WorldWideScience

Sample records for magnetic hyperfine fields

  1. Hyperfine magnetic fields in substituted Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brzózka, K., E-mail: k.brzozka@uthrad.pl [University of Technology and Humanities in Radom, Department of Physics (Poland); Sovák, P. [P.J. Šafárik University, Institute of Physics (Slovakia); Szumiata, T.; Gawroński, M.; Górka, B. [University of Technology and Humanities in Radom, Department of Physics (Poland)

    2016-12-15

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  2. Hyperfine magnetic fields of disorder systems by 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Lipka, J.

    1994-01-01

    The feasibility of 57 Fe transmission Moessbauer spectroscopy in the study of hyperfine magnetic fields is described with emphasis on amorphous, nanocrystalline and quasicrystalline alloys. Distributions of hyperfine magnetic fields obtained are presented via three-dimensional projects where effects of sample composition, temperature and annealing time on magnetic structure are followed by changes in probability of the field values. This allows magnetic transitions as well as mixed electric-quadrupole and magnetic-dipole interactions to be observed

  3. Split and Compensated Hyperfine Fields in Magnetic Metal Clusters

    International Nuclear Information System (INIS)

    Nakamura, H.; Chudo, H.; Shiga, M.; Kohara, T.

    2004-01-01

    As prominent characteristics of magnetic metal cluster found in vanadium sulfides, we point out marked separation and compensation of the hyperfine field at the nuclear site; these are in somewhat discordance with the common sense for 3d transition-metal magnets, where the on-site isotropic field, scaling the ordered moment magnitude, is dominant.

  4. Magnetic hyperfine field at caesium in iron

    International Nuclear Information System (INIS)

    Ashworth, C.J.; Back, P.; Stone, N.J.; White, J.P.; Ohya, S.

    1990-01-01

    We report temperature dependence of nuclear orientation (NO), and the first observation of NMR/ON on Cs in iron. 132,136 Cs were implanted at room temperature into polycrystalline and single crystal iron. NO values for the (average) magnetic hyperfine field B hf (CsFe) are close to 34 T, intermediate between the value of 40.7 T found in on-line samples made at mK temperatures and the NMR/ON value of 27.8(2) T. The latter studies. The site/field distribution is briefly discussed. (orig.)

  5. Measurement of the hyperfine magnetic field on rhodium in chromium

    International Nuclear Information System (INIS)

    Peretto, P.; Teisseron, G.; Berthier, J.

    1978-01-01

    Hyperfine magnetic field of rhodium in a chromium matrix is studied. Anisotropy of rhodium 100 is + 0.17. Time dependence of angular correlation is given with a sample containing 145 ppm of rhodium despite the short life [fr

  6. Magnetic hyperfine field at a Cd impurity diluted in RCo{sub 2} at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.L. de, E-mail: alexandre.oliveira@ifrj.edu.br [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis – RJ (Brazil); Chaves, C.M., E-mail: cmch@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil); Oliveira, N.A. de [Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil); Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil)

    2015-06-15

    The local magnetic moments and the magnetic hyperfine fields at an s–p Cd impurity diluted in inter-metallic Laves phase compounds RCo{sub 2} (R=Gd, Tb) at finite temperatures are calculated. For other rare earth elements (light or heavy) the pure compounds display a magnetic first order transition and are not describable by our formalism. The host has two coupled lattices (R and Co) both having itinerant d electrons but only the rare earth lattice has localized f electrons. They all contribute to the magnetization of the host and also to the local moment and to the magnetic hyperfine field at the impurity. The investigation of magnetic hyperfine field in these materials then provides valuable information on the d-itinerant electrons and also on the localized (4f) magnetic moments. For the d–d electronic interaction we use the Hubbard–Stratonovich identity thus allowing the employment of functional integral in the static saddle point approximation. Our model reproduces quite well the experimental data. - Highlights: • A functional integral method in the static limit, producing site disorder, is used. • The site disorder is treated with the coherent potential approximation (CPA) • A Friedel sum rule gives a self-consistency condition for the impurity energy. • The experimental curve of hyperfine fields×temperature is very well reproduced.

  7. Mössbauer studies of hyperfine fields in disordered Fe CrAl

    Indian Academy of Sciences (India)

    magnetic hyperfine field, the average hyperfine field follows the ´T Tcµ3 2 law. The paramagnetic part of the hyperfine field is explained in terms of the clustering of Cr ... These alloys offer excellent systems for studying magnetic interactions. Large volumes of studies have been devoted to Heusler alloys bearing the general ...

  8. Hyperfine interaction mechanism of magnetic field effects in sequential fluorophore and exciplex fluorescence.

    Science.gov (United States)

    Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I

    2013-03-28

    The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.

  9. Moessbauer investigation of magnetic hyperfine fields near bivalent Eu compounds under high pressure

    International Nuclear Information System (INIS)

    Abd Elmeguid, M.

    1979-01-01

    The paper deals with the pressure or volume dependence of hyperfine interactions of magnetically ordered, bivalent europium compounds. Emphasis is laid on the investigation of the pressure or volume dependence of magnetic hyperfine fields as they are found at the nuclear site of 151 Eu or of diamagnetic 119 Sn or 197 Au probe atoms. The measurements were carried out with the aid of the gamma resonance of 151 Eu (21.6 keV) 119 Sn (23.8 keV) and 167 Au (77.4 keV) at low temperatures and external pressures up to 65 kbar. (orig./WBU) [de

  10. Studies of hyperfine magnetic fields in transition metals by radioactive ion implantation

    International Nuclear Information System (INIS)

    Kawase, Yoichi; Uehara, Shin-ichi; Nasu, Saburo; Ni Xinbo.

    1994-01-01

    In order to investigate hyperfine magnetic fields in transition metals by a time-differential perturbed angular correlation (TDPAC) technique, radioactive probes of 140 Cs obtained by KUR-ISOL have been implanted on transition metals of Fe, Ni and Co. Lamor precessions of 140 Ce used as a probe nucleus have been observed clearly and the hyperfine fields have been determined precisely corresponding to implanted sites in host metal. The irradiation effects caused by implantation have been examined by annealing the irradiated specimen at about 723 K. Some of the Lamor precessions have disappeared by the annealing. Discussions have been made on the occupied sites after implantation and the recovery process of induced damages by annealing. (author)

  11. Hyperfine-Interaction-Driven Suppression of Quantum Tunneling at Zero Field in a Holmium(III) Single-Ion Magnet.

    Science.gov (United States)

    Chen, Yan-Cong; Liu, Jun-Liang; Wernsdorfer, Wolfgang; Liu, Dan; Chibotaru, Liviu F; Chen, Xiao-Ming; Tong, Ming-Liang

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm -1 . The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from 165 Ho (I=7/2) with a natural abundance of 100 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hyperfine magnetic fields at 111Cd in Heusler alloys

    International Nuclear Information System (INIS)

    Styczen, B.; Szytula, A.; Walus, W.

    1977-01-01

    The magnitudes and signs of the hyperfine magnetic field on 111 Cd nuclei at Z sites in the ordered ferromagnetic Heusler alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroli-Blandin and Campbell-Blandin models and RKKY theory. (author)

  13. 61Ni Moessbauer study of the surface hyperfine magnetic field in nickel

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Stroink, G.; Griesbach, P.; Guetlich, P.; Kohara, T.

    1988-01-01

    61 Ni Moessbauer measurements have been performed at 4.2 K on spherical Ni particles with an average diameter of 100 and 30 A, covered with a protective layer of SiO. Their spectra contain a surface component with a significantly reduced hyperfine magnetic field as compared with the field in the bulk. This result confirms recent theoretical predictions. (orig.)

  14. Hyperfine fields for B and N in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Hamagaki, H; Nakai, K [Tokyo Univ. (Japan). Faculty of Science; Nojiri, Y; Tanihata, I; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1976-11-01

    Hyperfine fields for non-magnetic impurity atoms of /sup 12/B and /sup 12/N in nickel have been investigated using a nuclear resonance method involving ..beta.. decay. The temperature dependence of the hyperfine fields and nuclear spin lattice relaxation time were also studied for /sup 12/B in Ni. Resonances were observed for recoil nuclei produced in the reactions /sup 11/B(d,p)/sup 12/B or /sup 10/B(/sup 3/He,n)/sup 12/N, implanted in polycrystalline Ni foils. A small correction to the Lorentz field was made because of a Co impurity in the Ni foils used. The sign of the hyperfine field was negative for B in Ni and positive for N. This result is in qualitative agreement with hyperfine field systematics for such impurities. Spin lattice relaxation time was determined from the time spectra of the ..beta..-decay asymmetry. Hyperfine fields measured in the given temperature range deviated significantly from the magnetization curve of Ni. At low temperatures spin lattice was long in comparison with /sup 12/B half life (11 ms), but became shorter around Curie temperature Tsub(c) (631 K), increasing again above this temperature. This is due to slowing down of spin fluctuations at a critical point of the ferromagnetic-paramagnetic phase transition.

  15. Hyperfine-interaction-driven suppression of quantum tunneling at zero field in a holmium(III) single-ion magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan-Cong; Liu, Jun-Liang; Chen, Xiao-Ming; Tong, Ming-Liang [Key Lab. of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen Univ., Guangzhou (China); Wernsdorfer, Wolfgang [Institut Neel, CNRS and Universite Joseph Fournier, Grenoble (France); Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Liu, Dan; Chibotaru, Liviu F. [Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven (Belgium)

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm{sup -1}. The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from {sup 165}Ho (I=7/2) with a natural abundance of 100 %. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Hyperfine magnetic fields for 5d impurities in iron: pre-equilibrium effects, texture and the Aharoni effect

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Bezakova, E.

    1998-01-01

    Static magnetic hyperfine fields acting on impurities recoil-implanted into ferromagnetic hosts following heavy-ion induced reactions have been studied using the implantation perturbed angular correlation (IMPAC) technique to determine the magnetic moments of subnanosecond excited states in neutron-deficient nuclei. Problems, which in time-integral measurements cannot always be treated independently were studied and include: (i) corrections for the transient field effect, (ii) whether the hyperfine field is parallel to the applied field, (iii) whether the implanted nuclei all experience the same magnetic interaction, (iv) the time the static field takes to reach equilibrium after implantation. The focus here is on pre-equilibrium phenomena associated with the implantation process and the direction of the internal magnetic field at implanted impurities after equilibrium is reached. It was found that the internal field does become increasingly misaligned with respect to external field direction at fields below 0.08 T. This is due to the incomplete saturation of the foil and not to the microscopic effect as proposed by Aharoni

  17. Measurement of the magnetic hyperfine field at the 181 Ta site in nickel matrix

    International Nuclear Information System (INIS)

    Saxena, R.N.; Carbonari, A.W.; Pendl Junior, W.; Attili, R.N.; Kenchian, G.; Soares, J.C.A.C.R.; Moreno, M.S.

    1990-01-01

    The hyperfine magnetic field on the Ta 181 nucleus were determined using the gamma-gamma perturbed angular correlation method, on a nickel matrix, with a 133-482 KeV cascade from the Hf- 181 beta minus decay. (L.C.J.A.)

  18. First principles density functional calculation of magnetic moment and hyperfine fields of dilute transition metal impurities in Gd host

    International Nuclear Information System (INIS)

    Mohanta, S.K.; Mishra, S.N.; Srivastava, S.K.

    2014-01-01

    We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti–Co), 4d (Nb–Ru) and 5d (Ta–Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446–e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc–V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. - Highlights: • Detailed study of transition metal impurities in ferromagnetic Gd has been carried out. • The trends in impurity magnetic moment are qualitatively different from Fe, Co and Ni. • The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. • Experimental trend in a hyperfine field has been reproduced successfully

  19. Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2

    Science.gov (United States)

    Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2018-05-01

    Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.

  20. Hyperfine Fields on Actinide Impurities in Ferromagnetic Fe and Ni Hosts

    International Nuclear Information System (INIS)

    Oliveira, A.L. de; Oliveira, N.A. de; Troper, A.

    2003-01-01

    We discuss the local magnetic moments and magnetic hyperfine fields on actinide impurities diluted in Fe and Ni hosts. One adopts a Anderson- Moriya model in which a localized 5f level is hybridized with a spin polarized and charge perturbed d-conduction band. Our self-consistent numerical calculations for the hyperfine fields on the impurity sites are in good agreement with the available experimental data. (author)

  1. Mixed hyperfine interaction in amorphous Fe-Zr sputtered films in external magnetic field - a 57Fe Moessbauer study

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Wagner, H.-G.; Gonser, U.; Chien, C.L.

    1986-01-01

    Conventional 57 Fe-Moessbauer spectroscopy provides only information about the magnitude of the splitting QS in the case of electric quadrupole hyperfine interaction, but not on the sign of the main component of the electric field gradient (EFG) or the asymmetry parameter which are sensitive to the local environment of the 57 Fe nuclei. This kind of information is obtained by measurements in external magnetic fields. In the case of amorphous Fe-Zr sputtered films mixed hyperfine interaction leads to a clear change in the behaviour of the Zr-rich and the Fe-rich alloys, indicating the existence of magnetic clusters in the Fe-rich samples. (Auth.)

  2. Temperature dependence of the magnetic hyperfine field at an s–p impurity diluted in RNi_2

    International Nuclear Information System (INIS)

    Oliveira, A.L. de; Chaves, C.M.; Oliveira, N.A. de; Troper, A.

    2016-01-01

    We study the formation of local magnetic moments and magnetic hyperfine fields at an s–p impurity diluted in intermetallic Laves phase compounds RNi_2 (R=Nd, Sm, Gd, Tb, Dy) at finite temperatures. We start with a clean host and later the impurity is introduced. The host has two-coupled (R and Ni) sublattice Hubbard Hamiltonians but the Ni sublattice can be disregarded because its d band, being full, is magnetically ineffective. Also, the effect of the 4f electrons of R is represented by the polarization they produce on the d band. This leaves us with a lattice of effective rare earth R-ions with polarized electrons. For the dd electronic interaction we use the Hubbard–Stratonovich identity in a functional integral approach in the static saddle point approximation. - Highlights: • Functional integral method in the static limit, producing site disorder, is used. • The site disorder is treated with the Coherent Potential Approximation (CPA). • Non magnetic Ni generates an effective lattice with only a polarized R d band. • The effective R lattice differ from the pure R metal: Results and Discussions. • The experimental curve of hyperfine fields × temperature are very well reproduced.

  3. Magnetic hyperfine fields on 181Ta at the Nb and V sites in Heusler alloys CO2YAL (Y=NB,V)

    International Nuclear Information System (INIS)

    Pendl Junior, W.

    1990-01-01

    Magnetic hyperfine fields (MHF) acting on sup(181)Ta at the Nb and V sites have been determined in the Heusler alloys Co sub(2) NbA1 and Co sub(2) VA1 by the time differential perturbed angular correlation (TDPAC) technique utilizing the well known 133-482 Kev gamma cascade in sup(181)Ta. The measurement were carried out using an automatic spectrometer consisting of three NaI(T1) detectors and a fast-slow coincidence system. The measurements were performed at 77 K with and without an externally applied magnetic field ( ∼ 4.5 KGauss) to determine the sign as well as the magnitude of the hyperfine fields in both alloys. For the alloy Co sub(2) NbA1 a unique field of -138(4) KOe was observed whereas in the case of Co sub(2)VA1 two distinct magnetic sites were observed. The present result show that approximately 24% of the sup(181)Ta atoms in this alloy probe a field of -116(4) KOe while the other ∼ 76% of the atoms feel -83(3) KOe. Present data along with the existing results on similar alloys Co sub(2)T1,Hf,Zr (Al,Ga,Sn) are discussed and compared with the magnetic hyperfine field systematics in Heusler alloys. (author)

  4. Muon contact hyperfine field in metals: A DFT calculation

    Science.gov (United States)

    Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto

    2018-05-01

    In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.

  5. Study of the hyperfine magnetic field at Ta181 site in the Heusler Co2 Sc Sn, Co2 Sc Ga and Co2 Hf Sn alloys

    International Nuclear Information System (INIS)

    Attili, R.N.

    1992-01-01

    The hyperfine magnetic fields acting on 181 Ta nuclei at the Sc and Hf sites have been measured in Heusler alloys Co 2 Sc Sn and Co 2 Sc Ga and Co 2 Hf Sn using the Time Differential Perturbed γ-γ Angular Correlation (TDPAC) technique. The measurements were carried out using an automatic spectrometer consisting of two Ba F 2 detectors and the conventional electronics. The magnitude of hyperfine magnetic field at 181 Ta was measured for all the alloys. The signs of the were determined in the cases of Co 2 Sc Sn and Co 2 Hf Sn alloys by performing the Perturbed Angular Correlation measurements with an external polarizing magnetic field of ≅ 5 k Gauss. The hyperfine magnetic fields obtained are -187,6± 3,3 and 90,0 ± 2,1 kOe measured at 77 K for Co 2 Sc Sn and Co 2 Sc Ga alloys respectively, and -342,4 ± 10,1 kOe measured at the room temperature for Co 2 Hf Sn alloy. These results are discussed and compared with the hyperfine magnetic field systematics in Co-based Heusler alloy. (author)

  6. The hyperfine fields at 181Ta in HfFe2

    International Nuclear Information System (INIS)

    Cekic, B.; Ivanovic, N.; Manasijevic, M.; Koicki, S.; Koteski, V.; Cavor, J.; Radisavljevic, I.; Milosevic, Z.; Novakovic, N.

    2001-01-01

    The hyperfine fields (HFF) in the polycrystalline HfFe 2 binary compound consisting the two various phases MgCu 2 and MgZn 2 , were measured at 181 Ta probe ion sites by gamma-gamma time differential perturbed angular correlations (TDPAC) technique in a wide temperature range. The origin of the hyperfine magnetic field is discussed taking in account the coordination of the 181 Ta probe ion, its core polarization and the polarization of conduction electrons around the 181 Ta site in both phases. (author)

  7. Temperature dependence of the magnetic hyperfine field at an s–p impurity diluted in RNi{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.L. de, E-mail: alexandre.oliveira@ifrj.edu.br [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis, RJ (Brazil); Chaves, C.M., E-mail: cmch@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ (Brazil); Oliveira, N.A. de [Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil); Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ (Brazil)

    2016-03-01

    We study the formation of local magnetic moments and magnetic hyperfine fields at an s–p impurity diluted in intermetallic Laves phase compounds RNi{sub 2} (R=Nd, Sm, Gd, Tb, Dy) at finite temperatures. We start with a clean host and later the impurity is introduced. The host has two-coupled (R and Ni) sublattice Hubbard Hamiltonians but the Ni sublattice can be disregarded because its d band, being full, is magnetically ineffective. Also, the effect of the 4f electrons of R is represented by the polarization they produce on the d band. This leaves us with a lattice of effective rare earth R-ions with polarized electrons. For the dd electronic interaction we use the Hubbard–Stratonovich identity in a functional integral approach in the static saddle point approximation. - Highlights: • Functional integral method in the static limit, producing site disorder, is used. • The site disorder is treated with the Coherent Potential Approximation (CPA). • Non magnetic Ni generates an effective lattice with only a polarized R d band. • The effective R lattice differ from the pure R metal: Results and Discussions. • The experimental curve of hyperfine fields × temperature are very well reproduced.

  8. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    Science.gov (United States)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  9. Hyperfine fields and spin relaxation of Ce in GdAl2 and DyAl2

    International Nuclear Information System (INIS)

    Waeckelgaard, E.; Karlsson, E.; Lindgren, B.; Mayer, A.

    1987-04-01

    We have investigated the ferromagnetic state of the cubic intermetallic compounds GdAl 2 and DyAl 2 with the 140 Ce nuclei using DPAC. The local fields of Ce are for the lowest measured temperatures B eff (30 K) = 54(2) T for GdAl 2 and B eff (12.5 K) = 27(1) T for DyAl 2 which are considerably lower than the hyperfine field measured for a free Ce ion (183 T). By introducing a crystal field, of cubic symmetry, a lower hyperfine field is obtained which is in quantitative agreement with the local field of Ce in GdAl 2 . For DyAl 2 an additional effect, represented by a non-magnetic level below the lowest magnetic level, may explain a further reduction of the hyperfine field. Two models relating to a Kondo non-magnetic state of Ce are discussed. Spin relaxation in the paramagnetic state are also studied and compared with observations of the same systems measured with μSR. (authors)

  10. Hyperfine magnetic fields at 57Fe and 119Sn nuclei in the Fe48Rh52 alloy under pressure

    International Nuclear Information System (INIS)

    Nikolaev, I.N.; Potapov, V.N.; Bezotosnyj, I.Yu.; Mar'in, V.P.

    1978-01-01

    The pressure dependences of the hyperfine magnetic fields, H, and isomer shifts epsilon at the 57 Fe and 119 Sn nuclei in the Fe 48 Rh 52 alloy with an admixture of approximately 1 at. % Sn are measured by the Moessbauer effect technique. Under pressure epsilon decreases this signifying an increase (for 57 Fe) or decrease (for 119 Sn) of the s-electron density at the nuclei. In the ferromagnetic (FM) state at 398 K, ΔH/HΔp=(-2.8+-0.2)x10 -3 kbar -1 for 57 Fe and ΔH/HΔp=(-4.8+-0.8)x10 -3 kbar -1 for 119 Sn. In the antiferromagnetic (AFM) state at 78 K, ΔH/HΔp approximately 0 for 57 Fe and ΔH/HΔp=(-6.2+-1.0)x10 -3 kbar -1 for 119 Sn. The results for 57 Fe in the FM state can be ascribed to the strong dependence of the alloy matrix magnetization on the pressure and in the AFM state to the absence of local polarization of s-similar collectivized electrons and to the independence of the magnetic moments of the Fe ions of pressure. The causes of the different effect of pressure on the magnetic moments of Fe ions in the FM and AFM states are discussed. The results for 119 Sn in the FM and AFM states of the alloy are in agreement with the model of hyperfine fields at impurity Sn atoms in the magnetic matrices proposed earlier. The radial dependence of the hyperfine field at the 119 Sn nuclei in the AFM state is estimated and it is found that H(r) is stronger than r -9

  11. Velocity dependence of enhanced dynamic hyperfine field for Pd ions swiftly recoiling in magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, G.C.; Bolotin, H.H.; Sie, S.H.

    1980-01-01

    The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108 Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv 0 )=0.090 and 0.160, v 0 =c/137). These results for 108 Pd, when taken in conjunction with those of prior similar measurements for 106 Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.74 0 )<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field

  12. Magnetic field dependent 13C and 1H CIDNP from biradicals. The role of the hyperfine coupling constant

    International Nuclear Information System (INIS)

    Kanter, F.J.J. de; Sagdeev, R.Z.

    1978-01-01

    Magnetic field dependent biradical CIDNP has been observed in the natural abundance 13 C and 1 H NMR spectra taken immediately after irradiation of cyclic ketones in an auxillary magnet. The 13 C field dependence curves differ from the corresponding 1 H curves: The maxima of the curves for the C 11 and C 12 biradicals appear at a higher magnetic field strength, and the 13 C curves are broader than the 1 H curves. These differences are due to the different magnitudes of the hyperfine coupling constants for 13 C and 1 H and can be accounted for by a model based on a stochastic Liouville method which incorporates the dynamics of the biradicals. (Auth.)

  13. Temperature dependence of the μ+ hyperfine field in ferromagnets

    International Nuclear Information System (INIS)

    Nagamine, K.; Nirhida, N.; Hayano, R.S.; Yamazaki, T.; Brewes, J.H.; Fleming, D.G.

    1977-01-01

    The temperature dependences of the μ + hyperfine fields in Ni and in Fe were found to deviate from that of the saturation magnetization in opposite senses. Difference in the screening mechanism of conduction electrons around the μ + is considered, among several possible explanations. (Auth.)

  14. Velocity dependence of transient hyperfine field at Pt ions rapidly recoiling through magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, C.G.; Bolotin, H.H.

    1981-01-01

    The velocity-dependence of the transient hyperfine magnetic field acting at nuclei of 196 Pt ions rapidly recoiling through thin magnetized Fe was investigated at a number of recoil velocities. The state of interest (2 1 + ) was populated by Coulomb excitation using beams of 80- and 120-MeV 32 S and 150- and 220-MeV 58 Ni ions. The 2 1 + →0 1 + γ-ray angular distribution precession measurements were carried out in coincidence with backscattered projectiles. From these results, the strength of the transient field acting on Pt ions recoiling through magnetized Fe with average velocities in the extended range 2.14<=v/vsub(o)<=4.82 (vsub(o) = c/137) was found to be consistent with a linear velocity dependence and to be incompatible with the specific vsup(0.45+-0.18) dependence which has been previously reported to account well for all ions in the mass range from oxygen through samarium. This seemingly singular behaviour for Pt and other ions in the Pt mass vicinity is discussed

  15. Characterization of magnetic phase transitions in PrMn2Ge2 compound investigated by magnetization and hyperfine field measurements

    Directory of Open Access Journals (Sweden)

    B. Bosch-Santos

    2017-05-01

    Full Text Available The magnetic properties of PrMn2Ge2 compound have been investigated by perturbed γ−γ angular correlation (PAC spectroscopy using 111In(111Cd as probe nuclei as well as by magnetization measurements. This ternary intermetallic compound exhibits different magnetic structures depending on the temperature. The magnetic ordering is mainly associated with the magnetic moment of 3d-Mn sublattice but at low temperatures a magnetic contribution due to ordering of the magnetic moment from 4f-Pr sublattice appears. PAC results with 111Cd probe nuclei at Mn sites show that the temperature dependence of hyperfine field Bhf(T follows the expected behavior for the host magnetization, which could be fitted by two Brillouin functions, one for antiferromagnetic phase and the other for ferromagnetic phase, associated with the magnetic ordering of Mn ions. Magnetization measurements showed the magnetic behavior due to Mn ions highlighting the antiferromagnetic to ferromagnetic transition around 326 K and an increase in the magnetization around 36 K, which is ascribed to Pr ions ordering.

  16. The magnetic hyperfine field in the 181Ta site in the Co2HfAl and Co2HfGa Heusler alloys

    International Nuclear Information System (INIS)

    Silva, R. da.

    1979-01-01

    The hyperfine magnetic fields at 181 Ta nuclei in Heusler alloys Co 2 HfZ (Z=Al, Ga) have been measured using the time differential perturbed gamma-gamma angular correlation (TDPAC) method. The hyperfine fields obtained from these measurements at the liquid nitrogen temperature are -189 and +- 150 kOersted for Co 2 HfAl and Co 2 HfGa, respectively. The concept that the hyperfine field at the Y site is similar to the solute fields in Fe, Co, Ni and Gd matrices is corroborated. We have verified that ratios H sub(hf) sub(Ta)/T sub(c) and H sub(hf) sub(Ta)μ sub(Co) in Co 2 HfZ compounds (Z=Al, Ga, Sn) do not depend on the nature of Z element. However a dependence in the value of observed field with the s-p element in Z site was noticed. We feel that the samples are not completely ordered cubic as observed by the quadrupole interaction measurements. The results are interpreted in terms of the Campbell-Blandin formalism, and it is shown that the spin polarization of conduction electrons at Hf and Ta have opposite signs. (Author) [pt

  17. Decoupling of the hyperfine interactions in /sup 12/B ions by the external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, K; Tanihata, I; Kogo, S; Tanaka, M [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1976-11-01

    It is known that product nuclei /sup 12/B (Isup(..pi..) = 1/sup +/, Tsub(1/2) = 20 ms) by the /sup 11/B(d,p)/sup 12/B reaction are sizably oriented if one selects recoil nuclei at the incident deuteron energy and the recoil angle thetasub(R). The hyperfine interactions in recoil ions in flight in free space affect the nuclear orientation. In this experiment, the nuclear orientation in the recoil ions implanted into a stopper were measured as a function of strength of a static magnetic field applied in normal to the reaction plane. A thin single crystal of magnesium was used as the recoil stopper, of which the hexagonal c-axis was set in parallel to the external field.

  18. Calculation of magnetic hyperfine constants

    International Nuclear Information System (INIS)

    Bufaical, R.F.; Maffeo, B.; Brandi, H.S.

    1975-01-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used

  19. Systematic study of hyperfine fields in Rh2 Y Z type Heusler alloys with 119 Sn impurity using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ramos, S.M.M.

    1985-01-01

    The magnetic hyperfine fields in the Heusler alloys Rh 2 Mn .98 Ge Sn 02 , Rh 2 Mn Ge .98 Sn .02 , Rh 2 Mn Pb .98 Sn .02 and Rh 2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X 2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)

  20. Hyperfine interactions in ferromagnetic materials and magnetic properties of 1fsub(7/2) nuclei

    International Nuclear Information System (INIS)

    Bozek, E.

    1976-01-01

    Hyperfine interactions of light nuclei recoil-implanted into iron, nickel and cobalt were studied using the perturbed integral angular distribution IMPAD. Isomeric states of lifetimes within the nanosecond range were excited in the following reactions: 28 Si 14 N, xn, yp 37 Ar, 39 K, 40 K; 27 Al 16 O, xn, yp 41 K, 41 Ca. In all cases except implantation of potassium isotopes into nickel observed shifts of angular distribution were found much smaller than the ones calculated using the known values of g factors, livetimes and strengths of the hyperfine fields. This effect can be explained under the assumption that only a fraction of nuclei feel the full magnetic field. Different fractions obtained for 40 K and 41 K suggest a migration process on a ns time scale. The magnetic moments of isomeric nuclear states excited in reaction 27 Al 14 N, p 36 Cl, 24 Mg 19 F, 2pn 40 K and 48 Ca, 2n 50 Ti were measured using the perturbed integral angular distribution technique - IPAD in an external magnetic field. The g factors for the investigated states were interpreted on the base of the shell model, assuming the effective magnetic moments associated with shell model orbitals dsub(3/2) and fsub(7/2). (author)

  1. Hyperfine Interaction Studies on Y, Zr, Nb, Mo, Rh, In and Xe in Co

    International Nuclear Information System (INIS)

    Seewald, G.; Zech, E.; Ratai, H.; Schmid, R.; Stadler, R.; Schramm, O.; Koenig, C.; Hinfurtner, B.; Hagn, E.; Deicher, M.; Eder, R.; Forkel-Wirth, D.

    2004-01-01

    Nuclear magnetic resonance on oriented nuclei and modulated adiabatic fast passage on oriented nuclei measurements were performed on several 4d and 5sp impurities in polycrystalline Co(fcc) foils and Co(hcp) single crystals. The hyperfine fields of Y and Zr in Co(fcc), the hyperfine fields of Y, Zr, Nb, Mo, Rh, In and Xe in Co(hcp), the electric field gradients of Zr, Nb and In in Co(hcp), and the nuclear spin-lattice relaxations of Zr, Nb, Rh and In in Co(hcp) were determined. The dependence of the hyperfine fields and electric field gradients in Co(hcp) on the angle between the magnetization and the c axis was investigated in most cases. The magnetic-field dependence of the spin-lattice relaxation was studied for Nb, Rh and In in Co(hcp), applying the magnetic field perpendicular to the c axis. The known hyperfine interaction parameters of the4d and 5sp impurities in Co(fcc) and Co(hcp) are summarized. The new results provide a more detailed picture of the hyperfine interaction in Co.

  2. Hyperfine fields at 89Y nuclei in Y(Fesub(1-x)Tsub(x))2 (T=V, Mn, Co, Ni, Al) with low concentrations x

    International Nuclear Information System (INIS)

    Ichinose, Kazuyoshi; Yoshie, Hiroshi; Nagai, Hiroyuki; Tsujimura, Akira; Fujiwara, Katsuyuki.

    1983-01-01

    NMR of 89 Y nuclei in Y(Fesub(1-x)Tsub(x)) 2 (T=V, Mn, Co, Ni, Al) has been observed at 4.2K. Well-resolved satellite structures of Y resonance appear in these compounds. This shows that the Y hyperfine field is mainly due to the magnetic nearest neighbor atoms. The magnetic moment of T atoms is estimated by two methods: (i) the contribution of T atoms to the hyperfine field is proportional to the magnetic moments of Fe and T atoms and (ii) the well known empirical relation between the hyperfine field and the mean magnetic moment of alloys is used. These results are in good agreement with those in dilute T-Fe alloys except for T=Mn. The intensity ratio of satellite peaks is discussed based upon a statistical distribution of Fe and T atoms. (author)

  3. Manipulating ultracold polar molecules with microwave radiation: The influence of hyperfine structure

    International Nuclear Information System (INIS)

    Aldegunde, J.; Hutson, Jeremy M.; Ran Hong

    2009-01-01

    We calculate the microwave spectra of ultracold 40 K 87 Rb alkali-metal dimers, including hyperfine interactions and in the presence of electric and magnetic fields. We show that microwave transitions may be used to transfer molecules between different hyperfine states, but only because of the presence of nuclear quadrupole interactions. Hyperfine splittings may also complicate the use of ultracold molecules for quantum computing. The spectrum of molecules oriented in electric fields may be simplified dramatically by applying a simultaneous magnetic field.

  4. Paramagnetic hyperfine interactions of iron in solid ammonia from Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Litterst, F.J.; Saitovitch, E.M.B.; Terra, J.

    1988-01-01

    Moessbauer studies on highly dilute 57 Fe in solid ammonia are reported. The hyperfine parameters of the paramagnetic reaction product FeNH 3 point to a nearly atomic configuration of iron [Ar]3d 7 4s. The electronic spin relaxation slows down rapidly under application of an external magnetic field. The field dependence of the magnetic hyperfine patterns indicates a strong axial magnetic anisotropy. (author) [pt

  5. Contact hyperfine field of the 4p and 4f series elements (rare-earths)

    International Nuclear Information System (INIS)

    Doi, I.

    1973-01-01

    The Coulomb correlation effect in the description of the contact hyperfine magnetic structure was analysed. The hyperfine magnetic structure was calculated from the spin polarized Hartree-Fock formalism, using the free electron gas approximation to the exchange-correlation energy of the 4p series atoms and some atoms and ions of the 4f series. No one of the analysed approximations to the exchange-correlation energy describes satisfactorily the contact hyperfine magnetic structure of the 4p and 4f series elements, which were studied [pt

  6. On the origin of discontinuity of the hyperfine fields at {sup 57}Fe nuclei in bulk iron and aerosol Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.I. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Shafranovsky, E.A., E-mail: shafr@chph.ras.r [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Casas, Ll. [Departament de Geologia, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, 08193 Bellaterra (Spain); Molins, E. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)

    2011-03-14

    Advancing the early work in which a discontinuity of hyperfine fields at {sup 57}Fe nuclei in bulk iron and in aerosol Fe nanoparticles has been revealed by analyzing their Moessbauer spectra the present Letter evidences that the existence of several peaks in the hyperfine distribution (HFD) for bulk Fe is caused with the internal magnetic fields owing to its multidomain structure whereas aerosol Fe nanoparticles are single-domain and show only a unique peak in HFD. This argument has been corroborated by transformation of the HFD pattern for Fe foil after applying the external magnetic field of 0.03 T.

  7. Moessbauer study of supertransferred hyperfine field of /sup 119/Sn (Sn/sup 4 +/) in Casub(1-x)Srsub(x)MnO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Takano, M [Konan Univ., Kobe (Japan). Faculty of Science; Takeda, Y; Shimada, M; Matsuzawa, T; Shinjo, T

    1975-09-01

    Casub(1-x)Srsub(x)Mnsub(0.99)Snsub(0.01)O/sub 3/(0<=x<=1) with (nearly) cubic perovskite structures were prepared and the magnetic hyperfine fields of /sup 119/Sn (Sn/sup 4 +/) were measured by the Moessbauer effect. The hyperfine fields arise from unpaired s electron spin densities transferred from Mn/sup 4 +/ ions (supertransferred hyperfine interaction). The hyperfine field for a tin ion was found to depend linearly upon the numbers of Ca/sup 2 +/ and Sr/sup 2 +/ ions in the neighboring divalent cation sites, with proportional coefficients having opposite signs. To explain experimental results two kinds of spin transfer processes contributing to the hyperfine field oppositely to each other have been considered, and spin transfer via a divalent cation is emphasized particularly. The hyperfine field at 0 K for Sn/sup 4 +/ in CaMnO/sub 3/ is -75 kOe, while +20 kOe for Sn/sup 4 +/ in SrMnO/sub 3/.

  8. Hyperfine field calculations: search for muon stopping sites in Fe3O4

    International Nuclear Information System (INIS)

    Boekema, C.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1983-01-01

    Muon Spin Rotation (μSR) results for magnetite (Fe 3 O 4 ) are analyzed and discussed. At room temperature, a μSR signal is observed due to the presence of an internal magnetic field (Bsub(int)) at the muon site. External transverse field measurements show that Bsub(int) is parallel to the magnetic spin direction, the direction in zero applied field. Calculations of the hyperfine field to pinpoint muon stopping sites in magnetite show that the local field contains supertransfer (covalent) and dipolar field contributions. The implanted muons appear to stop at sites structurally similar to those reported for hematite (α-Fe 2 O 3 ), where muon-oxygen bond formation was strongly indicated. (Auth.)

  9. Measured static hyperfine magnetic fields following implantation of Pt into Fe interpreted as evidence for pre-equilibrium effects

    International Nuclear Information System (INIS)

    Anderssen, S.S.; Stuchberry, A.E.

    1994-06-01

    The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is ∼ 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction (∼ 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs

  10. Measured static hyperfine magnetic fields following implantation of Pt into Fe interpreted as evidence for pre-equilibrium effects

    Energy Technology Data Exchange (ETDEWEB)

    Anderssen, S S; Stuchberry, A E

    1994-06-01

    The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is {approx} 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction ({approx} 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs.

  11. Hyperfine interactions measured by nuclear orientation technique

    International Nuclear Information System (INIS)

    Brenier, R.

    1982-01-01

    This report concerns the use of hyperfine interaction to magnetism measurements and to the determination of the nuclear structure of Terbium isotopes by the low temperature nuclear orientation technique. In the first part we show that the rhodium atom does not support any localized moment in the chromium matrix. The hyperfine magnetic field at the rhodium nuclear site follows the Overhauser distribution, and the external applied magnetic field supports a negative Knight shift of 16%. In the second part we consider the structure of neutron deficient Terbium isotopes. We introduce a coherent way of evaluation and elaborate a new nuclear thermometer. The magnetic moments allows to strike on the studied states configuration. The analysis of our results shows a decrease of the nuclear deformation for the lighter isotopes [fr

  12. Magnetism, chemical bonding and hyperfine properties in the nanoscale antiferromagnet [Fe(O Me)2(O2 C C H2 Cl)]10

    International Nuclear Information System (INIS)

    Zeng, Z.; Duan, Y.; Guenzburger, Diana

    1996-09-01

    The electronic and magnetic properties of the nanometer-size antiferromagnet (the ferric wheel molecule) are investigated with the first-principles spin-polarized Discrete Variational Method, in the framework of Density Functional theory. Magnetic moments, densities of the states and charge and spin-density maps are obtained. The Moessbauer hyperfine parameters Isomer shift, Quadrupole Splitting and Hyperfine Field are obtained from the calculations and compared to reported experimental values when available. (author). 33 refs., 8 figs., 4 tabs

  13. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    Science.gov (United States)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  14. The hyperfine Paschen–Back Faraday effect

    International Nuclear Information System (INIS)

    Zentile, Mark A; Andrews, Rebecca; Weller, Lee; Adams, Charles S; Hughes, Ifan G; Knappe, Svenja

    2014-01-01

    We investigate experimentally and theoretically the Faraday effect in an atomic medium in the hyperfine Paschen–Back regime, where the Zeeman interaction is larger than the hyperfine splitting. We use a small permanent magnet and a micro-fabricated vapour cell, giving magnetic fields of the order of a tesla. We show that for low absorption and small rotation angles, the refractive index is well approximated by the Faraday rotation signal, giving a simple way to measure the atomic refractive index. Fitting to the atomic spectra, we achieve magnetic field sensitivity at the 10 −4 level. Finally we note that the Faraday signal shows zero crossings which can be used as temperature insensitive error signals for laser frequency stabilization at large detuning. The theoretical sensitivity for 87 Rb is found to be ∼40 kHz °C −1 . (paper)

  15. Singlet-to-triplet interconversion using hyperfine as well as ferromagnetic fringe fields.

    Science.gov (United States)

    Wohlgenannt, M; Flatté, M E; Harmon, N J; Wang, F; Kent, A D; Macià, F

    2015-06-28

    Until recently the important role that spin-physics ('spintronics') plays in organic light-emitting devices and photovoltaic cells was not sufficiently recognized. This attitude has begun to change. We review our recent work that shows that spatially rapidly varying local magnetic fields that may be present in the organic layer dramatically affect electronic transport properties and electroluminescence efficiency. Competition between spin-dynamics due to these spatially varying fields and an applied, spatially homogeneous magnetic field leads to large magnetoresistance, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. Spatially rapidly varying local magnetic fields are naturally present in many organic materials in the form of nuclear hyperfine fields, but we will also review a second method of controlling the electrical conductivity/electroluminescence, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. Fringe-field magnetoresistance has a magnitude of several per cent and is hysteretic and anisotropic. This new method of control is sensitive to even remanent magnetic states, leading to different conductivity/electroluminescence values in the absence of an applied field. We briefly review a model based on fringe-field-induced polaron-pair spin-dynamics that successfully describes several key features of the experimental fringe-field magnetoresistance and magnetoelectroluminescence. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. The hyperfine properties of a hydrogenated Fe/V superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al-Barwani, M.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2012-03-15

    We study the effect of hydrogen on the electronic, magnetic and hyperfine structures of an iron-vanadium superlattice consisting of three Fe monolayers and nine V monolayers. The contact charge density ({rho}), the contact hyperfine field (B{sub hf}) and the electronic field gradient (EFG) at the Fe sites for different H locations and H fillings are calculated using the first principle full-potential linear-augmented-plane-wave (FP-LAPW) method. It is found that sizeable changes in the hyperfine properties are obtained only when H is in the interface region.

  17. Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue

    International Nuclear Information System (INIS)

    Schroeder, L.; California Univ., Berkeley, CA; Lawrence Berkeley National Lab., Berkeley, CA

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)

  18. [Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue].

    Science.gov (United States)

    Schröder, Leif

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.

  19. Hyperfine field calculations: search for muon stopping sites in Fe/sub 3/O/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Boekema, C. (Texas Tech Univ., Lubbock (USA)); Denison, A.B. (Wyoming Univ., Laramie (USA)); Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA))

    1983-12-01

    Muon Spin Rotation (..mu..SR) results for magnetite (Fe/sub 3/O/sub 4/) are analyzed and discussed. At room temperature, a ..mu..SR signal is observed due to the presence of an internal magnetic field (Bsub(int)) at the muon site. External transverse field measurements show that Bsub(int) is parallel to the magnetic spin direction, the <111> direction in zero applied field. Calculations of the hyperfine field to pinpoint muon stopping sites in magnetite show that the local field contains supertransfer (covalent) and dipolar field contributions. The implanted muons appear to stop at sites structurally similar to those reported for hematite (..cap alpha..-Fe/sub 2/O/sub 3/), where muon-oxygen bond formation was strongly indicated.

  20. New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle

    Science.gov (United States)

    Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.

    2018-03-01

    A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  1. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    Science.gov (United States)

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  2. Effect of vanadium neighbors on the hyperfine properties of iron-vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Yousif, A.; Gismelseed, A.; Al Rawas, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [College of Science, Sultan Qaboos University, Physics Department (Oman)

    2008-06-15

    The electronic and magnetic structures of Fe-V alloys are calculated using the discrete-variational and full-potential linearized-augmented-plane wave methods. The derived hyperfine properties at Fe sites are studied against the number of Fe atoms in the neighbouring shells. As expected the magnetic hyperfine field depends strongly on the number of Fe atoms in the first and second shells of neighbours while its dependence on the variation of atoms in the third shell is weak. The calculated distribution of the magnetic hyperfine fields at the Fe sites, are compared to the experimental data of Krause et al. (Phys Rev B 61:6196-6204, 2000). The contact charge densities and the magnetic moments are also calculated. It was found that the contact charge density increases with increasing V contents and this leads to negative isomer shift on addition of V.

  3. Man-made materials : An exciting area for hyperfine-interaction investigation

    International Nuclear Information System (INIS)

    Freeman, A.; Wu, R.

    1996-01-01

    Man-made low-dimensional magnetic systems including surfaces, interfaces and multilayers, have attracted a great amount of attention in the past decade because, as expected, the lowered symmetry and coordination number offer a variety of opportunities for inducing new and exotic phenomena and so hold out the promise of new device applications. Local spin density functional (LSDF) ab initio electronic-structure calculations employing the full-potential -linearized augmented-plane-wave (FLAPW) method have played a key role in the development of this exciting field by not only providing a clearer understanding of the experimental observations but also predicting new systems with desired properties. One of the striking successes of theory in the last decade has been the calculation of hyperfine fields at surfaces and interfaces. Concurrently, several groups have followed the pioneering work of Korecki and Gradmann and have measured hyperfine fields at surfaces and interfaces. In this paper, it is reviewed new features of hyperfine-interaction investigations in man-made materials which are essential because the hyperfine field is not proportional to the magnetization and so interpretations of experiment are totally dependent on theory

  4. Directionally independent energy gap formation due to the hyperfine interaction

    NARCIS (Netherlands)

    Miyashita, Seiji; Raedt, Hans De; Michielsen, Kristel

    We study energy gap formation at the level-crossing point due to the hyperfine interaction. In contrast to the energy gap induced by the Dzyaloshinskii-Moriya interaction, the gap induced by the hyperfine interaction is independent of the direction of the magnetic field. We also study the dynamics

  5. Study of the hyperfine magnetic field acting on Ce probes substituting for the rare earth and the magnetic ordering in intermetallic compounds RAg (R=rare earth) by first principles calculations

    International Nuclear Information System (INIS)

    Pereira, Luciano Fabricio Dias

    2006-01-01

    In this work the magnetic hyperfine field acting on Ce atoms substituting the rare-earths in R Ag compounds (R = Gd e Nd) was studied by means of first-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the R Ag matrix. In order to improve for correlation effects within the 4f shells, a Hubbard term was added to the DFT Hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyperfine field (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the m l = -2 and m l = -1 sub-levels. In addition, the ground-state magnetic structure was determined for Ho Ag and Nd Ag by observing the behavior of the total energy as a function of the lattice volume for several possible magnetic ordering in these compounds, namely, ferromagnetic, and the (0,0,π), (π,π,0) and ((π,π,π) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type (π,π,0) for both, the Ho Ag and Nd Ag compounds. The energy difference of the ferromagnetic and antiferromagnetic ordering is very small in the case of the Nd Ag compound. (author)

  6. Hyperfine interaction studies with pulsed heavy-ion beams

    International Nuclear Information System (INIS)

    Raghavan, P.

    1985-01-01

    Heavy-ion reactions using pulsed beams have had a strong impact on the study of hyperfine interactions. Unique advantages offered by this technique have considerably extended the scope, detail and systematic range of its applications beyond that possible with radioactivity or light-ion reaction. This survey will cover a brief description of the methodological aspects of the field and recent applications to selected problems in nuclear and solid state physiscs illustrating its role. These include measurements of nuclear magnetic and electric quadrupole moments of high spin isomers, measurements of hyperfine magnetic fields at impurities in 3d and rare-earths ferromagnetic hosts, studies of paramagnetic systems, especially those exhibiting valence instabilities, and investigations of electric field gradients of impurities in noncubic metals. Future prospects of this technique will be briefly assessed. (orig.)

  7. Hyperfine field and electronic structure of magnetite below the Verwey transition

    Czech Academy of Sciences Publication Activity Database

    Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, Pavel

    2015-01-01

    Roč. 91, č. 12 (2015), "125134-1"-"125134-10" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : hyperfine interactions and isotope effects * density functional theory * local density approximation * gradient and other corrections * nuclear magnetic resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  8. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  9. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    Science.gov (United States)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-04-01

    Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.

  10. Magnetism, chemical bonding and hyperfine properties in the nanoscale antiferromagnet [Fe(O Me){sub 2}(O{sub 2} C C H{sub 2} Cl)]{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Z.; Duan, Y.; Guenzburger, Diana [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-09-01

    The electronic and magnetic properties of the nanometer-size antiferromagnet (the ferric wheel molecule) are investigated with the first-principles spin-polarized Discrete Variational Method, in the framework of Density Functional theory. Magnetic moments, densities of the states and charge and spin-density maps are obtained. The Moessbauer hyperfine parameters Isomer shift, Quadrupole Splitting and Hyperfine Field are obtained from the calculations and compared to reported experimental values when available. (author). 33 refs., 8 figs., 4 tabs.

  11. Coherent control of two individual electron spins and influence of hyperfine coupling in a double quantum dot

    International Nuclear Information System (INIS)

    Tarucha, S; Obata, T; Pioro-Ladriere, M; Brunner, R; Shin, Y-S; Kubo, T; Tokura, Y

    2011-01-01

    Electric dipole spin resonance of two individual electrons and the influence of hyperfine coupling on the spin resonance are studied for a double quantum dot equipped with a micro-magnet. The spin resonance occurs by oscillating the electron in each dot at microwave (MW) frequencies in the presence of a micro-magnet induced stray field. The observed continuous wave (CW) and time-resolved spin resonances are consistent with calculations in which the MW induced AC electric field and micro-magnet induced stray field are taken into account. The influence of hyperfine coupling causes an increase and broadening of the respective CW spin resonance peaks through dynamical nuclear polarization when sweeping up the magnetic field. This behaviour appears stronger for the larger of the two spin resonance peaks and in general becomes more pronounced as the MW power increases, both reflecting that the electron-nuclei interaction is more efficient for the stronger spin resonance. In addition the hyperfine coupling effect only becomes pronounced when the MW induced AC magnetic field exceeds the fluctuating nuclear field.

  12. Hyperfine interactions in iron substituted high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Ellis, D.E.; Saitovitch, E.B.; Lam, D.J.

    1991-01-01

    The hyperfine interactions in Fe substituted copper oxide ternary and quaternary compounds with perovskite-related structures are studied, using the Local Density theory in an embedded cluster approach. The self-consistent electronic structure is examined for Cu and Fe sites in a number of plausible local geometries representative of La 2 Cu O 4 , YBa 2 Cu 3 O 7-δ and related materials. Moessbauer isomer shifts, electric fields gradients, magnetic moments, and contact hyperfine fields are presented for comparison with experiment and discussed in light of lattice structure data. (author)

  13. The hyperfine spectrum of hydrogen dimers

    International Nuclear Information System (INIS)

    Verberne, J.F.C.

    1979-01-01

    The authors' aim was to obtain the level scheme for the hydrogen dimers and to investigate the angle dependent interactions by analyzing the zero magnetic field hyperfine spectrum of the ortho-ortho and ortho-para species. The results were tested by several recent semi-empirical and ab initio potentials. (Auth.)

  14. Hyperfine interactions by Moessbauer effect

    International Nuclear Information System (INIS)

    Constantinescu, S.

    1980-01-01

    Moessbauer spectroscopy has been used to investigate hyperfine interactions in materials endowed with complex electromagnetic crystallographic structures. Such structures (Me 3 B 7 O 13 X boracite-type systems, for instance), equally interesting from both scientific and applications viewpoint, are drawing a special attention lately on account of their being examined by means of increasingly refined experimental techniques. In view of the wide prospects of using these materials in various practical fields, this thesis counts among the studies aiming to ameliorate the methods of processing and determining the Moessbauer spectra parameters, characterized by complex hyperfine interactions, as well as among the studies of electric, magnetic and crystallographic investigation of the Moessbauer nucleus neighbourhood, in boracite-type structures. (author)

  15. Investigation of ferromagnetic spinel semiconductors by hyperfine interactions of implanted nuclear probes

    CERN Document Server

    Samokhvalov, V; Dietrich, M; Schneider, F; Tiginyanu, I M; Tsurkan, V; Unterricker, S

    2003-01-01

    The semiconducting ferromagnetic spinel compounds CdCr//2Se //4, CdCr //2S//4, HgCr//2Se//4 and CuCr//2Se//4 (metallic) were investigated by the perturbed angular correlations (PAC) method with the radioactive probes **1**1**1In, **1**1**1**mCd, **1**1**1Ag, **1**1**7Cd, **1**9**9**mHg and **7**7Br. The probes were implanted at the ISOLDE on-line separator (CERN-Geneva) into single crystals. From the time dependence of the PAC spectra and the measured hyperfine interaction parameters: electric field gradient and magnetic hyperfine field, the probe positions and the thermal behavior of the probes could be determined. Cd, Ag and Hg are substituted at the A-site, In at the A- and B-site in the semiconducting compounds and Br at the anion position. Electric and magnetic hyperfine fields were used as test quantities for theoretical charge and spin density distributions of LAPW calculations (WIEN97).

  16. Magnetic field and magnetic isotope effects on photochemical reactions

    International Nuclear Information System (INIS)

    Wakasa, Masanobu

    1999-01-01

    By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)

  17. Countering the stray magnetic field of the CUSP trap by using additional coils

    CERN Document Server

    Thole, Jelle

    2016-01-01

    The ASACUSA experiment at the Antiproton Decelerator (AD) at CERN tries to measure the Hyperfine Structure (HFS) of Antihydrogen (H ̄) using a Rabi spectroscopy set-up. In measuring this HFS it will yield a very precise test of CPT-symmetry. For this set-up to work a homogeneous magnetic field is needed in the cavity where the Hyperfine transition of H ̄ occurs. Due to the stray fields from the CUSP trap, where H ̄ is produced, additional coils are needed to counter these fields. It is found, using COMSOL simulations, that two coils are suitable for this. Leading to a relative standard deviation of the magnetic field of σB/B = 1.06%.

  18. Moessbauer study of the fast magnetization reversal forced in permalloy and invar by an external rf magnetic field

    International Nuclear Information System (INIS)

    Kopcewicz, M.

    1978-01-01

    The effect of fast magnetization reversal leading to fast relaxation of the hyperfine field (collapse effect) forced by an external rf magnetic field is studied using the Moessbauer technique for permalloy and invar. The rf collapse and sideband effects are investigated as a function of external rf field, frequency, and intensity. The collapse of the hfs spectrum through unresolved hfs spectrum, triangular shape to a single line, as well as the formation of sidebands is observed. The rf collapse effect is attributed to the rf forced uniform rotation of internal magnetization which causes fast magnetization reversal leading to fast relaxation of the hyperfine field as a result of which the average field at the Moessbauer nuclei is reduced to zero. The difference of the magnetization reversal process in permalloy and invar are discussed. It is shown that the origin of collapse and sideband effects is totaly different: the collapse effect being of purely magnetic origin while the formation of sidebands is due to the rf induced mechanical vibrations of iron atoms within the sample. It is possible to damp sidebands without affecting the collapse effect. The results obtained show that the application of the rf field to ferromagnetic materials gives a unique possibility to force, simulate, and control the relaxation effects in ferromagnetic materials. (author)

  19. Stochastic hyperfine interactions modeling library

    Science.gov (United States)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  20. Hyperfine-mediated static polarizabilities of monovalent atoms and ions

    International Nuclear Information System (INIS)

    Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2010-01-01

    We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.

  1. Muons as hyperfine interaction probes in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, Khashayar, E-mail: kghandi@triumf.ca; MacLean, Amy [Mount Allison University, Department of Chemistry & Biochemistry (Canada)

    2015-04-15

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.

  2. Muons as hyperfine interaction probes in chemistry

    International Nuclear Information System (INIS)

    Ghandi, Khashayar; MacLean, Amy

    2015-01-01

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described

  3. Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5

    Science.gov (United States)

    Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2018-03-01

    We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.

  4. Observation of the hyperfine spectrum of antihydrogen

    Science.gov (United States)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2017-08-01

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  5. Observation of the hyperfine spectrum of antihydrogen.

    Science.gov (United States)

    Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S

    2017-08-02

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  6. High precision measurement of the hyperfine fields of substitutional and defect associated Cd in single crystalline hcp cobalt

    CERN Document Server

    Correia, J G; Melo, A A; Soares, J C

    1996-01-01

    The hyperfine fields of Cd in single crystalline hcp Co were measured after simultaneous implantation of 111mCd and 111In. High statistics measurements could be done separately for each parent isotope combining the e--g and g-g PAC techniques. The hyperfine coupling constants wL(CdCo)=422.8(1) Mrad/s and w0(CdCo)=6.14(11) Mrad/s are determined for Cd probes in undisturbed substitutional sites. Several defect associated sites in the hcp Co lattice are clearly seen in the data. Most of the radiation damage created by the ion implantation anneals out at temperatures below 503 K, with only one dominating component surviving at this temperature. This defect is assigned as a probe atom in an interstitial site, surrounded by a vacancy tetrahedron. The corresponding magnetic field and electric field gradient are collinear with the c-axis of the Co lattice, and the respective coupling constants are wL(defect)= 216.7(2) Mrad/s and w0(defect)= 45.3(6) Mrad/s.

  7. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  8. Comment on contact contributions to the magnetic hyperfine interaction of rare-earth impurities in iron

    International Nuclear Information System (INIS)

    Bernas, H.

    1977-01-01

    The influence of the strong d character of the Fe conduction band on the hyperfine interaction of dilute rare earth impurities is emphasized, and the contact contributions are estimated. Apparent inconsistencies between hyperfine field measurements for Eu and Gd in Fe are noted

  9. Moessbauer investigation of static-disorder crystalline media. V. Hyperfine fields' dispersion in static-disordered crystalline media of tetragonal and trigonal iron germanates

    International Nuclear Information System (INIS)

    Constantinescu, S.

    2007-01-01

    The refined 57 Fe Moessbauer spectra of some static-disordered crystalline media (with melilite and Ca-gallate structure) evidenced observable electric and magnetic crystal field dispersions. It is the fifth in a series of papers published previously in the same journal on this subject. The data of crystalline hyperfine fields and their dispersion parameters have calculated using the modeling procedure given in a paper by Kaminskii, et al. published in 1986. The obtained values of the magnetic and quadrupole splitting parameters compared with to experimental data showed the possibility to predict the crystal fields' dispersion. (author)

  10. Hyperfine field distribution of Fe83B17 glassy metal

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.

    1990-01-01

    Convolutions of Gaussian and Lorentzian lines are proposed to fit the Moessbauer spectrum of Fe 83 B 17 metallic glass. The hyperfine field distribution is constructed from three Gaussian lines corresponding to the individual line pairs. (author). 1 fig., 7 refs

  11. Radical polarization in double switching of external magnetic field

    International Nuclear Information System (INIS)

    Lukzen, N.N.; Morozov, V.A.; Sagdeev, R.Z.

    1999-01-01

    Theoretical treatment of radical spin evolution under the action of double switching of external magnetic field is proposed. Account is taken of evolution of the radical spin state during laser pulse which generates paramagnetic particles. It is shown that the most effective beats in the nuclear magnetization of diamagnetic products of recombination occur upon the jump into zero magnetic field after laser pulse. The phase of observed beats bears information about the type of the initial radical polarization. The frequency of the beats is determined by radical hyperfine structure. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. New precise measurement of muonium hyperfine structure interval at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Y., E-mail: yueno@radphys4.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Aoki, M. [Osaka University, Graduate School of Science (Japan); Fukao, Y. [KEK (Japan); Higashi, Y.; Higuchi, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Iinuma, H.; Ikedo, Y. [KEK (Japan); Ishida, K. [RIKEN (Japan); Ito, T. U. [Japan Atomic Energy Agency (Japan); Iwasaki, M. [RIKEN (Japan); Kadono, R. [KEK (Japan); Kamigaito, O. [RIKEN (Japan); Kanda, S. [University of Tokyo, Department of Physics (Japan); Kawall, D. [University of Massachusetts, Amherst, Department of Physics (United States); Kawamura, N.; Koda, A.; Kojima, K. M. [KEK (Japan); Kubo, M. K. [International Christian University, Graduate School of Arts and Science (Japan); Matsuda, Y. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Mibe, T. [KEK (Japan); and others

    2017-11-15

    MuSEUM is an international collaboration aiming at a new precise measurement of the muonium hyperfine structure at J-PARC (Japan Proton Accelerator Research Complex). Utilizing its intense pulsed muon beam, we expect a ten-fold improvement for both measurements at high magnetic field and zero magnetic field. We have developed a sophisticated monitoring system, including a beam profile monitor to measure the 3D distribution of muonium atoms to suppress the systematic uncertainty.

  13. New probe of magnetic fields in the prereionization epoch. I. Formalism

    Science.gov (United States)

    Venumadhav, Tejaswi; Oklopčić, Antonija; Gluscevic, Vera; Mishra, Abhilash; Hirata, Christopher M.

    2017-04-01

    We propose a method of measuring extremely weak magnetic fields in the intergalactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. This precession leads to a systematic change in the brightness temperature fluctuations of the 21-cm line from the high-redshift universe, and thus the statistics of these fluctuations encode information about the magnetic field the atoms are immersed in. The method is most suited to probing fields that are coherent on large scales; in this paper, we consider a homogenous magnetic field over the scale of the 21-cm fluctuations. Due to the long lifetime of the triplet state of the 21-cm transition, this technique is naturally sensitive to extremely weak field strengths, of order 10-19 G at a reference redshift of ˜20 (or 10-21 G if scaled to the present day). Therefore, this might open up the possibility of probing primordial magnetic fields just prior to reionization. If the magnetic fields are much stronger, it is still possible to use this method to infer their direction, and place a lower limit on their strength. In this paper (Paper I in a series on this effect), we perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-α photons. We conclude with an analytic formula for the brightness temperature of linear-regime fluctuations in the presence of a magnetic field, and discuss its limiting behavior for weak and strong fields.

  14. The hyperfine properties of iron-gallium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya [Sultan Qaboos University, Department of Physics (Oman); Al-Barwani, M. [NYU Abu Dhabi (United Arab Emirates)

    2016-12-15

    The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (B{sub hf}) and isomer shift (δ) at the Fe site versus the number of neighbouring Ga atoms. We found that B{sub hf} decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO{sub 3} structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO{sub 3} structure). We found that the DO{sub 3} structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO{sub 3} conventional unit cell have two distinct values for B{sub hf} and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO{sub 3}D site.

  15. Spin-torsion effects in the hyperfine structure of methanol

    International Nuclear Information System (INIS)

    Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-01-01

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling

  16. Muon zero point motion and the hyperfine field in nickel

    International Nuclear Information System (INIS)

    Elzain, M.E.

    1984-09-01

    It is argued that the effect of zero point motion of muons in Ni is to induce local vibrations of the neighbouring Ni atoms. This local vibration reduces the Hubbard correlation and hence decreases the net spin per atom. This acts back to reduce the hyperfine field at the muon site. (author)

  17. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  18. Mixed hyperfine interaction - a tool to investigate the short range order and the strange magnetic behaviour of amorphous Fe-based binary alloys

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.

    1989-01-01

    The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)

  19. Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction

    International Nuclear Information System (INIS)

    Parker, G.W.

    1986-01-01

    The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2

  20. Artificial magnetic-field quenches in synthetic dimensions

    Science.gov (United States)

    Yılmaz, F.; Oktel, M. Ö.

    2018-02-01

    Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and

  1. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  2. Observation of hyperfine transitions in trapped ground-state antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: A. Olin for the ALPHA Collaboration

    2015-08-15

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4 parts in 10{sup 3}. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  3. Magnetic field dependence of the specific heat of heavy-fermion YbCu4.5

    International Nuclear Information System (INIS)

    Amato, A.; Fisher, R.A.; Phillips, N.E.; Jaccard, D.; Walker, E.

    1990-03-01

    The specific heat of a polycrystalline sample of YbCu 4.5 has been measured between 0.3 and 20K in magnetic fields to 7T. At zero field a minimum in C/T is observed near 11K. Below that temperature C/T increases and below 0.5K exhibits an upturn ascribed to a hyperfine contribution. The increase in C/T below 11K is reduced by a factor 1.5 for H = 7T, whereas the hyperfine term is enhanced due to the contribution of the 63 Cu and 65 Cu and nuclei. 5 refs., 3 figs

  4. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    Science.gov (United States)

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  5. Magnetic Properties of Iron Clusters in Silver

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al Rawas, A.; Yousif, A.; Gismelseed, A.; Rais, A.; Al-Omari, I.; Bouziane, K. [College of Science, Department of Physics (Oman); Widatallah, H. [Khartoum University, Department of Physics, Faculty of Science (Sudan)

    2004-12-15

    The discrete variational method is used to study the effect of interactions of iron impurities on the magnetic moments, hyperfine fields and isomer shifts at iron sites in silver. We study small clusters of iron atoms as they grow to form FCC phase that is coherent with the silver lattice. The effects of the lattice relaxation and the ferromagnetic and antiferromagnetic couplings are also considered. When Fe atoms congregate around a central Fe atom in an FCC arrangement under ferromagnetic coupling, the local magnetic moment and the contact charge density at the central atom hardly change as the cluster builds up, whereas the hyperfine field increases asymptotically as the number of Fe nearest neighbors increases. Introduction of antiferromagnetic coupling has minor effect on the local magnetic moments and isomer shifts, however it produces large reduction in the hyperfine field. The lattice relaxation of the surrounding Fe atoms towards a BCC phase around a central Fe atom leads to reduction in the magnetic moment accompanied by increase in the magnetic hyperfine field.

  6. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co [Programa de Física, Universidad del Quindo (Colombia); Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  7. Hyperfine field at 111Cd nuclei in Heusler alloys

    International Nuclear Information System (INIS)

    Styczen, B.; Walus, W.; Szytula, A.

    1978-01-01

    The magnitudes and signs of the hyperfine fields in the ordered ferromagnetic Heusler Alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroll-Blandin and Cambell-Blandin models and RKKY theory. (Auth)

  8. Measurement of the ground-state hyperfine splitting of antihydrogen

    CERN Document Server

    Juhász, B; Federmann, S

    2011-01-01

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.

  9. Sensitized charge carrier injection into organic crystals studied by isotope effects in weak magnetic fields

    International Nuclear Information System (INIS)

    Bube, W.; Michel-Beyerle, M.E.; Haberkorn, R.; Steffens, E.

    1977-01-01

    The magnetic field (H approximately 50 Oe) dependence of the rhodamine sensitized triplet exciton density in anthracene crystals is influenced by isotopic substitution. This confirms the hyperfine interaction as mechanism explaining the change of the spin multiplicity in the initially formed singlet state of the radical pair. The isotope effect occurs in the sensitizing dye ( 14 N/ 15 N) rather than at the molecular site of the injected charge within the crystal. This can be understood in terms of the high hopping frequency of the charge carriers as compared to the time constant of the hyperfine induced singlet-triplet transition. Since the dye molecules adsorb in an oriented fashion, the angular dependence of the magnetic field modulation of the triplet exciton density can be interpreted without assuming any additional interactions. (Auth.)

  10. Study of hyperfine interactions in V2O3 by angular correlation

    International Nuclear Information System (INIS)

    Jesus Silva, P.R. de.

    1985-01-01

    The hyperfine interaction in v 2 O 3 in function of temperature by measurements of time differential perturbed angular correlation is studied. The samples presented quadrupole interaction in the probe center, Cd 111 immediatelly after sintering, when reduced in H 2 flux at 800 0 C. A pure electric quadrupole interaction at the metallic phase and a combined interaction of magnetic dipole and electric quadrupole at the insulating antiferromagnetic phase, were observed. The electric field gradient undergoes abrupt variation at the metal-insulating transition at T=160 0 K from 8.2x10 17 v/cm 2 at the insulating phase to 6.3x10 17 v/cm 2 in the metallic phase, however varies smoothly with the temperature at T=450 0 K when variations in resistivity also occur. At metallic phase the electric field increases with the temperature enhacement. The hyperfine magnetic field of Cd 111 at antiferromagnetic phase of V 2 O 3 has a saturation value of 15(1) KOe and performes an angle of β=68(2) 0 with the main component direction of electric field gradient. (M.C.K.) [pt

  11. On a comprehensive evaluation of Moessbauer hyperfine spectra measured on different types of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Kraken, Mathias

    2014-01-01

    Magnetic nanoparticles (MNPs) nowadays have a wide variety of applications that are mostly based on the fact that MNPs below a critical size consist of only a single magnetic domain. The big magnetic moments of these MNPs may fluctuate, driven by thermal excitations and controlled by magnetic anisotropies and interparticle interactions. Successful applications go along with a good control of the properties of the MNPs, which requires detailed knowledge about the preparation process and a proper characterization. These are the main topics this thesis deals with. First, the characterization of the MNPs using Moessbauer spectroscopy is discussed. Despite it is a standard method in research on iron-based MNPs, most publications only present a qualitative discussion of measurements, since available analysis models for dynamic hyperfine spectra are not capable of a satisfying description. Here, a modified version of an established model is presented, which proved to be applicable to the majority of hyperfine spectra and allows deriving detailed microscopic information about magnetic fluctuations on nanoscale. This model is succesfully used, to study the preparation of MNPs with the so-called non-aqueous sol-gel method (a cooperation with the Institut fuer Partikeltechnik, Technische Universitaet Braunschweig). In the last part of the thesis, a model is developed that describes the Moessbauer spectra of magnetically fluctuating iron clusters in different non-magnetic metallic matrices (silver and ytterbium). This part is based on a cooperation with the Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brasil. The results of this thesis present possibilities for a detailed quantitative analysis of the magnetic dynamics derived from Moessbauer spectra measured on iron-based MNPs and nanoscale clusters.

  12. Unexpected lines due to hyperfine interaction

    International Nuclear Information System (INIS)

    Andersson, Martin

    2009-01-01

    Hyperfine interaction is often viewed as a small perturbation that only broadens or in some cases splits a line into many closely spaced lines. In this work, we present some cases where this picture is obsolete and where the hyperfine interaction makes drastic changes to spectra. Off-diagonal hyperfine interaction introduces a mixing between states which can differ in the J quantum number. In most cases this mixing is very small, but even so it could have a dramatic influence on the spectra. Some metastable levels are sensitive to the hyperfine interaction and we show this by presenting the results for hyperfine-dependent lifetimes of the 3d 9 4s 3 D 3 level along parts of the higher end of the Ni-like iso-electronic sequence. In the absence of a nuclear spin, this level can only decay through a magnetic-octupole transition, but in the presence of a nuclear spin, the off-diagonal hyperfine interaction introduces a mixing with the 3d 9 4s 3 D 2 level and a new electric-quadrupole transition channel is opened. It is shown that this new transition channel in many cases is the dominant one and that the lifetime of the 3 D 3 level is sensitive to hyperfine interaction all along the sequence. An example of other types of states that are sensitive to hyperfine interaction are those belonging to configurations of the type nsn'l' where l≥3. In such systems the levels are close in energy and the open s-shell gives rise to a strong hyperfine interaction. This in turn introduces a large mixing between the hyperfine levels and shows up in the spectra as a large intensity redistribution among the hyperfine lines. We present detailed results for the 4s4d 3 D 2 -4s4f 3 F 2 transitions in Ga ii, and show that by including the hyperfine interaction in a proper way, we could reproduce experimental spectra that had not been possible earlier.

  13. Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]-H172 diamond cluster hosting nitrogen-vacancy center

    International Nuclear Information System (INIS)

    Nizovtsev, A P; Ya Kilin, S; Pushkarchuk, A L; Pushkarchuk, V A; Jelezko, F

    2014-01-01

    Single nitrogen-vacancy (NV) centers in diamond coupled to neighboring nuclear spins are promising candidates for room-temperature applications in quantum information processing, quantum sensing and metrology. Here we report on a systematic density functional theory simulation of hyperfine coupling of the electronic spin of the NV center to individual 13 C nuclear spins arbitrarily disposed in the H-terminated C 291 [NV] - H 172 cluster hosting the NV center. For the ‘families’ of equivalent positions of the 13 C atom in diamond lattices around the NV center we calculated hyperfine characteristics. For the first time the data are given for a system where the 13 C atom is located on the NV center symmetry axis. Electron paramagnetic resonance transitions in the coupled electron–nuclear spin system 14 NV- 13 C are analyzed as a function of the external magnetic field. Previously reported experimental data from Dréau et al (2012 Phys. Rev. B 85 134107) are described using simulated hyperfine coupling parameters. (paper)

  14. Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue; Hyperfeinstruktur-Analyse in der Magnetresonanzspektroskopie: von astrophysikalischen Messungen zu endogenen Biosensoren in menschlichem Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L. [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Medizinische Physik in der Radiologie; California Univ., Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab., Berkeley, CA (United States). Dept. of Chemistry

    2007-07-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)

  15. Fluctuating hyperfine interactions: computational implementation

    International Nuclear Information System (INIS)

    Zacate, M. O.; Evenson, W. E.

    2010-01-01

    A library of computational routines has been created to assist in the analysis of stochastic models of hyperfine interactions. We call this library the stochastic hyperfine interactions modeling library (SHIML). It provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental hyperfine interaction measurements can be calculated. Example model calculations are included in the SHIML package to illustrate its use and to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A 22 can be neglected.

  16. Magnetic isotope and external magnetic field effects upon the photo-Fries rearrangement of 1-naphthyl acetate

    International Nuclear Information System (INIS)

    Nakagaki, R.; Hiramatsu, M.; Watanabe, T.; Tanimoto, Y.; Nagakura, S.

    1985-01-01

    The reaction mechanisms of the photo-Fries rearrangement of 1-naphthyl acetate has been studied by means of steady-state photolysis and laser flash photolysis. A radical pair consisting of the 1-naphthoxyl and acetyl radicals is concluded to be a reaction intermediate. The yield of an in-cage product (2-acetyl-1-naphthol) exhibits a positive external magnetic field effect for the ester labeled by magnetically active 13 C, but no effect for the normal 12 C ester. The magnetic field effect observed for the labeled ester is quantitatively or semiquantitatively explained in terms of the radical-pair mechanism by considering hyperfine coupling between magnetically active nuclei ( 1 H and 13 C) and an unpaired electron in the acetyl radical. The in-cage product is formed through the singlet radical pair. 26 references, 5 figures, 3 tables

  17. Very low temperature studies of hyperfine effects in metals. [Progress report

    International Nuclear Information System (INIS)

    Weyhmann, W.

    1985-01-01

    We are using nuclei through the hyperfine coupling as a probe of magnetic interactions in metallic systems, emphasizing the role conduction electrons play. Three types of systems are of interest to us: nuclear singlet ground state intermetallic compounds, very dilute magnetic impurities in non-magnetic metals, and itinerant ferromagnets. The nuclear ordering in singlet ground state alloys of praseodymium appears to be analogous to electronic ordering in rare earth metals, with the RKKY interaction moderating the indirect exchange in both cases. We are measuring the static and dynamic properties of these materials both to study rare earth ordering, since only first order effects should play a role in the nuclear case, and to develop the sub-millikelvin refrigeration capabilities of these materials. Using this cooling power, we propose studying the local moment of Mn based Kondo systems at millikelvin and sub-millikelvin temperatures. Kondo systems with a Kondo temperature below 0.1 K have the advantage that magnetic saturation can be achieved with available magnets. We propose studying both the local magnetization as measured with nuclear orientation and the macroscopic magnetization measured with SQUID magnetometry. We also propose searching for electron polarization effects in itinerant ferromagnets using nuclear orientation. Induced hyperfine fields of less than 1 k0e can be detected at 1 mK

  18. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  19. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  20. Electron plasmas as a diagnostic tool for hyperfine spectroscopy of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, T.; Thompson, R. I. [Department of Physics and Astronomy, University of Calgary, Calgary AB, T2N 1N4 (Canada); Amole, C.; Capra, A.; Menary, S. [Department of Physics and Astronomy, York University, Toronto ON, M3J 1P3 (Canada); Ashkezari, M. D.; Hayden, M. E. [Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6 (Canada); Baquero-Ruiz, M.; Fajans, J.; Little, A.; So, C.; Wurtele, J. S. [Department of Physics, University of California, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester, UK and The Cockcroft Institute, WA4 4AD Warrington (United Kingdom); Bowe, P. D.; Hangst, J. S.; Rasmussen, C. O. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Cesar, C. L.; Silveira, D. M. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Charlton, M. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); and others

    2013-03-19

    Long term magnetic confinement of antihydrogen atoms has recently been demonstrated by the ALPHA collaboration at CERN, opening the door to a range of experimental possibilities. Of particular interest is a measurement of the antihydrogen spectrum. A precise comparison of the spectrum of antihydrogen with that of hydrogen would be an excellent test of CPT symmetry. One prime candidate for precision CPT tests is the ground-state hyperfine transition; measured in hydrogen to a precision of nearly one part in 10{sup 12}. Effective execution of such an experiment with trapped antihydrogen requires precise knowledge of the magnetic environment. Here we present a solution that uses an electron plasma confined in the antihydrogen trapping region. The cyclotron resonance of the electron plasma is probed with microwaves at the cyclotron frequency and the subsequent heating of the electron plasma is measured through the plasma quadrupole mode frequency. Using this method, the minimum magnetic field of the neutral trap can be determined to within 4 parts in 10{sup 4}. This technique was used extensively in the recent demonstration of resonant interaction with the hyperfine levels of trapped antihydrogen atoms.

  1. Hyperfine splitting in positronium measured through quantum beats in the 3γ decay

    International Nuclear Information System (INIS)

    Fan, S.; Beling, C.D.; Fung, S.

    1996-01-01

    Quantum beat oscillations in the 3γ decay of the positronium atom arising from interference between the different spin states have been observed using a simple β-start and γ-stop detection system. Measurements of the beat frequency at different magnetic fields have yielded a value of the 1 1 S 0 -1 3 S 1 hyperfine interaction of 202.5±3.5 GHz, in good agreement with previous measurements. This novel approach does not require high magnetic fields and the use of microwave radiation to quench the triplet substate of the positronium atom. (orig.)

  2. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons

    OpenAIRE

    Hees, A.; Guéna, J.; Abgrall, M.; Bize, S.; Wolf, P.

    2016-01-01

    We use six years of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but pr...

  3. The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED

    Science.gov (United States)

    Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.

    2018-04-01

    The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.

  4. Proceedings of the 2nd KUR symposium on hyperfine interactions

    International Nuclear Information System (INIS)

    Mekata, M.; Minamisono, T.; Kawase, Y.

    1991-10-01

    Hyperfine interactions between a nuclear spin and an electronic spin discovered from hyperfine splitting in atomic optical spectra have been utilized not only for the determination of nuclear parameters in nuclear physics but also for novel experimental techniques in many fields such as solid state physics, chemistry, biology, mineralogy and for diagnostic methods in medical science. Experimental techniques based on hyperfine interactions yield information about microscopic states of matter so that they are important in material science. Probes for material research using hyperfine interactions have been nuclei in the ground state and radioactive isotopes prepared with nuclear reactors or particle accelerators. But utilization of muons generated from accelerators is recently growing. Such wide spread application of hyperfine interaction techniques gives rise to some difficulty in collaboration among various research fields. In these circumstances, the present workshop was planned after four years since the last KUR symposium on the same subject. This report summarizes the contributions to the workshop in order to be available for the studies of hyperfine interactions. (J.P.N.)

  5. Study of hyperfine anomaly in 9,11Be isotopes

    International Nuclear Information System (INIS)

    Parfenova, Y.; Leclercq-Willain

    2005-01-01

    The study of the hyperfine anomaly of neutron rich nuclei, in particular, neutron halo nuclei, can give a very specific and unique way to measure their neutron distribution and confirm a halo structure. The hyperfine structure anomaly in Be + ions is calculated with a realistic electronic wave function, obtained as a solution of the Dirac equation. In the calculations, the Coulomb potential modified by the charge distribution of the clustered nucleus and three electrons in the configuration 1s 2 2s is used. The nuclear wave function for the 11 Be nucleus is obtained in the core + nucleon model, and that for the 9 Be nucleus is calculated in the three-cluster (α+α + n) model. The aim of this study is to test whether the hyperfine structure anomaly reflects an extended spatial structure of '1 1 Be. The results of the calculations are listed. ε BW is the hyperfine anomaly in the Bohr-Weisskopf effect and δ is the charge structure correction, μ is the calculated magnetic moment, and μ exp is the experimental value of the magnetic moment, Q and Q exp are the calculated and measured values of the quadrupole moment. The results for 9 Be are obtained with two different three-body wave functions (WF1 and WF2) showing the sensitivity of the calculations to the input parameters. The value of ε BW is sensitive to the weights of the states in the nuclear ground state wave function. The total hyperfine anomaly value εε BW +δ in 11 Be differs from that in 9 Be by 25%. This gives a measure of the accuracy of the hyperfine anomaly measurements needed to study the neutron distribution in the Be isotopes. (authors)

  6. Local probe (170Yb3+) measurements of magnetic fields in YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Hodges, J.A.; Bonville, P.; Vincent, E.

    1989-01-01

    We introduce the technique of studying the field dependence of the electro-nuclear energy levels of a rare earth to measure the magnetic field present at the rare earth/yttrium site in YBa 2 Cu 3 O x . Measurements were made by 170 Yb spectroscopy. The hyperfine spectrum of the ground state Kramers doublet for Yb 3+ ions diluted into this matrix is sensitive to fields in the range 100 to 2000G. Flux penetration and trapping at the local site level have been measured in superconducting samples. A molecular field exists on the rare earth site in non superconducting samples suggesting that the ordered Cu2 magnetic moments are intrinsically non colinear

  7. Hyperfine structure of nine levels in two configurations of 93Nb. Pt. 1

    International Nuclear Information System (INIS)

    Buettgenbach, S.; Dicke, R.; Gebauer, H.; Herschel, M.; Meisel, G.

    1975-01-01

    The hyperfine structure of the multiplets 4d 4 5s 6 D and 4d 3 5s 24 F of 93 Nb has been studied by the atomic-beam magnetic-resonance method. After applying corrections due to effects of off-diagonal hyperfine and Zeeman interactions the hyperfine interaction constants A and B and the electron g factors gsub(J) are determined for all nine levels of the two multiplets. (orig.) [de

  8. Hyperfine structure of six low-lying fine structure levels of 191Ir and 193Ir and the 191Δs193 hyperfine anomaly

    International Nuclear Information System (INIS)

    Buettgenbach, S.; Dicke, R.; Gebauer, H.; Kuhnen, R.; Traeber, F.

    1978-01-01

    The hyperfine interaction constants A and B of six low-lying metastable fine structure states of the two iridium isotopes 191 Ir and 193 Ir and the electronic g-factors of these levels have been measured using the atomic-beam magnetic-resonance method. From the values of the magnetic-dipole interaction constants A, corrected for off-diagonal perturbations, we extracted the hyperfine anomaly of a pure 6s-electron state: 191 Δs 193 = 0.64(7)%. Using nonrelativistic approximations for the effective radial parameters the nuclear electric-quadrupole moments were obtained: Q( 191 Ir) = 0.81(21)b, Q( 193 Ir) = 0.73(19)b (corrected for Sternheimer shielding effects). (orig.) [de

  9. Magnetic properties of iron oxide-based nanoparticles: Study using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, M.V. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Felner, I. [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Semenova, A.S.; Kellerman, D.G. [Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Šepelák, V. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Semionkin, V.A. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Morais, P.C. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Universidade de Brasília, Instituto de Física, DF, Brasília 70910-900 (Brazil)

    2017-06-01

    We review the results of the study of magnetite, maghemite and nickel ferrite nanoparticles (NPs), applying for magnetic fluids, using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements. The Mössbauer spectra of these NPs were fitted using a large number of magnetic sextets reflecting NPs complicity. The presence of polar molecules at the magnetite surface in magnetic fluid increases the NPs magnetic moment and the median hyperfine magnetic field. However, surface coating of maghemite NPs with dimeracptosuccinic acid decreases the median hyperfine magnetic field. An example of nickel ferrite NPs demonstrated a new physical model based on distribution of Ni{sup 2+} in the local microenvironment of Fe{sup 3+} which can explain a large number of magnetic sextets in the Mössbauer spectra measured with a high velocity resolution.

  10. Hyperfine Structure Measurements of Antiprotonic $^3$He using Microwave Spectroscopy

    CERN Document Server

    Friedreich, Susanne

    The goal of this project was to measure the hyperfine structure of $\\overline{\\text{p}}^3$He$^+$ using the technique of laser-microwave-laser spectroscopy. Antiprotonic helium ($\\overline{\\text{p}}$He$^+$) is a neutral exotic atom, consisting of a helium nucleus, an electron and an antiproton. The interactions of the angular momenta of its constituents cause a hyperfine splitting ({HFS}) within the energy states of this new atom. The 3\\% of formed antiprotonic helium atoms which remain in a metastable, radiative decay-dominated state have a lifetime of about 1-3~$\\mu$s. This time window is used to do spectroscopic studies. The hyperfine structure of $\\overline{\\text{p}}^4$He$^+$ was already extensively investigated before. From these measurements the spin magnetic moment of the antiproton can be determined. A comparison of the result to the proton magnetic moment provides a test of {CPT} invariance. Due to its higher complexity the new exotic three-body system of $\\overline{\\text{p}}^3$He$^+$ is a cross-check...

  11. Hyperfine structure of electronic levels and the first measurement of the nuclear magnetic moment of {sup 63}Ni

    Energy Technology Data Exchange (ETDEWEB)

    D' yachkov, A.B.; Firsov, V.A.; Gorkunov, A.A.; Labozin, A.V.; Mironov, S.M.; Saperstein, E.E.; Tolokonnikov, S.V.; Tsvetkov, G.O.; Panchenko, V.Y. [National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-01-15

    Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d{sup 8}4s{sup 2} {sup 3}F{sub 4} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} and 3d{sup 9}4s {sup 3}D{sub 3} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} transitions of {sup 63}Ni and {sup 61}Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of {sup 63}Ni for the first time: μ = +0.496(5)μ{sub N}. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems. (orig.)

  12. Mössbauer forward scattering spectra of ferromagnets in radio-frequency magnetic field

    Directory of Open Access Journals (Sweden)

    A. Ya. Dzyublik

    2012-03-01

    Full Text Available The transmission of Mössbauer radiation through a thick ferromagnetic crystal, subjected to the radio-frequency (rf magnetic field, is studied. A quantum-mechanical dynamical scattering theory is developed, taking into account both the periodical reversals of the magnetic field at the nuclei and their coherent vibrations. The Mössbauer forward scattering (FS spectra of the weak ferromagnet FeBO3 exposed to the rf field are measured. It is discovered that the coherent gamma wave in the crystal, interacting with Mössbauer nuclei, absorbs or emits only couples of the rf photons. As a result, the FS spectra consist of equidistant lines spaced by twice the frequency of the rf field in contrast to the absorption spectra. Our experimental data and calculations well agree if we assume that the hyperfine field at the nuclei in FeBO3 periodically reverses and there are no coherent vibrations.

  13. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons.

    Science.gov (United States)

    Hees, A; Guéna, J; Abgrall, M; Bize, S; Wolf, P

    2016-08-05

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  14. f-electron-nuclear hyperfine-coupled multiplets in the unconventional charge order phase of filled skutterudite PrRu4P12

    International Nuclear Information System (INIS)

    Aoki, Yuji; Namiki, Takahiro; Saha, Shanta R.; Sato, Hideyuki; Tayama, Takashi; Sakakibara, Toshiro; Shiina, Ryousuke; Shiba, Hiroyuki; Sugawara, Hitoshi

    2011-01-01

    The filled skutterudite PrRu 4 P 12 is known to undergo an unconventional charge order phase transition at 63 K, below which two sublattices with distinct f-electron crystalline-electric-field ground states are formed. In this paper, we study experimentally and theoretically the properties of the charge order phase at very low temperature, particularly focusing on the nature of the degenerate triplet ground state on one of the sublattices. First, we present experimental results of specific heat and magnetization measured with high quality single crystals. In spite of the absence of any symmetry breaking, the specific heat shows a peak structure at T p =0.30 K in zero field; it shifts to higher temperatures as the magnetic field is applied. In addition, the magnetization curve has a remarkable rounding below 1 T. Then, we study the origin of these experimental findings by considering the hyperfine interaction between 4f electron and nuclear spin. We demonstrate that the puzzling behaviors at low temperatures can be well accounted for by the formation of 4f-electron-nuclear hyperfine-coupled multiplets, the first thermodynamical observation of its kind. (author)

  15. Theoretical study of Moessbauer hyperfine parameters of Fe bound to ammonia

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1995-01-01

    The first-principles Discrete Variational method was employed to study the species formed by the interaction of an Fe atom and ammonia. Total energy calculations were performed for several configurations. The hyperfine parameters isomer shift, quadrupole splitting and magnetic hyperfine were calculated for the ground state found, and compared to reported experimental values obtained by Moessbauer spectroscopy in frozen ammonia. (author). 14 refs, 1 tab

  16. Isotopic effect on the quantum tunneling of the magnetization of molecular nanomagnets

    International Nuclear Information System (INIS)

    Sessoli, Roberta; Caneschi, Andrea; Gatteschi, Dante; Sorace, Lorenzo; Cornia, Andrea; Wernsdorfer, Wolfgang

    2001-01-01

    The molecular cluster [Fe 8 (tacn) 6 O 2 (OH) 12 ]Br 8 ·9H 2 O, Fe 8 , characterized by S=10, with biaxial magnetic anisotropy is an ideal system to investigate quantum effects in the dynamics of the magnetization. Resonant quantum tunneling gives rise to stepped hysteresis cycles and below 0.35 K pure quantum tunneling of the magnetization has been observed. The role of hyperfine fields in promoting the tunneling as a source of dynamic broadening of the states involved in the tunnel transition is investigated by preparing and characterizing two isotopically enriched samples using 57 Fe and 2 H. The relaxation rate in the tunneling regime is proportional to the hyperfine field generated by the nuclei. Also, the intrinsic linewidth of the tunneling resonance scales with the hyperfine field as confirmed by calculations of the super (or transfer) and direct hyperfine interactions. Preliminary results on a novel cluster of formula [Fe 4 (OCH 3 ) 6 (dpm) 6 ], Fe 4 , suited for a more dramatic isotope effect on the tunneling rate are also reported

  17. Moessbauer study of the magnetic phase transformations in SnMn3N

    International Nuclear Information System (INIS)

    Nagy, D.L.; Zimmer, G.J.; Lohner, T.; Senateur, J.P.

    1975-01-01

    Moessbauer measurements were performed on SnMn 3 N with the aim of verifying the magnetic phase transformations at 175 and 230 K and the Neel transition at 475 K as well as of seeking an explanation for the anomalous peak in magnetic susceptibility about 380 K. Moessbauer spectra were taken at several temperatures between 83 and 475 K and evaluated by a least square fitting program. Abrupt changes in the hyperfine field were found at 175, 230 and 350 K indicating first-order magnetic phase transformations at these temperatures; the 350 K transformation is certainly related to the anomaly in susceptibility. About 475 only a smooth change in the hyperfine field was found suggesting the Neel transition to be of the second order. An attempt is made to explain the relatively high hyperfine field in the cubic antiferromagnetic phase. (A.K.)

  18. Resonant Magnetization Tunneling in Molecular Magnets: Where is the Inhomogeneous Broadening?

    Science.gov (United States)

    Friedman, Jonathan R.; Sarachik, M. P.

    1998-03-01

    Since the discovery(J. R. Friedman, et al., Phys. Rev. Lett. 76), 3830 (1996) of resonant magnetization tunneling in the molecular magnet Mn_12 there has been intense research into the underlying mechanism of tunneling. Most current theories( V. Dobrovitski and A. Zvezdin, Europhys. Lett. 38), 377 (1997); L. Gunther, Europhys. Lett. 39, 1 (1997); D Garanin and E. Chudnovsky, Phys. Rev. B 56, 11102 (1997). suggest that a local internal (hyperfine or dipole) field transverse to the easy magnetization axis induces tunneling. These theories predict a resonance width orders of magnitude smaller than that actually observed. This discrepancy is attributed to inhomogeneous broadening of the resonance by the random internal fields. We present a detailed study of the tunnel resonance lineshape and show that it is Lorentzian, suggesting it has a deeper physical origin. Since the hyperfine fields are believed to be comparable to the observed width, it is surprising that there is no Gaussian broadening.

  19. The dipole moment and magnetic hyperfine properties of the excited A 2Σ+(3sσ) Rydberg state of nitric oxide

    International Nuclear Information System (INIS)

    Glendening, E.D.; Feller, D.; Peterson, K.A.; McCullough, E.A. Jr.; Miller, R.J.

    1995-01-01

    The dipole moment and magnetic hyperfine properties of the A 2 Σ + Rydberg state of nitric oxide have been evaluated at a variety of levels of theory with extended correlation consistent basis sets. Using the finite field approach to compute the dipole moment, restricted coupled cluster RCCSD(T) and complete active space-configuration interaction CAS-CI+Q methods yield values (1.09--1.12 D) that are essentially identical to experiment. In contrast, dipole moments computed as an expectation value of the dipole moment operator typically differ from experiment by 0.1--0.6 D. The rather unfavorable comparisons with experiment reported in previous theoretical studies may stem, in part, from the method chosen to evaluate the dipole moment. Magnetic hyperfine properties were evaluated using a variety of unrestricted and restricted open-shell Hartree--Fock-based methods. We estimated the full CI limiting properties by exploiting the convergence behavior of a sequence of MRCI wave functions. The isotropic component A iso ( 14 N) of 39±1 MHz evaluated in this fashion is in excellent accord with the experimental value of 41.4±1.7 MHz. Highly correlated UHF-based methods [e.g., CCSD(T) and QCISD(T)] yield comparable values of 40--41 MHz that are in good agreement with both experiment and the apparent full CI limit. However, for A iso ( 17 O), the full CI limit (-97±2 MHz) and the UHF-based results (ca.-118 MHz) differ by roughly 20 MHz. It remains unclear how to reconcile this large discrepancy. copyright 1995 American Institute of Physics

  20. Magnetic interactions, bonding, and motion of positive muons in magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local magnetic field is observed to be 4.02 kOe directed along the axis, the easy axis of magnetization. Possible origins of this field are discussed in terms which include local muon diffusion and a supertransfer hyperfine interaction resulting from muon-oxygen bonding. An anomaly in the muon hyperfine interactions is observed at 247 K

  1. Vickers Microhardness and Hyperfine Magnetic Field Variations of Heat Treated Amorphous Fe{sub 78}Si{sub 9}B{sub 13} Alloy Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A., E-mail: acpr@nuclear.inin.mx [Instituto Nacional de Investigaciones Nucleares, Department of Chemistry (Mexico); Garcia-Santibanez, F.; Lopez, A.; Lopez-Castanares, R.; Olea Cardoso, O. [Universidad Autonoma del Estado de Mexico, El Cerrillo Piedras Blancas, Facultad de Ciencias (Mexico)

    2005-02-15

    Amorphous Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were heat treated between 296 and 763 K, using heating rates between 1 and 4.5 K/min. Whereas one ribbon partially crystallized at T{sub x} = 722 K, the other one partially crystallized at T{sub x} = 763 K. The partially crystallized ribbon at 722 K, heat treated using a triangular form for the heating and cooling rates, was substantially less fragile than the partially crystallized at 763 K where a tooth saw form for the heating and cooling rates was used. Vickers microhardness and hyperfine magnetic field values behaved almost concomitantly between 296 and 673 K. The Moessbauer spectral line widths of the heat-treated ribbons decreased continuously from 296 to 500 K, suggesting stress relief in this temperature range where the Vickers microhardness did not increase. At 523 K the line width decreased further but the microhardness increased substantially. After 523 K the line width behave in an oscillating form as well as the microhardness, indicating other structural changes in addition to the stress relief. Finally, positron lifetime data showed that both inner part and surface of Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were affected distinctly. Variations on the surface may be the cause of some of the high Vickers microhardness values measured in the amorphous state.

  2. Hyperfine interactions in dilute Se doped Fe{sub x}Sb{sub 1−x} bulk alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Mitesh, E-mail: miteshsarkar-msu@yahoo.com; Agrawal, Naveen [The M. S. University of Baroda, Department of Physics (India); Chawda, Mukesh [Polytechnic, The M. S. University of Baroda, Department of Applied Physics (India)

    2016-12-15

    Hyperfine Interaction technique like Moessbauer spectroscopy is a very sensitive tool to study the local probe interactions in Iron doped alloys and compounds. We report here the Moessbauer study of the effect of Fe concentration variations in dilute magnetic semiconducting Se{sub 0.004}Fe{sub x}Sb{sub 1−x} alloys for x = 0.002, 0.004 and 0.008. The materials were characterized using X-ray diffraction technique (XRD), Fourier Transform Infra-red spectroscopy (FTIR), Neutron depolarization and Moessbauer spectroscopy. The FTIR result shows the semiconducting behavior of the alloys with band gap of 0.18 eV. From Moessbauer spectroscopy two magnetic sites (A and B) were observed. The value of hyperfine magnetic fields (HMF) of ∼ 308 kOe (site A) and 270 kOe (site B) was constant with increase in Fe concentration. A nonmagnetic interaction was also observed with quadrupole splitting (QS) of 1.26 mm/sec (site C) for x = 0.004 and x = 0.008. The Neutron depolarization studies indicate that the clusters of Fe or Fe based compounds having net magnetic moments with a size greater than 100 Å is absent.

  3. Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+

    Science.gov (United States)

    Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.

    2017-12-01

    We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.

  4. Fe dimers: a theoretical study of the hyperfine interactions

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.; Saitovitch, E.M.B.

    1981-01-01

    The electronic structures of diatomic molecules Fe 2 and FeM, where M = Mn, Co, Ni and Cu, are investigated by molecular orbitals calculations using a discrete variational method and a local approximation for the exchange interaction. The one-electron wave functions obtained are used to calculate electric field gradients, electronic charge and spin densities at the Fe nucleus and spin-dipolar hyperfine fields, which are related to measured hyperfine parameters reported from experiments in solid inert-gas matrices. Molecular orbitals energy schemes and population analysis are presented. These and other aspects of the electronic structure of the FeM molecules are used in a qualitative interpretation of the hyperfine data; in some cases, are given suggestions for the ground-state configuration. (Author) [pt

  5. Chemically induced dynamic nuclear polarization in systems containing large hyperfine coupling constants

    International Nuclear Information System (INIS)

    Roth, H.D.; Hutton, R.S.; Hwang, Kuochu; Turro, N.J.; Welsh, K.M.

    1989-01-01

    Nuclear spin polarization effects induced in radical pairs with one or more strong ( 13 C) hyperfine coupling constants have been evaluated. The pairs were generated by photoinduced α-cleavage or hydrogen abstraction reactions of carbonyl compounds. Several examples illustrate how changes in the magnetic field strength (H 0 ) and the g-factor difference (Δg) affect the general appearance of the resulting CIDNP multiplets. The results bear out an earlier caveat concerning the qualitative interpretation of CIDNP effects observed for multiplets

  6. Moessbauer and magnetic investigation of Fe-Mn alloy

    International Nuclear Information System (INIS)

    Yousif, A.A.

    1994-01-01

    Moessbauer, X-ray, magnetization and susceptibility measurements were performed to study Fe 100-x Mn x , x = 5, 15, 39, 50. The different phases of Fe-Mn were identified, and hyperfine interaction parameters and average magnetic moments of some samples were determined. The average hyperfine field and average magnetic moment decrease as x increases. The influence of the Mn neighbourhood on the derived parameters is discussed in the light of calculations using the first principle discrete variational method in the local density approximation. (orig.)

  7. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    International Nuclear Information System (INIS)

    Moumeni, Hayet; Nemamcha, Abderrafik; Alleg, Safia; Grenèche, Jean Marc

    2013-01-01

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B 1 = 35.0 T and B 2 = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field

  8. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Moumeni, Hayet, E-mail: hmoumeni@yahoo.fr [Laboratoire de Chimie Computationnelle et Nanostructures, Département des Sciences de la Matière, Faculté des Mathématiques et de l' Informatique et des Sciences de la Matière, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Nemamcha, Abderrafik [Laboratoire d' Analyses Industrielles et Génie des Matériaux, Faculté des Sciences et de la Technologie, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Alleg, Safia [Laboratoire de Magnétisme et de Spectroscopie des Solides, Département de Physique, Faculté des Sciences, Université de Annaba, B.P. 12, Annaba 23000 (Algeria); Grenèche, Jean Marc [Laboratoire de Physique de l' Etat Condensé, UMR CNRS 6087, Institut de Recherche en Ingénierie Moléculaire et Matériaux Fonctionnels IRIM2F, FR CNRS 2575, Université du Maine, 72085 Le Mans Cedex 9 (France)

    2013-02-15

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B{sub 1} = 35.0 T and B{sub 2} = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field.

  9. Doping effects on the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Júnior, H.; Aquino, J. C. R.; Aragón, F. H. [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Hidalgo, P. [Universidade de Brasília, Faculdade Gama-FGA, Setor Central Gama (Brazil); Cohen, R.; Nagamine, L. C. C. M. [Universidade de São Paulo, Instituto de Física (Brazil); Coaquira, J. A. H., E-mail: coaquira@unb.br; Silva, S. W. da [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Brito, H. F. [Universidade de São Paulo, Instituto de Química (Brazil)

    2014-12-15

    In this work we present the study of the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles synthesized by a polymer precursor method. The X-ray diffraction data analysis shows the formation of the rutile-type structure in all samples with Gd content from 1.0 to 10.0 mol%. The mean crystallite size is ∼11 nm for the 1.0 mol% Gd-doped samples and it shows a decreasing tendency as the Gd content is increased. The analysis of magnetic measurements indicates the coexistence of ferromagnetic and paramagnetic phases for the 1.0 mol% Gd-doped sample; however, above that content, only a paramagnetic phase is observed. The ferromagnetic phase observed in the 1.0 mol% Gd-doped sample has been assigned to the presence of bound magnetic polarons which overlap to create a spin-split impurity band. Room-temperature {sup 119}Sn Mössbauer measurements reveal the occurrence of strong electric quadrupole interactions. It has been determined that the absence of magnetic interactions even for 1.0 mol% Gd-doped sample has been related to the weak magnetic field associated to the exchange interaction between magnetic ions and the donor impurity band. The broad distribution of electric quadrupole interactions are attributed to the several non-equivalent surroundings of Sn{sup 4+} ions provoked by the entrance of Gd{sup 3+} ions and to the likely presence of Sn{sup 2+} ions. The isomer shift seems to be nearly independent of the Gd content for samples with Gd content below 7.5 mol%.

  10. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    International Nuclear Information System (INIS)

    Li, Rui

    2016-01-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)

  11. Magnetic dynamics of weakly and strongly interacting hematite nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Bender Koch, Christian; Mørup, Steen

    2000-01-01

    The magnetic dynamics of two differently treated samples of hematite nanoparticles from the same batch with a particle size of about 20 nm have been studied by Mossbauer spectroscopy. The dynamics of the first sample, in which the particles are coated and dispersed in water, is in accordance with...... down by interparticle interactions and a magnetically split spectrum is retained at room temperature. The temperature variation or the magnetic hyperfine field, corresponding to different quantiles in the hyperfine field distribution, can be consistently described by a mean field model...... for "superferromagnetism" in which the magnetic anisotropy is included. The coupling between the particles is due to exchange interactions and the interaction strength can be accounted for by just a few exchange bridges between surface atoms in neighboring crystallites....

  12. Hyperfine interactions and some thermomagnetic properties of amorphous FeZr(CrNbBCu alloys

    Directory of Open Access Journals (Sweden)

    Łukiewska Agnieszka

    2017-06-01

    Full Text Available In this research, we studied the magnetic phase transition by Mössbauer spectroscopy and using vibrating sample magnetometer for amorphous Fe86-xZr7CrxNb2Cu1B4 (x = 0 or 6 alloys in the as-quenched state and after accumulative annealing in the temperature range 600-750 K. The Mössbauer investigations were carried out at room and nitrogen temperatures. The Mössbauer spectra of the investigated alloys at room temperature are characteristic of amorphous paramagnets and have a form of asymmetric doublets. However, at nitrogen temperature, the alloys behave like ferromagnetic amorphous materials. The two components are distinguished in the spectrum recorded at both room and nitrogen temperatures. The low field component in the distribution of hyperfine field induction shifts towards higher field with the annealing temperature. It is assumed that during annealing at higher temperature, due to diffusion processes, the grains of α-Fe are created in the area corresponding to this component. Both investigated alloys show the invar effect and the decrease of hyperfine field induction after annealing at 600 K for 10 min is observed. It is accompanied by the lowering of Curie temperature.

  13. Nuclear magnetic ordering in PrNi5

    International Nuclear Information System (INIS)

    Kubota, M.

    1980-11-01

    The specific heat of the hyperfine enhanced nuclear magnetic system PrNi 5 has been measured from 0.2 mK to 100 mK and in magnetic fields up to 6 T. The system was found to order at (0.40+-0.02) mK. From the study of the measured thermodynamic quantities in various magnetic fields, we obtain various information, the order at T=0 K is ferromagnetic, the hyperfine enhancement factor 1+K=(12.2+-0.5), the enhanced nuclear magnetic moment is (0.027+-0.004)μsub(B) and a nuclear exchange parameter μsub(j)Ksup(N)sub(ij)/ksub(B)=(0.20+-0.04) mK. The nature of the interactions which cause the ordering is discussed, together with the magnetic properties of the system deduced from the analysis. (orig.)

  14. Theoretical study of hyperfine fields due to S-P and transition impurities in gadolinium matrix

    International Nuclear Information System (INIS)

    Santos Leal, C.E. dos.

    1985-01-01

    This work presents a systematic theoretical study for the hyperfine field due to diluted s-p-and transition impurities in metallic gadolinium matrices. The peculiarities de a gadolinium matrix are shown, they are characterized by a semi-completed 4f-shell, which is far from (below) the energetic levels such as the type s-p and d-conduction bands. (author)

  15. Isotopic effect on the quantum tunneling of the magnetization of molecular nanomagnets

    Energy Technology Data Exchange (ETDEWEB)

    Sessoli, Roberta E-mail: sessoli@chim1.unifi.it; Caneschi, Andrea; Gatteschi, Dante; Sorace, Lorenzo; Cornia, Andrea; Wernsdorfer, Wolfgang

    2001-05-01

    The molecular cluster [Fe{sub 8}(tacn){sub 6}O{sub 2}(OH){sub 12}]Br{sub 8}{center_dot}9H{sub 2}O, Fe{sub 8}, characterized by S=10, with biaxial magnetic anisotropy is an ideal system to investigate quantum effects in the dynamics of the magnetization. Resonant quantum tunneling gives rise to stepped hysteresis cycles and below 0.35 K pure quantum tunneling of the magnetization has been observed. The role of hyperfine fields in promoting the tunneling as a source of dynamic broadening of the states involved in the tunnel transition is investigated by preparing and characterizing two isotopically enriched samples using {sup 57}Fe and {sup 2}H. The relaxation rate in the tunneling regime is proportional to the hyperfine field generated by the nuclei. Also, the intrinsic linewidth of the tunneling resonance scales with the hyperfine field as confirmed by calculations of the super (or transfer) and direct hyperfine interactions. Preliminary results on a novel cluster of formula [Fe{sub 4}(OCH{sub 3}){sub 6}(dpm){sub 6}], Fe{sub 4}, suited for a more dramatic isotope effect on the tunneling rate are also reported.

  16. Hyperfine interactions, the key to multiquark physics?

    International Nuclear Information System (INIS)

    Likpink, H.J.

    1988-01-01

    Clues in the search for a fundamental description of hadron physics based on QCD may be obtained from a phenomenological constituent quark model in which the color-electric force binds quarks into saturated color-singlet hadrons, and finer details of the spectrum and multiquark physics are dominated by the color-magnetic hyperfine interaction. 47 refs

  17. Hyperfine interactions, the key to multiquark physics

    Energy Technology Data Exchange (ETDEWEB)

    Likpink, H.J.

    1988-08-08

    Clues in the search for a fundamental description of hadron physics based on QCD may be obtained from a phenomenological constituent quark model in which the color-electric force binds quarks into saturated color-singlet hadrons, and finer details of the spectrum and multiquark physics are dominated by the color-magnetic hyperfine interaction. 47 refs.

  18. Goldanskii-Karyagin effect and external magnetic field method as tools to measure anisotropy of the recoilless fraction in amorphous materials

    International Nuclear Information System (INIS)

    Ruebenbauer, K.; Sepiol, B.

    1985-01-01

    Diffraction of X-rays or neutrons can not be used to obtain details about the atomic vibrational anisotropy in the case of amorphous materials due to the lack of well-defined Bragg reflections. Moessbauer spectroscopy can yield some information in such cases, either via the Goldanskii-Karyagin effect or by applying a magnetic field, preferably along the beam axis. The latter method can be applied to the (preferably diamagnetic) samples exhibiting an electric quadrupole interaction (preferably non-axial) and the magnetic field should be chosen in such a way as to produce significant off-diagonal elements in the hyperfine hamiltonian. The external magnetic field method is capable of yielding much more information than the Goldanskii-Karyagin effect in most cases, provided sufficiently strong magnetic fields are available. Some examples of the 129 I Moessbauer spectra have been calculated to show the usefulness and sensitivity of the external magnetic field method. (orig.)

  19. Experimental and ab initio study of the hyperfine parameters of ZnFe {sub 2}O{sub 4} with defects

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, J. Melo; Salcedo Rodríguez, K. L.; Pasquevich, G. A.; Zélis, P. Mendoza; Stewart, S. J., E-mail: stewart@fisica.unlp.edu.ar; Rodríguez Torres, C. E.; Errico, L. A. [Universidad Nacional de La Plata, IFLP-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67 (Argentina)

    2016-12-15

    We present a combined Mössbauer and ab initio study on the influence of oxygen-vacancies on the hyperfine and magnetic properties of the ZnFe {sub 2}O{sub 4} spinel ferrite. Samples with different degree of oxygen-vacancies were obtained from zinc ferrite powder that was thermally treated at different temperatures up to 650 {sup ∘}C under vacuum.Theoretical calculations of the hyperfine parameters, magnetic moments and magnetic alignment have been carried out considering different defects such as oxygen vacancies and cation inversion. We show how theoretical and experimental approaches are complementary to characterize the local structure around Fe atoms and interpret the observed changes in the hyperfine parameters as the level of defects increases.

  20. Influence of an external magnetic field on damage by self-ion irradiation in Fe90Cr10 alloy

    Directory of Open Access Journals (Sweden)

    Fernando José Sánchez

    2016-12-01

    Full Text Available The effect of an external magnetic field (B=0.5 T on Fe90Cr10 specimens during Fe ion irradiation, has been investigated by means of Conversion Electron Mössbauer Spectroscopy (CEMS. The analysis has revealed significant differences in the average hyperfine magnetic field (=0.3 T between non-irradiated and irradiated samples as well as between irradiations made with B (w/ B and without B (w/o B. It is considered that these variations can be due to changes in the local environment around the probe nuclei (57Fe; where vacancies and Cr distribution play a role. The results indicate that the Cr distribution in the neighbourhood of the iron atoms could be changed by the application of an external field. This would imply that an external magnetic field may be an important parameter to take into account in predictive models for Cr behaviour in Fe–Cr alloys, and especially in fusion conditions where intense magnetic fields are required for plasma confinement.

  1. Study of the hyperfine magnetic field acting on Ce probes substituting for the rare earth and the magnetic ordering in intermetallic compounds RAg (R=rare earth) by first principles calculations; Estudo do campo hiperfino magnetico na sonda de Ce colocada nos compostos intermetalicos do tipo RAg (R=terra rara) e do ordenamento magnetico desses compostos usando calculos de primeiros principios

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luciano Fabricio Dias

    2006-07-01

    In this work the magnetic hyperfine field acting on Ce atoms substituting the rare-earths in R Ag compounds (R = Gd e Nd) was studied by means of first-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the R Ag matrix. In order to improve for correlation effects within the 4f shells, a Hubbard term was added to the DFT Hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyperfine field (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the m{sub l} = -2 and m{sub l} = -1 sub-levels. In addition, the ground-state magnetic structure was determined for Ho Ag and Nd Ag by observing the behavior of the total energy as a function of the lattice volume for several possible magnetic ordering in these compounds, namely, ferromagnetic, and the (0,0,{pi}), ({pi},{pi},0) and (({pi},{pi},{pi}) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type ({pi},{pi},0) for both, the Ho Ag and Nd Ag compounds. The energy difference of the ferromagnetic and antiferromagnetic ordering is very small in the case of the Nd Ag compound. (author)

  2. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liu, F.; Ruden, P. P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  3. Hyperfine interactions associated with iron substitute superconducting oxides

    International Nuclear Information System (INIS)

    Ellis, D.E.; Dunlap, B.D.; Saitovitch, E.B.; Azevedo, I.S.; Scorzelli, R.B.; Kimball, C.W.

    1988-01-01

    Theoretical and experimental Moessbauer spectroscopy studies have been made concerning charge and spin densities and magnetic hyperfine fields (H hf in iron-substituted superconducting oxides. Calculations were carried out in the self-consistent-field embedded cluster model using local density theory (SCF-Xα) with a variational atomic orbital basis. Spectral densities and changes in charge and spin density were monitored around neighboring Cu sites, as well as Fe impurity site, in La 2 Cu 1-x Fe x O 4 and YBa 2 Cu 3-x Fe x O 7-y compounds. Moessbauer isomer shifts (IS), quadrupole splittings (QS) and H hf are obtained by fitting multiline models to the observed spectra and are compared with SCF-Xα results for specific lattice sites. The influence of oxygen vacancies and partial oxygen disorder is modelled and compared with the experimental data on variable oxygen content and disorder. (author)

  4. Magnetic properties of fcc (Co95Fe5)1-xAlx ribbons

    International Nuclear Information System (INIS)

    Makhlouf, Salah A.; Parker, F.T.; Benameur, T.

    1999-01-01

    Rapidly quenched (Co 95 Fe 5 ) 1-x Al x ribbons are investigated by X-ray diffraction, magnetization, and Moessbauer effect measurements. A single fcc phase is obtained for all ribbons x ≤ 10 at.%. The lattice constant increases linearly with x and is discussed in connection with magnetic moment. The influence of Al substitution on both magnetization and Fe-atom hyperfine field (H) is studied. At 296 K, the magnetization decreases linearly while H drops nonlinearly as x increases. Al substitution leads to substantial differences in iron hyperfine fields in bcc and fcc systems. Fe moment is perturbed differently by Al substitution in fcc (Co 95 Fe 5 ) 1-x Al x and bcc Fe-Al systems

  5. External influence on magnetic properties of Fe-based nanocrystalline alloys

    International Nuclear Information System (INIS)

    Sitek, Jozef; Degmova, Jarmila; Sedlackova, Katarina; Butvin, Pavol

    2006-01-01

    Amorphous and nanocrystalline ribbons of NANOPERM, FINEMET and HITPERM were studied by Moessbauer spectroscopy (MS) after the influence of external factors: different annealing atmospheres, tensile stress and several kinds of corrosion. MS is a suitable tool for such studies because the spectral parameters are very sensitive to changes in the vicinity of the probe - 57 Fe nuclei. The most sensitive parameters were hyperfine magnetic field in crystalline component, average hyperfine field in amorphous component and direction of net magnetic moments. Influence of external factors modified also the structure of the alloys, i.e. new or modified phases were identified by MS phase analysis

  6. Positive muon studies of magnetic materials

    International Nuclear Information System (INIS)

    Patterson, B.D.

    1975-01-01

    Polarized positive muons (μ + ) are stopped in magnetic materials, and the μ + precession is observed via the muons's asymmetric decay to a positron. The precession frequency is a measure of the local magnetic field at the μ + . Relaxation of the μ + spin is caused by spatially or time-varying local fields. The local field at a stopped μ + in ferromagnetic nickel is measured. From this measurement, the hyperfine field seen by an interstitial μ + due to its contact interaction with polarized screening electrons is inferred to be -0.66kG. A discussion of this value in terms of a simple model for the screening configuration is presented. Critical spin fluctuations in Ni at temperatures just above the Curie point rapidly relax the μ + spin. The temperature and external magnetic field dependence of the relaxation rate is determined experimentally. A theory for the relaxation rate is presented which demonstrates the importance of the hyperfine and dipolar interactions of the μ + with its Ni host. Preliminary results on μ + studies in ferromagnetic iron and cobalt are also discussed. (U.S.)

  7. Calculations of hyperfine interactions in transition metal compounds in the local density approximation

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.

    1982-01-01

    A survey is made of some theoretical calculations of electrostatic and magnetic hyperfine interactions in transition metal compounds and complex irons. The molecular orbital methods considered are the Multiple Scattering and Discrete Variational, in which the local Xα approximation for the exchange interaction is employed. Emphasis is given to the qualitative informations, derived from the calculations, relating the hyperfine parameters to characteristics of the chemical bonds. (Author) [pt

  8. Magnetism in plant and mammalian ferritin

    International Nuclear Information System (INIS)

    Bauminger, E.R.; Nowik, I.

    1989-01-01

    A rich variety of magnetic phenomena is observed in Moessbauer studies of ferritin. Depending on the amount of iron in the horse spleen ferritin core, a paramagnetic relaxation spectrum, or quadrupole split doublet or a magnetically split sextet showing superparamagnetism, are obtained at 4.1 K. Moessbauer studies of the recently prepared iron loaded concanavalin A yield hyperfine parameters identical to those found previously in mammalian ferritin, yet show the existence of larger iron aggregates. Due to the larger particle size it is possible to follow the magnetic hyperfine field and to obtain the magnetic ordering temperature as 240 K. This is exactly the Neel temperature of ferrihydrite, thus establishing that this is indeed the iron compound in the ferritin core. (orig.)

  9. Electronic structure optical spectra and contact hyperfine parameters of CoF64- complex in LiF and KMgF3

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de.

    1975-12-01

    The electronic structure, the optical absorption bands and the magnetic hyperfine contact terms have been calculated for CoF 6 4- cluster in LiF and KMgF 3 using the Self-Consistent-Field Multiple-Scattering Xα Method. The results obtained are compared with experiment and indicate that this scheme is convenient to treat such complex problems. (Author) [pt

  10. Investigation of transferred hyperfine interactions from 129I and 119Sn by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.-P.

    1976-01-01

    The hyperfine parameters at 129 I have been measured in the series of compounds CrI 3 , CsCrI 3 , MI 2 (M=V, Cr, Mn, Fe, Co, Ni, Cd) and NR 4 FeI 4 (R=ethyl, butyl). They have been interpreted in terms of the charge and spin densities in the ligand valence orbitals. Information about the spin polarization mechanisms as well as about the local magnetic and crystallographic structural arrangements have been furthermore deduced. The 119 Sn hyperfine data in the series of RESn 3 intermetallics have provided information about the magnetic structure and the spin polarization mechanisms [fr

  11. MAGNETIC AND HYPERFINE CHARACTERIZATION OF THE THERMAL TRANSFORMATION CuO - Fe2O3 TO Fe3O4

    Directory of Open Access Journals (Sweden)

    Juan D. Betancur

    2018-01-01

    Full Text Available A magnetic study about the thermal transformation of hematite doped with CuO (Fe2O3 + CuO is presented. The heat treatment was carried out at a temperature of 375 ± 1 ºC, in a controlled atmosphere composed by 20% hydrogen and 80% nitrogen. Samples were characterized by Mössbauer spectroscopy at room temperature, magnetization as a function of temperature and hysteresis loops at 10K. Our results suggest that both the hyperfine fields and linewidths of the A and B sites remain essentially constant with increasing the CuO concentration, while at the same time a paramagnetic component arises, which is indicative of the appearance of a precipitate or a new phase of Fe-Cu, i.e. there is not an effective incorporation of the copper into the structure of the magnetite. The saturation magnetization falls from approximately 87 emu/g to 78 emu/g, consistent with such a paramagnetic phase. Also, an increase in the coercivity from ~576 Oe up to ~621 Oe by increasing the percentage of CuO from 2% up to 20% is observed. Such increase is also attributed to the paramagnetic phase acting as pinning center for domain walls, besides also de pinning effect due to vacancies induced by the thermal treatment. Finally, an inversion of the magnetization in the Verwey temperature is observed. The data suggest that by means of the synthesis method employed, it is possible to obtain Fe3O4 magnetite particles coexisting with precipitates of Fe-Cu, giving rise to a modification in the magnetic properties and generatingan interesting effect in the magnetization at the Verwey temperature.

  12. Maximum Entropy Method in Moessbauer Spectroscopy - a Problem of Magnetic Texture

    International Nuclear Information System (INIS)

    Satula, D.; Szymanski, K.; Dobrzynski, L.

    2011-01-01

    A reconstruction of the three dimensional distribution of the hyperfine magnetic field, isomer shift and texture parameter z from the Moessbauer spectra by the maximum entropy method is presented. The method was tested on the simulated spectrum consisting of two Gaussian hyperfine field distributions with different values of the texture parameters. It is shown that proper prior has to be chosen in order to arrive at the physically meaningful results. (authors)

  13. Study on magnetic and hyperfine properties of mechanically milled Ni0.4Zn0.6Fe2O4 nanoparticles

    Science.gov (United States)

    Mondal, R.; Dey, S.; Majumder, S.; Poddar, A.; Dasgupta, P.; Kumar, S.

    2018-02-01

    Herein, we report a comprehensive and comparative study on the structural, microstructural, magnetic and room temperature hyperfine properties of nanosized Ni0.4Zn0.6Fe2O4 having particle sizes 48 (S1), 21 (S2) and 15 (S3) nm synthesized by high energy ball milling method. All the samples are characterized by powder X-ray diffraction, transmission electron microscopic, field emission scanning electron microscopic and Mössbauer spectroscopic techniques. S1, S2 and S3 are single phase nanosized cubic spinel ferrites of Fd-3m symmetry with lattice parameter 8.39, 8.41 and 8.44 Å, respectively, and the samples consist of particles having assorted size and nearly spherical shape. The constituent particles of S1 exhibit multi domain magnetic structure. It shows collective magnetic behavior and clear hysteresis loop at 300 K with coercive field of 140 Oe. On the other hand, S2 and S3 are composed of particles with single domain magnetic configuration and these samples show purely superparamagnetic behavior above their blocking temperature (TB). All the samples display magnetic ordering at low temperature. The values of TB of S2 and S3 are 250 and 185 K, respectively. The values of saturation magnetization (MSAT) of S1, S2 and S3 at 300 K are 47, 42, 30 emu/g, at 150 K are 58, 50, 43 emu/g and at 10 K are 86, 72, 56 emu/g, respectively. The values of coercivity of S1, S2 and S3 at 150 K are 280, 400, 350 Oe and at 10 K are 1600, 2800 and 2000 Oe, respectively. It has been shown that for mechanically activated nanosized Ni0.4Zn0.6Fe2O4 the values of MSAT decrease with the reduction of particle size due to surface spin canting effect, the coercivity is determined by the magnetic domain structure of the particles in the samples, cation distribution can be reliably estimated through infield Mössbauer spectroscopic study and field dependent dc magnetization measurement in conjugation and the particles in S2 are comprised of ferrimagnetically aligned core surrounded by

  14. Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy

    International Nuclear Information System (INIS)

    Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N.; Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M.

    2011-01-01

    PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO 2 doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive 111 In probe nuclei in the sample of SnO 2 doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at 111 Cd sites in SnO 2 doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive 111 In in the sample are the ion-implantation using radioactive ion beam of 111 In and the chemical process in which 111 InCl 3 solution is added during the preparation of SnO 2 doped with Co using sol gel method. The ion-implantation of 111 In in SnO 2 doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF 2 detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO 2 powder samples using 111 In- 111 Cd probe. (author)

  15. Control of inhomogeneous atomic ensembles of hyperfine qudits

    DEFF Research Database (Denmark)

    Mischuck, Brian Edward; Merkel, Seth T.; Deutsch, Ivan H.

    2012-01-01

    We study the ability to control d-dimensional quantum systems (qudits) encoded in the hyperfine spin of alkali-metal atoms through the application of radio- and microwave-frequency magnetic fields in the presence of inhomogeneities in amplitude and detuning. Such a capability is essential...... to the design of robust pulses that mitigate the effects of experimental uncertainty and also for application to tomographic addressing of particular members of an extended ensemble. We study the problem of preparing an arbitrary state in the Hilbert space from an initial fiducial state. We prove...... that inhomogeneous control of qudit ensembles is possible based on a semianalytic protocol that synthesizes the target through a sequence of alternating rf and microwave-driven SU(2) rotations in overlapping irreducible subspaces. Several examples of robust control are studied, and the semianalytic protocol...

  16. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  17. Hyperfine Interactions and Some Magnetic Properties of Nanocrystalline Co40Fe50Ni10 and Co50Fe45Ni5 Alloys Prepared by Mechanical Synthesis and Subsequently Heat Treated

    International Nuclear Information System (INIS)

    Pikula, T.; Oleszak, D.; Pekala, M.

    2011-01-01

    Co 40 Fe 50 Ni 10 and Co 50 Fe 45 Ni 5 ternary alloys were prepared by mechanical alloying method. To check the stability of their structure thermal treatment was applied subsequently. As X-ray diffraction studies proved the final products of milling were the solid solutions with bcc lattice and the average grain sizes ranged of tens of nanometers. After heating of the Co 50 Fe 45 Ni 5 alloy up to 993 K the mixture of two solid solutions with bcc and fcc lattices was formed. In other cases thermal treatment did not change the type of the crystalline lattice. Moessbauer spectroscopy revealed hyperfine magnetic field distributions which reflected the different possible atomic surroundings of 57 Fe isotopes. Results of the macroscopic magnetic measurements proved that both investigated alloys had relatively good soft magnetic properties. (authors)

  18. External influence on magnetic properties of Fe-based nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, Jozef [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)]. E-mail: jozef.sitek@stuba.sk; Degmova, Jarmila [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Sedlackova, Katarina [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Butvin, Pavol [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2006-09-15

    Amorphous and nanocrystalline ribbons of NANOPERM, FINEMET and HITPERM were studied by Moessbauer spectroscopy (MS) after the influence of external factors: different annealing atmospheres, tensile stress and several kinds of corrosion. MS is a suitable tool for such studies because the spectral parameters are very sensitive to changes in the vicinity of the probe -{sup 57}Fe nuclei. The most sensitive parameters were hyperfine magnetic field in crystalline component, average hyperfine field in amorphous component and direction of net magnetic moments. Influence of external factors modified also the structure of the alloys, i.e. new or modified phases were identified by MS phase analysis.

  19. Hyperfine splitting of the optical lines in the odd isotopes of uranium

    International Nuclear Information System (INIS)

    Gangrskij, Yu.P.; Zemlyanoj, S.G.; Markov, B.N.; Kul'dzhanov, B.K.

    1996-01-01

    The hyperfine structure was studied for two optical transitions in U between the ground state term 5 L 6 and the excited ones 7 M 7 and 7 L 6 . The method of laser resonance fluorescence in the atomic beam was used. The values of constants of hyperfine splitting-magnetic dipole and octupole, electric quadrupole were obtained for odd isotopes 223 U and 235 U. The connection of these constants and atomic and nuclear parameters is discussed. (author). 20 refs., 2 figs., 4 tabs

  20. Hyperfine spectroscopic study of Laves phase HfFe2

    International Nuclear Information System (INIS)

    Belosevic-Cavor, J.; Novakovic, N.; Cekic, B.; Ivanovic, N.; Manasijevic, M.

    2004-01-01

    Hyperfine fields in HfFe 2 were measured at 181 Ta probe using the time-differential perturbed angular correlation method (TDPAC) in the temperature range 78-1200 K. Analysis of the spectra revealed two interactions with hyperfine fields of 13.82(7) T and 8.0(2) T, at 293 K. First is ascribed to the interaction at the 8a position in the cubic C15 structure. The second can be assigned to a minor amount of hexagonal C14 phase, or to an irregular position of the probe in the C15 lattice. Results of calculations using LAPW-WIEN97 are in a good agreement with experiment

  1. The measurement of magnetic moments of nuclear states of high angular momentum

    International Nuclear Information System (INIS)

    Goldring, G.

    1978-01-01

    Two problems related to the measurement of the g-factor of relevant nuclear levels and their circumvention are discussed: a) the very high magnetic fields required for the measurements, available only as a hyperfine field of electrons or other charged particles moving very close to the nucleus; b) the large angular momentum of those nuclear states. The nuclei considered are those recoiling from a nuclear reaction at high speeds in either vacuum or gas. The environment of these nuclei are the isolated ions with which they are associated. The hyperfine interaction with such ions is primarily magnetic. (B.G.)

  2. Influence of annealing on structure and magnetic properties of Laves phase HfFe2

    International Nuclear Information System (INIS)

    Belosevic-Cavor, J.; Cekic, B.; Novakovic, N.; Ivanovic, N.; Manasijevic, M.

    2004-01-01

    Hyperfine fields (HFF) in a polycrystalline HfFe 2 binary compound were measured at 181 Ta probe ion sites using the time differential perturbed angular correlation (TDPAC) method. Analysis of TDPAC spectra obtained in measurements revealed two components. One of them corresponded to the magnetic perturbation with the value B hf1 (Ta) = 13.82(7) T at room temperature and it was ascribed to the interaction at the regular position of Hf in the cubic C15 (MgCu 2 -type) structure of the HfFe 2 compound. The second component with hyperfine field value of B hf2 (Ta) = 8.0(2) T is probably due to the presence of a minor amount of the hexagonal C14 (MgZn 2 -type) structure. Measurements showed that it had come to a change in the ratio of different components of TDPAC spectra with annealing, but the values for hyperfine fields for both components have not changed significantly. The origin of the hyperfine magnetic field and its difference in the two structures (C14 and C15) were discussed taking into account crystal structure effects. (orig.)

  3. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    Science.gov (United States)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  4. Structural and magnetic properties of FeCoC system obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Rincón Soler, A. I. [Universidad Tecnológica de Pereira, Fac. de Ciencias, Depto. de Física (Colombia); Rodríguez Jacobo, R. R., E-mail: rrrodriguez@uao.edu.co [Universidad Autónoma de Occidente, Fac. de Ciencias Básicas, Depto. de Física (Colombia); Medina Barreto, M. H.; Cruz-Muñoz, B. [Universidad Tecnológica de Pereira, Fac. de Ciencias, Depto. de Física (Colombia)

    2017-11-15

    Fe{sub 96−X}Co{sub X}C{sub 4} (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.

  5. Structural and magnetic properties of FeCoC system obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Rincón Soler, A. I.; Rodríguez Jacobo, R. R.; Medina Barreto, M. H.; Cruz-Muñoz, B.

    2017-01-01

    Fe 96−X Co X C 4 (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.

  6. Magnetic nanostructures: radioactive probes and recent developments

    International Nuclear Information System (INIS)

    Prandolini, M J

    2006-01-01

    The miniaturization of magnetic sensors and storage devices down to the nano-scale leads to drastic changes in magnetic phenomena compared with the same devices with a larger size. Excited-nuclear-probe (radioactive probe) techniques are ideal for investigating these new magnetic nanostructures. By observing the magnetic hyperfine fields (and in some cases the electric-field-gradients (EFGs)) at the nuclei of radioactive probes, microscopic information about the magnetic environment of the probes is acquired. The magnetic hyperfine field is particularly sensitive to the s-spin polarization of the conduction electrons and to the orbital magnetic moment of the probe atom. Three methods of inserting radioactive probes into magnetic nanostructures are presented; neutron activation, recoil implantation and 'soft-landing', followed by descriptions of their application to selected examples. In some cases, these methods offer the simultaneous creation and observation of new magnetic materials at the atomic scale. This review focuses firstly on the induced magnetism in noble-metal spacer layers between either ferromagnetic (FM) or FM/antiferromagnetic (AFM) layers in a trilayer structure. Using the method of low-temperature nuclear orientation, the s-spin polarization of noble-metal probes was measured and was found to be very sensitive to the magnetic properties at both the FM and AFM interfaces. Secondly, the recoil implantation of radioactive Fe probes into rare-earth hosts and d-band alloys and subsequent measurement using time-differential perturbed angular distribution offer the possibility of controlling the chemical composition and number of nearest-neighbours. This method was used to prepare local 3d-magnetic clusters in a non-magnetic matrix and to observe their magnetic behaviour. Finally, non-magnetic radioactive probes were 'soft-landed' onto Ni surfaces and extremely lattice-expanded ultrathin Ni films. By measuring the magnetic hyperfine fields and EFGs at

  7. Crystal structure and magnetism of Fe2(OH)[B2O4(OH)

    DEFF Research Database (Denmark)

    Kurayoshi, Yotaro; Hara, Shigeo; Sato, Hirohiko

    2014-01-01

    The structure and magnetism of Fe2(OH)[B2O4(OH)] are reported. Powder x-ray diffraction reveals a characteristic structure containing two crystallographically independent zigzag-ladder chains of magnetic Fe2+ ions. Magnetization measurements reveal a phase transition at 85 K, below which a weak...... spontaneous magnetization (approximate to 0.15 μB/Fe) appears. Below 85 K, magnetization increases with decreasing temperature down to 70 K, below which it decreases and approaches a constant value at low temperature. The Mossbauer spectrum at room temperature is composed of two paramagnetic doublets...... corresponding to the two crystallographic Fe2+ sites. Below 85 K, each doublet undergoes further splitting because of the magnetic hyperfine fields. The temperature dependence of the hyperfine field is qualitatively different for the two distinguishable Fe2+ sites. This is responsible for the anomalous...

  8. Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn ...

    Indian Academy of Sciences (India)

    Unknown

    Jha S, Seyoum H M, Demarco M, Julian G M, Stubbs D A,. Blue J W, Silva M T X and Vasquez A 1983 Hyperfine Inter- act. 15/16 685. Ritcey S P and Dunlap R A 1984 J. Appl. Phys. 55 2051. Surikov V V, Zhordochkin V N and Astakhova T Yu 1990. Hyperfine Interact. 59 469. Webster P J and Ziebeck K R A 1973 J. Phys.

  9. Systematic model calculations of the hyperfine structure in light and heavy ions

    CERN Document Server

    Tomaselli, M; Nörtershäuser, W; Ewald, G; Sánchez, R; Fritzsche, S; Karshenboim, S G

    2003-01-01

    Systematic model calculations are performed for the magnetization distributions and the hyperfine structure (HFS) of light and heavy ions with a mass close to A ~ 6 208 235 to test the interplay of nuclear and atomic structure. A high-precision measurement of lithium-isotope shifts (IS) for suitable transition, combined with an accurate theoretical evaluation of the mass-shift contribution in the respective transition, can be used to determine the root-mean-square (rms) nuclear-charge radius of Li isotopes, particularly of the halo nucleus /sup 11/Li. An experiment of this type is currently underway at GSI in Darmstadt and ISOLDE at CERN. However, the field-shift contributions between the different isotopes can be evaluated using the results obtained for the charge radii, thus casting, with knowledge of the ratio of the HFS constants to the magnetic moments, new light on the IS theory. For heavy charged ions the calculated n- body magnetization distributions reproduce the HFS of hydrogen-like ions well if QED...

  10. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    Science.gov (United States)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave

  11. Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M., E-mail: vianden@hiskp.uni-bonn.d [Rheinische Friedrich-Wilhelms-Universitaet Bonn (HISKP- Bonn) (Germany). Helmholtz - Institut fuer Strahlen- und Kernphysik

    2011-07-01

    PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO{sub 2} doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive {sup 111}In probe nuclei in the sample of SnO{sub 2} doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at {sup 111}Cd sites in SnO{sub 2} doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive {sup 111}In in the sample are the ion-implantation using radioactive ion beam of {sup 111}In and the chemical process in which {sup 111}InCl{sub 3} solution is added during the preparation of SnO{sub 2} doped with Co using sol gel method. The ion-implantation of {sup 111}In in SnO{sub 2} doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF{sub 2} detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO{sub 2} powder samples using {sup 111}In-{sup 111}Cd probe. (author)

  12. Calculation of hyperfine structure constants of small molecules using

    Indian Academy of Sciences (India)

    The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular components of the magnetic hyperfine structure constant of a few small alkaline earth hydrides (BeH, MgH, and CaH) and fluorides (MgF and CaF). We have compared our Z-vector results with the values ...

  13. A source of antihydrogen for in-flight hyperfine spectroscopy

    CERN Document Server

    Kuroda, N; Murtagh, D J; Van Gorp, S; Nagata, Y; Diermaier, M; Federmann, S; Leali, M; Malbrunot, C; Mascagna, V; Massiczek, O; Michishio, K; Mizutani, T; Mohri, A; Nagahama, H; Ohtsuka, M; Radics, B; Sakurai, S; Sauerzopf, C; Suzuki, K; Tajima, M; Torii, H A; Venturelli, L; Wünschek, B; Zmeskal, J; Zurlo, N; Higaki, H; Kanai, Y; Lodi Rizzini, E; Nagashima, Y; Matsuda, Y; Widmann, E; Yamazaki, Y

    2014-01-01

    Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.

  14. Nuclear hyperfine structure of muonium in CuCl resolved by means of avoided level crossing

    International Nuclear Information System (INIS)

    Schneider, J.W.; Celio, M.; Keller, H.; Kuendig, W.; Odermatt, W.; Puempin, B.; Savic, I.M.; Simmler, H.; Estle, T.L.; Schwab, C.; Kiefl, R.F.; Renker, D.

    1990-01-01

    We report detailed avoided-level-crossing spectra of a muonium center (Mu II ) in single-crystal CuCl in a magnetic field range of 4--5 T and at a temperature of 100 K. The hyperfine parameters of the muon and the closest two shells of nuclei indicate that this center consists of muonium at a tetrahedral interstice with four Cu nearest neighbors and six Cl next-nearest neighbors and that the spin density is appreciable on the muon and on the ten neighboring nuclei but negligible elsewhere

  15. In situ study of electric field controlled ion transport in the Fe/BaTiO3 interface

    DEFF Research Database (Denmark)

    Merkel, D. G.; Bessas, D.; Bazso, G.

    2018-01-01

    Electric field controlled ion transport and interface formation of iron thin films on a BaTiO3 substrate have been investigated by in situ nuclear resonance scattering and x-ray reflectometry techniques. At early stage of deposition, an iron-II oxide interface layer was observed. The hyperfine...... parameters of the interface layer were found insensitive to the evaporated layer thickness. When an electric field was applied during growth, a 10 angstrom increase of the nonmagnetic/magnetic thickness threshold and an extended magnetic transition region was measured compared to the case where no field...... was applied. The interface layer was found stable under this threshold when further evaporation occurred, contrary to the magnetic layer where the magnitude and orientation of the hyperfine magnetic field vary continuously. The obtained results of the growth mechanism and of the electric field effect...

  16. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles

    DEFF Research Database (Denmark)

    El-Ella, Haitham; Ahmadi, Sepehr; Wojciechowski, Adam

    2017-01-01

    transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≥ 1=4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate......Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional...... to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin...

  17. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In

    International Nuclear Information System (INIS)

    Lapolli, Andre Luis

    2006-01-01

    Systematic behavior of magnetic hyperfine field (B hf ) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B hf were carried out at the rare earth atom and in sites using the nuclear probes 140 Ce and 11 '1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from 140 Ce probe as well as at in sites obtained from 111 Cd probe for each series of compounds were extrapolated to zero Kelvin B hf (T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B hf comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B hf (T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with 111 Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the 111 Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  18. Hyperfine interactions in MnAs studied by perturbed angular correlations of $\\gamma$-rays using the probe $^{77}$Br $\\rightarrow ^{77}$Se and first principles calculations for MnAs and other Mn pnictides

    CERN Document Server

    Gonçalves, J N; Correia, J G; Lopes, A M L

    2011-01-01

    The MnAs compound shows a first-order transition at T$_{c}$≈ 42$^{\\circ}$C, and a second-order transition at T$_{t}$ ≈120$^{\\circ}$C. The first-order transition, with structural (hexagonal-orthorhombic), magnetic (FM-PM) and electrical conductivity changes, is associated to magnetocaloric, magnetoelastic, and magnetoresistance effects. We report a study in a large temperature range from −196$^{\\circ}$C up to 140$^{\\circ}$C, using the $\\gamma\\!-\\!\\gamma$ perturbed angular correlations method with the radioactive probe $^{77}$Br→$^{77}$Se, produced at the ISOLDE-CERN facility. The electric field gradients and magnetic hyperfine fields are determined across the first- and second-order phase transitions encompassing the pure and mixed phase regimes in cooling and heating cycles. The temperature irreversibility of the 1st order phase transition is seen locally, at the nanoscopic scale sensitivity of the hyperfine field, by its hysteresis, detailing and complementing information obtained with macroscopic me...

  19. Dynamics of laser-induced magnetization in Ce-doped yttrium aluminum garnet

    International Nuclear Information System (INIS)

    Kolesov, Roman

    2007-01-01

    Circularly polarized short laser pulse induces nonequilibrium population of spin levels in the excited state of Ce 3+ -ion embedded in yttrium aluminium garnet crystal and, consequently, the magnetization of the crystal associated with spin polarization. Dynamic behavior of laser-induced magnetization is studied as a function of the external magnetic field. It reveals spin oscillations attributed to the effect of hyperfine magnetic field produced by 27 Al nuclei on the Ce 3+ spin. A simple theoretical model explaining spin oscillations is presented. It shows that circularly polarized light induces spin coherence at the transition between Zeeman sublevels of Ce 3+ ion in the lowest 5d state. Temporal shape of laser-induced magnetization signal reveals the following parameters of this state: (1) the spin-lattice relaxation constant is ≅2x10 7 s -1 , (2) inhomogeneous spin dephasing time is ≅4 ns, and (3) the g tensor of the state seems to be isotropic with the g factor being in the range 0.7-0.9. In addition, the width of the local hyperfine field distribution is ≅40 G

  20. Uniform excitations in magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Steen Mørup

    2010-11-01

    Full Text Available We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.

  1. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  2. Progress towards antihydrogen hyperfine spectroscopy in a beam

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, Eberhard [Stefan Meyer Institute for Subatomic Physics, Vienna (Austria); Collaboration: ASACUSA CUSP collaboration

    2014-07-01

    The spectroscopy of antihydrogen promises one of the most precise tests of CPT symmetry. The ASACUSA CUSP collaboration at the Antiproton Decelerator of CERN is preparing an experiment to measure the ground-state hyperfine structure GS-HFS of antihydrogen, since this quantity is one of the most precisely determined transitions in ordinary hydrogen (relative accuracy ∝10{sup -12}). The experiment uses a Rabi-type atomic beam apparatus consisting of a source of spin-polarized antihydrogen (a so-called cusp trap), a microwave cavity to induce a spin flip, a superconducting sextuple magnet for spin analysis, and an antihydrogen detector. In this configuration, a relative accuracy of better than 10{sup -6} can be obtained. This precision will already allow to be sensitive to finite size effects of the antiproton, provided its magnetic moment will measured to higher precision, which is in progress by two collaborations at the AD. The recent progress in producing a beam of antihydrogen atoms and in the development of the apparatus as well as ways to further improve the accuracy by using the Ramsey method of separated oscillatory fields are presented.

  3. First-principles calculations of Moessbauer hyperfine parameters for solids and large molecules

    International Nuclear Information System (INIS)

    Guenzburger, Diana; Ellis, D.E.; Zeng, Z.

    1997-10-01

    Electronic structure calculations based on Density Functional theory were performed for solids and large molecules. The solids were represented by clusters of 60-100 atoms embedded in the potential of the external crystal. Magnetic moments and Moessbauer hyperfine parameters were derived. (author)

  4. Investigation of local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds using perturbed angular correlation gamma-gamma spectroscopy; Investigacao do magnetismo local em compostos intermetalicos do tipo RZn (R = Ce, Gd, Tb, Dy) e GdCu pela espectroscopia de correlacao angular gama-gama perturbada

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Brianna Bosch dos

    2010-07-01

    This work presents, from a microscopic point of view, a systematic study of the local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds through measurements of hyperfine interactions using the Perturbed Angular Correlation Gamma- Gamma Spectroscopy technique with {sup 111}In {yields} {sup 111}Cd and {sup 140}La {yields} {sup 140}Ce as probe nuclei. As the magnetism in these compounds originates from the 4f electrons of the rare-earth elements it is interesting to observe in a systematic study of RZn compounds the behavior of the magnetic hyperfine field with the variation of the number of 4f electrons in the R element. The use of probe nuclei {sup 140}La {yields} {sup 140}Ce is interesting because Ce{sup +3} ion posses one 4f electron which may contribute to the total hyperfine field, and the results showed anomalous behavior. The results for {sup 111}Cd probe showed that the temperature dependence of the magnetic hyperfine field follows the Brillouin function, and the magnetic hyperfine field decreases linearly with increase of the atomic number of rare earth when plotted as a function of the rare-earth J spin projection, showing that the main contribution to the magnetic hyperfine field in RZn compounds comes from the polarization of the conduction electrons. The results for the electric field gradient measured with {sup 111}Cd for all compounds showed a strong decrease with the atomic number of the rare-earth element. We have therefore assumed that the major contribution to the electric field gradient originates from the 4f electrons of the rare-earths. The measurements of the electric field gradient for GdCu with {sup 111}Cd, after temperature decreases and increases again showed that two different structures, CsCl-type cubic and FeB-type orthorhombic structures co-exist. Finally, it is the first time that measurements of hyperfine parameters have been carried out with theses two probe nuclei in the studied RZn. (author)

  5. Hyperfine fields at some 4d, 5d and 4f impurities in ferromagnetic GdZn and GdCd

    International Nuclear Information System (INIS)

    Kasamatsu, Y.; Kojima, K.; Hihara, T.

    1995-01-01

    Hyperfine (hf) fields at 4d (Y, Nb, Rh, Pd), 5d (Lu, Ta, Ir) and 4f (La, Nd, Sm, Eu) impurities in ferromagnetic GdZn and GdCd have been measured by NMR at 4.2 K. The local moment contributions to the hf field suggest that the impurity moments at the beginning and end of the d series are parallel and antiparallel to Gd moments, respectively. The hf results for 4f impurities are also discussed. ((orig.))

  6. Magnetic hyperfine interactions of U2 center in CaF2, SrF2 and BaF2

    International Nuclear Information System (INIS)

    Graf, C.J.F.

    1976-02-01

    The magnetic hyperfine parameters of the U 2 center in CaF 2 , SeF 2 and BaF 2 , using a molecular orbitals scheme have been calculated. The need for the inclusion of mechanisms such as Pauli Repulsion and Covalence in order to describe the electronic structure of the defect has been shown. In the molecular orbitals model a weak covalence parameter has been phenomenologically introduced, mixing the is atomic wavefunction of hydrogen with a properly symmetrized linear combination of 2p F - functions centered on the ions of the first fluorine shell. The results obtained are compared with experimental measurements of EPR and ENDOR. (Author) [pt

  7. Annual Conference on Magnetism and Magnetic Materials, 29th, Pittsburgh, PA, November 8-11, 1983, Proceedings

    International Nuclear Information System (INIS)

    Hasegawa, R.; Koon, N.C.; Cooper, B.R.

    1984-01-01

    Various topics on magnetism and magnetic materials are addressed. The subjects considered include: spin glasses, amorphous magnetism, actinide and rare earth intermetallics, magnetic excitation, itinerant magnetism and magnetic structure, valence instabilities, Kondo effect, transport and Hall effects, mixed valence and Kondo compounds, superconductivity and magnetism, d and f electron magnetism and superconductivity, Fe-based microcrystalline and permanent magnetic alloys, hard and soft magnetic materials, and magnetooptics. Also discussed are: numerical methods for magnetic field computation, recording theory and experiments, recording heads and media, magnetic studies via hyperfine interactions, magnetic semiconductors, magnet insulators, transition metal systems, random fields, critical phenomena and magnetoelastic effects and resonance, surfaces and interfaces, magnetostatic waves and resonance, bubble materials and implantation, bubble devices and physics, magnetic separation, ferrofluids, magnetochemistry, new techniques and materials, and new applications

  8. In situ study of electric field controlled ion transport in the Fe/BaTiO3 interface

    Science.gov (United States)

    Merkel, D. G.; Bessas, D.; Bazsó, G.; Jafari, A.; Rüffer, R.; Chumakov, A. I.; Khanh, N. Q.; Sajti, Sz; Celse, J.-P.; Nagy, D. L.

    2018-01-01

    Electric field controlled ion transport and interface formation of iron thin films on a BaTiO3 substrate have been investigated by in situ nuclear resonance scattering and x-ray reflectometry techniques. At early stage of deposition, an iron-II oxide interface layer was observed. The hyperfine parameters of the interface layer were found insensitive to the evaporated layer thickness. When an electric field was applied during growth, a 10 Å increase of the nonmagnetic/magnetic thickness threshold and an extended magnetic transition region was measured compared to the case where no field was applied. The interface layer was found stable under this threshold when further evaporation occurred, contrary to the magnetic layer where the magnitude and orientation of the hyperfine magnetic field vary continuously. The obtained results of the growth mechanism and of the electric field effect of the Fe/BTO system will allow the design of novel applications by creating custom oxide/metallic nanopatterns using laterally inhomogeneous electric fields during sample preparation.

  9. Hyperfine structure investigations for the odd-parity configuration system in atomic holmium

    Science.gov (United States)

    Stefanska, D.; Furmann, B.

    2018-02-01

    In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.

  10. Magnetic resonance studies of atomic hydrogen gas at low temperatures

    International Nuclear Information System (INIS)

    Hardy, W.N.; Morrow, M.; Jochemsen, R.; Statt, B.W.; Kubik, P.R.; Marsolais, R.M.; Berlinsky, A.J.; Landesman, A.

    1980-01-01

    Using a pulsed low temperature discharge in a closed cell containing H 2 and 4 He, we have been able to store a low density (approximately 10 12 atoms/cc) gas of atomic hydrogen for periods of order one hour in zero magnetic field and T=1 K. Pulsed magnetic resonance at the 1420 MHz hyperfine transition has been used to study a number of the properties of the gas, including the recombination rate H + H + 4 He→H 2 + 4 He, the hydrogen spin-exchange relaxation rates, the diffusion coefficient of H in 4 He gas and the pressure shift of the hyperfine frequency due to the 4 He buffer gas. Here we discuss the application of hyperfine frequency shifts as a probe of the H-He potential, and as a means for determining the binding energy of H on liquid helium

  11. Quantum phase transition of a magnet in a spin bath

    DEFF Research Database (Denmark)

    Rønnow, H.M.; Parthasarathy, R.; Jensen, J.

    2005-01-01

    The excitation spectrum of a model magnetic system, LiHoF(4), was studied with the use of neutron spectroscopy as the system was tuned to its quantum critical point by an applied magnetic field. The electronic mode softening expected for a quantum phase transition was forestalled by hyperfine...

  12. Population and phase dynamics of F=1 spinor condensates in an external magnetic field

    International Nuclear Information System (INIS)

    Romano, D.R.; Passos, E.J.V. de

    2004-01-01

    We show that the classical dynamics underlying the mean-field description of homogeneous mixtures of spinor F=1 Bose-Einstein condensates in an external magnetic field is integrable as a consequence of number conservation and axial symmetry in spin space. The population dynamics depends only on the quadratic term of the Zeeman energy and on the strength of the spin-dependent term of the atom-atom interaction. We determine the equilibrium populations as function of the ratio of these two quantities and the miscibility of the hyperfine components in the ground state spinors are thoroughly discussed. Outside the equilibrium, the populations are always a periodic function of time where the periodic motion can be a libration or a rotation. Our studies also indicate the absence of metastability

  13. Nuclear spin of 185Au and hyperfine structure of 188Au

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    The nuclear spin of 185 Au, I = 5/2, and the hyperfine separation of 188 Au, Δγ = +- 2992(30) MHz, have been measured with the atomic-beam magnetic resonance method. The spin of 185 Au indicates a deformed nuclear shape in the ground state. The small magnetic moment of 188 Au is close in value to those of the heavier I = 1 gold isotopes 190 192 194 Au, being located in a typical transition region. (Auth.)

  14. Contribution to the study of magnetic properties of rare-earth iron intermetallic compounds

    International Nuclear Information System (INIS)

    Morariu, M.

    1976-01-01

    The intermetallic binary compounds Ysub(x)Fesub(y)(YFe 2 ,YFe 3 ,Y 6 Fe 23 ,Y 2 Fe 17 ), RFe 2 (R=Gd,Tb,Dy,Ho,Er and Tm) and the intermetallic pseudobinary compounds (Gdsub(x)Ysub(1-x))Fe 2 and Dy(Fesub(x)Nisub(1-x)) 3 were studied, using magnetic measurements and Moessbauer spectroscopy, in order to obtain information on their magnetic behaviour. The different models which describe magnetic interactions in rare-earths with 3d transition element compounds are reviewed. The magnetic hyperfine field Hsub(n) at the Fe 57 nucleus, measured by Moessbauer spectroscopy, depends on the atom position in the lattice, being sensitive to magnetic interactions with neighbouring atoms. The mean value of the magnetic hyperfine field, average Hsub(n) is proportional to the mean magnetic moment of the iron atom: average Hsub(n)/average μsub(Fe) approximately 150 kOe. The comparative study of the temperature dependence of average Hsub(n) and average μsub(Fe) values shows that this relation is valid for the whole range of magnetic ordering (T>Tsub(c)). The mean magnetic hyperfine fields at the Fe 57 nucleus in RFe 2 compounds depend on the rare-earth partner and vary approximative linearly with the Gennes factor. The spin reorientation diagram for the (Gdsub(x)Ysub(1-x))Fe 2 system is obtained. All results on Moessbauer spectroscopy are in good agreement with the magnetic measurements. The magnetic behaviour of iron atoms is justified using a model in which the most electrons are in a narrow band, so they could be considered localized, and the magnetic interactions between these atoms take place through a fraction (<5%) of 3d itinerant electrons. (author)

  15. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    Science.gov (United States)

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  16. Host material induced hyperfine structure of F{sup +} centres EPR spectra in CaS

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, Viktor, E-mail: viktor.seeman@ut.ee; Dolgov, Sergei; Maaroos, Aarne

    2017-05-15

    The hyperfine structure (HFS) of F{sup +} centres in CaS single crystals due to the interaction with {sup 33}S and {sup 43}Ca nuclei was observed in EPR spectra for the first time. Angular variations of the HFS were measured for rotation of magnetic field in {100} and {110} crystallographic planes. Using measured orientation-dependent EPR spectra and the EPR NMR program, the parameters of the spin Hamiltonian were determined. In case of {sup 33}S nucleus there is a strong dependence of the F{sup +} centre EPR spectrum on the quadrupole term whereas for {sup 43}Ca nucleus this dependence is insignificant.

  17. Magnetic order and crystal fields in the Pnma phases of Tm2BaTO5(T=Co and Ni)

    International Nuclear Information System (INIS)

    Harker, S.J.; Stewart, G.A.

    2000-01-01

    The magnetic ordering and crystal field interactions of the Pnma phases of both Tm 2 BaCoO 5 and Tm 2 BaNiO 5 are investigated by 169 Tm Moessbauer spectroscopy and the temperature-dependent hyperfine interactions are compared with those obtained elsewhere for Tm 2 BaCuO 5 . The Pnma phases are shown to order magnetically at temperatures of 3.5(2) K (Tm 2 BaCoO 5 ) and 4.85(5) K (Tm 2 BaNiO 5 ), the order being induced by the transition metal. For Tm 2 BaNiO 5 an additional first-order transition observed at T≤1.4 K is identified with the independent magnetic order of the thulium sub-lattice. (orig.)

  18. First-principles calculations of Moessbauer hyperfine parameters for solids and large molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guenzburger, Diana [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Ellis, D.E. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Zeng, Z. [Academia Sinica, Hefei, AH (China). Inst. of Solid-State Physics

    1997-10-01

    Electronic structure calculations based on Density Functional theory were performed for solids and large molecules. The solids were represented by clusters of 60-100 atoms embedded in the potential of the external crystal. Magnetic moments and Moessbauer hyperfine parameters were derived. (author) 22 refs., 8 figs., 1 tab.

  19. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    Science.gov (United States)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  20. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  1. Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

    Science.gov (United States)

    Hummel, Frederic; Fey, Christian; Schmelcher, Peter

    2018-04-01

    We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.

  2. Quark color-hyperfine interactions in baryons

    International Nuclear Information System (INIS)

    Anselmino, M.; Lichtenberg, D.B.

    1990-01-01

    We consider the contribution from the color-hyperfine interaction to the energies of groundstate hadrons, with an emphasis on baryons. We use experimental information about how the color-hyperfine term depends on flavor to make predictions about the masses of baryons containing a heavy quark. We then generalize some relations between color-hyperfine matrix elements in mesons and baryons to obtain a number of additional predictions about the masses of as-yet unobserved baryons. Most of our predictions are in the form of inequalities. (orig.)

  3. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  4. Recombination yield of geminate radical pairs in low magnetic fields - A Green's function method

    International Nuclear Information System (INIS)

    Doktorov, A.B.; Hansen, M.J.; Pedersen, J. Boiden

    2006-01-01

    An analytic expression for the recombination yield of a geminate radical pair with a single spin one half nuclei is derived. The expression is valid for any field strength of the static magnetic field. It is assumed that the spin mixing is caused solely by the hyperfine interaction of the nuclear spin and the difference in Zeeman energies of the two radical partners, that the recombination occurs at the distance of closest approach, and that there is a locally strong dephasing at contact. This is a special result of a new general approach where a Green's function technique is used to recast the stochastic Liouville equation into a low dimensional matrix equation that is particularly convenient for locally strong dephasing systems. The equation is expressed in terms of special values (determined by the magnetic parameters) of the Green's function for the relative motion of the radicals and it is therefore valid for any motional model, e.g. diffusion, one and two site models. The applicability of the strong dephasing approximation is illustrated by comparison with numerical exact results

  5. Solvent, isotope, and magnetic field effects in the geminate recombination of radical ion pairs

    International Nuclear Information System (INIS)

    Werner, H.; Staerk, H.; Weller, A.

    1978-01-01

    The magnetic field dependence of the geminate recombination triplet yield of radical ion pairs generated via photoinduced electron transfer in polar solvents is investigated for the systems pyrene/N,N-dimethylaniline (Py/DMA), pyrene/3,5-dimethoxy-N,N-dimethylaniline (Py/DMDMA), and the perdeuterated system Py-d 10 /DMA-d 11 . The magnetic field dependence characterized through its B/sub 1/2/ value is found to be dependent on the sum of the hyperfine coupling constants in the radical pair in agreement with previous theoretical predictions. A drastic reduction of the B/sub 1/2/ value is observed with the perdeuterated system. By means of measurements of the radical ion and triplet absorption signals with nanosecond time resolution, the influence of the solvent on the geminate singlet and triplet recombination yields is investigated. Complementary measurements of exciplex lifetimes and quantum yields are carried out in a series of solvents with different polarities in order to determine the rate constants of fluorescence emission and intersystem crossing in the exciplexes

  6. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    Science.gov (United States)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  7. Magnetic and Moessbauer studies on GdCo3B2 and DyCo3B2

    International Nuclear Information System (INIS)

    Malik, S.K.; Umarji, A.M.; Shenoy, G.K.

    1984-10-01

    Magnetization and Moessbauer studies have been carried out on GdCo 3 B 2 and DyCo 3 B 2 . These compounds are magnetically ordered with Curie temperatures of 56 0 and 21 0 K respectively. The Co atoms are either nonmagnetic or carry a small moment in these compounds. The saturation moment of DyCo 3 B 2 at 5 0 K is smaller than the Dy 3+ free-ion value. From 161 Dy Moessbauer studies, the measured hyperfine magnetic field at the Dy site is also observed to be smaller than the free-ion value. 155 Gd Moessbauer measurements in GdCo 3 B 2 reveal the presence of large crystalline electric fields at the rare earth site. This causes the moment and the hyperfine field at the Dy site in DyCo 3 B 2 to be reduced from its free-ion value

  8. Macroscopic and microscopic magnetism of metal-metalloid amorphous alloys

    International Nuclear Information System (INIS)

    Vasconcellos, M.A.Z.; Fichtner, P.F.P.; Livi, F.P.; Costa, M.I. da; Baibich, M.N.

    1984-01-01

    In this paper is investigated the interrelation between macroscopic and microscopic magnetic phenomena using experimetnal data from Moessbauer effect and the magnetization of layers of amorphous (Fe 1-x Ni x ) 80 B 20 . The Moessbauer effect measurement show a distribution of hyperfine fields in Fe site as well as a likely distribution of isomeric shifts (M.W.O.) [pt

  9. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practically...... independent of temperature. Ms increases with decreasing temperature according to an effective Bloch law with an exponent larger than 1.5, as expected for fine magnetic particles. The model of magnetic particles with uniaxial anisotropy and the actual size distribution gives a consistent description...... of independent measurements of the temperature dependence of the hyperfine field and the isothermal magnetization versus field. From this an effective anisotropy constant of about 4.5x10 4 J m-3 is estimated for a particle with diameter 7.5 nm. The magnetic relaxation, as observed in zero...

  10. Electronic structure and magnetic properties of dilute U impurities in metals

    Science.gov (United States)

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  11. Ga nuclear magnetic resonance study of UTGa5(T = Ni,Pt)

    International Nuclear Information System (INIS)

    Kato, Harukazu; Sakai, Hironori; Tokunaga, Yo; Tokiwa, Yoshihumi; Ikeda, Shugo; Onuki, Yoshichika; Kambe, Shinsaku; Walstedt, Russell E

    2003-01-01

    Ga nuclear magnetic resonance measurements have been carried out for the 5f antiferromagnets UNiGa 5 and UPtGa 5 . The transferred field at the Ga nuclei has been evaluated. The magnetic structure in the antiferromagnetic region has been confirmed from the microscopic point of view. The mechanism of the hyperfine interaction is discussed

  12. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  13. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  14. Hyperfine interactions in the cubic semiconductor CdO

    International Nuclear Information System (INIS)

    Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M.

    1990-01-01

    The time-differential perturbed angular correlation technique has been applied using 111 In probes, which decay through electron capture to 111 Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 degree C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around V zz =0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions

  15. Hyperfine interactions in the cubic semiconductor CdO

    Energy Technology Data Exchange (ETDEWEB)

    Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Argentina (AR))

    1990-01-15

    The time-differential perturbed angular correlation technique has been applied using {sup 111}In probes, which decay through electron capture to {sup 111}Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 {degree}C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around {ital V}{sub {ital zz}}=0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions.

  16. Uniaxial in-plane magnetization of iron nanolayers grown within an amorphous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, M., E-mail: mohammad.ghafari@kit.edu; Hahn, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattheis, R. [Leibniz Institute for Photonic Technology IPHT, Jena (Germany); McCord, J. [Institute for Materials Science, Kiel University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Brand, R. A. [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Macedo, W. A. A. [Laboratório de Física Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), 31270-901 Belo Horizonte, MG (Brazil)

    2014-08-18

    Conversion electron Mössbauer spectroscopy is used to determine the magnetic ground state at zero magnetic field of four-monolayer thick amorphous iron layers as part of a CoFeB-Fe multilayer stack. By comparing the intensities of the magnetic hyperfine field, an easy in-plane axis of the amorphous embedded Fe layer is verified, which is collinear to the uniaxial anisotropy axis of the neighboring amorphous CoFeB. Despite the soft magnetic character of the Fe layers, external fields up to 4 T perpendicular to the film plane are insufficient to completely align the embedded Fe moments parallel to the magnetic field due to a local disorder of the magnetic moments of the Fe atoms.

  17. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    Energy Technology Data Exchange (ETDEWEB)

    Volotka, A.V.

    2006-07-01

    Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be

  18. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    International Nuclear Information System (INIS)

    Volotka, A.V.

    2006-01-01

    Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be

  19. High field Moessbauer study of dilute Ir-(Fe) alloys

    International Nuclear Information System (INIS)

    Takabatake, Toshiro; Mazaki, Hiromasa; Shinjo, Teruya.

    1981-01-01

    The magnetic behavior of very dilute Fe impurities in Ir has been studied by means of Moessbauer measurement in external fields up to 80 kOe at 4.2 K. The saturation hyperfine field increases in proportion to the external field up to the maximum magnetic field available. This means that for a localized spin fluctuation system IrFe, the effective magnetic moment associated with Fe impurities is induced in proportion to the external field. No anomalous spectrum was observed with a very dilute sample (--10 ppm 57 Co), indicating that the interaction between impurities is responsible for the anomalous spectrum previously observed with a less homogeneous sample. (author)

  20. Time-resolved luminescence measurements of the magnetic field effect on paramagnetic photosensitizers in photodynamic reactions

    Science.gov (United States)

    Mermut, O.; Bouchard, J.-P.; Cormier, J.-F.; Desroches, P.; Diamond, K. R.; Fortin, M.; Gallant, P.; Leclair, S.; Marois, J.-S.; Noiseux, I.; Morin, J.-F.; Patterson, M. S.; Vernon, M.

    2008-02-01

    The development of multimodal molecular probes and photosensitizing agents for use in photodynamic therapy (PDT) is vital for optimizing and monitoring cytotoxic responses. We propose a combinatorial approach utilizing photosensitizing molecules that are both paramagnetic and luminescent with multimodal functionality to perturb, control, and monitor molecular-scale reaction pathways in PDT. To this end, a time-domain single photon counting lifetime apparatus with a 400 nm excitation source has been developed and integrated with a variable low field magnet (0- 350mT). The luminescence lifetime decay function was measured in the presence of a sweeping magnetic field for a custom designed photosensitizing molecule in which photoinduced electron transfer was studied The photosensitizer studied was a donor-acceptor complex synthesized using a porphyrin linked to a fullerene molecule. The magneto-optic properties were investigated for the free-base photosensitizer complex as well as those containing either diamagnetic (paired electron) or paramagnetic (unpaired electron) metal centers, Zn(II) and Cu(II). The magnetic field was employed to affect and modify the spin states of radical pairs of the photosensitizing agents via magnetically induced hyperfine and Zeeman effects. Since the Type 1 reaction pathway of an excited triplet state photosensitizer involves the production of radical species, lifetime measurements were conducted at low dissolved oxygen concentration (0.01ppm) to elucidate the dependence of the magnetic perturbation on the photosensitization mechanistic pathway. To optimize the magnetic response, a solvent study was performed examining the dependence of the emission properties on the magnetic field in solutions of varying dielectric constants. Lastly, the cytotoxicity in murine tumor cell suspensions was investigated for the novel porphyrin-fullerene complex by inducing photodynamic treatments and determining the associated cell survival.

  1. Hyperfine structure in 5s4d 3D-5snf transitions of 87Sr

    International Nuclear Information System (INIS)

    Bushaw, B.A.; Kluge, H.J.; Lantzsch, J.; Schwalbach, R.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.

    1993-01-01

    The hyperfine spectra of the 5s4d 3 D 1 -5s20f, 5s4d 3 D 2 -5s23f, and 5s4d 3 D 3 -5s32f transitions of 87 Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a 5s and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d 3 D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)

  2. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  3. PREPARATION AND MAGNETIC-PROPERTIES OF AMORPHOUS FE1-XBX (15-LESS-THAN-OR-EQUAL-TO X LESS-THAN-40 ATMOSPHERIC PERCENT) ALLOY PARTICLES

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, S.

    1992-01-01

    Amorphous Fe1-xBx alloy particles have been prepared in aqueous solutions by reduction of Fe2+ ions to the metallic state by the use of NaBH4. It is demonstrated, that by changing the pH of the aqueous metal ion solution the amount of boron incorporated in the alloy particles can be varied between...... 15 and 28 at.%. Fe-57 Mossbauer spectra have been obtained at 10, 80 and 295 K. The hyperfine parameters for amorphous particles have been found to be similar to those found for ribbons and films prepared by the liquid-quench and sputtering techniques, respectively, though with a tendency...... for the magnetic hyperfine fields for the chemically prepared and sputter prepared alloys to deviate slightly from those for melt-spun samples. The magnetic hyperfine fields decrease linearly as a function of T3/2....

  4. Hyperfine interactions studies in perovskite oxides of the type LaMO3 (M = Fe, Cr, Mn and Co)

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    2004-01-01

    ABO 3 -type perovskite oxides have ideal cubic structure and usually show distortions to the orthorhombic or rombohedric symmetry. The A and B siteshave 12-fold and 6-fold oxygen coordination, respectively. Distortions of thecubic structure give rise to new electric, structural and magnetic propertieswhich have great technological and scientific interests. Magnetic dipole and electric quadrupole hyperfine interaction measurements were obtained using 111 In -> 111 Cd , 181 Hf -> 181 Ta e 140 La -> 140 Ceradioactive nuclei substituting for the A or B sites via Perturbed Angulargamma-gamma Correlation technique (1-4) . LaMO 3 (M = Fe, Cr, Mn and Co)samples were prepared through the chemical route known as Sol-Gel techniqueand analyzed with x-ray diffraction. Both 111 In and 181 Hf nuclei wereintroduced in to the sample during the chemical procedure and the 140 Lawas obtained by irradiating with neutrons in the IPEN reactor the natural Lapresent in the samples. One of the aims of this work was the analysis of theElectric Field Gradient (EFG) in the A and B sites as function oftemperature, crystal structure or the electronic characteristic of thetransition metal in the B site. The temperature range of the measurements wasabout from 4 K to 1400 K. The experimental EFG showed to be dependent of thesite occupation and the nuclear probe used in the measurements. Spintransition phenomena were also observed in LaCoO 3 samples, which confirmed amodel used to interpret the spin properties in such compound.Crystallographic phase transition effects on the hyperfine parameters inperovskites where M = Fe, Cr and K4n were also analyzed. An additional aim ofthis work was to carry out measurements in the antiferromagnetic region ofthe systems with M = Fe, Cr and Mn using the three radioactive nuclei. Theresults for the magnetic interaction measurements showed a strong influenceof the substitutional sites in the supertransferred magnetic hyperfine fieldfor all the three probe nuclei

  5. EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA

    Energy Technology Data Exchange (ETDEWEB)

    Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, CZ-12116 Prague 2 (Czech Republic)

    2016-06-20

    The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction. In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.

  6. The microscopic NMR probe in chiral magnets. Zero field-, field-modulated- and Skyrmion- states in FeGe and MnSi

    Energy Technology Data Exchange (ETDEWEB)

    Baenitz, Michael; Yasuoka, Hiroshi; Majumder, Mayukh; Khuntia, Panchanan; Schmidt, Marcus [MPI for the Chemical Physics of Solids, Dresden (Germany); Witt, Sebastian; Krellner, Cornelius [Goethe University, Frankfurt am Main (Germany)

    2016-07-01

    Cubic FeGe is a prototype B20 chiral magnet (T{sub c} = 280 K) which allows to study chiral correlations directly ''on-site'' via the{sup 57}Fe nucleus because of its S=1/2 nuclear spin interacting only with the electron spin moment. NMR provides the static and dynamic staggered local magnetization M{sub Q} through the hyperfine field (H{sub hf}) and the spin lattice relaxation rate (SLRR = 1/T{sub 1}). Measurements were performed on randomly oriented {sup 57}Fe enriched FeGe single crystals between 2-300 K. Helical-, conical- and field-polarized-states could be clearly identified and spin dynamics of each phase was investigated. MnSi single crystals and {sup 29}Si enriched MnSi polycrystals were studied by {sup 29}Si-NMR (S=1/2) in the ordered state (T{sub c} = 29 K) and above. The T- and H- dependence of H{sub hf} and SLRR was investigated in great detail for both FeGe and MnSi.The {sup 29}Si-NMR lines in MnSi are narrow and H{sub hf}-values obtained are smaller than in FeGe. Our results are in general accordance with the extended SCR theory for itinerant helical magnets, although the theory does not include the symmetry breaking in the B20 structure and the multi-band nature. For FeGe correlations are complex due to its more localized magnetism.

  7. ZERO-FIELD NUCLEAR MAGNETIC RESONANCE FOR STUDY OF ANTIFERROMAGNETIC PROPERTIES OF FeF3 MATERIALS

    Directory of Open Access Journals (Sweden)

    G. R. F. Suwandi

    2016-01-01

    Full Text Available Nuclear Magnetic Resonance (NMR has been used as a research tool in many fields. In this study, the magnetic properties, especially anti-ferromagnetic properties of FeF3 materials were investigated. Zero-field custom-built NMR method was used to investigate the anti-ferromagnetic properties in the materials. Experiments have been carried out by varying the sample temperatures from 8 K to 220 K. Ordinary spin echo pulse sequence 90⁰RF–τ–180⁰RF were used. Using Fast Fourier Transform, the signals in NMR spectrum were analyzed and the peak showed the resonance frequency. The result showed that resonance frequencies decrease with increasing in temperature. The frequency of the spectrum was around 85.41 MHz in the zero-temperature limit, and this corresponds with Fe hyperfine field at zero-temperature limit was 2.14 T. The temperature dependence of the local magnetization does not fit T2 Bloch’s Law very well. Instead, it fits the exponential form having an energy gap in the dispersion relation of the spin wave. It is obtained from the result that FeF3 is antiferromagnetic materials with energy gap of 11.466 meV and anisotropy energy of 1.045 meV.Nuclear Magnetic Resonance (NMR telah banyak digunakan sebagai “research tool” pada berbagai bidang kajian di fisika. Pada studi ini, akan dilakukan eksperimen untuk menguji sifat magnetik, khususnya antiferromagnetik pada material FeF3. Telah dilakukan eksperimen dengan memvariasikan temperatur pada sampel dari 8 K hingga 220 K. Pulse sequence yang digunakan adalah 90⁰RF–τ–180⁰RF. Dengan memanfaatkan Fast Fourier Transform, sinyal echo ini dapat dianalisis dalam bentuk spektrum NMR dengan puncak spektrum menunjukkan frekuensi resonansinya. Diperoleh bahwa frekuensi resonansi akan menurun seiring dengan kenaikan temperatur. Posisi frekuensi pada temperatur 0 K adalah sebesar 85,41 MHz, hal ini memperlihatkan bahwa medan hyperfine dari Fe sebesar 2,14 T pada temperatur 0 K. Kurva

  8. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  9. Hyperfine interactions of /sup 12/B implanted in ferromagnetic nickel

    Energy Technology Data Exchange (ETDEWEB)

    Hamagaki, H; Nojiri, Y; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Nakai, K

    1979-12-01

    Temperature dependences of hyperfine interactions of /sup 12/B implanted in Ni were investigated in the temperature range of 6 K - 730 K by the NMR method with use of polarized /sup 12/B produced in a nuclear reaction and the asymmetric ..beta.. decay. Two kinds of hyperfine fields with different signs were observed (B sub(hf)sup(+) = +4.161 +- 0.022 kG and B sub(hf)sup(-) = -1.611 +- 0.021 kG at 6 K), which indicated that the implanted /sup 12/B were trapped in two different sites (S/sup +/ and S/sup -/, respectively). The spin-lattice relaxation times T/sub 1/ and the population rates at the two sites were studied. Near the Curie temperature, an effect of critical slowing-down of the spin-spin correlation was observed as steep variation of T/sub 1/. The behavior of local field around T sub(C) was also studied by varying the external field. Results of these experiments near T sub(C) indicate itinerant nature of the electron-spin structure in nickel.

  10. Density functional study of electronic, magnetic and hyperfine properties of [M(CN)5 NO]2- (M=Fe, Ru) and reduction products

    International Nuclear Information System (INIS)

    Gomez, J.A.; Guenzburger, Diana

    1999-06-01

    The Discrete Variational method (DVM) in density functional theory was employed to investigate the electronic structure of the complexes [Fe(CN) 5 NO] 2- (Nitroprusside), [Fe(CN) 5 NO] 3- , [Fe(CN) 4 NO] 2- , [Ru(CN) 5 NO] 2- and [Ru(CN) 5 NO] 3- . Total energy calculations revealed that in pentacyano nitrosyl ferrate (I) and pentacyano nitrosyl ruthenate (I), which are paramagnetic ions containing one unpaired electron, the M-N-O angle is bent, having values of 152.5 deg and 144 deg, respectively. From self-consistent spin-polarized calculations, the distribution of unpaired electron in the paramagnetic complexes [Fe(CN) 5 NO] 3, [Fe(CN) 4 NO] 2- and [Ru(CN) 5 NO] 3- was obtained as well as spin-density maps. A long-standing controversy regarding the configuration of [Fe(CN) 5 NO] 3- was elucidated, and it was found that the unpaired electron in this complex is in an orbital primarily localized on π * (NO). Moessbauer quadrupole splittings on Fe and Ru were derived from calculations of the electric-field gradients. Magnetic hyperfine coupling constants on No of the NO ligand were also obtained for the paramagnetic complexes. (author)

  11. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  12. The effect of water content on the magnetic and structural properties of goethite

    International Nuclear Information System (INIS)

    Betancur, J.D.; Barrero, C.A.; Greneche, J.M.; Goya, G.F.

    2004-01-01

    We have studied the effect of water content on the magnetic and structural properties of goethite. For that purpose, four samples were prepared using two different hydrothermal methods, one of them is derived on the Fe(II) precursors and the other one from Fe(III) precursors. The samples were characterized by X-ray diffraction (XRD), TGA, BET, FTIR, Moessbauer spectrometry at RT, 77 and 4.2 K and ZFC and FC curves. The results suggest that the goethites from the Fe(II) precursors are less crystalline, have higher water contents and do not show magnetic ordered structure at RT in comparison to the goethites from the Fe(III) precursors. The goethites from the last systems exhibit good crystallinity, low water content and magnetic ordering at room temperature. Our results suggest that both structural and adsorbed water contents reduce the magnetic hyperfine field at 4.2 K. A linear correlation with regression coefficient of 0.91 between the saturation hyperfine field and both the structural hydroxyl content and the surface area could be derived

  13. Amorphous magnetism in Mnx Sn1-x alloys

    International Nuclear Information System (INIS)

    Drago, V.; Saitovitch, E.M.B.; Abd-Elmeguid, M.M.

    1988-01-01

    Systematic low temperature in situ 119 Sn Moessbauer effect (ME) studies in vapor quenched amorphous Mn x Sn 1-x (0.09≤ x ≤0,95) alloys between 150 and 4.2 K, are presented. Its is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions, at the 119 Sn site. A complete magnetic phase diagram is proposed, and the effect of an external magnetic field (up to about 3T) on the spin correlations in the spin-glass state is also discussed. (author) [pt

  14. Experimental investigation of vector static magnetic field detection using an NV center with a single first-shell 13C nuclear spin in diamond

    Science.gov (United States)

    Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Jiang, Jun; Ma, Kun; Yan, Xin-Hu; Lv, Hai-Jiang

    2018-05-01

    We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy (NV) color center with a nearest neighbor 13C nuclear spin in diamond to detect the strength and direction (including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance (ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor 13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave (CW) spectrum. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Education Department Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).

  15. Magnetic moments of high spin rotational states in 158Dy and 164Dy+

    International Nuclear Information System (INIS)

    Seiler-Clark, G.

    1983-09-01

    For the study of their magnetic moments yrast states in 158 Dy and 164 Dy were excited via the multiple-Coulomb excitation by a 4.7 MeV/u 208 Pb beam. Hereby especially the question was of interest, how the one-particle effects in the nuclear structure in the region of the backbending anomaly in 158 Dy take effects on the g-factors of the high spin states in this region. The particle-γ angular correlations perturbed in the transient magnetic field during the passing of the excited Dy ions through a thin magnetized iron foil were measured. By the selective position-sensitive detection of Dy recoil ions and Pb projectiles under forward angles it was possible to determine additionally to the g-factors in the backbending region also g-factors in the spin region I 158 Dy and 164 Dy by detection of the particle-γ correlations precessing in the static hyperfine field after implantation in iron. The static hyperfine field was at the 4 + state in 164 Dy determined to B (Dy,Fe) = 245+-25 T. The g-factors were determined by comparison of the experimental results with calculations of the perturbed angular correlations by time-differential regarding of the population and de-excitation of the yrast states as well as by precession and hyperfine-relaxation effects during the flight of the Dy ions in the vacuum. (orig./HSI) [de

  16. Magnetic and hyperfine interactions in HoFe{sub 1−x}Cr{sub x}O{sub 3} (0≤x≤1) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kotnana, Ganesh [Magnetic Materials and Device Physics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad 502285 (India); Reddy, V. Raghavendra [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452001 (India); Jammalamadaka, S. Narayana, E-mail: surya@iith.ac.in [Magnetic Materials and Device Physics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad 502285 (India)

    2017-05-01

    We report on the magnetic and Mössbauer properties of polycrystalline HoFe{sub 1-x}Cr{sub x}O{sub 3} (0≤x≤1) compounds. Magnetization data reveals the continuous tailoring of magnetic transition due to weakening of Ho{sup 3+}-Fe{sup 3+} and Fe{sup 3+}-Fe{sup 3+} interactions in the entire temperature range by replacing the Fe{sup 3+} ions with Cr{sup 3+} ions. The observed decrease in Néel temperature (T{sub N}) and increase in spin re-orientation transition temperature (T{sub SR}) with the replacement of Fe{sup 3+} with Cr{sup 3+} is ascribed to the weakening of Fe(Cr)-O-Fe(Cr) antiferromagnetic exchange interaction. In addition, we also attribute such a change in T{sub N} to the enhancement of ferromagnetic interaction of adjacent Cr{sup 3+} moments through t-e hybridization as a result of the structural distortion. The decrease in isomer shift (IS) suggests enhancement of the interaction between nuclear charge with the 3s electrons as a result of decrease in radial part of 3d wave function with Cr addition. In this paper we also discuss about the variation of quadrupole splitting (QS) and hyperfine fields (H{sub hf}) with Cr addition in HoFe{sub 1-x}Cr{sub x}O{sub 3} (0≤x≤1) compounds. - Highlights: • Magnetic and Mössbauer properties of HoFe{sub 1-x}Cr{sub x}O{sub 3} (0≤x≤1) compounds. • T{sub N} changes due to weakening of Ho{sup 3+}-Fe{sup 3+} and Fe{sup 3+}-Fe{sup 3+} interactions with Cr. • The decrease in isomer shift (IS) is due to decrease in radial part of 3d wavefunction. • Octahedral distortion leads to increase in quadrupole splitting.

  17. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  18. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  19. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  20. Magnetic properties of PrMn2-xFexGe2-57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Wang, J L; Campbell, S J; Cadogan, J M; Tegus, O; Studer, A J; Hofmann, M

    2006-01-01

    We have investigated the magnetic behaviour of PrMn 2-x Fe x Ge 2 compounds with x = 0.4, 0.6 and 0.8 over the temperature range 4.2-350 K using ac magnetic susceptibility, dc magnetization and 57 Fe Moessbauer effect spectroscopy, as well as neutron diffraction for the PrMn 1.2 Fe 0.8 Ge 2 compound. Replacement of Mn with Fe leads to contraction of the unit cell and a shortening of the Mn-Mn spacing, resulting in modification of the magnetic structure. PrMn 1.6 Fe 0.4 Ge 2 is an intralayer antiferromagnet at room temperature and ferromagnetic below T C inter ∼230 K with additional ferromagnetic ordering of the Pr sublattice detected below T C Pr ∼30 K. Re-entrant ferromagnetism has been observed in PrMn 1.4 Fe 0.6 Ge 2 with four magnetic transitions (T N intra ∼333 K, T C inter ∼168 K, T N inter ∼152 K and T C Pr ∼40 K). Moreover, it was found that T C inter and T C Pr increase with applied field while T N inter decreases. PrMn 1.2 Fe 0.8 Ge 2 is antiferromagnetic with T N intra ∼242 K and T N inter ∼154 K. The magnetic transition temperatures for all compounds are also marked by changes in the 57 Fe magnetic hyperfine field and the electric quadrupole interaction parameters. The 57 Fe transferred hyperfine field at 4.5 K in PrMn 1.6 Fe 0.4 Ge 2 and PrMn 1.4 Fe 0.6 Ge 2 is reduced (below the ordering temperature of the Pr sublattice) compared with that at 80 K (above T C Pr ), indicating that the transferred hyperfine field from Pr acts in the opposite direction to that from the Mn atoms. The neutron data for PrMn 1.2 Fe 0.8 Ge 2 demonstrate that an anisotropic thermal expansion occurs within the interplanar antiferromagnetic range

  1. Theory of trapping of muon and muonium and associated hyperfine interactions in the organic ferromagnet p-NPNN (β-phase)

    International Nuclear Information System (INIS)

    Jeong, J.; Briere, T.M.; Ohira, S.; Sahoo, N.; Nishiyama, K.; Nagamine, K.; Das, T.P.

    2003-01-01

    The ab initio unrestricted Hartree-Fock procedure has been applied to determine the trapping sites for the positive muon and muonium in β-phase ferromagnetic para-nitrophenyl nitronyl nitroxide and to calculate the associated electronic wave functions from which the corresponding contact and dipolar terms in the spin Hamiltonians have been obtained. For muonium, trapping sites were found near the oxygens of the two NO groups, resulting in a singlet electronic state for the overall molecular system, and also near the two oxygens of the NO 2 group, resulting in a triplet state for the overall system. For the muon a total of four trapping sites was found, corresponding to the oxygen and nitrogen atoms of the two NO groups. Using the easy axis along the b-axis of the orthorhombic sublattice, as found from muon spin rotation (μSR) measurements, and the calculated magnetic hyperfine interaction parameters, the observed 2.1 MHz zero-field μSR signal is assigned to the singlet state corresponding to muonium trapping near the oxygen of one of the NO groups. The large hyperfine constant of about 400 MHz inferred from longitudinal field repolarization measurements is assigned to a positive muon trapped near the nitrogen atom of one of the NO groups

  2. Magnetic moment of {sup 48}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)

    2007-11-15

    Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.

  3. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  4. Crystallographic, hyperfine and magnetic characterization of a maraging-400 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Alves, T. J. B.; Nunes, G. C. S. [Universidade Estadual de Maringá (Brazil); Sarvezuk, P. W. C. [Universidade Tecnológica Federal do Paraná (Brazil); Ivashita, F. F. [Universidade Estadual de Maringá (Brazil); Andrade, A. M. H. de [Universidade Federal do Rio Grande do Sul (Brazil); Viegas, A. [Universidade Federal de Santa Catarina (Brazil); Paesano, A., E-mail: andrea.paesano@pq.cnpq.br [Universidade Estadual de Maringá (Brazil)

    2017-11-15

    Maraging400-like alloys were made by arc-melting iron with the alloy elements (i.e., Ni, Co, Ti and Mo), followed by a high temperature heat-treatment for solubilization. The solubilized alloys were further heat-treated (480 °C and 580 °C, by 3 h), for aging. The samples were finely characterized by X-ray diffraction (Rietveld refinement), Mössbauer spectroscopy and magnetization techniques. The results revealed that the as-solubilized sample is martensitic and ferromagnetic. Its residual induction and coercive field increase monotonically with the maximum applied field of a magnetization minor loop and both curves presented very similar shapes. The area of the minor loops varies parabolically with this maximum applied field. The aging induced an atomic rearrangement in the martensite phase, involving change in the composition and lattice parameters, reversion of austenite and the formation of the Fe {sub 3} Mo {sub 2} intermetallic compound. Comparisons are presented between the results obtained by us for these alloys and those obtained for Maraging-350 steel samples.

  5. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles.

    Science.gov (United States)

    El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L

    2017-06-26

    Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

  6. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  7. Measurement of the hyperfine structure of the 31D2, 41D2, 51D2 levels of helium 3

    International Nuclear Information System (INIS)

    Lemery, H.; Hamel, J.; Barrat, J.-P.

    1981-01-01

    It is well known that, in a discharge in 3 He, the nuclear spins in the ground state can be oriented through metastability exchange, by optical pumping of the metastable 2 3 S 1 atoms. The orientation is transmitted to the other levels excited in the discharge. If the nuclear spins in the ground state are submitted to magnetic resonance, the light emitted from these excited states is modulated at the R.F. field frequency. The degree of modulation is important only near a level crossing, in zero field or in non-zero field. This method has been used to determine the hyperfine structure of the 3 1 D 2 , 4 1 D 2 , 5 1 D 2 levels. The results are in good agreement with those of previous measurements and with theoretical predictions [fr

  8. Optogalvanic spectroscopy of the hyperfine structure of weak La I lines: discovery of new even parity fine structure levels

    International Nuclear Information System (INIS)

    Siddiqui, Imran; Khan, Shamim; Gamper, B; Windholz, L; Dembczyński, J

    2013-01-01

    The hyperfine structure of weak La I lines was experimentally investigated using laser optogalvanic spectroscopy in a hollow cathode discharge lamp. More than 100 La I lines were investigated and 40 new energy levels were discovered, most of them having even parity. The magnetic hyperfine interaction constants A and in some cases the electric quadrupole interaction constants B for these levels were determined. All the newly discovered levels were confirmed either by additional laser excitations (from other known levels) or by lines in a Fourier transform spectrum which could now be classified. (paper)

  9. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  10. Hyperfine interaction studies of radon in some metals and metal oxides with the alpha-gamma angular correlation method

    International Nuclear Information System (INIS)

    Orre, B.; Norlin, L.O.; Johansson, K.; Falk, F.; Thun, J.E.

    1975-11-01

    The α-γ angular correlation method has been applied to 226 Ra and 224 Ra decay with emphasis on source and backing preparations. A simple method to prepare sources suitable for hyperfine interaction studies has been developed, namely to implant the 224 Ra activity into the backing by recoil implantation in vacuum from a 228 Th source. A high voltage should be applied, which considerably improved the profile of the implantation. The hyperfine interactions in Fe,Co,Gd,Ni were measured and analysed according to a random static quadrupole interaction combined with an aligned magnetic interaction. (Auth.)

  11. Hyperfine structure of S-states of muonic tritium

    Directory of Open Access Journals (Sweden)

    Martynenko F.A.

    2017-01-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we carry out a precise calculation of hyperfine splitting of S-states in muonic tritium. The one-loop and two-loop vacuum polarization corrections, relativistic effects, nuclear structure corrections in first and second orders of perturbation theory are taken into account. The contributions to hyperfine structure are obtained in integral form and calculated analytically and numerically. Obtained results for hyperfine splitting can be used for a comparison with future experimental data of CREMA collaboration.

  12. Modification of structural and magnetic properties of soft magnetic multi-component metallic glass by 80 MeV {sup 16}O{sup 6+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S.N., E-mail: kane_sn@yahoo.com [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Shah, M.; Satalkar, M.; Gehlot, K. [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Kulriya, P.K.; Avasthi, D.K. [Inter-University Accelerator Centre, P.O. Box No. 10502, Aruna Asaf Ali Marg, New Delhi 110067 (India); Sinha, A.K. [Raja Ramanna Centre for Advanced Technology, P.O. CAT, Indore 452013 (India); Modak, S.S. [Physics Department, Jaypee University of Eng. & Tech., A-B Road, Raghogarh, Guna 473226 (India); Ghodke, N.L.; Reddy, V.R. [UGC-DAE CSR, University Campus, Khandwa Road, Indore 452001 (India); Varga, L.K. [RISSPO, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest (Hungary)

    2016-07-15

    Effect of 80 MeV {sup 16}O{sup 6+} ion irradiation in amorphous Fe{sub 77}P{sub 8}Si{sub 3}C{sub 5}Al{sub 2}Ga{sub 1}B{sub 4} alloy is reported. Electronic energy loss induced modifications in the structural and, magnetic properties were monitored by synchrotron X-ray diffraction (SXRD), Mössbauer and, magnetic measurements. Broad amorphous hump seen in SXRD patterns reveals the amorphous nature of the studied specimens. Mössbauer measurements suggest that: (a) alignment of atomic spins within ribbon plane, (b) changes in average hyperfine field suggests radiation-induced decrease in the inter atomic distance around Mössbauer (Fe) atom, (c) hyperfine field distribution confirms the presence of non-magnetic elements (e.g. – B, P, C) in the first near-neighbor shell of the Fe atom, thus reducing its magnetic moment, and (d) changes in isomer shift suggests variation in average number of the metalloid near neighbors and their distances. Minor changes in soft magnetic behavior – watt loss and, coercivity after an irradiation dose of 2 × 10{sup 13} ions/cm{sup 2} suggests prospective application of Fe{sub 77}P{sub 8}Si{sub 3}C{sub 5}Al{sub 2}Ga{sub 1}B{sub 4} alloy as core material in accelerators (radio frequency cavities).

  13. First principles calculations of the magnetic and hyperfine properties of Fe/N/Fe and Fe/O/Fe multilayers in the ground state of cohesive energy

    Science.gov (United States)

    dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.

    2015-01-01

    -O multilayers. Firstly, the formation energy and the cohesive energy of the multilayers are discussed. For optimised values, the cohesive energy of the multilayers to obtain the lattice parameters at the equilibrium ground state was used, i.e. a new methodology for this calculus was applied. Secondly, the magnetic properties and hyperfine interactions (magnetic field, electric field gradient and the isomer shift) of the iron atoms of the multilayers are discussed.

  14. Hyperfine structure in 5s4d [sup 3]D-5snf transitions of [sup 87]Sr

    Energy Technology Data Exchange (ETDEWEB)

    Bushaw, B.A. (Pacific Northwest Lab., Richland, WA (United States)); Kluge, H.J. (Mainz Univ. (Germany). Inst. fuer Physik); Lantzsch, J. (Mainz Univ. (Germany). Inst. fuer Physik); Schwalbach, R. (Mainz Univ. (Germany). Inst. fuer Physik); Stenner, J. (Mainz Univ. (Germany). Inst. fuer Physik); Stevens, H. (Mainz Univ. (Germany). Inst. fuer Physik); Wendt, K. (Mainz Univ. (Germany). Inst. fuer Physik); Zimmer, K. (Mainz Univ. (Germany). Inst. fuer Physik)

    1993-12-01

    The hyperfine spectra of the 5s4d[sup 3]D[sub 1]-5s20f, 5s4d[sup 3]D[sub 2]-5s23f, and 5s4d[sup 3]D[sub 3]-5s32f transitions of [sup 87]Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a[sub 5s] and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d[sup 3]D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)

  15. Theoretical and experimental investigation of atomic radiative lifetimes and hyperfine structures

    International Nuclear Information System (INIS)

    Joensson, Per.

    1992-01-01

    Atomic radiative lifetimes and hyperfine structures as well as other properties, such as total energy and specific mass shift, have been studied theoretically and experimentally. Computer programs to calculate hyperfine structure constants from non-relativistic multiconfiguration Hartree-Fock (MCHF) and relativistic multi-configuration Dirac-Fock (MCDF) wavefunctions have been written. Using these programs large-scale calculations of hyperfine structures in lithium and sodium have been performed. It is shown, that the MCHF method is able to predict hyperfine structures to an accuracy of a few per mille in lithium, whereas for the more complex hyperfine structures to an accuracy of a few per mille in lithium, whereas for the more complex sodium atom an accuracy of a few per cent is obtainable. For lithium convergence of the total energy, ionization energy, specific mass shift and hyperfine parameters has been studied with the MCHF method. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay curves following VUV excitation, the radiative lifetimes and hyperfine structures of the 7p 2 P states in silver were measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest P states in sodium and silver

  16. Magnetic moment of a bound electron

    CERN Document Server

    Czarnecki, Andrzej; Mondejar, Jorge; Piclum, Jan H

    2010-01-01

    Theoretical predictions underlying determinations of the fine structure constant alpha and the electron-to-proton mass ratio m_e/m_p are reviewed, with the emphasis on the bound electron magnetic anomaly g-2. The theory of the interaction of hydrogen-like ions with a magnetic field is discussed. The status of efforts aimed at the determination of O(alpha (Z alpha)^5) and O(alpha^2 (Z alpha)^5) corrections to the g factor is presented. The reevaluation of analogous corrections to the Lamb shift and the hyperfine splitting is summarized.

  17. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  18. Magnetic structure and spin dynamics of the ground state of the molecular cluster Mn12O12 acetate studied by 55Mn NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2001-01-01

    55 Mn nuclear magnetic resonance (NMR) measurements have been carried out in an oriented powder sample of Mn12 acetate at low temperature (1.4--3 K) in order to investigate locally the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. We report the observation of three 55 MnNMR lines under zero external magnetic field. From the resonance frequency and the width of the lines we derive the internal hyperfine field and the quadrupole coupling constant at each of the three nonequivalent Mn ion sites. From the field dependence of the spectrum we obtain a direct confirmation of the standard picture, in which spin moments of Mn 4+ ions (S=3/2) of the inner tetrahedron are polarized antiparallel to that of Mn 3+ ions (S=2) of the outer ring with no measurable canting from the easy axis up to an applied field of 6 T. It is found that the splitting of the 55 Mn-NMR lines when a magnetic field is applied at low temperature allows one to monitor the off-equilibrium population of the molecules in the different low lying magnetic states. The measured nuclear spin-lattice relaxation time T 1 strongly depends on temperature and magnetic field. The behavior could be fitted well by considering the local-field fluctuations at the nuclear 55 Mn site due to the thermal reorientation of the total S=10 spin of the molecule. From the fit of the data one can derive the product of the spin-phonon coupling constant times the mean-square value of the fluctuating hyperfine field. The two constants could be estimated separately by making some assumptions. The comparison of the mean-square fluctuation from relaxation with the static hyperfine field from the spectrum suggests that nonuniform terms (q≠0) are important in describing the spin dynamics of the local Mn moments in the ground state

  19. Interface influence on the properties of Co{sub 90}Fe{sub 10} films on soft magnetic underlayers – Magnetostrictive and Mössbauer spectrometry studies

    Energy Technology Data Exchange (ETDEWEB)

    Szumiata, Tadeusz, E-mail: t.szumiata@uthrad.pl [Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Street, 26-600 Radom (Poland); Gzik-Szumiata, Małgorzata; Brzózka, Katarzyna; Górka, Bogumił; Gawroński, Michał [Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Street, 26-600 Radom (Poland); Caruana Finkel, Anastasia; Reeves-McLaren, Nik; Morley, Nicola A. [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2016-03-01

    The main aim of the work was to show the correlation between magnetostrictive properties and microstructure of 25 nm thick Co{sub 90}Fe{sub 10} films deposited on soft magnetic underlayers. A special attention was paid to the role of the interface region. In the case of Co{sub 90}Fe{sub 10} on 25 nm and 35 nm thick METGLAS underlayers one can resolve in conversion electron Mössbauer spectra two hyperfine field distributions (high-field and medium-field ones) corresponding to both constituents of bilayers. Analogical distributions describe the spectra of Co{sub 90}Fe{sub 10} on 25 nm and 35 nm thick Ni{sub 81}Fe{sub 19} underlayers, however an additional low-field, smeared component has been observed. It has been attributed to the interface layer (of partially disordered structure) between magnetostrictive layer and soft magnetic layer. Such interpretation is backed up by the obtained strong correlation between mean hyperfine field value and magnetostriction constant of the films. The investigated bilayers are good candidates for MRAM devices. - Highlights: • We investigate Co–Fe thin films on the soft magnetic underlayers. • We measured magnetostriction and collected conversion electron Mössbauer spectra. • In the case of Permalloy underlayer a rapid drop of magnetostriction was observed. • Strong correlation between magnetostriction and hyperfine fields was shown. • Our results point to the essential role of the Co–Fe/underlayer interface.

  20. Matrix elements of hyperfine structure operators in the SL and jj representations for the s, pN, and dN configurations and the SL-jj transformation

    International Nuclear Information System (INIS)

    Childs, W.J.

    1997-01-01

    Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p N , and d N configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs

  1. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  2. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  3. Strong Magnetic Field Characterisation

    Science.gov (United States)

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  4. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  5. 1H NMR spectra of vertebrate [2Fe-2S] ferredoxins. Hyperfine resonances suggest different electron delocalization patterns from plant ferredoxins

    International Nuclear Information System (INIS)

    Skjeldal, L.; Markley, J.L.; Coghlan, V.M.; Vickery, L.E.

    1991-01-01

    The authors report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. These results indicate that the contact-shifted resonances in the reduced vertebrate ferredoxins detect different spin magnetization from those in the reduced plant ferredoxins and suggest that plant and vertebrate ferredoxins have fundamentally different patterns of electron delocalization in the reduced [2Fe-2S] center

  6. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  7. Magnetic fluid bridge in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.

    2017-01-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  8. Magnetic fluid bridge in a non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.

    2017-06-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  9. Nuclear Magnetic Resonance and Unstable Rare-Earth Magnetism in CERIUM-ALUMINUM(3)

    Science.gov (United States)

    Lysak, Michael Jerry

    ('27)Al nuclear magnetic resonance (NMR) experiments have been carried out in the unstable-moment compound CeAl(,3) to probe the nature of the hyperfine field at the ('27)Al site, and to obtain effective Ce-4f spin fluctuation rates. From the reported Fermi-fluid-like properties of CeAl(,3) at low temperatures, a characteristic temperature T(,char)(TURN)0.5K is estimated, below which electron-electron correlations are strong. A change of slope in a plot of the ('27)Al isotropic frequency shift K(,i) versus the susceptibility (chi) in the temperature range 1.5-20K is therefore probably not associated with a change in the hyperfine interaction at T(,char). NMR absorption spectra of CeAl(,3) qualitatively indicate a considerable anisotropy in the ('27)Al shift below 20K, which increases with decreasing temperature or increasing applied field. Since these K((chi)) anomalies begin to occur at a temperature of the order of the lowest crystal-electric-field (CEF) splitting of the Ce-ion states as derived from neutron quasielastic scattering, they are tentatively attributed to CEF effects which can cause anisotropy in the hyperfine interaction. The observed increase in the ('27)Al spin-lattice relaxation rate 1/T(,1) from 300K to a broad mximum near 10K is ascribed to possible electron-spin pair-correlation and/or CEF effects. The behavior of the effective 4f-spin fluctuation rate indicates the onset of short-range spatial correlations between the Ce-4f spins at low temperatures, but the nature of these correlations is uncertain due to difficulties in reconciling the NMR and neutron data. If such short -range correlations are assumed to be absent at 300K comparison of NMR and neutron results indicates that an effective number n(,eff) = 7(2) of Ce neighbors are hyperfine coupled to a given ('27)Al nucleus. A paramagnon theory of the susceptibility as proposed by Beal-Monod and Lawrence suggested that CeAl(,3) might be an exchange-enhanced system. A susceptibility

  10. Dynamics of solar magnetic fields. VI. Force-free magnetic fields and motions of magnetic foot-points

    International Nuclear Information System (INIS)

    Low, B.C.; Nakagawa, Y.

    1975-01-01

    A mathematical model is developed to consider the evolution of force-free magnetic fields in relation to the displacements of their foot-points. For a magnetic field depending on only two Cartesian coordinates and time, the problem reduces to solving a nonlinear elliptic partial differential equation. As illustration of the physical process, two specific examples of evolving force-free magnetic fields are examined in detail, one evolving with rising and the other with descending field lines. It is shown that these two contrasting behaviors of the field lines correspond to sheared motions of their foot-points of quite different characters. The physical implications of these two examples of evolving force-free magnetic fields are discussed. (auth)

  11. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  12. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  13. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  14. Ground-state magnetization of the molecular cluster Mn12O12-acetate as seen by proton NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Jang, Z. H.; Lascialfari, A.; Borsa, F.; Gatteschi, D.

    2000-01-01

    1 H nuclear magnetic resonance (NMR) measurements have been carried out in Mn 12 O 12 -acetate clusters at low temperature in order to investigate microscopically the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. Below liquid helium temperature it is found that the local hyperfine fields at the proton sites are static as expected for the very slow superparamagnetic relaxation of Mn 12 O 12 at low temperature. The magnitude and distribution of the hyperfine fields can be reproduced to a good approximation by considering only the dipolar interaction of protons with the local Mn magnetic moments and by assigning the magnitude and orientation of the local moments of the different Mn 3+ and Mn 4+ ions according to an accepted coupling scheme for the total S=10 ground state. The relaxation time of the macroscopic magnetization of the cluster was measured by monitoring the change of the intensity of the 1 H-NMR shifted lines following inversion of the applied magnetic field. This is possible because the sudden change of the field orientation changes the sign of the shift of the NMR lines in the proton spectrum. Although important differences are noticed, the relaxation time of the magnetization as measured indirectly by the 1 H-NMR method is comparable to the one obtained directly with a superconducting quantum interference device magnetometer. In particular we could reproduce the minima in the relaxation time as a function of magnetic field at the fields for level crossing, minima which are considered to be a signature of the quantum tunneling of the magnetization

  15. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  16. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  17. Behaviour of magnetic superconductors in a magnetic field

    International Nuclear Information System (INIS)

    Buzdin, A.I.

    1984-01-01

    The behaviour of magnetic superconductors with close ferromagnetic and superconducting transition temperatures in a magnetic field is considered. It is shown that on lowering of the temperature the superconducting transition changes from a second to first order transition. The respective critical fields and dependence of the magnetization on the magnetic field and temperature are found. The magnetization discontinuity in the vortex core in magnetic superconductors is noted. Due to this property and the relatively large scattering cross section, magnetic superconductors are convenient for studying the superconducting vortex lattice by neutron diffraction techniques

  18. Method of regulating magnetic field of magnetic pole center

    International Nuclear Information System (INIS)

    Watanabe, Masao; Yamada, Teruo; Kato, Norihiko; Toda, Yojiro; Kaneda, Yasumasa.

    1978-01-01

    Purpose: To provide the subject method comprising using a plurality of magnetic metal pieces having different thicknesses, regulating very easily symmetry of the field of the magnetic pole center depending upon the combination of said metal pieces, thereby obtaining a magnetic field of high precision. Method: The regulation of magnetic field at the central part of the magnetic field is not depending only upon processing of the center plug, axial movement of trim coil and ion source but by providing a magnetic metal piece such as an iron ring, primary higher harmonics of the field at the center of the magnetic field can be regulated simply while the position of the ion source slit is on the equipotential surface in the field. (Yoshihara, H.)

  19. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  20. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  1. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  2. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  3. Origin and orientation of electric field gradient in ordered FeNi

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.; Ellis, D.E.

    1987-01-01

    The electronic structure of tetrataenite, the ordered phase of Fe Ni, has been studied in the molecular cluster approximation using local density theory. Clusters containing 13 and 19 atoms were embedded in the fcc host lattice and spin-unrestricted potentials were iterated to self-consistency. Local moments, magnetic hyperfine fields and electric field gradients (EFG) at the iron sites were determined for comparison with experiment. (Author) [pt

  4. On the use of Mossbauer spectroscopy for characterisation of iron oxides and oxyhydroxides in soils

    DEFF Research Database (Denmark)

    Mørup, Steen; Ostenfeld, Christopher Worsøe

    2001-01-01

    An empirical expression for the dependence of the magnetic hyperfine field on the aluminium content and the particle size in iron oxides and oxyhydroxides is often used in Mossbauer studies of soil samples. According to this expression, the reduction of the hyperfine field in nanometer-sized part...... on the magnetic hyperfine splitting in Mossbauer spectra of magnetic nanoparticles. Therefore, an analysis of data, based on the empirical expression, which only takes into account the particle size and the aluminium content, can give erroneous results.......An empirical expression for the dependence of the magnetic hyperfine field on the aluminium content and the particle size in iron oxides and oxyhydroxides is often used in Mossbauer studies of soil samples. According to this expression, the reduction of the hyperfine field in nanometer...... discrepancy in the case of non-interacting hematite nanoparticles (accidentally) can be explained by the size dependence of the magnetic anisotropy constant. However, it is also pointed out that a third parameter, namely the strength of the inter-particle interactions, can have a significant influence...

  5. Effect of Tm substitution on the magnetic properties and local magnetic anisotropy of amorphous Fe80-xTm xB20 ribbons

    International Nuclear Information System (INIS)

    Sayouty, E.H.; Annouar, F.; Lassri, H.; Randrianantoandro, N.; Greneche, J.M.

    2005-01-01

    We have carried out magnetic and Moessbauer studies of amorphous Fe 80-x Tm x B 20 alloys (0 ≤ x ≤ 16). With an increasing Tm content, both the Curie temperature T C and the magnetic moment of Fe atom μ Fe decrease. We have extracted the value of exchange constant A from T C and that of the local magnetic anisotropy constant K L from the coercivity. Moessbauer studies were performed in a transmission geometry and also using the conversion electron spectroscopy. Both Moessbauer spectrometry techniques show that the average hyperfine field decreases linearly with the addition of rare-earth

  6. Hyperfine spectra of the radioactive isotopes 81Kr and 85Kr

    International Nuclear Information System (INIS)

    Cannon, B.D.

    1993-01-01

    Isotope shifts and hyperfine constants are reported for the radioactive isotopes 81 Kr and 85 Kr and the stable isotope 83 Kr. The previously unreported nuclear moments of 81 Kr were determined to be μ I =-0.909(4) nuclear magneton and Q=+0.630(13) b from the hyperfine constants. This work increases the number of transitions for which 85 Kr hyperfine constants and isotope shifts have been measured from 1 to 4. The hyperfine anomaly for krypton reported in the previous measurement of 85 Kr hyperfine constants [H. Gerhardt et al., Hyperfine Interact. 9, 175 (1981)] is not supported by this work. The isotope shifts and hyperfine constants of 83 Kr measured in this work are in excellent agreement with previous work. Saturation spectroscopy was used to study transitions from krypton's metastable 1s 5 state to the 2p 9 , 2p 7 , and 2p 6 states. In saturation spectra, different line shapes were observed for the even- and odd-mass krypton isotopes. This even- versus odd-line-mass shape difference can be explained using the large cross section that has been reported for collisional transfer of the 1s 5 state excitation between krypton atoms. Two-color two-photon laser-induced fluorescence was used to measure the hyperfine spectra of the 1s 5- 4d 4 ' transition using the 2p 9 state as the intermediate state. This technique proved to be more sensitive than saturation spectroscopy

  7. Nuclear magnetic resonance study of (Y[sub 1-x]R[sub x])[sub 2]Co[sub 14]B compounds (R=Gd, Tb)

    Energy Technology Data Exchange (ETDEWEB)

    Myojin, T. (Takamatsu National Coll. of Technology, Takamatsu (Japan)); Hayashi, M. (Takamatsu Coll. (Japan)); Ohno, T. (Faculty of Engineering, Tokushima Univ. (Japan)); Imaeda, Y. (Faculty of Engineering, Tokushima Bunri Univ., Shido (Japan)); Ushida, T. (Faculty of Engineering, Tokushima Bunri Univ., Shido (Japan)); Tsujimura, A. (Faculty of Engineering, Tokushima Bunri Univ., Shido (Japan)); Hihara, T. (Faculty of Integrated Arts and Sciences, Hiroshima Univ. (Japan))

    1993-03-15

    Influence of the Gd spin on the Co hyperfine field has been studied by [sup 59] Co nuclear magnetic resonance (NMR) in (Y[sub 1-x]Gd[sub x])[sub 2]Co[sub 14]B compounds. It is shown that the hyperfine coupling constants from the Gd spin for 8j[sub 1] and 8j[sub 2] sites are negative while those for 16k[sub 1] and 16k[sub 2] sites are positive. The dependence of the spin orientation temperature on the non-magnetic Y concentration in (Y[sub 1-x]Tb[sub x])[sub 2]Co[sub 14]B is also investigated by magnetization and [sup 59]Co NMR measurements. A spin phase diagram for this compound is proposed. (orig.)

  8. Hyperfine splitting of low-lying heavy baryons

    Energy Technology Data Exchange (ETDEWEB)

    Harada, M.; Qamar, A.; Schechter, J. [Syracuse Univ., NY (United States). Dept. of Physics; Sannino, F. [Syracuse Univ., NY (United States). Dept. of Physics]|[Dipartimento di Scienze Fisiche and Istituto Nazionale di Fisica Nucleare, Mostra D`Oltremare Pad. 19, 80125, Napoli (Italy); Weigel, H. [Institute for Theoretical Physics, Tuebingen University, Auf der Morgenstelle 14, D-72076, Tuebingen (Germany)

    1997-11-10

    We calculate the next-to-leading order contribution to the masses of the heavy baryons in the bound-state approach for baryons containing a heavy quark. These 1/N{sub C} corrections arise when states of good spin and isospin are generated from the background soliton of the light meson fields. Our study is motivated by the previously established result that light vector meson fields are required for this soliton in order to reasonably describe the spectrum of both the light and the heavy baryons. We note that the inclusion of light vector mesons significantly improves the agreement of the predicted hyperfine splitting with experiment. A number of aspects of this somewhat complicated calculation are discussed in detail. (orig.). 33 refs.

  9. Magnetic and Moessbauer studies of amorphous Fe72-xYxHo8B20 alloys

    International Nuclear Information System (INIS)

    Krishnan, R.; Dumond, Y.; Ajan, A.; Shringi, S.N.; Prasad, S.

    1996-01-01

    We have carried out magnetic and Moessbauer studies of amorphous Fe 72-x Y x Ho 8 B 20 alloys. The Fe moment decreases with the addition of Y and a magnetic compensation occurs at 4 K for x=16. The temperature and field dependences of the magnetization have been interpreted using the mean field theory and Chudnovsky's model, respectively. These analyses yield some interesting parameters such as the random anisotropy, the exchange interactions J Fe-Fe , J Fe-Ho , etc. The Moessbauer studies show that the average hyperfine field decreases linearly with the addition of Y, in accordance with the decrease in the Fe moment. (orig.)

  10. Structural and magnetic characterization of maghemites prepared from Al-substituted magnetites

    Directory of Open Access Journals (Sweden)

    Marcelo Augusto Batista

    2013-12-01

    Full Text Available Synthetic aluminum-substituted maghemites were characterized by total chemical analysis, powder X-ray diffraction (XRD, Mössbauer spectroscopy (ME, and vibrating sample magnetometry (VSM. The aim was to determine the structural, magnetic, and hyperfine properties of γ-Fe2-xAl xO3 as the Al concentration is varied. The XRD results of the synthetic products were indexed exclusively as maghemite. Increasing Al for Fe substitution decreased the mean crystalline dimension and shifted all diffraction peaks to higher º2θ angles. The a0 dimension of the cubic unit cell decreased with increasing Al according to the equation a o = 0.8385 - 3.63 x 10-5 Al (R²= 0.94. Most Mössbauer spectra were composed of one sextet, but at the highest substitution rate of 142.5 mmol mol-1 Al, both a doublet and sextet were obtained at 300 K. All hyperfine parameters from the sub-spectra were consistent with high-spin Fe3+ (0.2 a 0.7 mms-1 and suggested a strong superparamagnetic component associated with the doublet. The magnetic hyperfine field of the sextets decreased with the amount of Al-substitution [Bhf (T = 49.751 - 0.1202Al; R² = 0.94] while the linewidth increased linearly. The saturation magnetization also decreased with increasing isomorphous substitution.

  11. Isotope shifts and hyperfine splittings in 144-154Sm I

    International Nuclear Information System (INIS)

    England, J.G.; Grant, I.S.; Newton, G.W.A.; Walker, P.M.

    1990-01-01

    The isotope shifts and hyperfine splittings have been measured in 144-154 Sm I using the crossed-beam laser fluorescence method. Transitions at 598.98 nm and 570.68 nm were investigated for all isotopes except 146 Sm and 153 Sm, in which measurements were only obtained at 570.68 nm. Laser-induced fluorescence has not previously been reported for 145 Sm. The magnetic dipole and electric quadrupole moments of the odd isotopes and the changes in mean square radii of the even ones are shown to be consistent with the information obtained from nuclear spectroscopy. (author)

  12. Analysis of Hydrogen Cyanide Hyperfine Spectral Components towards Star Forming Cores

    Directory of Open Access Journals (Sweden)

    Loughnane R. M.

    2011-12-01

    Full Text Available Although hydrogen cyanide has become quite a common molecular tracing species for a variety of astrophysical sources, it, however, exhibits dramatic non-LTE behaviour in its hyperfine line structure. Individual hyperfine components can be strongly boosted or suppressed. If these so-called hyperfine line anomalies are present in the HCN rotational spectra towards low or high mass cores, this will affect the interpretation of various physical properties such as the line opacity and excitation temperature in the case of low mass objects and infall velocities in the case of their higher mass counterparts. Anomalous line ratios are present either through the relative strengths of neighboring hyperfine lines or through the varying widths of hyperfine lines belonging to a particular rotational line. This work involves the first observational investigation of these anomalies in two HCN rotational transitions, J=1→0 and J=3→2, towards both low mass starless cores and high mass protostellar objects. The degree of anomaly in these two rotational transitions is considered by computing the ratios of neighboring hyperfine lines in individual spectra. Results indicate some degree of anomaly is present in all cores considered in our survey, the most likely cause being line overlap effects among hyperfine components in higher rotational transitions.

  13. Magnetic resonance of field-frozen and zero-field-frozen magnetic fluids

    International Nuclear Information System (INIS)

    Pereira, A.R.; Pelegrini, F.; Neto, K. Skeff; Buske, N.; Morais, P.C.

    2004-01-01

    In this study magnetic resonance was used to investigate magnetic fluid samples frozen under zero and non-zero (15 kG) external fields. The magnetite-based sample containing 2x10 17 particle/cm 3 was investigated from 100 to 400 K. Analysis of the temperature dependence of the resonance field revealed bigger magnetic structures in the frozen state than in the liquid phase. Also, differences in the mesoscopic organization in the frozen state may explain the data obtained from samples frozen under zero and non-zero fields

  14. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  15. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  16. Numerical Simulations of Hyperfine Transitions of Antihydrogen

    CERN Document Server

    Kolbinger, B.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Widmann, E.

    2015-02-04

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  17. Numerical simulations of hyperfine transitions of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbinger, B., E-mail: bernadette.kolbinger@oeaw.ac.at; Capon, A.; Diermaier, M.; Lehner, S. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Widmann, E. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria)

    2015-08-15

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  18. Theoretical study of in-plane response of magnetic field sensor to magnetic beads magnetized by the sensor self-field

    DEFF Research Database (Denmark)

    Hansen, Troels Borum Grave; Damsgaard, Christian Danvad; Dalslet, Bjarke Thomas

    2010-01-01

    We present a theoretical study of the spatially averaged in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead, a monolayer of magnetic beads, and a half-space filled with magnetic beads being magnetized by the magnetic self-field due to the applied...... bias current through the sensor. The analysis of the single bead response shows that beads always contribute positively to the average magnetic field as opposed to the case for an applied homogeneous magnetic field where the sign of the signal depends on the bead position. General expressions...... and analytical approximations are derived for the sensor response to beads as function of the bead distribution, the bias current, the geometry and size of the sensor, and the bead characteristics. Consequences for the sensor design are exemplified and it is described how the contribution from the self...

  19. Hyperfine excitation of OH+ by H

    Science.gov (United States)

    Lique, François; Bulut, Niyazi; Roncero, Octavio

    2016-10-01

    The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.

  20. Towards Measuring the Ground State Hyperfine Splitting of Antihydrogen -- A Progress Report

    CERN Document Server

    Sauerzopf, C.

    2016-06-20

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  1. Radiative Improvement of the Lattice Nonrelativistic QCD Action Using the Background Field Method and Application to the Hyperfine Splitting of Quarkonium States

    International Nuclear Information System (INIS)

    Hammant, T. C.; Horgan, R. R.; Monahan, C. J.; Hart, A. G.; Hippel, G. M. von

    2011-01-01

    We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.

  2. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  3. Improved Study of the Antiprotonic Helium Hyperfine Structure

    CERN Document Server

    Pask, T.; Dax, A.; Hayano, R.S.; Hori, M.; Horvath, D.; Juhasz, B.; Malbrunot, C.; Marton, J.; Ono, N.; Suzuki, K.; Zmeskal, J.; Widmann, E.

    2008-01-01

    We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n,l) = (37,~35) carried out at the Antiproton Decelerator (AD) at CERN. We performed a laser-microwave-laser resonance spectroscopy using a continuous wave (cw) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of five and reduced the line width by a factor of three compared to our previous results. A comparison of the experimentally measured transition frequencies with three body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.

  4. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  5. Non-equilibrium magnetic properties of melt-spun Nd60Fe30Al10 alloys

    International Nuclear Information System (INIS)

    Sato Turtelli, R.; Sinnecker, J.P.; Steiner, W.; Wiesinger, G.; Groessinger, R.; Triyono, D.

    2003-01-01

    The temperature, frequency and DC-field dependence of the AC-susceptibility has been investigated on melt-spun Nd 60 Fe 30 Al 10 . The temperature dependence of the AC-susceptibility shows an anomalous behavior, which depends strongly on the applied heat treatment and exhibits a cluster-like characteristic. Similar to the time dependence of the coercivity, a magnetic after-effect is present for temperatures higher than 50 K. 57 Fe Moessbauer spectra can be analyzed by two hyperfine field distributions pointing to two phases with quite different magnetic moments on the Fe sites

  6. Determination of the magnetic moment of $^{140}$Pr

    CERN Multimedia

    Kowalska, M; Kreim, K D; Krieger, A R; Litvinov, Y

    We propose to measure the nuclear magnetic moment of the neutron-deficient isotope $^{140}$Pr using collinear laser spectroscopy at the COLLAPS experiment. This nuclide is one of two nuclear systems for which a modulated electron capture decay has been observed in hydrogen-like ions in a storage ring. The firm explanation of the observed phenomenon is still missing but some hypotheses suggest an interaction of the unpaired electron with the surrounding magnetic fields of the ring. In order to verify or discard these hypotheses the magnetic moment of $^{140}$Pr is required since this determines the energy of the 1s hyperfine splitting.

  7. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  8. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  9. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  10. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  11. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  12. Magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys

    Science.gov (United States)

    Krishnan, R.; Driouch, L.; Lassri, H.; Dumond, Y.; Ajan, Antony; Shringi, S. N.; Prasad, Shiva

    1996-11-01

    We have carried out magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys. The Fe moment decreases with the addition of Y and a magnetic compensation occurs at 4 K for x = 16. The temperature and field dependences of the magnetization have been interpreted using the mean field theory and Chudnovsky's model, respectively. These analyses yield some interesting parameters such as the random anisotropy, the exchange interactions JFe-Fe, JFe-Ho, etc. The Mössbauer studies show that the average hyperfine field decreases linearly with the addition of Y, in accordance with the decrease in the Fe moment.

  13. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  14. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  15. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  16. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  17. 57Fe Mössbauer study of unusual magnetic structure of multiferroic 3R-AgFeO2

    Science.gov (United States)

    Sobolev, A.; Rusakov, V.; Moskvin, A.; Gapochka, A.; Belik, A.; Glazkova, I.; Akulenko, A.; Demazeau, G.; Presniakov, I.

    2017-07-01

    We report new results of a 57Fe Mössbauer study of hyperfine magnetic interactions in the layered multiferroic 3R-AgFeO2 demonstrating two magnetic phase transitions at T N1 and T N2. The asymptotic value β *  ≈  0.34 for the critical exponent obtained from the temperature dependence of the hyperfine field H hf(T) at 57Fe the nuclei below T N1  ≈  14 K indicates that 3R-AgFeO2 shows quasi-3D critical behavior. The spectra just above T N1 (T N1  formula to describe the dependence of H anis on the distortions of the (FeO6) clusters. Analysis of different mechanisms of spin and hyperfine interactions in 3R-AgFeO2 and its structural analogue CuFeO2 points to a specific role played by the topology of the exchange coupling and the oxygen polarization in the delafossite-like structures.

  18. Magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  19. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  20. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  1. Hyperfine structure of muonic lithium ions

    Directory of Open Access Journals (Sweden)

    Alexey P. Martynenko

    2015-06-01

    Full Text Available On the basis of perturbation theory in fine structure constant $\\alpha$ and the ratio of electron to muon masses we calculate recoil corrections of order $\\alpha^4 (M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2\\ln(M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2$, $\\alpha^5(m_e/m_\\mu\\ln(m_e/m_\\mu$ to hyperfine splitting of the ground state in muonic lithium ions $(\\mu e ^6_3\\mathrm{Li}^+$ and $(\\mu e ^7_3\\mathrm{Li}^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu e ^6_3\\mathrm{Li}^+$ $\\Delta\

  2. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  3. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  4. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  5. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  6. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  7. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  8. Towards measuring the ground state hyperfine splitting of antihydrogen – a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sauerzopf, C., E-mail: clemens.sauerzopf@oeaw.ac.at; Capon, A. A.; Diermaier, M. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Dupré, P. [Atomic Physics Laboratory, RIKEN (Japan); Higashi, Y. [University of Tokyo, Institute of Physics, Graduate School of Arts and Sciences (Japan); Kaga, C. [Hiroshima University, Graduate School of Advanced Sciences of Matter (Japan); Kolbinger, B. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Leali, M. [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Lehner, S. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Rizzini, E. Lodi [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Malbrunot, C. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Mascagna, V. [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Massiczek, O. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Murtagh, D. J.; Nagata, Y.; Radics, B. [Atomic Physics Laboratory, RIKEN (Japan); Simon, M. C.; Suzuki, K. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Tajima, M. [University of Tokyo, Institute of Physics, Graduate School of Arts and Sciences (Japan); Ulmer, S. [Ulmer Initiative Research Unit, RIKEN (Japan); and others

    2016-12-15

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  9. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  10. Spin relaxation in nanowires by hyperfine coupling

    International Nuclear Information System (INIS)

    Echeverria-Arrondo, C.; Sherman, E.Ya.

    2012-01-01

    Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  12. Magnetic ordering in TmGa

    DEFF Research Database (Denmark)

    Cadogan, J.M.; Stewart, G.A.; Muños Pérez, S.

    2014-01-01

    We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and 169Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order...... of the Tm sublattice along the a-axis. The initial magnetic ordering occurs at 15(1) K and yields an incommensurate antiferromagnetic structure described by the propagation vector k1 = [0 0.275(2) 0]. At 12 K the dominant ferromagnetic ordering of the Tm sublattice along the a-axis develops in what appears...... to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The 169Tm hyperfine magnetic field...

  13. Hyperfine structure of S-states of muonic deuterium

    Directory of Open Access Journals (Sweden)

    Alexey P. Martynenko

    2015-09-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we calculate corrections of order $\\alpha^5$ and $\\alpha^6$ to hyperfine structure of $S$-wave energy levels of muonic deuterium. Relativistic corrections, effects of vacuum polarization in first, second and third orders of perturbation theory, nuclear structure and recoil corrections are taken into account. The obtained numerical values of hyperfine splitting $\\Delta E^{hfs}(1S=50.2814$ meV ($1S$ state and $\\Delta E^{hfs}(2S=6.2804$ meV ($2S$ state represent reliable estimate for a comparison with forthcoming experimental data of CREMA collaboration. The hyperfine structure interval $\\Delta_{12}=8\\Delta E^{hfs}(2S- \\Delta E^{hfs}(1S=-0.0379$ meV can be used for precision check of quantum electrodynamics prediction for muonic deuterium.

  14. Structure and magnetic behaviors of melt-spun SmFeSiB ribbons and their nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Zhang, K., E-mail: zhangkunone@gmail.com; Li, K.S.; Yu, D.B.; Ling, J.J.; Men, K.; Dou, Q.Y.; Yan, W.L.; Xie, J.J.; Yang, Y.F.

    2016-05-01

    SmFe{sub 9.3+x}Si{sub 0.2}B{sub 0.1} (x=0, 0.5, 1.0) ribbons and their nitrides were prepared by melt-spinning, followed by annealing and subsequent nitriding. The structure and magnetic properties have been investigated by means of powder X-ray diffraction, vibrating sample magnetometer and Mossbauer spectroscopy. Rietveld analysis shows that the augment of Fe content gives rise to an increase of the c/a ratio and cell volume. The increasing amount of Fe atoms occupying the 2e sites results in the change of initial structure. It is indicated that the isomer shift of 3g and 6l atom remains quasi-constant while the 2e atom shows a noticeable increase with the increase of iron content, which further conforms the preferential occupation of excessive Fe atoms at this site. Consistent with Tc, the mean hyperfine field 〈B{sub hf}〉 has the highest value of 25.7 T when x=0.5. The hyperfine fields at different Fe sites follow the order H2e>H3g>H6l. The highest curie temperature of 477.68 K and the hyperfine field of 25.7 T in the as-quenched ribbons were obtained when x=0.5. Meanwhile, the highest magnetic properties of H{sub cj}=4.31 kOe, (BH){sub m}=3.5 MGOe in the nitride powders were found. - Highlights: • Rietveld analysis shows that the augment of Fe content gives rise to an increase of the c/a ratio and cell volume. • The isomer shift of 2e atom shows a noticeable increase according to Fe content, which corroborates the preferential occupation of excessive Fe atoms at this site. • The hyperfine fields at various Fe sites follow the order H2e>H3g>H6l, which corresponds closely with the number of iron near neighbor of each site.

  15. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  16. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  17. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  18. Structural and intrinsic magnetic material parameters of Pr3(Fe,Ti)29 and Pr3(Fe,Ti)29Nx

    International Nuclear Information System (INIS)

    Psycharis, V.; Kalogirou, O.; Devlin, E.; Gjoka, M.; Simopoulos, A.; Niarchos, D.

    1996-01-01

    We report the study of the structural and the intrinsic magnetic properties of the Pr member of the newly discovered class of R 3 (Fe,Ti) 29 compounds and its nitride. The X-ray powder diffraction pattern of the alloy is indexed in monoclinic symmetry with lattice parameters a=10.647(1) A, b=8.6014(7) A, c=9.755(1) A and β=96.92(1) and the structure is described in the A2/m space group. Atomic positions and bond lengths are given. Nitrogenation results in a lattice expansion of 6.6% corresponding to ∝4 N atoms per formula unit. The Curie temperature is 392(5) K, and the saturation magnetization, the anisotropy field and the average hyperfine field at room temperature are 135.4 A m 2 /kg, 3.9 and 20.3 T, respectively. A magnetic phase transition is observed at ∝160 K. After nitrogenation the Curie temperature increases to 721(5) K, and the saturation magnetization to 174.8 A m 2 /kg, the anisotropy field 7.2 T and the average hyperfine field 30.1 T at room temperature. Moessbauer spectroscopy, X-ray powder diffraction and magnetization measurements on magnetically oriented powder samples provide evidence of the presence of an easy-cone-type magnetocrystalline anisotropy for both the parent and nitrided compounds in the temperature range 85-300 K. The cone angles calculated from the fitted Moessbauer spectra are 34 for the parent compound and 36 for the nitrided compound. (orig.)

  19. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  20. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  1. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  2. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  3. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  4. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  5. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1979-04-01

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  6. Muonium hyperfine parameters in Si1-x Ge x alloys

    International Nuclear Information System (INIS)

    King, Philip; Lichti, Roger; Cottrell, Stephen; Yonenaga, Ichiro

    2006-01-01

    We present studies of muonium behaviour in bulk, Czochralski-grown Si 1- x Ge x alloy material, focusing in particular on the hyperfine parameter of the tetrahedral muonium species. In contrast to the bond-centred species, the hyperfine parameter of the tetrahedral-site muonium centre (Mu T ) appears to vary non-linearly with alloy composition. The temperature dependence of the Mu T hyperfine parameter observed in low-Ge alloy material is compared with that seen in pure Si, and previous models of the Mu T behaviour in Si are discussed in the light of results from Si 1- x Ge x alloys

  7. Effects of magnetic atoms on the properties of ternary superconductors

    International Nuclear Information System (INIS)

    Dunlap, B.D.; Shenoy, G.K.

    1980-01-01

    Until recently it has been commonly accepted that small impurities of magnetic atoms were severely detrimental to superconductivity, and that superconductivity and long-range magnetic ordering could not occur in the same materials. In known binary and pseudo-binary compounds, this is still the case. However, many recent experiments on ternary superconductors have shown that the effects of magnetism are considerably more complex. In some cases, the addition of magnetic atoms has been found to enhance superconducting properties by increasing the superconducting critical field, without significantly lowering the transition temperature. In many cases, compounds will show both superconducting and long range magnetic ordering transitions. The destruction of superconductivity by ferromagnetic ordering and the coexistence of superconductivity with antiferromagnetic ordering is now well established. Hyperfine interaction measurements have played a significant role in the investigations of these materials, including measurement of the magnitude of the exchange interaction between rare-earth spin and conduction electron spin, elucidation of the mechanism for critical field enhancement, specification of crystalline field ground states, and studies of the nature of magnetic ordering

  8. Field dependent shape variation of magnetic fluid droplets on magnetic dots

    International Nuclear Information System (INIS)

    Lee, Chiun-Peng; Yang, Shu-Ting; Wei, Zung-Hang

    2012-01-01

    The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet. - Highlights: ► Morphology of ferrofluid droplets on magnetic thin film dots was studied experimentally. ► Aspect ratio of ferrofluid droplets was found to increase with increasing of magnetic field. ► Liquid–solid contact angle of ferrofluid droplets was found to vary with magnetic field. ► Relationship between magnetic field and the liquid–solid interfacial tension was modeled.

  9. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  10. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  11. The dynamic behavior of magnetic fluid adsorbed to small permanent magnet in alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.j [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Asano, Daisaku [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Takana, Hidemasa; Nishiyama, Hideya [Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577 (Japan)

    2011-05-15

    The dynamic behavior of a magnetic fluid adsorbed to a small NdFeB permanent magnet subjected to an alternating magnetic field was studied with a high speed video camera system. The directions of alternating magnetic field are parallel and opposite to that of the permanent magnet. It was found that the surface of magnetic fluid responds to the external alternating magnetic field in elongation and contraction with a lot of spikes. Generation of a capillary magnetic fluid jet was observed in the neighbourhood of a specific frequency of alternating field. The effect of gravitational force on surface phenomena of magnetic fluid adsorbed to the permanent magnet was revealed. - Research Highlights: Magnetic fluid of the system responds to alternating magnetic field with higher frequencies. Large-amplitude surface motions of magnetic fluid occur at the specific frequencies of the external field. Capillary jets of magnetic fluid are generated at the natural frequency of the system.

  12. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  13. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    Science.gov (United States)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  14. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    Science.gov (United States)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  15. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  16. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  17. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  18. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  19. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  20. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  1. Five years of magnetic field management

    International Nuclear Information System (INIS)

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  2. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  3. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  4. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  5. Spin dynamics on cyclic iron wheels in high magnetic fields

    International Nuclear Information System (INIS)

    Schnelzer, Lars

    2008-01-01

    In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe 6 (tea) 6 and Cs rate at Fe 8 (tea) 8 as probes of NMR both the protons and the centrally lying alkali atoms 7 Li, 23 Na, and 133 Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T∼30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the 23 Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe 6 (tea) 6 of eq=4.78(11).10 20 V/m 2 was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to θ(c,B)=62.8 . The very low splitting of the 7 Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10 20 V/m 2 . From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10 21 V/m 2 . The study of the field-dependent line position of the 23 Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A tHf /2π=140 kHz. For the first time on a cyclic iron cluster a level crossing could be studied by means of the central ion. The temperature dependence of the longitudinal

  6. Study on magnetic field mapping within cylindrical center volume of general magnet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2016-06-15

    For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.

  7. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  8. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  9. NMR study of the paramagnetic state of low-dimensional magnets LiCu{sub 2}O{sub 2} and NaCu{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sadykov, A. F., E-mail: sadykov@imp.uran.ru; Piskunov, Yu. V.; Gerashchenko, A. P.; Ogloblichev, V. V.; Smol’nikov, A. G.; Verkhovskii, S. V.; Arapova, I. Yu.; Volkova, Z. N.; Mikhalev, K. N. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation); Bush, A. A. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation)

    2017-02-15

    A comprehensive NMR study of the magnetic properties of single crystal LiCu{sub 2}O{sub 2} (LCO) and NaCu{sub 2}O{sub 2} (NCO) is carried out in the paramagnetic region of the compounds for various orientations of single crystals in an external magnetic field. The values of the electric-field gradient (EFG) tensor, as well as the dipole and transferred hyperfine magnetic fields for {sup 63,65}Cu, {sup 7}Li, and {sup 23}Na nuclei are determined. The results are compared with the data obtained in previous NMR studies of the magnetically ordered state of LCO/NCO cuprates.

  10. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  11. Magnetic interactions in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr, Nd and Gd) studied by time differential perturbed angular correlation spectroscopy and ab initio calculations.

    Science.gov (United States)

    Mishra, S N

    2009-03-18

    Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in

  12. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    International Nuclear Information System (INIS)

    Parker, E.N.

    1987-01-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references

  13. Hyperfine interaction in the Autler-Townes effect: The formation of bright, dark, and chameleon states

    Science.gov (United States)

    Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.

    2017-10-01

    This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.

  14. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    Science.gov (United States)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  15. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    International Nuclear Information System (INIS)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-01-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems

  16. Magnetic Fields in the Early Universe

    CERN Document Server

    Grasso, D; Grasso, D

    2001-01-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing to the reader with a short overview of the current state of art of observations of cosmic magnetic fields. We then illustrate the arguments in favour of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle physics inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise any...

  17. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  18. Study of hyperfine transient field acting on the O16 excited nuclei (6.13 MeV, 3-) crossing iron and gadolinium magnetic foils

    International Nuclear Information System (INIS)

    Dekhissi, H.

    1985-07-01

    Precise measurements of transient magnetic field in iron and gadolinium have been obtained for oxygen ion at velocities from 2 to 8V o . At high recoil velocity, a transient field twice higher in gadolinium than in iron has been observed; this is contradictory with general predictions on transient field proportional growing with matrice polarization density. The degree of polarization can be deduced from transient field with measuring the ion fraction having an unpaired electron in K level. The resulting degree has been compared with theoretical estimations based on spin exchange, molecular orbital method, and polarized electron direct capture, as well as polarization mechanisms of 1s level of O 16 . Empiric forms aimed at the calibration of this field have been also tested [fr

  19. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  20. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  1. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  2. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  3. Studies on structure and covalence effects on hyperfine interactions of AFeO sub(2) and BFeS sub(2) compounds by Moessbauer spectroscopy (A= Na, Cu, Ag, B= K, Rb, Cs, Na)

    International Nuclear Information System (INIS)

    Taft, C.A.

    1975-01-01

    The compounds AFeO sub(2) and BFeS sub(2) (A = Na, Cu, Ag, B = K, Rb, Cs, Na) were investigated by Moessbauer spectroscopy. The spectra were registered at temperature range from 4.2 sup(0) to 300 sup(0)K and magnetic transitions were observed determining correspondent temperatures by variation of hyperfine field. The electric field gradient of these compounds and perovskite type compounds (Pb sub(1-x) - Ba sub(x)) Zr O sub(3) were calculated and experimental part were determined by perturbed angular correlation, taking in account the effects of covalence, crystal lattice parameters and dipolar contributions. (M.C.K.)

  4. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  5. Experimental Constraints on Polarizability Corrections to Hydrogen Hyperfine Structure

    International Nuclear Information System (INIS)

    Nazaryan, Vahagn; Carlson, Carl E.; Griffioen, Keith A.

    2006-01-01

    We present a state-of-the-art evaluation of the polarizability corrections--the inelastic nucleon corrections--to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value Δ pol =1.3±0.3 ppm. This is 1-2 ppm smaller than the value of Δ pol deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits

  6. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  7. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  8. Crystalline electric field at the rare-earth sites in RxY1-xCo5+y compounds (R= Dy and Tb)

    International Nuclear Information System (INIS)

    Han Xiufeng; Jin Hanmin; Chen Hong; Guo Guanghua; Zhao Tiesong

    1992-01-01

    The magnetic properties of R x Y 1-x Co 5+y compounds are reproduced well by a calculation based on the single-ion model. The values of the exchange field H cx and crystalline-electric-field parameters A m n at the rare-earth ion sites in R x Y 1-x Co 5+y (R = Dy and Tb) are evaluated by fitting the calculations to the experiments. The experiments include the temperature dependence of the spontaneous magnetization, the temperature dependence of the normalized magnetic moments of the rare-earth ions, the temperature dependence of the cone angle, the magnetization curves along the crystal axes at 4.2 K, and the hyperfine field at the Dy ion site

  9. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  10. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    Science.gov (United States)

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  11. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping

    International Nuclear Information System (INIS)

    Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen; Chang Yung-Yung

    2011-01-01

    A system is designed to observe the phenomena of electromagnetically induced transparency and optical pumping in cesium D 1 and D 2 lines at room temperature. When a pump laser is frequency-locked on the top of a hyperfine transition and the frequency of the probe laser scans over another hyperfine transition, a spectrum of V-type electromagnetically induced transparency or an optical pumping can be observed depending on whether the two lasers share a common ground state. Therefore, these results can be used to identify the unknown hyperfine transitions of the D 1 line transitions. For educational purposes, this system is helpful for understanding the electromagnetically induced transparency and the optical pumping

  12. Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets

    International Nuclear Information System (INIS)

    McCallum, R. William

    2005-01-01

    For a uniaxial nanocrystalline magnetic material, the determination of the saturation magnetization, M s , requires measurements of the magnetization at fields which exceed the anisotropy field. For a typical RE-Tm compound, where RE=rare earth and Tm=transition metal, this may require fields above 7 T if the approach to saturation law is used. However for an isotropic material composed of a random distribution of non-interacting uniaxial grains, both M s and the anisotropy filed, H a , may be determined by fitting the Stoner-Wohlfarth (SW) model (Philos. Trans. Roy. Soc. 240 (1948) 599) to the reversible part of the demagnetization curve in the first quadrant. Furthermore, using the mean field interaction model of Callen, Liu and Cullen [2], a quantitative measure of the interaction strength for interacting particles may be determined. In conjunction with an analytical fit to the first quadrant demagnetization curve of the SW model, this allows M s , H a and the mean field interaction constant of a nanocrystalline magnet to be determined from measurements below 5 T. Furthermore, comparison of the model solution for the reversible magnetization with experimental data in the 2nd and 3rd quadrants allows the accurate determination of the switching field distribution. In many cases the hysteresis loop may be accurately described by a normal distribution of switching fields

  13. Calculation of the hyperfine constants of Vk center in CaF2, SrF2 and BaF2

    International Nuclear Information System (INIS)

    Bufaical, R.F.

    1975-03-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated, assuming a phenomenological model, based on the F 2 central molecule, to describe the wave function of the defect. The introduction of covalence, with the ions neighboring the central molecule, have shown that this is a better description for the defect than a simple central molecule model. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of these neighboring ions, which have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different methods have been used. A better description for the wave function of the defect is suggested

  14. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  15. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, V.I.; Andreev, V.; Ball, A.; Cure, B.; Herve, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L.I.; Virdee, T.

    2010-04-05

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  16. Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling

    Science.gov (United States)

    Qing-Hui, Wang; Xu-Ping, Shao; Xiao-Hua, Yang

    2016-01-01

    Hyperfine structures of ICl in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold ICl molecules. For example, an electric field of 1000 V/cm can trap ICl molecules less than 637 μK in the lowest hyperfine level. Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the National Basic Research Program of China (Grant No. 2011CB921602), and Qing Lan Project, China.

  17. Theorem on magnet fringe field

    International Nuclear Information System (INIS)

    Wei, Jie; Talman, R.

    1995-01-01

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b n ) and skew (a n ) multipoles, B y + iB x = summation(b n + ia n )(x + iy) n , where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ≡ ∫ B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar a n , bar b n , bar B x , and bar B y defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |Δp ∝ |, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |Δp 0 |, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B x from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  18. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  19. Magnetic field on board

    International Nuclear Information System (INIS)

    Estevez Radio, H.; Fernandez Arenal, C.A.

    1995-01-01

    Here, the calculation of the magnetic field on board ships is performed, using matrix calculus, in a similar way as when the magnetic field in matter is studied. Thus the final formulas are written in a more compact form and they are obtained through a simpler way, more suitable for the university education. (Author)

  20. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    International Nuclear Information System (INIS)

    Whang, Y. C.

    2010-01-01

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma β-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  1. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    Science.gov (United States)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  2. Establishment of magnetic coordinates for a given magnetic field

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1981-04-01

    A method is given for expressing the magnetic field strength in magnetic coordinates for a given field. This expression is central to the study of equilibrium, stability, and transport in asymmetric plasmas

  3. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  4. Magnetic field considerations in fusion power plant environs

    International Nuclear Information System (INIS)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions

  5. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  6. Line formation in microturbulent magnetic fields

    International Nuclear Information System (INIS)

    Domke, H.; Pavlov, G.G.

    1979-01-01

    The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Eddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength eta 0 < approx. 2. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurements only in combination with further spectroscopic data or physical reasoning. (orig.)

  7. Magnetic vector field tag and seal

    Science.gov (United States)

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  8. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  9. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  10. Magnetic properties of HoVOΛ4 in high magnetic fields

    International Nuclear Information System (INIS)

    Andronenko, S.I.; Bazhan, A.N.; Ioffe, V.A.; Udalov, Yu.P.

    1985-01-01

    Values magnetization and susceptibility of HoVO 4 , Van Vleck paramagnetic are specified in the 4.2-40 K temperature range and magnetic fields up to 50 kOe. Magnetic properties of HoVO 4 are analyzed using a theoretical model in which the interaction of rare earth ions with the crystal- and magnetic fields is considered. A possibility of rare earth ion interaction with the Bsub(1g), Bsub(2g), Asub(1g) symmetry deformations is also considered. It is stated that magnetic properties of HoVO 4 are completely explained within the frames of the crystal field model; the rare earth ion interactions with deformations are insignificant. Anisotropy of magnetization in the (001) plane is determined by the crystal field B 4 4 , B 6 4 constants; the constants being shown to be positive

  11. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  12. The use of single-crystal iron frames in transient field measurements, ch. 3

    International Nuclear Information System (INIS)

    Zalm, P.C.

    1977-01-01

    An experimental technique for measuring g-factors of short-lived states (tausub(m)=0.1-10 ps) is discussed. In this method, one uses the strong hyperfine interaction caused by the transient magnetic field. The transient field method dates from 1967. A gain in measuring time of at least a factor of four is shown to be obtained by the use of a single crystal iron frame as a ferromagnetic target backing in which the excited nuclei, formed in a nuclear reaction, recoil. Such frames can be fully magnetized with low external fields as shown by magneto-optical Kerr-effect measurements. The important improvement is that the associated magnetic fringing field near the target is negligible. This is in contrast to the conventional set-up in which strong external fields, with corresponding large disturbing fringing fields, were necessary. The single-crystal set-up is compared to the conventional set-up in several transient field experiments and proves to be successful

  13. Transferred hyperfine interaction between the rare-earth ions and the fluorine nuclei in rare-earth trifluorides

    DEFF Research Database (Denmark)

    Hansen, P. E.; Nevald, Rolf; Guggenheim, H. G.

    1978-01-01

    The isotropic and anisotropic transferred hyperfine interactions between F ions in the two chemically inequivalent sites and the rare-earth ions (R) have been derived from 19F NMR measurements in the temperature region 100-300 K on single crystals of TbF3 and DyF3. The isotropic interactions are ...... to vary only slightly with temperature. They are further assigned to definite R's in the unit cell, which cannot be done from macroscopic magnetic measurements....

  14. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  15. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  16. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  17. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  18. Orbital effect of the magnetic field in dynamical mean-field theory

    Science.gov (United States)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  19. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  20. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  1. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  2. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  3. Magnetic anisotropy study of UGe2in a static high magnetic field

    International Nuclear Information System (INIS)

    Sakon, T; Saito, S; Koyama, K; Awaji, S; Sato, I; Nojima, T; Watanabe, K; Motokawa, M; Sato, N K

    2006-01-01

    UGe 2 has orthorhombic C mmm crystalline symmetry and shows ferromagnetic Heavy-Fermion (HF) Superconductor, which provides superconductivity under pressure in the range from 1.0 GPa to 1.5 GPa. Magnetic field dependence of magnetization shows strong magnetic anisotropy. When a magnetic field is applied parallel to easy axis (a-axis), magnetization presents ferromagnetic behavior. At 4.2 K, which is much lower than the Curie temperature T c = 54 K. Spontaneous magnetization is 1.4 μ B /U, and the magnetization gradually increase with increasing field. On the contrary, when a field is applied parallel to hard axis (b-axis or c-axis), magnetization increases linearly with increasing magnetic field. As for H//b-axis, magnetization is 0.23 μ B /U even at 27 T. Magnetocrystalline anisotropy constant is obtained as 230 [T μ B ] 3.4[kJ/kg] at 4.2 K. This value is comparable with rare-earth magnet Nd 2 Fe 17 , which is typical strongly correlated ferromagnet

  4. Features of the magnetic field of a rectangular combined function bending magnet

    International Nuclear Information System (INIS)

    Hwang, C.S.; National Chiao Tung Univ., Hsinchu; Chang, C.H.; Hwang, G.J.; Uen, T.M.; Tseng, P.K.; National Taiwan Univ., Taipei

    1996-01-01

    Magnetic field features of the combined function bending magnet with dipole and quadrupole field components are essential for the successful operation of the electron beam trajectory. These fields also dominate the photon beam quality. The vertical magnetic field B y (x,y) calculation is performed by a computer code MAGNET at the magnet center (s = 0). Those results are compared with the 2-D field measurement by the Hall probe mapping system. Also detailed survey has been made of the harmonic field strength and the main features of the fundamental integrated strength, effective length, magnetic symmetry, tilt of the pole face, offset of the field center and the fringe field. The end shims that compensate for the strong end negative sextupole field to increase the good field region for the entire integrated strength are discussed. An important physical feature of this combined function bending magnet is the constant ratio of dipole and quadrupole strength ∫Bds/∫Gds which is expressed as a function of excitation current in the energy range 0.6 to 1.5 GeV

  5. Electron holography of magnetic field generated by a magnetic recording head.

    Science.gov (United States)

    Goto, Takayuki; Jeong, Jong Seok; Xia, Weixing; Akase, Zentaro; Shindo, Daisuke; Hirata, Kei

    2013-06-01

    The magnetic field generated by a magnetic recording head is evaluated using electron holography. A magnetic recording head, which is connected to an electric current source, is set on the specimen holder of a transmission electron microscope. Reconstructed phase images of the region around the magnetic pole show the change in the magnetic field distribution corresponding to the electric current applied to the coil of the head. A simulation of the magnetic field, which is conducted using the finite element method, reveals good agreement with the experimental observations.

  6. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  7. Initial magnetic field decay of the superconducting magnet in persistent current mode

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yanada, T.

    1988-01-01

    The initial magnetic field decay in the persistent current mode of a magnetic resonance imaging magnet has been studied experimentally. The field decay is greater than the steady field decay due to joint resistances of conductors. Imaging experiments cannot be carried out during the periods, which last ten or more hours. The current distribution in the multifilamentory conductor is non-uniform just after the energization. It is suggested that the change of the current distribution causes the initial magnetic field decay. A 6th order superconducting magnet was prepared for experiments (central field = 0.35 T, inner diameters = 1 m, length = 1.86 m). The steady state magnetic field decay was 7*10/sup -8//hr. The initial magnetic field decay was 3*10/sup -6//hr. Overshoot currents (101 and 105 percent of the rated current) were applied to the magnet and the current reduced to the rated current to improve the initial decay. The energizing and de-energizing rate of the field was 1.8 gauss/second. No initial decay was observed when 105 percent current pattern was applied to the magnet

  8. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  9. High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.

    Science.gov (United States)

    Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M

    2016-09-30

    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50  s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.

  10. Generation of magnetic fields for accelerators with permanent magnets

    International Nuclear Information System (INIS)

    Meinander, T.

    1994-01-01

    Commercially available permanent magnet materials and their properties are reviewed. Advantages and disadvantages of using permanent magnets as compared to electromagnets for the generation of specific magnetic fields are discussed. Basic permanent magnet configurations in multipole magnets and insertion devices are presented. (orig.)

  11. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  12. Minimizing magnetic fields for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S., E-mail: stefan.stuiber@ph.tum.de; Sturm, M.; Taggart Singh, J.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Rohrer, H. K. [Rohrer GmbH, D-80667 München (Germany); Schläpfer, U. [IMEDCO AG, CH-4614 Hägendorf (Switzerland)

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  13. Minimizing magnetic fields for precision experiments

    International Nuclear Information System (INIS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application

  14. Hyperfine interactions of a muoniated ethyl radical in supercritical CO2

    International Nuclear Information System (INIS)

    Cormier, Philip; Taylor, Becky; Ghandi, Khashayar

    2009-01-01

    A muoniated ethyl radical was studied in supercritical carbon dioxide. The muon and the proton hyperfine coupling constants were measured over temperatures ranging from 305 to 475 K, and a density range from 0.2 to 0.7 (g cm -3 ). A decrease was found in the muon hyperfine coupling constants as a function of the density, which can be attributed to the interaction between the CO 2 molecule and the p-orbital of the ethyl radical. The changes to the α-proton and β-proton hyperfine coupling constants with density are attributed to changes in the overall geometry in the formed radical. This system was modeled using quantum calculations.

  15. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    Science.gov (United States)

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  17. Ab Initio Calculation of Hyperfine Interaction Parameters: Recent Evolutions, Recent Examples

    International Nuclear Information System (INIS)

    Cottenier, Stefaan; Vanhoof, Veerle; Torumba, Doru; Bellini, Valerio; Cakmak, Mehmet; Rots, Michel

    2004-01-01

    For some years already, ab initio calculations based on Density Functional Theory (DFT) belong to the toolbox of the field of hyperfine interaction studies. In this paper, the standard ab initio approach is schematically sketched. New features, methods and possibilities that broke through during the past few years are listed, and their relation to the standard approach is explained. All this is illustrated by some highlights of recent ab initio work done by the Nuclear Condensed Matter Group at the K.U.Leuven.

  18. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  19. Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; Pod'yachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms when the components of the hyperfine stricture of the electronic ground states are optically pumped. We show that the absorption lines possess unusual substructures for some values of the hyperfine splitting of the ground state (which exceed the Doppler absorption linewidth severalfold). These substructures in the absorption spectrum are most apparent if the hyperfine structure of the excited electronic state is taken into account. We calculate the absorption spectra of monochromatic light near the D 1 and D 2 lines of atomic rubidium 85,87 Rb. With real hyperfine splitting taken into account, the D 1 and D 2 lines are modeled by 4- and 6-level diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to observe the spectral features experimentally

  20. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  1. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  2. ENDOR investigations of the Ce.sup.3+./sup. ions in YAG: Transferred hyperfine interaction with nearest aluminum ions

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Badalyan, A. G.; Feng, D.H.; Lančok, Ján; Jastrabík, Lubomír; Dejneka, Alexandr; Baranov, P. G.; Yakovlev, D.R.; Bayer, M.

    2017-01-01

    Roč. 122, č. 24 (2017), s. 1-3, č. článku 243903. ISSN 0021-8979 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S Institutional support: RVO:68378271 Keywords : ENDOR * Ce 3+ ions in YAG * transferred hyperfine interactions Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.068, year: 2016

  3. Magnetic field effects in proteins

    Science.gov (United States)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  4. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  5. Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.J. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Mello, V.D. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Anselmo, D.H.A.L. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Vasconcelos, M.S., E-mail: mvasconcelos@ect.ufrn.br [Escola de Ciência e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)

    2015-03-01

    We address the magnetic phases in very thin Ho films at the temperature interval between 20 K and 132 K. We show that slab size, surface effects and magnetic field due to spin ordering impact significantly the magnetic phase diagram. Also we report that there is a relevant reduction of the external field strength required to saturate the magnetization and for ultra-thin films the helical state does not form. We explore the specific heat and the susceptibility as auxiliary tools to discuss the nature of the phase transitions, when in the presence of an external magnetic field and temperature effects. The presence of an external field gives rise to the magnetic phase Fan and the spin-slip structures. - Highlights: • We analyze the magnetic phases of very thin Ho films in the temperature interval 20–132 K. • We show that slab size, etc. due to spin ordering may impact the magnetic phase diagram. • All magnetic phase transitions, for strong magnetic fields, are marked by the specific heat. • The presence of an external field gives rise to the magnetic phase Fan and the spin-slip one.

  6. Principles of power frequency magnetic field management

    International Nuclear Information System (INIS)

    Fugate, D.; Feero, W.

    1995-01-01

    At the most general level, magnetic field management is the creation, elimination, or modification of sources in order to alter the spatial distribution of magnetic fields over some region of space. The two main options for magnetic field management are source modification (elimination or modification of original sources) and cancellation (creation of new sources). Source modification includes any changes in the layout or location of field sources, elimination of ground paths, or any options that increase the distance between sources and regions of interest. Cancellation involves the creation of new magnetic field sources, passive and/or active that produce magnetic fields that are opposite to the original fields in the region of interest. Shielding using materials of high conductivity and/or high permeability falls under the cancellation option. Strategies for magnetic field management, whether they are source modification or cancellation, typically vary on a case to case basis depending on the regions of interest, the types of sources and resulting complexity of the field structure, the field levels, and the attenuation requirements. This paper gives an overview of magnetic field management based on fundamental concepts. Low field design principles are described, followed by a structured discussion of cancellation and shielding. The two basic material shielding mechanisms, induced current shielding, and flux-shunting are discussed

  7. Hydrogen atom moving across a magnetic field

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Volkov, S.Yu.

    2004-01-01

    A hydrogen atom moving across a magnetic field is considered in a wide region of magnitudes of magnetic field and atom momentum. We solve the Schroedinger equation of the system numerically using an imaginary time method and find wave functions of the lowest states of atom. We calculate the energy and the mean electron-nucleus separation as a function of atom momentum and magnetic field. All the results obtained could be summarized as a phase diagram on the 'atom-momentum - magnetic-field' plane. There are transformations of wave-function structure at critical values of atom momentum and magnetic field that result in a specific behavior of dependencies of energy and mean interparticle separation on the atom momentum P. We discuss a transition from the Zeeman regime to the high magnetic field regime. A qualitative analysis of the complicated behavior of wave functions vs P based on the effective potential examination is given. We analyze a sharp transition at the critical momentum from a Coulomb-type state polarized due to atom motion to a strongly decentered (Landau-type) state at low magnetic fields. A crossover occurring at intermediate magnetic fields is also studied

  8. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Science.gov (United States)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  9. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  10. Volume dependence of vanadium magnetism

    International Nuclear Information System (INIS)

    Elzain, M.E.

    1993-07-01

    The first principle discrete variational method in the spin polarized local density approximation is used to calculate the local properties of 15 atom clusters representing variable crystal size bcc vanadium. Four distinct magnetic configurations are recognized as the lattice constant varies from 5.4 to 8.4 (a.u.). At the lowest end the clusters are paramagnetic (PM) whereas at the upper end clusters are ferromagnetic (FM). In between antiferromagnetic couplings prevail. The local magnetic moment increases, in a fashion not unlike second order transitions, from zero in the PM range to non-zero values in the AFM region. Transitions between other phases are first order. The systematics of these transitions are ascribed to the general shape of the density of states. The contact magnetic hyperfine field, charge density and 3d partial occupations at the central sites are also calculated. (author). 14 refs, 3 figs, 1 tab

  11. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  12. Mossbauer studies of high-Tc oxides

    International Nuclear Information System (INIS)

    Shinjo, T.; Nasu, S.

    1989-01-01

    Mossbauer spectroscopy has been known as one of the useful experimental tools in fundamental solid state physics. Main parameters which the authors obtain from Mossbauer spectra are: isomer shift, quadrupole interaction, magnetic hyperfine interaction, and recoilless fraction. An electronic structure of the relevant atom is argued from the value of isomer shift and in usual ionic cases the valance state can be determined unambiguously. If a magnetic hyperfine splitting is observed, it is helpful for confirming the existence of magnetic order. From the temperature dependence of hyperfine field, the magnetic transition temperatures is estimated

  13. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  14. Coherence in Magnetic Quantum Tunneling

    Science.gov (United States)

    Fernandez, Julio F.

    2001-03-01

    Crystals of single molecule magnets such as Mn_12 and Fe8 behave at low temperatures as a collection of independent spins. Magnetic anisotropy barriers slow down spin-flip processes. Their rate Γ becomes temperature independent at sufficiently low temperature. Quantum tunneling (QT) accounts for this behavior. Currently, spin QT in Mn_12 and Fe8 is assumed to proceed as an incoherent sum of small probability increments that occur whenever a bias field h(t) (arising from hyperfine interactions with nuclear spins) that varies with time t becomes sufficiently small, as in Landau-Zener transitions. Within a two-state model, we study the behavior of a suitably defined coherence time τ_φ and compare it with the correlation time τh for h(t). It turns out that τ_φ >τ_h, when τ_hδ h < hbar, where δ h is the rms deviation of h. We show what effect such coherence has on Γ. Its dependence on a static longitudinal applied field Hz is drastically affected. There is however no effect if the field is swept through resonance.

  15. Electromagnetic fields of rotating magnetized NUT stars

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.

    2004-01-01

    Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit

  16. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  17. SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H.; Dolag, K.; Stasyszyn, F. A.

    2010-01-01

    We present self-consistent high-resolution simulations of NGC 4038/4039 (the A ntennae galaxies ) including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10 -9 to 10 -4 G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of ∼10 μG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

  18. Hyperfine Level Interactions of Diamond Nitrogen Vacancy Ensembles Under Transverse Magnetic Fields

    Science.gov (United States)

    2015-10-06

    eigenvalues 0, ±h̄, corresponding to ms = 0,±1 [18]. Figure 1 shows the calculated energy levels as a function of axial field for a fixed transverse...Progress in 5 Physics 77, 056503 (2014). [9] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo , H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, Nature 500

  19. Optimization study on the magnetic field of superconducting Halbach Array magnet

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  20. Hyperfine Structure of Spectral Lines of 143Nd+, 145Nd+, 139La+, 141Pr+ and 137Ba+ Investigated by Collinear Laser Ion Beam Spectroscopy

    International Nuclear Information System (INIS)

    Anjum, N.

    2012-01-01

    In this research work the hyperfine structures of spectral lines of barium (Ba) and three lanthanides elements; praseodymium (Pr), lanthanum (La) and neodymium (Nd) have been investigated. The hyperfine splitting factors A and B of the involved levels have been determined with high accuracy and the data are compared with other published results. This research work is divided in four parts. In the 1st part, the hyperfine structures of the spectral lines of the singly ionized praseodymium (Pr II) are investigated by three different laser spectroscopic techniques; laser induced fluorescence (LIF) spectroscopy, inter-modulated saturation spectroscopy and collinear laser ion beam spectroscopy (CLIBS). The 2nd part is concerned with the a control-check of the Marburg mass separator (MARS-II), as it was shifted from the University of Marburg, Germany, to Graz University of Technology in 2002. The check is performed using a well known spectral line 5853.67 Å of the odd isotope of singly ionized barium (137Ba II). In the 3rd part of this work the hyperfine structure of spectral lines of lanthanum-139 ions (139La II) is investigated. The 4th part is devoted to the investigation of the hyperfine structure of spectral lines of two odd isotopes of singly ionized neodymium (143Nd II and 145Nd II) and the determination of the coupling constants A and B of the involved levels. To determine the hyperfine anomaly the ratios of the magnetic dipole constants, i.e A143/A145, and the electric quadrupole constants B143/B145 of the corresponding levels are also calculated. The last three parts of this research project are executed using the high resolution, Doppler reduced method of CLIBS. In CLIBS technique the ions are accelerated by applying a high potential difference (∼ 20 kV). Due to the accelerating cooling (kinematic compression) the spread in velocities in the direction of the flight is reduced several times, hence the Doppler width is reduced. The accelerated ion beam is mass

  1. Magnetic field induced dynamical chaos.

    Science.gov (United States)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  2. Magnetic and Mössbauer studies of pure and Ti-doped YFeO _3 nanocrystalline particles prepared by mechanical milling and subsequent sintering

    International Nuclear Information System (INIS)

    Khalifa, N. O.; Widatallah, H. M.; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S.; Pekala, M.

    2016-01-01

    Single-phased nanocrystalline particles of pure and 10 % Ti "4"+-doped perovskite-related YFeO _3were prepared via mechanosynthesis at 450"∘C. This temperature is ∼150–350 "∘C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti "4"+ ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe "3"+ ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti "4"+ lowers the Néel temperature of the YFeO _3 nanoparticles from ∼ 586 K to ∼ 521 K. The Ti "4"+-doped YFeO _3 nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The "5"7Fe Mössbauer spectra show ∼ 15 % of the YFeO _3 nanoparticles and ∼22 of Ti "4"+-doped YFeO _3 ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the "5"7Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the "5"7Fe nuclear sites and were associated with collective magnetic excitations. The "5"7Fe Mössbauer spectra show the local environments of the Fe "3"+ ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti "4"+ ions relative to those in the larger magnetic nanoparticles.

  3. Theoretical study of in-plane response of magnetic field sensor to magnetic beads in an in-plane homogeneous field

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hansen, Mikkel Fougt

    2008-01-01

    We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...... when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity...

  4. Hyperfine structure of the S levels of the muonic helium ion

    International Nuclear Information System (INIS)

    Martynenko, A. P.

    2008-01-01

    Corrections of the α 5 and α 6 orders to the energy spectrum of the hyperfine splitting of the 1S and 2S levels of the muonic helium ion are calculated with the inclusion of the electron vacuum polarization effects, nuclear-structure corrections, and recoil effects. The values ΔE hfs (1S) = -1334.56 meV and ΔE hfs (2S) = -166.62 meV obtained for hyperfine splitting values can be considered as reliable estimates for comparison with experimental data. The hyperfine structure interval Δ 12 = 8ΔE hfs (2S) - ΔE hfs (1S) = 1.64 meV can be used to verify QED predictions

  5. Bats Respond to Very Weak Magnetic Fields

    Science.gov (United States)

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944

  6. Design of combined magnetic field system for magnetic-bottle time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Wang Chao; Tian Jinshou; Zhang Meizhi; Kang Yifan

    2011-01-01

    Based on the primary requirement for the magnetic field system in magnetic-bottle time-of-flight spectrometer, an appropriate combined inhomogeneous magnetic field system is designed. The inhomogeneous higher magnetic field part, with the highest field of 1.2 T, is produced by the combination of a permanent magnet and a pole piece with optimized shape. The magnet,known as NdFeB magnet,is one of rare earth permanent magnets in N52. The guiding uniform magnetic field of 1.0 x 10 -3 T is provided by solenoid, with length of 3 m and radius of 3 cm. The pitch between the pole piece and the near end of used solenoid is determined to be 5 cm, which can satisfy the actual engineering needs. (authors)

  7. Acceleration of auroral particles by magnetic-field aligned electric fields

    International Nuclear Information System (INIS)

    Block, L.P.

    1988-01-01

    Measurements on the S3-3 and Viking satellites appear to show that at least a large fraction of magnetic field-aligned potential drops are made up of multiple double layers. Solitons and double layers in U-shaped potential structures give rise to spiky electric fields also perpendicular to the magnetic field in agreement with satellite measurements. The large scale potential structures associated with inverted V-events are built up of many similar short-lived structures on a small scale. Viking measurements indicate that electric fields parallel to the magnetic field are almost always directed upward

  8. The Hanle effect in a random magnetic field. Dependence of the polarization on statistical properties of the magnetic field

    Science.gov (United States)

    Frisch, H.; Anusha, L. S.; Sampoorna, M.; Nagendra, K. N.

    2009-07-01

    Context: The Hanle effect is used to determine weak turbulent magnetic fields in the solar atmosphere, usually assuming that the angular distribution is isotropic, the magnetic field strength constant, and that micro-turbulence holds, i.e. that the magnetic field correlation length is much less than a photon mean free path. Aims: To examine the sensitivity of turbulent magnetic field measurements to these assumptions, we study the dependence of Hanle effect on the magnetic field correlation length, its angular, and strength distributions. Methods: We introduce a fairly general random magnetic field model characterized by a correlation length and a magnetic field vector distribution. Micro-turbulence is recovered when the correlation length goes to zero and macro-turbulence when it goes to infinity. Radiative transfer equations are established for the calculation of the mean Stokes parameters and they are solved numerically by a polarized approximate lambda iteration method. Results: We show that optically thin spectral lines and optically very thick ones are insensitive to the correlation length of the magnetic field, while spectral lines with intermediate optical depths (around 10-100) show some sensitivity to this parameter. The result is interpreted in terms of the mean number of scattering events needed to create the surface polarization. It is shown that the single-scattering approximation holds good for thin and thick lines but may fail for lines with intermediate thickness. The dependence of the polarization on the magnetic field vector probability density function (PDF) is examined in the micro-turbulent limit. A few PDFs with different angular and strength distributions, but equal mean value of the magnetic field, are considered. It is found that the polarization is in general quite sensitive to the shape of the magnetic field strength PDF and somewhat to the angular distribution. Conclusions: The mean field derived from Hanle effect analysis of

  9. Oscillatory magneto-convection under magnetic field modulation

    OpenAIRE

    Kiran, Palle; Bhadauria, B.S.; Narasimhulu, Y.

    2017-01-01

    In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is...

  10. Application of the magnetic fluid as a detector for changing the magnetic field

    Science.gov (United States)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.; Balashov, V.

    2018-05-01

    In article the possibility of use of magnetic fluid as a sensitive element for fixing of change of induction of magnetic field in space is considered. Importance of solvable tasks is connected with search of the perspective magnetic substances susceptible to weak magnetic field. The results of a study of the capacitive method for fixing the change in the magnetic field on the basis of a ferromagnetic liquid are presented. The formation of chain structures in the ferrofluid from magnetic particles under the influence of the applied magnetic field leads to a change in the capacitance of the plate condenser. This task has important practical value for development of a magnetosensitive sensor of change of magnetic field.

  11. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

    Directory of Open Access Journals (Sweden)

    Wiltschko Wolfgang

    2009-10-01

    Full Text Available Abstract Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results

  12. The effect of dipolar interaction on the magnetic isotope effect

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pedersen, Jørgen Boiden; Lukzen, Nikita

    2010-01-01

    A multi-channel kinetic description is used to study the magnetic isotope effect (MIE) in zero magnetic field. The maximal isotope effect is equal to the number of channels, two for the hyperfine interaction but four for the electron spin dipole–dipole interaction of the intermediate radical pair....... Quantum mechanical calculations agree with these conclusion and show that large MIE may be obtained even in the presence of a strong exchange interaction. The observed magnesium isotope effect on the rate of enzymatic synthesis of adenosine triphosphate (ATP) is approximately 3 implying that the dipolar...... interaction is responsible for the effect. Our calculations provide support for the proposed mechanism....

  13. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  14. Conductance of auroral magnetic field lines

    International Nuclear Information System (INIS)

    Weimer, D.R.; Gurnett, D.A.; Goertz, C.K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop. 14 references

  15. High-Field Accelerator Magnets

    International Nuclear Information System (INIS)

    Rijk, G de

    2014-01-01

    In this lecture an overview is given of the present technology for high field accelerator magnets. We indicate how to get high fields and what are the most important parameters. The available conductors and their limitations are presented followed by the most relevant types of coils and support structures. We conclude by showing a number of recent examples of development magnets which are either pure R&D objects or models for the LHC luminosity upgrade

  16. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  17. Hyperfine structure of ScI by infrared Fourier transform spectroscopy

    International Nuclear Information System (INIS)

    Aboussaid, A.; Carleer, M.; Hurtmans, D.; Biemont, E.; Godefroid, M.R.

    1996-01-01

    The spectrum of scandium was recorded in the infrared region using a high resolution Fourier transform spectrometer and a hollow-cathode discharge. Hyperfine structures of the lines connecting the 3d 2 4s and 3d4s4p level systems of Sc 45 I were observed between 4000 and 5000 cm -1 . The structures were not completely resolved but the individual line contributions to the complex profiles were simulated using the 3d 2 4s 4 F J hyperfine structure constants previously measured with a high precision by laser techniques. We investigate the possibility of extracting the hyperfine constants of the 3d4s4p levels from a least-squares fit of the line profiles, assuming a Doppler lineshape and theoretical relative intensities. New results are presented for 12 levels. (orig.)

  18. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  19. Magnetization of dense neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isaev, A.A.; Yang, J.

    2010-01-01

    Spin polarized states in neutron matter at a strong magnetic field up to 1018 G are considered in the model with the Skyrme effective interaction. Analyzing the self consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter as a function of the density corresponds to the negative spin polarization when the majority of neutron spins are oriented oppositely to the direction of the magnetic field. In addition, beginning from some threshold density dependent on the magnetic field strength, the self-consistent equations have also two other branches of solutions for the spin polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to the free energy corresponding to the thermodynamically preferable branch with the negative spin polarization. As a consequence, at a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state at the high density region in neutron matter which changes into a thermodynamically stable state with the negative spin polarization with decrease in the density at some threshold value. The calculations of the neutron spin polarization parameter, energy per neutron, and chemical potentials of spin-up and spin-down neutrons as functions of the magnetic field strength show that the influence of the magnetic field remains small at the field strengths up to 1017 G.

  20. Satelite structure in 59Co NMR spectrum of magnetically ordered Dysub(1-x)Ysub(x)Co2 intermetallic compound

    International Nuclear Information System (INIS)

    Yoshimura, Kazuyoshi; Hirosawa, Satoshi; Nakamura, Yoji

    1984-01-01

    The magnetic environment effect of cobalt in Dysub(1-x)Ysub(x)Co 2 has been studied by means of bulk magnetization and 59 Co spin-echo NMR measurements at 4.2K. Clearly resolved satellite structures of the NMR spectra have been observed. The hyperfine field distributions of 59 Co are decomposed into contributions of Co atoms in various nearest neighbor configurations of rare earth atoms. In this analysis the dipole field due to nearest neighbor rare earth moments plays an important role. The result indicates that the magnetic moment of Co in the RCo 2 cubic Laves phase pseudobinary compounds is quite sensitive to the nearest neighbor rare earth environment. (author)