WorldWideScience

Sample records for magnetic mirror configurations

  1. Experimental investigation of plasma sheaths in magnetic mirror and cusp configurations

    Science.gov (United States)

    Jiang, Zhengqi; Wei, Zi-an; Ma, J. X.

    2017-11-01

    Sheath structures near a metal plate in a magnetized plasma were experimentally investigated in magnetic mirror and cusp configurations. Plasma parameters and the sheath potential distributions were probed by a planar and an emissive probe, respectively. The measured sheath profiles in the mirror configuration show that the sheath thickness first decreases and then increases when the magnetic strength is raised. A magnetic flux-tube model was used to explain this result. In the cusp configuration, the measured sheath thickness decreases with the increase of the coil current creating the magnetic cusp. However, when normalized by the electron Debye length, the dependence of the sheath thickness on the coil current is reversed.

  2. Plasma injection from the independent SHF-source in the open configuration 2. Magnetic fields of magnetic mirror configurations

    International Nuclear Information System (INIS)

    Beriya, Z.R.; Gogashvili, G.E.; Nanobashvili, S.I.

    1992-01-01

    The investigation was aimed at studying the characteristics and properties of plasma injected from independent stationary SHF source into an open magnetic trap of mirror geometry within a wide range of change in the experimental conditions. The investigations were primarily based on measurements of the distribution of charged particles in a plasma along the trap and on the dependence of the concentration on plasma production conditions in a SHF source. It is shown that the aggregate of the experimental data enables a conclusion that independent of SHF plasma can be succesfully used for filling on open magnetic trap of mirror configuration with plasma

  3. Production of muons for fusion catalysis in a magnetic mirror configuration. Revision 1

    International Nuclear Information System (INIS)

    Moir, R.W.; Chapline, G.F. Jr.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe a scheme for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the π - 's being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m 2 neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-μA, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use

  4. Spatial configuration of a plasma bunch formed under gyromagnetic resonance in a magnetic mirror trap

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.; Chuprov, D. V., E-mail: chu-d@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)

    2016-06-15

    The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.

  5. Evolution of the Fusion Power Demonstration tandem mirror reactor configuration

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Lousteau, D.C.

    1985-01-01

    This paper gives a presentation of the evolution of configurations proposed for tandem mirror Fusion Power Demonstration (FPD) machines. The FPD study was undertaken to scope the mission as well as the technical and design requirements of the next tandem mirror device. Three configurations, entitled FPD I, II, and III were studied. During this process new systems were conceived and integrated into the design, resulting in a significantly changed overall machine configuration. The machine can be divided into two areas. A new center cell configuration, minimizing magnetic field ripple and thus maximizing center cell fusion power, features a semicontinuous solenoid. A new end cell has evolved which maintains the required thermal barrier in a significantly reduced axial length. The reduced end cell effective length leads to a shorter central cell length being required to obtain minimum ignition conditions. Introduced is the concept of an electron mantle stabilized octopole arrangement. The engineering features of the new end cell and maintenance concepts developed are influenced to a great extent by the octopole-based design. The new ideas introduced during the FPD study have brought forth a new perspective of the size, design, and maintenance of tandem mirror reactors, making them more attractive as commercial power sources

  6. The influence of mirror configurations near the lower hybrid resonance

    International Nuclear Information System (INIS)

    Glomski, G.; Heinrich, B.; Schlueter, H.

    1976-01-01

    Hydrogen plasmas in magnetic mirror configurations are generated by microwaves and inductively coupled to a weak rf-source. In contrast to previous investigations of the rf-frequency is varied; resonant behaviour near the lower hybrid frequency is found, attributable to radial eigenmodes. The influence of various mirror ratios and consequently varying axial density gradients on the position of the modes is studied. Shifts of the coupling coil are found to be of minor importance, since the resonant behaviour is dominated by oscillations of the whole plasma body. (orig.) [de

  7. Injection and temporary capture of a charged particle beam in an open magnetic configuration. Optimization of the configuration. Case of cylindrical symmetry: A mirror machine

    International Nuclear Information System (INIS)

    Capdequi-Peyranere, P.

    1966-12-01

    A study has been made of a new method of transverse injection of charged particles into a magnetic mirror configuration. This injection scheme permits the penetration and temporary capture by non-adiabatic effect of a particle beam of approximately 1 cm 2 cross-section. A theoretical study of the injection and capture is made in the approximation that space charge is negligible. The original programs for IBM 7094 computer calculations are described; these programs were used to obtain an optimization of the configuration. The results of a statistical numerical study of the optimum configuration are then given. This study indicates that, if the energy of the particles of the beam is about 1 per cent greater than a minimum penetration energy, the entire beam can be captured with an average capture length of 100 meters (50 reflections between the two mirrors). If the energy is about 4 per cent greater than the minimum penetration energy, the capture length is reduced to 40 meters. We have studied the distribution of energy transverse and longitudinal with the magnetic field for the population of captured particles. For the cases of injected molecular hydrogen ions or heavy CH 4 + ions, a study is made of the capture time of protons resulting from the dissociation of the ions by collisions with the neutral gas. Finally, we describe a model experiment using electrons designed to provide an experimental verification of the capture of the primary beam. (author) [fr

  8. Tunable system for production of mirror and cusp configurations using chassis of permanent magnets

    Science.gov (United States)

    Hyde, Alexander; Bushmelov, Maxim; Batishchev, Oleg

    2018-03-01

    Compact arrays of permanent magnets have shown promise as replacements for electromagnets in applications requiring magnetic cusps and mirrors. An adjustable system capable of suspending and translating a pair of light, nonmagnetic chassis carrying such sources of magnetic field has been designed and constructed. Using this device to align two cylindrical chassis, strong solenoid-like domains of field, as well as classic biconic cusp and magnetic mirror topologies, are generated. Employing a pair of ring-shaped chassis instead, the superposition of their naturally-emitted cusps is demonstrated to produce sextupolar and octupolar magnetic fields.

  9. Axisymmetric magnetic mirrors for plasma confinement. Recent development and perspectives

    International Nuclear Information System (INIS)

    Kruglyakov, E.P.; Dimov, G.I.; Ivanov, A.A.; Koidan, V.S.

    2003-01-01

    Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, three modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap,- GDT, Multi-mirror,- GOL-3, and Tandem Mirror,- AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometry of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc. It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using 'warm' plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. The main plasma parameters achieved are presented and the future perspectives of different mirror machines are outlined. (author)

  10. Magnet and conductor developments for the Mirror Fusion Program

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1981-01-01

    The conductor development and the magnet design and construction for the MFTF are described. Future plans for the Mirror Program and their influence on the associated superconductor development program are discussed. Included is a summary of the progress being made to develop large, high-field, multifilamentary Nb 3 Sn superconductors and the feasibility of building a 12-T yin-yang set of coils for the machine to follow MFTF. In a further look into the future, possible magnetic configurations and requirements for mirror reactors are surveyed

  11. Radial electric field and ion parallel flow in the quasi-symmetric and Mirror configurations of HSX

    Science.gov (United States)

    Kumar, S. T. A.; Dobbins, T. J.; Talmadge, J. N.; Wilcox, R. S.; Anderson, D. T.

    2018-05-01

    The radial electric field and the ion mean parallel flow are obtained in the helically symmetric experiment stellarator from toroidal flow measurements of C+6 ion at two locations on a flux surface, using the Pfirsch–Schlüter effect. Results from the standard quasi-helically symmetric magnetic configuration are compared with those from the Mirror configuration where the quasi-symmetry is deliberately degraded using auxiliary coils. For similar injected power, the quasi-symmetric configuration is observed to have significantly lower flows while the experimental observations from the Mirror geometry are in better agreement with neoclassical calculations. Indications are that the radial electric field near the core of the quasi-symmetric configuration may be governed by non-neoclassical processes.

  12. Magnet system of the ''AMBAL'' experimental trap with ambipolar mirrors

    International Nuclear Information System (INIS)

    Dimov, G.I.; Lysyanskij, P.B.; Tadber, M.V.; Timoshin, I.Ya.; Shrajner, K.K.

    1982-01-01

    A magnet system of the ''AMBAL'' ambipolar trap under construction is described. The trap magnetic field configuration, geometry of the main coils and diagram of the whole device magnet system are outlined. Drift surface cross sections in the equatorial plane of the ring mirror device, in the median plane and at different distances from the trap median plane are presented. The magnet system design is described in brief

  13. Modification of the magnetic field structure in the vicinity of the x-points by the strong mirror field for a field-reversed configuration (FRC) with the Thick Edge-Layer plasma

    International Nuclear Information System (INIS)

    Suzuki, Yukihisa; Okada, Shigefumi; Goto, Seiichi

    2003-01-01

    Modification of the magnetic field structure in the vicinity of the x-points and changes of the separatrix shape are investigated under the pressure effects due to an edge-layer plasma together with a mirror field by the two-dimensional (2-D) MHD equilibrium solutions of field-reversed configuration (FRC) obtained from the Grad-Shafranov equation. To explore the coupling pressure effects caused by edge-layer plasma and mirror field, the equilibrium calculations are performed by the combinations of several values of mirror ratio (R m ) and of edge-layer width (δ), respectively. A summary of results for present study is as follows. In the condition of weak mirror field (1.0 m m > 1.6, ψ=0 surface never opens up for any δ. These original results make it clear that large magnetic curvature produced by the strong mirror field enhances the magnetic stress around the x-point, so that the ends of FRC are effectively sustained by this enhanced magnetic stress, which counteracts the edge-layer plasma pressure effect. (author)

  14. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    International Nuclear Information System (INIS)

    Simonen, T.; Cohen, R.; Correll, D.; Fowler, K.; Post, D.; Berk, H.; Horton, W.; Hooper, E.B.; Fisch, N.; Hassam, A.; Baldwin, D.; Pearlstein, D.; Logan, G.; Turner, B.; Moir, R.; Molvik, A.; Ryutov, D.; Ivanov, A.A; Kesner, J.; Cohen, B.; McLean, H.; Tamano, T.; Tang, X.Z.; Imai, T.

    2008-01-01

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  15. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  16. Effect of Magnetic Mirror on the Asymmetry of the Radial Profile of Near-Wall Conductivity in Hall Thrusters

    International Nuclear Information System (INIS)

    Yu Daren; Liu Hui; Fu Haiyang

    2009-01-01

    Considering the actual magnetic field configuration in a Hall thruster, the effect of magnetic mirror on the radial profile of near-wall conductivity (NWC) is studied in this paper. The plasma electron dynamic process is described by the test particle method. The Monte Carlo scheme is used to solve this model. The radial profile of electron mobility is obtained and the role of magnetic mirror in NWC is analysed both theoretically and numerically. The numerical results show that the electron mobility peak due to NWC is inversely proportional to the magnetic mirror ratio and the asymmetry of electron mobility along the radial direction gets greater when the magnetic mirror is considered. This effect indicates that apart from the disparity in the magnetic field strength, the difference in the magnetic mirror ratio near the inner and outer walls would actually augment the asymmetry of the radial profile of NWC in Hall thrusters.

  17. Low-stress mounting configuration design for large aperture laser transport mirror

    Science.gov (United States)

    Zhang, Zheng; Quan, Xusong; Yao, Chao; Wang, Hui

    2016-10-01

    TM1-6S1 large aperture laser transport mirror is a crucial optical unit of high power solid-state laser in the Inertial Confinement Fusion (ICF) facility. This article focuses on the low-stress and precise mounting method of large-aperture mirror. Based on the engineering practice of SG-III, the state-of-the-art and key problems of current mounting configuration are clarified firstly. Subsequently, a brand new low-stress mounting configuration with flexure supports is proposed. Opto-mechanical model of the mirror under mounting force is built up with elastic mechanics theory. Further, numerical methods and field tests are employed to verify the favorable load uniform capacity and load adjust capacity of flexure supports. With FEM, the relation between the mounting force from new configuration and the mirror surface distortion (wavefront error) is clarified. The novel mounting method of large aperture optics could be not only used on this laser transport mirror, but also on the other transmission optics and large crystals in ICF facilities.

  18. Gasdynamic Mirror Fusion Propulsion Experiment

    Science.gov (United States)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  19. Technology of mirror machines: LLL facilities for magnetic mirror fusion experiments

    International Nuclear Information System (INIS)

    Batzer, T.H.

    1977-01-01

    Significant progress in plasma confinement and temperature has been achieved in the 2XIIB facility at Livermore. These encouraging results, and their theoretical corroboration, have provided a firm basis for the design of a new generation of magnetic mirror experiments, adding support to the mirror concept of a fusion reactor. Two new mirror experiments have been proposed to succeed the currently operating 2XIIB facility. The first of these called TMX (Tandem Mirror Experiment) has been approved and is currently under construction. TMX is designed to utilize the intrinsic positive plasma potential of two strong, and relatively small, minimum B mirror cells to enhance the confinement of a much larger, magnetically weaker, centrally-located mirror cell. The second facility, MFTF (Mirror Fusion Test Facility), is currently in preliminary design with line item approval anticipated for FY 78. MFTF is designed primarily to exploit the experimental and theoretical results derived from 2XIIB. Beyond that, MFTF will develop the technology for the transition from the present small mirror experiments to large steady-state devices such as the mirror FERF/FTR. The sheer magnitude of the plasma volume, magnetic field, neutral beam power, and vacuum pumping capacity, particularly in the case of MFTF, has placed new and exciting demands on engineering technology. An engineering overview of MFTF, TMX, and associated MFE activities at Livermore will be presented

  20. Charged particle confinement in magnetic mirror

    International Nuclear Information System (INIS)

    Bora, D.; John, P.I.; Saxena, Y.C.; Varma, R.K.

    1982-01-01

    The behaviour of single charged particle trapped in a magnetic mirror has been investigated experimentally. The particle injected off axis and trapped in a magnetic mirror, leak out of the mirror with the leakage characterized by multiple decay times. The observed decay times are in good agreement with predictions of a ''wave mechanical like'' model by Varma, over a large range of relevant parameters. (author)

  1. Sensorimotor learning configures the human mirror system.

    Science.gov (United States)

    Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia

    2007-09-04

    Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.

  2. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  3. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  4. Use of a new ion-detector in the study of the jet plasma injected into a pulsed magnetic mirror configuration (deca I)

    International Nuclear Information System (INIS)

    Renaud, C.

    1963-01-01

    The study of a high sensitivity ion detector coupled to an electrostatic analyser has permitted a large investigation of the plasma jet injected into a pulsed magnetic mirror configuration. In this detector the positive ions are accelerated through a potential of 30 kV; they strike a metallic target, on which they produce secondary electrons; these, in turn, are accelerated onto a plastic scintillator. The light pulses are detected with a photomultiplier. The gain of this device is about 10 7 . If we make an admission of air into the vacuum system and again we make vacuum, the gain is not modified, since no special activated surfaces are situated in the detector. (author) [fr

  5. Electrostatic ion confinement in a magnetic mirror field

    International Nuclear Information System (INIS)

    Nishida, Y.; Kawamata, S.; Ishii, K.

    1976-08-01

    The electrostatic ion stoppering at the mirror point is demonstrated experimentally in a magnetic mirror field. The ion losses from the mirror throat are decreased to about 15% of the initial losses in a rather high plasma density (10 10 0 13 cm -3 ). It is discussed as a confinement mechanism of ions that particles are reflected back adiabatically at the throat of the magnetic mirror field supplemented by DC electric field. (auth.)

  6. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  7. Magnetic mirror fusion systems: Characteristics and distinctive features

    International Nuclear Information System (INIS)

    Post, R.F.

    1987-01-01

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power

  8. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.

    Science.gov (United States)

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline

    2014-08-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Computational study of the influence of mirror parameters on FRC (field-reversed configuration) equilibria:

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Sakanaka, P.H.

    1990-01-01

    Field-reversed configuration equilibria are studied by solving the Grad-Shafranov equation. A multiple coil system (main coil and end mirrors) is considered to simulate the coil geometry of CNEA device. First results are presented for computed two-dimensional FRC equilibria produced varying the mirror coil current with two different mirror lenghts. (Author)

  10. Magnetic mirror fusion: status and prospects

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed

  11. Theory of the optimal design of straight-axis minimum-B mirror confinement configurations

    International Nuclear Information System (INIS)

    Hall, L.S.

    1982-01-01

    The design of modern straight-axis linked-mirror plasma-confinement configurations involves a balance between many competing requirements. The dipole and quadrupole components of magnetic induction required in one confinement region often do not match onto the fields of an adjacent region without complications that seriously affect particle drifts or confinement stability. Here, the relevant factors are set down together with the techniques for analytical optimization of the design of a general configuration. A general sufficient condition for the stability of an arbitrary guiding-center MHD equilibrium is derived. This condition makes explicit the stabilizing qualities of good normal curvature and diamagnetic axial current. The instability drive depends on two terms: one carries the sign of normal curvature and the other relates to the relative signs of geodeics curvature and geodesic torsion. The theory is applied to low-beta, large-aspect-ratio equilibria for which analytic expressions for the confining magnetic fields are known. Two optimizations are required to specify the arbitrary features of the quadrupole and dipole fields. One optimization is nonlinear and can be performed by the ordinary calculus of variations; the second optimization is linear and subject to the rules of game theory. Appropriate quality factors are obtained, thus giving the designer quantitative measures with which to balance design trade-offs

  12. Axisymmetric tandem mirror stabilized by a magnetic limiter

    International Nuclear Information System (INIS)

    Kesner, J.; Post, R.S.; Lane, B.

    1985-06-01

    In order to stabilize MHD-like, fast growing m = 1 fluctuations in the central cell of a tandem mirror we propose the introduction of a magnetic limiter. The magnetic limiter would create a ring null in the magnetic field. Electrons which enter the null can stream azimuthally and thereby ''short-circuit'' m = 1 fluctuations. Some pressure could be maintained on the separatrix flux surface by locating the null on a local magnetic maxima or by axial plugging. This scheme introduces the possibility of a fully axisymmetric tandem mirror

  13. The effect of magnetic mirror on near wall conductivity in Hall thrusters

    International Nuclear Information System (INIS)

    Yu, D.; Liu, H.; Fu, H.; Cao, Y.

    2008-01-01

    The effect of magnetic mirror on near wall conductivity is studied in the acceleration region of Hall thrusters. The electron dynamics process in the plasma is described by test particle method, in which electrons are randomly emitted from the centerline towards the inner wall of the channel. It is found that the effective collision coefficient, i.e. the rate of electrons colliding with the wall, changes dramatically with the magnetic mirror effect being considered; and that it decreases further with the increase of magnetic mirror ratio to enhance the electron mobility accordingly. In particular, under anistropic electron velocity distribution conditions, the magnetic mirror effect becomes even more prominent. Furthermore, due to decrease in magnetic mirror ratio from the exhaust plane to the anode in Hall thrusters, the axial gradient of electron mobility with magnetic mirror effect is greater than without it. The magnetic mirror effects on electron mobility are derived analytically and the results are found in agreement with the simulation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. RF-heating and plasma confinement studies in HANBIT mirror device

    International Nuclear Information System (INIS)

    Kwon, M.; Bak, J.G.; Choh, K.K.

    2003-01-01

    HANBIT is a magnetic mirror confinement device. Recently, with almost finishing the first campaign for the basic system development, it started the second campaign for the high-temperature plasma confinement physics study in mirror configuration. Here, we introduce briefly the HANBIT device and report initial physics experiments results on RF-plasma heating and confinement in the simple mirror configuration. It appears that the discharge characteristics of HANBIT are quite different from those in other mirror devices, and an explanation is presented to clarify the difference. (author)

  15. Particle-confinement criteria for axisymmetric field-reversed magnetic configurations

    International Nuclear Information System (INIS)

    Hsiao, M.Y.; Miley, G.H.

    1984-01-01

    Based on two constants of motion, H and Psub(theta), where H is the total energy of a particle and Psub(theta) is its canonical angular momentum, particle confinement criteria are derived which impose constraints on H and Psub(theta). With no electric field at the ends of field-reversed magnetic configurations, confinement criteria for closed-field and absolute confinements are obtained explicitly, including both lower and upper bounds of Psub(theta)/q, where q is the charge of the species considered, for a class of Hill's vortex field-reversed magnetic configurations. The commonly used criterion for the Hamiltonian, H 0 Psub(theta), where ω 0 is identical to qB 0 /mc, is deduced from a more general form as a special case. In this special case, it is found necessary to impose a new criterion, -B 0 R 2 sub(w)/2c 0 is the vacuum field, which reduces the confinement region in (H,Psub(theta)) space. With the presence of electric fields at the ends of field-reversed magnetic configurations, confinement criteria are obtained for two interesting cases. In addition to lower and upper bounds of H, both lower and upper bounds of Psub(theta)/q are found. For axially confined particles, the lower bound of Psub(theta)/q reduces the confinement region in (H,Psub(theta)) space and represents a new criterion. These results can be applied to calculations for field-reversed mirrors and field-reversed theta pinches. (author)

  16. An analogy of a magnetic mirror in mechanics

    International Nuclear Information System (INIS)

    Lal, Amit; Badiger, Shrikrishna M

    2005-01-01

    The motion of a charged particle in a magnetic mirror device is compared to the motion of a bead spiralling into a smooth hollow cone. The complete solution of the motion of the bead is derived and physical aspects of the solution obtained are discussed. Similarities between the motion of the bead and that of a charged particle in a magnetic mirror device are pointed out. The effort is primarily aimed at enhancing the physical understanding of the mechanics of a charged particle in a magnetic mirror device and secondarily at proposing an equivalent mechanics problem, devoid of any electro-dynamical aspect but still possessing all the interesting features of the original problem. The proposed problem can be taught at upper-division undergraduate level

  17. Physics of mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies

  18. Magneto-hydrodynamically stable axisymmetric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  19. Configuration analysis and optimization on multipolar Galatea trap

    Energy Technology Data Exchange (ETDEWEB)

    Tong, W. M., E-mail: dianqi@hit.edu.cn; Tao, B. Q.; Jin, X. J.; Li, Z. W. [Harbin Institute of Technology, School of Electrical Engineering and Automation (China)

    2016-10-15

    Multipolar Galatea magnetic trap simulation model was established with the finite element simulation software COMSOL Multiphysics. Analyses about the magnetic section configuration show that better magnetic configuration should make more plasma stay in the weak magnetic field rather than the annular magnetic shell field. Then an optimization model was established with axial electromagnetic force, weak magnetic field area and average magnetic mirror ratio as the optimization goals and with the currents of myxines as design variables. Select appropriate weight coefficients and get optimization results by applying genetic algorithm. Results show that the superiority of the target value of typical application parameters, including the average magnetic mirror can reduce more than 5%, the weak magnetic field area can increase at least 65%, at the same time, axial electromagnetic force acting on the outer myxines can be reduced to less than 50 N. Finally, the results were proved by COMSOL Multiphysics and the results proved the optimized magnetic trap configuration with more plasma in the weak magnetic field can reduce the plasma diffusion velocity and is more conducive for the constraint of plasma.

  20. Evolution of the mirror machine

    International Nuclear Information System (INIS)

    Damm, C.C.

    1983-01-01

    The history of the magnetic-mirror approach to a fusion reactor is primarily the history of our understanding and control of several crucial physics issues, coupled with progress in the technology of heating and confining a reacting plasma. The basic requirement of an MHD-stable plasma equilibrium was achieved following the early introduction of minimum-B multipolar magnetic fields. In refined form, the same magnetic-well principle carries over to our present experiments and to reactor designs. The higher frequency microinstabilities, arising from the non-Maxwellian particle distributions inherent in mirror machines, have gradually come under control as theoretical prescriptions for distribution functions have been applied in the experiments. Even with stability, the classical plasma leakage through the mirrors posed a serious question for reactor viability until the principle of electrostatic axial stoppering was applied in the tandem mirror configuration. Experiments to test this principle successfully demonstrated the substantial improvement in confinement predicted. Concurrent with advances in mirror plasma physics, development of both high-power neutral beam injectors and high-speed vacuum pumping techniques has played a crucial role in ongoing experiments. Together with superconducting magnets, cryogenic pumping, and high-power radiofrequency heating, these technologies have evolved to a level that extrapolates readily to meet the requirements of a tandem mirror fusion reactor

  1. Survey of mirror machine reactors

    International Nuclear Information System (INIS)

    Condit, W.C.

    1978-01-01

    The Magnetic Mirror Fusion Program is one of the two main-line fusion efforts in the United States. Starting from the simple axisymmetric mirror concept in the 1950's, the program has successfully overcome gross flute-type instabilities (using minimum-B magnetic fields), and the most serious of the micro-instabilities which plagued it (the drift-cyclotron loss-cone mode). Dense plasmas approaching the temperature range of interest for fusion have been created (n/sub p/ = 10 14 /cc at 10 to 12 keV). At the same time, rather extensive conceptual design studies of possible mirror configurations have led to three principle designs of interest: the standard mirror fission-fusion hybrid, tandem mirror, and the field-reversed mirror. The lectures will discuss these three concepts in turn. There will be no discussion of diagnostics for the mirror machine in these lectures, but typical plasma parameters will be given for each type of machine, and the diagnostic requirements will be apparent. In a working fusion reactor, diagnostics will be required for operational control, and remarks will be made on this subject

  2. Cluster magnetic field observations in the magnetosheath: four-point measurements of mirror structures

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    2001-09-01

    Full Text Available The Cluster spacecraft have returned the first simultaneous four-point measurements of the magnetosheath. We present an analysis of data recorded on 10 November 2000, when the four spacecrafts observed an interval of strong mirrorlike activity. Correlation analysis between spacecraft pairs is used to examine the scale size of the mirror structures in three dimensions. Two examples are presented which suggest that the scale size of mirror structures is ~ 1500–3000 km along the flow direction, and shortest along the magnetopause normal (< 600 km, which, in this case, is approximately perpendicular to both the mean magnetic field and the magnetosheath flow vector. Variations on scales of ~ 750–1000 km are found along the maximum variance direction. The level of correlation in this direction, however, and the time lag observed, are found to be variable. These first results suggest that variations occur on scales of the order of the spacecraft separation ( ~ 1000 km in at least two directions, but analysis of further examples and a statistical survey of structures observed with different magnetic field orientations and tetrahedral configurations will enable us to describe more fully the size and orientation of mirror structures.Key words. Magnetosphenic physics (magnetosheath; plasma waves and instabilities

  3. Cluster magnetic field observations in the magnetosheath: four-point measurements of mirror structures

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    Full Text Available The Cluster spacecraft have returned the first simultaneous four-point measurements of the magnetosheath. We present an analysis of data recorded on 10 November 2000, when the four spacecrafts observed an interval of strong mirrorlike activity. Correlation analysis between spacecraft pairs is used to examine the scale size of the mirror structures in three dimensions. Two examples are presented which suggest that the scale size of mirror structures is ~ 1500–3000 km along the flow direction, and shortest along the magnetopause normal (< 600 km, which, in this case, is approximately perpendicular to both the mean magnetic field and the magnetosheath flow vector. Variations on scales of ~ 750–1000 km are found along the maximum variance direction. The level of correlation in this direction, however, and the time lag observed, are found to be variable. These first results suggest that variations occur on scales of the order of the spacecraft separation ( ~ 1000 km in at least two directions, but analysis of further examples and a statistical survey of structures observed with different magnetic field orientations and tetrahedral configurations will enable us to describe more fully the size and orientation of mirror structures.

    Key words. Magnetosphenic physics (magnetosheath; plasma waves and instabilities

  4. Magnets for the Mirror Fusion Test Facility: testing of the first Yin-Yang and the design and development of other magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Wang, S.T.; Chang, Y.

    1983-01-01

    Completed in May 1981, the first Yin-Yang magnet for the tandem Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) was successfully tested in February 1982 to its full design field (7.68 T) and current (5775 A). Since that time, the entire magnet array has been reconfigured - from the original A-cell to an axicell design. The MFTF-B magnet array now contains a total of 26 large superconducting coils: 2 sets of yin-yang pairs, 2 sets of transition magnets (each containing two coils), 2 sets of axicell magnets (each containing three coils), and 12 central-cell solenoids. This paper chronicles recent magnet history - from te testing of the initial yin-yang set, through the design of the axicell configuration, to the planned development of the system

  5. Plasma cleaning of ITER First Mirrors in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Lucas, E-mail: lucas.moser@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Steiner, Roland [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Leipold, Frank; Reichle, Roger [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); Marot, Laurent; Meyer, Ernst [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2015-08-15

    To avoid reflectivity losses in ITER’s optical diagnostic systems, plasma sputtering of metallic First Mirrors is foreseen in order to remove deposits coming from the main wall (mainly beryllium and tungsten). Therefore plasma cleaning has to work on large mirrors (up to a size of 200 × 300 mm) and under the influence of strong magnetic fields (several Tesla). This work presents the results of plasma cleaning of aluminium and aluminium oxide (used as beryllium proxy) deposited on molybdenum mirrors. Using radio frequency (13.56 MHz) argon plasma, the removal of a 260 nm mixed aluminium/aluminium oxide film deposited by magnetron sputtering on a mirror (98 mm diameter) was demonstrated. 50 nm of pure aluminium oxide were removed from test mirrors (25 mm diameter) in a magnetic field of 0.35 T for various angles between the field lines and the mirrors surfaces. The cleaning efficiency was evaluated by performing reflectivity measurements, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy.

  6. Magnet system for a thermal barrier Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Kim, N.S.; Conn, R.W.

    1981-01-01

    The magnet system for a thermal barrier D-D tandem mirror reactor has been studied as part of the UCLA tandem mirror reactor design study SATYR. Three main considerations in designing the SATYR magnet system are to obtain the desired field strength variation throughout the system, to have proper space for plasma and neutron shielding, and to satisfy the MHD stability to achieve maximum central cell /beta/. Due to the importance and the complexity, the 'internal' field reversal magnet is the main concern in the entire magnet system for SATYR. Two different magnet designs, a non-uniform current density solenoid and a higher-order solenoid, are discussed. Coil levitation for the internal field reversal magnet has been analyzed

  7. Injection, compression and confinement of electrons in a magnetic mirror

    International Nuclear Information System (INIS)

    Fisher, A.

    1975-01-01

    A Helmholtz coil configuration has been constructed where the magnetic field can be increased to about 10 kGauss in 20 μsec. Electrons are injected from a hot tantalum filament between two plates across which a potential of about 5 keV is applied. The electric field E is perpendicular to the magnetic field B so that the direction of the E x B drift is radial--into the magnetic mirror. About 10 14 electrons were injected and about 10 13 electrons were trapped. The initial electron energy was about 5 keV and after compression 500 keV x-rays were observed. The confinement time is very sensitive to vacuum. Confinement times of milliseconds and good compression were observed at vacuum of 5.10 -5 torr or less. Above 5.10 -5 torr there was no trapping or compression. After a compressed ring of electrons was formed, it was released by a pulse applied to one of the Helmholtz coils that reduced the field. Ejection of the electron ring was observed by x-ray measurements

  8. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  9. Magnetic mirrors: history, results, and future prospects

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Ivanov, A.A.; Kruglyakov, E.P.; Burdakov, A.V.; Ivanov, A.A.; Beklemishev, A.D.; Ivanov, A.A.; Burdakov, A.V.

    2012-01-01

    The evolution of open traps brought them from simple solenoids to highly sophisticated and huge tandem mirrors with quadrupole magnetic stabilizers. They tried to compete with toroidal devices using ambipolar confinement and thermal barriers, but were too late and failed, and are almost extinct. A side branch of open traps went for simplicity and good fast-ion confinement inherent in axially symmetric mirrors. Since simplicity means lower cost of construction and servicing, and lower engineering and materials demands, such type of traps might still have an edge. Axially symmetric mirrors at the Budker Institute of Nuclear Physics in Novosibirsk currently represent the front line of mirror research. We discuss recent experimental results from the multiple-mirror trap, GOL-3, and the gas-dynamic trap, GDT. The next step in this line of research is the GDMT program that will combine the GDT-style fast-ion-dominated central mirror with multiple-mirror end plugs. This superconducting device will be modular and built in stages. The first stage, GDMT-T, will be based on 5m, 7T superconducting solenoid (multiple-mirror plug of the full device). Its 3-year scientific program is oriented primarily on PMI studies.

  10. Topics on the formation and stability of magnetic-mirror-confined plasmas

    International Nuclear Information System (INIS)

    Wickham, M.G.

    1981-01-01

    We have investigated two methods of creating a magnetic mirror confined plasma. The first method used the direct cross-field injection of a potassium plasma into a magnetic mirror, and the second applied ion-cyclotron-resonance heating (ICRH) to a barium Q-machine plasma in a simple axisymmetric mirror field. The latter procedure provided a plasma which was particularly suitable for the investigation of MHD stability and kinetic microstability

  11. Magnetic reconnection and current sheet formation in 3D magnetic configurations

    International Nuclear Information System (INIS)

    Frank, A.G.

    1999-01-01

    The problem of magnetic reconnection in three-dimensional (3D) magnetic configurations has been studied experimentally. The research has concentrated on the possibilities of formation of current sheets, which represent crucial objects for a realization of magnetic reconnection phenomena. Different types of 3D magnetic configurations were examined, including configurations with singular lines of the X-type, non-uniform fields containing isolated magnetic null-points and without null-points. It was revealed that formation of quasi-one-dimensional current sheets is the universal process for plasma dynamics in 3D magnetic fields both with null-points and without. At the same time the peculiarities of current sheets, plasma dynamics and magnetic reconnection processes depend essentially on characteristics of 3D magnetic configurations. The result of principal significance obtained was that magnetic reconnection phenomena can take place in a wide range of 3D magnetic configurations as a consequence of their ability to form current sheets. (author)

  12. Irradiated radiation dose measurements of multilayer mirrors and permanent magnets used at FELI facilities

    International Nuclear Information System (INIS)

    Wakisaka, K.; Tongu, H.; Okuma, S.; Oshita, E.; Wakita, K.; Takii, T.; Tomimasu, Takio

    1997-01-01

    Recently the operation time of the free electron laser (FEL) user's facilities is close on three thousand hours per year. Cavity mirrors of their optical resonators and permanent magnets of their undulators are used under high intensity radiation field along their high current electron beam lines. Among these mirrors and permanent magnets, multilayer mirrors and Nd-Fe-B permanent magnets are not so strong against radiation damage compared with Au-coated copper mirrors and Sm-Co permanent magnets. A radiation damage on Ta 2 O 5 /SiO 2 mirrors was found for the first time after about fifty hours visible FEL operation at the FELI. The damage is due to irradiated bremsstrahlung and intracavity FEL. However, radiation damages on Nd-Fe-B permanent magnets were already reported compared with Sm-Co ones using high energy neutrons, protons, deuterons and 60 Coγ-rays. Mixed irradiation effects of 85-MeV electrons, bremsstrahlung and 60 Coγ-rays and of 17-MeV electrons and 60 Coγ-rays were also studied. The latest results show that the magnetic flux loss of Nd-Fe-B is 2% at an absorbed dose of 10 MGy. The present work was carried out to study the irradiated dose distributions near the multilayer mirrors and Nd-Fe-B permanent magnets with thermoluminescence dosimeters (TLDs). The irradiated dose to the cavity mirrors used in Linac-based FEL experiment is estimated to be 0.3 MGray for fifty hours irradiation. The irradiated dose to the Nd-Fe-B magnets is estimated to be 16 MGray for 2 thousand hours operation. The decrease of their magnetic flux due to 16 MGray is estimated to be about 3%. These dose monitorings are useful to reduce irradiated dosages to the mirrors and the permanent magnets as low as possible and to estimate their safety lifetimes. (author)

  13. Configuration and layout of the tandem mirror Fusion Power Demonstrator

    International Nuclear Information System (INIS)

    Clarkson, I.R.; Neef, W.S.

    1983-01-01

    Studies have been performed during the past year to determine the configuration of a tandem mirror Fusion Power Demonstrator (FPD) machine capable of producing 1750 MW of fusion power. The FPD is seen as the next logical step after the Mirror Fusion Test Facility-B (MFTF-B) toward operation of a power reactor. The design of the FPD machine allows a phased construction: Phase I, a hydrogen or deuterium checkout machine; Phase 2, a DT breakeven machine; Phase 3, development of the Phase 2 machine to provide net power and act as a reactor demonstrator. These phases are essential to the development of remote handling equipment and the design of components that will ultimately be remotely handled. Phasing also permits more modes funding early in the program with some costs committed only after reaching major milestones

  14. Demonstration of Focusing Wolter Mirrors for Neutron Phase and Magnetic Imaging

    Directory of Open Access Journals (Sweden)

    Daniel S. Hussey

    2018-03-01

    Full Text Available Image-forming focusing mirrors were employed to demonstrate their applicability to two different modalities of neutron imaging, phase imaging with a far-field interferometer, and magnetic-field imaging through the manipulation of the neutron beam polarization. For the magnetic imaging, the rotation of the neutron polarization in the magnetic field was measured by placing a solenoid at the focus of the mirrors. The beam was polarized upstream of the solenoid, while the spin analyzer was situated between the solenoid and the mirrors. Such a polarized neutron microscope provides a path toward considerably improved spatial resolution in neutron imaging of magnetic materials. For the phase imaging, we show that the focusing mirrors preserve the beam coherence and the path-length differences that give rise to the far-field moiré pattern. We demonstrated that the visibility of the moiré pattern is modified by small angle scattering from a highly porous foam. This experiment demonstrates the feasibility of using Wolter optics to significantly improve the spatial resolution of the far-field interferometer.

  15. Ion-cyclotron instability in magnetic mirrors

    International Nuclear Information System (INIS)

    Pearlstein, L.D.

    1987-01-01

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits

  16. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng; Fu, Jiecai; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Zhang, Junli

    2018-01-01

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  17. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng

    2018-03-20

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  18. Enhanced Plasma Confinement in a Magnetic Well by Whistler Waves

    DEFF Research Database (Denmark)

    Balmashnov, A. A.; Juul Rasmussen, Jens

    1981-01-01

    The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well.......The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well....

  19. Design of tandem mirror reactors with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1980-01-01

    End-plug technologies for tandem mirror reactors include high-field superconducting magnets, neutral beam injectors, and gyrotrons for electron cyclotron resonant heating (ECRH). In addition to their normal use for sustenance of the end-plug plasmas, neutral beam injectors are used for ''pumping'' trapped ions from the thermal barrier regions by charge exchange. An extra function of the axially directed pump beams is the removal of thermalized alpha particles from the reactor. The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror fusion Test Facility (MFTF-B) in 1984

  20. Optimum condition for spatial ion cyclotron resonance in a multiple magnetic mirror field

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Hatakeyama, Rikizo; Sato, Noriyoshi

    1988-01-01

    A Spatial cyclotron resonance of ion beams passing through a multiple magnetic mirror field is investigated experimentally by varying parameters of the multiple mirror field. The optimum resonance condition is realized with a decrease in the cell length of the multiple mirror along the beams to satisfy the local condition of the spatial ion cyclotron resonance. The results show a remarkable increase of nonadiabatic transfer of the beam energy into the transverse direction to the magnetic field. (author)

  1. Linked tandem mirror configuration as a possible steady state high β plasma container

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1982-04-01

    A possibility of achieving steady state high β plasma confinement in toroidal geometry is considered in detail by closing off the ends of tandem mirrors entirely by flux bridges, where β is the ratio of plasma pressure to the magnetic pressure. The key problem of this approach seems to be the magnetic design of magneto-hydrodynamically stabilized, preferentially leaky bridges. (author)

  2. Output-Mirror-Tuning Terahertz-Wave Parametric Oscillator with an Asymmetrical Porro-Prism Resonator Configuration

    Science.gov (United States)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei

    2017-06-01

    We demonstrate a terahertz-wave parametric oscillator (TPO) with an asymmetrical porro-prism (PP) resonator configuration, consisting of a close PP corner reflector and a distant output mirror relative to the MgO:LiNbO3 crystal. Based on this cavity, frequency tuning of Stokes and the accompanied terahertz (THz) waves is realized just by rotating the plane mirror. Furthermore, THz output with high efficiency and wide tuning range is obtained. Compared with a conventional TPO employing a plane-parallel resonator of the same cavity length and output loss, the low end of the frequency tuning range is extended to 0.96 THz from 1.2 THz. The highest output obtained at 1.28 THz is enhanced by about 25%, and the oscillation threshold pump energy measured at 1.66 THz is reduced by about 4.5%. This resonator configuration also shows some potential to simplify the structure and application for intracavity TPOs.

  3. Mirror power reactor magnet coil system: a technically and economically feasible design

    International Nuclear Information System (INIS)

    Peterson, M.A.

    1977-01-01

    The design and preliminary engineering analysis of a ''Yin Yang'' coil system utilizing several original design concepts to achieve technical and economic feasibility will be presented. The design analysis is begun with a general description of the constraints and prerequisites which define the problem of designing a satisfactory coil system for a mirror power reactor. This description includes a discussion of the coil conductor geometry required by plasma physics considerations, and also a description of the magnitude and direction of the magnetic force system distributed over the conductor geometry. In addition, the important design constraints which all mirror coil system designs must satisfy if they are to successfully interface with the other reactor components are reviewed. After considering the basic constraints that Yin Yong coil systems must be developed around, a survey of the various design concepts that were developed and explored in search of a satisfactory coil system design is discussed. From this extensive preliminary investigation of potential coil system configurations, a coil system design was developed which appears to offer by far the best combination of technical and economic feasibility of any other coil system design developed thus far

  4. Injection and temporary capture of a charged particle beam in an open magnetic configuration. Optimization of the configuration. Case of cylindrical symmetry: A mirror machine; Etude de l'injection et de la capture temporaire d'un faisceau de particules chargees dans une configuration magnetique ouverte. Optimisation de la configuration. Cas de la symetrie de revolution: Machine a miroirs

    Energy Technology Data Exchange (ETDEWEB)

    Capdequi-Peyranere, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-12-01

    A study has been made of a new method of transverse injection of charged particles into a magnetic mirror configuration. This injection scheme permits the penetration and temporary capture by non-adiabatic effect of a particle beam of approximately 1 cm{sup 2} cross-section. A theoretical study of the injection and capture is made in the approximation that space charge is negligible. The original programs for IBM 7094 computer calculations are described; these programs were used to obtain an optimization of the configuration. The results of a statistical numerical study of the optimum configuration are then given. This study indicates that, if the energy of the particles of the beam is about 1 per cent greater than a minimum penetration energy, the entire beam can be captured with an average capture length of 100 meters (50 reflections between the two mirrors). If the energy is about 4 per cent greater than the minimum penetration energy, the capture length is reduced to 40 meters. We have studied the distribution of energy transverse and longitudinal with the magnetic field for the population of captured particles. For the cases of injected molecular hydrogen ions or heavy CH{sub 4}{sup +} ions, a study is made of the capture time of protons resulting from the dissociation of the ions by collisions with the neutral gas. Finally, we describe a model experiment using electrons designed to provide an experimental verification of the capture of the primary beam. (author) [French] On etudie un nouveau schema d'injection transversale de particules chargees dans une configuration magnetique a miroirs. Ce mode d'injection permet la penetration et la capture temporaire par effet non adiabatique d'un faisceau de particules presentant une section de l'ordre de 1 cm{sup 2}. Une etude theorique du probleme de l'injection et de la capture est faite en supposant la charge d'espace negligeable. On decrit des programmes originaux de calcul sur ordinateur IBM 7094 permettant l

  5. The Broader Spectrum of Magnetic Configurations for Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prager, S C [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ryutov, D D [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-09-15

    Over the decades, a large array of magnetic configurations has been studied, producing a huge amount of fusion plasma science. As configurations are developed, information and techniques learned through one configuration influence the development of other configurations. In this way, configurations evolve unexpectedly in response to new information. Configurations that were at a pause can become unstuck by new discoveries, and configurations that appeared promising for fusion energy can become unattractive as new limits are uncovered. The plasma science of fusion energy is sufficiently complex that, as we approach ever closer to practical fusion power, the need for potential contributions of broad research of multiple magnetic configurations remains strong. (author)

  6. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  7. Experiments on the injection, confinement, and ejection of electron clouds in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1978-01-01

    A cloud of (5 to 10 keV) electrons is injected into a magnetic mirror field. The magnetic field rises in 40--120 μsec to a maximum of 10 kG. Two methods of injection were tried: In the first, the injector is located at the mirror midplane and electrons are injected perpendicular to the magnetic field lines. In the second scheme, the injector is located near the mirror maximum. Up to about 10 11 electrons were trapped in both schemes with a mean kinetic energy of 0.3 MeV. Measured confinement time is limited only by the magnetic field decay time. The compressed electron cloud executes electrostatic oscillations. The frequency of the oscillation is proportional to the number of electrons trapped, and it is independent of the value of the magnetic field and the initial electron energy. The electron cloud was ejected along the mirror axis and properties of the ejected electron cloud were measured by x-ray pulses from bremstrahlung of electrons on the vacuum system wall and by collecting electrons on a Faraday cup

  8. Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation

    Science.gov (United States)

    Ahmadi, N.; Wilder, F. D.; Usanova, M.; Ergun, R.; Argall, M. R.; Goodrich, K.; Eriksson, S.; Germaschewski, K.; Torbert, R. B.; Lindqvist, P. A.; Le Contel, O.; Khotyaintsev, Y. V.; Strangeway, R. J.; Schwartz, S. J.; Giles, B. L.; Burch, J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission observed electron whistler waves at the center and at the gradients of magnetic holes on the dayside magnetosheath. The magnetic holes are nonlinear mirror structures which are anti-correlated with particle density. We used expanding box Particle-in-cell simulations and produced the mirror instability magnetic holes. We show that the electron whistler waves can be generated at the gradients and the center of magnetic holes in our simulations which is in agreement with MMS observations. At the nonlinear regime of mirror instability, the proton and electron temperature anisotropy are anti-correlated with the magnetic hole. The plasma is unstable to electron whistler waves at the minimum of the magnetic field structures. In the saturation regime of mirror instability, when magnetic holes are dominant, electron temperature anisotropy develops at the edges of the magnetic holes and electrons become isotropic at the magnetic field minimum. We investigate the possible mechanism for enhancing the electron temperature anisotropy and analyze the electron pitch angle distributions and electron distribution functions in our simulations and compare it with MMS observations.

  9. Lunar remnant magnetic field mapping from orbital observations of mirrored electrons

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, J E [National Aeronautics and Space Administration, Houston, Tex. (USA). Johnson Space Center; Anderson, K A; Lin, R P; Howe, H C; McGuire, R E [California Univ., Berkeley (USA). Space Sciences Lab.

    1975-09-01

    Areas of lunar surface magnetic field are observed to ''mirror'' low energy electrons present in the normal lunar space environment. The ambient electrons provide, in effect, a probe along the ambient magnetic field lines down to the lunar surface for remote sensing of the presence of surface fields. Use of the on-board vector magnetometer measurements of the ambient magnetic field orientation allows accurate projection of such mapping onto the lunar surface. Preliminary maps of the lunar surface magnetic areas underlying the orbit of the ''Particles and Fields Satellite deployed from Apollo 16'' have been generated, obtaining 40% coverage from partial data to demonstrate feasibility of the technique. These maps reveal many previously unreported areas of surface magnetism. The method is sensitive to fields of less than 0.1..gamma.. at the surface. The surface field regions observed are generally due to sources smaller than 10-50km in size, although many individual regions are often so close together as to give much larger regions of effectively continuous mirroring. Absence of consistent mirroring by any global field places an upper limit on the size of any net lunar dipole moment of less than 10/sup 10/..gamma..km/sup 3/. Much additional information regarding the magnetic regions can be obtained by correlated analysis of both the electron return and vector magnetometer measurements at orbital altitude, the two techniques providing each other with directly complimentary measurements at the satellite and along the ambient field lines to the surface.

  10. Potential measurements in tandem mirrors

    International Nuclear Information System (INIS)

    Glowienka, J.C.

    1985-11-01

    The US mirror program has begun conducting experiments with a thermal barrier tandem mirror configuration. This configuration requires a specific axial potential profile and implies measurements of potential for documentation and optimization of the configuration. This report briefly outlines the motivation for the thermal barrier tandem mirror and then outlines the techniques used to document the potential profile in conventional and thermal barrier tandem mirrors. Examples of typical data sets from the world's major tandem mirror experiments, TMX and TMX-U at Lawrence Livermore National Laboratory (LLNL) and Gamma 10 at Tsukuba University in Japan, and the current interpretation of the data are discussed together with plans for the future improvement of measurements of plasma potential

  11. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  12. Design for the magnetic field requirements of the tandem mirror experiment

    International Nuclear Information System (INIS)

    Chen, F.K.; Chargin, A.K.; Denhoy, B.S.; Waugh, A.F.

    1977-01-01

    The tandem mirror magnetic geometry is described, followed by an analysis of the magnet set designed to meet the requirements of the TMX experiment. The final magnet line-up is composed of a baseball coil with two C coils for each plug, six solenoidal coils for the central cell, and two RC coils plus one octupole coil for each transition

  13. Simulation of the magnetic mirror effect on a beam of positrons

    CERN Document Server

    Boursette, Delphine

    2014-01-01

    I simulated a beam of positrons at the entrance of a 5 Tesla magnet for the Aegis experiment. The goal was to show how many positrons are lost because of the magnetic mirror effect. To do my simulation, I used Comsol to create the magnetic field map and Geant4 to draw the trajectories of the positrons in this field map.

  14. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    International Nuclear Information System (INIS)

    Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.

    2010-01-01

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.

  15. Technology requirements for fusion--fission reactors based on magnetic-mirror confinement

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    Technology requirements for mirror hybrid reactors are discussed. The required 120-keV neutral beams can use positive ions. The magnetic fields are 8 T or under and can use NbTi superconductors. The value of Q (where Q is the ratio of fusion power to injection power) should be in the range of 1 to 2 for economic reasons relating to the cost of recirculating power. The wall loading of 14-MeV neutrons should be in the range of 1 to 2 MW/m 2 for economic reasons. Five-times higher wall loading will likely be needed if fusion reactors are to be economical. The magnetic mirror experiments 2XIIB, TMX, and MFTF are described

  16. Thermal performance of the MFTF magnets

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1983-01-01

    A yin-yang pair of liquid-helium (LHe) cooled, superconducting magnets were tested last year at the Lawrence Livermore National Laboratory (LLNL) as part of a series of tests with the Mirror Fusion Test Facility (MFTF). These tests were performed to determine the success of engineering design used in major systems of the MFTF and to provide a technical base for rescoping from a single-mirror facility to the large tandem-mirror configuration (MFTF-B) now under construction. The magnets were cooled, operated at their design current and magnetic field, and warmed to atmospheric temperature. In this report, we describe their thermal behavior during these tests

  17. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    CERN Document Server

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  18. Magnetization configurations and hysteresis loops of small permalloy ellipses

    International Nuclear Information System (INIS)

    Schneider, M; Liszkowski, J; Rahm, M; Wegscheider, W; Weiss, D; Hoffmann, H; Zweck, J

    2003-01-01

    We investigated systematically the easy axis magnetization reversal of 20 nm thick permalloy ellipses with a fixed major axis of 1.47 μm and minor axes of 0.22-1.47 μm. Lorentz transmission electron microscopy was used to image the micromagnetic configurations during magnetization reversal. Hysteresis loops of single ellipses were recorded by means of micro-Hall magnetometry and could be traced back to certain reversal mechanisms observed by Lorentz microscopy. In most cases, the magnetization reversal is initiated by the evolution of a magnetization buckling, followed by the formation of a single, a double, or a trapped vortex configuration. For ellipses with high aspect ratio (length-to-width ratio), the magnetization switches in the reversed magnetic field without creation of a stable vortex configuration. Our experiments show that the characteristic field values for vortex creation, single vortex annihilation, and switching strongly depend on the shape anisotropy of the elements

  19. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; /Fermilab

    2007-06-01

    Fermilab is working on the development of Nb{sub 3}Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb{sub 3}Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models.

  20. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    International Nuclear Information System (INIS)

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Fermilab

    2007-01-01

    Fermilab is working on the development of Nb 3 Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb 3 Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models

  1. Pressure effect on equilibrium configuration of CTCC-2 spheromak

    International Nuclear Information System (INIS)

    Nishikawa, M.; Kato, Y.; Satomi, N.; Watanabe, K.

    1990-01-01

    In CTCC-2 experiment, the initial plasma is produced by a magnetized gun and ejected into a metallic aluminum flux conserver (FC) with thickness of 15 mm. The spheromak is formed in the FC during a life time of 1.5 ms, in which the plasma is isolated from any external feeder. A choking-field-generating coil is equipped on the entrance of the spheroidal FC. The choking field is suppressing some leakage of spheromak field along the entrance duct, which is made of thin stainless steel plate (0.8 mm) for rapid penetration of the choking magnetic field. This resistive part acts as an effective plasma current limiter, which produces stable currentless region (flux hole). The flux hole increases magnetic shear without inserting a central conducting pole along the symmetric axis and is controlled to decrease with the choking field strength. Thus, in CTCC-2 spheromak, a stable oblate spheroidal boundary is rigidly fixed by the metal wall of FC and the entrance hole of FC is effectively closed by choking magnetic field, so that it is suitable to investigate precisely a fine structure of configuration. In spheromak configuration whose aspect ratio is near one, the ratio of the magnetic strength at the inner part to that at the outer part on equi-flux surface (mirror ratio) becomes very large in comparison with that of a large aspect ratio. This extreme configuration with a high mirror ratio may be associated with an anisotropic pressure effect even in collisional state like as our experimental condition. They have investigated the pressure effect on spheromak configuration in more detail. The obtained equilibrium profile is grossly explained by a theoretical profile on assuming low beta limit until now. However, the authors observe a systematic discrepancy between a measured poloidal profile and a theoretical one as mentioned

  2. A supplemental device to return escaping particles to a magnetic mirror reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Mitsuaki [Nippon Electronic Engineering College, Noboribetsu-shi, Hokkaido (Japan); Sawada, Keiichi [Soft Creator Company, Kyoto (Japan)

    2018-12-15

    Cyclotron resonance is now applied as one of the important means for heating plasma in a fusion reactor. We examined this phenomenon from the viewpoint of electron gyration orbits through a solution of the linearized relativistic equation of motion. We found a powerful term that accelerates a relativistic charged particle largely at a resonance point when a magnetic field strength is very large. In this study, aiming an effect of this term, we consider applying a resonance phenomenon to reducing the number of charged particles that escape from a magnetic mirror reactor. We install a long supplemental device at the exit of a main magnetic bottle and make a cyclotron resonance space within the device, as shown in Fig. 7. If velocities (perpendicular to a magnetic field) of charged particles are accelerated largely within the cyclotron resonance space, the reflection efficiency of a magnetic mirror behind the resonance space ought to be improved. Based on this idea, we discuss such a supplemental device for recovering the maximum number of escaping charged particles. (orig.)

  3. Plasma confinement apparatus using solenoidal and mirror coils

    Science.gov (United States)

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  4. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Directory of Open Access Journals (Sweden)

    Jaeyoung Park

    2015-06-01

    Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  5. Plasma confinement apparatus using solenoidal and mirror coils

    International Nuclear Information System (INIS)

    Fowler, T.K.; Condit, W.C.

    1979-01-01

    A plasma confinement apparatus is described, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed

  6. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  7. Mirror machine reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    Recent mirror reactor conceptual design studies are described. Considered in detail is the design of ''standard'' Yin-Yang fusion power reactors with classical and enhanced confinement. It is shown that to be economically competitive with estimates for other future energy sources, mirror reactors require a considerable increase in Q, or major design simplifications, or preferably both. These improvements may require a departure from the ''standard'' configuration. Two attractive possibilities, both of which would use much of the same physics and technology as the ''standard'' mirror, are the field reversed mirror and the end-stoppered mirror

  8. External magnetic field configurations for EXTRAP

    International Nuclear Information System (INIS)

    Bonnevier, B.

    1982-08-01

    The strongly inhomogeneous magnetic field for stabilization of a pinch in an Extrap configuration can be created in various ways. Some possibilities both for the linear case and for the toroidal case are discussed. (author)

  9. Plasma potential in a magnetic mirror with electron-cyclotron-resonance heating

    International Nuclear Information System (INIS)

    Smith, P.K.

    1983-01-01

    Experimental and theoretical studies of the ECRH plasma in the University of Wisconsin DE Machine magnetic mirror have been undertaken. Typical plasma parameters in these experiments were T/sub e/ - 10 to 30 eV, T/sub i/ - 4 eV, V/sub po/ (plasma potential at midplane) - 20 to 50 V, midplane plasma density n 0 - 10 16 m - 3 , B 0 (magnetic field strength on axis at midplane) - .005 to .01 T, mirror ratio R - 5 to 20. The principal experimental findings were the appearance of strong density peaks (approx. 2 x background) and notable V/sub f/ dips (approx. kT/sub e//e) in a narrow (approx. 1 cm) region near the axial positions of cyclotron resonance. The properties of these dips do not change greatly over the range of operating parameters, but are narrower at higher pressures

  10. Rethermalization of a field-reversed configuration plasma in translation experiments

    International Nuclear Information System (INIS)

    Himura, H.; Okada, S.; Sugimoto, S.; Goto, S.

    1995-01-01

    A translation experiment of field-reversed configuration (FRC) plasma is performed on the FIX machine [Shiokawa and Goto, Phys. Fluids B 5, 534 (1993)]. The translated FRC bounces between magnetic mirror fields at both ends of a confinement region. The plasma loses some of its axial kinetic energy when it is reflected by the magnetic mirror field, and eventually settles down in the confinement region. In this reflection process, the plasma temperature rises significantly. Such plasma rethermalization has been observed in OCT-L1 experiments [Ito et al., Phys. Fluids 30, 168 (1987)], but rarely in FRX-C/T experiments [Rej et al., Phys. Fluids 29, 852 (1986)]. It is found that the rethermalization depends on the relation between the plasma temperature and the translation velocity. The rethermalization occurs only in the case where the translation velocity exceeds the sound velocity. This result implies the rethermalization is caused by a shock wave induced within the FRC when the plasma is reflected by the magnetic mirror field. copyright 1995 American Institute of Physics

  11. Nuclear structure and magnetic moment of the unstable 12B-12N mirror pair

    International Nuclear Information System (INIS)

    Zheng Yongnan; Zhou Dongmei; Yuan Daqing; Zuo Yi; Fan Ping; Xu Yongjun; Zhu Jiazheng; Wang Zhiqiang; Luo Hailong; Zhang Xizhen; Zhu Shengyun; Mihara, M.; Matsuta, K.; Fukuda, M.; Minamisono, T.; Suzuki, T.

    2010-01-01

    Magnetic moments of the A=12 unstable mirror pair nuclides 12 B and 12 N have been measured by the β-NMR technique. The experimentally measured magnetic moments are μ( 12 B)=1.00(17)μ N and μ( 12 N)=0.4571(1)μ N . The improved shell model using an SFO Hamiltonian with enhanced spin-isospin monopole proton-neutron interaction and modified single-particle energies is employed to calculate the magnetic moments of 12 B and 12 N. The calculation yields μ( 12 B)=0.929μ N and μ( 12 N)=0.452μ N and has produced a new magic number 6 for the short-lived unstable mirror pair nuclides 12 B and 12 N. (authors)

  12. Laser-start-up system for magnetic mirror fusion

    International Nuclear Information System (INIS)

    Frank, A.M.; Thomas, S.R.; Denhoy, B.S.; Chargin, A.K.

    1976-01-01

    A CO 2 laser system has been developed at LLL to provide hot start-up plasmas for magnetic mirror fusion experiments. A frozen ammonia pellet is irradiated with a laser power density in excess of 10 13 W/cm 2 in a 50-ns pulse. This system uses commercially available laser systems. Optical components were fabricated both by direct machining and standard techniques. The technologies used in this system are directly applicable to reactor scale systems

  13. Tandem mirror and field-reversed mirror experiments

    Energy Technology Data Exchange (ETDEWEB)

    Coensgen, F.H.; Simonen, T.C.; Turner, W.C.

    1979-08-21

    This paper is largely devoted to tandem mirror and field-reversed mirror experiments at the Lawrence Livermore Laboratory (LLL), and briefly summarizes results of experiments in which field-reversal has been achieved. In the tandem experiment, high-energy, high-density plasmas (nearly identical to 2XIIB plasmas) are located at each end of a solenoid where plasma ions are electrostatically confined by the high positive poentials arising in the end plug plasma. End plug ions are magnetically confined, and electrons are electrostatically confined by the overall positive potential of the system. The field-reversed mirror reactor consists of several small field-reversed mirror plasmas linked together for economic reasons. In the LLL Beta II experiment, generation of a field-reversed plasma ring will be investigated using a high-energy plasma gun with a transverse radial magnetic field. This plasma will be further heated and sustained by injection of intense, high-energy neutral beams.

  14. Enhanced accuracy in novel mirror drawing after repetitive transcranial magnetic stimulation-induced proprioceptive deafferentation

    DEFF Research Database (Denmark)

    Balslev, Daniela; Christensen, Lars O.D.; Lee, Ji-hang

    2004-01-01

    a performance benefit. In this study, we tested whether deafferentation induced by repetitive transcranial magnetic stimulation (rTMS) can improve mirror tracing skills in normal subjects. Hand trajectory error during novel mirror drawing was compared across two groups of subjects that received either 1 Hz r......TMS over the somatosensory cortex contralateral to the hand or sham stimulation. Mirror tracing was more accurate after rTMS than after sham stimulation. Using a position-matching task, we confirmed that rTMS reduced proprioceptive acuity and that this reduction was largest when the coil was placed...

  15. WITAMIR-I: A tandem mirror power reactor

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Beyer, J.B.

    1983-01-01

    A conceptual design of a near term commercial tandem mirror power reactor will be presented. The basic configuration utilizes Yin-yang minimum B end plugs with inboard thermal barriers, which are pumped by neutral beam injection. The maximum magnetic fields are 6.1 T, 8.1 T and 15 T in the central cell, Yin-yang, and thermal barrier magnets, respectively. The blanket utilizes Pb 83 Li 17 as the coolant and breeder, and HT-9 as the structural material. This configuration yields a high energy multiplication (1.37), a sufficient tritium breeding ratio (1.07) and has a major advantage with respect to maintenance. A single stage direct convertor is used at one end and an electron thermal dump at the other end. The plasma Q is 28 at a fusion power level of 3000 MWsub(th); the net electrical output is 1530 MWe and the overall efficiency is 39%. Cost estimates indicate that WITAMIR-I is competitive with recent tokamak power reactor designs. (author)

  16. Engineering problems of tandem-mirror reactors

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-01-01

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper

  17. Magnetic configuration and transport interplay in TJ-II flexible heliac

    International Nuclear Information System (INIS)

    Alejaldre, C.; Alonso, J.; Almoguera, L.

    2003-01-01

    This paper presents an overview of experimental results and progress in the investigation of the role of the magnetic configuration on stability and transport in the TJ-II stellarator. Significant improvement in the characterization of confinement and stability properties of TJ-II stellarator plasmas has been recently achieved. Global confinement studies have shown a positive dependence of energy confinement on rotational transform, reinforcing the dependence found with the ISS95 database. Spontaneous transitions in particle and energy confinement have been observed which resemble some characteristics of previously reported H-mode regimes in other stellarator devices. Magnetic configuration scan experiments have shown the interplay between magnetic topology (e.g. rationals), transport and electric fields. Cold pulse as well as the transport events provoked by decreasing magnetic well generates non-diffusive propagation. First measurements of radial electric fields and plasma potential show values that are comparable with those expected from neoclassical calculations. Active biasing experiments have shown an impact both in edge and global plasma parameters. In low magnetic well configurations sheared edge poloidal and parallel flows are linked near marginal stability. (author)

  18. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  19. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  20. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion

  1. Vent rate of superconducting magnets during quench in the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.

    1979-01-01

    When a superconducting magnet goes normal, resistive heating in the conductor evaporates surrounding LHe, which must be vented. The nature and speed at which the magnet goes normal and He is vented are not subject to rigorous analysis. This paper presents vent data from an existing magnet. An approximate mathematical model is derived and fitted to the data to permit scaling of vent requirements to larger size magnets. The worst case models of the vent employed in Mirror Fusion Test Facility (MFTF) cryogenic system design are also presented

  2. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    Science.gov (United States)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  3. Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core

    Science.gov (United States)

    Knezek, Nicholas; Buffett, Bruce

    2018-04-01

    We develop a numerical model to study magnetohydrodynamic waves in a thin layer of stratified fluid near the surface of Earth's core. Past studies have been limited to using simple background magnetic field configurations. However, the choice of field distribution can dramatically affect the structure and frequency of the waves. To permit a more general treatment of background magnetic field and layer stratification, we combine finite volume and Fourier methods to describe the wave motions. We validate our model by comparisons to previous studies and examine the influence of background magnetic field configuration on two types of magnetohydrodynamic waves. We show that the structure of zonal Magnetic-Archimedes-Coriolis (MAC) waves for a dipole background field is unstable to small perturbations of the field strength in the equatorial region. Modifications to the wave structures are computed for a range of field configurations. In addition, we show that non-zonal MAC waves are trapped near the equator for realistic magnetic field distributions, and that their latitudinal extent depends upon the distribution of magnetic field strength at the CMB.

  4. The magnet power control system for the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Bell, H.H.

    1983-01-01

    This paper describes the desktop computer/CAMAC based system that controls the power source for the Tandem Mirror Experiment-Upgrade (TMX-U) magnet power system. Presently it contains 42 dc rectifier power supplies connected to 24 magnet coils arranged in 17 circuits. During each shot, the system delivers 22.6 MW dc to the magnets for about 3 s. The system is presently being changed to add six power supplies, two solenoidal throttle coils, and two reverse C-coils. When complete, the delivered power will increase to 36.9 MW. The closed-loop control system usually provides current (and thus, magnetic field) that is within 1% of the requested current. Achieving this accuracy required using grounding, shielding, and isolation methods to reduce noise and related problems

  5. Variable reflectivity signal mirrors and signal response measurements

    International Nuclear Information System (INIS)

    Vine, Glenn de; Shaddock, Daniel A; McClelland, David E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations

  6. Variable reflectivity signal mirrors and signal response measurements

    CERN Document Server

    Vine, G D; McClelland, D E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations.

  7. Physics issues in mirror and tandem mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1984-01-01

    Over the years the study of the confinement of high temperature plasma in magnetic mirror systems has presented researchers with many unusual physics problems. Many of these issues are by now understood theoretically and documented experimentally. With the advent of the tandem mirror idea, some new issues have emerged and are now under intensive study. These include: (1) the generation and control of ambipolar confining potentials and their effect on axial confinement and, (2) the combined influence of nonaxisymmetric magnetic fields (used to ensure MHD stability) and electric magnetic particle drifts on radial transport. Physics considerations associated with these two categories of issues will be reviewed, including concepts for the control of radial transport, under study or proposed

  8. Characteristics of hot electron ring in a simple magnetic mirror field

    International Nuclear Information System (INIS)

    Hosokawa, M.; Ikegami, H.

    1980-12-01

    Characteristics of hot electron ring are studied in a simple magnetic mirror machine (mirror ratio 2 : 1) with a diameter of 30 cm at the midplane and with the distance of 80 cm between the mirrors. Maximum microwave input power is 5 kW at 6.4 GHz with the corresponding power density of approximately 0.3 W/cm 3 . With a background cold plasma of 4 x 10 11 cm -3 , hot electron rings are most effectively generated in two cases when the magnetic field on the axis of the midplane is set near the fundamental or the second harmonic electron cyclotron resonance to the applied microwave frequency. Density profile of the hot electrons is observed to take a so-called ring shape with a radius controllable by the magnetic field intensity and with an axial length of approximately 10 cm. The radial cut view of the ring, however, indicates an M shape density profile, and the density of the hot electrons on the axis is about one half of the density at the ring. Approximately 30 msec is needed before generating the hot electron ring at the density of 10 10 cm -3 with an average kinetic energy of 100 keV. The ultimate energy distribution function is observed to have a stepwise cut in the high energy tail and no energetic components above 1 MeV are detected. The hot electron ring is susceptible to a few instabilities which can be artificially triggered. One of the instabilities is observed to associate with a loss of lower energetic electrons and microwave bursts. At the instability, the ring shape is observed to transform into a filled cylinder in a few microseconds and disappear. (author)

  9. Review of mirror fusion reactor designs

    International Nuclear Information System (INIS)

    Bender, D.J.

    1977-01-01

    Three magnetic confinement concepts, based on the mirror principle, are described. These mirror concepts are summarized as follows: (1) fusion-fission hybrid reactor, (2) tandem mirror reactor, and (3) reversed field mirror reactor

  10. A configurable component-based software system for magnetic field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab

    2005-09-01

    A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.

  11. Structure of the magnetic field line diversion in Helias configurations

    International Nuclear Information System (INIS)

    Strumberger, E.

    1991-01-01

    The vacuum magnetic field outside the last closed magnetic surface of Helias configurations is investigated with respect to its field line diversion properties. In a Helias configuration with N periods N half-helix like edges run on the toroidally outward side of the plasma boundary and yield the possibility of separatrix formation due to the coincidence of helical edge and x-points between islands. With the choice N=5, and ι=1 at the plasma boundary, there are five magnetic islands outside the last closed magnetic surface. In the case considered, islands are lying in front of the helical edge at the beginning, in the middle and at the end of this edge, while in positions in between x-points are in front of the helical edge. (author) 3 refs., 5 figs

  12. Simulations of drift waves in 3D magnetic configurations

    International Nuclear Information System (INIS)

    Jost, G.

    2000-06-01

    Drift waves are commonly held responsible for anomalous transport in tokamak configurations and in particular for the anomalously high heat loss. The next generation of stellarators on the other hand are hoped to be characterized by a much smaller neo-classical transport and by particle confinement close to that of tokamaks. There is nevertheless a strong interest in the stellarator community to study the properties of drift waves in 3D magnetic configurations. To serve this interest we have developed the first global gyrokinetic code, EUTERPE, aimed at the investigation of linear drift wave stability in general toroidal geometry. The physical model assumes electrostatic waves and adiabatic electrons. EUTERPE is a particle-in-cell (PIC) code in which the gyrokinetic Poisson equation is discretized with the finite element method defined in the PEST -1 system of magnetic coordinates. The magnetic geometry is provided by the magnetohydrodynamic (MHD) equilibrium code VMEC. The complete 3D model has been successfully validated in toroidal axisymmetric and straight helical geometries and has permitted the first simulation of unstable global ITG driven modes in non-axisymmetric toroidal configurations. As a first application, two configurations have been studied, the Quasi-Axially symmetric Stellarator with three fields periods (QAS3) currently one system under consideration at the Princeton Plasma Physics Laboratory and the Helically Symmetric experiment (HSX) which has recently started operation at the University of Wisconsin. QAS3 is characterized by a tokamak-Iike field in the outer part of the torus. In this structure the drift waves are mainly affected by the magnetic shear and barely by the shape of the plasma. Also, the results are very close to those obtained for a tokamak. On the other hand, results for the HSX configuration, which is characterized by a dominant helical magnetic field, show a clear 3D effect, namely a strong toroidal variation of the drift wave

  13. Valence fluctuations between two magnetic configurations

    International Nuclear Information System (INIS)

    Mazzaferro, J.O.

    1982-01-01

    The subject of this work is the study of a microscopic model which describes TmSe through its most important feature, i.e.: the valence fluctuations between two magnetic configurations. Chapter I is a general review of the most important physical properties of rare-earth systems with intermediate valence (I.V.) and a general description of experimental results and theoretical models on Tm compounds. In Chapter II the Hamiltonian model is discussed and the loss of rotational invariance is also analyzed. Chapter III is devoted to the study of non-stoichiometric Tsub(x)Se compounds. It is shown that these compounds can be considered as a mixture of TmSe (I.V. system) and Tm 3+ 0.87Se. Chapter IV is devoted to the calculation of spin-and charge susceptibilities. The results obtained permit to explain the essential features of the neutron scattering spectrum in TmSe. In Chapter V, an exactly solvable periodic Hamiltonian is presented. From the experimental results, some fundamental features are deduced to describe TmSe as an intermediate valence system whose two accessible ionic configurations are magnetic (degenerated fundamental state). (M.E.L) [es

  14. Role of ECRH in potential formation for tandem mirrors

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Matsuda, Y.; Stewart, J.J.

    1985-01-01

    The axial ion plugging potential in a tandem mirror is produced by electron cyclotron resonance heating (ECRH) applied at two locations in the end mirror cell. A second harmonic (ω = 2ω/sub c/) resonance is used near the midplane to generate hot electrons which yield an electron potential barrier between center cell electrons and electrons outboard of the end cell midplane. The latter group of electrons is then heated at the fundamental resonance (ω = ω/sub c/) on the outboard side of the magnetic well which drives an ion confining potential. Fokker-Planck and Monte Carlo calculations show that such a configuration is achievable, and the scaling obeys a rather simple set of equations. Another aspect of this configuration is the experimental observation that the fundamental heating drives the overall potential of the device relative to the wall to approx. 1 kV. An analytic model predicts this behavior for very strong ECRH. Results are given a numerical study of electron confinement in a mirror cell owing to fundamental heating as the level of the rf electric field, E/sub rf/, is increased. For the second part of the paper, we show that moderate levels of uniformly distributed rf fields, called cavity fields, can result in very hot (>250 keV) tails in the electron distribution as seen in the TMX-U experiment

  15. Equilibrium and stability of theta-pinch plasma in modified toroidal multiple mirror field

    International Nuclear Information System (INIS)

    Shiina, S.; Saito, K.; Osanai, Y.; Itagaki, T.; Karakizawa, T.; Gesso, H.; Todoroki, J.; Kawakami, I.; Yoshimura, H.

    1976-01-01

    To confine a high-beta plasma a new toroidal magnetic configuration with closed lines of force has been proposed [1]. The configuration is an appropriate superposition of l = 0, l = +- 1, l = +- 2,sup(...), helical fields. In this experiment, it is generated by modifying the multiple mirror field by enclosing the discharge tube in a copper shell which has longitudinal gap. This configuration is preferred for the wall stabilizing effect to that with the separated helical windings. The characteristics of the equilibrium conditions are examined based on the near-axis approximation theory and compared with the experimental results. The stability of plasma in the configurations with l = 0 field and with superposition of l = 0, l = +- 2 fields is investigated in linear geometry. (author)

  16. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  17. Design of an ellipsoidal mirror for freewave characterization of materials at microwave frequencies

    International Nuclear Information System (INIS)

    Rojo, M; Muñoz, J; Molina-Cuberos, G J; Margineda, J; García-Collado, Á J

    2016-01-01

    Free-wave characterization of the electromagnetic properties of materials at microwave frequencies requires that scattering at the edges of the samples and/or holder be minimized. Here, an ellipsoidal mirror is designed and characterized in order to decrease the size of the beam, thereby avoiding the scattering problems, even when relatively small samples are used. In the experimental configuration, both the emitting antenna and sample are located at the mirror focuses. Since both the emitted and reflected (focused) beams are Gaussian in nature, we make use of Gaussian beam theory to carry out the design. The mirror parameters are optimized by numerical simulations (COMSOL Multiphysics ® ) and then experimentally tested. An experimental setup is presented for dielectric, magnetic and chiral measurement in the 4.5–18 GHz band. (paper)

  18. Construction and testing of the Mirror Fusion Test Facility magnets

    International Nuclear Information System (INIS)

    Kozman, T.; Shimer, D.; VanSant, J.; Zbasnik, J.

    1986-08-01

    This paper describes the construction and testing of the Mirror Fusion Test Facility superconducting magnet set. Construction of the first Yin Yang magnet was started in 1978. And although this particular magnet was later modified, the final construction of these magnets was not completed until 1985. When completed these 42 magnets weighed over 1200 tonnes and had a maximum stored energy of approximately 1200 MJ at full field. Together with power supplies, controls and liquid nitrogen radiation shields the cost of the fabrication of this system was over $100M. General Dynamics/Convair Division was responsible for the system design and the fabrication of 20 of the magnets. This contract was the largest single procurement action at the Lawrence Livermore National Laboratory. During the PACE acceptance tests, the 26 major magnets were operated at full field for more than 24 hours while other MFTF subsystems were tested. From all of the data, the magnets operated to the performance specifications. For physics operation in the future, additional helium and nitrogen leak checking and repair will be necessary. In this report we will discuss the operation and testing of the MFTF Magnet System, the world's largest superconducting magnet set built to date. The topics covered include a schedule of the major events, summary of the fabrication work, summary of the installation work, summary of testing and test results, and lessons learned

  19. Designs of tandem-mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Barr, W.L.; Boghosian, B.M.

    1981-01-01

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability

  20. Connection between adiabaticity and the mirror mode

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1976-01-01

    The size of magnetic moment jumps of a particle in a long, thin equilibrium magnetic mirror field is shown to be related to the complex zeroes of the mirror mode parameter B + 4πdP/sub perpendicular//dB. A consequence is that adiabaticity places a lower limit on β than does the mirror mode

  1. Roles of configuration mixing and exchange currents in nuclear magnetic moments and beta decays. Chapter 17

    International Nuclear Information System (INIS)

    Arima, A.; Hyuga, H.

    1979-01-01

    The authors review systematically several important mechanisms which affect magnetic moments, magnetic dipole transitions and allowed beta-decays. They are first order configuration mixing, second order configuration mixing, the Sachs moment and other exchange magnetic moments, the contribution of the Sachs moment and other exchange magnetic moments with first order configuration mixing. It is shown that first order configuration mixing and the Sachs moment are important for heavy nuclei, and that all the effects except first order mixing are important for light nuclei. (Auth.)

  2. Numerical simulation on multi-peak magnetic field configuration for negative hydrogen ion source

    International Nuclear Information System (INIS)

    Wang Xiaomin; Yang Chao; Liu Dagang; Wang Xueqiong

    2011-01-01

    Based on the magnetic charge model, the numerical algorithm of three-dimensional permanent magnets was derived by the finite difference method. Then combining the full three-dimensional particle-in-cell/Monte Carlo algorithm (PIC/MCC), two multi-peak magnetic field configurations, external magnetic filter and tent-shaped filter, were analyzed respectively, and their influences on electron energy distribution were compared. The simulation results show that both configurations can confine the diffusion of particles and can extract negative hydrogen ions; their electron energy distributions are basically similar, presenting double energy state, which are consistent with the basic mechanism of plasma discharge. The former configuration is stronger in confining and can produce more particles, whose total number is approximately four times that of the latter. The tent-shaped magnetic filter can efficiently prevent electron drift caused by inhomogeneous longitudinal magnetic field, leading to more uniform spatial distribution of negative hydrogen ions. The results of simulation are consistent with those from the foreign experiment. (authors)

  3. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  4. Nerve-muscle activation by rotating permanent magnet configurations.

    Science.gov (United States)

    Watterson, Peter A; Nicholson, Graham M

    2016-04-01

    The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling. Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W). A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies. Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve. These results, employing the first prototype device, suggest the opportunity for a new class of small low-cost magnetic nerve and/or muscle stimulators. Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high-speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets' own magnetic field and three-phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m(-2) Hz(-1) near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad (Bufo marinus). Activation was

  5. The Study of Spherical Cores with a Toroidal Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Mahmoud [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)—Maragha, P.O. Box 55134-441 (Iran, Islamic Republic of)

    2017-04-01

    Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modified form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.

  6. Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study.

    Science.gov (United States)

    Mehta, Urvakhsh Meherwan; Waghmare, Avinash V; Thirthalli, Jagadisha; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2015-10-01

    Virtual lesions in the mirror neuron network using inhibitory low-frequency (1Hz) transcranial magnetic stimulation (TMS) have been employed to understand its spatio-functional properties. However, no studies have examined the influence of neuro-enhancement by using excitatory high-frequency (20Hz) repetitive transcranial magnetic stimulation (HF-rTMS) on these networks. We used three forms of TMS stimulation (HF-rTMS, single and paired pulse) to investigate whether the mirror neuron system facilitates the motor system during goal-directed action observation relative to inanimate motion (motor resonance), a marker of putative mirror neuron activity. 31 healthy individuals were randomized to receive single-sessions of true or sham HF-rTMS delivered to the left inferior frontal gyrus - a component of the human mirror system. Motor resonance was assessed before and after HF-rTMS using three TMS cortical reactivity paradigms: (a) 120% of resting motor threshold (RMT), (b) stimulus intensity set to evoke motor evoked potential of 1-millivolt amplitude (SI1mV) and (c) a short latency paired pulse paradigm. Two-way RMANOVA showed a significant group (true versus sham) X occasion (pre- and post-HF-rTMS motor resonance) interaction effect for SI1mV [F(df)=6.26 (1, 29), p=0.018] and 120% RMT stimuli [F(df)=7.01 (1, 29), p=0.013] indicating greater enhancement of motor resonance in the true HF-rTMS group than the sham-group. This suggests that HF-rTMS could adaptively modulate properties of the mirror neuron system. This neuro-enhancement effect is a preliminary step that can open translational avenues for novel brain stimulation therapeutics targeting social-cognition deficits in schizophrenia and autism. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  8. Driving reconnection in sheared magnetic configurations with forced fluctuations

    Science.gov (United States)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  9. On improved confinement in mirror plasmas by a radial electric field

    Science.gov (United States)

    Ågren, O.; Moiseenko, V. E.

    2017-11-01

    A weak radial electric field can suppress radial excursions of a guiding center from its mean magnetic surface. The physical origin of this effect is the smearing action by a poloidal E × B rotation, which tend to cancel out the inward and outward radial drifts. A use of this phenomenon may provide larger margins for magnetic field shaping with radial confinement of particles maintained in the collision free idealization. Mirror fields, stabilized by a quadrupolar field component, are of particular interest for their MHD stability and the possibility to control the quasi neutral radial electric field by biased potential plates outside the confinement region. Flux surface footprints on the end tank wall have to be traced to avoid short-circuiting between biased plates. Assuming a robust biasing procedure, moderate voltage demands for the biased plates seems adequate to cure even the radial excursions of Yushmanov ions which could be locally trapped near the mirrors. Analytical expressions are obtained for a magnetic quadrupolar mirror configuration which possesses minimal radial magnetic drifts in the central confinement region. By adding a weak controlled radial quasi-neutral electric field, the majority of gyro centers are predicted to be forced to move even closer to their respective mean magnetic surface. The gyro center radial coordinate is in such a case an accurate approximation for a constant of motion. By using this constant of motion, the analysis is in a Vlasov description extended to finite β. A correspondence between that Vlasov system and a fluid description with a scalar pressure and an electric potential is verified. The minimum B criterion is considered and implications for flute mode stability in the considered magnetic field is analyzed. By carrying out a long-thin expansion to a higher order, the validity of the calculations are extended to shorter and more compact device designs.

  10. The neuronal correlates of mirror illusion in children with spastic hemiparesis: a study with functional magnetic resonance imaging.

    Science.gov (United States)

    Weisstanner, Christian; Saxer, Stefanie; Wiest, Roland; Kaelin-Lang, Alain; Newman, Christopher J; Steinlin, Maja; Grunt, Sebastian

    2017-03-21

    To investigate the neuronal activation pattern underlying the effects of mirror illusion in children/adolescents with normal motor development and in children/adolescents with hemiparesis and preserved contralateral corticospinal organisation. The type of cortical reorganisation was classified according to results of transcranial magnetic stimulation. Only subjects with congenital lesions and physiological contralateral cortical reorganisation were included. Functional magnetic resonance imaging was performed to investigate neuronal activation patterns with and without a mirror box. Each test consisted of a unimanual and a bimanual motor task. Seven children/adolescents with congenital hemiparesis (10-20 years old, three boys and four girls) and seven healthy subjects (8-17 years old, four boys and three girls) participated in this study. In the bimanual experiment, children with hemiparesis showed a significant effect of the mirror illusion (phemiparesis leads to activation of brain areas involved in visual conflict detection and cognitive control to resolve this conflict. This effect is observed only in bimanual training. We consider that for mirror therapy in children and adolescents with hemiparesis a bimanual approach is more suitable than a unimanual approach.

  11. Nerve–muscle activation by rotating permanent magnet configurations

    Science.gov (United States)

    Nicholson, Graham M.

    2016-01-01

    Key points The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling.Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W).A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies.Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve.These results, employing the first prototype device, suggest the opportunity for a new class of small low‐cost magnetic nerve and/or muscle stimulators. Abstract Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high‐speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets’ own magnetic field and three‐phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m−2 Hz−1 near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad

  12. Stability of a pinned magnetic domain wall as a function of its internal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M. [Institut Jean Lamour, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre lès Nancy (France); Childress, J. R. [HGST San Jose Research Center, 3403 Yerba Buena Rd, San Jose, California 95135 (United States)

    2015-01-14

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  13. Brane brick models in the mirror

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Sebastián [Physics Department, The City College of the CUNY,160 Convent Avenue, New York, NY 10031 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York NY 10016 (United States); Lee, Sangmin [Center for Theoretical Physics, Seoul National University,Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University,Seoul 08826 (Korea, Republic of); College of Liberal Studies, Seoul National University,Seoul 08826 (Korea, Republic of); Seong, Rak-Kyeong [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Vafa, Cumrun [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)

    2017-02-21

    Brane brick models are Type IIA brane configurations that encode the 2dN=(0,2) gauge theories on the worldvolume of D1-branes probing toric Calabi-Yau 4-folds. We use mirror symmetry to improve our understanding of this correspondence and to provide a systematic approach for constructing brane brick models starting from geometry. The mirror configuration consists of D5-branes wrapping 4-spheres and the gauge theory is determined by how they intersect. We also explain how 2d(0,2) triality is realized in terms of geometric transitions in the mirror geometry. Mirror symmetry leads to a geometric unification of dualities in different dimensions, where the order of duality is n−1 for a Calabi-Yau n-fold. This makes us conjecture the existence of a quadrality symmetry in 0d. Finally, we comment on how the M-theory lift of brane brick models connects to the classification of 2d(0,2) theories in terms of 4-manifolds.

  14. Application of structural mechanics methods to the design of large tandem mirror fusion devices (MFTF-B)

    International Nuclear Information System (INIS)

    Karpenko, V.N.; Ng, D.S.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a resonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnetic and vessel finite-element models. The anlytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. (orig.)

  15. Steady state magnetic field configurations for the earth's magnetotail

    Science.gov (United States)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  16. A filament supported by different magnetic field configurations

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  17. Influence of construction errors on Wendelstein 7-X magnetic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: tamara.andreeva@ipp.mpg.de; Braeuer, T.; Endler, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Kisslinger, J.; Toussaint, U.v. [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748, Garching (Germany)

    2009-06-15

    Wendelstein 7-X, currently under construction at the Max-Planck-Institut fuer Plasmaphysik in Greifswald, Germany, is a modular advanced stellarator, combining the modular coil concept with optimised properties of the plasma. The magnet system of the machine consists of 50 non-planar and 20 planar superconducting coils which are arranged in five identical modules, forming a toroidal five-fold symmetric system. The majority of operational magnetic configurations will have rotational transform {iota}/2{pi} = 1 at the boundary. Such configurations are very sensitive to symmetry breaking perturbations, which are the consequence of imprecisely manufactured coils or assembly errors. To date, all 70 coils have been fabricated, and the first two half-modules of the machine have been assembled. The comparative analysis of manufactured winding packs and estimates of the corresponding level of magnetic field perturbation are presented. The dependency of the error fields on the coil assembly sequence is considered, as well as the impact of the first assembly errors. The influence of different construction uncertainties is discussed, and measures to minimise the magnetic field perturbation are suggested.

  18. Onset of superradiant instabilities in the composed Kerr-black-hole–mirror bomb

    Directory of Open Access Journals (Sweden)

    Shahar Hod

    2014-09-01

    Full Text Available It was first pointed out by Press and Teukolsky that a system composed of a spinning Kerr black hole surrounded by a reflecting mirror may develop instabilities. The physical mechanism responsible for the development of these exponentially growing instabilities is the superradiant amplification of bosonic fields confined between the black hole and the mirror. A remarkable feature of this composed black-hole–mirror-field system is the existence of a critical mirror radius, rmstat, which supports stationary (marginally-stable field configurations. This critical (‘stationary’ mirror radius marks the boundary between stable and unstable black-hole–mirror-field configurations: composed systems whose confining mirror is situated in the region rmrmstat are unstable (that is, there are confined field modes which grow exponentially over time. In the present paper we explore this critical (marginally-stable boundary between stable and explosive black-hole–mirror-field configurations. It is shown that the innermost (smallest radius of the confining mirror which allows the extraction of rotational energy from a spinning Kerr black hole approaches the black-hole horizon radius in the extremal limit of rapidly-rotating black holes. We find, in particular, that this critical mirror radius (which marks the onset of superradiant instabilities in the composed system scales linearly with the black-hole temperature.

  19. Ballooning instabilities in toroidally linked mirror systems

    International Nuclear Information System (INIS)

    Hastie, R.J.; Watson, C.J.H.

    1977-01-01

    This paper examines the stability against ballooning modes of plasma equilibria in toroidally linked mirror configurations consisting of a number of quadrupole minimum-B mirrors linked toroidally. On the basis of the Kruskal-Oberman energy principle, a class of displacements is identified which are potentially unstable, and a necessary criterion for stability is derived. The criterion is obtained from the eigenvalues of an ordinary differential equation, which determines the variation of the displacement along a field line. The coefficients in the equation are determined by the configuration, and by inserting various model configurations, estimates are obtained of the maximum value of β consistent with stability. In cases of interest, quite high β-values are obtained. (author)

  20. Tandem mirror reactor studies at Lawrence Livermore National Laboratory, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.; Neef, W.S. Jr.

    1981-03-20

    The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror Fusion Test Facility (MFTF-B) in 1984. Continued analysis and conceptual design over this period will evolve the optimal configuration and parameters for a power-producing reactor. In this article we describe the progress we have made in this reactor design study effort during 1980.

  1. Tandem mirror reactor studies at Lawrence Livermore National Laboratory, FY 1980

    International Nuclear Information System (INIS)

    Carlson, G.A.; Neef, W.S. Jr.

    1981-01-01

    The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror Fusion Test Facility (MFTF-B) in 1984. Continued analysis and conceptual design over this period will evolve the optimal configuration and parameters for a power-producing reactor. In this article we describe the progress we have made in this reactor design study effort during 1980

  2. Nb3Sn accelerator magnet technology R&D at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; DiMarco, J.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; /Fermilab

    2007-06-01

    Accelerator magnets based on Nb{sub 3}Sn superconductor are being developed at Fermilab. Six nearly identical 1-m long dipole models and several mirror configurations were built and tested demonstrating magnet performance parameters and their reproducibility. The technology scale up program has started by building and testing long dipole coils. The results of this work are reported in the paper.

  3. Magnetic Configuration Effects Under Neutral Beam Injection at TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1998-01-01

    The theoretical analysis of NBI absorption and losses, done for the Reference configuration of TJ-II, has been extended to other magnetic configurations of the flexibility diagram. The main results obtained are the following: Fast ion losses. mainly direct ones, are the determinant factor the absorption behaviour. In the absence of radial electric field, the contribution of the delayed fast ion losses in minimal, as well with CX as without, and corresponds, almost exclusively, to low energy trapped ions (1 to t KeV). There is a strong difference between the direct los behaviour corresponding to both injection directions CO and COUNTER. The first one gives always higher losses in TJ-II. For the extreme configurations the direct losses are very high and are originated by resonant effects, that can be observed even for null electric field, and are due to the 0 and-2 resonances. The intermediate configurations are equally separated from both resonances, in consequence the loss level is lower, producing absorption ratios very, acceptable, higher than 60% of the power entering torus at high density and 40 keV. This corresponds to about 1.2 MW absorbed in plasma under balanced injection. In conclusion, the possible presence of resonant effects on the direct losses is the key element to explain the absorption behaviour for the different magnetic configurations. In addition all the configurations placed inside a wide region around the Reference case in the flexibility diagram seem equally convenient for NBI in TJ-II. (Author) 18 refs

  4. Focusing X-rays to a 1-μm spot using elastically bent, graded multilayer coated mirrors

    International Nuclear Information System (INIS)

    Underwood, J.H.; Thompson, A.C.; Kortright, J.B.

    1997-01-01

    In the x-ray fluorescent microprobe at beamline 10.3.1, the ALS bending magnet source is demagnified by a factor of several hundred using a pair of mirrors arranged in the Kirkpatrick-Baez (K-B) configuration. These are coated with multilayers to increase reflectivity and limit the pass band of the x-rays striking the sample. The x-rays excite characteristic fluorescent x-rays of elements in the sample, which are analyzed by an energy dispersive Si-Li detector, for a sensitive assay of the elemental content. By scanning the focal spot the spatial distribution of the elements is determined; the spatial resolution depends on the size of this spot. When spherical mirrors are used, the spatial resolution is limited by aberrations to 5 or 10 μm. This has been improved to 1 μm through the use of an elliptical mirror formed by elastically bending a plane mirror of uniform width and thickness with the optimum combination of end couples

  5. Focusing X-rays to a 1-{mu}m spot using elastically bent, graded multilayer coated mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, J.H.; Thompson, A.C.; Kortright, J.B. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    In the x-ray fluorescent microprobe at beamline 10.3.1, the ALS bending magnet source is demagnified by a factor of several hundred using a pair of mirrors arranged in the Kirkpatrick-Baez (K-B) configuration. These are coated with multilayers to increase reflectivity and limit the pass band of the x-rays striking the sample. The x-rays excite characteristic fluorescent x-rays of elements in the sample, which are analyzed by an energy dispersive Si-Li detector, for a sensitive assay of the elemental content. By scanning the focal spot the spatial distribution of the elements is determined; the spatial resolution depends on the size of this spot. When spherical mirrors are used, the spatial resolution is limited by aberrations to 5 or 10 {mu}m. This has been improved to 1 {mu}m through the use of an elliptical mirror formed by elastically bending a plane mirror of uniform width and thickness with the optimum combination of end couples.

  6. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    International Nuclear Information System (INIS)

    Karpenko, V.N.; Ng, D.S.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs

  7. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiele, Ben [Department of Electrical Energy, Systems and Automation, Ghent University, Technologiepark 913, B-9052 Ghent-Zwijnaarde (Belgium); Fin, Samuele [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); Pancaldi, Matteo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); Vavassori, Paolo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Sarella, Anandakumar [Physics Department, Mount Holyoke College, 211 Kendade, 50 College St., South Hadley, Massachusetts 01075 (United States); Bisero, Diego [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); CNISM, Unità di Ferrara, 44122 Ferrara (Italy)

    2016-05-28

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.

  8. Dual-reflector configuration in varied line-space grating displacement sensor

    International Nuclear Information System (INIS)

    Liu Zhengkun; Xu Xiangdong; Fu Shaojun; Zhou Qin; Liu Bin

    2008-01-01

    A method to improve the accuracy of the wavelength encoding varied line-space grating displacement sensor is presented. Based on the detailed analysis of the measured displacement errors from the single-mirror configuration sensor, a dual-reflector configuration is used to replace the previous configuration, and greatly decreases its errors. Experiments are conducted in order to make comparison of the two configurations. The results show that the measured displacement error of the sensor with dual-reflector configuration is lower than 0.03 mm in full scale (0 to 50 mm), only about 10% of the sensor with single-mirror configuration

  9. Coil winder for the magnet of the mirror fusion test facility

    International Nuclear Information System (INIS)

    Ling, R.C.

    1977-01-01

    A coil winder was designed for the purpose of fabricating the superconducting magnets of the Mirror Fusion Test Facility. The superconducting magnets are a displaced ying-yang pair, each having major and minor radii of 2.5 and 0.75 m, respectively, and cross section of 0.42 m by about 1.03 m. The superconductor cross section is a square, 13 mm on a side, and consists of a core of niobium-titanium embedded copper and a solid copper stabilizer. Conceptual studies made at Lawrence Livermore Laboratory of the coil winder resulted in concept drawings and a procurement specification. Final design was made by the contractor, and the coil winder is now in fabrication. This paper describes the performance requirements of the winder, and the evolution of its design from conceptual stage to completion

  10. Observation of spatial resolution of ECR plasma on the MM-2 magnetic mirror

    International Nuclear Information System (INIS)

    Duan Shuyun; Gu Biao; Guan Weishu; Cheng Shiqing; Liu Rong; Chen Kangwei; Shang Zhenkui

    1991-04-01

    The measuring method and results of the ECR plasma properties taken from hard X-ray pinhole camera on the MM-2 magnetic mirror are presented. This non-destructive imaging method can directly display the spatial distribution of hot electron plasma. A frame of clear picture could be taken at one shot of discharge. The relationships between emission intensity and discharge parameters are also shown by experimental pictures

  11. Nb3Sn accelerator magnet technology R and D at Fermilab

    International Nuclear Information System (INIS)

    Zlobin, A.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; DiMarco, J.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Fermilab

    2007-01-01

    Accelerator magnets based on Nb 3 Sn superconductor are being developed at Fermilab. Six nearly identical 1-m long dipole models and several mirror configurations were built and tested demonstrating magnet performance parameters and their reproducibility. The technology scale up program has started by building and testing long dipole coils. The results of this work are reported in the paper

  12. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    International Nuclear Information System (INIS)

    Chen, Xing.

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs

  13. A transcranial magnetic stimulation study of the effect of visual orientation on the putative human mirror neuron system

    OpenAIRE

    Burgess, Jed D.; Arnold, Sara L.; Fitzgibbon, Bernadette M.; Fitzgerald, Paul B.; Enticott, Peter G.

    2013-01-01

    Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric). Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimu...

  14. Meniscal configuration using magnetic resonance imaging; Configuracao meniscal pela ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Arthur da Rocha C.; Turrini, Elisabete; Karoauk, Teresa C.C.; Lederman, Henrique M. [Escola Paulista de Medicina, Sao Paulo, SP (Brazil). Dept. de Diagnostico por Imagem

    1997-04-01

    The authors present a review of the normal meniscal configuration and correlation with anatomic specimens. The images were obtained by magnetic resonance imaging. The images were obtained by magnetic resonance imaging. The authors emphasize the importance of knowing the relationship between the meniscus and the adjacent anatomic structures. (author) 31 refs., 10 figs., tabs.

  15. Ultra-long magnetization needle induced by focusing azimuthally polarized beams with a spherical mirror.

    Science.gov (United States)

    Hang, Li; Luo, Kai; Fu, Jian; Chang, Yizhe; Wang, Ying; Chen, Peifeng

    2018-03-20

    Based on extended Richards-Wolf theory for axisymmetric surfaces and the inverse Faraday effect, we propose the generation of a purely longitudinal magnetization needle by focusing Gaussian annular azimuthally polarized beams with a spherical mirror. The needle obtained has a longitudinal length varying hundreds to thousands of wavelengths while keeping the lateral size under 0.4λ, and the corresponding aspect ratio can easily reach more than 2000. It may be the first time that a magnetization needle whose aspect ratio is over 500 has been achieved. The approximate analytical expressions of the magnetization needle are given, and the longitudinal length is tunable by changing the value of the angular thickness and the position of the annular beams.

  16. Commercial tandem mirror reactor design with thermal barriers: WITAMIR-I

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Emmert, G.A.; Maynard, C.W.

    1980-10-01

    A conceptual design of a near term commercial tandem mirror power reactor is presented. The basic configuration utilizes yin-yang minimum-B plugs with inboard thermal barriers. The maximum magnetic fields are 6.1 T, 8.1 T, and 15 T in the central cell, yin-yang, and thermal barrier magnets, respectively. The blanket utilizes Pb 83 Li 17 as the coolant and HT-9 as the structural material. This yields a high energy multiplication (1.37), a sufficient tritium breeding ratio (1.07) and has a major advantage with respect to maintenance. The plasma Q is 28 at a fusion power level of 3000 MW(t); the net electrical output is 1530 MW(e); and the overall efficiency is 39%. Cost estimates indicate that WITAMIR-I is competitive with recent tokamak power reactor designs

  17. Magnetic Configuration Control of ITER Plasmas

    International Nuclear Information System (INIS)

    Albanese, R.; Artaserse, G.; Mattei, M.; Ambrosino, G.; Crisanti, F.; Tommasi, G. de; Fresa, R.; Portone, A.; Sartori, F.; Villone, F.

    2006-01-01

    The aim of this paper is to review the capability of the ITER Poloidal Field (PF) system of controlling the broad range of plasma configurations presently forecasted during ITER operation. The attention is focused on the axi-symmetric aspects of plasma magnetic configuration control since they pose the greatest challenges in terms of control power and they have the largest impact on machine capital cost. The paper is broadly divided in two main sections devoted, respectively, to open loop (feed-forward) and closed loop (feedback) control. In the first part of the study the PF system is assessed with respect to the initiation, ramp-up, sustained burn, ramp-down phases of the main plasma inductive scenario. The limiter-to-divertor configuration transition phase is considered in detail with the aim of assessing the PF capability to form an X-point at the lowest possible current and, therefore, to relax the thermal load on the limiter surfaces. Moreover, during the sustained burn it is important to control plasmas with a broad range of current density profiles. In the second part of the study the plasma vertical feedback control requirements are assessed in details, in particular for the high elongation configurations achievable during the early limiter-to-X point transition phase. Non-rigid plasma displacement models are used to assess the control system voltage and current requirements of different radial field control circuits obtained, for example, by connecting the outermost PF coils, some CS coils, coils sub-sections etc. At last, the main 3D effects of the vessel ports are modeled and their impact of vertical stabilization evaluated. (author)

  18. Onset of superradiant instabilities in the composed Kerr-black-hole–mirror bomb

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)

    2014-09-07

    It was first pointed out by Press and Teukolsky that a system composed of a spinning Kerr black hole surrounded by a reflecting mirror may develop instabilities. The physical mechanism responsible for the development of these exponentially growing instabilities is the superradiant amplification of bosonic fields confined between the black hole and the mirror. A remarkable feature of this composed black-hole–mirror-field system is the existence of a critical mirror radius, r{sub m}{sup stat}, which supports stationary (marginally-stable) field configurations. This critical (‘stationary’) mirror radius marks the boundary between stable and unstable black-hole–mirror-field configurations: composed systems whose confining mirror is situated in the region r{sub m}mirror is situated in the region r{sub m}>r{sub m}{sup stat} are unstable (that is, there are confined field modes which grow exponentially over time). In the present paper we explore this critical (marginally-stable) boundary between stable and explosive black-hole–mirror-field configurations. It is shown that the innermost (smallest) radius of the confining mirror which allows the extraction of rotational energy from a spinning Kerr black hole approaches the black-hole horizon radius in the extremal limit of rapidly-rotating black holes. We find, in particular, that this critical mirror radius (which marks the onset of superradiant instabilities in the composed system) scales linearly with the black-hole temperature.

  19. Steady state magnetic field configurations for the earth's magnetotail

    International Nuclear Information System (INIS)

    Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.

    1989-01-01

    The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet

  20. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    Science.gov (United States)

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  1. A transcranial magnetic stimulation study of the effect of visual orientation on the putative human mirror neuron system

    Science.gov (United States)

    Burgess, Jed D.; Arnold, Sara L.; Fitzgibbon, Bernadette M.; Fitzgerald, Paul B.; Enticott, Peter G.

    2013-01-01

    Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding. There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric). Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimulation experiment that assessed corticospinal excitability whilst viewing transitive hand gestures from both egocentric (i.e., self) and allocentric (i.e., other) viewpoints. Although action observation was associated with increases in corticospinal excitability (reflecting putative human mirror neuron activity), there was no effect of visual perspective. These findings are discussed in the context of contemporary theories of mirror neuron ontogeny, including models concerning associative learning and evolutionary adaptation. PMID:24137125

  2. A transcranial magnetic stimulation study of the effect of visual orientation on the putative human mirror neuron system.

    Science.gov (United States)

    Burgess, Jed D; Arnold, Sara L; Fitzgibbon, Bernadette M; Fitzgerald, Paul B; Enticott, Peter G

    2013-01-01

    Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding. There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric). Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimulation experiment that assessed corticospinal excitability whilst viewing transitive hand gestures from both egocentric (i.e., self) and allocentric (i.e., other) viewpoints. Although action observation was associated with increases in corticospinal excitability (reflecting putative human mirror neuron activity), there was no effect of visual perspective. These findings are discussed in the context of contemporary theories of mirror neuron ontogeny, including models concerning associative learning and evolutionary adaptation.

  3. Issues facing the U. S. mirror program

    Energy Technology Data Exchange (ETDEWEB)

    George, T.V.

    1978-07-01

    Some of the current issues associated with the U.S. Magnetic Mirror Program are analyzed. They are presented as five separate papers entitled: (1) Relevant Issues Broughtup by the Mirror Reactor Design Studies. (2) An Assessment of the Design Study of the 1 MeV Neutral Beam Injector Required for a Tandem Mirror Reactor. (3) The Significance of the Radial Plasma Size Measured in Units of Ion Gyroradii in Tandem Mirrors and Field Reversed Mirrors. (4) Producing Field Reversed Mirror Plasmas by Methods used in Field Reversed Theta Pinch. (5) RF Stoppering of Mirror Confined Plasma.

  4. Mirror fusion reactor design

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.; Carlson, G.A.

    1979-01-01

    Recent conceptual reactor designs based on mirror confinement are described. Four components of mirror reactors for which materials considerations and structural mechanics analysis must play an important role in successful design are discussed. The reactor components are: (a) first-wall and thermal conversion blanket, (b) superconducting magnets and their force restraining structure, (c) neutral beam injectors, and (d) plasma direct energy converters

  5. Fokker-Planck equation in mirror research

    International Nuclear Information System (INIS)

    Post, R.F.

    1983-01-01

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror

  6. Magnetic cusp and electric nested- or single-well configurations for high density antihydrogen and fusion nonneutral plasma applications

    International Nuclear Information System (INIS)

    Ordonez, C. A.

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  7. Magnetic Cusp and Electric Nested- or Single-Well Configurations for High Density Antihydrogen and Fusion Nonneutral Plasma Applications

    International Nuclear Information System (INIS)

    C.A. Ordonez

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  8. Dynamic range of low-voltage cascode current mirrors

    DEFF Research Database (Denmark)

    Bruun, Erik; Shah, Peter Jivan

    1995-01-01

    Low-voltage cascode current mirrors are reviewed with respect to the design limitations imposed if all transistors in the mirror are required to operate in the saturation region. It is found that both a lower limit and an upper limit exist for the cascode transistor bias voltage. Further, the use....... The proposed configuration has the advantage of simplicity combined with a complete elimination of the need for fixed bias voltages or bias currents in the current mirror. A disadvantage is that it requires a higher input voltage to the current mirror...

  9. Electron optical characteristics of a concave electrostatic electron mirror for a scanning electron microscope

    International Nuclear Information System (INIS)

    Hamarat, R.T.; Witzani, J.; Hoerl, E.M.

    1984-08-01

    Numerical computer calculations are used to explore the design characteristics of a concave electrostatic electron mirror for a mirror attachment for a conventional scanning electron microscope or an instrument designed totally as a scanning electron mirror microscope. The electron paths of a number of set-ups are calculated and drawn graphically in order to find the optimum shape and dimensions of the mirror geometry. This optimum configuration turns out to be the transition configuration between two cases of electron path deflection, towards the optical axis of the system and away from it. (Author)

  10. Stability of tokamak magnetic configuration with a poloidal divertor

    International Nuclear Information System (INIS)

    Bazaeva, A.V.; Bykov, V.E.; Georgievskii, A.V.; Kaminskii, A.O.; Peletminskaya, V.G.; Pyatov, V.H.

    1979-02-01

    This paper investigates instabilities in the preseparatrix region of a tokamak magnetic configuration with a poloidal divertor with respect to perturbations produced by various irregularities in the manufacturing of tokamak magnetic systems. A computer solution, a system of differential equations describing the behavior of a force line, showed that small perturbation amplitudes may be the cause of the stochastic instability of force lines in the preseparatrix region. This instability is responsible for a number of demands on the accuracy in the manufacturing of tokamak magnetic systems. In particular, the misalignment in the divertor ring must not be larger than 0.5 0 , its displacement must be less than Δ/R = 10 -2 (Δ/R -2 ). This study can be used in the design of large thermonuclear installations

  11. A transcranial magnetic stimulation study of the effect of visual orientation on the putative human mirror neuron system

    Directory of Open Access Journals (Sweden)

    Jed Donald Burgess

    2013-10-01

    Full Text Available Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric. Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimulation (TMS experiment that assessed corticospinal excitability whilst viewing transitive hand gestures from both egocentric (i.e., self and allocentric (i.e., other viewpoints. Although action observation was associated with increases in corticospinal excitability (reflecting putative human mirror neuron activity, there was no effect of visual perspective. These findings are discussed in the context of contemporary theories of mirror neuron ontogeny, including models concerning associative learning and evolutionary adaptation.

  12. Predicting thermal distortion of synchrotron radiation mirrors with finite element analysis

    International Nuclear Information System (INIS)

    DiGennaro, R.; Edwards, W.R.; Hoyer, E.

    1985-10-01

    High power and high power densities due to absorbed radiation are significant design considerations which can limit performance of mirrors receiving highly collimated synchrotron radiation from insertion devices and bending magnet sources. Although the grazing incidence angles needed for x-ray optics spread the thermal load, localized, non-uniform heating can cause distortions which exceed allowable surface figure errors and limit focusing resolution. This paper discusses the suitability of numerical approximations using finite element methods for heat transfer, deformation, and stress analysis of optical elements. The primary analysis objectives are (1) to estimate optical surface figure under maximum heat loads, (2) to correctly predict thermal stresses in order to select suitable materials and mechanical design configurations, and (3) to minimize fabrication costs by specifying appropriate tolerances for surface figure. Important factors which determine accuracy of results include finite element model mesh refinement, accuracy of boundary condition modeling, and reliability of material property data. Some methods to verify accuracy are suggested. Design analysis for an x-ray mirror is presented. Some specific configurations for internal water-cooling are evaluated in order to determine design sensitivity with respect to structural geometry, material properties, fabrication tolerances, absorbed heat magnitude and distribution, and heat transfer approximations. Estimated accuracy of these results is discussed

  13. Experimental studies of field-reversed configuration translation

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.; Milroy, R.D.

    1986-03-01

    In the FRX-C/T experiment (Proceedings of the 9th Symposium for Engineering Problems of Fusion Research (IEEE, New York, 1981), p. 1751), field-reversed configuration (FRC) plasmas have been formed in, and launched from, a field-reversed theta-pinch source and subsequently trapped in an adjacent confinement region. No destructive instabilities or enhanced losses of poloidal flux, particles, or thermal energy are observed for FRC total trajectories of up to 16 m. The observed translation dynamics agree with two-dimensional magnetohydrodynamic (MHD) simulations. When translated into reduced external magnetic fields, FRC's are observed to accelerate, expand, and cool in partial agreement with adiabatic theory. The plasmas reflect from an external mirror and after each reflection, the axial kinetic energy is reduced by approximately 50%. Because of this reduction, FRC's are readily trapped without the need of pulsed gate magnet coils.

  14. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  15. Potential formation in axisymmetrized tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Ichimura, M.; Inutake, M.

    1985-01-01

    The paper reports experimental results on potential formation and end plugging in the axisymmetrized tandem mirror GAMMA 10. The plugging at both ends has been achieved by a combination of neutral beams and gyrotrons. The presence of a plug potential with a thermal barrier in an axisymmetric mirror has been confirmed by direct measurement of the axial potential profile. Enhancement of axial particle confinement has been observed during the end plugging. Non-ambipolar radial transport has been greatly reduced in the axisymmetrized magnetic configuration. The potentials measured by beam probes and end loss analysers are 0.7, 0.4 and 1.1 kV in the central, barrier and plug regions, respectively. Strong end plugging is observed when the central-cell density is higher than the densities in the plug and the barrier, and the plug density remains higher than the barrier density. The plug electron temperature is higher than the central temperature. Hot electrons forming a football-shaped profile have been stably produced in the axisymmetric mirror. The beta value and the fraction of the hot electrons reach up to 5% and 0.8, respectively. Central-cell ion-cyclotron resonance heating can sustain a stable plasma with higher density and ion temperature when resonance surfaces exist in both the anchor and the central cells. (author)

  16. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    Science.gov (United States)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  17. On the role of magnetic mirroring in the auroral phenomena

    International Nuclear Information System (INIS)

    Lennartsson, W.

    1976-12-01

    On the basis of field and particle observations, it is suggested that a bright auroral display is a part of a magnetosphere-ionosphere current system which is fed by a charge-separation process in the outer magnetosphere (or the solar wind). The upward magnetic-field-aligned current is flowing out of the display, carried mainly by downflowing electrons from the hot-particle populations in the outer magnetosphere (the ambient cold electrons being depleted at high altitudes). As a result of the magnetic mirroring of these downflowing current carriers, a large potential drop is set up along the magnetic field, increasing both the number flux and the kinetic energy of precipitating electrons. It is found that this simple basic model, when combined with wave-particle interactions, may be able to explain a highly diversified selection of auroral particle observations. It may thus be possible to explain both 'inverted-V' events and auroral rays in terms of a static parallel electric field, and the electric field may be compatible with a strongly variable pitch-angle distribution of the precipitating electrons, including distributions peaked at 90 0 as well as 0 0 . This model may also provide a simple explanation of the simultaneous precipitation of electrons and collimated positive ions. (Auth.)

  18. Magnetic configuration control of ITER plasmas

    International Nuclear Information System (INIS)

    Albanese, R.; Mattei, M.; Portone, A.; Ambrosino, G.; Artaserse, G.; Crisanti, F.; De Tommasi, G.; Fresa, R.; Sartori, F.; Villone, F.

    2007-01-01

    The aim of this paper is to present some new tools used to review the capability of the ITER Poloidal Field (PF) system in controlling the broad range of plasma configurations presently forecasted during ITER operation. The attention is focused on the axi-symmetric aspects of plasma magnetic configuration control since they pose the greatest challenges in terms of control power and they have the largest impact on machine capital cost. Some preliminary results obtained during ongoing activities in collaboration between ENEA/CREATE and EFDA are presented. The paper is divided in two main parts devoted, respectively, to the presentation of a procedure for the PF current optimisation during the scenario, and of a software environment for the study of the PF system capabilities using the plasma linearized response. The proposed PF current optimisation procedure is then used to assess Scenario 2 design, also taking into account the presence of axisymmetric eddy currents and possible variations of poloidal beta and internal inductance. The numerical linear model based tool derived from the JET oriented eXtreme Shape Controller (XSC) tools is finally used to obtain results on the strike point sweeping in ITER

  19. A comparison of performance of lightweight mirrors

    Science.gov (United States)

    Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.

    1990-01-01

    Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.

  20. Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors

    Science.gov (United States)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2016-02-01

    We examine the conditions of validity for the Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic plane mirrors. As in the previously studied case of nonmagnetic materials [Guérout et al., Phys. Rev. E 90, 042125 (2014), 10.1103/PhysRevE.90.042125], we recover the usual expression for the lossy model of optical response, but not for the lossless plasma model. We also show that the modes associated with the Foucault currents play a crucial role in the limit of vanishing losses, in contrast to expectations.

  1. Standard mirror fusion reactor design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    This report covers the work of the Magnetic Fusion Energy Division's reactor study group during FY 1976 on the standard mirror reactor. The ''standard'' mirror reactor is characterized as a steady state, neutral beam sustained, D-T fusioning plasma confined by a Yin-Yang magnetic mirror field. The physics parameters are obtained from the same physics model that explains the 2XIIB experiment. The model assumes that the drift cyclotron loss cone mode occurs on the boundary of the plasma, and that it is stabilized by warm plasma with negligible energy investment. The result of the study was a workable mirror fusion power plant, steady-state blanket removal made relatively simple by open-ended geometry, and no impurity problem due to the positive plasma potential. The Q (fusion power/injected beam power) turns out to be only 1.1 because of loss out the ends from Coulomb collisions, i.e., classical losses. This low Q resulted in 77% of the gross electrical power being used to power the injectors, thereby causing the net power cost to be high. The low Q stimulated an intensive search for Q-enhancement concepts, resulting in the LLL reactor design effort turning to the field reversal mirror and the tandem mirror, each having Q of order 5

  2. A flexible and configurable system to test accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  3. X-ray total reflection mirrors for coherent illumination

    CERN Document Server

    Ishikawa, T; Yabashi, M; Souvorov, A; Yamauchi, K; Yamamura, K; Mimura, H; Saito, A; Mori, Y

    2002-01-01

    X-ray mirrors for coherent illumination demand much higher surface quality than is achievable with the conventional polishing techniques. Plasma chemical vaporization machining (CVM) and elastic emission machining (EEM) have been applied for x-ray mirror manufacturing. Figure error of a flat silicon single crystal mirrors made with CVM+EEM process was reduced to 2.0 nm peak-to-valley and 0.2 nm RMS. The machining process was also applied to make elliptical mirrors. One-dimensional focusing with a single elliptical mirror showed diffraction-limited properties with the focal width of 200 nm. Two-dimensional focusing with Kirkpatric-Baez configuration gave a focal spot size of 200 nm x 200 nm. (author)

  4. Formation of compact toroidal configurations for magnetic confinement of high temperature plasmas

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Rodrigo, A.B.

    1986-01-01

    The formation stage of inverted magnetic field toroidal configurations (FRC) for hot plasmas confinement using a low energy linear theta pinch is studied. The diagnostic techniques used are based on optical spectroscopy, ultrarapid photography, magnetic probes and excluded flux compensated bonds. The generalities of the present research program, the used diagnostic techniques and the results obtained are discussed. (Author)

  5. Neoclassical resonant transport of a mirror cell

    International Nuclear Information System (INIS)

    Ito, T.; Katanuma, I.

    2005-01-01

    The neoclassical resonant plateau transport in a mirror cell is studied theoretically. The analytical expression for a non-square-well magnetic field is obtained. The analytical result is applied to the GAMMA10 tandem mirror [T. Cho, M. Yoshida, J. Kohagura et al., Phys. Rev. Lett. 94, 085002-1 (2005)], which consists of several mirror cells in it, and the confinement time due to the neoclassical resonant plateau transport is determined in each mirror cell. It is found that the neoclassical resonant transport of ions trapped in the nonaxisymmetric anchor mirror cell and transition mirror cells is significantly smaller than those trapped in the central cell

  6. MHD stability of tandem mirrors

    International Nuclear Information System (INIS)

    Poulsen, P.; Molvik, A.; Shearer, J.

    1982-01-01

    The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration

  7. Introduction to tandem mirror physics

    International Nuclear Information System (INIS)

    Kesner, J.; Gerver, M.J.; Lane, B.G.; McVey, B.D.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.

    1983-09-01

    This monograph, prepared jointly by the MIT Plasma Fusion Center Mirror Fusion group and SAI, Boulder, Colorado, presents a review of the development of mirror fusion theory from its conception some thirty years ago to the present. Pertinent historic experiments and their contribution are discussed to set the stage for a detailed analysis of current experiments and the problems which remain to be solved in bringing tandem mirror magnetic confinement fusion to fruition. In particular, Chapter III discusses in detail the equilibrium and stability questions which must be dealt with before tandem mirror reactors become feasible, while Chapters IV and V discuss some of the current machines and those under construction which will help to resolve critical issues in both physics and engineering whose solutions are necessary to the commercialization of tandem mirror fusion

  8. Observation of transverse and longitudinal modes in non-neutral electron clouds confined in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1979-01-01

    Electrostatic modes on non-neutral electron clouds confined in a magnetic mirror field have been investigated. The cloud contains 2 x 10 11 electrons at an average kinetic energy of 0.3 MeV for a magnetic field with a peak intensity of 9 kG at the midplane. It was found that the cloud is moving azimuthally as well as longitudinally. The azimuthal motion has an m=1 spatial nature. The longitudinal modes have a more complicated nature, but their frequency equals that of the azimuthal mode

  9. Regularized Biot-Savart Laws for Modeling Magnetic Configurations with Flux Ropes

    Science.gov (United States)

    Titov, V. S.; Downs, C.; Mikic, Z.; Torok, T.; Linker, J.

    2017-12-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot-Savart laws whose kernels are regularized at the axis in such a way that these laws define a cylindrical force-free flux rope with a parabolic profile of the axial current density, when the axis is straight. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions' source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  10. Vortex configuration in the presence of local magnetic field and locally applied stress

    Energy Technology Data Exchange (ETDEWEB)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena, E-mail: beena@biu.ac.il

    2017-02-15

    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  11. Vortex configuration in the presence of local magnetic field and locally applied stress

    International Nuclear Information System (INIS)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena

    2017-01-01

    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  12. U. S. Mirror Program

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1978-01-01

    The mirror approach is now the principal alternate to the tokamak in the U.S. magnetic fusion energy program. The program is now focused on two new concepts that can obtain high values of Q, defined as the ratio of fusion power output to the neutral beam power injected to sustain the reaction. These are the tandem mirror and field reversed mirror concepts. Theoretically both concepts should be able to attain Q = 5 or more, as compared with Q approximately 1 in previous mirror designs. Success with either or both of these approaches would point the way toward fusion power plants with many attractive features. The linear geometry of mirror systems offers a distinct alternative to the toroidal tokamak. As a direct consequence of this difference in geometry, it is generally possible to build mirror systems in smaller units of modular construction that can probably be made to operate in steady-state. During the next 5 years the main mirror facilities in the U.S. will be the 2XIIB (renamed Beta II); a tandem mirror experiment caled TMX; and the Mirror Fusion Test Facility (MFTF) scheduled to be completed in 1981 at a cost of $94 million. As a background for discussing this program and mirror reactor concepts in later lectures, the current status of mirror physics will be reviewed by comparing theory and experimental data in four critical areas. These are adiabatic confinement of individual ions, electron heat losses out of the ends of the machine, the achievement of beta values of order unity; and stabilization of ''loss cone'' modes

  13. A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

    International Nuclear Information System (INIS)

    Magara, T.

    2010-01-01

    In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet-like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  14. Mirror fusion test facility

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    The MFTF is a large new mirror facility under construction at Livermore for completion in 1981--82. It represents a scaleup, by a factor of 50 in plasma volume, a factor of 5 or more in ion energy, and a factor of 4 in magnetic field intensity over the Livermore 2XIIB experiment. Its magnet, employing superconducting NbTi windings, is of Yin-Yang form and will weigh 200 tons. MFTF will be driven by neutral beams of two levels of current and energy: 1000 amperes of 20 keV (accelerating potential) pulsed beams for plasma startup; 750 amperes of 80 keV beams of 0.5 second duration for temperature buildup and plasma sustainment. Two operating modes for MFTF are envisaged: The first is operation as a conventional mirror cell with n/sup tau/ approximately equal to 10 12 cm -3 sec, W/sub i/ = 50 keV, where the emphasis will be on studying the physics of mirror cells, particularly the issues of improved techniques of stabilization against ion cyclotron modes and of maximization of the electron temperature. The second possible mode is the further study of the Field Reversed Mirror idea, using high current neutral beams to sustain the field-reversed state. Anticipating success in the coming Livermore Tandem Mirror Experiment (TMX) MFTF has been oriented so that it could comprise one end cell of a scaled up TM experiment. Also, if MFTF were to succeed in achieving a FR state it could serve as an essentially full-sized physics prototype of one cell of a FRM fusion power plant

  15. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    International Nuclear Information System (INIS)

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  16. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  17. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V., E-mail: temple18@mail.ru; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O. [Peoples’ Friendship University of Russia (Russian Federation)

    2016-03-15

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  18. Mirror Instability in the Turbulent Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Hellinger, Petr [Astronomical Institute, CAS, Bocni II/1401,CZ-14100 Prague (Czech Republic); Landi, Simone; Verdini, Andrea; Franci, Luca [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo, E-mail: petr.hellinger@asu.cas.cz [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)

    2017-04-01

    The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leads to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.

  19. Normal form for mirror machine Hamiltonians

    International Nuclear Information System (INIS)

    Dragt, A.J.; Finn, J.M.

    1979-01-01

    A systematic algorithm is developed for performing canonical transformations on Hamiltonians which govern particle motion in magnetic mirror machines. These transformations are performed in such a way that the new Hamiltonian has a particularly simple normal form. From this form it is possible to compute analytic expressions for gyro and bounce frequencies. In addition, it is possible to obtain arbitrarily high order terms in the adiabatic magnetic moment expansion. The algorithm makes use of Lie series, is an extension of Birkhoff's normal form method, and has been explicitly implemented by a digital computer programmed to perform the required algebraic manipulations. Application is made to particle motion in a magnetic dipole field and to a simple mirror system. Bounce frequencies and locations of periodic orbits are obtained and compared with numerical computations. Both mirror systems are shown to be insoluble, i.e., trajectories are not confined to analytic hypersurfaces, there is no analytic third integral of motion, and the adiabatic magnetic moment expansion is divergent. It is expected also that the normal form procedure will prove useful in the study of island structure and separatrices associated with periodic orbits, and should facilitate studies of breakdown of adiabaticity and the onset of ''stochastic'' behavior

  20. Overview and recent progress of the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.

  1. Equilibrium and Stability Properties of Low Aspect Ratio Mirror Systems: from Neutron Source Design to the Parker Spiral

    Science.gov (United States)

    Peterson, Ethan; Anderson, Jay; Clark, Mike; Egedal, Jan; Endrizzi, Douglass; Flanagan, Ken; Harvey, Robert; Lynn, Jacob; Milhone, Jason; Wallace, John; Waleffe, Roger; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    Equilibrium reconstructions of rotating magnetospheres in the lab are computed using a user-friendly extended Grad-Shafranov solver written in Python and various magnetic and kinetic measurements. The stability of these equilibria are investigated using the NIMROD code with two goals: understand the onset of the classic ``wobble'' in the heliospheric current sheet and demonstrating proof-of-principle for a laboratory source of high- β turbulence. Using the same extended Grad-Shafranov solver, equilibria for an axisymmetric, non-paraxial magnetic mirror are used as a design foundation for a high-field magnetic mirror neutron source. These equilibria are numerically shown to be stable to the m=1 flute instability, with higher modes likely stabilized by FLR effects; this provides stability to gross MHD modes in an axisymmetric configuration. Numerical results of RF heating and neutral beam injection (NBI) from the GENRAY/CQL3D code suite show neutron fluxes promising for medical radioisotope production as well as materials testing. Synergistic effects between NBI and high-harmonic fast wave heating show large increases in neutron yield for a modest increase in RF power. work funded by DOE, NSF, NASA.

  2. Mirror Fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  3. Mirror fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  4. Design of modular coils for a quasi-axisymmetric stellarator with a flexible control of the magnetic field configuration

    International Nuclear Information System (INIS)

    Shimizu, A.; Okamura, S.; Isobe, M.; Suzuki, C.; Nishimura, S.; Watari, T.; Matsuoka, K.

    2002-08-01

    A design of the modular coil system for CHS-qa has been made for the plasma configuration '2b32' with the aspect ratio 3.2. The magnetic field strength and the major radius are 1.5 T and 1.5 m, respectively. The normal component of magnetic field produced by the modular coils is minimized on the plasma boundary to obtain the optimum coil design. We put engineering constraint on the distance between adjacent modular coils and the radius of coil curvature. The dependence of the residual normal component of the field on these conditions is examined, and the realistic values for them are selected. Additional coils to control various properties of the magnetic field configuration (the rotational transform, the magnetic well depth, etc.) have been designed and a flexibility of the magnetic field configuration is realized. For the case that the rotational transform crosses the low-order rational value resulting in magnetic islands, the residues of islands are evaluated with which a further improvement of coil design can be made to eliminate magnetic islands. (author)

  5. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1975-01-01

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  6. Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer

    Science.gov (United States)

    Tang, Weiqing; Ke, Congming; Fu, Mingming; Wu, Yaping; Zhang, Chunmiao; Lin, Wei; Lu, Shiqiang; Wu, Zhiming; Yang, Weihuang; Kang, Junyong

    2018-03-01

    Group-IIIA metal-monochalcogenides with the enticing properties have attracted tremendous attention across various scientific disciplines. With the aim to satisfy the multiple demands of device applications, here we report a design framework on GaSe monolayer in an effort to tune the electronic and magnetic properties through a dual modulation of vacancy doping and electric field. A half-metallicity with a 100% spin polarization is generated in a Ga vacancy doped GaSe monolayer due to the nonbonding 4p electronic orbital of the surrounding Se atoms. The stability of magnetic moment is found to be determined by the direction of applied electric field. A switchable magnetic configuration in Ga vacancy doped GaSe monolayer is achieved under a critical electric field of 0.6 V/Å. Electric field induces redistribution of the electronic states. Finally, charge transfers are found to be responsible for the controllable magnetic structure in this system. The magnetic modulation on GaSe monolayer in this work offers some references for the design and fabrication of tunable two-dimensional spintronic device.

  7. The "Case of Two Compounds with Similar Configuration but Nearly Mirror Image CD Spectra" Refuted. Reassignment of the Absolute Configuration of N-Formyl-3',4'-dihydrospiro[indan-1,2'(1'H)-pyridine].

    Science.gov (United States)

    Padula, Daniele; Di Bari, Lorenzo; Pescitelli, Gennaro

    2016-09-02

    In 1997, Sandström and co-workers reported the case of two chiral spiro compounds with very similar skeletons but showing almost mirror-image electronic circular dichroism (ECD) spectra for the corresponding absolute configuration. The paper has been often cited as a proof and good educational example of the pronounced sensitivity of ECD toward molecular conformation, and a clear warning against the use of ECD spectral correlations to assign absolute configurations. Although both concepts remain valid, they are not exemplified by the quoted paper. We demonstrate that the original configurational assignment of one compound was wrong and revise it by using TDDFT calculations. The main reason for the observed failure is the use of the matrix method, a popular approach to predict ECD spectra of compounds which can be treated with an independent system approximation (ISA), including proteins. Using a modern version of the matrix method, we demonstrate that the ISA is not valid for the title compound. Even in the absence of apparent conjugation between the component chromophores, the validity of the ISA should never be taken for granted and the effective extent of orbital overlap should always be verified.

  8. Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations

    Science.gov (United States)

    Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.

    2018-02-01

    We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.

  9. Confinement and Isotropization of Galactic Cosmic Rays by Molecular-Cloud Magnetic Mirrors When Turbulent Scattering Is Weak

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.

    2000-01-01

    Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it

  10. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    International Nuclear Information System (INIS)

    Wang, L.

    2011-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism (2). Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the

  11. Correcting Surface Figure Error in Imaging Satellites Using a Deformable Mirror

    Science.gov (United States)

    2013-12-01

    Configuration for Collecting Influence Function Data ..................11 3. 4D Interferometer...24 3. Influence Function Using Interferometer ........................................25 4. Determining the Influence Matrix...10 Figure 12. Influence function configuration with flip mirror (from [6]). ..........................11 Figure 13. Interferometer

  12. Mirror monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States); Shadman, Khashayar [Electron Optica, Inc., Palo Alto, CA (United States)

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  13. Streaming-plasma measurements in the Baseball II-T mirror experiment

    International Nuclear Information System (INIS)

    Damm, C.C.; Foote, J.H.; Futch, A.H.; Goodman, R.K.; Hornady, R.S.; Osher, J.E.; Porter, G.D.

    1977-01-01

    The warm plasma from a deuterium-loaded titanium washer gun, streaming along magnetic-field lines through the steady-state magnetic well of Baseball II, has been examined for its suitability in this experimental situation as a target plasma for hot-ion buildup experiments and for microinstability control. The gun was positioned near the magnetic axis outside the mirror region. Measurements were made with gridded, end-loss detectors placed outside the opposite mirror, a microwave interferometer, a beam-attenuation detector, and other diagnostics

  14. Major features of a mirror fusion--fast fission hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1974-01-01

    A conceptual design was made of a fusion-fission reactor. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and sustained by hot neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and is cooled by helium. It was shown how the reactor can be built using essentially present day construction technology and how the uranium bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel of which approximately 1200 kg of plutonium are produced each year along with the approximately 750 MW of electricity. (U.S.)

  15. Results from the Tara tandem mirror experiment

    International Nuclear Information System (INIS)

    Lane, B.G.

    1987-09-01

    A summary of the experimental results from the Tara tandem mirror experiment is presented. Optimization of the fueling configuration, slow wave ion cyclotron heating from a magnetic ''plateau'' using an aperture antenna design, and enhanced stabilization from a magnetic divertor have allowed the attainment of a stable start up plasma (T/sub i,perpendicular/ = 800 - 1500 eV, n/sub e/ = 4 - 5 x 10 12 cm -3 , T/sub e/ = 70 - 80 eV). Plugging experiments using radiofrequency waves near the plug midplane ion cyclotron frequency have proved successful in reducing endloss, while simultaneously leading to an increase in central cell density. The plugging potentials have been limited to approximately the ion parallel temperature. This limitation is due to low frequency instabilities localized in the plug. Axial plugging experiments using electron cyclotron (ECH) resonant microwave radiation in the plug cells have had ambiguous results. Endloss reductions up to 100% have been achieved without build-up of central cell densities or the appearance of the reflected particles at the other end of the machine. We conjecture that rapid radial losses accompany the use of ECH, although the mechanisms for this loss remain unidentified. 9 refs., 9 figs

  16. Closed expressions for the magnetic field of toroidal multipole configurations

    International Nuclear Information System (INIS)

    Sheffield, G.V.

    1983-04-01

    Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration

  17. MeV and GeV prospects for producing a large ion layer configuration for fusion power generation and breeding

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1983-01-01

    Injection of multi-MeV molecular hydrogen ions into a magnetic mirror or magnetic mirror well can lead to the production of an ion (or proton-E) Layer with prospects for fusion power generation. This involves: (1) slow (exponential or Lorentz) trapping of protons from dissociation and/or ionization of H 2 + ions; (2) electron cyclotron drive of the electronic temperature to reduce the electron stopping power; (3) production of an Ion-Layer, E-Core plasma configuration having prospects for cold fuel feed with in situ axial acceleration of say D 2 + ions into the negative E-Core; (4) ignited advanced fuel burns in the resulting high beta plasma with excess (free) neutrons available for energy multiplication of fissile fuel breeding; (5) development of a nuclear dynamo with fuel feed, plasma energy, and Ion-Layer current maintenance by fusion products; and (6) a natural divertor end loss of ashes with charge separation permitting a natural direct electrical conversion prospect

  18. Multiple-mirror plasma confinement

    International Nuclear Information System (INIS)

    Lichtenberg, A.J.; Lieberman, M.A.; Logan, B.G.

    1975-01-01

    A large enhancement of the confinement time can be achieved in a straight system of multiple mirrors over an equal length uniform magnetic field. The scaling is diffusive rather than that of flow, thereby scaling the square of the system length rather than linear with system length. Probably the most economic mode of operation for a reactor occurs when lambda/M is approximately l/sub c/, where lambda is the mean free path, M the mirror ratio, and l/sub c/ the length between mirrors; but where the scale length of the mirror field l/sub m/ is much less than lambda. The axial confinement time has been calculated theoretically and numerically for all important parameter regimes, and confirmed experimentally. A typical reactor calculation gives Q/sub E/ = 2 for a 400 meter system with 3000 MW(e) output. The main concern of a multiple-mirror system is stability. Linked quadrupoles can achieve average minimum-B stabilization of flute modes, and experiments have demonstrated this stabilization. Localized instabilities at finite β and enhanced diffusion resulting from the distorted flux surfaces and possibly from turbulent higher order modes still remain to be investigated

  19. Stability of the field-reversed mirror

    International Nuclear Information System (INIS)

    Morse, E.C.

    1979-01-01

    The stability of a field reversed mirror plasma configuration is studied with an energy principle derived from the Vlasov equation. Because of finite orbit effects, the stability properties of a field-reversed mirror are different from the stability properties of similar magnetohydrodynamic equilibria. The Vlasov energy principle developed here is applied to a computer simulation of an axisymmetric field-reversed mirror state. It has been possible to prove that the l = 0 modes, called tearing modes, satisfy a sufficient condition for stability. Precessional modes, with l = 1, 2, are found to be unstable at low growth rate. This suggests possible turbulent behavior (Bohm confinement) in the experimental devices aiming at field reversal. Techniques for suppressing these instabilities are outlined, and the applicability of the Vlasov energy principle to more complicated equilibrium models is shown

  20. Simulation of magnetic holes formation in the magnetosheath

    Science.gov (United States)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2017-12-01

    Magnetic holes have been frequently observed in the Earth's magnetosheath and are believed to be the consequence of the nonlinear evolution of the mirror instability. Mirror mode perturbations mainly form as magnetic holes in regions where the plasma is marginally mirror stable with respect to the linear instability criterion. We present an expanding box particle-in-cell simulation to mimic the changing conditions in the magnetosheath as the plasma is convected through it that produces mirror mode magnetic holes. We show that in the initial nonlinear evolution, where the plasma conditions are mirror unstable, the magnetic peaks are dominant, while later, as the plasma relaxes toward marginal stability, the fluctuations evolve into deep magnetic holes. While the averaged plasma parameters in the simulation remain close to the mirror instability threshold, the local plasma in the magnetic holes is highly unstable to mirror instability and locally mirror stable in the magnetic peaks.

  1. Amplifying mirrors with saturated gain without and with a resonator

    DEFF Research Database (Denmark)

    Skettrup, Torben

    2007-01-01

    An investigation of amplifying mirrors with a view to their use in resonator structures has been performed. Both non-saturated and saturated amplifying mirrors are demonstrated. It was found that relatively high values of gain (typical 5-10 times) can be obtained even when saturation is taken...... into account. Several resonator structures containing from two up to four mirrors, some including beamsplitters, are investigated. It was found that the gain to a first approximation depends only on the ratio between the pumping power and the input power on the amplifying mirror. It was also found...... that the configuration with four mirrors is well suited as an amplifier device working as an optical transistor since high values of gain up to 40 times could be obtained....

  2. Optical diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.

  3. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1976-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80 percent. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59 percent and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high recirculating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)

  4. Magnetic systems for fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France

  5. ERATO-code analysis of vacuum magnetic field oscillations in JT-60 divertor configuration

    International Nuclear Information System (INIS)

    Ozeki, Takahisa; Tokuda, Shinji; Tsunematsu, Toshihide; Ishida, Shinichi; Neyatani, Yuzuru; Itami, Kiyoshi; Azumi, Masafumi

    1989-07-01

    Magnetic field oscillations caused by external kink instabilities are numerically studied by using the ideal MHD stability code ERATO-J. Dependence of a spatial distribution of their amplitude and phase on aspect-ratio, beta-poloidal, shaping of conducting shell and divertor/limiter configurations is examined in detail. In the low aspect ratio plasma, the amplitude of magnetic oscillations in the inner side of the torus is larger than that in the outer. On the contrary, as the poloidal beta increases, the amplitude in the outer side of the torus becomes larger than that in the inner. In the divertor configuration, the amplitude of oscillations reduces near the X-point and the phase is locally modulated. The coherent magnetic oscillations observed in JT-60 agree well with the theoretical results, where the vacuum vessel is assumed to be an ideal conducting shell. The non-uniformity of the poloidal distribution observed in JT-60 can be explained by the combined effects of the finite beta, the X-point and the shape of shell. (author)

  6. Metamaterial mirrors in optoelectronic devices

    KAUST Repository

    Esfandyarpour, Majid; Garnett, Erik C.; Cui, Yi; McGehee, Michael D.; Brongersma, Mark L.

    2014-01-01

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  7. Metamaterial mirrors in optoelectronic devices

    KAUST Repository

    Esfandyarpour, Majid

    2014-06-22

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  8. Field-dependent spin chirality and frustration in V3 and Cu3 nanomagnets in transverse magnetic field. 2. Spin configurations, chirality and intermediate spin magnetization in distorted trimers

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2014-01-01

    Highlights: • Distorted spin configurations determine field behavior of the variable chiralities. • Distortions change spin chiralities, intermediate M 12 ± and staggered magnetization. • Magnetizations, distorted vector and scalar chiralities are strongly correlated. • Distorted V 3 , Cu 3 nanomagnets possess large vector chirality in the ground state in B ⊥ . • Chiralities and distortions in EPR, INS and NMR spectra were considered. - Abstract: Correlated spin configurations, magnetizations, frustration, vector κ ¯ z and scalar χ ¯ chiralities are considered for distorted V ‾ 3 , /Cu 3 / anisotropic DM nanomagnets in transverse B x ‖X and longitudinal B‖Z fields. Different planar configurations in the ground and excited states of distorted nanomagnets in B x determine different field behavior of the vector chiralities and the degenerate frustration in these states correlated with the M ~ 12 ± (B x ) intermediate spin (IS) magnetization which describes the S 12 characteristics, χ=0. Distortion results in the reduced κ ¯ z <1 chirality in the ground distorted configuration and in the maximum κ z =±1 in the excited states with the planar 120° configurations at avoided level crossing. In B‖Z, distorted longitudinal spin-collinear configurations are characterized by the reduced degenerate frustration, out-of-plane staggered and IS M ~ 12 ± (B z ) magnetizations, and in-plane toroidal moments, correlated with the κ ¯ z , χ ¯ chiralities, χ ¯ =±|κ ¯ z |. The chiralities and IS magnetization in EPR, INS and NMR spectra are considered. The quantitative correlations describe variable spin chirality, frustration and field manipulation of chiralities in nanomagnets

  9. Determination of Local Magnetic Dipole Moment of the Plasma at the PUPR Cusp-Mirror Machine

    International Nuclear Information System (INIS)

    Leal-Quiros, Edbertho; Prelas, Mark

    2006-01-01

    A novel diagnostic that allows measurement of the magnetic moment μ has been designed. The μ-Analyzer consists of a Directional Energy Analyzer and a Magnetic Hall Probe in the same detector miniature case. The Directional Energy Analyzer measures the ion temperature in the perpendicular direction to the magnetic field. On the other side, the Hall Probe measures the magnetic field. The μ-Analyzer is a miniature analyzer to avoid plasma perturbation. This allows the measurement of the ion temperature and the local magnetic field at the same point at the same time, therefore μ, the first adiabatic invariant is found. From the above parameters, the local Larmor radius also will be calculated. From the analysis of the data simultaneously in time and space, the μ of the Local Plasma has been determined. This result is a very important quantity, among other properties that permit one to know the stability of the magnetic confinement device using the MHD Stability Criterium, and also very important in Space Plasma Research. In addition to the above, a direct measurement of the Larmor radius of each position is also possible. The experiments have been made in a Cusp/Mirror Plasma Machine where plasma parameters such as Density and Temperature are relatively easy to change in a very wide range

  10. Losses of neutral injected fast ions due to adiabaticity breaking processes in a field-reversed configuration

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Inoue, Koji; Ishizuka, Takashi; Kondoh, Yoshiomi; Iwasawa, Naotaka

    2004-02-01

    Losses of neutral beam (NB) injected fast ions from the confinement region of a Field-Reversed Configuration (FRC) with a strong magnetic mirror are numerically analyzed for parameters relevant to NB injection experiments on the FIX (FRC injection experiment) device [T. Asai et al., Phys. Plasmas 7, 2294 (2000)]. Ionization processes of beam particles are calculated by the Monte Carlo method. The confinement of beam ions is discussed with the concept of accessible regions that restrict the ion excursion and are determined from two constants of motion, the kinetic energy and canonical angular momentum, in the case of an axisymmetric and a steady state FRC without an electrostatic field. From the calculation of the accessible regions, it is found that all the fast ions suffer from the orbit loss on the wall surface and/or the end loss. Single particle orbits are also calculated to find a difference of confinement properties from the results by employing the accessible regions. The magnetic moment is observed to show non-adiabatic motions of the beam ions, which cause a gradual orbit loss on the wall even in a case that a strong magnetic mirror is applied. The results show that the correlation of the magnetic moment disappears as the fast ions experience the density gradient around the separatrix surface and the field-null points. (author)

  11. Field reversal in mirror machines

    International Nuclear Information System (INIS)

    Pearlstein, L.D.; Anderson, D.V.; Boozer, A.H.

    1978-01-01

    This report discusses some of the physics issues anticipated in field-reversed mirrors. The effect of current cancellation due to electrons is described. An estimate is made of the required impurity level to maintain a field-reversed configuration. The SUPERLAYER code is used to simulate the high-β 2XIIB results, and favorable comparisons require inclusion of quasilinear RF turbulence. Impact of a quadrupole field on field-line closure and resonant transport is discussed. A simple self-consistent model of ion currents is presented. Conditions for stability of field-reversed configurations to E x B driven rotations are determined

  12. Helical magnetic axis configuration combined with l = 1 and weak l = -1 torsatron fields

    International Nuclear Information System (INIS)

    Kikuchi, Hitoshi; Saito, Katsunori; Gesso, Hirokazu; Shiina, Shoichi

    1989-01-01

    The superposition of a relatively weak l = -1 torsatron field on a main l = 1 torsatron field leads to the improvement of the confinement properties due to the formation of a local magnetic well, which results from the local curvature of the helical magnetic axis with a larger excursion in the major radius direction. This l±1 helical magnetic axis system has a comparatively simple, compact coil structure. Here the vacuum configuration properties of l = ±1 system are described. (author)

  13. Theory of asymptotic matching for resistive magnetohydrodynamic stability in a negative magnetic shear configuration

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Watanabe, Tomoko.

    1996-11-01

    A theory and a numerical method are presented for the asymptotic matching analysis of resistive magnetohydrodynamic stability in a negative magnetic shear configuration with two rational surfaces. The theory formulates the problem of solving both the Newcomb equations in the ideal MHD region and the inner-layer equations around rational surfaces as boundary value/eigenvalue problems to which the finite element method and the finite difference method can be applied. Hence, the problem of stability analysis is solved by a numerically stable method. The present numerical method has been applied to model equations having analytic solutions in a negative magnetic shear configuration. Comparison of the numerical solutions with the analytical ones verifies the validity of the numerical method proposed. (author)

  14. Anomalous transport in mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    As now being explored for fusion applications confinement systems based on the mirror principle embody two kinds of plasma regimes. These two regimes are: (a) high-beta plasmas, stabilized against MHD and other low frequency plasma instabilities by magnetic-well fields, but characterized by non-Maxwellian ion distributions; (b) near-Maxwellian plasmas, confined electrostatically (as in the tandem mirror) or in a field-reversed region within the mirror cell. Common to both situations are the questions of anomalous transport owing to high frequency instabilities in the non-maxwellian portions of the plasmas. This report will summarize the status of theory and of experimental data bearing on these questions, with particular reference to the high temperature regimes of interest for fusion power

  15. Design and Optimization of Thermophotovoltaic System Cavity with Mirrors

    Directory of Open Access Journals (Sweden)

    Tian Zhou

    2016-09-01

    Full Text Available Thermophotovoltaic (TPV systems can convert radiant energy into electrical power. Here we explore the design of the TPV system cavity, which houses the emitter and the photovoltaic (PV cells. Mirrors are utilized in the cavity to modify the spatial and spectral distribution within. After discussing the basic concentric tubular design, two novel cavity configurations are put forward and parametrically studied. The investigated variables include the shape, number, and placement of the mirrors. The optimization objectives are the optimized efficiency and the extended range of application of the TPV system. Through numerical simulations, the relationship between the design parameters and the objectives are revealed. The results show that careful design of the cavity configuration can markedly enhance the performance of the TPV system.

  16. Vacuum vessel for the tandem Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Gerich, J.W.

    1986-01-01

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-tonne concrete-shielding vault with the 2850-tonne vacuum vessel system. To maintain a vacuum of 2 x 10 -8 torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200-m 3 internal volume) has been fabricated and erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system

  17. Problems of gas control and fueling in the Tara tandem mirror

    International Nuclear Information System (INIS)

    Post, R.S.; Horne, S.; Brau, K.; Casey, J.; Golovato, S.; Sevillano, E.; Shuy, G.; Smith, D.K.

    1986-10-01

    Control of the edge neutral pressure is critical for successful thermal barrier operation of tandem mirrors. High neutral pressures lead to substantial charge exchange losses of plasma ions as well as creating a population of cold ions and electrons which may be electrostatically trapped in the negative and positive confining potentials in the end cells. The primary sources of neutral gas in Tara are central cell and transition gas injection, and neutral beam injection in the plugs. In the central cell, the region of ionization is separated from the mirror-trapped hot ion region. Gettering in the region of hot ions, controls reflux and reduces the central cell gas contribution to the plug. During end plugging, the plasma stream from the central cell which is used to fuel the minimum B anchor cells is cut off, so that gas fueling must be supplied in the transition region. The beamlines and dumps use LN/Ti pumps, baffling and bakeable dumps and scrapers to limit gas penetration to the plug plasma. Gettering of the plug wall and geometric considerations are used to control reflux from charge exchange. Monte-Carlo simulations are used to analyze the plug and central cell reflux. A new central cell configuration employing a midplane magnetic divertor is now being evaluated. The halo plasma produced in the diverted magnetic flux will be used to improve shielding of the core plasma from charge exchange

  18. Summary of UCRL pyrotron (mirror machine) program

    Energy Technology Data Exchange (ETDEWEB)

    Post, R F [Radiation Laboratory, University of California, Livermore, CA (United States)

    1958-07-01

    Under the sponsorship of the Atomic Energy Commission, work has been going forward at the University of California Radiation Laboratory since 1952 to investigate the application of the so-called 'magnetic mirror' effect to the creation and confinement of a high temperature plasma. This report presents some of the theory of operation of the Mirror Machine, and summarizes the experimental work which has been carried out.

  19. Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

    CERN Document Server

    Asner, A

    1985-01-01

    Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

  20. Coupled transport in field-reversed configurations

    Science.gov (United States)

    Steinhauer, L. C.; Berk, H. L.; TAE Team

    2018-02-01

    Coupled transport is the close interconnection between the cross-field and parallel fluxes in different regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions. In most toroidal confinement systems, the periphery, namely, the portion with open magnetic surfaces, is small in thickness and volume compared to the core plasma, the portion with closed surfaces. In field-reversed configurations (FRCs), the periphery plays an outsized role in overall confinement. This effect is addressed by an FRC-relevant model of coupled particle transport that is well suited for immediate interpretation of experiments. The focus here is particle confinement rather than energy confinement since the two track together in FRCs. The interpretive tool yields both the particle transport rate χn and the end-loss time τǁ. The results indicate that particle confinement depends on both χn across magnetic surfaces throughout the plasma and τǁ along open surfaces and that they provide roughly equal transport barriers, inhibiting particle loss. The interpretation of traditional FRCs shows Bohm-like χn and inertial (free-streaming) τǁ. However, in recent advanced beam-driven FRC experiments, χn approaches the classical rate and τǁ is comparable to classic empty-loss-cone mirrors.

  1. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    Science.gov (United States)

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  2. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.

    2012-01-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  3. Ballooning-mirror instability and internally driven Pc 4--5 wave events

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Qian, Q.; Takahashi, K.; Lui, A.T.Y.

    1994-03-01

    A kinetic-MHD field-aligned eigenmode stability analysis of low frequency ballooning-mirror instabilities has been performed for anisotropic pressure plasma sin the magnetosphere. The ballooning mode is mainly a transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy (P perpendicular /P parallel > 1) is large. From the AMPTE/CCE particle and magnetic field data observed during Pc 4--5 wave events the authors compute the ballooning-mirror instability parameters and perform a correlation study with the theoretical instability threshold. They find that compressional Pc 5 waves approximately satisfy the ballooning-mirror instability condition, and transverse Pc 4--5 waves are probably related to resonant ballooning instabilities with small pressure anisotropy

  4. LUTE primary mirror materials and design study report

    Science.gov (United States)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  5. Misalignment sensitivity in an intra-cavity coherently combined crossed-Porro resonator configuration

    Science.gov (United States)

    Alperovich, Z.; Buchinsky, O.; Greenstein, S.; Ishaaya, A. A.

    2017-08-01

    We investigate the misalignment sensitivity in a crossed-Porro resonator configuration when coherently combining two pulsed multimode Nd:YAG laser channels. To the best of our knowledge, this is the first reported study of this configuration. The configuration is based on a passive intra-cavity interferometric combiner that promotes self-phase locking and coherent combining. Detailed misalignment sensitivity measurements are presented, examining both translation and angular deviations of the end prisms and combiner, and are compared to the results for standard flat end-mirror configurations. The results show that the most sensitive parameter in the crossed-Porro resonator configuration is the angular tuning of the intra-cavity interferometric combiner, which is ~±54 µrad. In comparison, with the flat end mirror configuration, the most sensitive parameter in the resonator is the angular tuning of the output coupler, which is ~±11 µrad. Thus, with the crossed-Porro configuration, we obtain significantly reduced sensitivity. This ability to reduce the misalignment sensitivity in coherently combined solid-state configurations may be beneficial in paving their way into practical use in a variety of demanding applications.

  6. Magnetic configuration effects on plasma transport under Neutral Beam Injection at TJ-II (Simulation)

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2001-01-01

    A systematic analysis of magnetic configurations (27 in total), using a Transport model including impurity dynamics and sputtering effects has been done. For small size configurations or those close to rational t values there is radioactive collapse, independently of the external gas puffing (GP) strategy chosen. The reason is the insufficiency of observed power, either by the high shine through losses due to their low radii, or by the increase of fast ion orbit losses near the resonances. For the majority of configurations without collapse, fast ion orbit losses for CO injection (going in the same direction than the toroidal magnetic field) are higher, and in consequence the power absorption and the plasma β achieved are laser, than for the opposite direction. Nevertheless in the region placed just above the main resonances (1/3 and 1/2 per period) this situation reverses. The reasons have been analysed and explained at previous studies. A consequence of this fact is that the optima of confinement for the Counter case are shifted towards higher t values than the CO one, with higher plasma β, except near the resonances. As usual the balanced case is in between. The optima achieving stationary state are very close (and often are coincident) with those lacking that restriction. The best configuration (highest average β for balanced injection, with =1.1% and central value 3.2%, although in this region the results are rather insensitive to configuration and GP strategy. the configurations placed around the 100 4 4 would need also the lowest power entering the torus in order to avoid collapse and to achieve an acceptable NBI absorption level. (Author) 12 refs

  7. The effect of magnetic field configuration on particle pinch velocity in compact helical system (CHS)

    International Nuclear Information System (INIS)

    Iguchi, H.; Ida, K.; Yamada, H.

    1994-01-01

    Radial particle transport has been experimentally studied in the low-aspect-ratio heliotron/torsatron device CHS. A non-diffusive outward particle flow (inverse pinch) is observed in the magnetic configuration with the magnetic axis shifted outward, while an inward pinch, like in tokamaks, is observed with the magnetic axis shifted inward. This change in the direction of anomalous particle flow is not due to the reversal of temperature gradient nor the radial electric field. The observation suggests that the particle pinch velocity is sensitive to the magnetic field structure. (author)

  8. Nonlinear mirror mode dynamics: Simulations and modeling

    Czech Academy of Sciences Publication Activity Database

    Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel

    2008-01-01

    Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008

  9. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.

    Science.gov (United States)

    Dohi, Hideto; Kruit, Pieter

    2018-06-01

    Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed

  10. PSI-ECRIT(S) a hybrid magnetic system with a mirror ratio of 10 for H-like heavy ion production and trapping

    CERN Document Server

    Biri, S; Hitz, D

    1999-01-01

    At the Paul Scherrer Institut ( PSI, Switzerland) an experimental program is started to measure the ground state shift and width of pionic hydrogen. To calibrate the crystal spectrometer X-ray transitions in hydrogen-like heavy ions (e.g. Ar17+) produced by ECR ion sources, are necessary. In PSI a superconducting cyclotron trap magnet originally developed for high energy experiments will be transformed into an ECR Ion Trap (ECRIT). The SC-magnet can deliver more than 4 Tesla magnetic fields with a mirror ratio of 2. A careful calculation showed this mirror ratio can be increased upto 10 and the trap can operate with frequencies between 5 and 20 GHz. To form a closed resonance zone a relatively large open structure (LBL-AECRU-type) NdFeB hexapole will be applied. The first tests will be performed with 6.4 GHz. Later higher frequencies (10 or 14.5 GHz) and the 2-frequency heating (6.4+10, 6.4+14.5 or 10+14.5) are planned to be applied to get enough quantity of H-like heavy ions. Since the main goal of this mach...

  11. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  12. Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Qian, Q.

    1993-09-01

    This paper deals with a kinetic-MHD eigenmode stability analysis of low frequency ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. The ballooning mode is a dominant transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy is large. The field-aligned eigenmode equations take into account the coupling of the transverse and compressional components of the perturbed magnetic field and describe the coupled ballooning-mirror mode. Because the energetic trapped ions precess very rapidly across the rvec B field, their motion becomes very rigid with respect to low frequency MHD perturbations with symmetric structure of parallel perturbed magnetic field δB parallel and electrostatic potential Φ along the north-south ambient magnetic field, and the symmetric ballooning-mirror mode is shown to be stable. On the other hand, the ballooning-mirror mode with antisymmetric δB parallel , and Φ structure along the north-south ambient magnetic field is only weakly influenced by energetic trapped particle kinetic effects due to rapid trapped particle bounce motion and has the lowest instability threshold determined by MHD theory. With large plasma beta (β parallel ≥ O(1)) and pressure anisotropy (P perpendicular /P parallel > 1) at equator the antisymmetric ballooning-mirror mode structures resemble the field-aligned wave structures of the multisatellite observations of a long lasting compressional Pc 5 wave event during November 14--15, 1979 [Takahashi et al.]. The study provides the theoretical basis for identifying the internal excitation mechanism of ULF (Pc 4-5) waves by comparing the plasma stability parameters computed from the satellite particle data with the theoretical values

  13. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  14. Manufacturing of a superconducting magnet system for 28 GHz electron cyclotron resonance ion source at KBSI.

    Science.gov (United States)

    Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S

    2012-02-01

    A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.

  15. Aplanatic telescopes based on Schwarzschild optical configuration: from grazing incidence Wolter-like x-ray optics to Cherenkov two-mirror normal incidence telescopes

    Science.gov (United States)

    Sironi, Giorgia

    2017-09-01

    At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements

  16. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  17. Use of a new ion-detector in the study of the jet plasma injected into a pulsed magnetic mirror configuration (deca I); Utilisation d'un nouveau detecteur d'ions dans l'etude du jet de plasma injecte dans deca I

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, C [Association Euratom-CEA Cadarache, Groupe de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France). Centre d' Etudes Nucleaires

    1963-07-01

    The study of a high sensitivity ion detector coupled to an electrostatic analyser has permitted a large investigation of the plasma jet injected into a pulsed magnetic mirror configuration. In this detector the positive ions are accelerated through a potential of 30 kV; they strike a metallic target, on which they produce secondary electrons; these, in turn, are accelerated onto a plastic scintillator. The light pulses are detected with a photomultiplier. The gain of this device is about 10{sup 7}. If we make an admission of air into the vacuum system and again we make vacuum, the gain is not modified, since no special activated surfaces are situated in the detector. (author) [French] L'etude d'un detecteur d'ions de grande sensibilite, allie a un analyseur electrostatique a permis une investigation approfondie du jet de plasma injecte dans le dispositif d'Etude de Compression Adiabatique. Dans ce detecteur, les ions positifs sont acceleres par une difference de potentiel voisine de 30 kV, ils bombardent une cible metallique et creent des electrons secondaires qui sont a leur tour acceleres vers un scintillateur plastique. Les impulsions lumineuses sont alors detectees par un photomultiplicateur. Le gain obtenu pour l'ensemble du detecteur est voisin de 10{sup 7}. Le detecteur ne possedant pas de surfaces specialement activees, les remises a l'air n'entrainent pas de variation de gain. (auteur)

  18. Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations.

    Science.gov (United States)

    Tan, Say Hwa; Nguyen, Nam-Trung

    2011-09-01

    This paper demonstrates the use of magnetically controlled microfluidic devices to produce monodispersed ferrofluid emulsions. By applying a uniform magnetic field on flow-focusing and T-junction configurations, the size of the ferrofluid emulsions can be actively controlled. The influences of the flow rates, the orientation, and the polarity of the magnetic field on the size of ferrofluid emulsions produced in both flow-focusing and T-junction configurations are compared and discussed.

  19. Hard X-ray nano-focusing with Montel mirror optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenjun, E-mail: wjliu@anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Ice, Gene E. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Assoufid, Lahsen; Liu Chian; Shi Bing; Zschack, Paul [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Tischler, Jon [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Qian Jun; Khachartryan, Ruben; Shu Deming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    Kirkpatrick-Baez mirrors in the Montel (or nested) configuration were tested for hard X-ray nanoscale focusing at a third generation synchrotron beamline. In this scheme, two mirrors, mounted side-by-side and perpendicular to each other, provide for a more compact focusing system and a much higher demagnification and flux than the traditional sequential K-B mirror arrangement. They can accept up to a 120 {mu}mx120 {mu}m incident X-ray beam with a long working distance of 40 mm and broad-bandpass of energies up to {approx}30 keV. Initial test demonstrated a focal spot of about 150 nm in both horizontal and vertical directions with either polychromatic or monochromatic beam. Montel mirror optics is important and very appealing for achromatic X-ray nanoscale focusing in conventional non-extra-long synchrotron beamlines.

  20. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    International Nuclear Information System (INIS)

    EOz, E.; Myers, C.E.; Edwards, M.R.; Berlinger, B.; Brooks, A.; Cohen, S.A.

    2011-01-01

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMF o from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τ fc ) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with τ fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 10 3 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  1. Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Logan, B.G.

    1983-01-01

    Progress in a two year study of a 1200 MWe commercial tandem mirror reactor (MARS - Mirror Advanced Reactor Study) has reached the point where major reactor system technologies are identified. New design features of the magnets, blankets, plug heating systems and direct converter are described. With the innovation of radial drift pumping to maintain low plug density, reactor recirculating power fraction is reduced to 20%. Dominance of radial ion and impurity losses into the halo permits gridless, circular direct converters to be dramatically reduced in size. Comparisons of MARS with the Starfire tokamak design are made

  2. Dependence of direct losses and trapping properties with the magnetic configuration in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1998-05-01

    The former studies concerning direct losses, disymmetries, trapping and radial electric field effects for intermediate energy ions have been extended to several magnetic configurations in TJ-II. In the absence of electric field there are strong similarities in the behaviour of all configurations: disymmetries, loss distributions at plasma border, radial and angular profiles, etc. Generally the differences are only quantitative and dominated by the magnetic ripple at border, that is clearly related with the configuration radius. This qualitative similarity disappears in the presence of a radial electric field. The field resonance are at the origin of these differences. A simple model reproduces correctly the ordering and degree of influence of these resonances. Except when the 0 resonance predominates the los distributions at plasma border move always in the direction of the induced poloidal rotation. The los radial profiles are strongly affected by the -2 Resonance, that can provoke the appearance of lost passing ions well inside the plasma. Instead the radial and angular profiles for trapping are only slightly affected by the -2 Resonance, while the 0 Resonance has a very strong influence there

  3. Hi-speed compact deformable mirror: status, applications, and perspectives

    Science.gov (United States)

    Rooms, F.; Camet, S.; Curis, J.-F.

    2010-02-01

    Membrane deformable mirrors based on magnetic actuators have been known for years. State-of-the-art deformable mirrors usually have large strokes but low bandwidth. Furthermore, this bandwidth decreases with the diameter. In this paper, we present the results of a new actuator principle based on magnetic forces allowing high bandwidth (up to a few kHz), very large stroke (>30μm) with a record pitch of 1.5mm. The benefits of this technology will be presented for three applications: astronomy, vision science and microscopy. The parameters of the mirrors have been tuned such that the inter-actuator stroke of the deformable (more than 2.0μm) in order to fit the atmosphere turbulence characteristics. In vision science, efforts have been made to correct both simultaneously the low and high order aberrations (more than 45μm of wavefront correction on astigmatism and focus). Finally, we will demonstrate how we have developed a deformable mirror able to correct spherical aberrations (microscopy). The last part of the article is devoted to give some perspectives about this technology.

  4. Ion optics of a high resolution multipassage mass spectrometer with electrostatic ion mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Osaka Univ. (Japan). Dept. of Physics; Baril, M [Departement de Physique, Faculte des Sciences et de Genie, Universite Laval, Ste-Foy, Quebec G1K 7P4 (Canada)

    1995-09-01

    Ion trajectories in an electrostatic ion mirror are calculated. The interferences of the extended fringing fields of the mirror with finite aperture are studied. The results of the calculations are represented by three transfer matrices, which describe ion trajectories under the effects of a fringing field at the entrances, of an idealized mirror region, and of a fringing field at the exit. The focusing effects and ion-optical properties of mass spectrometers with electrostatic ion mirrors can be evaluated by using these transfer matrices. A high performance multipassage mass spectrometer is designed. The system has one magnet and four electrostatic sector analyzers and two ion mirrors. The double focusing condition and stigmatic focusing condition are achieved in any passage of the system. The mass resolution increases linearly with the number of passages in a magnet. (orig.).

  5. A global simulation of ICRF heating in a 3D magnetic configuration

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Akutsu, T.

    2005-01-01

    A global simulation code for the ICRF heating analysis in a three-dimensional (3D) magnetic configuration is developed combining two global simulation codes; a drift kinetic equation solver, GNET, and a wave field solver, TASK/WM. Both codes take into account 3D geometry using the numerically obtained 3D MHD equilibrium. The developed simulation code is applied to the LHD configuration as an example. Characteristics of energetic ion distributions in the phase space are clarified in LHD. The simulation results are also compared with experimental results by evaluating the count number of the neutral particle analyzer using the obtained energetic ion distribution, and a relatively good agreement is obtained. (author)

  6. Enhancement of Ar sup 8 sup + ion beam intensity from RIKEN 18 GHz electron cyclotron resonance ion source by optimizing the magnetic field configuration

    CERN Document Server

    Higurashi, Y; Kidera, M; Kase, M; Yano, Y; Aihara, T

    2003-01-01

    We successfully produced a 1.55 emA Ar sup 8 sup + ion beam using the RIKEN 18 GHz electron cyclotron resonance ion source at a microwave power of 700 W. To produce such an intense beam, we optimized the minimum magnetic field of mirror magnetic field and plasma electrode position. (author)

  7. Contribution to the study of magnetic fields in a configuration having radial symmetry; Contribution a l'etude des champs magnetiques dans une configuration a symetrie axiale

    Energy Technology Data Exchange (ETDEWEB)

    Bliaux, T; Durand, J P; Giraud-Carrier, C; Merard, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    First, the method for tracing on 'Teledeltos' paper magnetic induction lines (by analogy with electrical equipotential lines) in order to obtain rapid and qualitative results, is recalled. Then the authors present, computed from the law of Biot and Savart, the values of radial and tangential components of the magnetic induction. These results are presented under the form of abaci for a configuration of parallel conductors in a rotational symmetry. Each configuration is defined by the number of conductors 1 {<=} N {<=} 12 and by the the radius R of the circle. The domain of computation of the value of the magnetic induction at point M (r, {theta}) is limited by symmetry in a sector defined by 0 {<=} r {<=} 2,5*R and 0 {<=} {theta} {<=} {theta}{sub max}. (authors) [French] Apres un rappel du trace sur papier semi-conducteur 'Teledeltos' des lignes d'induction magnetique (par analogie avec des lignes equipotentielles electriques), methode rapide qui donne des resultats qualitatifs, les auteurs presentent sous forme d'abaques les valeurs des composantes radiale et tangentielle de l'induction magnetique calculees par la loi de Biot et Savart, pour une configuration de conducteurs paralleles dans une symetrie axiale de revolution. La configuration est definie par le nombre N de conducteurs [1 {<=} N {<=} 12] et par le rayon R du cercle de repartition des conducteurs. Le point courant M (r, {theta}) est limite, pour des raisons de symetrie, dans un secteur defini par [0 {<=} r {<=} 2,5*R] et 0 {<=} {theta} {<=} {theta}{sub max}. (auteurs)

  8. Computers in plasma physics: remote data access and magnetic configuration design

    International Nuclear Information System (INIS)

    Blackwell, B.D.; McMillan, B.F.; Searle, A.C.; Gardner, H.J.; Price, D.M.; Fredian, T.W.

    2000-01-01

    Full text: Two graphically intensive examples of the application of computers in plasma physics are described remote data access for plasma confinement experiments, and a code for real-time magnetic field tracing and optimisation. The application for both of these is the H-1NF National Plasma Fusion Research Facility, a Commonwealth Major National Research Facility within the Research School of Physical Science, Institute of Advanced Studies, ANU. It is based on the 'flexible' heliac stellarator H-1, a plasma confinement device in which the confining fields are generated solely by external conductors. These complex, fully three dimensional magnetic fields are used as examples for the magnetic design application, and data from plasma physics experiments are used to illustrate the remote access techniques. As plasma fusion experiments grow in size, increased remote access allows physicists to participate in experiments and data analysis from their home base. Three types of access will be described and demonstrated - a simple Java-based web interface, an example TCP client-server built around the widely used MDSPlus data system and the visualisation package IDL (RSI Inc), and a virtual desktop Environment (VNC: AT and T Research) that simulates terminals local to the plasma facility. A client server TCP/IP - web interface to the programmable logic controller that provides user interface to the programmable high power magnet power supplies is described. A very general configuration file allows great flexibility, and allows new displays and interfaces to be created (usually) without changes to the underlying C++ and Java code. The magnetic field code BLINE provides accurate calculation of complex magnetic fields, and 3D visualisation in real time, using a low cost multiprocessor computer and an OpenGL-compatible graphics accelerator. A fast, flexible multi-mesh interpolation method is used for tracing vacuum magnetic field lines created by arbitrary filamentary

  9. On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas

    Directory of Open Access Journals (Sweden)

    L.-N. Hau

    2007-09-01

    Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.

  10. Analysis of payload bay magnetic fields due to dc power multipoint and single point ground configurations

    Science.gov (United States)

    Lawton, R. M.

    1976-01-01

    An analysis of magnetic fields in the Orbiter Payload Bay resulting from the present grounding configuration (structure return) was presented and the amount of improvement that would result from installing wire returns for the three dc power buses was determined. Ac and dc magnetic fields at five points in a cross-section of the bay are calculated for both grounding configurations. Y and Z components of the field at each point are derived in terms of a constant coefficient and the current amplitude of each bus. The dc loads assumed are 100 Amperes for each bus. The ac noise current used is a spectrum 6 db higher than the Orbiter equipment limit for narrowband conducted emissions. It was concluded that installing return wiring to provide a single point ground for the dc Buses in the Payload Bay would reduce the ac and dc magnetic field intensity by approximately 30 db.

  11. Optical levitation of a mirror for reaching the standard quantum limit

    Science.gov (United States)

    Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki

    2017-06-01

    We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.

  12. Performance of lightweight large C/SiC mirror

    Science.gov (United States)

    Yui, Yukari Y.; Goto, Ken; Kaneda, Hidehiro; Katayama, Haruyoshi; Kotani, Masaki; Miyamoto, Masashi; Naitoh, Masataka; Nakagawa, Takao; Saruwatari, Hideki; Suganuma, Masahiro; Sugita, Hiroyuki; Tange, Yoshio; Utsunomiya, Shin; Yamamoto, Yasuji; Yamawaki, Toshihiko

    2017-11-01

    Very lightweight mirror will be required in the near future for both astronomical and earth science/observation missions. Silicon carbide is becoming one of the major materials applied especially to large and/or light space-borne optics, such as Herschel, GAIA, and SPICA. On the other hand, the technology of highly accurate optical measurement of large telescopes, especially in visible wavelength or cryogenic circumstances is also indispensable to realize such space-borne telescopes and hence the successful missions. We have manufactured a very lightweight Φ=800mm mirror made of carbon reinforced silicon carbide composite that can be used to evaluate the homogeneity of the mirror substrate and to master and establish the ground testing method and techniques by assembling it as the primary mirror into an optical system. All other parts of the optics model are also made of the same material as the primary mirror. The composite material was assumed to be homogeneous from the mechanical tests of samples cut out from the various areas of the 800mm mirror green-body and the cryogenic optical measurement of the mirror surface deformation of a 160mm sample mirror that is also made from the same green-body as the 800mm mirror. The circumstance and condition of the optical testing facility has been confirmed to be capable for the highly precise optical measurements of large optical systems of horizontal light axis configuration. Stitching measurement method and the algorithm for analysis of the measurement is also under study.

  13. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    Science.gov (United States)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  14. Investigation and optimization of the magnetic field configuration in high-power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Yu, He; Meng, Liang; Szott, Matthew M; Meister, Jack T; Cho, Tae S; Ruzic, David N

    2013-01-01

    An effort to optimize the magnetic field configuration specifically for high-power impulse magnetron sputtering (HiPIMS) was made. Magnetic field configurations with different field strengths, race track widths and race track patterns were designed using COMSOL. Their influence on HiPIMS plasma properties was investigated using a 36 cm diameter copper target. The I–V discharge characteristics were measured. The temporal evolution of electron temperature (T e ) and density (n e ) was studied employing a triple Langmuir probe, which was also scanned in the whole discharge region to characterize the plasma distribution and transport. Based on the studies, a closed path for electrons to drift along was still essential in HiPIMS in order to efficiently confine electrons and achieve a high pulse current. Very dense plasmas (10 19 –10 20 m −3 ) were generated in front of the race tracks during the pulse, and expanded downstream afterwards. As the magnetic field strength increased from 200 to 800 G, the expansion became faster and less isotropic, i.e. more directional toward the substrate. The electric potential distribution accounted for these effects. Varied race track widths and patterns altered the plasma distribution from the target to the substrate. A spiral-shaped magnetic field design was able to produce superior plasma uniformity on the substrate in addition to improved target utilization. (paper)

  15. Mathematical Formalism for Designing Wide-Field X-Ray Telescopes: Mirror Nodal Positions and Detector Tilts

    Science.gov (United States)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We provide a mathematical formalism for optimizing the mirror nodal positions along the optical axis and the tilt of a commonly employed detector configuration at the focus of a x-ray telescope consisting of nested mirror shells with known mirror surface prescriptions. We adopt the spatial resolution averaged over the field-of-view as the figure of merit M. A more complete description appears in our paper in these proceedings.

  16. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  17. A solid-breeder blanket and power conversion system for the Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Bullis, R.; Clarkson, I.

    1983-01-01

    A solid-breeder blanket has been designed for a commercial fusion power reactor based on the tandem mirror concept (MARS). The design utilizes lithium oxide, cooled by helium which powers a conventional steam electric generating cycle. Maintenance and fabricability considerations led to a modular configuration 6 meters long which incorporates two magnets, shield, blanket and first wall. The modules are arranged to form the 150 meter long reactor central cell. Ferritic steel is used for the module primary structure. The lithium oxide is contained in thin-walled vanadium alloy tubes. A tritium breeding ratio of 1.25 and energy multiplication of 1.1 is predicted. The blanket design appears feasible with only a modest advance in current technology

  18. Segmented bimorph mirrors for adaptive optics: morphing strategy.

    Science.gov (United States)

    Bastaits, Renaud; Alaluf, David; Belloni, Edoardo; Rodrigues, Gonçalo; Preumont, André

    2014-08-01

    This paper discusses the concept of a light weight segmented bimorph mirror for adaptive optics. It focuses on the morphing strategy and addresses the ill-conditioning of the Jacobian of the segments, which are partly outside the optical pupil. Two options are discussed, one based on truncating the singular values and one called damped least squares, which minimizes a combined measure of the sensor error and the voltage vector. A comparison of various configurations of segmented mirrors was conducted; it is shown that segmentation sharply increases the natural frequency of the system with limited deterioration of the image quality.

  19. A Thin-Flux-Rope Approximation as a Basis for Modeling of Pre- and Post-Eruptive Magnetic Configurations

    Science.gov (United States)

    Titov, V. S.; Mikic, Z.; Torok, T.; Linker, J.

    2016-12-01

    Many existing models of solar flares and coronal mass ejections (CMEs) assume a key role of magnetic flux ropes in these phenomena. It is therefore important to have efficient methods for constructing flux-rope configurations consistent with the observed photospheric magnetic data and morphology of CMEs. As our new step in this direction, we propose an analytical formulation that succinctly represents the magnetic field of a thin flux rope, which has an axis of arbitrary shape and a circular cross-section with the diameter slowly varying along the axis. This representation implies also that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. Each of the two potentials is individually expressed in terms of a modified Biot-Savart law with separate kernels, both regularized at the rope axis. We argue that the proposed representation is flexible enough to be used in MHD simulations for initializing pre-eruptive configurations in the low corona or post-eruptive configurations (interplanetary CMEs) in the heliosphere. We discuss the potential advantages of our approach, and the subsequent steps to be performed, to develop a fully operative and highly competitive method compared to existing methods. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  20. Performance test of dual modulator polarimeters in two different configurations for magneto-optic measurement of fusion devices

    International Nuclear Information System (INIS)

    Kenji Higuchi; Tsuyoshi Akiyama; Yoshifumi Azuma; Shunji Tsuji-Iio; Hiroaki Tsutsui; Ryuichi Shimada

    2006-01-01

    Accurate measurement of the magnetic field around plasma is indispensable for real-time control and data analysis on magnetic fusion devices such as tokamaks. Instead of commonly used pick-up loops, which have the problems of zero-point drifts, we proposed and tested a magneto-optic polarimeter based on the polarization modulation method using two photoelastic modulators (PEMs). Polarization detection using a pair of PEMs has been applied to the motional Stark effect (MSE) measurements in some tokamaks. The CO 2 laser polarimeter for electron density measurement on JT-60U adopted this method and demonstrated long time stability for several hours. However, this method requires the same number of pairs of PEMs, which are delicate and expensive, as that of channels so that this method is not easy to apply to multi-point measurements of magnetic fields around tokamaks. To cope with this problem, the two PEMs, which are conventionally placed behind each magnetic sensor, are used to modulate the incident beam before split for each magneto-optic sensor. This configuration can reduce the number of PEMs drastically and the optical system becomes simple. In this new optical configuration, the polarization angle resolution comparable to the conventional optical configuration of 0.002 o with response time of 10 ms was achieved at an incident polarization angle of about 0 o while that at 21 o was 0.07 o . The resolution of 0.07 o corresponds to 7 gauss when a 40-mm-long ZnSe sensing rod is used. Performance test between the two optical configurations were also made on the long-time stability and the accuracy with increasing numbers of beam splitters and/or mirrors for multi-point measurements. (author)

  1. The eROSITA X-ray mirrors: technology and qualification aspects of the production of mandrels, shells and mirror modules

    Science.gov (United States)

    Arcangeli, L.; Borghi, G.; Bräuninger, H.; Citterio, O.; Ferrario, I.; Friedrich, P.; Grisoni, G.; Marioni, F.; Predehl, P.; Rossi, M.; Ritucci, A.; Valsecchi, G.; Vernani, D.

    2017-11-01

    The name "eROSITA" stands for extended Roentgen Survey with an Imaging Telescope Array. The general design of the eROSITA X-ray telescope is derived from that of ABRIXAS. A bundle of 7 mirror modules with short focal lengths make up a compact telescope which is ideal for survey observations. Similar designs had been proposed for the missions DUO and ROSITA but were not realized due to programmatic shortfall. Compared to those, however, the effective area in the soft X-ray band has now much increased by adding 27 additional outer mirror shells to the original 27 ones of each mirror module. The requirement on the on-axis resolution has also been confined, namely to 15 arc seconds HEW. For these reasons the prefix "extended" was added to the original name "ROSITA". The scientific motivation for this extension is founded in the ambitious goal to detect about 100,000 clusters of galaxies which trace the large scale structure of the Universe in space and time. The X-ray telescope of eROSITA will consist of 7 identical and co-aligned mirror modules, each with 54 nested Wolter-1 mirror shells. The mirror shells are glued onto a spider wheel which is screwed to the mirror interface structure making a rigid mechanical unit. The assembly of 7 modules forms a compact hexagonal configuration with 1300 mm diameter (see Fig. 1) and will be attached to the telescope structure which connects to the 7 separate CCD cameras in the focal planes. The co-alignment of the mirror module enables eROSITA to perform also pointed observations. The replication process described in chapter III allows the manufacturing in one single piece and at the same time of both the parabola and hyperbola parts of the Wolter 1 mirror.

  2. Modeling and optimization of operating parameters for a test-cell option of the Fusion Power Demonstration-II tandem mirror design

    International Nuclear Information System (INIS)

    Haney, S.W.; Fenstermacher, M.E.

    1985-01-01

    Models of tandem mirror devices operated with a test-cell insert have been used to calculate operating parameters for FPD-II+T, an upgrade of the Fusion Power Demonstration-II device. Two test-cell configurations were considered, one accommodating two 1.5 m blanket test modules and the other having four. To minimize the cost of the upgrade, FPD-II+T utilizes the same coil arrangement and machine dimensions outside of the test cell as FPD-II, and the requirements on the end cell systems have been held near or below those for FPD-II. The maximum achievable test cell wall loading found for the short test-cell was 3.5 MW/m 2 while 6.0 MW/m 2 was obtainable in the long test-cell configuration. The most severe limitation on the achievable wall loading is the upper limit on test-cell beta set by MHD stability calculations. Modification of the shape of the magnetic field in the test-cell by improving the magnet design could raise this beta limit and lead to improved test-cell performance

  3. Comment on 'Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov A.; Fisch, N.J.

    2008-01-01

    It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al

  4. Test of Optimized 120-mm LARP $Nb_{3}S_n$ Quadrupole Coil Using Magnetic Mirror Structure

    CERN Document Server

    Chlachidze, G; Andreev, N; Anerella, M; Barzi, E; Bossert, R; Caspi, S; Cheng, D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia, A R; Kashikhin, V V; Lamm, M; Marchevsky, M; Nobrega, A; Novitski, I; Orris, D; Sabbi, G L; Schmalzle, J; Wanderer, P; Zlobin, A V

    2013-01-01

    The US LHC accelerator research program (LARP) is developing a new generation of large - aperture high - field quadrupoles based on Nb 3 Sn conductor for the High luminosity upgrade of Large Hadron Collider (HiLumi - LHC). Tests of the first series of 120 - mm aperture HQ coils revealed the necessity for further optimization of the coil design and fabrication process. Modifications in coil design were gradually implemented in two HQ coils previously tested at Fermi National Accelerato r Laboratory (Fermilab) using a magnetic mirror structure (HQM01 and HQM02). This paper describes the construction and test of an HQ mirror model with a coil of optimized design and with an interlayer resistive core in the conductor. The cable for this co il was made of a smaller diameter strand, providing more room for coil expansion during reaction. The 0.8 - mm strand, used in all previous HQ coils was replaced with a 0.778 - mm Nb 3 Sn strand of RRP 108/127 sub - element design. The coil was instrumented with voltage taps, h...

  5. Effect of magnetic configuration on density fluctuation and particle transport in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Yamagishi, O.; Ida, K.; Yamada, H.; Yoshinuma, M.; Yokoyama, M.; Miyazawa, J.; Morita, S.; Kawahata, K.; Tokzawa, T.; Shoji, M.; Vyacheslavov, L.N.; Sanin, A.L.

    2005-01-01

    The study of fluctuations and particle transport is important issue in heliotron and stellarator devices as well as in tokamaks. A two dimensional phase contrast interferometer (2D PCI) was developed to investigate fluctuation characteristics, which play role in confinement. The current 2D PCI can detect fluctuations for which -1 0.3 -1 and 5< f<500kHz. With the use of magnetic shear and the 2D detector, the spatial resolution around 20% of averaged minor radius is possible presently. The strongest fluctuations are localized in the plasma edge, where density gradients are negative, but fluctuations also exist in the positive density gradient region of the hollow density profile. The phase velocity of fluctuations in the positive gradient region is close to plasma ErxBt rotation. On the other hand, fluctuations in the negative density gradient region propagate in the ion diamagnetic direction in the plasma frame and do not follow ErxBt rotation. This suggests there is a different nature of the fluctuations in the positive and negative density gradient regions. A particle transport was studied by means of density modulation experiments. The systematic study was done at Rax=3.6m, which is so-called standard configuration. The density profiles vary from peaked to hollow with increasing heating power. It was also found that particle diffusion and convection are functions of electron temperature and its gradient respectively. The magnetic configuration is another parameter, which characterizes particle confinement. At more outward shifted configurations, helical ripple becomes larger and the ergodic region becomes thicker, then neoclassical transport becomes larger. However estimated diffusion coefficients are still around one order of magnitude larger than neoclassical values in edge region, where ρ = 0.7 ∼ 1.0 and they are larger at more outward configurations. At the same time the convection velocity is found to be comparable with neoclassical prediction at Rax=3

  6. Field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1978-01-01

    The reactor design is a multicell arrangement wherein a series of field-reversed plasma layers are arranged along the axis of a long superconducting solenoid which provides the background magnetic field. Normal copper mirror coils and Ioffe bars placed at the first wall radius provide shallow axial and radial magnetic wells for each plasma layer. Each of 11 plasma layers requires the injection of 3.6 MW of 200 keV deuterium and tritium and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe and an estimated direct capital cost of $1200/kWe

  7. NUMERICAL SIMULATION OF SOLAR MICROFLARES IN A CANOPY-TYPE MAGNETIC CONFIGURATION

    International Nuclear Information System (INIS)

    Jiang, R.-L.; Fang, C.; Chen, P.-F.

    2012-01-01

    Microflares are small activities in the solar low atmosphere; some are in the low corona while others are in the chromosphere. Observations show that some of the microflares are triggered by magnetic reconnection between the emerging flux and a pre-existing background magnetic field. We perform 2.5-dimensional, compressible, resistive magnetohydrodynamic simulations of the magnetic reconnection with gravity considered. The background magnetic field is a canopy-type configuration that is rooted at the boundary of the solar supergranule. By changing the bottom boundary conditions in the simulation, a new magnetic flux emerges at the center of the supergranule and reconnects with the canopy-type magnetic field. We successfully simulate the coronal and chromospheric microflares whose current sheets are located at the corona and the chromosphere, respectively. The microflare with a coronal origin has a larger size and a higher temperature enhancement than the microflare with a chromospheric origin. In the microflares with coronal origins, we also found a hot jet (∼1.8 × 10 6 K), which is probably related to the observational extreme ultraviolet or soft X-ray jets, and a cold jet (∼10 4 K), which is similar to the observational Hα/Ca surges. However, there is only a Hα/Ca bright point in the microflares that have chromospheric origins. The study of parameter dependence shows that the size and strength of the emerging magnetic flux are the key parameters that determine the height of the reconnection location, and they further determine the different observational features of the microflares.

  8. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M.V.; Peeters, F.M

    2004-05-01

    Within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of ferromagnetic dots (FD) deposited on top of it. The vortex pinning properties of such a magnetic lattice are studied, and the field polarity dependent votex pinning is observed. The exact vortex configuration depends on the size of the magnetic dots, their polarity, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter {kappa}*.

  9. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots

    International Nuclear Information System (INIS)

    Milosevic, M.V.; Peeters, F.M.

    2004-01-01

    Within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of ferromagnetic dots (FD) deposited on top of it. The vortex pinning properties of such a magnetic lattice are studied, and the field polarity dependent votex pinning is observed. The exact vortex configuration depends on the size of the magnetic dots, their polarity, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter κ*

  10. Formation of magnetic islands due to field perturbations in toroidal stellarator configurations

    International Nuclear Information System (INIS)

    Lee, D.K.; Harris, J.H.; Lee, G.S.

    1990-06-01

    An explicit formulation is developed to determine the width of a magnetic island separatrix generated by magnetic field perturbations in a general toroidal stellarator geometry. A conventional method is employed to recast the analysis in a magnetic flux coordinate system without using any simplifying approximations. The island width is seen to be proportional to the square root of the Fourier harmonic of B ρ /B ζ that is in resonance with the rational value of the rotational transform, where B ρ and B ζ are contravariant normal and toroidal components of the perturbed magnetic field, respectively. The procedure, which is based on a representation of three-dimensional flux surfaces by double Fourier series, allows rapid and fairly accurate calculation of the island widths in real vacuum field configurations, without the need to follow field lines through numerical integration of the field line equations. Numerical results of the island width obtained in the flux coordinate representation for the Advanced Toroidal Facility agree closely with those determined from Poincare puncture points obtained by following field lines. 22 refs., 5 tabs

  11. D-T axicell magnet system for MFTF-α+T

    International Nuclear Information System (INIS)

    Srivastava, V.C.

    1983-01-01

    The configuration and design of the deuterium-tritium (D-T) axicell superconducting magnets for the Mirror Fusion Test Facility (MFTF-α+T) are described. The MFTF-α+T is an upgrade of the MFTF-B, with new end-plug magnets and a neutron-producing central D-T axicell section. The 4-m long axicell - its length defined by the 12-T peaks in the mirror field - is beam fueled and heated by two beam lines, each with four neutral beam injection ports. Two large superconducting coils (means diameter approx. 3.8 m) located at Z = +-2.40 m, in conjunction with a small copper coil located outside the test volume region, produce the 4.5-T mirror midplane field. This background field is augmented by two copper coils to create the 12-T peak mirror fields at Z = +-2 m. The central region of the axicell accommodates a 1-m-long, replaceable blanket test module. The length (4 m) of the axicell was chosen to provide relatively uniform neutron wall loading over the test module. In many respects, this axicell is less than full scale, but it could be viewed as a short section of a reactor, complete with the support systems and technologies associated with a mirror reactor. The peak field at the superconducting coils is 10.8 T. The coils employ hybrid superconducting winding - Nb 3 Sn conductor in the 8- to 12-T region and NbTi in the 0- to 8-T region. The winding is cryostable and is cooled by a 4.2 K liquid helium bath. The conductor design, the winding design, and the performance analyses for these superconducting coils are described

  12. Analysis of magnetic-dipole transitions in tungsten plasmas using detailed and configuration-average descriptions

    Science.gov (United States)

    Na, Xieyu; Poirier, Michel

    2017-06-01

    This paper is devoted to the analysis of transition arrays of magnetic-dipole (M1) type in highly charged ions. Such transitions play a significant role in highly ionized plasmas, for instance in the tungsten plasma present in tokamak devices. Using formulas recently published and their implementation in the Flexible Atomic Code for M1-transition array shifts and widths, absorption and emission spectra arising from transitions inside the 3*n complex of highly-charged tungsten ions are analyzed. A comparison of magnetic-dipole transitions with electric-dipole (E1) transitions shows that, while the latter are better described by transition array formulas, M1 absorption and emission structures reveal some insufficiency of these formulas. It is demonstrated that the detailed spectra account for significantly richer structures than those predicted by the transition array formalism. This is due to the fact that M1 transitions may occur between levels inside the same relativistic configuration, while such inner configuration transitions are not accounted for by the currently available averaging expression. In addition, because of configuration interaction, transition processes involving more than one electron jump, such as 3p1/23d5/2 → 3p3/23d3/2, are possible but not accounted for in the transition array formulas. These missing transitions are collected in pseudo-arrays using a post-processing method described in this paper. The relative influence of inner- and inter-configuration transitions is carefully analyzed in cases of tungsten ions with net charge around 50. The need for an additional theoretical development is emphasized.

  13. Tornado type closed magnetic trap for an ECR source

    CERN Document Server

    Abramova, K B; Voronin, A V; Zorin, V G

    1999-01-01

    We propose to use a Tornado type closed magnetic trap for creation of a source of mul-ticharged ions with plasma heating by microwave radiation. Plasma loss in closed traps is deter-mined by diffusion across the magnetic field, which increases substantially plasma confinement time as compared to the classical mirror trap [1]. We propose to extract ions with the aid of additional coils which partially destroy the closed structure of the magnetic lines in the trap, but don not influence the total confinement time. This allows for producing a controlled plasma flux that depends on the magnetic field of the additional coil. The Tornado trap also possesses merits such as an opportunity to produce high magnetic fields up to 3 T, which makes possible heating and confinement of plasma with a high density of electrons; plasma stability to magneto-hydrodynamic perturbations because the magnetic field structure corresponds to the "min B" configuration; and relatively low costs. All estimates and calculations were carrie...

  14. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  15. Structural design considerations in the Mirror Fusion Test Facility (MFTF-B) vacuum vessel

    International Nuclear Information System (INIS)

    Vepa, K.; Sterbentz, W.H.

    1981-01-01

    In view of favorable results from the Tandem Mirror Experiment (TMX) also at LLNL, the MFTF project is now being rescoped into a large tandem mirror configuration (MFTF-B), which is the mainline approach to a mirror fusion reactor. This paper concerns itself with the structural aspects of the design of the vessel. The vessel and its intended functions are described. The major structural design issues, especially those influenced by the analysis, are described. The objectives of the finite element analysis and their realization are discussed at length

  16. Mirror boxes and mirror mounts for photophysics beamline

    International Nuclear Information System (INIS)

    Raja Rao, P.M.; Raja Sekhar, B.N.; Das, N.C.; Khan, H.A.; Bhattacharya, S.S.; Roy, A.P.

    1996-01-01

    Photophysics beamline makes use of one metre Seya-Namioka monochromator and two toroidal mirrors in its fore optics. The first toroidal mirror (pre mirror) focuses light originating from the tangent point of the storage ring onto the entrance slit of the monochromator and second toroidal mirror (post mirror) collects light from the exit slit of the monochromator and focuses light onto the sample placed at a distance of about one metre away from the 2nd mirror. To steer light through monochromator and to focus it on the sample of 1mm x 1mm size require precision rotational and translational motion of the mirrors and this has been achieved with the help of precision mirror mounts. Since Indus-1 operates at pressures less than 10 -9 m.bar, the mirror mounts should be manipulated under similar ultra high vacuum conditions. Considering these requirements, two mirror boxes and two mirror mounts have been designed and fabricated. The coarse movements to the mirrors are imparted from outside the mirror chamber with the help of x-y tables and precision movements to the mirrors are achieved with the help of mirror mounts. The UHV compatibility and performance of the mirror mounts connected to mirror boxes under ultra high vacuum condition is evaluated. The details of the design, fabrication and performance evaluation are discussed in this report. 5 refs., 9 figs., 1 tab

  17. Worthwhile optical method for free-form mirrors qualification

    Science.gov (United States)

    Sironi, G.; Canestrari, R.; Toso, G.; Pareschi, G.

    2013-09-01

    We present an optical method for free-form mirrors qualification developed by the Italian National Institute for Astrophysics (INAF) in the context of the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project which includes, among its items, the design, development and installation of a dual-mirror telescope prototype for the Cherenkov Telescope Array (CTA) observatory. The primary mirror panels of the telescope prototype are free-form concave mirrors with few microns accuracy required on the shape error. The developed technique is based on the synergy between a Ronchi-like optical test performed on the reflecting surface and the image, obtained by means of the TraceIT ray-tracing proprietary code, a perfect optics should generate in the same configuration. This deflectometry test allows the reconstruction of the slope error map that the TraceIT code can process to evaluate the measured mirror optical performance at the telescope focus. The advantages of the proposed method is that it substitutes the use of 3D coordinates measuring machine reducing production time and costs and offering the possibility to evaluate on-site the mirror image quality at the focus. In this paper we report the measuring concept and compare the obtained results to the similar ones obtained processing the shape error acquired by means of a 3D coordinates measuring machine.

  18. Superconducting magnets for the RAON electron cyclotron resonance ion source.

    Science.gov (United States)

    Choi, S; Kim, Y; Hong, I S; Jeon, D

    2014-02-01

    The RAON linear accelerator of Rare Isotope Science Project has been developed since 2011, and the superconducting magnet for ECRIS was designed. The RAON ECR ion source was considered as a 3rd generation source. The fully superconducting magnet has been designed for operating using 28 GHz radio frequency. The RAON ECRIS operates in a minimum B field configuration which means that a magnetic sextupole field for radial confinement is superimposed with a magnetic mirror field for axial confinement. The highest field strength reaches 3.5 T on axis and 2 T at the plasma chamber wall for operating frequency up to 28 GHz. In this paper, the design results are presented of optimized superconducting magnet consisting of four solenoids and sextupole. The prototype magnet for ECRIS was fabricated and tested to verify the feasibility of the design. On the basis of test results, a fully superconducting magnet will be fabricated and tested.

  19. Optical Levitation of a Mirror for Reaching the Standard Quantum Limit

    OpenAIRE

    Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki

    2016-01-01

    We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownia...

  20. The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2004-01-01

    Full Text Available Mirror mode turbulence is the lowest frequency perpendicular magnetic excitation in magnetized plasma proposed already about half a century ago by Rudakov and Sagdeev (1958 and Chandrasekhar et al. (1958 from fluid theory. Its experimental verification required a relatively long time. It was early recognized that mirror modes for being excited require a transverse pressure (or temperature anisotropy. In principle mirror modes are some version of slow mode waves. Fluid theory, however, does not give a correct physical picture of the mirror mode. The linear infinitesimally small amplitude physics is described correctly only by including the full kinetic theory and is modified by existing spatial gradients of the plasma parameters which attribute a small finite frequency to the mode. In addition, the mode is propagating only very slowly in plasma such that convective transport is the main cause of flow in it. As the lowest frequency mode it can be expected that mirror modes serve as one of the dominant energy inputs into plasma. This is however true only when the mode grows to large amplitude leaving the linear stage. At such low frequencies, on the other hand, quasilinear theory does not apply as a valid saturation mechanism. Probably the dominant processes are related to the generation of gradients in the plasma which serve as the cause of drift modes thus transferring energy to shorter wavelength propagating waves of higher nonzero frequency. This kind of theory has not yet been developed as it has not yet been understood why mirror modes in spite of their slow growth rate usually are of very large amplitudes indeed of the order of |B/B0|2~O(1. It is thus highly reasonable to assume that mirror modes are instrumental for the development of stationary turbulence in high temperature plasma. Moreover, since the magnetic field in mirror turbulence forms extended though slightly oblique magnetic bottles, low parallel energy particles can be trapped

  1. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  2. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  3. Adaptive aberration correction using a triode hyperbolic electron mirror

    International Nuclear Information System (INIS)

    Fitzgerald, J.P.S.; Word, R.C.; Koenenkamp, R.

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z 0 , and the coefficients of spherical and chromatic aberration, C s and C c , of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties. -- Highlights: → Electrostatic aberration correction for chromatic and spherical aberration in electron optics. → Simultaneous correction of spherical and chromatic aberrations over a wide, adjustable range. → Analytic and quantitative description of correction parameters.

  4. Mirroring

    DEFF Research Database (Denmark)

    Wegener, Charlotte; Wegener, Gregers

    2016-01-01

    and metaphorical value of mirroring for creativity theory across two different research fields — neuroscience and learning. We engage in a mutual (possibly creative) exploration of mirroring from ‘mirror neurons’ to mirroring in social learning theory. One of the most fascinating aspects of mirroring...... as a neurobiological and as a learning phenomenon is that it points to the embodied and unconscious aspects of social interaction. Thus, mirroring should not be reduced to the non-creative, mechanical repetition of the original, outstanding creativity. To mirror is a human capability built into our capacity to create......Most definitions of creativity emphasise originality. The creative product is recognised as distinct from other products and the creative person as someone who stands out from the crowd. What tend to be overlooked are acts of mirroring as a crucial element of the creative process. The human ability...

  5. Testing the isotropic boundary algorithms method to evaluate the magnetic field configuration in the tail

    International Nuclear Information System (INIS)

    Sergeev, V.A.; Malkov, M.; Mursula, K.

    1993-01-01

    This paper describes tests done on one model system for studying the magnetic field in the magneotail, called the isotropic boundary algorithm method. The tail field lines map into the ionosphere, and there have been two direct methods applied to study tail fields, one a global model, and the other a local model. The global models are so broad in scope that they have a hard time dealing with specific field configurations at some time and some location. Local models rely upon field measurements being simultaneously available over a large region of space to study simultaneously the field configurations. In general this is either very fortuitous or very expensive. The isotropic boundary algorithm method relys upon measuring energetic particles, here protons with energies greater than 30 keV, in the isotropic boundary at low altitudes and interpreting them as representing the boundary between stochastic and adiabatic particle motion regions in the equatorial tail current sheet. The authors have correlated particle measurements by NOAA spacecraft to study the isotropic boundary, with magnetic measurements of tail magnetic fields by the geostationary GOES 2 spacecraft. Positive correlations are observed

  6. Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]{sub 6}/Pt/Co/Pt multilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Kalaycı, Taner, E-mail: taner.kalayci@marmara.edu.tr [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Deger, Caner [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Akbulut, Salih [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey); Yildiz, Fikret, E-mail: fyildiz@gtu.edu.tr [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey)

    2017-08-15

    Highlights: • Effects of Pt spacer and reference layers thickness are investigated by MOKE and FMR. • Controlling of non-collinear states in multilayered thin film systems is studied. • Micromagnetic approach is used for modeling of magnetic multilayered structure. • Magnetic parameters are determined by a simulation based on metropolis algorithm. - Abstract: In this study, effects of Pt spacer and Co reference layers thickness in [Co/Pt]{sub 6}/Pt/Co multilayer have been revealed to tailor magnetization directions in non-collinear configuration. Magneto-optic Kerr effect and ferromagnetic resonance techniques were employed to investigate magnetic properties. Bilinear coupling between [Co/Pt]{sub 6} and Co layers and anisotropy constants were determined by a micromagnetic simulation based on metropolis algorithm. 3 nm spacer causes ferromagnetic coupling while the samples have 4 and 5 nm spacer are coupled anti-ferromagneticaly. Also, tuning magnetic anisotropy of [Co/Pt]{sub 6} layer was accomplished by Co reference layer. It is revealed that controlling of non-collinear states in such systems is possible by variation of thickness of spacer and reference layers and [Co/Pt]{sub 6}/t{sub Pt}/t{sub Co} trilayer system can be used in multilayered magnetic systems.

  7. TMX magnets: mechanical design

    International Nuclear Information System (INIS)

    Hinkle, R.E.; Harvey, A.R.; Calderon, M.O.; Chargin, A.K.; Chen, F.F.K.; Denhoy, B.S.; Horvath, J.A.; Reed, J.R.; Waugh, A.F.

    1977-01-01

    The Tandem Mirror Experiment (TMX) system, part of the Lawrence Livermore Laboratory magnetic mirror program incorporates in its design various types of coils or magnets. This paper describes the physical construction of each coil within the system as well as the structural design required for their support and installation

  8. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    International Nuclear Information System (INIS)

    Khaykovich, B.; Gubarev, M.V.; Bagdasarova, Y.; Ramsey, B.D.; Moncton, D.E.

    2011-01-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  9. Generation of Astron-Spherator configuration

    International Nuclear Information System (INIS)

    Narihara, Kazumichi; Hasegawa, Mitsuru; Tomita, Yukihiro; Tsuzuki, Tetsuya; Sato, Kuninori; Mohri, Akihiro.

    1983-01-01

    It was experimentally demonstrated that Astron-Spherator configuration is formed by injecting a pulsed relativistic electron beam in a toroidal device SPAC-VI with external toroidal and vertical magnetic fields. A plasma is confined in the extended magnetic region produced by a slender core of current carrying energetic electrons. This configuration continued for 40 ms without fatal instabilities. (author)

  10. Design of Electromagnetic Moving-coil type Voice Coil Motor for Scanning mirror of Barcode reader

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Bu Hyun; Lee, Jeong Woo; Shim, Hyun Ho; Park, Sang Goo [Hanbat National Univ., Daejeon (Korea, Republic of); Lee, Seung Yop [Sogang Univ., Seoul (Korea, Republic of)

    2016-01-15

    A voice coil actuator with moving coil type for scanning mirror system of barcode reader has been developed. The actuator has a simple structure including a magnet, a coil and a pin. The performance of the actuator is analyzed by a linearized theoretical model. And the dynamic performance of the proposed actuator is predicted through motor constant and restoring constant obtained by finite element simulations. The theoretical model was verified by the prototype which has 64 Hz resonance frequency and 60 deg reflecting angle. We also discovered that that 3 V input can make the actuator rotate over 61.8 deg reflecting angle at 50 Hz resonance frequency. The proposed actuator can simplify its driving configuration because of its implementation of open-loop control.

  11. Plasma cleaning of ITER edge Thomson scattering mock-up mirror in the EAST tokamak

    Science.gov (United States)

    Yan, Rong; Moser, Lucas; Wang, Baoguo; Peng, Jiao; Vorpahl, Christian; Leipold, Frank; Reichle, Roger; Ding, Rui; Chen, Junling; Mu, Lei; Steiner, Roland; Meyer, Ernst; Zhao, Mingzhong; Wu, Jinhua; Marot, Laurent

    2018-02-01

    First mirrors are the key element of all optical and laser diagnostics in ITER. Facing the plasma directly, the surface of the first mirrors could be sputtered by energetic particles or deposited with contaminants eroded from the first wall (tungsten and beryllium), which would result in the degradation of the reflectivity. The impurity deposits emphasize the necessity of the first mirror in situ cleaning for ITER. The mock-up first mirror system for ITER edge Thomson scattering diagnostics has been cleaned in EAST for the first time in a tokamak using radio frequency capacitively coupled plasma. The cleaning properties, namely the removal of contaminants and homogeneity of cleaning were investigated with molybdenum mirror insets (25 mm diameter) located at five positions over the mock-up plate (center to edge) on which 10 nm of aluminum oxide, used as beryllium proxy, were deposited. The cleaning efficiency was evaluated using energy dispersive x-ray spectroscopy, reflectivity measurements and x-ray photoelectron spectroscopy. Using argon or neon plasma without magnetic field in the laboratory and with a 1.7 T magnetic field in the EAST tokamak, the aluminum oxide films were homogeneously removed. The full recovery of the mirrors’ reflectivity was attained after cleaning in EAST with the magnetic field, and the cleaning efficiency was about 40 times higher than that without the magnetic field. All these results are promising for the plasma cleaning baseline scenario of ITER.

  12. Progress In Research On Open - Ended Magnetic Traps

    International Nuclear Information System (INIS)

    Kruglyakov, E. P.; Burdakov, A. V.; Ivanov, A. A.

    2006-01-01

    At present, three modern types of mirror machines for plasma confinement and heating exist in Novosibirsk (Multi-mirror,-GOL-3, Gas Dynamic Trap,-GDT, and Tandem Mirror,- AMBAL-M). From the engineering point of view all these systems are very attractive because of simple axisymmetric geometry of magnetic configurations. In this paper, the status of GOL-3 and GDT machines is presented. The most crucial experiments for the mirror concept are described such as a demonstration of different principles of suppression of longitudinal electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of confinement of high β (more than 0.4) plasma in axisymmetric geometry of magnetic field, an effective heating of a dense plasma (of order of 10 21 m-3) by high current relativistic electron beam (GOL-3), etc. In the case of multi-mirror geometry (GOL-3) significant increase of confinement time of hot plasma (up to several tens times) was obtained in comparison with single mirror geometry. Besides, electron heating (up to 2 keV) in result of high current electron beam -- plasma interaction, the heating of ions (up to 2 keV) was discovered in the multi-mirror geometry (55 mirror cells with total length of the trap equal to 12 meters). There was no any effect of ion heating in the single mirror geometry. The reasons of appearance of the ion heating in multi-mirror geometry are discussed. It should be mentioned that on the basis of the GOL-3 and GDT one can obtain an important information for ITER and for future fusion program. In the case of GOL-3 the longitudinal energy density flux of plasma after heating by REB can be so high as 50 MJ/m2. A lot of experiments can be made on plasma-wall interaction (evaporation, erosion and ionization of wall material, propagation of the impurity ions along magnetic field lines at long distances, etc). Some of these experiments are described in this paper. Using principle of confinement of 'warm' collisional plasma placed in gas dynamic

  13. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Directory of Open Access Journals (Sweden)

    J. Soucek

    2011-06-01

    Full Text Available Mirror modes are among the most intense low frequency plasma wave phenomena observed in the magnetosheaths of magnetized planets. They appear as large amplitude non-propagating fluctuations in the magnetic field magnitude and plasma density. These structures are widely accepted to represent a non-linear stage of the mirror instability, dominant in plasmas with large ion beta and a significant ion temperature anisotropy T⊥/T∥>1. It has long been recognized that the mirror instability both in the linear and non-linear stage is a kinetic process and that the behavior of resonant particles at small parallel velocities is crucial for its development and saturation. While the dynamics of the instability and the effect of trapped particles have been studied extensively in theoretical models and numerical simulations, only spurious observations of the trapped ions were published to date. In this work we used data from the Cluster spacecraft to perform the first detailed experimental study of ion velocity distribution associated with mirror mode oscillations. We show a conclusive evidence for the predicted cooling of resonant ions at small parallel velocities and heating of trapped ions at intermediate pitch angles.

  14. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    International Nuclear Information System (INIS)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data

  15. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data.

  16. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    CERN Document Server

    Ko, D K; Binks, D J; Gloster, L A W; King, T A

    1998-01-01

    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  17. Numerical solutions of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.

    1985-01-01

    The results of a new numerical code called GARFIELD (Grumman Aerospace Rf Field code) that calculates ICRF Fields in axisymmetric mirror geometry (such as the central cell of a tandem mirror or an RF test stand) are presented. The code solves the electromagnetic wave equation using a cold plasma dispersion relation with a small collision frequency to simulate absorption. The purpose of the calculation is to examine how ICRF wave structure and propagation is effected by the axial variation of the magnetic field in a mirror for various antenna designs. In the code the wave equation is solved in flux coordinates using a finite element method. This should allow more complex dielectric tensors to be modeled in the future. The resulting matrix is solved iteratively, to maximize the allowable size of the spatial grid. Results for a typical antenna array in a simple mirror will be shown

  18. Mirror, mirror on the wall

    CERN Multimedia

    2005-01-01

    RICH 2, one of the two Ring Imaging Cherenkov detectors of the LHCb experiment, is being prepared to join the other detector elements ready for the first proton-proton collisions at LHC. The mirrors of the RICH2 detector are meticulously assembled in a clean room.In a large dark room, men in white move around an immense structure some 7 metres high, 10 metres wide and nearly 2.5 metres deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors. Each spherical mirror wall is made up of facets like a fly's eye. Twenty-eight individual thin glass mirrors will all point to the same point in space to within a few micro-radians. The development of these mirrors has been technically demanding : Ideally they should be massless, sturdy, precise and have high reflectivity. In practice, though not massless, they are made from a mere 6 mm thin gl...

  19. Investigation of internal magnetic structures and comparison with two-fluid equilibrium configurations in the multi-pulsing CHI on HIST

    Science.gov (United States)

    Nakayama, T.; Hanao, T.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Kanki, T.

    2012-10-01

    Spherical torus (ST) plasmas have been successfully maintained by Muti-pulsing Coaxial Helicity Injection (M-CHI) on HIST. This research object is to clarify relations between plasma characteristics and magnetic flux amplifications, and to compare magnetic field structures measured in the plasma interior to a flowing equilibrium calculation. Two-dimensional magnetic probe array has been newly introduced nearby the gun muzzle. The initial result shows that the diverter configuration with a single X-point can be formed after a bubble burst process of the plasma. The closed magnetic flux is surrounded by the open magnetic field lines intersecting with the gun electrodes. To evaluate the sustained configurations, we use the two-fluid equilibrium code containing generalized Bernoulli and Grad-Shafranov equations which was developed by L.C. Steinhauer. The radial profiles of plasma flow, density and magnetic fields measured on the midplane of the FC are consistent to the calculation. We also found that the poloidal shear flow generation is attributed to ExB drift and ion diamagnetic drift. In addition, we will study temporal behaviors of impurity lines such as OV and OVI during the flux amplification by VUV spectroscopic measurements.

  20. Trisomy 4 in a case of acute undifferentiated myeloblastic leukemia with hand-mirror cells.

    Science.gov (United States)

    Kao, Y S; McCormick, C; Vial, R

    1990-04-01

    A case of acute undifferentiated myelocytic leukemic with trisomy 4 is described. The patient is a 61-year-old woman who developed leukemia 4 1/2 years after receiving radiation therapy for uterine carcinoma. Many leukemic cells exhibited hand-mirror configuration after the bone marrow aspirate was left at room temperature overnight. The relationship between trisomy 4 and hand-mirror cells in acute myelocytic leukemia is unknown.

  1. Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing

    International Nuclear Information System (INIS)

    Liu, Wenjun; Ice, Gene E.; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z.; Choi, J.-Y.

    2011-01-01

    A nested Kirkpatrick–Baez mirror pair has been designed, fabricated and tested for achromatic nanofocusing synchrotron hard X-rays. The prototype system achieved a FWHM focal spot of about 150 nm in both horizontal and vertical directions. The first test of nanoscale-focusing Kirkpatrick–Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway

  2. Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

    Science.gov (United States)

    Beardsley, R. P.; Parkes, D. E.; Zemen, J.; Bowe, S.; Edmonds, K. W.; Reardon, C.; Maccherozzi, F.; Isakov, I.; Warburton, P. A.; Campion, R. P.; Gallagher, B. L.; Cavill, S. A.; Rushforth, A. W.

    2017-02-01

    We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

  3. Culture, the Crack'd Mirror, and the Neuroethics of Disease.

    Science.gov (United States)

    Gillett, Grant

    2016-10-01

    Human beings are sensorimotor coupled to the actual world and also attuned to the symbolic world of culture and the techniques of adaptation that culture provides. The self-image and self-shaping mediated by that mirror directly affects the neurocognitive structures that integrate human neural activity and reshape its processing capacities through top-down or autopoietic effects. Thus a crack'd mirror, which disrupts the processes of enactive self-configuration, can be disabling for an individual. That is exactly what happens in postcolonial or immigration contexts in which individuals' cultural adaptations are marginalized and disconnected in diverse and often painful and disorienting ways. The crack'd mirror is therefore a powerful trope for neuroethics and helps us understand the social and moral pathologies of many indigenous and immigrant communities.

  4. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal.

    Science.gov (United States)

    Corballis, Michael C

    2018-01-01

    Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d ) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.

  5. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal

    Directory of Open Access Journals (Sweden)

    Michael C. Corballis

    2018-04-01

    Full Text Available Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.

  6. Proton transport model in the ionosphere. 2. Influence of magnetic mirroring and collisions on the angular redistribution in a proton beam

    Directory of Open Access Journals (Sweden)

    M. Galand

    1998-10-01

    Full Text Available We investigate the influence of magnetic mirroring and elastic and inelastic scattering on the angular redistribution in a proton/hydrogen beam by using a transport code in comparison with observations. H-emission Doppler profiles viewed in the magnetic zenith exhibit a red-shifted component which is indicative of upward fluxes. In order to determine the origin of this red shift, we evaluate the influence of two angular redistribution sources which are included in our proton/hydrogen transport model. Even though it generates an upward flux, the redistribution due to magnetic mirroring effect is not sufficient to explain the red shift. On the other hand, the collisional angular scattering induces a much more significant red shift in the lower atmosphere. The red shift due to collisions is produced  by <1 -keV protons and is so small as to require an instrumental bandwidth <0.2 nm. This explains the absence of measured upward proton/hydrogen fluxes in the Proton I rocket data because no useable data concerning protons <1 keV are available. At the same time, our model agrees with measured ground-based H-emission Doppler profiles and suggests that previously reported red shift observations were due mostly to instrumental bandwidth broadening of the profile. Our results suggest that Doppler profile measurements with higher spectral resolution may enable us to quantify better the angular scattering in proton aurora.Key words. Auroral ionosphere · Particle precipitation

  7. Mirror Neurons and Mirror-Touch Synesthesia.

    Science.gov (United States)

    Linkovski, Omer; Katzin, Naama; Salti, Moti

    2016-05-30

    Since mirror neurons were introduced to the neuroscientific community more than 20 years ago, they have become an elegant and intuitive account for different cognitive mechanisms (e.g., empathy, goal understanding) and conditions (e.g., autism spectrum disorders). Recently, mirror neurons were suggested to be the mechanism underlying a specific type of synesthesia. Mirror-touch synesthesia is a phenomenon in which individuals experience somatosensory sensations when seeing someone else being touched. Appealing as it is, careful delineation is required when applying this mechanism. Using the mirror-touch synesthesia case, we put forward theoretical and methodological issues that should be addressed before relying on the mirror-neurons account. © The Author(s) 2016.

  8. Synchrotron radiation and precision mirror metrology with a long trace profiler

    International Nuclear Information System (INIS)

    Qian, S.; Takacs, P.Z.

    1997-08-01

    The Long Trace Profiler (LTP) is in use at several synchrotron radiation (SR) laboratories throughout the world and by a number of manufacturers who specialize in making grazing incidence mirrors for SR customers. Recent improvements in the design and operation of the LTP system have reduced the slope profile error bar to the level of 0.3 microradians RMS over measurement lengths of 0.5 meter. This corresponds to a height error bar on the order of 20 nanometers. This level of performance allows one to measure with confidence the shape of large cylinders and spheres that have kilometer radii of curvature in the axial direction. The LTP is versatile enough to make measurements of a mirror in the face up, sideways, and face down configurations. The authors will illustrate the versatility of the current version of the instrument, the LTP II, and present results from two new versions of the instrument: the in-situ LTP (ISLTP) and the Vertical Scan LTP (VSLTP). Both of them are based on the penta-prism LTP (ppLTP) principle with a stationary optical head and moving penta-prism. The ISLTP is designed to measure the distortion of high heat load mirrors during actual operation in SR beam lines. The VSLTP is designed to measure the complete 3-dimensional shape of x-ray telescope cylinder mirrors and mandrels in a vertical configuration. Scans are done both in the axial direction and in the azimuthal direction

  9. Virtual cathode microwave generation using inhomogeneous magnetic field and wave guide wall configuration

    International Nuclear Information System (INIS)

    Thode, L.E.; Kwan, T.J.T.

    1984-01-01

    Microwave generation from a virtual cathode system is investigated using two-dimensional particle-in-cell simulation. In the typical virtual cathode geometry, the electron beam diode is separated from the output waveguide by a ground plane which is a thin foil or screen. By lowering the diode impedance sufficiently, it is possible to form a virtual cathode in the waveguide region a short distance from the ground plane. In this configuration two mechanisms can lead to microwave generation: 1) electron bunching due to reflection between the real and virtual cathode and 2) electron bunching due to virtual cathode oscillation. Both mechanisms are typically present, but it appears possible to make one mechanism dominant by adjusting the output waveguide radius. Although such a configuration might generate 1-10 GW output, electron deposition into the ground plane, waveguide wall, and output window causes breakdown. To overcome these disadvantages, the authors have investigated a configuration with no ground plane coupled with the use of an inhomogeneous external magnetic field and waveguide wall

  10. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    International Nuclear Information System (INIS)

    Post, R.F.

    2010-01-01

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  11. Manufacturing the MFTF magnet

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Hinkle, R.E.; Hodges, A.J.

    1980-01-01

    The Mirror Fusion Test Facility (MFTF) is a large mirror program experiment for magnetic fusion energy. It will combine and extend the near-classical plasma confinement achieved in 2XIIB with advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime

  12. Finite mirror effects in advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Lundgren, Andrew P.; Bondarescu, Ruxandra; Tsang, David; Bondarescu, Mihai

    2008-01-01

    Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second-generation, ground-based gravitational-wave detectors. Reshaping the beam to a flatter, wider profile which probes more of the mirror surface reduces this noise. The 'Mesa' beam shape has been proposed for this purpose and was subsequently generalized to a family of hyperboloidal beams with two parameters: twist angle α and beam width D. Varying α allows a continuous transition from the nearly flat (α=0) to the nearly concentric (α=π) Mesa beam configurations. We analytically prove that in the limit D→∞ hyperboloidal beams become Gaussians. The ideal beam choice for reducing thermal noise is the widest possible beam that satisfies the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) diffraction loss design constraint of 1 part per million (ppm) per bounce for a mirror radius of 17 cm. In the past the diffraction loss has often been calculated using the clipping approximation that, in general, underestimates the diffraction loss. We develop a code using pseudospectral methods to compute the diffraction loss directly from the propagator. We find that the diffraction loss is not a strictly monotonic function of beam width, but has local minima that occur due to finite mirror effects and leads to natural choices of D. For an α=π Mesa beam a local minimum occurs at D=10.67 cm and leads to a diffraction loss of 1.4 ppm. We then compute the thermal noise for the entire hyperboloidal family. We find that if one requires a diffraction loss of strictly 1 ppm, the α=0.91π hyperboloidal beam is optimal, leading to the coating thermal noise (the dominant source of noise for fused-silica mirrors) being lower by about 10% than for a Mesa beam while other types of thermal noise decrease as well. We then develop an iterative process that reconstructs the mirror to specifically account for finite mirror effects. This allows us to increase the D

  13. Effects of magnetic configuration on hot electrons in highly charged ECR plasma

    International Nuclear Information System (INIS)

    Zhao, H Y; Zhao, H W; Sun, L T; Wang, H; Ma, B H; Zhang, X Zh; Li, X X; Ma, X W; Zhu, Y H; Lu, W; Shang, Y; Xie, D Z

    2009-01-01

    To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, T spe , is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.

  14. Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR) Sensors in Differential Configuration.

    Science.gov (United States)

    Lei, Huaming; Wang, Kan; Ji, Xiaojun; Cui, Daxiang

    2016-12-14

    Magnetic nanoparticles (MNPs) are commonly used in biomedical detection due to their capability to bind with some specific antibodies. Quantification of biological entities could be realized by measuring the magnetic response of MNPs after the binding process. This paper presents a contactless scanning prototype based on tunneling magnetoresistance (TMR) sensors for quantification of MNPs present in lateral flow strips (LFSs). The sensing unit of the prototype composes of two active TMR elements, which are parallel and closely arranged to form a differential sensing configuration in a perpendicular magnetic field. Geometrical parameters of the configuration are optimized according to theoretical analysis of the stray magnetic field produced by the test line (T-line) while strips being scanned. A brief description of our prototype and the sample preparation is presented. Experimental results show that the prototype exhibits the performance of high sensitivity and strong anti-interference ability. Meanwhile, the detection speed has been improved compared with existing similar techniques. The proposed prototype demonstrates a good sensitivity for detecting samples containing human chorionic gonadotropin (hCG) at a concentration of 25 mIU/mL. The T-line produced by the sample with low concentration is almost beyond the visual limit and produces a maximum stray magnetic field some 0.247 mOe at the sensor in the x direction.

  15. Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR Sensors in Differential Configuration

    Directory of Open Access Journals (Sweden)

    Huaming Lei

    2016-12-01

    Full Text Available Magnetic nanoparticles (MNPs are commonly used in biomedical detection due to their capability to bind with some specific antibodies. Quantification of biological entities could be realized by measuring the magnetic response of MNPs after the binding process. This paper presents a contactless scanning prototype based on tunneling magnetoresistance (TMR sensors for quantification of MNPs present in lateral flow strips (LFSs. The sensing unit of the prototype composes of two active TMR elements, which are parallel and closely arranged to form a differential sensing configuration in a perpendicular magnetic field. Geometrical parameters of the configuration are optimized according to theoretical analysis of the stray magnetic field produced by the test line (T-line while strips being scanned. A brief description of our prototype and the sample preparation is presented. Experimental results show that the prototype exhibits the performance of high sensitivity and strong anti-interference ability. Meanwhile, the detection speed has been improved compared with existing similar techniques. The proposed prototype demonstrates a good sensitivity for detecting samples containing human chorionic gonadotropin (hCG at a concentration of 25 mIU/mL. The T-line produced by the sample with low concentration is almost beyond the visual limit and produces a maximum stray magnetic field some 0.247 mOe at the sensor in the x direction.

  16. Cyclotron heating rate in a parabolic mirror

    International Nuclear Information System (INIS)

    Smith, P.K.

    1984-01-01

    Cyclotron resonance heating rates are found for a parabolic magnetic mirror. The equation of motion for perpendicular velocity is solved, including the radial magnetic field terms neglected in earlier papers. The expression for heating rate involves an infinite series of Anger's and Weber's functions, compared with a single term of the unrevised expression. The new results show an increase of heating rate compared with previous results. A simple expression is given for the ratio of the heating rates. (author)

  17. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  18. Field-reversed mirror pilot reactor. Annual report

    International Nuclear Information System (INIS)

    Devoto, R.S.; Erickson, J.L.; Fink, J.H.

    1980-09-01

    This report concludes a two-year effort to design a near-term small-scale fusion power plant which, through its construction and operation, would be a direct and important step toward the commercialization of fusion energy. The fusion reactor pilot plant was designed under the ground rules that it must produce net power, be compact, have minimum total cost, and use near-term (late 1980's) engineering technology. The neutral beam driven, field-reversed mirror (FRM) was selected as the fusion plasma confinement concept around which the pilot plant was designed. Although the physics data base for this design is not yet well in hand, it is being pursued within the magnetic field-reversal framework of the US Mirror Fusion Program. Depending on the plasma size, the pilot plant would gross up to 19.8 MW(e) and would produce up to 10.7 MW(e) net, with the recirculated power used principally for the neutral beam injectors and refrigeration for the superconducting magnets

  19. Open trap with ambipolar mirrors

    International Nuclear Information System (INIS)

    Dimov, G.I.; Zakajdakov, V.V.; Kishinevskij, M.E.

    1977-01-01

    Results of numerical calculations on the behaviour of a thermonuclear plasma, allowing for α-particles in a trap with longitudinal confinement of the main ions by ambipolar electric fields are presented. This trap is formed by connecting two small-volume ''mirrortrons'' to an ordinary open trap. Into the extreme mirrortrons, approximately 1-MeV ions are introduced continuously by ionization of atomic beams on the plasma, and approximately 10-keV ions are similarly introduced into the main central region of the trap. By a suitable choice of injection currents, the plasma density established in the extreme mirrortrons is higher than in the central region. As a result of the quasi-neutrality condition, a longitudinal ambipolar field forming a potential well not only for electrons but also for the central ions is formed in the plasma. When the depth of the well for the central ions is much greater than their temperature, their life-time considerably exceeds the time of confinement by the magnetic mirrors. As a result, the plasma density is constant over the entire length of the central mirrortron, including the regions near the mirrors, and an ambipolar field is formed only in the extreme mirrortrons. The distribution of central ions and ambipolar potential in the extreme mirrortrons is uniquely determined by the density distribution of fast extreme ions. It is shown in the present study that an amplification coefficient Q as high as desired can, in principle, be reached in the trap under consideration, allowing for α-particles. However, this requires high magnetic fields in the mirrors and a sufficient length of the central mirrotron. It is shown that for moderate values of Q=3-8, it is desirable not to confine the central fast α-particles. To achieve a coefficient of Q=5, it is necessary to create fields of 250 kG in the mirrors, and the length of the trap must not be greater than 100 m. (author)

  20. Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations

    Science.gov (United States)

    Nieves-Chinchilla, T.; Vourlidas, A.; Raymond, J. C.; Linton, M. G.; Al-haddad, N.; Savani, N. P.; Szabo, A.; Hidalgo, M. A.

    2018-02-01

    The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term "magnetic obstacle" (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions ( i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward

  1. Electron Acceleration in the Field-reversed Configuration (FRC) by Slowly Rotation Odd-parity Magnetic Fields (RMFo)

    International Nuclear Information System (INIS)

    Glasser, A.H.; Cohen, S.A.

    2001-01-01

    The trajectories of individual electrons are studied numerically in a 3D, prolate, FRC [field-reversed configuration] equilibrium magnetic geometry with added small-amplitude, slowly rotating, odd-parity magnetic fields (RMFos). RMFos cause electron heating by toroidal acceleration near the O-point line and by field-parallel acceleration away from it, both followed by scattering from magnetic-field inhomogeneities. Electrons accelerated along the O-point line move antiparallel to the FRC's current and attain average toroidal angular speeds near that of the RMFo, independent of the sense of RMFo rotation. A conserved transformed Hamiltonian, dependent on electron energy and RMFo sense, controls electron flux-surface coordinate

  2. Analysis and manipulation of the induced changes in the state of polarization by mirror scanners.

    Science.gov (United States)

    Petrova-Mayor, Anna; Knudsen, Sarah

    2017-05-20

    The induced polarization effects of metal-coated mirrors were studied in the configurations of one- and two-mirror lidar scanners as a function of azimuth and elevation angles. The theoretical results were verified experimentally for three types of mirrors (custom enhanced gold, off-the-shelf protected gold, and protected aluminum). A method was devised and tested to maintain a desired polarization state (linear or circular) of the transmit beam for all pointing directions by means of rotating wave plates in the transmit and detection paths. Alternatively, the mirror coating can be optimized to preserve the linear polarization state of the transmitted beam. The compensation methods will enable ground-based scanning lidars to produce absolutely calibrated depolarization measurements.

  3. The compact mirrors with high pressure plasmas

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Bagryansky, P.A.; Ivanov, A.A.; Lizunov, A.A.; Murakhtin, S.V.; Prikhodko, V.V.; Collatz, S.; Noack, K.

    2004-01-01

    The gas dynamic trap (GDP) experimental facility at the Budker Institute Novosibirsk is a long axial-symmetric mirror system with a high mirror ratio variable in the range of 12.5 - 100 for the confinement of a two-component plasma. One component is a collisional plasma with ion and electron temperatures up to 100 eV and density up to 10 14 cm -3 . The second component is the population of high-energetic fast ions with energies of 2-18 keV and a density up to 10 13 cm -3 which is produced by neutral beam injection (NBI). GDP is currently undergoing an upgrade whose first stage is the achievement of the synthesized hot ion plasmoid experiment (SHIP). This experiment aims at the investigation of plasmas and at the knowledge of plasma parameters that have never been achieved before in magnetic mirrors. The paper presents the physical concept of the SHIP experiment, the results of numerical pre-calculations and draws conclusions regarding possible scenarios of experiments. The simulation of a maximal NBI power regime with hydrogen injection gave a fast ion density of 1.2*10 14 cm -3 with a mean energy of 14 keV. The calculation of the deuterium injection regime with 2 MW NBI power gave a maximal fast ion density of 1.9*10 14 cm -3 with a beam energy of 9 keV. The calculation of an experimental scenario with reduced magnetic field resulted in a maximal β-value of 62%, so this regime is recommended for the study of high-β effects in plasmas confined in axial-symmetric mirrors

  4. Electron cooling and finite potential drop in a magnetized plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Sanchez, M. [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Navarro-Cavallé, J. [Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ahedo, E. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganés 28911, Madrid (Spain)

    2015-05-15

    The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find the total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.

  5. Magnetic configuration dependence of the shafranov shift in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kobuchi, T; Ida, K; Yamada, H; Yokoyama, M; Watanabe, K Y; Sakakibara, S; Yoshinuma, M [National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki-City, 509-5292 (Japan)

    2006-06-15

    The dependence of the Shafranov shift on magnetic field configuration, toroidicity and central rotational transform {iota}(0) in neutral beam heated plasma has been experimentally investigated in the Large Helical Device. The toroidicity of the plasma is controlled by the quadrupole field, while the central {iota}(0) is controlled by changing the distance of the current centre of the helical coil to the plasma. It is experimentally confirmed that both the lower toroidicity and the higher {iota}(0) contribute to the reduction of the Shafranov shift as predicted by the three-dimensional equilibrium code, VMEC.

  6. MAP, MAC, and vortex-rings configurations in the Weinberg-Salam model

    Science.gov (United States)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming

    2015-11-01

    We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)×U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the ϕ-winding number n = 1, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the z-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number n = 3. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of 4 πn / e. In the MAP configurations, the monopole-antimonopole pair is bounded by the Z0 field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges ± 4πn/e sin2θW respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges ± 4 πn/e respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant 0 ≤ λ ≤ 40 at Weinberg angle θW = π/4.

  7. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging.

    Science.gov (United States)

    Schmidt, Rita; Webb, Andrew

    2017-10-11

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.

  8. Adaptive metal mirror for high-power CO2 lasers

    Science.gov (United States)

    Jarosch, Uwe-Klaus

    1996-08-01

    Spherical mirrors with a variable radius of curvature are used inside laser resonators as well as in the beam path between the laser and the workpiece. Commercially-available systems use piezoelectric actuators, or the pressure of the coolant, to deform the mirror surface. In both cases, the actuator and the cooling system influence each other. This interaction is avoided through the integration of the cooling system with the flexible mirror membrane. A multi- channel design leads to an optimized cooling effect, which is necessary for high power applications. The contour of the variable metal mirror depends on the mounting between the membrane and the mirror body and on the distribution of forces. Four cases of deformation can be distinguished for a circular elastic membrane. The realization of an adaptive metal mirror requires a technical compromise to be made. A mechanical construction is presented which combines an elastic hinge with the inlet and outlet of the coolant. For the deformation of the mirror membranes two actuators with different character of deformation are used. The superposition of the two deformations results in smaller deviations from the spherical surface shape than can be achieved using a single actuator. DC proportional magnets have been introduced as cheap and rigid actuators. The use of this adaptive mirror, either in a low pressure atmosphere of a gas laser resonator, or in an extra-cavity beam path is made possible through the use of a ventilation system.

  9. Beam line optics technologies series (7). Orthopedic treatment of sharp of light (reflecting mirror)

    International Nuclear Information System (INIS)

    Uruga, Tomoya; Nomura, Masaharu

    2006-01-01

    A reflecting mirror (mirror) is the most popular light device for orthopedic treatment of the shape of light. The paper explains the kinds of mirror for hard X-ray field and its applications in order to think the objects of mirror and how to adjust it when user experiment on the beam-line. The basic knowledge of reflection of X-ray, a use of mirror, the kinds of condenser mirror, the influence factors on the condenser size, arrangement of mirror in the hard X-ray beam-line, what kinds of mirror are necessary, evaluation of performance of mirror and adjustment, and troubles and measures are described. Layout in optics hutch at BL01B1 at SPring-8, refraction and total reflection of X-rays at surface, reflectivity of Rh and Pt with ideal surface as a function of photon energy, effects of surface roughness on reflectivity of Rh, calculated beam sizes for typical SPring-8 mirror as a function of magnification, schematic drawing of mirror, standard mirror system for vertical deflection in bending magnet beam-line, and observed and calculated reflectivity of Rh double mirror at BL01B1 at SPring-8 are illustrated. (S.Y)

  10. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    Science.gov (United States)

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  11. Magnetic mirror fusion research at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    An overall view is given of progress and plans for pressing forward with mirror research at Livermore. No detail is given on any one subject, and many interesting investigations being carried out at University laboratories in the U.S. that augment and support efforts at Livermore are omitted

  12. Electron temperature in field reversed configurations and theta pinches with closed magnetic field lines

    International Nuclear Information System (INIS)

    Newton, A.A.

    1986-01-01

    Field-reversed configurations (FRC) and theta pinches with trapped reversed bias field are essentially the same magnetic confinement systems using closed magnetic field lines inside an open-ended magnetic flux tube. A simple model of joule heating and parallel electron thermal conduction along the open flux lines to an external heat sink gives the electron temperature as Tsub(e)(eV) approx.= 0.05 Bsup(2/3)(G)Lsup(1/3)(cm), where B is the magnetic field and L is the coil length. This model appears to agree with measurements from present FRC experiments and past theta-pinch experiments which cover a range of 40-900 eV. The energy balance in the model is dominated by (a) parallel electron thermal conduction along the open field lines which has a steep temperature dependence, Q is proportional to Tsub(e)sup(7/2), and (b) the assumed rapid perpendicular transport in the plasma bulk which, in experiments to date, may be due to the small number of ion gyroradii across the plasma. (author)

  13. Density and magnetic field measurements in the Tormac IV-c plasma

    International Nuclear Information System (INIS)

    Coonrod, J.W. Jr.

    1978-01-01

    Tormac is a concept for magnetically confining a high-β fusion plasma in a toroidal, stuffed line cusp. A Tormac plasma has two regions: an interior confined on the closed toroidal field lines of the stuffing field, and an exterior sheath on open, cusped field lines. The interior plasma gives the device a longer confinement time than a standard mirror, while the favorable curvature of the cusp fields allow the plasma to be stable at higher values of β (the ratio of the plasma pressure to magnetic pressure) than a totally closed configuration like Tokamak. This thesis describes the design, construction and operation of Tormac IV-c, and reports on the results, with emphasis on describing the behavior of the density compression and field penetration

  14. Centrifugal particle confinement in mirror geometry

    Science.gov (United States)

    White, Roscoe; Hassam, Adil; Brizard, Alain

    2018-01-01

    The use of supersonic rotation of a plasma in mirror geometry has distinct advantages for thermonuclear fusion. The device is steady state, there are no disruptions, the loss cone is almost closed, sheared rotation stabilizes magnetohydrodynamic instabilities as well as plasma turbulence, there are no runaway electrons, and the coil configuration is simple. In this work, we examine the effect of rotation on mirror confinement using a full cyclotron orbit code. The full cyclotron simulations give a much more complete description of the particle energy distribution and losses than the use of guiding center equations. Both collisionless loss as a function of rotation and the effect of collisions are investigated. Although the cross field diffusion is classical, we find that the local rotating Maxwellian is increased to higher energy, increasing the fusion rate and also enhancing the radial diffusion. We find a loss channel not envisioned with a guiding center treatment, but a design can be chosen that can satisfy the Lawson criterion for ions. Of course, the rotation has a minimal effect on the alpha particle birth distribution, so there is initially loss through the usual loss cone, just as in a mirror with no rotation. However after this loss, the alphas slow down on the electrons with little pitch angle scattering until reaching low energy, so over half of the initial alpha energy is transferred to the electrons. The important problem of energy confinement, with losses primarily through the electron channel, is not addressed in this work. We also discuss the use of rotating mirror geometry to produce an ion thruster.

  15. Three-dimensional crossbar interconnection using planar-integrated free-space optics and digital mirror-device

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.

    2011-01-01

    We consider the implementation of a dynamic crossbar interconnect using planar-integrated free-space optics (PIFSO) and a digital mirror-device™ (DMD). Because of the 3D nature of free-space optics, this approach is able to solve geometrical problems with crossings of the signal paths that occur in waveguide optical and electrical interconnection, especially for large number of connections. The DMD device allows one to route the signals dynamically. Due to the large number of individual mirror elements in the DMD, different optical path configurations are possible, thus offering the chance for optimizing the network configuration. The optimization is achieved by using an evolutionary algorithm for finding best values for a skewless parallel interconnection. Here, we present results and experimental examples for the use of the PIFSO/DMD-setup.

  16. Dynamic processes in field-reversed-configuration compact toroids

    International Nuclear Information System (INIS)

    Rej, D.J.

    1987-01-01

    In this lecture, the dynamic processes involved in field-reversed configuration (FRC) formation, translation, and compression will be reviewed. Though the FRC is related to the field-reversed mirror concept, the formation method used in most experiments is a variant of the field-reversed Θ-pinch. Formation of the FRC eqilibrium occurs rapidly, usually in less than 20 μs. The formation sequence consists of several coupled processes: preionization; radial implosion and compression; magnetic field line closure; axial contraction; equilibrium formation. Recent experiments and theory have led to a significantly improved understanding of these processes; however, the experimental method still relies on a somewhat empirical approach which involves the optimization of initial preionization plasma parameters and symmetry. New improvements in FRC formation methods include the use of lower voltages which extrapolate better to larger devices. The axial translation of compact toroid plasmas offers an attractive engineering convenience in a fusion reactor. FRC translation has been demonstrated in several experiments worldwide, and these plasmas are found to be robust, moving at speeds up to the Alfven velocity over distances of up to 16 m, with no degradation in the confinement. Compact toroids are ideal for magnetic compression. Translated FRCs have been compressed and heated by imploding liners. Upcoming experiments will rely on external flux compression to heat a translater FRC at 1-GW power levels. 39 refs

  17. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  18. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  19. Chiral mirrors

    International Nuclear Information System (INIS)

    Plum, Eric; Zheludev, Nikolay I.

    2015-01-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media

  20. Mirror agnosia and the mirrored-self misidentification delusion: a hypnotic analogue.

    Science.gov (United States)

    Connors, Michael H; Cox, Rochelle E; Barnier, Amanda J; Langdon, Robyn; Coltheart, Max

    2012-05-01

    Mirrored-self misidentification is the delusional belief that one's reflection in the mirror is a stranger. Current theories suggest that one pathway to the delusion is mirror agnosia (a deficit in which patients are unable to use mirror knowledge when interacting with mirrors). This study examined whether a hypnotic suggestion for mirror agnosia can recreate features of the delusion. Ten high hypnotisable participants were given either a suggestion to not understand mirrors or to see the mirror as a window. Participants were asked to look into a mirror and describe what they saw. Participants were tested on their understanding of mirrors and received a series of challenges. Participants then received a detailed postexperimental inquiry. Three of five participants given the suggestion to not understand mirrors reported seeing a stranger and maintained this belief when challenged. These participants also showed signs of mirror agnosia. No participants given the suggestion to see a window reported seeing a stranger. Results indicate that a hypnotic suggestion for mirror agnosia can be used to recreate the mirrored-self misidentification delusion. Factors influencing the effectiveness of hypnotic analogues of psychopathology, such as participants' expectations and interpretations, are discussed.

  1. The Gravity and Extreme Magnetism Small Explorer (GEMS)

    Science.gov (United States)

    Kallman, T. R.

    2011-01-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) was selected by NASA for flight in 2014 to make a sensitive search for X-ray polarization from a wide set of source classes, including stellar black holes, Seyfert galaxies and quasars, blazars, rotation and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. Among the primary scientific objectives are determining the effects of the spin of black holes and the geometry of supermassive black hole accretion, determining the configurations of the magnetic fields and the X-ray emission of magnetars, and determining the magnetic structure of the supernova shocks in which cosmic rays are accelerated. GEMS will observe 23 targets during a 16 month prime mission, in observations that will be able to reach predicted levels of polarization. The mission can be extended to provide a guest observer phase. The GEMS instrument has time projection chamber polarimeters with high 2-10 keV efficiency at the focus of thin foil mirrors. The 4.5 m focal length mirrors will be deployed on an extended boom. The spacecraft with the instrument is rotated with a period of about 10 minutes to enable measurement and correction of systematic errors. A small Bragg reflection soft X-ray experiment takes advantage of this rotation to obtain a measurement at 0.5 keV. The design of the GEMS instrument and the mission, the expected performance and the planned science program will be discussed.

  2. Formation of Field Reversed Configuration (FRC on the Yingguang-I device

    Directory of Open Access Journals (Sweden)

    Qizhi Sun

    2017-09-01

    Full Text Available As a hybrid approach to realizing fusion energy, Magnetized Target Fusion (MTF based on the Field Reversed Configuration (FRC, which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion, has been recently widely pursued around the world. To investigate the formation and confinement of the FRC plasma injector for MTF, the Yingguang-I, which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system, was constructed at the Institute of Fluid Physics (IFP, China. This paper presents the pulsed power components and their parameters of the device in detail, then gives a brief description of progress in experiments of FRC formation. Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T, 10 kA/1.2 T and 1.7 MA/3.4 T were achieved in the bias, mirror and θ-pinch circuits with quarter cycle of 80 μs, 700 μs and 3.8 μs respectively. The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV. With H2 gas of 8 Pa, the plasma target of density 1016 cm−3, separatrix radius 4 cm, half-length 17 cm, equilibrium temperature 200 eV and lifetime 3 μs (approximately the half pulse width of the reversed field have been obtained through the θ-pinch method when the bias, mirror, ionization and θ-pinch banks were charged to 5 kV, 5 kV, 55 kV and ±45 kV respectively. The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code (2D-MHD.

  3. Influence of front light configuration on the visual conspicuity of motorcycles

    OpenAIRE

    PINTO, Maria; CAVALLO, Viola; SAINT PIERRE, Guillaume

    2014-01-01

    A recent study (Cavallo and Pinto, 2012) showed that daytime running lights (DRLs) on cars create “visual noise” that interferes with the lighting of motorcycles and affects their visual conspicuity. In the present experiment, we tested three conspicuity enhancements designed to improve motorcycle detectability in a car-DRL environment: a triangle configuration (a central headlight plus two lights located on the rear view mirrors), a helmet configuration (a light located on the mo...

  4. Mirror profile optimization for nano-focusing KB mirror

    International Nuclear Information System (INIS)

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-01-01

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 μrad, peak-to-valley, compared to the bent slope of 3000 μrad.

  5. Bi-2223 HTS winding in toroidal configuration for SMES coil

    International Nuclear Information System (INIS)

    Kondratowicz-Kucewicz, B; Kozak, S; Kozak, J; Wojtasiewicz, G; Majka, M; Janowski, T

    2010-01-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  6. Preliminary design of a Tandem-Mirror-Next-Step facility

    International Nuclear Information System (INIS)

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1980-01-01

    The Tandem-Mirror-Next-Step (TMNS) facility is designed to demonstrate the engineering feasibility of a tandem-mirror reactor. The facility is based on a deuterium-tritium (D-T) burning, tandem-mirror device with a fusion power output of 245 MW. The fusion power density in the central cell is 2.1 MW/m 3 , with a resultant neutron wall loading of 0.5 MW/m 2 . Overall machine length is 116 m, and the effective central-cell length is 50.9 m. The magnet system includes end cells with yin-yang magnets to provide magnetohydrodynamic (MHD) stability and thermal-barrier cells to help achieve a plasma Q of 4.7 (where Q = fusion power/injected power). Neutral beams at energies up to 200 keV are used for plasma heating, fueling, and barrier pumping. Electron cyclotron resonant heating at 50 and 100 GHz is used to control the electron temperature in the barriers. Based on the resulting engineering design, the overall cost of the facility is estimated to be just under $1 billion. Unresolved physics issues include central-cell β-limits against MHD ballooning modes (the assumed reference value of β exceeds the current theory-derived limit), and the removal of thermalized α-particles from the plasma

  7. High beta capture and mirror confinement of laser produced plasmas. Semiannual report, July 1, 1975--January 31, 1976

    International Nuclear Information System (INIS)

    Haught, A.F.; Polk, D.H.; Fader, W.J.; Tomlinson, R.G.; Jong, R.A.; Ard, W.B.; Mensing, A.E.; Churchill, T.L.; Stufflebeam, J.H.; Bresnock, F.J.

    1976-01-01

    The Laser Initiated Target Experiment (LITE) at the United Technologies Research Center is designed to address the target plasma buildup approach to a steady state mirror fusion device. A dense, mirror confined, target plasma is produced by high power laser irradiation of a solid lithium hydride particle, electrically suspended in a vacuum at the center of an established minimum-B magnetic field. Following expansion in and capture by the magnetic field, this target plasma is irradiated by an energetic neutral hydrogen beam. Charge exchange collisions with energetic beam particles serve to heat the confined plasma while ionization of the neutral beam atoms and trapping in the mirror magnetic field add particles to the confined plasma. For sufficiently high beam intensities, confined plasmas losses will be offset so that buildup of the plasma density occurs, thus demonstrating sustenance and fueling as well as the heating by neutral beam injection of a steady state mirror fusion device. Investigations of the decay of the magnetically confined target plasmas and initial studies of energetic neutral beam injection into confined target plasmas, conducted during this report period, are presented. Additional development of the LITE experimental systems including improvements in the laser plasma production facility, the energetic neutral beam line, and the heavy ion probe diagnostic is reported. A series of calculations on enhanced scattering and classical decay for plasma mirror confined in a LITE type system are discussed

  8. Configuration of the magnetic field and reconstruction of Pangaea in the Permian period.

    Science.gov (United States)

    Westphal, M

    1977-05-12

    The virtual geomagnetic poles of Laurasia and Gondwanaland in the Carboniferous and Permian periods diverge significantly when these continents are reassembled according to the fit calculated by Bullard et al. Two interpretations have been offered: Briden et al. explain these divergences by a magnetic field configuration very different from that of a geocentric axial dipole; Irving (and private communication), Van der Voo and French(4) suggest a different reconstruction and it is shown here that these two interpretations are not incompatible and that the first may help the second.

  9. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)

    2017-06-20

    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.

  10. Report of the workshop on rf heating in mirror systems

    International Nuclear Information System (INIS)

    Price, R.E.; Woo, J.T.

    1980-08-01

    This report is prepared from the proceedings of the Workshop on RF Heating in Magnetic Mirror Systems held at DOE Headquarters in Washington, DC, on March 10-12, 1980. The workshop was organized into four consecutive half-day sessions of prepared talks and one half-day discussion. The first session on tandem mirror concepts and program plans served to identify the opportunities for the application of rf power and the specific approaches that are being pursued. A summary of the ideas presented in this session is given. The following sessions of the workshop were devoted to an exposition of current theoretical and experimental knowledge on the interaction of rf power with magnetically confined, dense, high temperature plasmas at frequencies near the electron cyclotron resonance, lower hybrid resonance and ion cyclotron resonance (including magnetosonic) ranges. The conclusions from these proceedings are presented

  11. ICRF wave propagation and absorption in axisymmetric mirrors. Annual report, July 1, 1985-February 28, 1986

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Phillips, M.W.

    1986-04-01

    A numerical code called GARFIELD has been developed to calculate the structure of ICRF electric fields in axisymmetric mirrors. It is being used to investigate ICRF wave structure of central cells of tandem mirror experiments. Fields are solved on a 2-D grid in the axial and radial directions. This permits us to study the effect that axial as well as radial variations of the magnetic field and density have on ICRF wave propagation and absorption. Much of this time frame was spent writing the code and refining the numerics. Initial calculations have been completed for the Phaedrus tandem mirror. These show that there is an evanescent fast wave structure in the radial direction, a standing wave formation in the axial direction, and a small amount of propagating ion cyclotron wave towards a shallow magnetic beach in the center of the mirror. In general, the fields peak on the outside which would show that the resulting pondermotive force would tend to stabilize the plasma

  12. Current results of the tandem mirror experiment

    International Nuclear Information System (INIS)

    Drake, R.P.

    1980-01-01

    The basic operating characteristics of the Tandem Mirror Experiment, (TMX) at the Lawrence Livermore Laboratory in the USA have been established. Tandem-mirror plasmas have been produced using neutral-beam-fueled end plugs and a gas-fueled center cell. An axial potential well between the end plugs has been measured. There is direct evidence that this potential well enhances the axial confinement of the center-cell ions. The observed densities and loss currents are consistent with preliminary studies of the particle sources and losses near the magnetic axis. The observed confinement is consistent with theory when plasma fluctuations are low. When the requirement of drift-cyclotron loss-cone mode stability is violated, the plasma fluctuations degrade the center-cell confinement

  13. Configuration studies of LHD plasmas

    International Nuclear Information System (INIS)

    Okamoto, M.

    1997-01-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration

  14. Configuration studies of LHD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masao

    1997-03-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration. (author)

  15. Comparison of 2-D Magnetic Designs of Selected Coil Configurations for the Next European Dipole (NED)

    CERN Document Server

    Toral, F; Felice, H; Fessia, Paolo; Loveridge, P W; Regis, Federico; Rochford, J; Sanz, S; Schwerg, Nikolai; Védrine, P; Völlinger, Christine

    2007-01-01

    The Next European Dipole (NED) activity is developing a high-performance Nb$_{3}$Sn wire (aiming at a non-copper critical current density of 1500 A/mm2 at 4.2 K and 15 T), within the framework of the Coordinated Accelerator Research in Europe (CARE) project. This activity is expected to lead to the fabrication of a large aperture, high field dipole magnet. In preparation for this phase, a Working Group on Magnet Design and Optimization (MDO) has been established to propose an optimal design. Other parallel Work Packages are concentrating on relevant topics, such as quench propagation simulation, innovative insulation techniques, and heat transfer measurements. In a first stage, the MDO Working Group has selected a number of coil configurations to be studied, together with salient parameters and features to be considered during the evaluation: the field quality, the superconductor efficiency, the conductor peak field, the stored magnetic energy, the Lorentz Forces and the fabrication difficulties. 2-D magnetic...

  16. Application of magnets with azimuthal field variation in charged particle optics

    International Nuclear Information System (INIS)

    Dojnikov, N.I.; Lamzin, E.A.; Malitskij, N.D.

    1989-01-01

    Examples of concrete application of magnets with azimuthal field variation are presented. Magnetic mirror and bending-focusing device representing a single magnet with azimuthal field variation, providing achromatic beam bending, are used in the LUEh-40m therapeutic acceleration. A single magnet with azimuthal field variation is also used in magnetic mirror. Achromatic magnet for the Elektronika U-003 10 MeV accelerator is fabricated and examined. 2 refs.; 5 figs

  17. Critical energy in the cyclotron heating of ions in a mirror machine

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Hernandez A, O.

    2002-01-01

    The problem of heating in the plasma sources where the geometry of the magnetic field forms a magnetic mirror as it is the case of the Ecr sources type, for maintaining the reload, it continues being an actual important problem. There are two methods for the analysis of this problem. The first of these methods is the stochastic mechanism of a particle where it is considered the existence of three characteristic frequencies as the cyclotron frequency, the electromagnetic field frequency and the transit frequency. The second method is that related with the non linear interaction of waves where the collective effects of the particles are the most important. In this work, in the Hamiltonian formalism, the stochastic mechanism in the cyclotron heating is analysed. It is considered the particular case of a plasma source with an external magnetic field, type mirror where a TE 11 electromagnetic wave is injected. The critical energy in the resonance mixing is calculated by the Poincare mapping method. The heterogeneity of the magnetic field is analysed. (Author)

  18. Axicell MFTF-B superconducting-magnet system

    International Nuclear Information System (INIS)

    Wang, S.T.; Bulmer, R.; Hanson, C.; Hinkle, R.; Kozman, T.; Shimer, D.; Tatro, R.; VanSant, J.; Wohlwend, J.

    1982-01-01

    The Axicell MFTF-B magnet system will provide the field environment necessary for tandem mirror plasma physics investigation with thermal barriers. The performance of the device will stimulate DT to achieve energy break-even plasma conditions. Operation will be with deuterium only. There will be 24 superconducting coils consisting of 2 sets of yin-yang pairs, 14 central-cell solenoids, 2 sets of axicell mirror-coil pairs, and 2 transition coils between the axicell mirror coil-pairs and the yin-yang coils. This paper describes the progress in the design and construction of MFTF-B Superconducting-Magnet System

  19. Compact torus equilibria set up in the rotamak by rotating magnetic fields

    International Nuclear Information System (INIS)

    Storer, R.G.

    1983-01-01

    In the Rotamak, a rotating magnetic field is used to drive a steady toroidal current in a compact torus device. High power, short duration (approx.=80 μs) and low power, long duration experiments (approx.=3 ms) have been studied. In both of these experiments a steady phase exists which is well described by the assumption that the plasma is in an averaged magnetohydrodynamic pressure balance situation. Using a model based on this assumption, self-consistency imposes conditions relating the temperature and density of the plasma to the steady components of the internal magnetic fields. In the high power experiment, this steady phase evolves into a second steady phase, with lower toroidal current, which has a #betta#=1, mirror-like configuration which also appears to satisfy local pressure balance but with the magnetic axis (minimum of the poloidal flux) at the centre of the spherical vessel. (orig.)

  20. Magnetic domain structure and magnetically-induced reorientation in Ni–Mn–Ga magnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Bradshaw, V.

    2017-01-01

    Roč. 131, č. 4 (2017), s. 1063-1065 ISSN 0587-4246 R&D Projects: GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic shape memory effect * magnetic domain structure * 3D visualization * domain mirroring Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  1. Topological mirror superconductivity.

    Science.gov (United States)

    Zhang, Fan; Kane, C L; Mele, E J

    2013-08-02

    We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2(D-1) independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z(2) index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.

  2. On determining fluxgate magnetometer spin axis offsets from mirror mode observations

    Science.gov (United States)

    Plaschke, Ferdinand; Narita, Yasuhito

    2016-09-01

    In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.

  3. On determining fluxgate magnetometer spin axis offsets from mirror mode observations

    Directory of Open Access Journals (Sweden)

    F. Plaschke

    2016-09-01

    Full Text Available In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.

  4. Core polarization and the Coulomb energy difference of mirror nuclei

    International Nuclear Information System (INIS)

    Barroso, A.

    1977-01-01

    The effect of the core polarization on the Coulomb displacement energies of mirror nuclei with a LS doubly closed shell plus or minus one nucleon is studied. Using the Kallio-Kolltveit interaction it is found that the first-order configuration mixing including 2p-2h core excitations is too small and sometimes of the wrong sign to explain the Nolen-Schiffer anomaly. (Auth.)

  5. Production of field-reversed mirror plasma with a coaxial plasma gun

    Science.gov (United States)

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  6. Production of field-reversed mirror plasma with a coaxial plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Shearer, J.W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode

  7. Mirror Neurons in Humans: Consisting or Confounding Evidence?

    Science.gov (United States)

    Turella, Luca; Pierno, Andrea C.; Tubaldi, Federico; Castiello, Umberto

    2009-01-01

    The widely known discovery of mirror neurons in macaques shows that premotor and parietal cortical areas are not only involved in executing one's own movement, but are also active when observing the action of others. The goal of this essay is to critically evaluate the substance of functional magnetic resonance imaging (fMRI) and positron emission…

  8. Design of a magnetic field alignment diagnostic for the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Deadrick, F.J.; House, P.A.; Frye, R.W.

    1985-01-01

    Magnet alignment in tandem mirror fusion machines plays a crucial role in achieving and maintaining plasma confinement. Various visual alignment tools have been described by Post et al. to align the Tara magnet system. We have designed and installed a remotely operated magnetic field alignment (MFA) diagnostic system as a part of the Mirror Fusion Test Facility (MFTF-B). It measures critical magnetic field alignment parameters of the MFTF-B coil set while under full-field operating conditions. The MFA diagnostic employs a pair of low-energy, electron beam guns on a remotely positionable probe to trace and map selected magnetic field lines. An array of precision electrical detector paddles locates the position of the electron beam, and thus the magnetic field line, at several critical points. The measurements provide a means to compute proper compensating currents to correct for mechanical misalignments of the magnets with auxiliary trim coils if necessary. This paper describes both the mechanical and electrical design of the MFA diagnostic hardware

  9. Design scoping study of the 12T Yin-Yang magnet system for the Tandem Mirror Next Step (TMNS). Final report

    International Nuclear Information System (INIS)

    1981-09-01

    The overall objective of this engineering study was to determine the feasibility of designing a Yin-Yang magnet capable of producing a peak field in the windings of 12T for the Tandem Mirror Next Step (TMNS) program. As part of this technical study, a rough order of magnitude (ROM) cost estimate of the winding for this magnet was undertaken. The preferred approach to the winding design of the TMNS plug coil utilizes innovative design concepts to meet the structural, electrical and thermodynamic requirements of the magnet system. Structurally, the coil is radially partitioned into four sections, preventing the accumulation of the radial loads and reacting them into the structural case. To safely dissipate the 13.34 GJ of energy stored in each Yin-Yang magnet, the winding has been electrically subdivided into parallel or nested coils, each having its own power supply and protection circuitry. This arrangement effectively divides the total stored energy of the coils into manageable subsystems. The windings are cooled with superfluid helium II, operated at 1.8K and 1.2 atmospheres. The superior cooling capabilities of helium II have enabled the overall winding envelope to be minimized, providing a current density of 2367 A/CM 2 , excluding substructure

  10. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe

    Science.gov (United States)

    P, DREWS; H, NIEMANN; J, COSFELD; Y, GAO; J, GEIGER; O, GRULKE; M, HENKEL; D, HÖSCHEN; K, HOLLFELD; C, KILLER; A, KRÄMER-FLECKEN; Y, LIANG; S, LIU; D, NICOLAI; O, NEUBAUER; M, RACK; B, SCHWEER; G, SATHEESWARAN; L, RUDISCHHAUSER; N, SANDRI; N, WANG; the W7-X Team

    2018-05-01

    Controlling the heat and particle fluxes in the plasma edge and on the plasma facing components is important for the safe and effective operation of every magnetically confined fusion device. This was attempted on Wendelstein 7-X in the first operational campaign, with the modification of the magnetic configuration by use of the trim coils and tuning the field coil currents, commonly named iota scan. Ideally, the heat loads on the five limiters are equal. However, they differ between each limiter and are non-uniform, due to the (relatively small) error fields caused by the misalignment of components. It is therefore necessary to study the influence of the configuration changes on the transport of heat and particles in the plasma edge caused by the application of error fields and the change of the magnetic configuration. In this paper the up-stream measurements conducted with the combined probe are compared to the downstream measurements with the DIAS infrared camera on the limiter.

  11. High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system

    Science.gov (United States)

    Sproul, William D.; Rudnik, Paul J.; Graham, Michael E.; Rohde, Suzanne L.

    1990-01-01

    Attention is given to an opposed cathode sputtering system constructed with the ability to coat parts with a size up to 15 cm in diameter and 30 cm in length. Initial trials with this system revealed very low substrate bias currents. When the AlNiCo magnets in the two opposed cathodes were arranged in a mirrored configuration, the plasma density at the substrate was low, and the substrate bias current density was less than 1 mA/sq cm. If the magnets were arranged in a closed-field configuration where the field lines from one set of magnets were coupled with the other set, the substrate bias current density was as high as 5.7 mA/sq cm when NdFeB magnets were used. In the closed-field configuration, the substrate bias current density was related to the magnetic field strength between the two cathodes and to the sputtering pressure. Hard well-adhered TiN coatings were reactively sputtered in the opposed cathode system in the closed-field configuration, but the mirrored configuration produced films with poor adhesion because of etching problems and low plasma density at the substrate.

  12. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  13. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  14. Mirror neurons, procedural learning, and the positive new experience: a developmental systems self psychology approach.

    Science.gov (United States)

    Wolf, N S; Gales, M; Shane, E; Shane, M

    2000-01-01

    In summary, we are impressed with the existence of a mirror neuron system in the prefrontal cortex that serves as part of a complex neural network, including afferent and efferent connections to the limbic system, in particular the amygdala, in addition to the premotor and motor cortex. We think it is possible to arrive at an integration that postulates the mirror neuron system and its many types of associated multimodal neurons as contributing significantly to implicit procedural learning, a process that underlies a range of complex nonconscious, unconscious, preconscious and conscious cognitive activities, from playing musical instruments to character formation and traumatic configurations. This type of brain circuitry may establish an external coherence with developmental systems self psychology which implies that positive new experience is meliorative and that the intentional revival of old-old traumatic relational configurations might enhance maladaptive procedural patterns that would lead to the opposite of the intended beneficial change. When analysts revive traumatic transference patterns for the purpose of clarification and interpretation, they may fail to appreciate that such traumatic transference patterns make interpretation ineffective because, as we have stated above, the patient lacks self-reflection under such traumatic conditions. The continued plasticity and immediacy of the mirror neuron system can contribute to positive new experiences that promote the formation of new, adaptive, implicit-procedural patterns. Perhaps this broadened repertoire in the patient of ways of understanding interrelational events through the psychoanalytic process allows the less adaptive patterns ultimately to become vestigial and the newer, more adaptive patterns to emerge as dominant. Finally, as we have stated, we believe that the intentional transferential revival of trauma (i.e., the old-old relational configuration) may not contribute to therapeutic benefit. In

  15. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    Science.gov (United States)

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.

  16. Control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment

    International Nuclear Information System (INIS)

    Simonen, T.C.; Bulmer, R.H.; Coensgen, F.H.

    1976-01-01

    The control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment is described. Before each plasma shot, the first wall is covered with a freshly gettered titanium surface. Up to 5 MW of neutral beam power has been injected into 2XIIB, resulting in first-wall bombardment fluxes of 10 17 atoms . cm -2 . s -1 of 13-keV mean energy deuterium atoms for several ms. The background gas flux is measured with a calibrated, 11-channel, fast-atom detector. Background gas levels are found to depend on surface conditions, injected beam current, and beam pulse duration. For our best operating conditions, an efective reflex coefficient of 0.3 can be inferred from the measurements. Experiments with long-duration and high-current beam injection are limited by charge exchange; however, experiments with shorter beam duration are not limited by first-wall surface conditions. It is concluded that surface effects will be reduced further with smoother walls. (Auth.)

  17. Preparation and Characterization of Silver Liquid Thin Films for Magnetic Fluid Deformable Mirror

    Directory of Open Access Journals (Sweden)

    Lianchao Zhang

    2015-01-01

    Full Text Available Silver liquid thin film, formed by silver nanoparticles stacking and spreading on the surface of the liquid, is one of the important parts of magnetic fluid deformable mirror. First, silver nanoparticles were prepared by liquid phase chemical reduction method using sodium citrate as reducing agent and stabilizer and silver nitrate as precursor. Characterization of silver nanoparticles was studied using X-ray diffractometer, UV-vis spectrophotometer, and transmission electron microscope (TEM. The results showed that silver nanoparticles are spherical and have a good monodispersity. Additionally, the effect of the reaction conditions on the particle size of silver is obvious. And then silver liquid thin films were prepared by oil-water two-phase interface technology using as-synthesized silver nanoparticles. Properties of the film were investigated using different technology. The results showed that the film has good reflectivity and the particle size has a great influence on the reflectivity of the films. SEM photos showed that the liquid film is composed of multilayer silver nanoparticles. In addition, stability of the film was studied. The results showed that after being stored for 8 days under natural conditions, the gloss and reflectivity of the film start to decrease.

  18. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  19. First results of transcritical magnetized collisionless shock studies on MSX

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hutchinson, T. M.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    Magnetized collisionless shocks exhibit transitional length and time scales much shorter than can be created through collisional processes. They are common throughout the cosmos, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL produces super-Alfvénic shocks through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a strong magnetic mirror and flux-conserving vacuum boundary. Plasma flows have been produced with sonic and Alfvén Mach numbers up to ~10 over a wide range of plasma beta with embedded perpendicular, oblique, and parallel magnetic field. Macroscopic ion skin-depth and long ion-gyroperiod enable diagnostic access to relevant shock physics using common methods. Variable plasmoid velocity, density, temperature, and magnetic field provide access to a wide range of shock conditions, and a campaign to study the physics of transcritical and supercritical shocks within the FRC plasmoid is currently underway. An overview of the experimental design, diagnostics suite, physics objectives, and recent results will be presented. Supported by DOE Office of Fusion Energy Sciences under DOE Contract DE-AC52-06NA25369.

  20. Device configuration-management system

    International Nuclear Information System (INIS)

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  1. A 4-m evolvable space telescope configured for NASA's HabEx Mission: the initial stage of LUVOIR

    Science.gov (United States)

    Lillie, Charles F.; MacEwen, Howard A.; Polidan, Ronald S.; Breckinridge, James B.

    2017-09-01

    Previous papers have described our concept for a large telescope that would be assembled in space in several stages (in different configurations) over a period of fifteen to 20 years. Spreading the telescope development, launch and operations cost over 20 years would minimize the impact on NASA's annual budget and drastically shorten the time between program start and "first light" for this space observatory. The first Stage of this Evolvable Space Telescope (EST) would consist of an instrument module located at the prime focus of three 4-meter hexagonal mirrors arranged in a semi-circle to form one-half of a 12-m segmented mirror. After several years three additional 4-m mirrors would be added to create a 12-m filled aperture. Later, twelve more 4-m mirrors will be added to this Stage 2 telescope to create a 20-m filled aperture space telescope. At each stage the telescope would have an unparalleled capability for UVOIR observations, and the results of these observations will guide the evolution of the telescope and its instruments. In this paper we describe our design concept for an initial configuration of our Evolvable Space Telescope that can meet the requirements of the 4-m version of the HabEx spacecraft currently under consideration by NASA's Habitable Exoplanet Science and Technology Definition Team. This "Stage Zero" configuration will have only one 4-m mirror segment with the same 30-m focal length and a prime focus coronagraph with normal incidence optics to minimize polarization effects. After assembly and checkout in cis-lunar space, the telescope would transfer to a Sun-Earth L2 halo orbit and obtain high sensitivity, high resolution, high contrast UVOIR observations that address the scientific objectives of the Habitable-Exoplanet Imaging Missions.

  2. Plasma cleaning of ITER first mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  3. Reversed-field multiple mirror concept

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Grossmann, W.; Seyler, C.E.

    1978-01-01

    The reversed-field multiple mirror (RFMM), is a promising technique for end-stoppering linear magnetic fusion plasmas. By this means the physics and engineering advantages of a linear plasma are gained while circumventing the endloss problem, allowing the projection of very short (less than or equal to 100 m) conceptual reactors. RFMM end-stoppering is accomplished by a string of closed field-line cells on the plasma column axis; these cells strongly retard the axial flow of particles and energy. We describe the reactor implications of the RFMM

  4. Moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW

  5. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  6. Mirror symmetry in the presence of branes

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Adrian

    2011-10-11

    This work deals with mirror symmetry for N=1 compactifications on compact Calabi-Yau threefolds with branes. The mayor tool is a combined deformation space for the Calabi-Yau and a hypersurface within it. Periods of this deformation space contain information about B-type branes within the hypersurface in addition to the usual closed string data. To study these periods we generalize techniques used in closed string mirror symmetry. We derive the Picard-Fuchs system and encode the information in extended toric polytopes. Solutions of the Picard-Fuchs equations give superpotentials for certain brane configurations. This is an efficient way to calculate superpotentials. The deformations we consider are massive for all branes with non trivial superpotential. Depending on a choice of a family of hypersurfaces, the superpotential of the effective low energy theory depends on different massive fields. A priori there is no reason for these fields to be lighter then other fields that are not included. We find however examples where the superpotential is nearly at. In these examples we use the Gauss-Manin connection on the combined deformation space to define an open string mirror map. We find instanton generated superpotentials of A-type branes. This gives predictions for Ooguri-Vafa invariants counting holomorphic disks that end on a Lagrangian brane on the Quintic. A second class of examples does not have preferred nearly massless deformations and different families of hypersurfaces can be used to calculate the same on-shell superpotential. We calculate examples of superpotentials for branes in Calabi-Yau manifolds with several moduli. The on-shell superpotentials are mapped to the mirror A-model to study the instanton expansion and to obtain predictions for disk invariants. The combined deformation spaces are equivalent to the quantum corrected Kaehler deformation spaces of certain non compact Calabi-Yau fourfolds. These fourfolds are fibrations of Calabi-Yau threefolds

  7. Mirror symmetry in the presence of branes

    International Nuclear Information System (INIS)

    Mertens, Adrian

    2011-01-01

    This work deals with mirror symmetry for N=1 compactifications on compact Calabi-Yau threefolds with branes. The mayor tool is a combined deformation space for the Calabi-Yau and a hypersurface within it. Periods of this deformation space contain information about B-type branes within the hypersurface in addition to the usual closed string data. To study these periods we generalize techniques used in closed string mirror symmetry. We derive the Picard-Fuchs system and encode the information in extended toric polytopes. Solutions of the Picard-Fuchs equations give superpotentials for certain brane configurations. This is an efficient way to calculate superpotentials. The deformations we consider are massive for all branes with non trivial superpotential. Depending on a choice of a family of hypersurfaces, the superpotential of the effective low energy theory depends on different massive fields. A priori there is no reason for these fields to be lighter then other fields that are not included. We find however examples where the superpotential is nearly at. In these examples we use the Gauss-Manin connection on the combined deformation space to define an open string mirror map. We find instanton generated superpotentials of A-type branes. This gives predictions for Ooguri-Vafa invariants counting holomorphic disks that end on a Lagrangian brane on the Quintic. A second class of examples does not have preferred nearly massless deformations and different families of hypersurfaces can be used to calculate the same on-shell superpotential. We calculate examples of superpotentials for branes in Calabi-Yau manifolds with several moduli. The on-shell superpotentials are mapped to the mirror A-model to study the instanton expansion and to obtain predictions for disk invariants. The combined deformation spaces are equivalent to the quantum corrected Kaehler deformation spaces of certain non compact Calabi-Yau fourfolds. These fourfolds are fibrations of Calabi-Yau threefolds

  8. Influence of front light configuration on the visual conspicuity of motorcycles.

    Science.gov (United States)

    Pinto, Maria; Cavallo, Viola; Saint-Pierre, Guillaume

    2014-01-01

    A recent study (Cavallo and Pinto, 2012) showed that daytime running lights (DRLs) on cars create "visual noise" that interferes with the lighting of motorcycles and affects their visual conspicuity. In the present experiment, we tested three conspicuity enhancements designed to improve motorcycle detectability in a car-DRL environment: a triangle configuration (a central headlight plus two lights located on the rearview mirrors), a helmet configuration (a light located on the motorcyclist's helmet in addition to the central headlight), and a single central yellow headlight. These three front-light configurations were evaluated in comparison to the standard configuration (a single central white headlight). Photographs representing complex urban traffic scenes were presented briefly (for 250ms). The results revealed better motorcycle-detection performance for both the yellow headlight and the helmet configuration than for the standard configuration. The findings suggest some avenues for defining a new visual signature for motorcycles in car-DRL environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Applications of tuned mass dampers to improve performance of large space mirrors

    Science.gov (United States)

    Yingling, Adam J.; Agrawal, Brij N.

    2014-01-01

    In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system.

  10. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  11. MINIMARS: An attractive small tandem mirror fusion reactor

    International Nuclear Information System (INIS)

    Perkins, L.J.; Logan, B.G.; Doggett, J.N.; Devoto, R.S.

    1986-01-01

    Through the innovative design of a novel end plug scheme employing octopole MHD stabilization, the authors present the conceptual design of ''MINIMARS'', a small commercial fusion reactor based on the tandem mirror principle. The current baseline for MINIMARS has a net electric output of 600 MWe and they have configured the design for short construction times, factory-built modules, inherently safe blanket systems, and multiplexing in station sizes of ≅ 600-2400 MWe. They demonstrate that the compact octopole end cell provides a number of advantages over the more conventional quadrupole (yin-yang) end cell encountered in the MARS tandem mirror reactor study, and enables ignition to be achieved with much shorter central cell lengths. Accordingly, being economic in small sizes, MINIMARS provides an attractive alternative to the more conventional larger conceptual fusion reactors encountered to date, and would contribute significantly to the lowering of utility financial risk in a developing fusion economy

  12. Motion-insensitive rapid configuration relaxometry.

    Science.gov (United States)

    Nguyen, Damien; Bieri, Oliver

    2017-08-01

    Triple echo steady state (TESS) uses the lowest steady state configuration modes for rapid relaxometry. Due to its unbalanced gradient scheme, however, TESS is inherently motion-sensitive. The purpose of this work is to merge TESS with a balanced acquisition scheme for motion-insensitive rapid configuration relaxometry, termed MIRACLE. The lowest order steady state free precession (SSFP) configurations are retrieved by Fourier transformation of the frequency response of N frequency-shifted balanced SSFP (bSSFP) scans and subsequently processed for relaxometry, as proposed with TESS. Accuracy of MIRACLE is evaluated from simulations, phantom studies as well as in vivo brain and cartilage imaging at 3T. Simulations and phantom results revealed no conceptual flaw, and artifact-free configuration imaging was achieved in vivo. Overall, relaxometry results were accurate in phantoms and in good agreement for cartilage and for T2 in the brain, but apparent low T1 values were observed for brain white matter; reflecting asymmetries in the bSSFP profile. Rapid T1 and T2 mapping with MIRACLE offers analogous properties as TESS while successfully mitigating its motion-sensitivity. As a result of the Fourier transformation, relaxometry becomes sensitive to the voxel frequency distribution, which may contain useful physiologic information, such as structural brain integrity. © 2016 International Society for Magnetic Resonance in Medicine. Magn Reson Med 78:518-526, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    Science.gov (United States)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  14. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    International Nuclear Information System (INIS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-01-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  15. Structure in defocused beams of x-ray mirrors: causes and possible solutions

    Science.gov (United States)

    Sutter, John P.; Alcock, Simon G.; Rust, Fiona; Wang, Hongchang; Sawhney, Kawal

    2014-09-01

    Grazing incidence mirrors are now a standard optic for focusing X-ray beams. Both bimorph and mechanically bendable mirrors are widely used at Diamond Light Source because they permit a wide choice of focal lengths. They can also be deliberately set out of focus to enlarge the X-ray beam, and indeed many beamline teams now wish to generate uniform beam spots of variable size. However, progress has been slowed by the appearance of fine structure in these defocused beams. Measurements showing the relationship between the medium-frequency polishing error and this structure over a variety of beam sizes will be presented. A theoretical model for the simulations of defocused beams from general mirrors will then be developed. Not only the figure error and its first derivative the slope error, but also the second derivative, the curvature error, must be considered. In conclusion, possible ways to reduce the defocused beam structure by varying the actuators' configuration and settings will be discussed.

  16. Upper extremity rehabilitation of stroke: Facilitation of corticospinal excitability using virtual mirror paradigm

    Directory of Open Access Journals (Sweden)

    Kang Youn

    2012-10-01

    Full Text Available Abstract Background Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. Objectives We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. Methods A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEPs from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A relaxation; (B real mirror; and (C virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. Results The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Conclusion Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients.

  17. Power ion beam production in a magnetic-insulated diode placed in a circuit with an inductive storage with a plasmoerosion circuit breaker

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Karpov, V.B.; Krasik, Ya.E.; Paul', E.A.

    1991-01-01

    Consideration is given to results of experimental studies of modes of operation of plasma current breaker and magnetic insulated diode, placed parallel in a circuit with inductive storage and microsecond generator, as well as parameters of high-power ion beam, generated in gas-filled diode. Magnetic field of mirror configuration, which enabled to locate the gas-filled diode dose to breaking region was used for decrease of electrodynamic plasma transfer. It is shown that time delay (of the order of ten and more) of power maximum in gas-filled diode with respect to power maximum in plasma breaker is observed when using passive plasma source on anode

  18. Construction and operational experience of the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Chargin, A.K.; Calderon, M.O.; Moore, T.L.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) incorporates two new features at Lawrence Livermore National Laboratory (LLNL) tandem mirror program, thermal barriers in the end plugs and injection of the neutral beams at several oblique angles. The thermal barriers isolate the electrons in the end plugs from those in the central cell, making it possible to heat them independently with microwaves. In addition, this innovation produces a large potential gradient in the end plugs with lower magnetic fields and lower neutral-beam energies than would be possible in a conventional tandem mirror device. The TMX-U is also designed to test neutral-beam-injection angles as an experimental parameter. We use angles other than 90 0 to produce a plasma with improved microstability

  19. Applying alpha-channeling to mirror machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhmoginov, A. I.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

    2012-05-15

    The {alpha}-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic {alpha} particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of {alpha} channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the {alpha}-channeling mechanism. For practical implementation of the {alpha}-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the {alpha}-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the {alpha}-channeling wave to the fuel ions.

  20. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  1. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    Science.gov (United States)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  2. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    Science.gov (United States)

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  3. Summary of results from the Tandem Mirror Experiment (TMX)

    International Nuclear Information System (INIS)

    Simonen, T.C.

    1981-01-01

    This report summarizes results from the successful experimental operation of the Tandem Mirror Experiment (TMX) over the period October 1978 through September 1980. The experimental program, summarized by the DOE milestones given in Table 1-1, had three basic phases: (1) an 8-month checkout period, October 1978 through May 1979; (2) a 6-month initial period of operation, June through November 1979, during which the basic principles of the tandem configuration were demonstrated (i.e., plasma confinement was improved over that of a single-cell mirror); and (3) a 10-month period, December 1979 through September 1980, during which the initial TMX results were corroborated by additional diagnostic measurements and many detailed physics investigations were carried out. This report summarizes the early results, presents results of recent data analysis, and outlines areas of ongoing research and data analysis which will be reported in future journal publications

  4. The ''Kinetic Stabilizer'': A Simpler Tandem Mirror Confinement?

    International Nuclear Information System (INIS)

    Post, R.F.

    2000-01-01

    In the search for better approaches to magnetic fusion it is important to keep in mind the lessons learned in the 50 years that fusion plasma confinement has been studied. One of the lessons learned is that ''closed'' and ''open'' fusion devices differ fundamentally with respect to an important property of their confinement, as follows: Without known exception closed systems such as the tokamak, the stellarator, or the reversed-field pinch, have been found to have their confinement times limited by non-classical, i.e., turbulence-related, processes, leading to the requirement that such systems must be scaled-up in dimensions to sizes much larger than would be the case in the absence of turbulence. By contrast, from the earliest days of fusion research, it has been demonstrated that open magnetic systems of the mirror variety can achieve confinement times close to that associated with classical, i.e., collisional, processes. While these good results have been obtained in both axially symmetric fields and in non-axisymmetric fields, the clearest cases have been those in which the confining fields are solenoidal and axially symmetric. These observations, i.e., of confinement not enhanced by turbulence, can be traced theoretically to such factors as the absence of parallel currents in the plasma, and to the constraints on particle drifts imposed by the adiabatic invariants governing particle confinement in axisymmetric open systems. In the past the MHD instability of axially symmetric open systems has been seen as a barrier to their use. However, theory predicts MHD-stable confinement is achievable if sufficient plasma is present in the ''good curvature'' regions outside the mirrors. This theory has been confirmed by experiments on the Gas Dynamic Trap mirror-based experiment at Novosibirsk, In this paper a new way of exploiting this stabilizing principle, involving creating a localized ''stabilizer plasma'' outside a mirror, will be discussed. To create this plasma

  5. Simbol-X Mirror Module Thermal Shields: I-Design and X-Ray Transmission

    Science.gov (United States)

    Collura, A.; Barbera, M.; Varisco, S.; Basso, S.; Pareschi, G.; Tagliaferri, G.; Ayers, T.

    2009-05-01

    The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

  6. Simbol-X Mirror Module Thermal Shields: I - Design and X-Ray Transmission

    International Nuclear Information System (INIS)

    Collura, A.; Varisco, S.; Barbera, M.; Basso, S.; Pareschi, G.; Tagliaferri, G.; Ayers, T.

    2009-01-01

    The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

  7. Analysis and experimental investigation for collimator reflective mirror surface deformation adjustment

    Directory of Open Access Journals (Sweden)

    Chia-Yen Chan

    2017-01-01

    Full Text Available Collimator design is essential for meeting the requirements of high-precision telescopes. The collimator diameter should be larger than that of the target for alignment. Special supporting structures are required to reduce the gravitational deformation and control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors (M1. A ZERODURÂŽ mirror 620 mm in diameter for a collimator was analyzed using the finite element method to obtain the deformation induced by the supporting structures and adjustment mechanism. Zernike polynomials were also adopted to fit the optical surface and separate corresponding aberrations. The computed and measured wavefront aberration configurations for the collimator M1 were obtained complementally. The wavefront aberrations were adjusted using fine adjustment screws using 3D optical path differences map of the mirror surface. Through studies using different boundary conditions and inner ring support positions, it is concluded that the optical performance was excellent under a strong enough supporter. The best adjustment position was attained and applied to the actual collimator M1 to prove the correctness of the simulation results.

  8. Overview and direction in the tandem mirror program

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1983-04-01

    There are two main thrusts to the tandem mirror program at the present time. One is to gather the experimental data base to verify the axicell thermal-barrier concept and the other to improve the end plugs for tandems. With such improvements one might approach the ideal fusion reactor, a simple solenoid of modular elements whose ends are but a modest perturbation on the configuration from both a cost and technological viewpoint. Progress toward these two goals is discussed here, and the directions to be taken in the immediate future are described

  9. Avoiding unstable regions in the design space of EUV mirror systems comprising high-order aspheric surfaces

    NARCIS (Netherlands)

    Marinescu, O.; Bociort, F.; Braat, J.

    2004-01-01

    When Extreme Ultraviolet mirror systems having several high-order aspheric surfaces are optimized, the configurations often enter into highly unstable regions of the parameter space. Small changes of system parameters lead then to large changes in ray paths, and therefore optimization algorithms

  10. High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration.

    Science.gov (United States)

    Rudolf, Andreas; Walther, Thomas

    2012-11-01

    We report on the realization of an excited-state Faraday anomalous dispersion optical filter (ESFADOF) edge filter based on the 5P(3/2)→8D(5/2) transition in rubidium. A maximum transmission of 81% has been achieved. This high transmission is only possible by utilizing a special configuration of magnetic fields taken from accelerator physics to provide a strong homogeneous magnetic field of approximately 6000 G across the vapor cell. The two resulting steep transmission edges are separated by more than 13 GHz, enabling its application in remote sensing.

  11. MHD simulation of relaxation to a flipped ST configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kagei, Y [Department of Electrical Engineering and Computer Sciences, Himeji Institute of Technology, Himeji, Hyogo (Japan); Nagata, M [Department of Electrical Engineering and Computer Sciences, Himeji Institute of Technology, Himeji, Hyogo (Japan); Suzuki, Y [Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute, Taito-ku, Tokyo (Japan); Kishimoto, Y [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka-machi, Ibaraki (Japan); Hayashi, T [National Institute for Fusion Science, Toki, Gifu (Japan); Uyama, T [Department of Electrical Engineering and Computer Sciences, Himeji Institute of Technology, Himeji, Hyogo (Japan)

    2003-02-01

    The dynamics of spherical torus (ST) plasmas, when the external toroidal magnetic field is decreased to zero and then increased in the opposite direction, has been investigated using three-dimensional magnetohydrodynamic (MHD) numerical simulations. It has been found that the flipped ST configuration is self-organized after the ST configuration collapses because of the growth of the n = 1 mode in the open flux region and a following magnetic reconnection event. During the transition between these configurations, not only the paramagnetic toroidal field but also the poloidal field reverses polarity spontaneously. (letter to the editor)

  12. Feasibility Studies of Alpha-Channeling in Mirror Machines

    International Nuclear Information System (INIS)

    Zhmoginov, A.I.; Fisch, N.J.

    2010-01-01

    The linear magnetic trap is an attractive concept both for fusion reactors and for other plasma applications due to its relative engineering simplicity and high-beta operation. Applying the α-channeling technique to linear traps, such as mirror machines, can benefit this concept by efficiently redirecting α particle energy to fuel ion heating or by otherwise sustaining plasma confinement, thus increasing the effective fusion reactivity. To identify waves suitable for α-channeling a rough optimization of the energy extraction rate with respect to the wave parameters is performed. After the optimal regime is identified, a systematic search for modes with similar parameters in mirror plasmas is performed, assuming quasi-longitudinal or quasi-transverse wave propagation. Several modes suitable for α particle energy extraction are identified for both reactor designs and for proof- of-principle experiments.

  13. Design And Tests Of A Superconducting Magnet With A Cryocooler For The Ion Source Decris-sc

    CERN Document Server

    Datskov, V I; Bekhterev, V V; Bogomolov, S L; Bondarenko, P G; Dmitriev, S N; Drobin, V M; Efremov, A A; Iakovlev, B I; Leporis, M; Malinowski, H; Nikiforov, S A; Paschenko, S V; Seleznev, V V; Shishov, Yu A; Tsvineva, G P; Yazvitsky, N Yu

    2004-01-01

    A superconducting magnet system (SMS) for the multicharged ion source DECRIS-SC was designed and manufactured at the Joint Institute for Nuclear Research. Successful tests of the SMS were conducted in late 2003 - early 2004. The peculiarities of this system are stipulated by using of a cryocooler 1 W in power for the cryostabilization of the magnet, and also by a special configuration of the magnetic field demanded for the source of ions. Four coils ensure induction of a magnetic field on the axes of the source of up to 3T (the mirror ratio of ~6) which considerably extends possibilities of the ion source from the point of view of producing intense highly charged ion beams. The problem of compensating large forces of interaction between the coils and surrounding iron yoke in this magnet has been successfully solved, and a reliable suspension of the magnet in a cryostat realized. For compounding of the windings working in vacuum at indirect cryostabilization prepreg is used. There has been applied a new techno...

  14. Influence of the configuration of the magnetic filter field on the discharge structure in the RF driven negative ion source prototype for fusion

    Science.gov (United States)

    Lishev, S.; Schiesko, L.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The study provides results for the influence of the filter field topology on the plasma parameters in the RF prototype negative ion source for ITER NBI. A previously developed 2D fluid plasma model of the prototype source was extended towards accounting for the particles and energy losses along the magnetic field lines and the presence of a magnetic field in the driver which is the case at the BATMAN and ELISE test-beds. The effect of the magnetic field in the driver is shown for the magnetic field configuration of the prototype source (i.e. a magnetic field produced by an external magnet frame) by comparison of plasma parameters without and with the magnetic field in the driver and for different axial positions of the filter. Since the ELISE-like magnetic field (i.e. a magnetic field produced by a current flowing through the plasma grid) is a new feature planned to be installed at the BATMAN test-bed, its effect on the discharge structure was studied for different strengths of the magnetic field. The obtained results show for both configurations of the magnetic filter the same main features in the patterns of the plasma parameters in the expansion chamber: a strong axial drop of the electron temperature and the formation of a groove accompanied with accumulation of electrons in front of the plasma grid. The presence of a magnetic field in the driver has a local impact on the plasma parameters: the formation of a second groove of the electron temperature in the case of BATMAN (due to the reversed direction of the filter field in the driver) and a strong asymmetry of the electron density. Accounting for the additional losses in the third dimension suppresses the drifts across the magnetic field and, thus, the variations of the electron density in the expansion chamber are less pronounced.

  15. Results of TMX operations: January-July 1980

    International Nuclear Information System (INIS)

    Correll, D.L.; Drake, R.P.

    1980-01-01

    This interim report summarizes results from the Tandem Mirror Experiment (TMX) during the period January to July 1980 and describes the physics experiments, the machine operation, and the diagnostics that were added to TMX during this period. This operating period followed the initial proof-of-principle TMX experiments and predated the ongoing final experiments preceding TMX shutdown for modification to TMX Upgrade. The results described in this report include measurements of plasma parameters and plasma behavior which confirm the initial TMX results that demonstrated that the tandem mirror configuration can be generated and sustained by neutral beam injection and that the tandem mirror configuration improves confinement of magnetic mirror systems

  16. Observing complex action sequences: The role of the fronto-parietal mirror neuron system.

    Science.gov (United States)

    Molnar-Szakacs, Istvan; Kaplan, Jonas; Greenfield, Patricia M; Iacoboni, Marco

    2006-11-15

    A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions. The observation of all action sequences recruited a common bilateral network including the fronto-parietal mirror neuron system and occipito-temporal visual motion areas. Activity in mirror neuron areas varied according to the motoric complexity of the observed actions, but not according to the developmental sequence of action structures, possibly due to the fact that our subjects were all adults. These results suggest that the mirror neuron system provides a fairly accurate simulation process of observed actions, mimicking internally the level of motoric complexity. We also discuss the results in terms of the links between mirror neurons, language development and evolution.

  17. Exploration of a Permanent Magnet Synchronous Generator with Compensated Reactance Windings in Parallel Rod Configuration

    Science.gov (United States)

    Lyan, Oleg; Jankunas, Valdas; Guseinoviene, Eleonora; Pašilis, Aleksas; Senulis, Audrius; Knolis, Audrius; Kurt, Erol

    2018-02-01

    In this study, a permanent magnet synchronous generator (PMSG) topology with compensated reactance windings in parallel rod configuration is proposed to reduce the armature reactance X L and to achieve higher efficiency of PMSG. The PMSG was designed using iron-cored bifilar coil topology to overcome problems of market-dominant rotary type generators. Often the problem is a comparatively high armature reactance X L, which is usually bigger than armature resistance R a. Therefore, the topology is proposed to partially compensate or negligibly reduce the PMSG reactance. The study was performed by using finite element method (FEM) analysis and experimental investigation. FEM analysis was used to investigate magnetic field flux distribution and density in PMSG. The PMSG experimental analyses of no-load losses and electromotive force versus frequency (i.e., speed) was performed. Also terminal voltage, power output and efficiency relation with load current at different frequencies have been evaluated. The reactance of PMSG has low value and a linear relation with operating frequency. The low reactance gives a small variation of efficiency (from 90% to 95%) in a wide range of load (from 3 A to 10 A) and operation frequency (from 44 Hz to 114 Hz). The comparison of PMSG characteristics with parallel and series winding connection showed insignificant power variation. The research results showed that compensated reactance winding in parallel rod configuration in PMSG design provides lower reactance and therefore, higher efficiency under wider load and frequency variation.

  18. Neoclassical resonant-plateau transport in the noncircular equipotential surface of a tandem mirror

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Ishii, K.; Yatsu, K.; Miyoshi, S.

    1988-07-01

    Neoclassical resonant-plateau transport in a minimum-B anchored tandem mirror is calculated in an experimentally observed case that a magnetic flux tube of an equipotential contours is not circular at the central cell. (author)

  19. Tunable surface configuration of skyrmion lattices in cubic helimagnets

    Science.gov (United States)

    Wan, Xuejin; Hu, Yangfan; Wang, Biao

    2018-06-01

    In bulk helimagnets, the presence of magnetic skyrmion lattices is always accompanied by a periodic stress field due to the intrinsic magnetoelastic coupling. The release of this nontrivial stress field at the surface causes a periodic displacement field, which characterizes a novel particle-like property of skyrmion: its surface configuration. Here, we derive the analytical solution of this displacement field for semi-infinite cubic helimagnet with the skyrmion magnetization approximated by the triple-Q representation. For MnSi, we show that the skyrmion lattices have a bumpy surface configuration characterized by periodically arranged peaks with a characteristic height of about 10‑13 m. The pattern of the peaks can be controlled by varying the strength of the applied magnetic field. Moreover, we prove that the surface configuration varies together with the motion and deformation of the skyrmion lattices. As a result, the surface configuration can be tuned by application of electric current, mechanical loads, as well as any other effective external fields for skyrmion lattices.

  20. 3-D x-ray mirror metrology with a vertical scanning long trace profiler

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Li, H.; Li, X.; Grindel, M.W.

    1996-01-01

    The long trace profiler (LTP) was originally developed at Brookhaven National Laboratory for the specific purpose of measuring the surface figure of large cylindrical mirrors used at grazing incidence in synchrotron radiation (SR) beamlines. In its original configuration, it could measure only along one line down the center of the cylinder. A single linear profile is often sufficient to gauge the quality of the optical surface on these kinds of mirrors. For some applications it is necessary to measure the topography of the entire surface, not just along one line but over a grid that covers the entire surface area. We have modified a standard LTP to enable measurement of the complete surface of Wolter telescope optics in a vertical configuration. The vertical scanning LTP (VSLTP) is capable of producing a complete 3-D map of the surface topography errors relative to the ideal desired surface on complete segments of paraboloids and hyperboloids. The instrument uses a penta prism assembly to scan the probe beam in the longitudinal direction parallel to the mirror symmetry axis and uses a precision rotary stage to provide scans in the azimuthal direction. A Risley prism pair and a dove prism are used to orient the probe beam in the proper direction for the azimuthal scans. The repeatability of the prototype instrument is better than 20 nm over trace lengths of 35 mm with a slope measurement accuracy of about 1 microradian. copyright 1996 American Institute of Physics

  1. Fluxgate magnetometer offset vector determination by the 3D mirror mode method

    Science.gov (United States)

    Plaschke, F.; Goetz, C.; Volwerk, M.; Richter, I.; Frühauff, D.; Narita, Y.; Glassmeier, K.-H.; Dougherty, M. K.

    2017-07-01

    Fluxgate magnetometers on-board spacecraft need to be regularly calibrated in flight. In low fields, the most important calibration parameters are the three offset vector components, which represent the magnetometer measurements in vanishing ambient magnetic fields. In case of three-axis stabilized spacecraft, a few methods exist to determine offsets: (I) by analysis of Alfvénic fluctuations present in the pristine interplanetary magnetic field, (II) by rolling the spacecraft around at least two axes, (III) by cross-calibration against measurements from electron drift instruments or absolute magnetometers, and (IV) by taking measurements in regions of well-known magnetic fields, e.g. cometary diamagnetic cavities. In this paper, we introduce a fifth option, the 3-dimensional (3D) mirror mode method, by which 3D offset vectors can be determined using magnetic field measurements of highly compressional waves, e.g. mirror modes in the Earth's magnetosheath. We test the method by applying it to magnetic field data measured by the following: the Time History of Events and Macroscale Interactions during Substorms-C spacecraft in the terrestrial magnetosheath, the Cassini spacecraft in the Jovian magnetosheath and the Rosetta spacecraft in the vicinity of comet 67P/Churyumov-Gerasimenko. The tests reveal that the achievable offset accuracies depend on the ambient magnetic field strength (lower strength meaning higher accuracy), on the length of the underlying data interval (more data meaning higher accuracy) and on the stability of the offset that is to be determined.

  2. Some applications of mirror-generated electric potentials to alternative fusion concepts

    International Nuclear Information System (INIS)

    Post, R.F.

    1990-01-01

    Transient electrical potentials can be generated in plasmas by utilizing impulsive mirror-generated forces acting on the plasma electrons together with ion inertia to cause momentary charge imbalance. In the Mirrortron such potentials are generated by applying a rapidly rising (tens of nanoseconds) localized mirror field to the central region of a hot-electron plasma confined between static mirrors. Because of the loss-cone nature of the electron distribution the sudden appearance of the pulsed mirror tends to expel electrons, whereas the ion density remains nearly constant. The quasi-neutrality condition then operates to create an electrical potential the equipotential surfaces of which can be shown theoretically to be congruent with surfaces of constant B. An alternative way of generating transient potentials is to apply a pulse of high-power microwaves to a plasma residing on a magnetic field with a longitudinal gradient. This technique resembles one employed in the Pleiade experiments. At gigawatt power levels, such as those produced by a Free Electron Laser, the production of very high transient potentials is predicted. Fusion-relevant applications of these ideas include heavy-ion drivers for inertial fusion, and the possibility of employing these techniques to enhance the longitudinal confinement of fusion plasmas in multiple-mirror systems. 23 refs., 3 figs

  3. The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He i 10 830 Å triplet

    Science.gov (United States)

    Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.

    2014-06-01

    Context. Determining the magnetic field vector in quiescent solar prominences is possible by interpreting the Hanle and Zeeman effects in spectral lines. However, observational measurements are scarce and lack high spatial resolution. Aims: We determine the magnetic field vector configuration along a quiescent solar prominence by interpreting spectropolarimetric measurements in the He i 1083.0 nm triplet obtained with the Tenerife Infrared Polarimeter installed at the German Vacuum Tower Telescope of the Observatorio del Teide. Methods: The He i 1083.0 nm triplet Stokes profiles were analyzed with an inversion code that takes the physics responsible for the polarization signals in this triplet into account. The results are put into a solar context with the help of extreme ultraviolet observations taken with the Solar Dynamic Observatory and the Solar Terrestrial Relations Observatory satellites. Results: For the most probable magnetic field vector configuration, the analysis depicts a mean field strength of 7 gauss. We do not find local variations in the field strength except that the field is, on average, lower in the prominence body than in the prominence feet, where the field strength reaches ~25 gauss. The averaged magnetic field inclination with respect to the local vertical is ~77°. The acute angle of the magnetic field vector with the prominence main axis is 24° for the sinistral chirality case and 58° for the dextral chirality. These inferences are in rough agreement with previous results obtained from the analysis of data acquired with lower spatial resolutions. A movie is available in electronic form at http://www.aanda.org

  4. High-spin states in the A=39 mirror nuclei 39Ca and 39K

    International Nuclear Information System (INIS)

    Andersson, T.; Rudolph, D.; Fahlander, C.; Eberth, J.; Thomas, H.G.; Haslip, D.; Svensson, C.E.; Waddington, J.C.; LaFosse, D.R.; Sarantites, D.G.; Weintraub, W.; Wilson, J.N.; Brown, B.A.

    1999-01-01

    High-spin states of the mass A=39 mirror pair 39 K and 39 Ca were investigated via the fusion-evaporation reaction 28 Si+ 16 O at 125 MeV beam energy. The gammasphere array in conjunction with the 4π charged-particle detector array microball and neutron detectors was used to detect γ rays in coincidence with evaporated light particles. The results of the first high-spin study of the T z =-1/2 nucleus 39 Ca are discussed in terms of mirror symmetry and compared to spherical shell-model calculations in the 1d 3/2 -1f 7/2 configuration space. (orig.)

  5. Nonlinear Mirror and Weibel modes: peculiarities of quasi-linear dynamics

    Directory of Open Access Journals (Sweden)

    O. A. Pokhotelov

    2010-12-01

    Full Text Available A theory for nonlinear evolution of the mirror modes near the instability threshold is developed. It is shown that during initial stage the major instability saturation is provided by the flattening of the velocity distribution function in the vicinity of small parallel ion velocities. The relaxation scenario in this case is accompanied by rapid attenuation of resonant particle interaction which is replaced by a weaker adiabatic interaction with mirror modes. The saturated plasma state can be considered as a magnetic counterpart to electrostatic BGK modes. After quasi-linear saturation a further nonlinear scenario is controlled by the mode coupling effects and nonlinear variation of the ion Larmor radius. Our analytical model is verified by relevant numerical simulations. Test particle and PIC simulations indeed show that it is a modification of distribution function at small parallel velocities that results in fading away of free energy driving the mirror mode. The similarity with resonant Weibel instability is discussed.

  6. The numerical solution of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.; Todd, A.M.M.

    1986-01-01

    The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)

  7. Interim report on the tandem mirror hybrid design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1979-01-01

    The initial phase of a 2-year design study of a tandem mirror fusion reactor is presented. The following chapters are included: (1) mechanical design of the plant; (2) plasma physics; (3) blanket design; (4) magnet design; (5) injector design; (6) direct convertor design; (7) balance of plant design; (8) fission burner reactor; (9) environment and safety; and (10) economic analysis

  8. Use of coaxial plasma guns to start up field-reversed-mirror reactors

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Carlson, G.A.; Eddleman, J.L.; Hartman, C.W.; Neef, W.S. Jr.

    1980-01-01

    Application of a magnetized coaxial plasma gun for start-up of a field-reversed-mirror reactor is considered. The design is based on preliminary scaling laws and is compared to the design of the start-up gun used in the Beta II experiment

  9. Mirror and (absence of) counter-mirror responses to action sounds measured with TMS.

    Science.gov (United States)

    Ticini, Luca F; Schütz-Bosbach, Simone; Waszak, Florian

    2017-11-01

    To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed 'mirror' and 'counter-mirror' trainings (a 'mirror' training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition. © The Author (2017). Published by Oxford University Press.

  10. Tandem Mirror Experiment Upgrade (TMX-U) overview-recent events

    International Nuclear Information System (INIS)

    Calderon, M.O.; Bell, H.H.

    1985-01-01

    Since its construction and commissioning was completed in the winter of 1981, the Tandem Mirror Experiment Upgrade (TMX-U) has been conducting tandem mirror thermal barrier experiments. The work, following the fall of 1983 when strong plugging with thermal barriers was achieved, has been directed toward controlling radial transport and forming thermal barriers with high density and Beta. This paper describes the overall engineering component of these efforts. Major changes to the machine have included vacuum improvements, changes to the Electron and Ion Cyclotron Resonance Heating systems (ECRH and ICRH), and the installation of a Plasma Potential Control system (PPC) for radial transport reduction. TMX-U operates an extensive diagnostics system that acquires data from 21 types of diagnostic instruments with more than 600 channels, in addition to 246 machine parameters. The changes and additions will be presented. The closing section of this paper will describe the initial study work for a proposed TMX-U octupole configured machine

  11. Generation of intense, high-energy ion pulses by magnetic compression of ion rings

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.

    1981-01-01

    A system based on the magnetic compression of ion rings, for generating intense (High-current), high-energy ion pulses that are guided to a target without a metallic wall or an applied external magnetic field includes a vacuum chamber; an inverse reflex tetrode for producing a hollow ion beam within the chamber; magnetic coils for producing a magnetic field, bo, along the axis of the chamber; a disc that sharpens a magnetic cusp for providing a rotational velocity to the beam and causing the beam to rotate; first and second gate coils for producing fast-rising magnetic field gates, the gates being spaced apart, each gate modifying a corresponding magnetic mirror peak (Near and far peaks) for trapping or extracting the ions from the magnetic mirror, the ions forming a ring or layer having rotational energy; a metal liner for generating by magnetic flux compression a high, time-varying magnetic field, the time-varying magnetic field progressively increasing the kinetic energy of the ions, the magnetic field from the second gate coil decreasing the far mirror peak at the end of the compression for extracting the trapped rotating ions from the confining mirror; and a disc that sharpens a magnetic half-cusp for increasing the translational velocity of the ion beam. The system utilizes the self-magnetic field of the rotating, propagating ion beam to prevent the beam from expanding radially upon extraction

  12. Mitigation of rotational instability of high-beta field-reversed configuration by double-sided magnetized plasmoid injection

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, H.; Inomoto, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Asai, T.; Takahashi, Ts. [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2014-03-15

    Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.

  13. Simple atom trap in a conical hollow mirror: Numerical analysis

    International Nuclear Information System (INIS)

    Kim, J. A.; Lee, K. I.; Nha, H.; Noh, H. R.; Yoo, S. H.; Jhe, W

    1996-01-01

    We analyze the trap dynamic in a conical hollow (axicon) mirror system. Atom's trajectory is ring shaped if we move the coil (magnetic field) axis off the mirror axis and if we overlap these two axes trap cloud is ball shaped and it is consistent with experiment. We also make a simple comparison between 6-beam MOT and axicon MOT in the ball shaped case, and it shows that at low velocity limit the axicon MOT and typical 6-beam MOT have nearly same trap properties. The axicon trap may be useful as precooled atom source for many other atomic physics experiments such as cold atomic beam, atom funnel, and atom waveguide.

  14. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    Directory of Open Access Journals (Sweden)

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  15. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities

    International Nuclear Information System (INIS)

    Frassetto, F.; Poletto, L.; Trabattoni, A.; Anumula, S.; Sansone, G.; Calegari, F.; Nisoli, M.

    2014-01-01

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10 11 W/cm 2

  16. Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebius, E.; Baumjohann, W.; Nagai, T.

    1993-01-01

    The authors report on an analysis of pressure and magnetic configuration within the plasma sheet following the initiation of substorm events. They have constructed this time dependent picture by using an epoch analysis of data from the AMPTE/IRM spacecraft. This analysis procedure can be used to construct a unified picture of events, provided they are reproducible, from a statistical analysis of a series of point measurements. The authors first determine the time dependent pressure changes in the plasma sheet. With some simplifying assumptions they then determine the z dependence of the pressure profiles, and from this distribution determine how field lines in the plasma sheet map to the neutral sheet

  17. Nonthermal plasmas around black holes, relevant collective modes, new configurations, and magnetic field amplification

    Energy Technology Data Exchange (ETDEWEB)

    Coppi, B., E-mail: coppi@mit.edu [Massachusetts Institute of Technology (United States)

    2017-03-15

    The radiation emission from Shining Black Holes is most frequently observed to have nonthermal features. It is therefore appropriate to consider relevant collective processes in plasmas surrounding black holes that contain high energy particles with nonthermal distributions in momentum space. A fluid description with significant temperature anisotropies is the simplest relevant approach. These anisotropies are shown to have a critical influence on: (a) the existence and characteristics of stationary plasma and field ring configurations, (b) the excitation of “thermo-gravitational modes” driven by temperature anisotropies and gradients that involve gravity and rotation, (c) the generation of magnetic fields over macroscopic scale distances, and (d) the transport of angular momentum.

  18. Electrostatic systems used for the multipassage magnetic mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C; Baril, M

    1987-08-15

    Improvement in the power of resolution is desirable in the multiplication of passages in magnetic fields; our guiding principle is to carry out the operation using a single magnetic prism. In the multipassage process the ions must first turn back after leaving the prism. This turnback is obtained by an electrostatic mirror. We obtain a large enough number of passages by placing two mirrors and two systems with time-varying roles at right angles. These systems are referred to as lens-mirror 1. When they act as mirrors, they enable the particles to circulate in a closed circuit; when they act as lenses, they enable the particles to enter the circuit or leave it. The coupling of two multipassage spectrometers is momentarily possible thanks to lens-mirror 2. The function change results from a change in electrode potential. The requirements for these electrostatic systems and their construction are studied.

  19. Neutronics shielding analysis of the last mirror-beam duct system for a laser fusion power reactor

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Klein, A.C.

    1981-01-01

    A Monte Carlo three-dimensional neutronics analysis for the last mirror-beam duct system for the SOLASE conceptual laser-driven fusion power reactor design is presented. Detailed geometric configurations including the reactor cavity, the two last mirrors, and the three-section two-right-angle bends duct are modeled. Measurements are given of the dimensions and compositions of the reactor components, and of neutron scalar fluxes, spatial dependencies and neutron volumetric heating rates for the cases of aluminum or Boral as laser beam duct liners, and ordinary concrete or lead mortar as shield material. A three-dimensional modeling of laser-driven reactor penetrations is employed. The particle leakage is found to be excessively high for the configuration of the conceptual design considered and the advantages and disadvantages of various solutions, such as the use of Boral as a duct liner and the use of lead mortar instead of ordinary concrete as a shield material, are considered

  20. Characterisation of edge turbulence in relation to edge magnetic field configuration in L-mode plasmas in the Mega Amp Spherical Tokamak.

    Science.gov (United States)

    Dewhurst, J.; Hnat, B.; Dudson, B.; Dendy, R. O.; Counsell, G. F.; Kirk, A.

    2007-12-01

    Almost all astrophysical and magnetically confined fusion plasmas are turbulent. Here, we examine ion saturation current (Isat) measurements of edge plasma turbulence for three MAST L-mode plasmas that differ primarily in their edge magnetic field configurations. First, absolute moments of the coarse grained data are examined to obtain accurate values of scaling exponents. The dual scaling behaviour is identified in all samples, with the temporal scale τ ≍ 40-60 μs separating the two regimes. Strong universality is then identified in the functional form of the probability density function (PDF) for Isat fluctuations, which is well approximated by the Fréchet distribution on temporal scales τ ≤ 40μs. For temporal scales τ > 40μs, the PDFs appear to converge to the Gumbel distribution, which has been previously identified as a universal feature of many other complex phenomena. The optimal fitting parameters k=1.15 for Fréchet and a=1.35 for Gumbel provide a simple quantitative characterisation of the full spectrum of fluctuations. We conclude that, to good approximation, the properties of the edge turbulence are independent of the edge magnetic field configuration.

  1. Stable operation of an effectively axisymmetric neutral beam driven tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Barter, J.D.; Buchenauer, D.A.; Casper, T.A.; Correll, D.L.; Dimonte, G.; Falabella, S.; Foote, J.H.; Pincosy, P.A.

    1990-01-01

    A quiescent plasma is sustained for 80 energy confinement times by only gas fuelling and neutral beam heating in an axisymmetric region of the Tandem Mirror Experiment Upgrade (TMX-U). This plasma should be unstable because of the bad magnetic curvature and the absence of ion cyclotron heating which previously provided ponderomotive stabilization to sustain plasmas in bad-curvature regions of other axisymmetric mirror experiments. The TMX-U data are consistent with stabilization by a symbiosis between two mechanisms - line tying, which reduces the growth rate, and finite Larmor radius edge stabilization, which can result in quiescent operation. (author). 42 refs, 8 figs, 1 tab

  2. The mirror neuron system.

    Science.gov (United States)

    Cattaneo, Luigi; Rizzolatti, Giacomo

    2009-05-01

    Mirror neurons are a class of neurons, originally discovered in the premotor cortex of monkeys, that discharge both when individuals perform a given motor act and when they observe others perform that same motor act. Ample evidence demonstrates the existence of a cortical network with the properties of mirror neurons (mirror system) in humans. The human mirror system is involved in understanding others' actions and their intentions behind them, and it underlies mechanisms of observational learning. Herein, we will discuss the clinical implications of the mirror system.

  3. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  4. Modular transportable superconducting magnetic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lieurance, D.; Kimball, F.; Rix, C. [Martin Marietta Space Magnetics, San Diego, CA (United States)

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  5. Modular transportable superconducting magnetic energy systems

    Science.gov (United States)

    Lieurance, Dennis; Kimball, Foster; Rix, Craig

    1995-04-01

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  6. NRL ion ring program

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.; Golden, J.; Drobot, A.; Mahaffey, R.A.; Marsh, S.J.; Pasour, J.A.

    1977-01-01

    An experiment is under way to form a storng proton ring using the 200 ka, 1.2 MeV, 50 nsec hollow proton beam recently generated at NRL. The 5 m long magnetic field configuration consists of a magnetic cusp, a compressing magnetic field, a gate field and a magnetic mirror. The midplane value of the magnetic mirror is such that the major radius of the ring will be about 10 cm. The degree of field reversal that will be achieved with 5 x 10 16 protons per pulse from the existing beam depends upon the field reversal is possible with the 600 kA proton beam that would be generated from the low inductance coaxial triode coupled to the upgraded Gamble II generator. The propagation and trapping of an intense proton beam in the experimental magnetic field configuration is investigated numerically. The results show that the self magnetic has a very pronounced effect on the dynamics of the gyrating protons

  7. Magnetic orientation of paraffin in a magnetic levitation furnace

    Science.gov (United States)

    Takahashi, K.; Umeki, C.; Mogi, I.; Koyama, K.; Awaji, S.; Motokawa, M.; Watanabe, K.

    2004-04-01

    Containerless melting of paraffin under a magnetic levitation condition has been performed by using a cryogen-free hybrid magnet and two kinds of laser furnaces. One is local irradiation of CO 2 laser light at the top of the sample. The other is homogeneous irradiation of YAG laser light with a concave ring mirror. In the latter case, reduction of the Marangoni convection on the surface of the sample and the magnetic orientation of paraffin molecules were observed. The magnetic anisotropy of the spherical sample was confirmed by the measurement of magnetization and X-ray diffraction.

  8. Magnetic orientation of paraffin in a magnetic levitation furnace

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Umeki, C.; Mogi, I.; Koyama, K.; Awaji, S.; Motokawa, M.; Watanabe, K

    2004-04-30

    Containerless melting of paraffin under a magnetic levitation condition has been performed by using a cryogen-free hybrid magnet and two kinds of laser furnaces. One is local irradiation of CO{sub 2} laser light at the top of the sample. The other is homogeneous irradiation of YAG laser light with a concave ring mirror. In the latter case, reduction of the Marangoni convection on the surface of the sample and the magnetic orientation of paraffin molecules were observed. The magnetic anisotropy of the spherical sample was confirmed by the measurement of magnetization and X-ray diffraction.

  9. Magnetic orientation of paraffin in a magnetic levitation furnace

    International Nuclear Information System (INIS)

    Takahashi, K.; Umeki, C.; Mogi, I.; Koyama, K.; Awaji, S.; Motokawa, M.; Watanabe, K.

    2004-01-01

    Containerless melting of paraffin under a magnetic levitation condition has been performed by using a cryogen-free hybrid magnet and two kinds of laser furnaces. One is local irradiation of CO 2 laser light at the top of the sample. The other is homogeneous irradiation of YAG laser light with a concave ring mirror. In the latter case, reduction of the Marangoni convection on the surface of the sample and the magnetic orientation of paraffin molecules were observed. The magnetic anisotropy of the spherical sample was confirmed by the measurement of magnetization and X-ray diffraction

  10. Comparison of shipping, handling, and shock instrumentation results for two 3.5-m-class primary mirrors

    Science.gov (United States)

    Killpatrick, Don H.; Mayo, James W.

    1998-08-01

    Packing, shipping, and handling procedures employed during several transportation activities for two large telescope primary mirrors are presented along with detailed shock recording results. Operations monitored included craning, forklifting, and shipping by air, sea, and land during all phases of manufacture and installation. The mirrors monitored were the SOR 3.5-m Telescope spun cast borosilicate primary mirror and the AEOS 3.67-m Telescope Zerodur thin meniscus primary mirror. Shock recording instrumentation included 2-, 5-, and 10-g Omni-G(superscript TM) impact indicators, 10-g Impact o-graph(superscript TM) 3-axis recording accelerometers, and high-resolution 3-axis accelerometers with Astromed Dash 8 eight-channel chart recorders and audio indicators. Shock results for some operations were monitored to the 0.01-g level. In-shipment temperature data are also presented and discussed. Effects of lifting operations, road conditions via truck, flight conditions via C-5B aircraft, and transportation via sea- going barge are discussed. Data are presented for three different crate designs and configurations and, in some cases, include mirror-in-cell shipping data. Shock results were observed from as low as a few hundredths-g to over 3- g's during various operations.

  11. PARTICLE-IN-CELL SIMULATIONS OF CONTINUOUSLY DRIVEN MIRROR AND ION CYCLOTRON INSTABILITIES IN HIGH BETA ASTROPHYSICAL AND HELIOSPHERIC PLASMAS

    International Nuclear Information System (INIS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-01-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 (B) in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 (B), the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes

  12. MSFC Test Results for Selected Mirrors: Brush-Wellman/Goodrich 0.5 meter Joined-Beryllium Mirror; IABG 0.5 meter C/SiC Mirror; Xinetics 0.5 meter SiC Mirror; and Kodak 0.23 meter SiO2 Mirror

    Science.gov (United States)

    Hadaway, James; Blackwell, Lisa; Matthews, Gary; Eng, Ron; Stahl, Phil; Hraba, John; Thornton, Gary

    2002-01-01

    The results of cryo tests performed at the XRCF on the above mirrors will be presented. Each mirror was tested from room-temperature to around 30 K. The first three were tested together on a 3-mirror stand in the large chamber using the PhaseCam interferometer, while the Kodak mirror was tested in the small chamber using the EPI interferometer.

  13. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions.

    Science.gov (United States)

    Ambroglini, Filippo; Battiston, Roberto; Burger, William J

    2016-01-01

    A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth's dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European's Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented.

  14. Runtime accelerator configuration tools at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Tiefenback, M.G.; Doolittle, L.; Benesch, J.F.

    1997-01-01

    RF and magnet system configuration and monitoring tools are being implemented at Jefferson Lab to improve system reliability and reduce operating costs. They are prototype components of the Momentum Management System being developed. The RF is of special interest because it affects the momentum and momentum spread of the beam, and because of the immediate financial benefit of managing the klystron DC supply power. The authors describe present and planned monitoring of accelerating system parameters, use of these data, RF system performance calculations, and procedures for magnet configuration for handling beam of any of five beam energies to any of three targets

  15. Plasma heating and hot ion sustaining in mirror based hybrids

    International Nuclear Information System (INIS)

    Moiseenko, V. E.; Ågren, O.

    2012-01-01

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  16. Magnetoresistance of microstructured permalloy ellipses having multi-domain configurations

    International Nuclear Information System (INIS)

    Kuo, C.Y.; Chung, W.S.; Wu, J.C.; Horng, Lance; Wei, Z.-H.; Lai, M.-F.; Chang, C.-R.

    2007-01-01

    Mirostructured permalloy ellipses having purposely designed multi-domain configurations were investigated. The samples were fabricated using e-beam lithography through a lift-off process. The magnetoresistance measurements were carried out with a constant dc sensing current under the external magnetic field applied along the short axis. The magnetoresistance curves manifest characteristic features in accordance with the specific domain configurations. Step-like/kink features were observed on the ellipses with cross-tie wall/two-vortex configuration and step-like plus kink magnetorsistance curve was found on the ellipse with cross-tie wall combining with two-vortex structure. A magnetic force microscopy and a micromagnetic simulation were employed to support these results

  17. Physics-magnetics trade studies for tandem mirror reactors

    International Nuclear Information System (INIS)

    Campbell, R.B.; Perkins, L.J.; Blackfield, D.T.

    1985-01-01

    We describe and present results obtained from the optimization package of the Tandem Mirror Reactor Systems Code. We have found it to be very useful in searching through multidimensional parameter space, and have applied it here to study the effect of choke coil field strength and net electric power on cost of electricity (COE) and mass utilization factor (MUF) for MINIMARS type reactors. We have found that a broad optimum occurs at B/sub choke/ = 26 T for both COE and MUF. The COE economy of scale approaches saturation at quite low powers, around 600 MW(e). The saturation is mainly due to longer construction times for large plants, and the associated time related costs. The MUF economy of scale does not saturate, at least for powers up to 2400 MW(e)

  18. Optical configuration with fixed transverse magnification for self-interference incoherent digital holography.

    Science.gov (United States)

    Imbe, Masatoshi

    2018-03-20

    The optical configuration proposed in this paper consists of a 4-f optical setup with the wavefront modulation device on the Fourier plane, such as a concave mirror and a spatial light modulator. The transverse magnification of reconstructed images with the proposed configuration is independent of locations of an object and an image sensor; therefore, reconstructed images of object(s) at different distances can be scaled with a fixed transverse magnification. It is yielded based on Fourier optics and mathematically verified with the optical matrix method. Numerical simulation results and experimental results are also given to confirm the fixity of the reconstructed images.

  19. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    Science.gov (United States)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  20. Preliminary design study of the Tandem Mirror Reactor (TMR)

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1978-01-01

    This report describes work done in Fiscal Year 1977 by the Fusion Reactor Studies Group of LLL on the conceptual design of a 1000-MW(e) Tandem Mirror Reactor (TMR). The high Q (defined as the ratio of fusion power to injection power) predicted for the TMR (approximately 5) reduces the recirculating power to a nondominant problem and results in an attractive mirror fusion power plant. The fusion plasma of the TMR is contained in the 100-m-long central cell where the magnetic field strength is a modest 2 T. The blanket for neutron energy recovery and tritium breeding is cylindrical and, along with the solenoidal magnet, is divided into 3-m-long modules to facilitate maintenance. The central cell is fueled (but not heated) by the injection of low-energy neutral beams near its ends. Thus, the central cell is simple and of low technology. The end-cell plasmas must be of high density and high energy in order to plug and heat (via the electrons) the central-cell plasma. The present conceptual design uses 1.2-MeV neutral-beam injection for the end plugs and a cryogenic-aluminum, Yin-Yang magnet that produces an incremental field of about 1 T over a field of 16 T produced by a pair of Nb 3 Sn superconducting solenoids. Important design problems remain in both the neutral-beam injector and in the end-plug magnet. Also remaining are important physics questions such as alpha-beam particle transport and end-plug stability. These questions are discussed at length in the report and suggestions for future work are given

  1. On the possibility of forming a thermonuclear plasma by the injection of accelerated ions into a magnetic mirror configuration

    International Nuclear Information System (INIS)

    Prevot, Francois; Hubert, Pierre; Gourdon, Christian

    1959-01-01

    It is proposed to form a plasma at very high temperature by injection of fast molecular ions into a magnetic field, in such a way that the ions injected from a ring-shaped source pass through the revolution axis of the system and are dissociated from it. The properties of this movement provide reason to hope for favourable performances from this type of injection. A numerical example of its application is given. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 997-999, sitting of 14 September 1959 [fr

  2. Studies of the formation of field reversed plasma by a magnetized co-axial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-01-01

    The gun injects axially into a drift tank followed by a magnetic mirror. For the experiments reported here, only the guide coils outside the vacuum vessel and solenoids on the plasma gun electrodes were used; the mirror coil was not energized. A stainless steel flux conserver is placed in the mirror throat to prevent the plasma from contacting the nonconducting vacuum wall in the region of the mirror. An axis encircling array of magnetic loop probes includes four diamagnetic loops and a loop which measures the azimuthally averaged outward pointing radial component of magnetic field. These loop probes are stainless steel jacketed and form a flux conserving boundary (at a radius = 30 cm) for plasma emitted from the gun. A five tip probe that can be positioned anywhere along the axis of the experiment is used to measure internal components of magnetic field

  3. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Frassetto, F.; Poletto, L., E-mail: poletto@dei.unipd.it [National Research Council, Institute of Photonics and Nanotechnologies, via Trasea 7, 35131 Padova (Italy); Trabattoni, A.; Anumula, S.; Sansone, G. [Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Calegari, F. [National Research Council, Institute of Photonics and Nanotechnologies, Piazza L. da Vinci 32, 20133 Milano (Italy); Nisoli, M. [Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); National Research Council, Institute of Photonics and Nanotechnologies, Piazza L. da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10{sup 11} W/cm{sup 2}.

  4. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-01-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  5. Global structure of mirror modes in the magnetosheath

    International Nuclear Information System (INIS)

    Johnson, J.R.; Cheng, C.Z.

    1996-01-01

    A global stability analysis of mirror modes in the magnetosheath is presented. The analysis is based upon the kinetic-MHD formulation which includes relevant kinetic effects such as Landau resonance and gradient drift effects related to inhomogeneities in the background density, temperature, pressure and its anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides the free energy for the global mirror mode. The local theory of mirror modes predicts purely growing modes confined in the unstable magnetosheath region; however, the nonlocal theory that includes the effects of gradients and plasma flow predicts modes with real frequencies which propagate with the flow from the magnetosheath toward the magnetopause boundary. The real frequency is on the order of a combination of the diamagnetic drift frequency and the Doppler shift frequency associated with plasma flow. The diamagnetic drift frequency provides a wave phase velocity in the direction of the magnetopause so that wave energy accumulates against the magnetopause boundary, and the amplitude is skewed in that direction. On the other hand, plasma flow also gives rise to a real phase velocity, but the phase velocity is smaller than the flow velocity. As a result, the wave amplitude is increased in the wake of the plasma flow and piles up against the bow shock boundary

  6. Global structure of mirror modes in the magnetosheath

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.R.; Cheng, C.Z.

    1996-11-01

    A global stability analysis of mirror modes in the magnetosheath is presented. The analysis is based upon the kinetic-MHD formulation which includes relevant kinetic effects such as Landau resonance and gradient drift effects related to inhomogeneities in the background density, temperature, pressure and its anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides the free energy for the global mirror mode. The local theory of mirror modes predicts purely growing modes confined in the unstable magnetosheath region; however, the nonlocal theory that includes the effects of gradients and plasma flow predicts modes with real frequencies which propagate with the flow from the magnetosheath toward the magnetopause boundary. The real frequency is on the order of a combination of the diamagnetic drift frequency and the Doppler shift frequency associated with plasma flow. The diamagnetic drift frequency provides a wave phase velocity in the direction of the magnetopause so that wave energy accumulates against the magnetopause boundary, and the amplitude is skewed in that direction. On the other hand, plasma flow also gives rise to a real phase velocity, but the phase velocity is smaller than the flow velocity. As a result, the wave amplitude is increased in the wake of the plasma flow and piles up against the bow shock boundary.

  7. Plasma confinement in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.; Bruskin, L.G.; Cho, T.

    1999-01-01

    The central-cell density and the diamagnetic signal were doubled due to plug potential formation by ECRH in the hot ion mode experiments on the GAMMA 10 tandem mirror. In order to obtain these remarkable results, the axisymmetrized heating patterns of ECRH and ICRF were optimized. Furthermore, conducting plates were installed adjacent to the surface of the plasma along the flat shaped magnetic flux tube located at the anchor transition regions; the plates may contribute to reduce some irregular electric fields produced possibly with ECRH in these thin flux tube regions. The conducting plates contributed to the reduction of the radial loss rate to be less than 3% of the total particle losses along with the improvements in the reproducibility of the experiments and the controllability of the potential confinement. The increases in the central-cell density and the diamagnetism in association with the increase in the plug potentials scaled well with increasing the ECRH powers. A plug potential of 0.6 kV and a density increase of 100% were achieved using an ECRH power of 140 kW injected into both plug regions. The plasma confinement was improved by an order of magnitude over a simple mirror confinement due to the tandem mirror potential formation. (author)

  8. Snowflake Divertor Configuration in NSTX

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Ahn, Joonwook; Bell, R.E.; Gates, D.A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H.W.; LeBlanc, B.; Maingi, Rajesh; Maqueda, R.J.; McLean, Adam G.; Menard, J.E.; Mueller, D.; Paul, S.F.; Raman, R.; Roquemore, L.; Ryutov, D.D.; Scott, H.A.

    2011-01-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel 'snowflake' divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  9. 'Snowflake' divertor configuration in NSTX

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Ahn, J.-W.; Bell, R.E.; Gates, D.A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J.E.; Mueller, D.M.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Ryutov, D.D.; Scott, H.A.

    2011-01-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel 'snowflake' divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  10. "Snowflake" divertor configuration in NSTX

    Science.gov (United States)

    Soukhanovskii, V. A.; Ahn, J.-W.; Bell, R. E.; Gates, D. A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H. W.; Leblanc, B. P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J. E.; Mueller, D. M.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Ryutov, D. D.; Scott, H. A.

    2011-08-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel "snowflake" divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  11. Temperature and flow fields in samples heated in monoellipsoidal mirror furnaces

    Science.gov (United States)

    Rivas, D.; Haya, R.

    The temperature field in samples heated in monoellipsoidal mirror furnaces will be analyzed. The radiation heat exchange between the sample and the mirror is formulated analytically, taking into account multiple reflections at the mirror. It will be shown that the effect of these multiple reflections in the heating process is quite important, and, as a consequence, the effect of the mirror reflectance in the temperature field is quite strong. The conduction-radiation model will be used to simulate the heating process in the floating-zone technique in microgravity conditions; important parameters like the Marangoni number (that drives the thermocapillary flow in the melt), and the temperature gradient at the melt-crystal interface will be estimated. The model will be validated comparing with experimental data. The case of samples mounted in a wall-free configuration (as in the MAXUS-4 programme) will be also considered. Application to the case of compound samples (graphite-silicon-graphite) will be made; the melting of the silicon part and the surface temperature distribution in the melt will be analyzed. Of special interest is the temperature difference between the two graphite rods that hold the silicon part, since it drives the thermocapillary flow in the melt. This thermocapillary flow will be studied, after coupling the previous model with the convective effects. The possibility of counterbalancing this flow by the controlled vibration of the graphite rods will be studied as well. Numerical results show that suppressing the thermocapillary flow can be accomplished quite effectively.

  12. Helical post stellarator. Part 1: Vacuum configuration

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-08-01

    Results on a novel type of stellarator configuration, the Helical Post Stellarator (HPS), are presented. This configuration is different significantly from all previously known stellarators due to its unique geometrical characteristics and unique physical properties. Among those are: the magnetic field has only one toroidal period (M = 1), the plasma has an extremely low aspect ratio, A ∼ 1, and the variation of the magnetic field, B, along field lines features a helical ripple on the inside of the torus. Among the main advantages of a HPS for a fusion program are extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and improved particle transport characteristics

  13. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magnetic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  14. Reduced mirror neuron activity in schizophrenia and its association with theory of mind deficits: evidence from a transcranial magnetic stimulation study.

    Science.gov (United States)

    Mehta, Urvakhsh Meherwan; Thirthalli, Jagadisha; Basavaraju, Rakshathi; Gangadhar, Bangalore N; Pascual-Leone, Alvaro

    2014-09-01

    The "mirror-neuron system" has been proposed to be a neurophysiological substrate for social cognition (SC) ability. We used transcranial magnetic stimulation (TMS) paradigms to compare putative mirror neuron activity (MNA) in 3 groups: antipsychotic-naive, medicated schizophrenia patients, and healthy comparison subjects. We also explored the association between MNA and SC ability in patients. Fifty-four consenting right-handed schizophrenia patients (33 antipsychotic naive) and 45 matched healthy comparison subjects completed a TMS experiment to assess putative premotor MNA. We used 4 TMS paradigms of eliciting motor-evoked potentials (MEP) in the right first dorsal interosseous (FDI) muscle. These were applied while the subjects observed a goal-directed action involving the FDI (actual action and its video) and a static image. The difference in the amplitude of the MEP while they observed the static image and the action provided a measure of MNA. Subjects also underwent SC assessments (theory of mind [ToM], emotion processing, and social perception). Two-way repeated measures ANOVA revealed significant group × occasion interaction effect in 3 TMS paradigms, indicating deficient motor facilitation during action observation relative to rest state in antipsychotic-naive schizophrenia patients as compared with the other two groups. Among patients, there were significant direct correlations between measures of MNA and ToM performance. Antipsychotic-naive schizophrenia patients have poorer MNA than medicated patients and healthy controls. Measures of putative MNA had significant and consistent associations with ToM abilities. These findings suggest a possibility of deficient mirror neuron system underlying SC deficits in schizophrenia. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Clinical characteristics of mirror syndrome: a comparison of 10 cases of mirror syndrome with non-mirror syndrome fetal hydrops cases.

    Science.gov (United States)

    Hirata, Go; Aoki, Shigeru; Sakamaki, Kentaro; Takahashi, Tsuneo; Hirahara, Fumiki; Ishikawa, Hiroshi

    2016-01-01

    To investigate clinical features of mirror syndrome. We retrospectively reviewed 71 cases of fetal hydrops with or without mirror syndrome, and compared with respect to maternal age, the body mass index, the primipara rate, the gestational age at delivery, the timing of fetal hydrops onset, the severity of fetal edema, placental swelling, the laboratory data and the fetal mortality. The data are expressed as the medians. Mirror syndrome developed in 29% (10/35) of the cases with fetal hydrops. In mirror group, the onset time of fetal hydrops was significantly earlier (29 weeks versus 31 weeks, p = 0.011), and the severity of fetal hydrops (fetal edema/biparietal diameter) was significantly higher than non-mirror group (0.23 versus 0.16, p < 0.001). There was significantly higher serum human chorionic gonadotropin (hCG) (453,000 IU/L versus 80,000 IU/L, p < 0.001) and lower hemoglobin (8.9 g/dL versus 10.1 g/dL, p =0.002), hypoalbuminemia (2.3 mg/dL versus 2.7 mg/dL, p = 0.007), hyperuricemia (6.4 mg/dL versus 5.0 mg/dL, p = 0.043) in mirror group. Mirror syndrome is occurred frequently in early and severe fetal hydrops and cause hemodilution and elevation of serum hCG.

  16. Correction of a Space Telescope Active Primary Mirror Using Adaptive Optics in a Woofer-Tweeter Configuration

    Science.gov (United States)

    2015-09-01

    zirconium and zirconium/copper to form the laminate foil [21]. The substrate bonds directly to the foil while attached to the mandrel. Figure 5...fabrication process uses a negative shape polished mandrel to form the mirror surface. The manufacturer layers CFRP prepreg over the mandrel and after...thin shell made from CFRP. The reflective 17 layer is a nano- laminate bonded to the front of the CFRP substrate. An active layer is bonded to the

  17. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Schultz, K.R.; Smith, A.C. Jr.

    1978-01-01

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  18. Octopole and hexapole end cells for tandem mirrors

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1985-01-01

    To date, nearly all operating or planned tandem mirror experiments use quadrupole magnetic fields in the end cells for stabilization of magnetohydrodynamic (MHD) instabilities. A disadvantage with quadrupole fields is the considerable aximuthal asymmetry in the magnetic field. As a result, those center-cell ions which pass into the end cell can suffer a radial deflection and be lost by radial diffusion. The diffusion can be minimized by adding C-coils to the end cell to symmetrize the geodesic curvature in the end cell. Very small radial deflection can be obtained on each field line. Such a method is used in the design of the MFTF-B experiment and the MARS reactor. A disadvantage of this approach is the large number of coils required. In addition, since ions drift azimuthally as they reflect in the end cell, even perfect cancellation on individual field lines will, in general, not lead to zero radial diffusion. One way to form a more symmetric field in the end cells is to use multipoles higher than quadrupole. The use of an octopole end cell for a small tandem-mirror reactor was recently proposed/sup L/ and has been adopted for the miniMARS reactor study. In this paper the author discusses some feature of octopole, and to a lesser extent, hexapole end cells in both reactor and experimental (MFTF-B) applications

  19. High-accuracy self-mixing interferometer based on multiple reflections using a simple external reflecting mirror

    Science.gov (United States)

    Wang, Xiu-lin; Wei, Zheng; Wang, Rui; Huang, Wen-cai

    2018-05-01

    A self-mixing interferometer (SMI) with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections. Only by employing a simple external reflecting mirror, the multiple-pass optical configuration can be constructed. The advantage of the configuration is simple and easy to make the light re-injected back into the laser cavity. Theoretical analysis shows that the resolution of measurement is scalable by adjusting the number of reflections. The experiment shows that the proposed method has the optical resolution of approximate λ/40. The influence of displacement sensitivity gain ( G) is further analyzed and discussed in practical experiments.

  20. Transport modelling for ergodic configurations

    International Nuclear Information System (INIS)

    Runov, A.; Kasilov, S.V.; McTaggart, N.; Schneider, R.; Bonnin, X.; Zagorski, R.; Reiter, D.

    2004-01-01

    The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the transport in complex edge geometries (in particular for W7-X) two possible methods are used. First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they exist) and discretization. All toroidal terms are discretized by finite differences. Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport results in increasingly steep profiles for the respective quantities within the islands. (author)