exploited extensively due to their unique electrical, mechanical, and thermal properties and recently investigated for energy storage application (supercapacitor due to additional high specific surface area and chemical inertness properties. The supercapacitor is an energy storage device which, in addition to long cycle life (one million, can give energy density higher than parallel plate capacitor and power density higher than battery. In this paper, carbon nanomaterials and their composites are reviewed for prospective use as electrodes for supercapacitor. Moreover, different physical and chemical treatments on these nanomaterials which can potentially enhance the capacitance are also reviewed.

  6. Reproductive toxicity of carbon nanomaterials: a review

    Science.gov (United States)

    Vasyukova, I.; Gusev, A.; Tkachev, A.

    2015-11-01

    In the current review, we assembled the experimental evidences of an association between carbon nanomaterials including carbon black, graphite nanoplatelets, graphene, single- and multi-walled carbon nanotubes, and fullerene exposure and adverse reproductive and developmental effects, in vitro and in vivo studies. It is shown that carbon nanomaterials reveal toxic effect on reproductive system and offspring development of the animals of various system groups to a certain degree depending on carbon crystal structure. Although this paper provides initial information about the potential male and female reproductive toxicity of carbon nanomaterials, further studies, using characterized nanoparticles, relevant routes of administration, and doses closely reflecting all the expected levels of exposure are needed.

  7. Generating Electricity from Water through Carbon Nanomaterials.

    Science.gov (United States)

    Xu, Yifan; Chen, Peining; Peng, Huisheng

    2018-01-09

    Over the past ten years, electricity generation from water in carbon-based materials has aroused increasing interest. Water-induced mechanical-to-electrical conversion has been discovered in carbon nanomaterials, including carbon nanotubes and graphene, through the interaction with flowing water as well as moisture. In this Concept article, we focus on the basic principles of electric energy harvesting from flowing water through carbon nanomaterials, and summarize the material modification and structural design of these nanogenerators. The current challenges and potential applications of power conversion with carbon nanomaterials are finally highlighted. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek

    2011-05-11

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  9. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek; Luque, Rafael L.; Fihri, Aziz; Zhu, Haibo; Bouhrara, Mohamed; Basset, Jean-Marie

    2011-01-01

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  10. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors.

    Science.gov (United States)

    Chen, Kun; Han, Heyou; Luo, Zhihui; Wang, Yanjun; Wang, Xiuping

    2012-04-15

    Since the global cultivation of genetically modified crops constantly expands, it remains a high demand to establish different ways to sort food and feed that consist or contain genetically modified organisms. Surface-enhanced Raman scattering (SERS) spectroscopy is a flexible tool for biological analysis due to its excellent properties for detecting wide varieties of target biomolecules including nucleic acids. In the present study, a SERS-barcoded nanosensor was developed to detect Bacillus thuringiensis (Bt) gene-transformed rice expressing insecticidal proteins. The barcoded sensor was designed by encapsulation of gold nanoparticles with silica and conjugation of oligonucleotide strands for targeting DNA strands. The transition between the cry1A(b) and cry1A(c) fusion gene sequence was used to construct a specific SERS-based detection method with a detection limit of 0.1 pg/mL. In order to build the determination models to screen transgene, a series mixture of Bt rice and normal rice were prepared for SERS assay, and the limit of detection was 0.1% (w/w) transgenic Bt rice relative to normal rice. The sensitivity and accuracy of the SERS-based assay was comparable with real-time PCR. The SERS-barcoded analytical method would provide precise detection of transgenic rice varieties but also informative supplement to avoid false positive outcomes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. Wearable nanosensor system for monitoring mild traumatic brain injuries in football players

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Football players are more to violent impacts and injuries more than any athlete in any other sport. Concussion or mild traumatic brain injuries were one of the lesser known sports injuries until the last decade. With the advent of modern technologies in medical and engineering disciplines, people are now more aware of concussion detection and prevention. These concussions are often overlooked by football players themselves. The cumulative effect of these mild traumatic brain injuries can cause long-term residual brain dysfunctions. The principle of concussion is based the movement of the brain in the neurocranium and viscerocranium. The brain is encapsulated by the cerebrospinal fluid which acts as a protective layer for the brain. This fluid can protect the brain against minor movements, however, any rapid movements of the brain may mitigate the protective capability of the cerebrospinal fluid. In this paper, we propose a wireless health monitoring helmet that addresses the concerns of the current monitoring methods - it is non-invasive for a football player as helmet is not an additional gear, it is efficient in performance as it is equipped with EEG nanosensors and 3D accelerometer, it does not restrict the movement of the user as it wirelessly communicates to the remote monitoring station, requirement of individual monitoring stations are not required for each player as the ZigBee protocol can couple multiple transmitters with one receiver. A helmet was developed and validated according to the above mentioned parameters.

  12. Modification and characterization of (energetic) nanomaterials

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Peppel, R.J.E. van de; Abadjieva, E.

    2010-01-01

    Nanomaterials are a topic of increased interest, since they have properties which differ from their macroscopic counterparts. Many applications nowadays take advantage of the new functionalities which natural and manufactured nanoparticles possess. Based on these developments, also the research on

  13. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    Science.gov (United States)

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  15. Review of ORD Nanomaterial Case Studies Workshop

    Science.gov (United States)

    The following is a letter report from the Executive Committee of the BOSC concerning the review of the ORD Nanomaterial Case Studies Workshop: Developing a Comprehensive Environmental Assessment Research Strategy for Nanoscale Titanium Dioxide.

  16. Engineered nanomaterials: Exposures, hazards and risk prevention.

    Science.gov (United States)

    Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public) are either developing or using engineered nanomaterials (ENMs). However, understanding of the health and sa...

  17. Engineered nanomaterials for solar energy conversion.

    Science.gov (United States)

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  18. Techniques for physicochemical characterization of nanomaterials

    Science.gov (United States)

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  19. Assessing the Environmental Safety of Engineered Nanomaterials

    Science.gov (United States)

    Nanotechnology research in the United States is coordinated under the National Nano-technology Initiative with the goal of fostering development and implementation of nanomaterials and products that incorporate them and assuring that they are environmentally safe. The environmen...

  20. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  1. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  2. Systemic Absorption of Nanomaterials by Oral Exposure

    DEFF Research Database (Denmark)

    Binderup, Mona-Lise; Bredsdorff, Lea; Beltoft, Vibe Meister

    This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches.......This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches....

  3. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  4. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  5. Nanomaterials for Cancer Precision Medicine.

    Science.gov (United States)

    Wang, Yilong; Sun, Shuyang; Zhang, Zhiyuan; Shi, Donglu

    2018-04-01

    Medical science has recently advanced to the point where diagnosis and therapeutics can be carried out with high precision, even at the molecular level. A new field of "precision medicine" has consequently emerged with specific clinical implications and challenges that can be well-addressed by newly developed nanomaterials. Here, a nanoscience approach to precision medicine is provided, with a focus on cancer therapy, based on a new concept of "molecularly-defined cancers." "Next-generation sequencing" is introduced to identify the oncogene that is responsible for a class of cancers. This new approach is fundamentally different from all conventional cancer therapies that rely on diagnosis of the anatomic origins where the tumors are found. To treat cancers at molecular level, a recently developed "microRNA replacement therapy" is applied, utilizing nanocarriers, in order to regulate the driver oncogene, which is the core of cancer precision therapeutics. Furthermore, the outcome of the nanomediated oncogenic regulation has to be accurately assessed by the genetically characterized, patient-derived xenograft models. Cancer therapy in this fashion is a quintessential example of precision medicine, presenting many challenges to the materials communities with new issues in structural design, surface functionalization, gene/drug storage and delivery, cell targeting, and medical imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polymeric nanosensors for measuring the full dynamic pH range of endosomes and lysosomes in mammalian cells

    DEFF Research Database (Denmark)

    Sun, Honghao; Andresen, Thomas Lars; Benjaminsen, Rikke Vicki

    2009-01-01

    Polymer nanoparticle sensors have been constructed for studying pH in the endocytic pathway in mammalian cells. The pH sensors for fluorescence ratiometric measurements were prepared using inverse microemulsion polymerization with rhodamine as reference fluorophor and fluorescein and oregon green...... was used to introduce a net positive charge in the cationic particles. It was found that the positively charged particle sensors were internalized spontaneously by HepG2 cancer cells. These new pH nanosensors are potential tools in time resolved quantification of pH in the endocytic pathway of living cells....

  7. New insight into protein-nanomaterial interactions with UV-visible spectroscopy and chemometrics: human serum albumin and silver nanoparticles.

    Science.gov (United States)

    Wang, Yong; Ni, Yongnian

    2014-01-21

    In recent years, great efforts have focused on the exploration and fabrication of protein nanoconjugates due to potential applications in many fields including bioanalytical science, biosensors, biocatalysis, biofuel cells and bio-based nanodevices. An important aspect of our understanding of protein nanoconjugates is to quantitatively understand how proteins interact with nanomaterials. In this report, human serum albumin (HSA) and citrate-coated silver nanoparticles (AgNPs) are selected as a case study of protein-nanomaterial interactions. UV-visible spectroscopy together with multivariate curve resolution by alternating least squares (MCR-ALS) algorithm is first exploited for the detailed study of AgNPs-HSA interactions. Introduction of the chemometrics tool allows extracting the kinetic profiles, spectra and distribution diagrams of two major absorbing pure species (AgNPs and AgNPs-HSA conjugate). These resolved profiles are then analysed to give the thermodynamic, kinetic and structural information of HSA binding to AgNPs. Transmission electron microscopy, circular dichroism spectroscopy and Fourier transform infrared spectroscopy are used to further characterize the complex system. Moreover, a sensitive spectroscopic biosensor for HSA is fabricated with the MCR-ALS resolved concentration of absorbing pure species. It is found that the linear range for the HSA nanosensor was from 1.9 nM to 45.0 nM with a detection limit of 0.9 nM. It is believed that the proposed method will play an important role in the fabrication and optimization of a robust nanobiosensor or cross-reactive sensors array for the detection and identification of biocomponents.

  8. Antibacterial properties and toxicity from metallic nanomaterials

    Directory of Open Access Journals (Sweden)

    Vimbela GV

    2017-05-01

    Full Text Available Gina V Vimbela,1,* Sang M Ngo,2,* Carolyn Fraze,3 Lei Yang,4,5 David A Stout5–7 1Department of Chemical Engineering, 2Department of Electrical Engineering, California State University, Long Beach, CA, 3Brigham Young University Idaho, Rexburg, ID, USA; 4Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital, 5International Research Center for Translational Orthopaedics (IRCTO, Soochow University, Suzhou, Jiangsu, People’s Republic of China; 6Department of Mechanical and Aerospace Engineering, 7Department of Biomedical Engineering, California State University, Long Beach, CA, USA *These authors contributed equally to this work Abstract: The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. Keywords

  9. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    International Nuclear Information System (INIS)

    Wang Yuchi; Mao Hua; Wong, Lid B

    2010-01-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl - ] i ) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl - ] i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl - ] i . Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl - ] i . These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  10. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  11. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  12. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  13. Carbon Nanomaterials for Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    M. L. Casais-Molina

    2018-01-01

    Full Text Available Currently, breast cancer is considered as a health problem worldwide. Furthermore, current treatments neither are capable of stopping its propagation and/or recurrence nor are specific for cancer cells. Therefore, side effects on healthy tissues and cells are common. An increase in the efficiency of treatments, along with a reduction in their toxicity, is desirable to improve the life quality of patients affected by breast cancer. Nanotechnology offers new alternatives for the design and synthesis of nanomaterials that can be used in the identification, diagnosis, and treatment of cancer and has now become a very promising tool for its use against this disease. Among the wide variety of nanomaterials, the scientific community is particularly interested in carbon nanomaterials (fullerenes, nanotubes, and graphene due to their physical properties, versatile chemical functionalization, and biocompatibility. Recent scientific evidence shows the potential uses of carbon nanomaterials as therapeutic agents, systems for selective and controlled drug release, and contrast agents for diagnosing and locating tumors. This generates new possibilities for the development of innovative systems to treat breast cancer and can be used to detect this disease at much earlier stages. Thus, applications of carbon nanomaterials in breast cancer treatment are discussed in this article.

  14. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-01

    The field of nanotechnology is about research and development on materials whose at least one dimension is in the range of 1 to 100 nanometers. In recent years, the research activity for developing nano-materials has grown exponentially owing to the fact that they offer better solutions to the challenges faced by various fields such as energy, food, and environment. In this paper, the importance of transmission electron microscopy (TEM) based techniques is demonstrated for investigating the properties of nano-materials. Specifically the nano-materials that are investigated in this report include gold nano-particles (Au-NPs), silver atom-clusters (Ag-ACs), tantalum single-atoms (Ta-SAs), carbon materials functionalized with iron cobalt (Fe-Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF-STEM), electron energy-loss spectroscopy (EELS), and BF-TEM electron tomography (ET). With the help presented of results in this report, it is proved herein that as many TEM techniques as available in a given instrument are essential for a comprehensive nano-scale analysis of nanomaterials.

  15. Electron accelerators and nanomaterials - a symbiosis

    International Nuclear Information System (INIS)

    Dixit, Kavita P.; Mittal, K.C.

    2011-01-01

    Electron Accelerators and Nanomaterials share a symbiotic relationship. While electron accelerators are fast emerging as popular tools in the field of nanomaterials, use of nanomaterials so developed for sub-systems of accelerators is being explored. Material damage studies, surface modification and lithography in the nanometre scale are some of the areas in which electron accelerators are being extensively used. New methods to characterize the structure of nanoparticles use intense X-ray sources, generated from electron accelerators. Enhancement of field emission properties of carbon nanotubes using electron accelerators is another important area that is being investigated. Research on nanomaterials for use in the field of accelerators is still in the laboratory stage. Yet, new trends and emerging technologies can effectively produce materials which can be of significant use in accelerators. Properties such as enhanced field emission can be put to use in cathodes of electron guns. Superconducting properties some materials may also be useful in accelerators. This paper focusses on the electron accelerators used for synthesis, characterization and property-enhancement of nanomaterials. The details of electron accelerators used for these applications will be highlighted. Some light will be thrown on properties of nano materials which can have potential use in accelerators. (author)

  16. Use of Ionizing Radiation in the Production of Nanomaterials

    International Nuclear Information System (INIS)

    Del Mastro, N.; Takinami, P.

    2015-01-01

    The potential of nanomaterials technology have some very real and useful outcomes: production of materials and products with new properties, contribution to solutions of environmental problems, improvement of existing technologies and development of new applications. Due to the materials very small size (1-100 nm), they have some remarkable, and in some cases, novel properties like significant enhancement of mechanical, structural and magnetic properties. A wide array of nanosystems are produced biologically that can be used for the design of functional materials. The use of ionizing radiation technology seems very promising for the modification of protein films. On the other hand, there are various known methods to produce nanomaterials. Stable gelatin nanohydrogel can be prepared by irradiation providing concentration, temperature, physical confinement, dose, and dose rate effects were properly established. Silica-gelatin bio-hybrid and transparent nano-coatings can be prepared through sol gel technique. Nanostructural characterisation of some type of gelatin had already performed showing a high potential for proteins in the field of nanotechnology. (author)

  17. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    Science.gov (United States)

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures.

    Science.gov (United States)

    Faramarzi, Mohammad Ali; Sadighi, Armin

    2013-03-01

    The synthesis of inorganic nanomaterials and nanostructures by the means of diverse physical, chemical, and biological principles has been developed in recent decades. The nanoscale materials and structures creation continue to be an active area of researches due to the exciting properties of the resulting nanomaterials and their innovative applications. Despite physical and chemical approaches which have been used for a long time to produce nanomaterials, biological resources as green candidates that can replace old production methods have been focused in recent years to generate various inorganic nanoparticles (NPs) or other nanoscale structures. Cost-effective, eco-friendly, energy efficient, and nontoxic produced nanomaterials using diverse biological entities have been received increasing attention in the last two decades in contrast to physical and chemical methods owe using toxic solvents, generate unwanted by-products, and high energy consumption which restrict the popularity of these ways employed in nanometric science and engineering. In this review, the biosynthesis of gold, silver, gold-silver alloy, magnetic, semiconductor nanocrystals, silica, zirconia, titania, palladium, bismuth, selenium, antimony sulfide, and platinum NPs, using bacteria, actinomycetes, fungi, yeasts, plant extracts and also informational bio-macromolecules including proteins, polypeptides, DNA, and RNA have been reported extensively to mention the current status of the biological inorganic nanomaterial production. In other hand, two well-known wet chemical techniques, namely chemical reduction and sol-gel methods, used to produce various types of nanocrystalline powders, metal oxides, and hybrid organic-inorganic nanomaterials have presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion.

    Science.gov (United States)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2015-06-15

    The sensitive detection of heavy metal ions in the organism and aquatic ecosystem using nanosensors based on environment friendly and biocompatible materials still remains a challenge. A fluorescent turn-on nanosensor for lead (II) detection based on biocompatible graphene quantum dots and graphene oxide by employment of Pb(2+)-induced G-quadruplex formation was reported. Graphene quantum dots with high quantum yield, good biocompatibility were prepared and served as the fluorophore of Pb(2+) probe. Fluorescence turn-off of graphene quantum dots is easily achieved through efficient photoinduced electron transfer between graphene quantum dots and graphene oxide, and subsequent fluorescence turn-on process is due to the formation of G-quadraplex aptamer-Pb(2+) complex triggered by the addition of Pb(2+). This nanosensor can distinguish Pb(2+) ion from other ions with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a fast response time of one minute, a broad linear span of up to 400.0 nM and ultralow detection limit of 0.6 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence "turn on-off" nanosensor for lysozyme detection.

    Science.gov (United States)

    Song, Yu; Li, Yang; Liu, Ziping; Liu, Linlin; Wang, Xinyan; Su, Xingguang; Ma, Qiang

    2014-11-15

    In this work, we developed an ultrasensitive "turn on-off" fluorescence nanosensor for lysozyme (Lyz) detection. The novel nanosensor was constructed with the carboxymethyl chitosan modified CdTe quantum dots (CMCS-QDs). Firstly, the CMCS-QDs were fabricated via the electrostatic interaction between amino groups in CMCS polymeric chains and carboxyl groups on the surface of QDs. In the fluorescence "turn-on" step, the strong binding ability between Zn(2+) and CMCS on the surface of QDs can enhance the photoluminescence intensity (PL) of QDs. In the following fluorescence "turn-off" step, the N-acetyl-glucosamine (NAG) section along the CMCS chains was hydrolyzed by Lyz. As a result, Zn(2+) was released from the surface of QDs, and the Lyz-QDs complexes were formed to quench the QDs PL. Under the optimal conditions, there was a good linear relationship between the PL of QDs and the Lyz concentration (0.1-1.2 ng/mL) with the detection limit of 0.031 ng/mL. The developed method was ultrasensitive, highly selective and fast. It has been successfully employed in the detection of Lyz in the serum with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping

    International Nuclear Information System (INIS)

    Du Fangkai; Ming Yunhao; Zeng Fang; Yu Changmin; Wu Shuizhu

    2013-01-01

    Intracellular pH plays a critical role in the function of cells, and its regulation is essential for most cellular processes. In this study, we demonstrate a fluorescence resonance energy transfer (FRET)-based ratiometric pH nanosensor with carbon-dot (CD) as the carrier. The sensor was prepared by covalently linking a pH-sensitive fluorescent dye (fluorescein isothiocyanate, FITC) onto carbon-dot. As the FRET donor, the carbon-dot exhibits bright fluorescence emission as well as λ ex -dependent photoluminescence emission, and a suitable excitation wavelength for the donor (CD) can be chosen to match the energy acceptor (fluorescein moiety). The fluorescein moieties on a CD undergo structural and spectral conversion as the pH changes, affording the nanoplatform a FRET-based pH sensor. The CD-based system exhibits a significant change in fluorescence intensity ratio between pH 4 and 8 with a pK a value of 5.69. It also displays excellent water dispersibility, good spectral reversibility, satisfactory cell permeability and low cytotoxicity. Following the living cell uptake, this nanoplatform with dual-chromatic emissions can facilitate real-time visualization of the pH evolution involved in the endocytic pathway of the nanosensor. This reversible and low cytotoxic fluorescent nanoplatform may be highly valuable in a variety of biological studies, such as endocytic trafficking, endosome/lysosome maturation, and pH regulation in subcellular organelles. (paper)

  2. Development and investigation of the nanosensor-based apparatus to assess the psycho-emotional state of a person

    Science.gov (United States)

    Avdeeva, D. K.; Ivanov, M. L.; Natalinova, N. M.; Nguyen, D. K.; Rybalka, S. A.; Turushev, N. V.

    2017-08-01

    Psycho-emotional state is one of the factors effecting human health. Its evaluation allows revealing hidden psychological trauma which can be reason of chronic stress, depression or psychosomatic disorders. Modern techniques of objective psycho-emotional state assessment involve a device which detects electrophysiological parameters of human body connected with emotional reaction and psychological condition. The present study covers development and testing of psycho-emotional state assessment device. The developed implement uses three methods of electrophysiological activity evaluation: electrocardiography, electroencephalography and galvanic skin response detection. The device represents hardware-software complex consisting of nanosensors, measuring unit, lead wires and laptop. Filters are excluded from the measuring circuit due to metrological parameters and noise immunity of implemented nanosensors. This solution minimizes signal distortion and allows measuring signals of 0.3 μV and higher in a wide frequency range (0-10000 Hz) with minimal data loss. In addition, results of preliminary medical studies aimed to find correspondence between different psycho-emotional states and electrophysiological parameters are described. Impact of filters on electrophysiological studies was studied. According to the results conventional filters significantly distort EEG channel information. Further research will be directed to the creation of complete base of electrophysiological parameters related to a particular emotion.

  3. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2016-11-01

    Full Text Available The detection of environmental mercury (Hg contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone, which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg2+, which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs. The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg2+ concentration in the range of 1 ng/mL–32 ng/mL with a correlation of 0.991, and a limit of detection (LOD of 0.28 ng/mL for Hg2+. The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.

  4. Potential drug – nanosensor conjugates: Raman, infrared absorption, surface – enhanced Raman, and density functional theory investigations of indolic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pięta, Ewa, E-mail: Ewa.Pieta@ifj.edu.pl [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Paluszkiewicz, Czesława [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Oćwieja, Magdalena [J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow (Poland); Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2017-05-15

    Highlights: • Molecular fragments involved in the adsorption process were determined. • Formation of hydrogen bonds with the negatively charged gold substrates was observed. • Indole moiety strongly interacts with gold nanosensors. • The synthesized sensors are characterized by high stability and reproducibility. • Chemical mechanism plays a crucial role in the enhancement of the Raman signal. - Abstract: An extremely important aspect of planning cancer treatment is not only the drug efficiency but also a number of challenges associated with the side effects and control of this process. That is why it is worth paying attention to the promising potential of the gold nanoparticles combined with a compound treated as a potential drug. This work presents Raman (RS), infrared absorption (IR) and surface–enhanced Raman scattering (SERS) spectroscopic investigations of N–acetyl–5–methoxytryptamine (melatonin) and α–methyl–DL–tryptophan, regarding as anti breast cancer agents. The experimental spectroscopic analysis was supported by the quantum-chemical calculations based on the B3LYP hybrid density functional theory (DFT) at the B3LYP 6–311G(d,p) level of theory. The studied compounds were adsorbed onto two colloidal gold nanosensors synthesized by a chemical reduction method using sodium borohydride (SB) and trisodium citrate (TC), respectively. Its morphology characteristics were obtained using transmission electron microscopy (TEM). It has been suggested that the NH moiety from the aromatic ring, a well-known proton donor, causes the formation of hydrogen bonds with the negatively charged gold surface.

  5. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor.

    Science.gov (United States)

    Xiao, Wei; Xiao, Meng; Fu, Qiangqiang; Yu, Shiting; Shen, Haicong; Bian, Hongfen; Tang, Yong

    2016-11-08

    The detection of environmental mercury (Hg) contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg 2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg 2+ , which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg 2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg 2+ concentration in the range of 1 ng/mL-32 ng/mL with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg 2+ . The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.

  6. Measurement of Nitrate Concentration in Aqueous Media Using an Electrochemical Nanosensor Based on Silver Nanoparticles-Nanocellulose/Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Majid Shadfar

    2017-11-01

    Full Text Available Nitrate pollution is at the forefront of groundwater contamination which poses serious environmental and public health hazards.  Nitrate is usually released in solution from agricultural activities and finds its way into groundwater resources. The objective of the present study was to determine, accurately concentrations of nitrate ions in water samples from the environment using sensitive electrochemical methods. For this purpose, a modified glassy carbon electrode modified with a nanocomposite consisting of silver nanoparticles, nanocellulose, and graphene oxide (Ag/NC/GO-GCE was used. The characterization of the nanocomposite was investigated using scanning electron microscope (SEM, X-Ray diffraction (XRD, and electrochemical impedance spectroscopy (EIS. The modified Ag/NC/GO-GCE electrode was used as nanosensor for the electrocatalytic determination of nitrate using the voltammetric method. The effects of the parameters of scan rate, pH, and different nitrate concentrations were studied and the optimum conditions were obtained. A limit of detection of 0.016 µM (S/N=3 was found in the linear range of 0.005 to 10 mM nitrate. The Ag/NC/GO-GCE electrode exhibited a synergistic effect toward voltammetric determination of nitrate in the presence of graphene oxide, nanocellulose, and silver nanocatalyst. The nanosensor developed here showed excellent sensitivity, selectivity, and stability toward nitrate determination in aqueous solutions without any significant interference.

  7. Two dimensional nanomaterials for flexible supercapacitors.

    Science.gov (United States)

    Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi

    2014-05-21

    Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.

  8. Studies and Development of Radiation Processed Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree [Radiation Technology Development Section, Bhabha Atomic Research Centre, Mumbai (India)

    2009-07-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  9. 4th International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2017-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 4th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2016) held in Lviv, Ukraine on August 24-27, 2016. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engineering and medical applications Co...

  10. Nanomaterials and nanotechnologies in nuclear energy chemistry

    International Nuclear Information System (INIS)

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  11. Synthesis of nanoparticles and nanomaterials biological approaches

    CERN Document Server

    Abdullaeva, Zhypargul

    2017-01-01

    This book covers biological synthesis approaches for nanomaterials and nanoparticles, including introductory material on their structure, phase compositions and morphology, nanomaterials chemical, physical, and biological properties. The chapters of this book describe in sequence the synthesis of various nanoparticles by microorganisms, bacteria, yeast, algae, and actynomycetes; plant and plant extract-based synthesis; and green synthesis methods. Each chapter provides basic knowledge on the synthesis of nanomaterials, defines fundamental terms, and aims to build a solid foundation of knowledge, followed by explanations, examples, visual photographs, schemes, tables and illustrations. Each chapter also contains control questions, problem drills, as well as case studies that clarify theory and the explanations given in the text. This book is ideal for researchers and advanced graduate students in materials engineering, biotechnology, and nanotechnology fields. As a reference book this work is also appropriate ...

  12. 3rd International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2016-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engine...

  13. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  14. Synthesis of camptothecin-loaded gold nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhimin [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu Zhiguo, E-mail: zguoliu@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zu Yuangang, E-mail: nefunano@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  15. Studies and Development of Radiation Processed Nanomaterials

    International Nuclear Information System (INIS)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree

    2009-01-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  16. Nanomaterial-based drug delivery carriers for cancer therapy

    CERN Document Server

    Feng, Tao

    2017-01-01

    This brief summarizes different types of organic and inorganic nanomaterials for drug delivery in cancer therapy. It highlights that precisely designed nanomaterials will be the next-generation therapeutic agents for cancer treatment.

  17. “NaKnowBase”: A Nanomaterials Relational Database

    Science.gov (United States)

    NaKnowBase is a relational database populated with data from peer-reviewed ORD nanomaterials research publications. The database focuses on papers describing the actions of nanomaterials in environmental or biological media including their interactions, transformations and poten...

  18. “NaKnowBase”: A Nanomaterials Relational Database

    Science.gov (United States)

    NaKnowBase is an internal relational database populated with data from peer-reviewed ORD nanomaterials research publications. The database focuses on papers describing the actions of nanomaterials in environmental or biological media including their interactions, transformations...

  19. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    Science.gov (United States)

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  20. Development and In Vitro Toxicity Evaluation of Alternative Sustainable Nanomaterials

    Science.gov (United States)

    Novel nanomaterial types are rapidly being developed for the value they may add to consumer products without sufficient evaluation of implications for human health, toxicity, environmental impact and long-term sustainability. Nanomaterials made of metals, semiconductors and vario...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  2. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  4. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  5. The Nanomaterial Registry: facilitating the sharing and analysis of data in the diverse nanomaterial community

    Directory of Open Access Journals (Sweden)

    Ostraat ML

    2013-09-01

    Full Text Available Michele L Ostraat, Karmann C Mills, Kimberly A Guzan, Damaris MurryRTI International, Durham, NC, USAAbstract: The amount of data being generated in the nanotechnology research space is significant, and the coordination, sharing, and downstream analysis of the data is complex and consistently deliberated. The complexities of the data are due in large part to the inherently complicated characteristics of nanomaterials. Also, testing protocols and assays used for nanomaterials are diverse and lacking standardization. The Nanomaterial Registry has been developed to address such challenges as the need for standard methods, data formatting, and controlled vocabularies for data sharing. The Registry is an authoritative, web-based tool whose purpose is to simplify the community's level of effort in assessing nanomaterial data from environmental and biological interaction studies. Because the registry is meant to be an authoritative resource, all data-driven content is systematically archived and reviewed by subject-matter experts. To support and advance nanomaterial research, a set of minimal information about nanomaterials (MIAN has been developed and is foundational to the Registry data model. The MIAN has been used to create evaluation and similarity criteria for nanomaterials that are curated into the Registry. The Registry is a publicly available resource that is being built through collaborations with many stakeholder groups in the nanotechnology community, including industry, regulatory, government, and academia. Features of the Registry website (https://www.nanomaterialregistry.org/ currently include search, browse, side-by-side comparison of nanomaterials, compliance ratings based on the quality and quantity of data, and the ability to search for similar nanomaterials within the Registry. This paper is a modification and extension of a proceedings paper for the Institute of Electrical and Electronics Engineers.Keywords: nanoinformatics

  6. Overview of Risk Management for Engineered Nanomaterials

    International Nuclear Information System (INIS)

    Schulte, P A; Geraci, C L; Hodson, L L; Zumwalde, R D; Kuempel, E D; Murashov, V; Martinez, K F; Heidel, D S

    2013-01-01

    Occupational exposure to engineered nanomaterials (ENMs) is considered a new and challenging occurrence. Preliminary information from laboratory studies indicates that workers exposed to some kinds of ENMs could be at risk of adverse health effects. To protect the nanomaterial workforce, a precautionary risk management approach is warranted and given the newness of ENMs and emergence of nanotechnology, a naturalistic view of risk management is useful. Employers have the primary responsibility for providing a safe and healthy workplace. This is achieved by identifying and managing risks which include recognition of hazards, assessing exposures, characterizing actual risk, and implementing measures to control those risks. Following traditional risk management models for nanomaterials is challenging because of uncertainties about the nature of hazards, issues in exposure assessment, questions about appropriate control methods, and lack of occupational exposure limits (OELs) or nano-specific regulations. In the absence of OELs specific for nanomaterials, a precautionary approach has been recommended in many countries. The precautionary approach entails minimizing exposures by using engineering controls and personal protective equipment (PPE). Generally, risk management utilizes the hierarchy of controls. Ideally, risk management for nanomaterials should be part of an enterprise-wide risk management program or system and this should include both risk control and a medical surveillance program that assesses the frequency of adverse effects among groups of workers exposed to nanomaterials. In some cases, the medical surveillance could include medical screening of individual workers to detect early signs of work-related illnesses. All medical surveillance should be used to assess the effectiveness of risk management; however, medical surveillance should be considered as a second line of defense to ensure that implemented risk management practices are effective.

  7. Overview of Risk Management for Engineered Nanomaterials

    Science.gov (United States)

    Schulte, P. A.; Geraci, C. L.; Hodson, L. L.; Zumwalde, R. D.; Kuempel, E. D.; Murashov, V.; Martinez, K. F.; Heidel, D. S.

    2013-04-01

    Occupational exposure to engineered nanomaterials (ENMs) is considered a new and challenging occurrence. Preliminary information from laboratory studies indicates that workers exposed to some kinds of ENMs could be at risk of adverse health effects. To protect the nanomaterial workforce, a precautionary risk management approach is warranted and given the newness of ENMs and emergence of nanotechnology, a naturalistic view of risk management is useful. Employers have the primary responsibility for providing a safe and healthy workplace. This is achieved by identifying and managing risks which include recognition of hazards, assessing exposures, characterizing actual risk, and implementing measures to control those risks. Following traditional risk management models for nanomaterials is challenging because of uncertainties about the nature of hazards, issues in exposure assessment, questions about appropriate control methods, and lack of occupational exposure limits (OELs) or nano-specific regulations. In the absence of OELs specific for nanomaterials, a precautionary approach has been recommended in many countries. The precautionary approach entails minimizing exposures by using engineering controls and personal protective equipment (PPE). Generally, risk management utilizes the hierarchy of controls. Ideally, risk management for nanomaterials should be part of an enterprise-wide risk management program or system and this should include both risk control and a medical surveillance program that assesses the frequency of adverse effects among groups of workers exposed to nanomaterials. In some cases, the medical surveillance could include medical screening of individual workers to detect early signs of work-related illnesses. All medical surveillance should be used to assess the effectiveness of risk management; however, medical surveillance should be considered as a second line of defense to ensure that implemented risk management practices are effective.

  8. Terahertz Dynamics in Carbon Nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2012-02-01

    This NSF Partnerships for International Research and Education (PIRE) project supports a unique interdisciplinary and international partnership investigating terahertz (THz) dynamics in nanostructures. The 0.1 to 10 THz frequency range of the electromagnetic spectrum is where electrical transport and optical transitions merge, offering exciting opportunities to study a variety of novel physical phenomena in condensed matter. By combining THz technology and nanotechnology, we can advance our understanding of THz physics while improving and developing THz devices. Specifically, this PIRE research explores THz dynamics of electrons in carbon nanomaterials, namely, nanotubes and graphene --- low-dimensional, sp^2-bonded carbon systems with unique finite-frequency properties. Japan and the U.S. are global leaders in both THz research and carbon research, and stimulating cooperation is critical to further advance THz science and to commercialize products developed in the lab. However, obstacles exist for international collaboration --- primarily linguistic and cultural barriers --- and this PIRE project aims to address these barriers through the integration of our research and education programs. Our strong educational portfolio endeavours to cultivate interest in nanotechnology amongst young U.S. undergraduate students and encourage them to pursue graduate study and academic research in the physical sciences, especially those from underrepresented groups. Our award-winning International Research Experience for Undergraduates Program, NanoJapan, provides structured research internships in Japanese university laboratories with Japanese mentors --- recognized as a model international education program for science and engineering students. The project builds the skill sets of nanoscience researchers and students by cultivating international and inter-cultural awareness, research expertise, and specific academic interests in nanotechnology. U.S. project partners include Rice

  9. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma.

    Science.gov (United States)

    Shi, Yupeng; Pan, Yi; Zhang, Heng; Zhang, Zhaomin; Li, Mei-Jin; Yi, Changqing; Yang, Mengsu

    2014-06-15

    Glutathione (GSH) plays key roles in biological systems and serves many cellular functions. Since biothiols all incorporate thiol, carboxylic and amino groups, discriminative detection of GSH over cysteine (Cys) and homocysteine (Hcy) is still challenging. We herein report a dual-mode nanosensor with both colorimetric and fluorometric readout based on carbon quantum dots and gold nanoparticles for discriminative detection of GSH over Cys/Hcy. The proposed sensing system consists of AuNPs and fluorescent carbon quantum dots (CQDs), where CQDs function as fluorometric reporter, and AuNPs serve a dual function as colorimetric reporter and fluorescence quencher. The mechanism of the nanosensor is based on two distance-dependent phenomenons, color change of AuNPs and FRET. Through controlling the surface properties of as-prepared nanoparticles, the addition of CQDs into AuNPs colloid solution might induce the aggregation of AuNPs and CQDs, leading to AuNPs color changing from red to blue and CQDs fluorescence quench. However, the presence of GSH can protect AuNPs from being aggregated and enlarge the inter-particle distance, which subsequently produces color change and fluorescent signal recovery. The nanosensor described in this report reflects on its simplicity and flexibility, where no further surface functionalization is required for the as-prepared nanoparticles, leading to less laborious and more cost-effective synthesis. The proposed dual-mode nanosensor demonstrated highly selectivity toward GSH, and allows the detection of GSH as low as 50 nM. More importantly, the nanosensor could not only function in aqueous solution for GSH detection with high sensitivity but also exhibit sensitive responses toward GSH in complicated biological environments, demonstrating its potential in bioanalysis and biodection, which might be significant in disease diagnosis in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Structure and multiscale mechanics of carbon nanomaterials

    CERN Document Server

    2016-01-01

    This book aims at providing a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials.

  11. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  12. Fabrication high-purity Fe nanochains with near theoretical limit value of saturation magnetization of bulk Fe

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Erkang [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China); Xu, Yanling [Henan University, The Audit Department (China); Lou, Shiyun, E-mail: lousy@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China); Fu, Yunlong, E-mail: yunlongfu@dns.sxnu.edu.cn [Shanxi Normal University, School of Chemistry and Material Science (China); Zhou, Shaomin, E-mail: smzhou@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China)

    2016-11-15

    High-yield purity chain-like one-dimensional nanostructures consisting of single crystal Fe nanoparticles have been produced by using solution dispersion approach. Room temperature magnetic measurement shows that the as-fabricated Fe nanochains are ferromagnetic with a high saturation magnetization (203 emu/g) whereas the nanoparticles are single magnetic domains, which indicate that the as-synthesized products have superparamagnetism behavior with the saturation magnetization of about 28 emu/g. Maybe this results from the directional alignment of the nanoparticles. The excellent characteristic may have led to the potential applications in spin filtering, high density magnetic recording, and nanosensors.

  13. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    and magnetic materials are provided. Advantages of nanocrystalline magnetic mate- rials in the context of ... 2.2 Phosphors for high definition TV. Better resolution of television screens could be ..... materials and that of preparing nanoparticles. This will remain a challenge for the future if nanomaterials are to be competitive.

  14. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    NARCIS (Netherlands)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in

  15. Metal-filled carbon nanotubes as a novel class of photothermal nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Rossella, Francesco; Bellani, Vittorio [Dipartimento di Fisica ' ' A. Volta' ' and CNISM, Universita degli Studi di Pavia, Via Bassi 6, 27100 Pavia (Italy); Soldano, Caterina [Dipartimento di Chimica e Fisica, Universita degli Studi di Brescia, Via Valotti 9, 25121 Brescia (Italy); Tommasini, Matteo [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' ' G. Natta' ' , Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2012-05-08

    Metal-filled carbon nanotubes represent a novel class of photothermal nanomaterials: when illuminated by visible light they exhibit a strong enhancement of the temperature at the metal sites, due to the enhanced plasmonic light absorption at the metal surface, which behaves as a heat radiator. Potential applications include nanomedicine, heat-assisted magnetic recording, and light-activated thermal gradient-driven devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  17. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    Science.gov (United States)

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Black Titanium Dioxide Nanomaterials in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Xiaodong Yan

    2017-01-01

    Full Text Available Titanium dioxide (TiO2 nanomaterials are widely considered to be state-of-the-art photocatalysts for environmental protection and energy conversion. However, the low photocatalytic efficiency caused by large bandgap and rapid recombination of photo-excited electrons and holes is a challenging issue that needs to be settled for their practical applications. Structure engineering has been demonstrated to be a highly promising approach to engineer the optical and electronic properties of the existing materials or even endow them with unexpected properties. Surface structure engineering has witnessed the breakthrough in increasing the photocatalytic efficiency of TiO2 nanomaterials by creating a defect-rich or amorphous surface layer with black color and extension of optical absorption to the whole visible spectrum, along with markedly enhanced photocatalytic activities. In this review, the recent progress in the development of black TiO2 nanomaterials is reviewed to gain a better understanding of the structure-property relationship with the consideration of preparation methods and to project new insights into the future development of black TiO2 nanomaterials in photocatalytic applications.

  19. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  1. Safety Aspects of Bio-Based Nanomaterials.

    Science.gov (United States)

    Catalán, Julia; Norppa, Hannu

    2017-12-01

    Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  2. SYNTHESIS OF MCM-41 NANOMATERIAL FROM ALGERIAN ...

    African Journals Online (AJOL)

    T. Ali-Dahmane

    1 mai 2017 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. SYNTHESIS OF MCM-41 NANOMATERIAL FROM ALGERIAN BENTONITE:.

  3. Nanomaterials environmental risks and recycling: Actual issues

    Directory of Open Access Journals (Sweden)

    Živković Dragana

    2014-01-01

    Full Text Available Nanotechnologies are being spoken of as the driving force behind a new industrial revolution. Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. The size of nanoparticles allows them to interact strongly with biological structures, so they present potential human and environmental health risk. Nanometer size presents also a problem for separation, recovery, and reuse of the particulate matter. Therefore, industrial-scale manufacturing and use of nanomaterials could have strong impact on human health and the environment or the problematic of nanomaterials recycling. The catch-all term ''nanotechnology' is not sufficiently precise for risk governance and risk management purposes. The estimation of possible risks depends on a consideration of the life cycle of the material being produced, which involves understanding the processes and materials used in manufacture, the likely interactions between the product and individuals or the environment during its manufacture and useful life, and the methods used in its eventual disposal. From a risk-control point of view it will be necessary to systematically identify those critical issues, which should be looked at in more detail. Brief review of actual trends in nanomaterials environmental risks and recycling is given in this paper.

  4. Surface science tools for nanomaterials characterization

    CERN Document Server

    2015-01-01

    Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  5. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  6. Combustion synthesis of cadmium sulphide nanomaterials

    Indian Academy of Sciences (India)

    Anion-doped cadmium sulphide nanomaterials have been synthesized by using combustionmethod at normal atmospheric conditions. Oxidant/fuel ratios have been optimized in order to obtain CdS with best characteristics. Formation of CdS and size of crystallite were identified by X-ray diffraction and confirmed by ...

  7. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-01-01

    -Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF

  8. The influence of selected nanomaterials on microorganisms

    Czech Academy of Sciences Publication Activity Database

    Brandeburová, P.; Birošová, L.; Vojs, M.; Kromka, Alexander; Gál, M.; Tichý, J.; Híveš, J.; Mackul´ak, T.

    2017-01-01

    Roč. 148, č. 3 (2017), s. 525-530 ISSN 0026-9247 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : nanomaterials * nanotechnologies * microorganisms * toxicity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.282, year: 2016

  9. Redefining risk research priorities for nanomaterials

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Baun, Anders; Owen, R.

    2010-01-01

    Chemical-based risk assessment underpins the current approach to responsible development of nanomaterials (NM). It is now recognised, however, that this process may take decades, leaving decision makers with little support in the near term. Despite this, current and near future research efforts...

  10. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    Science.gov (United States)

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  11. Applications of nanomaterials as vaccine adjuvants

    Science.gov (United States)

    Zhu, Motao; Wang, Rongfu; Nie, Guangjun

    2014-01-01

    Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials’ physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants. PMID:25483497

  12. Biomedical Applications of Nanotechnology and Nanomaterials

    OpenAIRE

    Vinay Bhardwaj; Ajeet Kaushik

    2017-01-01

    The spurring growth and clinical adoption of nanomaterials and nanotechnology in medicine, i.e. “nanomedicine”, to shape global health care system is a collective effort that comprises academia research, industrial drive, and political and financial support from government.[...

  13. Safety Aspects of Bio-Based Nanomaterials

    Directory of Open Access Journals (Sweden)

    Julia Catalán

    2017-12-01

    Full Text Available Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi­cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  14. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  15. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  16. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  17. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  18. Green processes for nanotechnology from inorganic to bioinspired nanomaterials

    CERN Document Server

    Basiuk, Elena

    2015-01-01

    This book provides the state-of-the-art survey of green techniques in preparation of different classes of nanomaterials, with an emphasis on the use of renewable sources. Key topics covered include fabrication of nanomaterials using green techniques as well as their properties and applications, the use of renewable sources to obtain nanomaterials of different classes, from simple metal and metal oxide nanoparticles to complex bioinspired nanomaterials, economic contributions of nanotechnology to green and sustainable growth, and more. This is an ideal book for students, lecturers, researchers and engineers dealing with versatile (mainly chemical, biological, and medical) aspects of nanotechnology, including fabrication of nanomaterials using green techniques and their properties and applications. This book also: Maximizes reader insights into the design and fabrication of bioinspired nanomaterials and the design of complex bio-nanohybrids Covers many different applications for nanomaterials, bioinspired nanom...

  19. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets

    Science.gov (United States)

    2016-01-01

    A national survey on workplace environment nanomaterial handling and manufacturing was conducted in 2014. Workplaces relevant to nanomaterials were in the order of TiO2 (91), SiO2 (88), carbon black (84), Ag (35), Al2O3 (35), ZnO (34), Pb (33), and CeO2 (31). The survey results indicated that the number of workplaces handling or manufacturing nanomaterials was 340 (0.27% of total 126,846) workplaces. The number of nanomaterials used and products was 546 (1.60 per company) and 583 (1.71 per company), respectively. For most workplaces, the results on exposure to hazardous particulate materials, including nanomaterials, were below current OELs, yet a few workplaces were above the action level. As regards the health status of workers, 9 workers were diagnosed with a suspected respiratory occupational disease, where 7 were recommended for regular follow-up health monitoring. 125 safety data sheets (SDSs) were collected from the nanomaterial-relevant workplaces and evaluated for their completeness and reliability. Only 4 CNT SDSs (3.2%) included the term nanomaterial, while most nanomaterial SDSs were not regularly updated and lacked hazard information. When taken together, the current analysis provides valuable national-level information on the exposure and health status of workers that can guide the next policy steps for nanomaterial management in the workplace. PMID:27556041

  20. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.

    Science.gov (United States)

    Liang, Hao; Zhang, Xiao-Bing; Lv, Yifan; Gong, Liang; Wang, Ruowen; Zhu, Xiaoyan; Yang, Ronghua; Tan, Weihong

    2014-06-17

    CONSPECTUS: DNA performs a vital function as a carrier of genetic code, but in the field of nanotechnology, DNA molecules can catalyze chemical reactions in the cell, that is, DNAzymes, or bind with target-specific ligands, that is, aptamers. These functional DNAs with different modifications have been developed for sensing, imaging, and therapeutic systems. Thus, functional DNAs hold great promise for future applications in nanotechnology and bioanalysis. However, these functional DNAs face challenges, especially in the field of biomedicine. For example, functional DNAs typically require the use of cationic transfection reagents to realize cellular uptake. Such reagents enter the cells, increasing the difficulty of performing bioassays in vivo and potentially damaging the cell's nucleus. To address this obstacle, nanomaterials, such as metallic, carbon, silica, or magnetic materials, have been utilized as DNA carriers or assistants. In this Account, we describe selected examples of functional DNA-containing nanomaterials and their applications from our recent research and those of others. As models, we have chosen to highlight DNA/nanomaterial complexes consisting of gold nanoparticles, graphene oxides, and aptamer-micelles, and we illustrate the potential of such complexes in biosensing, imaging, and medical diagnostics. Under proper conditions, multiple ligand-receptor interactions, decreased steric hindrance, and increased surface roughness can be achieved from a high density of DNA that is bound to the surface of nanomaterials, resulting in a higher affinity for complementary DNA and other targets. In addition, this high density of DNA causes a high local salt concentration and negative charge density, which can prevent DNA degradation. For example, DNAzymes assembled on gold nanoparticles can effectively catalyze chemical reactions even in living cells. And it has been confirmed that DNA-nanomaterial complexes can enter cells more easily than free single

  1. Paper-Based Microfluidic Device with a Gold Nanosensor to Detect Arsenic Contamination of Groundwater in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mosfera A. Chowdury

    2017-03-01

    Full Text Available In this paper, we present a microfluidic paper-based analytical device (μPAD with a gold nanosensor functionalized with α-lipoic acid and thioguanine (Au–TA–TG to detect whether the arsenic level of groundwater from hand tubewells in Bangladesh is above or below the World Health Organization (WHO guideline level of 10 μg/L. We analyzed the naturally occurring metals present in Bangladesh groundwater and assessed the interference with the gold nanosensor. A method was developed to prevent interference from alkaline metals found in Bangladesh groundwater (Ca, Mg, K and Na by increasing the pH level on the μPADs to 12.1. Most of the heavy metals present in the groundwater (Ni, Mn, Cd, Pb, and Fe II did not interfere with the μPAD arsenic tests; however, Fe III was found to interfere, which was also prevented by increasing the pH level on the μPADs to 12.1. The μPAD arsenic tests were tested with 24 groundwater samples collected from hand tubewells in three different districts in Bangladesh: Shirajganj, Manikganj, and Munshiganj, and the predictions for whether the arsenic levels were above or below the WHO guideline level agreed with the results obtained from laboratory testing. The μPAD arsenic test is the first paper-based test validated using Bangladesh groundwater samples and capable of detecting whether the arsenic level in groundwater is above or below the WHO guideline level of 10 μg/L, which is a step towards enabling the villagers who collect and consume the groundwater to test their own sources and make decisions about where to obtain the safest water.

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  3. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  4. Nanomaterials: a challenge for toxicological risk assessment?

    Science.gov (United States)

    Haase, Andrea; Tentschert, Jutta; Luch, Andreas

    2012-01-01

    Nanotechnology has emerged as one of the central technologies in the twenty-first century. This judgment becomes apparent by considering the increasing numbers of people employed in this area; the numbers of patents, of scientific publications, of products on the market; and the amounts of money invested in R&D. Prospects originating from different fields of nanoapplication seem unlimited. However, nanotechnology certainly will not be able to meet all of the ambitious expectations communicated, yet has high potential to heavily affect our daily life in the years to come. This might occur in particular in the field of consumer products, for example, by introducing nanomaterials in cosmetics, textiles, or food contact materials. Another promising area is the application of nanotechnology in medicine fueling hopes to significantly improve diagnosis and treatment of all kinds of diseases. In addition, novel technologies applying nanomaterials are expected to be instrumental in waste remediation and in the production of efficient energy storage devices and thus may help to overcome world's energy problems or to revolutionize computer and data storage technologies. In this chapter, we will focus on nanomaterials. After a brief historic and general overview, current proposals of how to define nanomaterials will be summarized. Due to general limitations, there is still no single, internationally accepted definition of the term "nanomaterial." After elaborating on the status quo and the scope of nanoanalytics and its shortcomings, the current thinking about possible hazards resulting from nanoparticulate exposures, there will be an emphasis on the requirements to be fulfilled for appropriate health risk assessment and regulation of nanomaterials. With regard to reliable risk assessments, until now there is still the remaining issue to be resolved of whether or not specific challenges and unique features exist on the nanoscale that have to be tackled and distinctively

  5. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities

    International Nuclear Information System (INIS)

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.; Laskin, Julia; Lai, Jinfeng; Mueller, Karl; Munusamy, Prabhakaran; Thevuthasan, Suntharampillai; Wang, Hongfei; Washton, Nancy; Elder, Alison; Baisch, Brittany L.; Karakoti, Ajay; Kuchibhatla, Satyanarayana V. N. T.; Moon, DaeWon

    2013-01-01

    This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may

  6. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  7. Recent trends in nanomaterial-based microanalytical systems for the speciation of trace elements: A critical review.

    Science.gov (United States)

    Tseng, Wei-Chang; Hsu, Keng-Chang; Shiea, Christopher Stephen; Huang, Yeou-Lih

    2015-07-16

    Trace element speciation in biomedical and environmental science has gained increasing attention over the past decade as researchers have begun to realize its importance in toxicological studies. Several nanomaterials, including titanium dioxide nanoparticles (nano-TiO2), carbon nanotubes (CNTs), and magnetic nanoparticles (MNPs), have been used as sorbents to separate and preconcentrate trace element species prior to detection through mass spectrometry or optical spectroscopy. Recently, these nanomaterial-based speciation techniques have been integrated with microfluidics to minimize sample and reagent consumption and simplify analyses. This review provides a critical look into the present state and recent applications of nanomaterial-based microanalytical systems in the speciation of trace elements. The adsorption and preconcentration efficiencies, sample volume requirements, and detection limits of these nanomaterial-based speciation techniques are detailed, and their applications in environmental and biological analyses are discussed. Current perspectives and future trends into the increasing use of nanomaterial-based microfluidic techniques for trace element speciation are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  9. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  10. Learning from nature: binary cooperative complementary nanomaterials.

    Science.gov (United States)

    Su, Bin; Guo, Wei; Jiang, Lei

    2015-03-01

    In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optical response from functionalized atomically thin nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Malic, Ermin; Berghaeuser, Gunnar; Feierabend, Maja [Department of Physics, Chalmers University of Technology, Gothenburg (Sweden); Knorr, Andreas [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany)

    2017-10-15

    Chemical functionalization of atomically thin nanostructures presents a promising strategy to create new hybrid nanomaterials with remarkable and externally controllable properties. Here, we review our research in the field of theoretical modeling of carbon nanotubes, graphene, and transition metal dichalcogenides located in molecular dipole fields. In particular, we provide a microscopic view on the change of the optical response of these technologically promising nanomaterials due to the presence of photo-active spiropyran molecules. The feature article presents a review of recent theoretical work providing microscopic view on the optical response of chemically functionalized carbon nanotubes, graphene, and monolayered transition metal dichalcogenides. In particular, we propose a novel sensor mechanism based on the molecule-induced activation of dark excitons. This results in a pronounced additional peak presenting an unambiguous optical fingerprint for the attached molecules. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  13. Toxicology of Nanomaterials: Permanent interactive learning

    Directory of Open Access Journals (Sweden)

    Castranova Vince

    2009-10-01

    Full Text Available Abstract Particle and Fibre Toxicology wants to play a decisive role in a time where particle research is challenged and driven by the developments and applications of nanomaterials. This aim is not merely quantitative in publishing a given number of papers on nanomaterials, but also qualitatively since the field of nanotoxicology is rapidly emerging and benchmarks for good science are needed. Since then a number of things have happened that merit further analysis. The interactive learning issue is best shown by report and communications on the toxicology of multi-wall carbon nanotubes (CNT. A special workshop on the CNT has now been organized twice in Nagano (Japan and this editorial contains a summary of the most important outcomes. Finally, we take the opportunity discuss some recent reports from the nanotech literature, and more specifically a Chinese study that claims severe consequences of nanoparticle exposure.

  14. Engineering of Multifunctional Nanomaterials for Cancer Theranostics

    Science.gov (United States)

    Goel, Shreya

    Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. Silica, "generally recognized as safe" (GRAS) by the Food and Drug Administration (FDA) of the United States, has emerged as one of the leading nanomaterials employed for molecular imaging and therapy of a wide variety of diseases, including cancer. However in vivo biodistribution and active targeting of silica-based nanomaterials has remained a relatively under explored area, based mainly on semi-quantitative techniques such as fluorescence imaging. In this dissertation, I explore the concept of radiolabeled silica nanoparticles for vasculature-targeted imaging of different tumor types. Both chelator-based and chelator-free radiolabeling techniques were employed for accurate and quantitative analysis of the in vivo pharmacokinetics of radiolabeled silica nanomaterials. (Chapters 2 and 3) The large surface area, ease of tunability and facile silica chemistry were employed to create multifunctional silica-based materials to simultaneously seek-and-treat cancers, by incorporating multiple components into a single nanoplatform. Photodynamic agent, porphyrin was loaded into the central cavity of hollow mesoporous silica nanoparticles, and the shell was decorated with photothermal nanoparticles, CuS, yielding a multimodal theranostic nanoplatform which could synergistically annihilate the tumor without relapse. (Chapter 4). A major hurdle in the successful clinical translation of nanomaterials is their rapid sequestration by the organs of the

  15. Molecularly Imprinted Nanomaterials for Sensor Applications

    Science.gov (United States)

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  16. Carbon Nanomaterials in Biological Studies and Biomedicine.

    Science.gov (United States)

    Teradal, Nagappa L; Jelinek, Raz

    2017-09-01

    The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nanomaterials and Water Purification: Opportunities and Challenges

    Science.gov (United States)

    Savage, Nora; Diallo, Mamadou S.

    2005-10-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.

  18. Nanomaterials and Water Purification: Opportunities and Challenges

    International Nuclear Information System (INIS)

    Savage, Nora; Diallo, Mamadou S.

    2005-01-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification

  19. Nanomaterials and preservation mechanisms of architecture monuments

    Science.gov (United States)

    Ion, Rodica-Mariana; Radu, Adrian; Teodorescu, Sofia; Fierǎscu, Irina; Fierǎscu, Radu-Claudiu; Ştirbescu, Raluca-Maria; Dulamǎ, Ioana Daniela; Şuicǎ-Bunghez, Ioana-Raluca; Bucuricǎ, Ioan Alin; Ion, Mihaela-Lucia

    2016-12-01

    Knowledge of the chemical composition of the building materials of the monuments may help us to preserve and protect them from the pollution of our cities. The aim of this work is to characterize the materials of the walls from ancient buildings, the decay products that could be appear due to the action of pollution and a new method based on nanomaterials (hydroxyapatite -HAp) for a conservative preservation of the treated walls. Some analytical techniques have been used, as follow: X-ray fluorescence energy dispersive (EDXRF) (for the relative abundance of major, minor and trace elements), FTIR and Raman spectroscopy (for stratigraphic study of cross-sections of multi-layered materials found in wall paintings), Optical microscopy (OM), (for morphology of the wall samples). The nanomaterial suspension HAp applied on the sample surface by spraying, decreased the capillary water uptake, do not modify significantly the color of the samples and induced a reduced mass loss for the treated samples.

  20. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal, E-mail: pascal.colpo@ec.europa.eu [Directorate Health, Consumer and Reference Materials, Consumer Products Safety Unit (Italy)

    2017-03-15

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  1. Performance Enhancement of Carbon Nanomaterials for Supercapacitors

    OpenAIRE

    Saleem, Amin M.; Desmaris, Vincent; Enoksson, Peter

    2016-01-01

    Carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene are exploited extensively due to their unique electrical, mechanical, and thermal properties and recently investigated for energy storage application (supercapacitor) due to additional high specific surface area and chemical inertness properties. The supercapacitor is an energy storage device which, in addition to long cycle life (one million), can give energy density higher than parallel plate capacitor and power ...

  2. Nanomaterials for electrochemical sensing and biosensing

    CERN Document Server

    Pumera, Martin

    2014-01-01

    Part 1: Nanomaterial-Based ElectrodesCarbon Nanotube-Based Electrochemical Sensors and Biosensors, Martin Pumera, National Institute for Materials Science, JapanElectrochemistry on Single Carbon Nanotube, Pat Collier, Caltech, USATheory of Voltammetry at Nanoparticle-Modified Electrodes, Richard G. Compton, Oxford University, UKMetal Oxide Nanoparticle-Modified Electrodes, Frank Marken, University of Bath, UKSemiconductor Quantum Dots for Electrochemical Bioanalysis, Eugenii Katz, Clarkson University, USAN

  3. Carbon nanomaterials for high-performance supercapacitors

    OpenAIRE

    Tao Chen; Liming Dai

    2013-01-01

    Owing to their high energy density and power density, supercapacitors exhibit great potential as high-performance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This article summarizes the recent progresses on the development of high-performance supercapacitors bas...

  4. Biosensors based on nanomaterials and nanodevices

    CERN Document Server

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  5. Thermoelectric nanomaterials materials design and applications

    CERN Document Server

    Koumoto, Kunihito

    2014-01-01

    Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also

  6. Study of various synthesis techniques of nanomaterials

    Science.gov (United States)

    Patil, Madhuri; Sharma, Deepika; Dive, Avinash; Mahajan, Sandeep; Sharma, Ramphal

    2018-05-01

    Development of synthesis techniques of realizing nano-materials over a range of sizes, shapes, and chemical compositions is an important aspect of nanotechnology. The remarkable size dependent physical & chemical properties of particles have fascinated and inspired research activity in this direction. This paper describes some aspects on synthesis and characterization of particles of metals, metal alloys, and oxides, either in the form of thin films or bulk shapes. A brief discussion on processing of thin-films is also described.

  7. Octanol-water distribution of engineered nanomaterials.

    Science.gov (United States)

    Hristovski, Kiril D; Westerhoff, Paul K; Posner, Jonathan D

    2011-01-01

    The goal of this study was to examine the effects of pH and ionic strength on octanol-water distribution of five model engineered nanomaterials. Distribution experiments resulted in a spectrum of three broadly classified scenarios: distribution in the aqueous phase, distribution in the octanol, and distribution into the octanol-water interface. Two distribution coefficients were derived to describe the distribution of nanoparticles among octanol, water and their interface. The results show that particle surface charge, surface functionalization, and composition, as well as the solvent ionic strength and presence of natural organic matter, dramatically impact this distribution. Distributions of nanoparticles into the interface were significant for nanomaterials that exhibit low surface charge in natural pH ranges. Increased ionic strengths also contributed to increased distributions of nanoparticle into the interface. Similarly to the octanol-water distribution coefficients, which represent a starting point in predicting the environmental fate, bioavailability and transport of organic pollutants, distribution coefficients such as the ones described in this study could help to easily predict the fate, bioavailability, and transport of engineered nanomaterials in the environment.

  8. Strain-controlled electrocatalysis on multimetallic nanomaterials

    Science.gov (United States)

    Luo, Mingchuan; Guo, Shaojun

    2017-11-01

    Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain-adsorption-reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.

  9. A novel graphene-based label-free fluorescence 'turn-on' nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells.

    Science.gov (United States)

    Ke, Yaotang; Garg, Bhaskar; Ling, Yong-Chien

    2016-02-28

    A novel label-free fluorescence 'turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti(4+)-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti(4+)) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti(4+). The as-prepared rGO@PDA-Ti(4+)-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti(4+). The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti(4+)), leading to an excellent fluorescence 'turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future.

  10. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  12. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  13. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  14. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  15. Management of nanomaterials safety in research environment.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Magrez, Arnaud; Riediker, Michael; Meyer, Thierry

    2010-12-10

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3--highest hazard to Nano1--lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  16. Management of nanomaterials safety in research environment

    Directory of Open Access Journals (Sweden)

    Riediker Michael

    2010-12-01

    Full Text Available Abstract Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health. The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard. Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal. The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and

  17. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    Science.gov (United States)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Size effects of latex nanomaterials on lung inflammation in mice

    International Nuclear Information System (INIS)

    Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie; Koike, Eiko; Shimada, Akinori

    2009-01-01

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 μg/animal) with three sizes (25, 50, and 100 nm), LPS (75 μg/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle, latex nanomaterials (100 μg/animal), allergen (ovalbumin: OVA; 1 μg/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation

  19. Gd doped Au nanoclusters: Molecular magnets with novel properties

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2014-01-01

    band gaps, and plasmon resonances in the visible spectral region leads to novel multi-functional nanomaterials for applications in drug delivery, magnetic resonance imaging, and photo-responsive agents. © 2013 Elsevier B.V. All rights reserved.

  20. Multimodal Magnetic-Plasmonic Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Shelley Stafford

    2018-01-01

    Full Text Available Magnetic plasmonic nanomaterials are of great interest in the field of biomedicine due to their vast number of potential applications, for example, in molecular imaging, photothermal therapy, magnetic hyperthermia and as drug delivery vehicles. The multimodal nature of these nanoparticles means that they are potentially ideal theranostic agents—i.e., they can be used both as therapeutic and diagnostic tools. This review details progress in the field of magnetic-plasmonic nanomaterials over the past ten years, focusing on significant developments that have been made and outlining the future work that still needs to be done in this fast emerging area. The review describes the main synthetic approaches to each type of magnetic plasmonic nanomaterial and the potential biomedical applications of these hybrid nanomaterials.

  1. Development of a Batch Fabrication Process for Chemical Nanosensors: Recent Advancements at NASA Glenn Research Center

    Science.gov (United States)

    Biaggi-Labiosa, Azlin M.

    2014-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption. Chemical sensors involving nanostructured materials can provide these characteristics as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited by the ability to control their location on the sensor platform, which in turn hinders the progress for batch fabrication. This presentation will discuss the following: the development of a novel room temperature methane (CH4) sensor fabricated using porous tin oxide (SnO2) nanorods as the sensing material, the advantages of using nanomaterials in sensor designs, the challenges encountered with the integration of nanostructures into microsensordevices, and the different methods that have been attempted to address these challenges. An approach for the mass production of sensors with nanostructures using a method developed by our group at the NASA Glenn Research Center to control the alignment of nanostructures onto a sensor platform will also be described.

  2. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Braakhuis, Hedwig M., E-mail: hedwig.braakhuis@rivm.nl [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht (Netherlands); Oomen, Agnes G. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Cassee, Flemming R. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Institute of Risk Assessment Sciences, Utrecht University, PO Box 80.163, 3508 TD Utrecht (Netherlands)

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  3. Nanomaterials in Lubricants: An Industrial Perspective on Current Research

    Directory of Open Access Journals (Sweden)

    Boris Zhmud

    2013-11-01

    Full Text Available This paper presents an overview on the use of various classes of nanomaterials in lubricant formulations. The following classes of nanomaterials are considered: fullerenes, nanodiamonds, ultradispersed boric acid and polytetrafluoroethylene (PTFE. Current advances in using nanomaterials in engine oils, industrial lubricants and greases are discussed. Results of numerous studies combined with formulation experience of the authors strongly suggest that nanomaterials do indeed have potential for enhancing certain lubricant properties, yet there is a long way to go before balanced formulations are developed.

  4. Health and safety implications of occupational exposure to engineered nanomaterials.

    Science.gov (United States)

    Stebounova, Larissa V; Morgan, Hallie; Grassian, Vicki H; Brenner, Sara

    2012-01-01

    The rapid growth and commercialization of nanotechnology are currently outpacing health and safety recommendations for engineered nanomaterials. As the production and use of nanomaterials increase, so does the possibility that there will be exposure of workers and the public to these materials. This review provides a summary of current research and regulatory efforts related to occupational exposure and medical surveillance for the nanotechnology workforce, focusing on the most prevalent industrial nanomaterials currently moving through the research, development, and manufacturing pipelines. Their applications and usage precedes a discussion of occupational health and safety efforts, including exposure assessment, occupational health surveillance, and regulatory considerations for these nanomaterials. Copyright © 2011 Wiley Periodicals, Inc.

  5. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    International Nuclear Information System (INIS)

    Braakhuis, Hedwig M.; Oomen, Agnes G.; Cassee, Flemming R.

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  6. Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials

    International Nuclear Information System (INIS)

    Reddy Channu, V.S.; Holze, Rudolf; Yeo, In-Hyeong; Mho, Sun-il; Kalluru, Rajamohan R.

    2011-01-01

    Sodium vanadate nanomaterials were synthesized at different pH-values of a sodium hydroxide solution of vanadium pentoxide. Polyaniline-modified sodium vanadate nanomaterials were prepared at room temperature and at 3 C by a chemical polymerization method. The crystal structure and phase purity of the samples have been examined by powder XRD. The samples were identified as HNaV 6 O 16 .4H 2 O and Na 1.1 V 3 O 7.9 . The electrochemical measurements show that polyaniline-modified sodium vanadate hydrated nanomaterials provide higher current density than the sodium vanadate nanomaterials. (orig.)

  7. Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route

    International Nuclear Information System (INIS)

    Wang Baiqi; Iqbal, Javed; Shan Xudong; Huang Guowei; Fu Honggang; Yu Ronghai; Yu Dapeng

    2009-01-01

    The pure and Cr-doped ZnO nanomaterials were prepared by soft chemistry route. The crystallinity and morphology of as-prepared ZnO nanomaterials were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), which show that Cr-doping could influence crystal and improve the oriented growth of ZnO nanomaterials. The amount of contents and valence state of Cr ions were investigated by energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), which demonstrate that the Cr ions are uniformly doped about 2 atm% in each nanowire and are in +3 valence state in doped ZnO nanomaterials. The effect of Cr-doping on the photoluminescence (PL) and magnetic properties of as-prepared ZnO nanomaterials were principally investigated at room temperature. The Cr-doping can adjust the energy level of ZnO nanocrystal and increase the amount of defects and oxygen vacancies, which lead to shift in the emission peak position in ultraviolet (UV) region and enhance the PL performance in visible light (VL) region of ZnO nanomaterials. In addition, the presence of Cr dopant in ZnO structures establishes the room-temperature ferromagnetism, which is possibly related to the existence of defects and oxygen vacancies as well as due to exchange interaction between Cr 3d and O 2p spin moments

  8. Nanomaterials as stationary phases and supports in liquid chromatography.

    Science.gov (United States)

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polymer-mediated formation of polyoxomolybdate nanomaterials

    Science.gov (United States)

    Wan, Quan

    A polymer-mediated synthetic pathway to a polyoxomolybdate nanomaterial is investigated in this work. Block copolymers or homopolymers containing poly(ethylene oxide) (PEO) are mixed with a MoO2(OH)(OOH) aqueous solution to form a golden gel or viscous solution. As revealed by synchrotron X-ray scattering measurements, electron microscopy, and other characterization techniques, the final dark blue polyoxomolybdate product is a highly ordered simple cubic network similar to certain zeolite structure but with a much larger lattice constant of ˜5.2 nm. The average size of the cube-like single crystals is close to 1 mum. Based on its relatively low density (˜2.2 g/cm3), the nanomaterial can be highly porous if the amount of the residual polymer can be substantially reduced. The valence of molybdenum is ˜5.7 based on cerimetric titration, representing the mixed-valence nature of the polyoxomolybdate structure. The self-assembled structures (if any) of the polymer gel do not have any correlation with the final polyoxomolybdate nanostructure, excluding the possible role of polymers being a structure-directing template. On the other hand, the PEO polymer stabilizes the precursor molybdenum compound through coordination between its ether oxygen atoms and molybdenum atoms, and reduces the molybdenum (VI) precursor compound with its hydroxyl group being a reducing agent. The rare simple cubic ordering necessitates the existence of special affinities among the polyoxomolybdate nanosphere units resulted from the reduction reaction. Our mechanism study shows that the acidified condition is necessary for the synthesis of the mixed-valence polyoxomolybdate clusters, while H2O2 content modulates the rate of the reduction reaction. The polymer degradation is evidenced by the observation of a huge viscosity change, and is likely through a hydrolysis process catalyzed by molybdenum compounds. Cube-like polyoxomolybdate nanocrystals with size of ˜40 nm are obtained by means of

  10. Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials.

    Science.gov (United States)

    Chen, Daqin; Wang, Yuansheng

    2013-06-07

    Many technological nanomaterials are intentionally 'doped' by introducing appropriate amounts of foreign elements into hosts to impart electronic, magnetic and optical properties. In fact, impurity doping was recently found to have significant influence on nucleation and growth of many functional nanocrystals (NCs), and provide a fundamental approach to modify the crystallographic phase, size, morphology, and electronic configuration of nanomaterials. In this feature article, we provide an overview of the most recent progresses in doping-induced control of phase structures, sizes, shapes, as well as performances of functional nanomaterials for the first time. Two kinds of impurity doping strategies, including the homo-valence ion doping and hetero-valence ion doping, are discussed in detail. We lay emphases on impurity doping induced modifications of microstructures and optical properties of upconversion (UC) lanthanide (Ln(3+)) NCs, but do not limit to them. In addition, we also illustrate the control of Ln(3+) activator distribution in the core@shell architecture, which has recently provided scientists with new opportunities for designing and tuning the multi-color emissions of Ln(3+)-doped UC NCs. Finally, the challenges and future perspectives of this novel impurity doping strategy are pointed out.

  11. Impact of organic and inorganic nanomaterials in the soil microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Veronica; Lopes, Isabel [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rocha-Santos, Teresa [ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, 3515-776 Lordosa, Viseu (Portugal); Santos, Ana L. [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rasteiro, Graca M.; Antunes, Filipe [CIEPQPF, Department of Chemical Engineering, Faculty of Science and Technology, Polo II, University of Coimbra, 3030-290 Coimbra (Portugal); Goncalves, Fernando; Soares, Amadeu M.V.M.; Cunha, Angela; Almeida, Adelaide [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Gomes, Newton N.C.M., E-mail: gomesncm@ua.pt [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Pereira, Ruth [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre 4169-007 Porto (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal)

    2012-05-01

    In this study the effect of organic and inorganic nanomaterials (NMs) on the structural diversity of the soil microbial community was investigated by Denaturing Gradient Gel Electrophoresis, after amplification with universal primers for the bacterial region V6-V8 of 16S rDNA. The polymers of carboxylmethyl-cellulose (CMC), of hydrophobically modified CMC (HM-CMC), and hydrophobically modified polyethylglycol (HM-PEG); the vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) and of monoolein/sodium oleate (Mo/NaO); titanium oxide (TiO{sub 2}), titanium silicon oxide (TiSiO{sub 4}), CdSe/ZnS quantum dots, gold nanorods, and Fe/Co magnetic fluid were the NMs tested. Soil samples were incubated, for a period of 30 days, after being spiked with NM suspensions previously characterized by Dynamic Light Scattering (DLS) or by an ultrahigh-resolution scanning electron microscope (SEM). The analysis of similarities (ANOSIM) of DGGE profiles showed that gold nanorods, TiO{sub 2}, CMC, HM-CMC, HM-PEG, and SDS/DDAB have significantly affected the structural diversity of the soil bacterial community. - Highlights: Black-Right-Pointing-Pointer Organic and inorganic nanomaterials on soil microbial community. Black-Right-Pointing-Pointer Structural diversity was investigated by Denaturing Gradient Gel Electrophoresis. Black-Right-Pointing-Pointer All the organic nanomaterials, TiO{sub 2} and gold nanorods significantly affected the structural diversity.

  12. Impact of organic and inorganic nanomaterials in the soil microbial community structure

    International Nuclear Information System (INIS)

    Nogueira, Verónica; Lopes, Isabel; Rocha-Santos, Teresa; Santos, Ana L.; Rasteiro, Graça M.; Antunes, Filipe; Gonçalves, Fernando; Soares, Amadeu M.V.M.; Cunha, Angela; Almeida, Adelaide; Gomes, Newton N.C.M.; Pereira, Ruth

    2012-01-01

    In this study the effect of organic and inorganic nanomaterials (NMs) on the structural diversity of the soil microbial community was investigated by Denaturing Gradient Gel Electrophoresis, after amplification with universal primers for the bacterial region V6–V8 of 16S rDNA. The polymers of carboxylmethyl-cellulose (CMC), of hydrophobically modified CMC (HM-CMC), and hydrophobically modified polyethylglycol (HM-PEG); the vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) and of monoolein/sodium oleate (Mo/NaO); titanium oxide (TiO 2 ), titanium silicon oxide (TiSiO 4 ), CdSe/ZnS quantum dots, gold nanorods, and Fe/Co magnetic fluid were the NMs tested. Soil samples were incubated, for a period of 30 days, after being spiked with NM suspensions previously characterized by Dynamic Light Scattering (DLS) or by an ultrahigh-resolution scanning electron microscope (SEM). The analysis of similarities (ANOSIM) of DGGE profiles showed that gold nanorods, TiO 2 , CMC, HM-CMC, HM-PEG, and SDS/DDAB have significantly affected the structural diversity of the soil bacterial community. - Highlights: ► Organic and inorganic nanomaterials on soil microbial community. ► Structural diversity was investigated by Denaturing Gradient Gel Electrophoresis. ► All the organic nanomaterials, TiO 2 and gold nanorods significantly affected the structural diversity.

  13. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  14. Nanomaterials for membrane fouling control: accomplishments and challenges.

    Science.gov (United States)

    Yang, Qian; Mi, Baoxia

    2013-11-01

    We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  16. 78 FR 36784 - Survey of Nanomaterial Risk Management Practices

    Science.gov (United States)

    2013-06-19

    ...-0010, Docket Number NIOSH-265] Survey of Nanomaterial Risk Management Practices AGENCY: National...), Department of Health and Human Services (HHS). ACTION: Proposed NIOSH Survey of Nanomaterial Risk Management... questions addressing risk management practices for ENMs? (5) What should be the maximum amount of time...

  17. Recent advances in applications of nanomaterials for sample preparation.

    Science.gov (United States)

    Xu, Linnan; Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The challenges of ecotox testing of nanomaterials and the BPR

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss

    2015-01-01

    The European Biocidal Product Regulation (BPR) requires dedicated risk assessment of nanomaterials. When it comes to ecotoxicological testing of nanomaterials, meeting these requirements is especially challenging. Overall, these challenges fall into four overall categories: 1) materials character......The European Biocidal Product Regulation (BPR) requires dedicated risk assessment of nanomaterials. When it comes to ecotoxicological testing of nanomaterials, meeting these requirements is especially challenging. Overall, these challenges fall into four overall categories: 1) materials...... characterization, 2) exposure preparation, 3) monitoring stability and 4) monitoring time. In this paper, the challenges are presented and discussed. There is no easy manner in which to deal with the challenges related to ecotoxicological testing of nanomaterials in the light of the BPR requirements. It short...

  19. Energy Device Applications of Synthesized 1D Polymer Nanomaterials.

    Science.gov (United States)

    Huang, Long-Biao; Xu, Wei; Hao, Jianhua

    2017-11-01

    1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.

    Science.gov (United States)

    Miralles, Pola; Church, Tamara L; Harris, Andrew T

    2012-09-04

    To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.

  1. The applicability of chemical alternatives assessment for engineered nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case......, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials both as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. This article is protected...... for alternatives assessment approaches as they can be considered both emerging “chemicals” of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging and critical elements...

  2. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review.

    Science.gov (United States)

    Khan, Avik; Wen, Yangbing; Huq, Tanzina; Ni, Yonghao

    2018-01-10

    Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.

  3. 2D nanomaterials assembled from sequence-defined molecules

    International Nuclear Information System (INIS)

    Mu, Peng; State University of New York; Zhou, Guangwen; Chen, Chun-Long

    2017-01-01

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges and opportunities in this new field.

  4. Integration of data: the Nanomaterial Registry project and data curation

    International Nuclear Information System (INIS)

    Guzan, K A; Mills, K C; Gupta, V; Murry, D; Ostraat, M L; Scheier, C N; Willis, D A

    2013-01-01

    Due to the use of nanomaterials in multiple fields of applied science and technology, there is a need for accelerated understanding of any potential implications of using these unique and promising materials. There is a multitude of research data that, if integrated, can be leveraged to drive toward a better understanding. Integration can be achieved by applying nanoinformatics concepts. The Nanomaterial Registry is using applied minimal information about nanomaterials to support a robust data curation process in order to promote integration across a diverse data set. This paper describes the evolution of the curation methodology used in the Nanomaterial Registry project as well as the current procedure that is used. Some of the lessons learned about curation of nanomaterial data are also discussed. (paper)

  5. Comparative evaluation of methods to quantify dissolution of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna B.; Kruse, Susanne; Baun, Anders

    2015-01-01

    Effects and behaviour of nanomaterials in the environment depends on the materials' specific physical and chemical properties and for certain nanomaterials (e.g., Ag, ZnO and CuO) aqueous solubility is of outmost importance. The solubility of metals salts is normally described as a maximum...... dissolved concentration or by the solubility constant (Ksp). For nanomaterials it is essential to also assess solubility kinetics as nanomaterials will often not dissolve instantaneously upon contact with artificial aqueous media or natural waters. Dissolution kinetics will thereby influence their short...... and long-term environmental fate as well as laboratory test results. This highlights the need to evaluate and improve the reliability of methods applied to assess the solubility kinetics of nanomaterials. Based on existing OECD guidelines and guidance documents on aqueous dissolution of metals and metal...

  6. NanoRisk - A Conceptual Decision Support Tool for Nanomaterials

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Baun, Anders; Alstrup Jensen, K.

    2011-01-01

    Only a few risk assessment methodologies and approaches are useful for assessing the risk for professional end-users, consumers and the environment. We have developed a generic framework (NanoRiskCat) that can be used by companies and risk assessors to categorize nanomaterials considering existing...... environmental, health and safety information and known uncertainties. In NanoRiskCat’s simplest form, the final evaluation outcome for a specific nanomaterial in a given application will be communicated in the form of a short title (e.g. TiO2 in sunscreen) describing the use of the nanomaterial. This short...... to the exposure and hazard potential are green , yellow corresponding to none, possible, expected and unknown, respectively. The exposure potential was evaluated based on 1) the location of the nanomaterial and 2) a judgment of the potential of nanomaterial exposure based on the description and explanation...

  7. A practical approach to determine dose metrics for nanomaterials.

    Science.gov (United States)

    Delmaar, Christiaan J E; Peijnenburg, Willie J G M; Oomen, Agnes G; Chen, Jingwen; de Jong, Wim H; Sips, Adriënne J A M; Wang, Zhuang; Park, Margriet V D Z

    2015-05-01

    Traditionally, administered mass is used to describe doses of conventional chemical substances in toxicity studies. For deriving toxic doses of nanomaterials, mass and chemical composition alone may not adequately describe the dose, because particles with the same chemical composition can have completely different toxic mass doses depending on properties such as particle size. Other dose metrics such as particle number, volume, or surface area have been suggested, but consensus is lacking. The discussion regarding the most adequate dose metric for nanomaterials clearly needs a systematic, unbiased approach to determine the most appropriate dose metric for nanomaterials. In the present study, the authors propose such an approach and apply it to results from in vitro and in vivo experiments with silver and silica nanomaterials. The proposed approach is shown to provide a convenient tool to systematically investigate and interpret dose metrics of nanomaterials. Recommendations for study designs aimed at investigating dose metrics are provided. © 2015 SETAC.

  8. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  9. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.

    Science.gov (United States)

    Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L

    2016-05-01

    A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue.

    Science.gov (United States)

    Ruminot, Iván; Schmälzle, Jana; Leyton, Belén; Barros, L Felipe; Deitmer, Joachim W

    2017-01-01

    The potassium ion, K + , a neuronal signal that is released during excitatory synaptic activity, produces acute activation of glucose consumption in cultured astrocytes, a phenomenon mediated by the sodium bicarbonate cotransporter NBCe1 ( SLC4A4). We have explored here the relevance of this mechanism in brain tissue by imaging the effect of neuronal activity on pH, glucose, pyruvate and lactate dynamics in hippocampal astrocytes using BCECF and FRET nanosensors. Electrical stimulation of Schaffer collaterals produced fast activation of glucose consumption in astrocytes with a parallel increase in intracellular pyruvate and biphasic changes in lactate . These responses were blocked by TTX and were absent in tissue slices prepared from NBCe1-KO mice. Direct depolarization of astrocytes with elevated extracellular K + or Ba 2+ mimicked the metabolic effects of electrical stimulation. We conclude that the glycolytic pathway of astrocytes in situ is acutely sensitive to neuronal activity, and that extracellular K + and the NBCe1 cotransporter are involved in metabolic crosstalk between neurons and astrocytes. Glycolytic activation of astrocytes in response to neuronal K + helps to provide an adequate supply of lactate, a metabolite that is released by astrocytes and which acts as neuronal fuel and an intercellular signal.

  11. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  12. NEIMiner: nanomaterial environmental impact data miner.

    Science.gov (United States)

    Tang, Kaizhi; Liu, Xiong; Harper, Stacey L; Steevens, Jeffery A; Xu, Roger

    2013-01-01

    As more engineered nanomaterials (eNM) are developed for a wide range of applications, it is crucial to minimize any unintended environmental impacts resulting from the application of eNM. To realize this vision, industry and policymakers must base risk management decisions on sound scientific information about the environmental fate of eNM, their availability to receptor organisms (eg, uptake), and any resultant biological effects (eg, toxicity). To address this critical need, we developed a model-driven, data mining system called NEIMiner, to study nanomaterial environmental impact (NEI). NEIMiner consists of four components: NEI modeling framework, data integration, data management and access, and model building. The NEI modeling framework defines the scope of NEI modeling and the strategy of integrating NEI models to form a layered, comprehensive predictability. The data integration layer brings together heterogeneous data sources related to NEI via automatic web services and web scraping technologies. The data management and access layer reuses and extends a popular content management system (CMS), Drupal, and consists of modules that model the complex data structure for NEI-related bibliography and characterization data. The model building layer provides an advanced analysis capability for NEI data. Together, these components provide significant value to the process of aggregating and analyzing large-scale distributed NEI data. A prototype of the NEIMiner system is available at http://neiminer.i-a-i.com/.

  13. Mechanochemically Driven Syntheses of Boride Nanomaterials

    Science.gov (United States)

    Blair, Richard G.

    Solid state metathesis reactions have proven to be a viable route to the production of unfunctionalized nanomaterials. However, current implementations of this approach are limited to self-propagating reactions. We have been investigating mechanically driven metathesis reactions. The use of high-energy ball mills allows control of crystallite sizes without the use of a capping group. Reinforcement materials with crystallite sizes on the order of 5-30 nm can be produced in such a manner. Borides are of particular interest due to their strength, high melting point, and electrical conductivity. The ultimate goal of this work is to prepare oxide and capping group-free nanoparticles suitable for incorporation in thermoelectric, polymer, and ceramic composites. Ultimately this work will facilitate the production of improved thermoelectric materials that will provide robust, deployable, power generation modules to supplement or replace fuel cell, Stirling, and battery-derived power sources. It will also result in scalable, bulk syntheses of tough, refractory, conductive nanomaterials for polymer composites with improved electrical properties, ceramic composites with enhanced fracture toughness, and composites with enhanced neutron reflectance and/or absorbance.

  14. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Science.gov (United States)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  15. Design of Nanomaterial Synthesis by Aerosol Processes

    Science.gov (United States)

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  16. Nanomaterial Case Studies: Nanoscale Titanium Dioxide ...

    Science.gov (United States)

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA’s research strategy to support nanomaterial risk assessments. The complex properties of various nanomaterials make evaluating them in the abstract or with generalizations difficult if not impossible. Thus, this document focuses on two specific uses of nano-TiO2, as a drinking water treatment and as topical sunscreen. These case studies do not represent completed or even preliminary assessments; rather, they present the structure for identifying and prioritizing research needed to support future assessments.

  17. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in ...

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as part of a process to identify and prioritize research to inform future assessments of the potential ecological and health implications of these materials. Two specific applications of nanoscale titanium dioxide (nano-TiO2) are considered: (1) as an agent for removing arsenic from drinking water; and (2) as an active ingredient in topical sunscreen. These case studies are organized around a comprehensive environmental assessment (CEA) framework that combines a product life cycle perspective with the risk assessment paradigm. They are intended to help identify what may need to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. These “case studies” do not represent completed or even preliminary assessments, nor are they intended to serve as a basis for risk management decisions in the near term on these specific uses of nano TiO2. Rather, the intent is to use this document in developing the scientific and technical information needed for future assessment efforts.

  18. The EU regulation of nanomaterials - Smoother or harder : The precautionary tool chest as the basis for better regulating nanomaterials

    NARCIS (Netherlands)

    Gellert, Raphaël; Mantovani, Eugenio; de Hert, Paul; Dolez, P.I.

    2015-01-01

    The EU regulatory framework on nanomaterials falls mainly within the shared competence of the EU and of its member states. This means that the sources of the regu- lation of nanomaterials are found primarily in the law promulgated in Brussels,. The EU regulatory toolbox in- cludes directives and

  19. Reinforcement of cement-based matrices with graphite nanomaterials

    Science.gov (United States)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  20. NATO Advanced Research Workshop on Nuclear Radiation Nanosensors and Nanosensory Systems

    CERN Document Server

    Yannakopoulos, Panayotis

    2016-01-01

    This collection of selected review papers focuses on topics such as digital radiation sensors and nanosensory systems for nanotechnology applications and integrated X-ray/PET/CT detectors; nanophosphors and nanocrystal quantum dots as X-ray radiation sensors; the luminescence efficiency of CdSe/ZnS QD and UV-induced luminescence efficiency distribution; investigations devoted to the quantum and multi-parametrical nature of disasters and the modeling thereof using quantum search and quantum query algorithms; sum-frequency-generation, IR fourier and raman spectroscopy methods; as well as investigations into the vibrational modes of viruses and other pathogenic microorganisms aimed at creating optical biosensory systems. This is followed by a review of radiation resistant semiconductor sensors and magnetic measurement instrumentation for magnetic diagnostics of high-tech fission and fusion set-ups and accelerators; the evaluation of the use of neutron-radiation, 10B-enriched semiconducting materials as thin-fi...

  1. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  2. [Nanomaterials in cosmetics--present situation and future].

    Science.gov (United States)

    Masunaga, Takuji

    2014-01-01

    Cosmetics are consumer products intended to contribute to increasing quality of life and designed for long-term daily use. Due to such features of cosmetics, they are required to ensure quality and safety at a high level, as well as to perform well, in response to consumers' demands. Recently, the technology associated with nanomaterials has progressed rapidly and has been applied to various products, including cosmetics. For example, nano-sized titanium dioxide has been formulated in sunscreen products in pursuit of improving its performance. As some researchers and media have expressed concerns about the safety of nanomaterials, a vague feeling of anxiety has been raised in society. In response to this concern, the Japan Cosmetic Industry Association (JCIA) has begun original research related to the safety assurance of nanomaterials formulated in cosmetics, to allow consumers to use cosmetics without such concerns. This paper describes the activities of the JCIA regarding safety research on nanomaterials, including a survey of the actual usage of nanomaterials in cosmetics, analysis of the existence of nanomaterials on the skin, and assessment of skin carcinogenicity of nano-sized titanium dioxide. It also describes the international status of safety assurance and regulation regarding nanomaterials in cosmetics.

  3. Comparative assessment of nanomaterial definitions and safety evaluation considerations.

    Science.gov (United States)

    Boverhof, Darrell R; Bramante, Christina M; Butala, John H; Clancy, Shaun F; Lafranconi, Mark; West, Jay; Gordon, Steve C

    2015-10-01

    Nanomaterials continue to bring promising advances to science and technology. In concert have come calls for increased regulatory oversight to ensure their appropriate identification and evaluation, which has led to extensive discussions about nanomaterial definitions. Numerous nanomaterial definitions have been proposed by government, industry, and standards organizations. We conducted a comprehensive comparative assessment of existing nanomaterial definitions put forward by governments to highlight their similarities and differences. We found that the size limits used in different definitions were inconsistent, as were considerations of other elements, including agglomerates and aggregates, distributional thresholds, novel properties, and solubility. Other important differences included consideration of number size distributions versus weight distributions and natural versus intentionally-manufactured materials. Overall, the definitions we compared were not in alignment, which may lead to inconsistent identification and evaluation of nanomaterials and could have adverse impacts on commerce and public perceptions of nanotechnology. We recommend a set of considerations that future discussions of nanomaterial definitions should consider for describing materials and assessing their potential for health and environmental impacts using risk-based approaches within existing assessment frameworks. Our intent is to initiate a dialogue aimed at achieving greater clarity in identifying those nanomaterials that may require additional evaluation, not to propose a formal definition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Occupational exposure limits for nanomaterials: state of the art

    Science.gov (United States)

    Schulte, P. A.; Murashov, V.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.

    2010-08-01

    Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose-response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose-response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

  5. Occupational exposure limits for nanomaterials: state of the art

    International Nuclear Information System (INIS)

    Schulte, P. A.; Murashov, V.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.

    2010-01-01

    Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose-response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose-response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

  6. An overview of nanomaterials applied for removing dyes from wastewater.

    Science.gov (United States)

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  7. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity.

    Science.gov (United States)

    Moreno-Horn, Marcus; Gebel, Thomas

    2014-11-01

    Nanomaterials are usually defined by primary particle diameters ranging from 1 to 100 nm. The scope of this review is an evaluation of experimental animal studies dealing with the systemic levels and putative systemic effects induced by nanoparticles which can be characterized as being granular biodurable particles without known specific toxicity (GBP). Relevant examples of such materials comprise nanosized titanium dioxide (TiO2) and carbon black. The question was raised whether GBP nanomaterials systemically accumulate and may possess a relevant systemic toxicity. With few exceptions, the 56 publications reviewed were not performed using established standard protocols, for example, OECD guidelines but used non-standard study designs. The studies including kinetic investigations indicated that GBP nanomaterials were absorbed and systemically distributed to rather low portions only. There was no valid indication that GPB nanomaterials possess novel toxicological hazard properties. In addition, no convincing evidence for a relevant specific systemic toxicity of GBP nanomaterials could be identified. The minority of the papers reviewed (15/56) investigated both nanosized and microsized GBP materials in parallel. A relevant different translocation of GBP nanomaterials in contrast to GBP micromaterials was not observed in these studies. There was no evidence that GPB nanomaterials possess toxicological properties other than their micromaterial counterparts.

  8. Nanomaterials for regulating cancer and stem cell fate

    Science.gov (United States)

    Shah, Birju P.

    The realm of nanomedicine has grown exponentially over the past few decades. However, there are several obstacles that need to be overcome, prior to the wide-spread clinical applications of these nanoparticles, such as (i) developing well-defined nanoparticles of varying size, morphology and composition to enable various clinical applications; (ii) overcome various physiological barriers encountered in order to deliver the therapeutics to the target location; and (iii) real-time monitoring of the nano-therapeutics within the human body for tracking their uptake, localization and effect. Hence, this dissertation focuses on developing multimodal nanotechnology-based approaches to overcome the above-mentioned challenges and thus enable regulation of cancer and stem cell fate. The initial part of this dissertation describes the development of multimodal magnetic core-shell nanoparticles (MCNPs), comprised of a highly magnetic core surrounded by a thin gold shell, thus combining magnetic and plasmonic properties. These nanoparticles were utilized for mainly two applications: (i) Magnetically-facilitated delivery of siRNA and plasmid DNA for effective stem cell differentiation and imaging and (ii) Combined hyperthermia and targeted delivery of a mitochondria-targeting peptide for enhancing apoptosis in cancer cells. The following part of this dissertation presents the generation of a multi-functional cyclodextrin-conjugated polymeric delivery platform (known as DexAMs), for co-delivery of anticancer drugs and siRNAs in a target-specific manner to brain tumor cells. This combined delivery of chemotherapeutics and siRNA resulted in a synergistic effect on the apoptosis of brain tumor cells, as compared to the individual treatments. The final part of this thesis presents development of stimuli-responsive uorescence resonance energy transfer (FRET)-based mesoporous silica nanoparticles for real-time monitoring of drug release in cells. The stimuli-responsive behavior of

  9. PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2013-02-01

    Journal of Physics: Condensed Matter staff for their help, patience and professionalism. Since this is a fast-moving field, there is absolutely no way of presenting definitive answers to all open questions, but we hope that this special section will provide an overview of the current state of knowledge regarding this topic. Furthermore, we hope that the exciting science and technology described in this section will attract and inspire other researchers and students working in related fields to enter into the study of ultrafast and nonlinear optical phenomena in carbon-based nanostructures. Ultrafast and nonlinear optics in carbon nanomaterials contents Ultrafast and nonlinear optics in carbon nanomaterialsJunichiro Kono The impact of pump fluence on carrier relaxation dynamics in optically excited grapheneT Winzer and E Malic Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behaviorS Winnerl, F Göttfert, M Mittendorff, H Schneider, M Helm, T Winzer, E Malic, A Knorr, M Orlita, M Potemski, M Sprinkle, C Berger and W A de Heer Nonlinear optics of graphene in a strong magnetic fieldXianghan Yao and Alexey Belyanin Theory of coherent phonons in carbon nanotubes and graphene nanoribbonsG D Sanders, A R T Nugraha, K Sato, J-H Kim3, J Kono3, R Saito and C J Stanton Non-perturbative effects of laser illumination on the electrical properties of graphene nanoribbons Hernán L Calvo, Pablo M Perez-Piskunow, Horacio M Pastawski, Stephan Roche and Luis E F Foa Torres Transient absorption microscopy studies of energy relaxation in graphene oxide thin film Sean Murphy and Libai Huang Femtosecond dynamics of exciton localization: self-trapping from the small to the large polaron limit F X Morrissey, J G Mance, A D Van Pelt and S L Dexheimer

  10. Nanomaterials application in electrochemical detection of heavy metals

    International Nuclear Information System (INIS)

    Aragay, Gemma; Merkoçi, Arben

    2012-01-01

    Highlights: ► We review the recent trends in the application of nanomaterials for electrochemical detection of heavy metals. ► Different types of nanomaterials including metal nanoparticles, different carbon nanomaterials or nanochannels have been applied on the electrochemical analysis of heavy metals in various sensing formats/configurations. ► The great properties of nanomaterials allow the new devices to show advantages in terms of sensing performance (i.e. increase the sensitivity, decrease the detection limits and improve the stability). ► Between the various electrochemical techniques, voltammetric and potentiometric based ones are particularly taking interesting advantages by the incorporation of new nanomaterials due to the improved electrocatalytic properties beside the increase of the sensor's transducing area. - Abstract: Recent trends in the application of nanomaterials for electrochemical detection of heavy metals are shown. Various nanomaterials such as nanoparticles, nanowires, nanotubes, nanochannels, graphene, etc. have been explored either as modifiers of electrodes or as new electrode materials with interest to be applied in electrochemical stripping analysis, ion-selective detection, field-effect transistors or other indirect heavy metals (bio)detection alternatives. The developed devices have shown increased sensitivity and decreased detection limits between other improvements of analytical performance data. The phenomena behind nanomaterials responses are also discussed and some typical responses data of the developed systems either in standard solutions or in real samples are given. The developed nanomaterials based electrochemical systems are giving new inputs to the existing devices or leading to the development of novel heavy metal detection tools with interest for applications in field such as diagnostics, environmental and safety and security controls or other industries.

  11. Exploring the possibilities and limitations of a nanomaterials genome.

    Science.gov (United States)

    Qian, Chenxi; Siler, Todd; Ozin, Geoffrey A

    2015-01-07

    What are we going to do with the cornucopia of nanomaterials appearing in the open and patent literature, every day? Imagine the benefits of an intelligent and convenient means of categorizing, organizing, sifting, sorting, connecting, and utilizing this information in scientifically and technologically innovative ways by building a Nanomaterials Genome founded upon an all-purpose Periodic Table of Nanomaterials. In this Concept article, inspired by work on the Human Genome project, which began in 1989 together with motivation from the recent emergence of the Materials Genome project initiated in 2011 and the Nanoinformatics Roadmap 2020 instigated in 2010, we envision the development of a Nanomaterials Genome (NMG) database with the most advanced data-mining tools that leverage inference engines to help connect and interpret patterns of nanomaterials information. It will be equipped with state-of-the-art visualization techniques that rapidly organize and picture, categorize and interrelate the inherited behavior of complex nanomatter from the information programmed in its constituent nanomaterials building blocks. A Nanomaterials Genome Initiative (NMGI) of the type imagined herein has the potential to serve the global nanoscience community with an opportunity to speed up the development continuum of nanomaterials through the innovation process steps of discovery, structure determination and property optimization, functionality elucidation, system design and integration, certification and manufacturing to deployment in technologies that apply these versatile nanomaterials in environmentally responsible ways. The possibilities and limitations of this concept are critically evaluated in this article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nanomaterials based biosensors for cancer biomarker detection

    International Nuclear Information System (INIS)

    Malhotra, Bansi D; Kumar, Saurabh; Pandey, Chandra Mouli

    2016-01-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection. (paper)

  13. Evaluation Tools of nanomaterials environmental impact

    International Nuclear Information System (INIS)

    Barberio, Grazia; Scalbi, Simona; Buttol, Patrizia; Masoni, Paolo; Righi, Serena

    2015-01-01

    Nanotechnology show an increasing spread thanks to the special properties of nanomaterials (NM). Knowledge of the NM behavior and interactions with the environment and human health is still insufficient to assess the impact of the NM. A multidisciplinary, multidimensional and systemic such as that of the life cycle (Life Cycle Thinking - LCT), applied through the tool Life Cycle Assessment (LCA), is essential in environmental sustainability assessment of technologies, with some limitations that can be overcome through integration with other instruments such as, for example, non-linear models, analysis of flows of material, Risk Assessment (RA). This article offers a detailed analysis of the state and the main problems related to the application of LCA and RA to NM both separately and in combined use; They will then discuss the strategies and integrations needed to overcome the limitations of both methods and obtain robust assessments of the impacts on health and the environment [it

  14. Formula of an ideal carbon nanomaterial supercapacitor

    Science.gov (United States)

    Samuilova, Larissa; Frenkel, Alexander; Samuilov, Vladimir

    2014-03-01

    Supercapacitors exhibit great potential as high-performance energy sources for a large variety of potential applications, ranging from consumer electronics through wearable optoelectronics to hybrid electric vehicles. We focuse on carbon nanomaterials, especially carbon nanotube films, 3-D graphene, graphene oxide due to their high specific surface area, excellent electrical and mechanical properties. We have developed a simple approach to lower the equivalent series resistance by fabricating electrodes of arbitrary thickness using carbon nanotube films and reduced graphene oxide based composites. Besides of the problem of increasing of the capacitance, the minimization of the loss tangent (dissipation factor) is marginal for the future development of the supercapacitors. This means, not only a very well developed surface area of the electrodes, but the role of the good quality of the porous separator and the electrolyte are important. We address these factors as well.

  15. Modification of conductive polyaniline with carbon nanomaterials

    Science.gov (United States)

    Sedaghat, Sajjad; Alavijeh, Mahdi Soleimani

    2014-08-01

    The synthesis of polyaniline/single-wall nanotube, polyaniline/multi-wall nanotube and polyaniline/single-wall nanotube/graphen nanosheets nanocomposites by in situ polymerization are reported in this study. The substrates were treated with a mixture of concentrated sulfuric acid and concentrated nitric acid before usage to functionalize with carboxylic and hydroxyl groups. Aniline monomers are adsorbed and polymerized on the surface of these fillers. Structural analysis using scanning electron microscopy showed that nanomaterials dispersed into polymer matrix and made tubular structures with diameters several tens to hundreds nanometers depending on the polyaniline content. These nanocomposites can be used for production of excellent electrode materials applications in high-performance supercapacitors.

  16. Nanomaterial-based x-ray sources

    Science.gov (United States)

    Cole, Matthew T.; Parmee, R. J.; Milne, William I.

    2016-02-01

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  17. Films of Carbon Nanomaterials for Transparent Conductors

    Directory of Open Access Journals (Sweden)

    Jun Wei

    2013-05-01

    Full Text Available The demand for transparent conductors is expected to grow rapidly as electronic devices, such as touch screens, displays, solid state lighting and photovoltaics become ubiquitous in our lives. Doped metal oxides, especially indium tin oxide, are the commonly used materials for transparent conductors. As there are some drawbacks to this class of materials, exploration of alternative materials has been conducted. There is an interest in films of carbon nanomaterials such as, carbon nanotubes and graphene as they exhibit outstanding properties. This article reviews the synthesis and assembly of these films and their post-treatment. These processes determine the film performance and understanding of this platform will be useful for future work to improve the film performance.

  18. Developmental toxicity of engineered nanomaterials in rodents

    Energy Technology Data Exchange (ETDEWEB)

    Ema, Makoto, E-mail: ema-makoto@aist.go.jp; Gamo, Masashi; Honda, Kazumasa

    2016-05-15

    We summarized significant effects reported in the literature on the developmental toxicity of engineered nanomaterials (ENMs) in rodents. The developmental toxicity of ENMs included not only structural abnormalities, but also death, growth retardation, and behavioral and functional abnormalities. Most studies were performed on mice using an injection route of exposure. Teratogenic effects were indicated when multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), and TiO{sub 2}-nanoparticles were administered to mice during early gestation. Reactive oxygen species levels were increased in placentas and malformed fetuses and their placentas after prenatal exposure to MWCNTs and SWCNTs, respectively. The pre- and postnatal mortalities and growth retardation in offspring increased after prenatal exposure to ENMs. Histopathological and functional abnormalities were also induced in placentas after prenatal exposure to ENMs. Maternal exposure to ENMs induced behavioral alterations, histopathological and biochemical changes in the central nervous system, increased susceptibility to allergy, transplacental genotoxicity, and vascular, immunological, and reproductive effects in offspring. The size- and developmental stage-dependent placental transfer of ENMs was noted after maternal exposure. Silver accumulated in the visceral yolk sac after being injected with Ag-NPs during early gestation. Although currently available data has provided initial information on the potential developmental toxicity of ENMs, that on the developmental toxicity of ENMs is still very limited. Further studies using well-characterized ENMs, state-of the-art study protocols, and appropriate routes of exposure are required in order to clarify these developmental effects and provide information suitable for risk assessments of ENMs. - Highlights: • We review the developmental toxicity studies of engineered nanomaterials (ENMs). • Various developmental endpoints have been

  19. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    Science.gov (United States)

    Peyvandi, Amirpasha

    Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods

  20. Carbon nanomaterial based electrochemical sensors for biogenic amines

    International Nuclear Information System (INIS)

    Yang, Xiao; He, Xiulan; Li, Fangping; Fei, Junjie; Feng, Bo; Ding, Yonglan

    2013-01-01

    This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references. (author)

  1. Nanomaterials for fresh-keeping and sterilization in food preservation.

    Science.gov (United States)

    Liu, Dongfang; Gu, Ning

    2009-06-01

    Food sterilizing and antistaling technologies are very important to the public's health and safety and have been attracting more and more attentions. In the past several years, new development chance was created by the introduction of nanomaterials to this critical field. Nanomaterials possess lots of outstanding properties, such as unique quantum size effect, large surface area and catalytic properties, which jointly facilitate high effective fresh-keeping, and thus were considered as promising materials in food sterilization and antistale. This review article focuses on the patented applications of nanomaterials as food biocidal agents, bacteriostatic agents, catalysts and carriers for antistaling agents.

  2. Physics of magnetic nanostructures

    CERN Document Server

    Owens, Frank J

    2015-01-01

    This book discusses how the important properties of materials such as the cohesive energy, and the electronic and vibrational structures are affected when materials have at least one length in the nanometer range. The author uses relatively simple models of the solid state to explain why these changes in the size and dimension in the nanometer regime occur. The text also reviews the physics of magnetism and experimental methods of measuring magnetic properties necessary to understanding how nanosizing affects magnetism. Various kinds of magnetic structures are presented by the author in order to explain how nanosizing influences their magnetic properties. The book also presents potential and actual applications of nanomaterials in the fields of medicine and computer data storage.

  3. A Decision Support Framework for Evaluation of Engineered Nanomaterials

    Science.gov (United States)

    Engineered nanomaterials (ENM) are currently being developed and applied at rates that far exceed our ability to evaluate their potential for environmental or human health risks. The gap between material development and capacity for assessment grows wider every day. Transforma...

  4. Emerging roles of engineered nanomaterials in the food industry.

    Science.gov (United States)

    Morris, V J

    2011-10-01

    Nanoscience is the study of phenomena and the manipulation of materials at the atomic or molecular level. Nanotechnology involves the design, production and use of structures through control of the size and shape of the materials at the nanometre scale. Nanotechnology in the food sector is an emerging area with considerable research and potential products. There is particular interest in the definition and regulation of engineered nanomaterials. This term covers three classes of nanomaterials: natural and processed nanostructures in foods; particulate nanomaterials metabolized or excreted on digestion; and particulate nanomaterials not broken down on digestion, which accumulate in the body. This review describes examples of these classes and their likely status in the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. In Situ Formation of Carbon Nanomaterials on Bulk Metallic Materials

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanomaterials were synthesized in situ on bulk 316L stainless steel, pure cobalt, and pure nickel by hybrid surface mechanical attrition treatment (SMAT. The microstructures of the treated samples and the resulted carbon nanomaterials were investigated by SEM and TEM characterizations. Different substrates resulted in different morphologies of products. The diameter of carbon nanomaterials is related to the size of the nanograins on the surface layer of substrates. The possible growth mechanism was discussed. Effects of the main parameters of the synthesis, including the carbon source and gas reactant composition, hydrogen, and the reaction temperature, were studied. Using hybrid SMAT is proved to be an effective way to synthesize carbon nanomaterials in situ on surfaces of metallic materials.

  6. NaKnowBaseTM: The EPA Nanomaterials Research Database

    Science.gov (United States)

    The ability to predict the environmental and health implications of engineered nanomaterials is an important research priority due to the exponential rate at which nanotechnology is being incorporated into consumer, industrial and biomedical applications. To address this need and...

  7. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  8. Pulmonary exposure to carbonaceous nanomaterials and sperm quality

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Lauvas, Anna Jacobsen; Christensen, Preben

    2018-01-01

    Background: Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung...... inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model.Methods: Effects on sperm quality after pulmonary inflammation induced by carbonaceous...... nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 mu g/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks...

  9. Investigating the Toxicity and Environmental Fate of Graphene Nanomaterials

    Science.gov (United States)

    The Hersam Laboratory at Northwestern University works with the Center for Environmental Implications of Nanotechnology and the United States Environmental Protection Agency to study the toxicity and environmental fate of emergent nanomaterials, specifically carbon-based nanomate...

  10. NANO(materials): EHS, Research, INnovation, ReGulation

    OpenAIRE

    GOTTARDO STEFANIA; MECH AGNIESZKA; QUIROS PESUDO LAIA; CRUTZEN HUGUES

    2017-01-01

    This collection contains data, results, information and tools derived from research and institutional activities regarding the environment, health and safety matters for supporting sustainable innovation for regulatory purposes, with a focus on nanomaterials.

  11. Electrochemically Active Biofilms Assisted Nanomaterial Synthesis for Environmental Applications

    KAUST Repository

    Ahmed, Elaf

    2017-01-01

    Nanomaterials have a great potential for environmental applications due to their high surface areas and high reactivity. This dissertation investigated the use of electrochemically active biofilms (EABs) as a synthesis approach for the fabrication

  12. Applications of radiotracer techniques for the toxicology studies of nanomaterials

    International Nuclear Information System (INIS)

    Ma Yuhui; Zhang Zhiyong; Zhang Yuan; He Xiao; Zhang Haifeng; Chai Zhifang

    2008-01-01

    With the rapid development of nanosciences and nanotechnology, a wide variety of manufactured nanomaterials are now used in commodities, pharmaceutics, cosmetics, biomedical products, and industries. While nanomaterials possess more novel and unique physicochemical properties than bulk materials, they also have an unpredictable impact on human health. In the toxicology studies of nanomaterials, it is essential to know the basic behaviors in vivo, that is absorption, distribution, metabolism, and excretion (ADME) of these newly designed materials. Radiotracer techniques are especially well suited to such studies and has got the chance to demonstrate its enchantment. In this presentation, studies on radiotracer techniques used in nanotoxicology will be reviewed and new progresses at Institute of High Energy Physics, including the label methods and behaviors of labeled nanomaterials, such as fullerene, carbon nanotubes, and nanometer metal oxide in animals and in aquatic environments will be reported. (authors)

  13. Characterization of Carbon Onion Nanomaterials for Environmental Remediation

    Science.gov (United States)

    The unique properties of carbonaceous nanomaterials, including small particle size, high surface area, and manipulatable surface chemistry, provide high potential for their application to environmental remediation. While research has devoted to develop nanotechnology for environm...

  14. Surface, interface and thin film characterization of nano-materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Kobayashi, Keisuke

    2005-01-01

    From the results of studies in the nanotechnology support project of the Ministry of Education, Culture, Sports, Science and Technology of Japan, several investigations on the surface, interface and thin film characterization of nano-materials are described; (1) the MgB 2 thin film by X-ray diffraction, (2) the magnetism of the Pt thin film on a Co film by X-ray magnetic circular dichroism measurement, (3) the structure and physical properties of oxygen molecules absorbed in a micro hole of the cheleted polymer crystal by the direct observation in X-ray powder diffraction, and (4) the thin film gate insulator with a large dielectric constant, thermally treated HfO 2 /SiO 2 /Si, by X-ray photoelectron spectroscopy. (M.H.)

  15. Review of Research on Template Methods in Preparation of Nanomaterials

    OpenAIRE

    Yadian Xie; Duygu Kocaefe; Chunying Chen; Yasar Kocaefe

    2016-01-01

    The nanomaterials have been widely used in various fields, such as photonics, catalysis, and adsorption, because of their unique physical and chemical properties. Therefore, their production methods are of utmost importance. Compared with traditional synthetic methods, the template method can effectively control the morphology, particle size, and structure during the preparation of nanomaterials, which is an effective method for their synthesis. The key for the template method is to choose di...

  16. Perspectives on the design of safer nanomaterials and manufacturing processes

    International Nuclear Information System (INIS)

    Geraci, Charles; Heidel, Donna; Sayes, Christie; Hodson, Laura; Schulte, Paul; Eastlake, Adrienne; Brenner, Sara

    2015-01-01

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial

  17. Advanced nanomaterials and their applications in renewable energy

    CERN Document Server

    Liu, Jingbo Louise

    2015-01-01

    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  18. Development of a Control Banding Tool for Nanomaterials

    OpenAIRE

    Riediker, M.; Ostiguy, C.; Triolet, J.; Troisfontaine, P.; Vernez, D.; Bourdel, G.; Thieriet, N.; Cadène, A.

    2012-01-01

    Control banding (CB) can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial t...

  19. Perspectives on the design of safer nanomaterials and manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Geraci, Charles [National Institute for Occupational Safety and Health (United States); Heidel, Donna [Bureau Veritas North America, Inc. (United States); Sayes, Christie [Baylor University (United States); Hodson, Laura, E-mail: lhodson@cdc.gov; Schulte, Paul; Eastlake, Adrienne [National Institute for Occupational Safety and Health (United States); Brenner, Sara [Colleges of Nanoscale Science and Engineering at State University of New York Polytechnic Institute, (SUNY Poly) (United States)

    2015-09-15

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial.

  20. Determination of cDNA encoding BCR/ABL fusion gene in patients with chronic myelogenous leukemia using a novel FRET-based quantum dots-DNA nanosensor.

    Science.gov (United States)

    Shamsipur, Mojtaba; Nasirian, Vahid; Barati, Ali; Mansouri, Kamran; Vaisi-Raygani, Asad; Kashanian, Soheila

    2017-05-08

    In the present study, we developed a sensitive method based on fluorescence resonance energy transfer (FRET) for the determination of the BCR/ABL fusion gene, which is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). For this purpose, CdTe quantum dots (QDs) were conjugated to amino-modified 18-mer oligonucleotide ((N)DNA) to form the QDs-(N)DNA nanosensor. In the presence of methylene blue (MB) as an intercalator, the hybridization of QDs-(N)DNA with the target BCR/ABL fusion gene (complementary DNA), brings the MB (acceptor) at close proximity of the QDs (donor), leading to FRET upon photoexcitation of the QDs. The enhancement in the emission intensity of MB was used to follow up the hybridization, which was linearly proportional to concentration of the target complementary DNA in a range from 1.0 × 10 -9 to 1.25 × 10 -7  M. The detection limit of the proposed method was obtained to be 1.5 × 10 -10  M. Finally, the feasibility and selectivity of the proposed nanosensor was evaluated by the analysis of derived nucleotides from both mismatched sequences and clinical samples of patients with leukemia as real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles.

    Science.gov (United States)

    Wang, Zhijiang; Wu, Lina; Shen, Baozhong; Jiang, Zhaohua

    2013-09-30

    Fluorescent detection is an attractive method for the detection of toxic chemicals. However, most chemosensors that are currently utilized in fluorescent detection are based on organic dyes or quantum dots, which suffer from instability, high background noise and interference from organic impurities in solution, which can also be excited by UV radiation. In the present research, we developed a novel NaYF4:Yb,Ho/Au nanocomposite-based chemosensor with high sensitivity (10 ppb) and selectivity over competing analytes for the detection of the insecticide cartap. This nanosensor is excited with a 970-nm laser instead of UV radiation to give an emission peak at 541 nm. In the presence of cartap, the nanocomposites aggregate, resulting in enhanced luminescence resonance energy transfer between the NaYF4:Yb,Ho nanocrystals and the gold nanoparticles, which decreases the emission intensity at 541 nm. The relative luminescence intensity at 541 nm has a linear relationship with the concentration of cartap in the solution. Based on this behavior, the developed nanosensor successfully detected cartap in farm produce and water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Nanomaterials and Autophagy: New Insights in Cancer Treatment

    International Nuclear Information System (INIS)

    Panzarini, Elisa; Inguscio, Valentina; Tenuzzo, Bernardetta Anna; Carata, Elisabetta; Dini, Luciana

    2013-01-01

    Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies

  3. Nanomaterials in the field of design ergonomics: present status.

    Science.gov (United States)

    Chowdhury, Anirban; Sanjog, J; Reddy, Swathi Matta; Karmakar, Sougata

    2012-01-01

    Application of nanotechnology and nanomaterials is not new in the field of design, but a recent trend of extensive use of nanomaterials in product and/or workplace design is drawing attention of design researchers all over the world. In the present paper, an attempt has been made to describe the diverse use of nanomaterials in product and workplace design with special emphasis on ergonomics (occupational health and safety; thermo-regulation and work efficiency, cognitive interface design; maintenance of workplace, etc.) to popularise the new discipline 'nanoergonomics' among designers, design users and design researchers. Nanoergonomics for sustainable product and workplace design by minimising occupational health risks has been felt by the authors to be an emerging research area in coming years. Use of nanomaterials in the field of design ergonomics is less explored till date. In the present review, an attempt has been made to extend general awareness among ergonomists/designers about applications of nanomaterials/nanotechnology in the field of design ergonomics and about health implications of nanomaterials during their use.

  4. [International trend of guidance for nanomaterial risk assessment].

    Science.gov (United States)

    Hirose, Akihiko

    2013-01-01

    In the past few years, several kinds of opinions or recommendations on the nanomaterial safety assessment have been published from international or national bodies. Among the reports, the first practical guidance of risk assessment from the regulatory body was published from the European Food Safety Authorities in May 2011, which included the determination of exposure scenario and toxicity testing strategy. In October 2011, European Commission (EC) adopted the definition of "nanomaterial" for regulation. And more recently, Scientific Committee on Consumer Safety of EC released guidance for assessment of nanomaterials in cosmetics in June 2012. A series of activities in EU marks an important step towards realistic safety assessment of nanomaterials. On the other hand, the US FDA announced a draft guidance for industry in June 2011, and then published draft guidance documents for both "Cosmetic Products" and "Food Ingredients and Food Contact Substances" in April 2012. These draft documents do not restrictedly define the physical properties of nanomaterials, but when manufacturing changes alter the dimensions, properties, or effects of an FDA-regulated product, the products are treated as new products. Such international movements indicate that most of nanomaterials with any new properties would be assessed or regulated as new products by most of national authorities in near future, although the approaches are still case by case basis. We will introduce such current international activities and consideration points for regulatory risk assessment.

  5. Nanomaterials in consumer's goods: the problems of risk assessment

    Science.gov (United States)

    Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanotechnology and engineered nanomaterials are currently used in wide variety of cosmetic products, while their use in food industry, packaging materials, household chemicals etc. still includes a limited number of items and does not show a significant upward trend. However, the problem of priority nanomaterials associated risks is relevant due to their high production volumes and an constantly growing burden on the environment and population. In accordance with the frequency of use in mass-produced consumer goods, leading priority nanomaterials are silver nanoparticles (NPs) and (by a wide margin) NPs of gold, platinum, and titanium dioxide. Frequency of nanosized silica introduction into food products as a food additive, at the moment, seems to be underestimated, since the use of this nanomaterial is not declared by manufacturers of products and objective control of its content is difficult. Analysis of literature data on toxicological properties of nanomaterials shows that currently accumulated amount of information is sufficient to establish the safe doses of nanosized silver, gold and titanium dioxide. Data have been provided in a series of studies concerning the effect of oral intake of nanosized silica on the condition of laboratory animals, including on the performance of the immune system. The article examines the existing approaches to the assessment of population exposure to priority nanomaterials, characteristics of existing problems and risk management.

  6. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    Science.gov (United States)

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  7. Modified iron oxide nanomaterials: Functionalization and application

    International Nuclear Information System (INIS)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-01-01

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation. - Highlights: • Nanomagnetite is interesting due to its exceptional properties. • Nanomagnetite is predisposed towards aggregation and forming larger particles. • Modified nanomagnetite are stable, easily synthesized, possess high surface area. • Modified nanomagnetite got applications as catalyst/catalyst support.

  8. Modified iron oxide nanomaterials: Functionalization and application

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-10-15

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation. - Highlights: • Nanomagnetite is interesting due to its exceptional properties. • Nanomagnetite is predisposed towards aggregation and forming larger particles. • Modified nanomagnetite are stable, easily synthesized, possess high surface area. • Modified nanomagnetite got applications as catalyst/catalyst support.

  9. Engineering noble metal nanomaterials for environmental applications

    Science.gov (United States)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-04-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  10. Nano-materials for solar energy conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Boiteux, G.; Ltaief, A.; Barlier, V.

    2006-01-01

    Nano-materials present an important development potential in the field of photovoltaic conversion in opening new outlooks in the reduction of the solar energy cost. The organic or hybrid solar cells principle is based on the electron-hole pairs dissociation, generated under solar radiation on a conjugated polymer, by chemical species acting as electrons acceptors. The two ways based on fullerenes dispersion or on TiO 2 particles in a semi-conductor polymer (MEH-PPV, PVK) are discussed. The acceptors concentration is high in order to allow the conduction of the electrons on a percolation way, the polymer providing the holes conduction. A new preparation method of the mixtures MEH-PPV/fullerenes based on the use of specific solvents has allowed to produce fullerenes having nano-metric sizes ranges. It has then been possible to decrease the fullerenes concentration allowing the dissociation and the transport of photoinduced charges. The way based on the in-situ generation of TiO 2 from an organometallic precursor has allowed to obtain dispersions of nano-metric inorganic particles. The optimization of the photovoltaic properties of these nano-composites requires a particular adjustment of their composition and size ranges leading to a better control of the synthesis processes. (O.M.)

  11. Engineering noble metal nanomaterials for environmental applications.

    Science.gov (United States)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-05-07

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  12. Nanomaterials derived from metal-organic frameworks

    Science.gov (United States)

    Dang, Song; Zhu, Qi-Long; Xu, Qiang

    2018-01-01

    The thermal transformation of metal-organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

  13. Multifunctional DNA Nanomaterials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Dick Yan Tam

    2015-01-01

    Full Text Available The rapidly emerging DNA nanotechnology began with pioneer Seeman’s hypothesis that DNA not only can carry genetic information but also can be used as molecular organizer to create well-designed and controllable nanomaterials for applications in materials science, nanotechnology, and biology. DNA-based self-assembly represents a versatile system for nanoscale construction due to the well-characterized conformation of DNA and its predictability in the formation of base pairs. The structural features of nucleic acids form the basis of constructing a wide variety of DNA nanoarchitectures with well-defined shapes and sizes, in addition to controllable permeability and flexibility. More importantly, self-assembled DNA nanostructures can be easily functionalized to construct artificial functional systems with nanometer scale precision for multipurposes. Apparently scientists envision artificial DNA-based nanostructures as tool for drug loading and in vivo targeted delivery because of their abilities in selective encapsulation and stimuli-triggered release of cargo. Herein, we summarize the strategies of creating multidimensional self-assembled DNA nanoarchitectures and review studies investigating their stability, toxicity, delivery efficiency, loading, and control release of cargos in addition to their site-specific targeting and delivery of drug or cargo molecules to cellular systems.

  14. Antimicrobial nanomaterials for food packaging applications

    Directory of Open Access Journals (Sweden)

    Radusin Tanja I.

    2016-01-01

    Full Text Available Food packaging industry presents one of the fastest growing industries nowadays. New trends in this industry, which include reducing food as well as packaging waste, improved preservation of food and prolonged shelf-life together with substitution of petrochemical sources with renewable ones are leading to development of this industrial area in diverse directions. This multidisciplinary challenge is set up both in front of food and material scientists. Nanotechnology is recently answering to these challenges, with different solutions-from improvements in materials properties to active packaging solutions, or both at the same time. Incorporation of nanoparticles into polymer matrix and preparation of hybrid materials is one of the methods of modification of polymer properties. Nano scaled materials with antimicrobial properties can act as active components when added into polymer, thereby leading to prolonged protective function of pristine food packaging material. This paper presents a review in the field of antimicrobial nanomaterials for food packaging in turn of technology, application and regulatory issues.

  15. Current characterization methods for cellulose nanomaterials.

    Science.gov (United States)

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  16. Fabrication and Design of Optical Nanomaterials

    Science.gov (United States)

    Huntington, Mark D.

    Over the past several decades, advances in nanometer scale fabrication has sparked interes in applications that take advantage of materials that are structured at these small length scales. Specifically, metallic optical nanomaterials have emerged as a new way to control light at length scales that are smaller than the wavelength of light and have optical properties that are distinctly different from their macroscale counterparts. Although there have been may advances in nanofabrication, the performance and widespread use of optical nanomaterials is still limited by fabrication and design challenges. This dissertation describes advances in the fabrication, characterization, and design of optical nanomaterials. First we demonstrate how a portable and compact photolithography system can be made using a light source composed of UV LEDs. Our solid-state photolithography (SSP) system brings the capabilities of one of the most important yet workhorse tools of micro- and nanotechnology--the mask aligner--to the benchtop. The two main highlights of chapter 2 include: (i) portable, low-cost photolithography and (ii) high quality patterning. We replace the mask aligner with a system composed of UV LEDs and a diffuser that can be built for as little as $30. The design of the SSP system alleviates the need for dedicated power supplies, vacuum lines and cooling systems, which makes it a true benchtop photolithography system. We further show that sub-wavelength features can be fabricated across 4-in wafers and that these patterns are of high quality such that they can be easily transferred into functional materials. Chapter 3 describes a parallel method to create nanometer scale textures over large areas with unprecedented control over wrinkle wavelength. The main points of this chapter include: (i) a new material system for nanowrinkles, (ii) wrinkles with tunable wavelengths, and (iii) a method for measuring the skin thickness. First, we show that RIE treatment of PS with

  17. A functional assay-based strategy for nanomaterial risk forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, Christine Ogilvie, E-mail: christine.hendren@duke.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Lowry, Gregory V., E-mail: glowry@andrew.cmu.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Plant and Soil Sciences, University of Kentucky, Agricultural Science Center, Lexington, KY 40546 (United States); Wiesner, Mark R., E-mail: wiesner@duke.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall PO Box 90287, Durham, NC 27708 (United States)

    2015-12-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical–chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical–chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans. - Highlights: • Approaches to predict risk directly from nanomaterial (NM) properties are problematic. • We propose

  18. A functional assay-based strategy for nanomaterial risk forecasting

    International Nuclear Information System (INIS)

    Hendren, Christine Ogilvie; Lowry, Gregory V.; Unrine, Jason M.; Wiesner, Mark R.

    2015-01-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical–chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical–chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans. - Highlights: • Approaches to predict risk directly from nanomaterial (NM) properties are problematic. • We propose

  19. Exploring release and recovery of nanomaterials from commercial polymeric nanocomposites

    International Nuclear Information System (INIS)

    Busquets-Fité, Martí; Puntes, Víctor; Fernandez, Elisabet; Janer, Gemma; Vilar, Gemma; Vázquez-Campos, Socorro; Zanasca, R; Citterio, C; Mercante, L

    2013-01-01

    Much concern has been raised about the risks associated with the broad use of polymers containing nanomaterials. Much is known about degradation and aging of polymers and nanomaterials independently, but very few studies have been done in order to understand degradation of polymeric nanocomposites containing nanomaterials and the fate of these nanomaterials, which may occur in suffering many processes such as migration, release and physicochemical modifications. Throughout the UE funded FP7 project NANOPOLYTOX, studies on the migration, release and alteration of mechanical properties of commercial nanocomposites due to ageing and weathering have been performed along with studies on the feasibility of recovery and recycling of the nanomaterials. The project includes the use as model nanocomposites of Polyamide-6 (PA), Polypropylene (PP) and Ethyl Vinyl Acetate (EVA) as polymeric matrix filled with a 3% in mass of a set of selected broadly used nanomaterials; from inorganic metal oxides nanoparticles (SiO2, TiO2 and ZnO) to multi-walled carbon nanotubes (MWCNT) and Nanoclays. These model nanocomposites were then treated under accelerated ageing conditions in climatic chamber. To determine the degree of degradation of the whole nanocomposite and possible processes of migration, release and modification of the nanofillers, nanocomposites were characterized by different techniques. Additionally, recovery of the nanomaterials fro m the polymeric matrix was addressed, being successfully achieved for PA and PP based nanocomposites. In the case of PA, dissolution of the polymeric matrix using formic acid and further centrifugation steps was the chosen approach, while for PP based nanocomposites calcination was performed.

  20. Engineered Nanomaterials, Sexy New Technology and Potential Hazards

    International Nuclear Information System (INIS)

    Beaulieu, R.A.

    2009-01-01

    Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lung deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls