Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
Energy Technology Data Exchange (ETDEWEB)
Rousculp, Christopher L. [Los Alamos National Laboratory; Oro, David Michael [Los Alamos National Laboratory; Griego, Jeffrey Randall [Los Alamos National Laboratory; Turchi, Peter John [Los Alamos National Laboratory; Reinovsky, Robert Emil [Los Alamos National Laboratory; Bradley, Joseph Thomas [Los Alamos National Laboratory; Cheng, Baolian [Los Alamos National Laboratory; Freeman, Matthew Stouten [Los Alamos National Laboratory; Patten, Austin Randall [Los Alamos National Laboratory
2016-03-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.
Slab geometry spatial discretization schemes with infinite-order convergence
International Nuclear Information System (INIS)
Adams, M.L.; Martin, W.R.
1985-01-01
Spatial discretization schemes for the slab geometry discrete ordinates transport equation have received considerable attention in the past several years, with particular interest shown in developing methods that are more computationally efficient that standard schemes. Here the authors apply to the discrete ordinates equations a spectral method that is significantly more efficient than previously proposed schemes for high-accuracy calculations of homogeneous problems. This is a direct consequence of the exponential (infinite-order) convergence of spectral methods for problems with every smooth solutions. For heterogeneous problems where smooth solutions do not exist and exponential convergence is not observed with spectral methods, a spectral element method is proposed which does exhibit exponential convergence
International Nuclear Information System (INIS)
Reynolds, J. M.; Lopez-Bruna, D.
2009-01-01
This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
Energy Technology Data Exchange (ETDEWEB)
Rousculp, Christopher L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oro, David Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griego, Jeffrey Randall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turchi, Peter John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reinovsky, Robert Emil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Joseph Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheng, Baolian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freeman, Matthew Stouten [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patten, Austin Randall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-04-14
There is a great interest in RMI as source of ejecta from metal shells. Previous experiments have explored wavelength amplitude (kA) variation but they have a small range of drive pressures and are in planer geometry. Simulations, both MD and hydro, have explored RMI in planer geometry. The ejecta source model from RMI is an area of active algorithm and code development in ASCI-IC Lagrangian Applications Project. PHELIX offers precise, reproducible variable driver for Hydro and material physics diagnoses with proton radiography.
Magnetic response of certain curved graphitic geometries
International Nuclear Information System (INIS)
Wang, L.; Davids, P.S.; Saxena, A.; Bishop, A.R.
1992-01-01
The quasi-particle energy spectra associated with some members of buckyfamily (curved graphitic geometries), in particular C 50 , C 60 , C 70 and related fullerenes as well as coaxial helical microtubules of graphite, are obtained analytically within the mean-field approximation. These energy spectra are then used to calculate various response functions. Specifically, we calculate the specific heat, magnetization and magnetic susceptibility in the presence of an external magnetic field at low temperatures. For a single microtubule an extra peak superimposed on the first de Haas van Alphen (dHvA) oscillation in magnetic susceptibility is found in the 50--170 Tesla range depending on the radius which is possibly accessible in special (explosive flux compression) experiments. Finally, we point to important potential applications of these novel mesoscopic structures in nanotechnology
UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS
Energy Technology Data Exchange (ETDEWEB)
Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada); Blandford, Roger D., E-mail: aeb@cita.utoronto.c [Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Rd., Menlo Park, CA 94309 (United States)
2010-08-01
Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.
UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS
International Nuclear Information System (INIS)
Broderick, Avery E.; Blandford, Roger D.
2010-01-01
Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m -2 ) 1/4 (B/1 G) 1/2 MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, ν SA , depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of ν SA range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, ν SA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.
Convergence analysis of spectral element method for magnetic devices
Curti, M.; Jansen, J.W.; Lomonova, E.A.
2018-01-01
This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for modeling a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with
Energy Technology Data Exchange (ETDEWEB)
Reynolds, J. M.; Lopez-Bruna, D.
2009-12-11
This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs.
Magnetically-Driven Convergent Instability Growth platform on Z.
Energy Technology Data Exchange (ETDEWEB)
Knapp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benage, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jenkins, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-01
Hydrodynamic instability growth is a fundamentally limiting process in many applications. In High Energy Density Physics (HEDP) systems such as inertial confinement fusion implosions and stellar explosions, hydro instabilities can dominate the evolution of the object and largely determine the final state achievable. Of particular interest is the process by which instabilities cause perturbations at a density or material interface to grow nonlinearly, introducing vorticity and eventually causing the two species to mix across the interface. Although quantifying instabilities has been the subject of many investigations in planar geometry, few have been done in converging geometry. During FY17, the team executed six convergent geometry instability experiments. Based on earlier results, the platform was redesigned and improved with respect to load centering at installation making the installation reproducible and development of a new 7.2 keV, Co He-a backlighter system to better penetrate the liner. Together, the improvements yielded significantly improved experimental results. The results in FY17 demonstrate the viability of using experiments on Z to quantify instability growth in cylindrically convergent geometry. Going forward, we will continue the partnership with staff and management at LANL to analyze the past experiments, compare to hydrodynamics growth models, and design future experiments.
Convergence: How Nursing Unions and Magnet are Advancing Nursing.
Johnson, Joyce E; Billingsley, Molley
2014-01-01
Historically, unions and professional associations such as the American Nurses Association have been adversaries in the fight to represent the best interests of the nursing profession. We reviewed the literature on the evolution of nursing unions, nursing's historical unease about unions, the Magnet designation in nursing, the tensions between the unions and Magnet, the core values and commonalities they share, and the obligations of nursing as a profession. Refocusing on the advancement of our profession provides a positive pathway in which the collective efforts of nursing unions and professional initiatives such as the Magnet designation converge during these turbulent times for our profession. The single, central organizing idea of nursing-where nursing unions and Magnet converge-is the pivotal role of nurses in delivering high-quality patient care. The often-maligned dialectic between unions and Magnet has advanced and not hindered the nursing profession. © 2014 Wiley Periodicals, Inc.
Gravitational convergence, shear deformation and rotation of magnetic forcelines
Giantsos, Vangelis; Tsagas, Christos G.
2017-11-01
We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.
Li, Yuan
2018-04-13
The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics. Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces. The initial incident converging shock is generated from a Riemann problem upstream of the first interface. The effect of the magnetic field on the instabilities is studied through varying the field strength. It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field, however, the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations. The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.
Li, Yuan; Samtaney, Ravi; Wheatley, Vincent
2018-01-01
The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics. Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces. The initial incident converging shock is generated from a Riemann problem upstream of the first interface. The effect of the magnetic field on the instabilities is studied through varying the field strength. It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field, however, the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations. The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.
Effects of geometry in itinerant electron magnets
Energy Technology Data Exchange (ETDEWEB)
Nakamura, H [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Muro, Y [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Shiga, M [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)
2007-04-11
The magnetism of quasi-one-dimensional itinerant electron magnets RMn{sub 4}Al{sub 8} is compared with that of the typical frustrated itinerant electron magnet YMn{sub 2}. The possible formation and observation of the spin pseudogap are discussed in connection with the spin-liquid state in strongly correlated itinerant electron systems.
Comparison of Microinstability Properties for Stellarator Magnetic Geometries
International Nuclear Information System (INIS)
Rewoldt, G.; Ku, L.-P.; Tang, W.M.
2005-01-01
The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presence of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries
Geometry and magnetism of L10 nanostructures
International Nuclear Information System (INIS)
Sorge, K.D.; Skomski, R.; Daniil, M.; Michalski, S.; Gao, L.; Zhou, J.; Yan, M.; Sui, Y.; Kirby, R.D.; Liou, S.H.; Sellmyer, D.J.
2005-01-01
The fabrication and magnetism of L1 0 nanostructures with different shapes (such as nanoparticles and nanotubes) is investigated. These nanostructures are produced by hydrogen processing and focused ion beam milling. The structures exhibit interesting reversal modes and are of present or potential interest for sensors and imaging, as well as magnetic recording
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-09-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and
DEFF Research Database (Denmark)
Madsen, Ole Brun; Nielsen, Jens Frederik Dalsgaard; Schiøler, Henrik
2002-01-01
Convergence trends between the WAN Internet area, characterized by best effort service provision, and the real time LAN domain, with requirements for guaranteed services, are identified and discussed. A bilateral evolution is identified, where typical bulk service applications from WAN, such as m......Convergence trends between the WAN Internet area, characterized by best effort service provision, and the real time LAN domain, with requirements for guaranteed services, are identified and discussed. A bilateral evolution is identified, where typical bulk service applications from WAN...... with the emergence of remote service provision, such as supervision and control of decentralized heating facilities and wind based electrical power production. The reliability issue is addressed from a structural viewpoint, where the concept of Structural QoS (SQoS) is defined to support reliability modelling...
DEFF Research Database (Denmark)
Prasad, Ramjee
2009-01-01
This paper presents the main conclusions which can be drawn from the discussions on Future Communication Systems and lessons on Unpredictable Future of Wireless Communication Systems. Future systems beyond the third generation are already under discussions in international bodies, such as ITU, WW...... and R&D programmes worldwide. The incoming era is characterized by the convergence of networks and access technology and the divergence of applications. Future mobile communication systems should bring something more than only faster data or wireless internet access....
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-01-01
.p {padding-bottom:6px} Call for Papers: Convergence Guest Editors: Thomas E. Darcie, University of Victoria Robert Doverspike, AT&T Martin Zirngibl, Lucent Technologies Coordinating Associate Editor: Steven K. Korotky, Lucent Technologies The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and
submitter On Roebel Cable Geometry for Accelerator Magnet
Fleiter, J; Ballarino, A
2016-01-01
Roebel-type cables made of a ReBCO conductor are potential candidates for high-field accelerator magnets. The necessity to promote a large effective transverse section in a Roebel cable to avoid local overstress leading to degradation in electrical performance has been recently addressed. In this paper, a new geometry of meander tapes for a Roebel cable that enhances both the transverse effective section and the current margin at crossing segments is discussed. As Roebel cables are bent at the coil ends, the modulation of the bending radius of strands along the cable pitch leads to a shift of the strands with respect to each other. The shift magnitude is analytically investigated in this paper as a function of both cable features and coil geometry. Finally, the minimum transposition pitch of Roebel cables is determined on the basis of coil characteristics.
Theory for stationary nonlinear wave propagation in complex magnetic geometry
International Nuclear Information System (INIS)
Watanabe, T.; Hojo, H.; Nishikawa, Kyoji.
1977-08-01
We present our recent efforts to derive a systematic calculation scheme for nonlinear wave propagation in the self-consistent plasma profile in complex magnetic-field geometry. Basic assumptions and/or approximations are i) use of the collisionless two-fluid model with an equation of state; ii) restriction to a steady state propagation and iii) existence of modified magnetic surface, modification due to Coriolis' force. We discuss four situations: i) weak-field propagation without static flow, ii) arbitrary field strength with flow in axisymmetric system, iii) weak field limit of case ii) and iv) arbitrary field strength in nonaxisymmetric torus. Except for case iii), we derive a simple variation principle, similar to that of Seligar and Whitham, by introducing appropriate coordinates. In cases i) and iii), we derive explicit results for quasilinear profile modification. (auth.)
An application of differential geometry to SSC magnet end winding
International Nuclear Information System (INIS)
Cook, J.M.
1990-04-01
It is expected that a large fraction of the total cost of the proposed Superconducting Supercollider will be spent on magnets, and, as Leon Lederman has remarked, ''most of the cost of making a magnet is in the ends.'' Among the mechanical problems to be solved there is the construction of an end-configuration for the superconducting cables which will minimize their strain energy. The purpose of this paper is to promote the use of differential geometry in this minimization. The use will be illustrated by a specific application to the winding of dipole ends. The cables are assumed to be clamped so firmly that their strain is not altered by Lorentz stresses. 15 refs
Sossinsky, A B
2012-01-01
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...
Secondary magnetic field harmonics dependence on vacuum beam chamber geometry
Directory of Open Access Journals (Sweden)
S. Y. Shim
2013-08-01
Full Text Available The harmonic magnetic field properties due to eddy currents have been studied with respect to the geometry of the vacuum beam chamber. We derived a generalized formula enabling the precise prediction of any field harmonics generated by eddy currents in beam tubes with different cross-sectional geometries. Applying our model to study the properties of field harmonics in beam tubes with linear dipole magnetic field ramping clearly proved that the circular cross section tube generates only a dipole field from eddy currents. The elliptic tube showed noticeable magnitudes of sextupole and dipole fields. We demonstrate theoretically that it is feasible to suppress the generation of the sextupole field component by appropriately varying the tube wall thickness as a function of angle around the tube circumference. This result indicates that it is possible to design an elliptical-shaped beam tube that generates a dipole field component with zero magnitude of sextupole. In a rectangular-shaped beam tube, one of the selected harmonic fields can be prevented if an appropriate wall thickness ratio between the horizontal and vertical tube walls is properly chosen. Our generalized formalism can be used for optimization of arbitrarily complex-shaped beam tubes, with respect to suppression of detrimental field harmonics.
Indian Academy of Sciences (India)
. In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...
Coil optimisation for transcranial magnetic stimulation in realistic head geometry.
Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J
Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.
Prasolov, V V
2015-01-01
This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.
Three-dimensional simulations of magnetic reconnection in slab geometry
International Nuclear Information System (INIS)
Onofri, M.; Primavera, L.; Malara, F.; Veltri, P.
2004-01-01
Magnetic reconnection in an incompressible plasma in three-dimensional slab geometry has been studied through magnetohydrodynamics numerical simulations. Particular attention has been paid to the case in which several unstable modes that correspond to resonant surfaces in different positions of the simulation domain, are excited at the beginning of the simulation. The dynamical evolution of such a system leads to a behavior different than what is expected from the linear theory. In particular the effects of the equilibrium field dissipation and the fact that several resonant surfaces are initially excited both concur in modifying the initial growth rates of the instability. In the nonlinear phase two basic phenomena are observed: first, the rapid transfer of energy to large wave numbers, corresponding to a direct cascade of the energy in the spectrum, which approaches, with increasing time, a power law; second, an energy transfer towards smaller wave numbers, which corresponds in the physical space to a coalescence of magnetic islands. Finally, the spectra in the periodic directions exhibit a strongly anisotropic behavior
Converging xenon shock waves driven by megagauss magnetic fields
International Nuclear Information System (INIS)
Shearer, J.W.; Steinberg, D.J.
1986-07-01
We attempted to implode a conducting metal linear at high velocity, and our failure to do so led to switching, or rapidly transferring the field from pushing an aluminum conductor to snow-plowing a half-atmosphere of xenon gas. We successfully initiated convergent xenon gas shocks with the use of a magnetohydrodynamic switch and coaxial high-explosive, flux-compression generators. Principal diagnostics used to study the imploding xenon gas were 133 Xe radioactive tracers, continuous x-ray absorption, and neutron output. We compressed the xenon gas about five to sixfold at a velocity of 10 cm/μs at a radius of 4 cm. The snowplow efficiency was good; going from 13- to 4-cm radius, we lost only about 20% of the mass. The temperature of the imploded sheath was determined by mixing deuterium with the xenon and measuring the neutron output. Using reasonable assumptions about the amount, density, and uniformity of the compressed gas, we estimate that we reached temperatures as high as 155 eV. Energy-loss mechanisms that we encountered included wall ablation and Taylor instabilities of the back surface
Pedoe, Dan
1988-01-01
""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he
International Nuclear Information System (INIS)
Belkic, Dzevad
2006-01-01
This study deals with the most challenging numerical aspect for solving the quantification problem in magnetic resonance spectroscopy (MRS). The primary goal is to investigate whether it could be feasible to carry out a rigorous computation within finite arithmetics to reconstruct exactly all the machine accurate input spectral parameters of every resonance from a synthesized noiseless time signal. We also consider simulated time signals embedded in random Gaussian distributed noise of the level comparable to the weakest resonances in the corresponding spectrum. The present choice for this high-resolution task in MRS is the fast Pade transform (FPT). All the sought spectral parameters (complex frequencies and amplitudes) can unequivocally be reconstructed from a given input time signal by using the FPT. Moreover, the present computations demonstrate that the FPT can achieve the spectral convergence, which represents the exponential convergence rate as a function of the signal length for a fixed bandwidth. Such an extraordinary feature equips the FPT with the exemplary high-resolution capabilities that are, in fact, theoretically unlimited. This is illustrated in the present study by the exact reconstruction (within machine accuracy) of all the spectral parameters from an input time signal comprised of 25 harmonics, i.e. complex damped exponentials, including those for tightly overlapped and nearly degenerate resonances whose chemical shifts differ by an exceedingly small fraction of only 10 -11 ppm. Moreover, without exhausting even a quarter of the full signal length, the FPT is shown to retrieve exactly all the input spectral parameters defined with 12 digits of accuracy. Specifically, we demonstrate that when the FPT is close to the convergence region, an unprecedented phase transition occurs, since literally a few additional signal points are sufficient to reach the full 12 digit accuracy with the exponentially fast rate of convergence. This is the critical
Alvarez, Tara L; Vicci, Vincent R; Alkan, Yelda; Kim, Eun H; Gohel, Suril; Barrett, Anna M; Chiaravalloti, Nancy; Biswal, Bharat B
2010-12-01
This research quantified clinical measurements and functional neural changes associated with vision therapy in subjects with convergence insufficiency (CI). Convergence and divergence 4° step responses were compared between 13 control adult subjects with normal binocular vision and four CI adult subjects. All CI subjects participated in 18 h of vision therapy. Clinical parameters quantified throughout the therapy included: nearpoint of convergence, recovery point of convergence, positive fusional vergence at near, near dissociated phoria, and eye movements that were quantified using peak velocity. Neural correlates of the CI subjects were quantified with functional magnetic resonance imaging scans comparing random vs. predictable vergence movements using a block design before and after vision therapy. Images were quantified by measuring the spatial extent of activation and the average correlation within five regions of interests (ROI). The ROIs were the dorsolateral prefrontal cortex, a portion of the frontal lobe, part of the parietal lobe, the cerebellum, and the brain stem. All measurements were repeated 4 months to 1 year post-therapy in three of the CI subjects. Convergence average peak velocities to step stimuli were significantly slower (p = 0.016) in CI subjects compared with controls; however, significant differences in average peak velocities were not observed for divergence step responses (p = 0.30). The investigation of CI subjects participating in vision therapy showed that the nearpoint of convergence, recovery point of convergence, and near dissociated phoria significantly decreased. Furthermore, the positive fusional vergence, average peak velocity from 4° convergence steps, and the amount of functional activity within the frontal areas, cerebellum, and brain stem significantly increased. Several clinical and cortical parameters were significantly correlated. Convergence peak velocity was significantly slower in CI subjects compared with controls
Linear theory of a cold relativistic beam in a strongly magnetized finite-geometry plasma
International Nuclear Information System (INIS)
Gagne, R.R.J.; Shoucri, M.M.
1976-01-01
The linear theory of a finite-geometry cold relativistic beam propagating in a cold homogeneous finite-geometry plasma, is investigated in the case of a strongly magnetized plasma. The beam is assumed to propagate parallel to the external magnetic field. It is shown that the instability which takes place at the Cherenkov resonance ωapprox. =k/subz/v/subb/ is of the convective type. The effect of the finite geometry on the instability growth rate is studied and is shown to decrease the growth rate, with respect to the infinite geometry, by a factor depending on the ratio of the beam-to-plasma radius
Controlling vortex chirality and polarity by geometry in magnetic nanodots
Agramunt Puig, Sebastià
2014-01-01
The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...
Geometry dependence of the magnetization reversal process in bridged dots
International Nuclear Information System (INIS)
Escobar, R.A.; Lage, E.; D’Albuquerque e Castro, J.; Altbir, D.; Ross, C.A.
2017-01-01
Based on Monte Carlo numerical simulations: results for the magnetization reversal process in thin circular Ni dots connected by a bridge are presented. The dependence of the process on both the width of the bridge and the orientation of the applied magnetic field has been investigated. It was found that when the applied magnetic field is set parallel to the bridge, the hysteresis curves are weakly dependent on the width of the bridge, being rather close to that of a single dot of the same diameter. On the other hand, when the magnetic field is applied perpendicularly to the bridge, a significant reduction in the coercivity of the system is obtained, even in the case of narrower bridges.
Geometry dependence of the magnetization reversal process in bridged dots
Energy Technology Data Exchange (ETDEWEB)
Escobar, R.A. [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Lage, E. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA (United States); D’Albuquerque e Castro, J. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21945-970 (Brazil); Altbir, D., E-mail: dora.altbir@usach.cl [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Ross, C.A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA (United States)
2017-06-15
Based on Monte Carlo numerical simulations: results for the magnetization reversal process in thin circular Ni dots connected by a bridge are presented. The dependence of the process on both the width of the bridge and the orientation of the applied magnetic field has been investigated. It was found that when the applied magnetic field is set parallel to the bridge, the hysteresis curves are weakly dependent on the width of the bridge, being rather close to that of a single dot of the same diameter. On the other hand, when the magnetic field is applied perpendicularly to the bridge, a significant reduction in the coercivity of the system is obtained, even in the case of narrower bridges.
Planar Hall effect sensor bridge geometries optimized for magnetic bead detection
DEFF Research Database (Denmark)
Østerberg, Frederik Westergaard; Rizzi, Giovanni; Henriksen, Anders Dahl
2014-01-01
Novel designs of planar Hall effect bridge sensors optimized for magnetic bead detection are presented and characterized. By constructing the sensor geometries appropriately, the sensors can be tailored to be sensitive to an external magnetic field, the magnetic field due to beads being magnetized...... by the sensor self-field or a combination thereof. The sensors can be made nominally insensitive to small external magnetic fields, while being maximally sensitive to magnetic beads, magnetized by the sensor self-field. Thus, the sensor designs can be tailored towards specific applications with minimal...... of the dynamic magnetic response of suspensions of magnetic beads with a nominal diameter of 80 nm are performed. Furthermore, a method to amplify the signal by appropriate combinations of multiple sensor segments is demonstrated....
Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.
2018-06-01
In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.
Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry
Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.
2001-10-01
The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.
Laser-generated magnetic fields in quasi-hohlraum geometries
Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John
2014-10-01
Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.
Dynamics of post-flare ejections and magnetic loop geometry
International Nuclear Information System (INIS)
Mein, P.; Mein, N.
1982-01-01
Flare-associated mass ejections have been observed at the solar limb on June 29, 1980 in the Hα line, with the Multichannel Subtractive Double Pass spectrograph of the Meudon solar tower. Radial velocities were measured as a function of time in a two dimensional field, and kinematics investigated in one selected fine structure. A simple model of locally dipole-type magnetic field increasing with time can be fitted to the data. It can be checked from extrapolation that the model is consistent with an ejection starting roughly from the same point at the same time. Height of the loops (approx. equal to 135,000 km) is consistent with other determinations. Magnetic field is found to be increasing locally by a factor 1.14 within 10 min. (orig.)
Straight ends for superconducting dipole magnet using constant perimeter geometry
International Nuclear Information System (INIS)
Royet, J.
1989-01-01
The ends of the SSC Dipole magnets are a very critical aspect of the superconducting cable windings needed for this large project. The internal coils, where the radius at the pole is as small as 3/10 of an inch for the first turn, are difficult to form with the very stiff cable, and a high tension is needed. The curing operation on the coils is performed in a heated forming press which applies an important additional stress on the superconducting wire and insulation. A new design of this sensitive region of the magnets was performed at LBL, and several prototypes were built and tested. In this paper the construction method used to solve some of the most critical problems is exposed along with a description of the experimental work in progress. 3 refs., 2 figs
Bakhsh, Abeer
2017-11-17
We investigate the linear stability of both positive and negative Atwood ratio interfaces accelerated either by a fast magnetosonic or hydrodynamic shock in cylindrical geometry. For the magnetohydrodynamic (MHD) case, we examine the role of an initial seed azimuthal magnetic field on the growth rate of the perturbation. In the absence of a magnetic field, the Richtmyer-Meshkov growth is followed by an exponentially increasing growth associated with the Rayleigh-Taylor instability. In the MHD case, the growth rate of the instability reduces in proportion to the strength of the applied magnetic field. The suppression mechanism is associated with the interference of two waves running parallel and anti-parallel to the interface that transport of vorticity and cause the growth rate to oscillate in time with nearly a zero mean value.
Bakhsh, Abeer; Samtaney, Ravindra
2017-01-01
We investigate the linear stability of both positive and negative Atwood ratio interfaces accelerated either by a fast magnetosonic or hydrodynamic shock in cylindrical geometry. For the magnetohydrodynamic (MHD) case, we examine the role of an initial seed azimuthal magnetic field on the growth rate of the perturbation. In the absence of a magnetic field, the Richtmyer-Meshkov growth is followed by an exponentially increasing growth associated with the Rayleigh-Taylor instability. In the MHD case, the growth rate of the instability reduces in proportion to the strength of the applied magnetic field. The suppression mechanism is associated with the interference of two waves running parallel and anti-parallel to the interface that transport of vorticity and cause the growth rate to oscillate in time with nearly a zero mean value.
Energy Technology Data Exchange (ETDEWEB)
Konstantinova, Elena, E-mail: elena.konst@ifsudestemg.edu.br; Sales, José Antonio de
2014-10-01
Creation of magnetic nanodevices leads, in particular, to a growing interest in theoretical investigation of different types of magnetic nanostructures. The purpose of our work is to consider how the properties of such nanomaterials depend on their geometry and on the crystal structure. We report on the Monte Carlo simulation of magnetic nanostructures of different geometric forms, which are based on simple cubic and body-centered cubic cells. The magnetization of spin, magnetic susceptibility and specific heat are investigated for nano-disks, nano-bars and nano-balls of different magnitudes. The combination of dipole and Heisenberg-model interaction are considered for the ferromagnetic case. It is shown that magnetic and thermodynamic properties of nanostructures strongly depend on their geometry. The structures with a body-centered cubic unit cell manifest stronger dependence on size and geometric form. In this case one can interpret the results as an effective reduction of dimension from 3D to 2D for decreasing size of the compound. - Highlights: • Thermodynamic properties of nano-balls are dependent on their size. • Magnetic properties of nano-bars depend on their thickness. • The hysteresis loop is dependent on the geometry of the nanostructure.
Xu, Lu; Dong, Shuli; Hao, Jingcheng; Cui, Jiwei; Hoffmann, Heinz
2017-03-28
It is difficult to synthesize magnetic gold nanoparticles (AuNPs) with ultrafine sizes (coating AuNPs using magnetic particles, compounds, or ions. Here, magnetic cationic surfactants C 16 H 33 N + (CH 3 ) 3 [CeCl 3 Br] - (CTACe) and C 16 H 33 N + (CH 3 ) 3 [GdCl 3 Br] - (CTAGd) are prepared by a one-step coordination reaction, i.e., C 16 H 33 N + (CH 3 ) 3 Br - (CTABr) + CeCl 3 or GdCl 3 → CTACe or CTAGd. A simple strategy for fabricate ultrafine (gold nanoparticles (AuNPs) via surface modification with weak oxidizing paramagnetic cationic surfactants, CTACe or CTAGd, is developed. The resulting AuNPs can highly concentrate the charges of cationic surfactants on their surfaces, thereby presenting strong electrostatic interaction with negatively charged biomacromolecules, DNA, and proteins. As a consequence, they can converge DNA and proteins over 90% at a lower dosage than magnetic surfactants or existing magnetic AuNPs. The surface modification with these cationic surfactants endows AuNPs with strong magnetism, which allows them to magnetize and migrate the attached biomacromolecules with a much higher efficiency. The native conformation of DNA and proteins can be protected during the migration. Besides, the captured DNA and proteins could be released after adding sufficient inorganic salts such as at c NaBr = 50 mmol·L -1 . Our results could offer new guidance for a diverse range of systems including gene delivery, DNA transfection, and protein delivery and separation.
DEFF Research Database (Denmark)
Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein
2017-01-01
Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical and effect......Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical...... and effective way to obtain the desired cooling performance. To investigate how to choose and optimize the AMR geometry, a quantitative study is presented by simulations based on a one-dimensional (1D) numerical model. Correlations for calculating the friction factor and heat transfer coefficient are reviewed...... and chosen for modeling different geometries. Moreover, the simulated impacts of various parameters on the regenerator efficiency with a constant specific cooling capacity are presented. An analysis based on entropy production minimization reveals how those parameters affect the main losses occurring inside...
LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry
Directory of Open Access Journals (Sweden)
Raj Bali
2013-01-01
Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.
Surface geometry of a rotating black hole in a magnetic field
International Nuclear Information System (INIS)
Kulkarni, R.; Dadhich, N.
1986-01-01
We study the intrinsic geometry of the surface of a rotating black hole in a uniform magnetic field, using a metric discovered by Ernst and Wild. Rotating black holes are analogous to material rotating bodies according to Smarr since black holes also tend to become more oblate on being spun up. Our study shows that the presence of a strong magnetic field ensures that a black hole actually becomes increasingly prolate on being spun up. Studying the intrinsic geometry of the black-hole surface also gives rise to an interesting embedding problem. Smarr shows that a Kerr black hole cannot be globally isometrically embedded in R 3 if its specific angular momentum a exceeds (√3 /2)mapprox.0.866. . .m. We show that in the presence of a magnetic field of strength B, satisfying 2- √3 2 m 2 3 for all values of the angular momentum
Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake
International Nuclear Information System (INIS)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh
2013-01-01
Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes
Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake
Energy Technology Data Exchange (ETDEWEB)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)
2013-10-15
Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes.
Magnetic bead micromixer: Influence of magnetic element geometry and field amplitude
DEFF Research Database (Denmark)
Lund-Olesen, Torsten; Buus, Bjarke B.; Howalt, Jakob
2008-01-01
A scheme for the silicon microfabrication of lab-on-a-chip systems with mixing based on dynamic plugs of magnetic beads is presented. The systems consist of a microfluidic channel integrated with a number of soft magnetic elements by the sides of the channel. The elements are magnetized by a homo......A scheme for the silicon microfabrication of lab-on-a-chip systems with mixing based on dynamic plugs of magnetic beads is presented. The systems consist of a microfluidic channel integrated with a number of soft magnetic elements by the sides of the channel. The elements are magnetized...... by a homogeneous external ac magnetic field. The systems are scalable with respect to the number of magnetic bead plugs and number of parallel channels, and thus they have high potential for use in biological separation using functionalized magnetic beads. The mixing efficiency is characterized for two different...
Swadling, George
2015-11-01
Ion interpenetration driven by high velocity plasma collisions is an important phenomenon in high energy density environments such as the interiors of ICF vacuum hohlraums and fast z-pinches. The presence of magnetic fields frozen into these colliding flows further complicates the interaction dynamics. This talk focuses on an experimental investigation of ion interpenetration in collisions between cylindrically convergent, supersonic, magnetized flows (M ~10, Vflow ~ 100km/s, ni ~ 1017cm-3) . The flows used in this study were plasma ablation streams produced by tungsten wire array z-pinches, driven by the 1.4MA, 240ns Magpie facility at Imperial College, and diagnosed using a combination of optical Thomson scattering, Faraday rotation and interferometry. Optical Thomson scattering (TS) provides time-resolved measurements of local flow velocity and plasma temperature across multiple (7 to 14) spatial positions. TS spectra are recorded simultaneously from multiple directions with respect to the probing beam, resulting in separate measurements of the rates of transverse diffusion and slowing-down of the ion velocity distribution. The measurements demonstrate flow interpenetration through the array axis at early time, and also show an axial deflection of the ions towards the anode. This deflection is induced by a toroidal magnetic field (~ 10T), frozen into the plasma that accumulates near the axis. Measurements obtained later in time show a change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams, and rapid radial collapse of the magnetized plasma column. The quantitative nature of the spatial profiles of the density, flow velocities and ion temperatures measured in these experiments will allow detailed verification of MHD and PIC codes used by the HEDP community. Work Supported by EPSRC (Grant No. EP/G001324/1), DOE (Cooperative Agreement Nos. DE-F03-02NA00057 & DE-SC-0001063) & Sandia National
Directory of Open Access Journals (Sweden)
Mei Guo
2018-01-01
Full Text Available The syntheses, structural characterization, and magnetic properties of three lanthanide complexes with formulas [Ln(L13] (Ln = Dy (1Dy; Er (1Er; and [Dy(L22] (2Dy were reported. Complexes 1Dy and 1Er are isostructural with the metal ion in distorted trigonal-prismatic coordination geometry, but exhibit distinct magnetic properties due to the different shapes of electron density for DyIII (oblate and ErIII (prolate ions. Complex 1Dy shows obvious SMM behavior under a zero direct current (dc field with an effective energy barrier of 31.4 K, while complex 1Er only features SMM behavior under a 400 Oe external field with an effective energy barrier of 23.96 K. In stark contrast, complex 2Dy with the octahedral geometry only exhibits the frequency dependence of alternating current (ac susceptibility signals without χ″ peaks under a zero dc field.
Geometry effects on magnetization dynamics in circular cross-section wires
Energy Technology Data Exchange (ETDEWEB)
Sturma, M. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Univ. Grenoble Alpes, I. Neel, F-38000 Grenoble (France); CNRS, I. Neel, F-38000 Grenoble (France); Toussaint, J.-C., E-mail: jean-christophe.toussaint@neel.cnrs.fr, E-mail: daria.gusakova@cea.fr [Univ. Grenoble Alpes, I. Neel, F-38000 Grenoble (France); CNRS, I. Neel, F-38000 Grenoble (France); Gusakova, D., E-mail: jean-christophe.toussaint@neel.cnrs.fr, E-mail: daria.gusakova@cea.fr [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France)
2015-06-28
Three-dimensional magnetic memory design based on circular-cross section nanowires with modulated diameter is the emerging field of spintronics. The consequences of the mutual interaction between electron spins and local magnetic moments in such non-trivial geometries are still open to debate. This paper describes the theoretical study of domain wall dynamics within such wires subjected to spin polarized current. We used our home-made finite element software to characterize the variety of domain wall dynamical regimes observed for different constriction to wire diameter ratios d/D. Also, we studied how sizeable geometry irregularities modify the internal micromagnetic configuration and the electron spin spatial distribution in the system, the geometrical reasons underlying the additional contribution to the system's nonadiabaticity, and the specific domain wall width oscillations inherent to fully three-dimensional systems.
Energy Technology Data Exchange (ETDEWEB)
Kalashnikova, Irina
2012-05-01
A numerical study aimed to evaluate different preconditioners within the Trilinos Ifpack and ML packages for the Quantum Computer Aided Design (QCAD) non-linear Poisson problem implemented within the Albany code base and posed on the Ottawa Flat 270 design geometry is performed. This study led to some new development of Albany that allows the user to select an ML preconditioner with Zoltan repartitioning based on nodal coordinates, which is summarized. Convergence of the numerical solutions computed within the QCAD computational suite with successive mesh refinement is examined in two metrics, the mean value of the solution (an L{sup 1} norm) and the field integral of the solution (L{sup 2} norm).
The influence of magnetic field geometry on magnetars X-ray spectra
International Nuclear Information System (INIS)
Viganò, D; Pons, J A; Miralles, J A; Parkins, N; Zane, S; Turolla, R
2012-01-01
Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetospheric plasma leaves a strong imprint on the observed X-ray spectrum by means of Compton up-scattering of the thermal radiation coming from the star surface. Motivated by the increased quality of the observational data, much theoretical work has been devoted to develop Monte Carlo (MC) codes that incorporate the effects of resonant Compton scattering (RCS) in the modeling of radiative transfer of photons through the magnetosphere. The two key ingredients in this simulations are the kinetic plasma properties and the magnetic field (MF) configuration. The MF geometry is expected to be complex, but up to now only mathematically simple solutions (self-similar solutions) have been employed. In this work, we discuss the effects of new, more realistic, MF geometries on synthetic spectra. We use new force-free solutions [14] in a previously developed MC code [9] to assess the influence of MF geometry on the emerging spectra. Our main result is that the shape of the final spectrum is mostly sensitive to uncertain parameters of the magnetospheric plasma, but the MF geometry plays an important role on the angle-dependence of the spectra.
Energy Technology Data Exchange (ETDEWEB)
Zapiór, Maciej; Martinez-Gómez, David, E-mail: zapior.maciek@gmail.com [Physics Department, University of the Balearic Islands, Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)
2016-02-01
Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1–3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 10{sup 9} A.
Zapiór, Maciej; Martínez-Gómez, David
2016-02-01
Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.
Finley, Adam J.; Matt, Sean P.
2018-02-01
During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.
Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.
Kruber, S; Farrher, G D; Anoardo, E
2015-10-01
In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm. Copyright © 2015 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
VandeKraats, J.
1987-11-01
This study investigates the effect of horizontal room convergence on CH waste packages emplaced in the WIPP Reference Design geometry (rooms 13 feet high by 33 feet wide, with minus 3/8 inch screened backfill emplaced over and around the waste packages) as a function of time. Based on two tests, predictions were made with regard to full-scale 6-packs emplaced in the Reference Design geometry. These are that load will be transmitted completely through the stack within the first five years after waste emplacement and all drums in all 6-packs will be affected; that virtually all drums will show some deformation eight years after emplacement; that some drums may breach before the eighth year after emplacement has elapsed; and that based on criteria developed during testing, it is predicted that 1% of the drums emplaced will be breached after 8 years and, after 15 years, approximately 12% of the drums are predicted to be breached. 8 refs., 41 figs., 3 tabs
International Nuclear Information System (INIS)
Alnaemi, F.; Moses, A.J.
2003-01-01
FEM modelling of PM motor was carried out to demonstrate the effects of the addition of various types of ferromagnetic tubes (shell) to a rotor of surface mount permanent magnet motor. An enhancement in magnet operating point towards the high field region is obtained. A shell made of amorphous ribbon offers optimum advantages
International Nuclear Information System (INIS)
Isler, R.C.; Aceto, S.; Baylor, L.R.; Bigelow, T.S.; Bell, G.L.; Bell, J.D.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dory, R.A.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Gandy, R.F.; Glowienka, J.C.; Hanson, G.R.; Harris, J.H.; Hiroe, S.; Horton, L.D.; Jernigan, T.C.; Ji, H.; Langley, R.A.; Lee, D.K.; Likin, K.M.; Lyon, J.F.; Ma, C.H.; Morimoto, S.; Murakami, M.; Okada, H.; Qualls, A.L.; Rasmussen, D.A.; Rome, J.A.; Sato, M.; Schwelberger, J.G.; Shats, M.G.; Simpkins, J.E.; Thomas, C.E.; Uckan, T.; Wade, M.R.; Wilgen, J.B.; Wing, W.R.; Yamada, H.; Zielinski, J.J.
1992-01-01
Recent experiments in the Advanced Toroidal Facility (ATF) [Fusion Technol. 10, 179 (1986)] have been directed toward investigations of the basic physics mechanisms that control confinement in this device. Measurements of the density fluctuations throughout the plasma volume have provided indications for the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications are supported by results of dynamic configuration scans of the magnetic fields during which the magnetic well volume, shear, and fraction of confined trapped particles are changed continuously. The influence of magnetic islands on the global confinement has been studied by deliberately applying error fields which strongly perturb the nested flux-surface geometry, and the effects of electric fields have been investigated by means of biased limiter experiments
Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers
International Nuclear Information System (INIS)
Werner, F.; Hofmann, M.; Them, K.; Knopp, T.; Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H.; Werner, R.; Säring, D.; Weber, O. M.
2016-01-01
Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.
Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers
Energy Technology Data Exchange (ETDEWEB)
Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.; Knopp, T. [Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany and Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg 21073 (Germany); Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Werner, R.; Säring, D. [Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Weber, O. M. [Philips Medical Systems DMC GmbH, Hamburg 22335 (Germany)
2016-06-15
Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.
Symmetry of nonexploding cylindrical liner converging to the axis under magnetic field effects
International Nuclear Information System (INIS)
Chernyshev, V.K.; Grinevich, B.E.; Buzin, V.N.; Pogorelov, V.P.; Shertsov, V.A.; Petrukhin, A.A.; Demidov, V.A.; Zharinov, E.I.
1990-01-01
Liner acceleration, affected by magnetic pressure, is broadly used to yield megagauss magnetic fields and plasma compression. The progress of test conduction depends much on the state of liner subjected to Taylor instability while being accelerated. There is a number of methods permitting to reduce liner shape distortions, developing during its acceleration. The most simple method consists in that the aspect ratio (the ratio of liner placing radius to its thickness) is taken less than 10. To impart sufficient velocity to the liner of large thickness its density should be small. Therefore, liner is either a gas layer or explosion products of thin metal foil which passed to a vaporous state in early stage of acceleration. Acceleration of nonexploding liners may serve as the other method of asymmetry reduction. Strength and viscosity of liner will be used as stabilizing factors with respect to the development of Taylor instability. This will allow the aspect ratio increase, that is sometimes useful. Test results on acceleration of nonexploding aluminum liners 1 mm thick have been described. Aspect ratio amounted to 30-60 and the ratio of liner acceleration distance to its thickness (parameter, being of great importance when studying the development of Taylor instability) made up 20-40. Satisfactory azimuthal symmetry of liner convergence to the center was recorded. For more detailed investigation of Taylor instability influence on the symmetry of nonexploding liner, the experiments, when the ratio of liner acceleration length to its thickness would be increased up to 90-100 simultaneously with determination of azimuthal and axial symmetry of liner, are of interest. In this paper presents the results of experiments on acceleration of copper cylindrical liner 1.37 mm thick
Energy Technology Data Exchange (ETDEWEB)
Juárez, Carmen; Girart, Josep M. [Institut de Ciències de l’Espai, (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090, Morelia, Michoacán (Mexico); Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping, E-mail: juarez@ice.cat [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China)
2017-07-20
We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s{sup −1}, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.
International Nuclear Information System (INIS)
Juárez, Carmen; Girart, Josep M.; Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier; Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab; Zhang, Qizhou; Qiu, Keping
2017-01-01
We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s −1 , converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.
Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles
International Nuclear Information System (INIS)
Herbst, K.; Kopp, A.; Heber, B.
2013-01-01
Studies of the propagation of charged energetic particles in the Earth's magnetic field go back to Carl Stoermer. In the end, his investigations finally lead to the definition of the so-called cutoff rigidity RC; that is, the minimum momentum per charge a particle must have in order to reach a certain geographical location. Employing Monte Carlo simulations with the PLANETOCOSMICS code we investigate the correlation between the geomagnetic field structure and the cutoff rigidity. We show that the geometry of the magnetic field has a considerable influence on the resulting cutoff rigidity distribution. Furthermore, we will present a simple geometry-based parameter, δB, which is able to reflect the location-dependent cutoff rigidity. We show that this correlation is also visible in the temporal evolution of the Earth's magnetic field, at least over the last 100 yr. Using latitude scans with neutron monitors, changes of the relative counting rates at different positions are calculated, showing small variations for, e.g., Kiel and Moscow, while large ones occur at Mexico City as well as on the British Virgin Islands.
Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry
Energy Technology Data Exchange (ETDEWEB)
Song, Dongsheng [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Rusz, Jan [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Cai, Jianwang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)
2016-10-15
EMCD (electron magnetic circular dichroism) technique provides us a new opportunity to explore magnetic properties in the transmission electron microscope. However, specific diffraction geometry is the major limitation. Only the two-beam and three-beam case are demonstrated in the experiments until now. Here, we present the more general case of zone axial (ZA) diffraction geometry through which the EMCD signals can be detected even with the very strong sensitivity to dynamical diffraction conditions. Our detailed calculations and well-controlled diffraction conditions lead to experiments in agreement with theory. The effect of dynamical diffraction conditions on EMCD signals are discussed both in theory and experiments. Moreover, with the detailed analysis of dynamical diffraction effects, we experimentally obtain the separate EMCD signals for each crystallographic site in Y{sub 3}Fe{sub 5}O{sub 12}, which is also applicable for other materials and cannot be achieved by site-specific EMCD and XMCD technique directly. Our work extends application of more general diffraction geometries and will further promote the development of EMCD technique. - Highlights: • The zone axial (ZA) diffraction geometry is presented for EMCD technique. • The detailed calculations for EMCD signals under ZA case are conducted. • The EMCD signals are obtained under the ZA case in the experiments. • The effect of dynamical effect on EMCD signals under ZA case is discussed. • Site-specific EMCD signals of Fe in Y{sub 3}Fe{sub 5}O{sub 12} are obtained by specific ZA conditions.
Effect of magnetic island geometry on ECRH/ECCD and consequences to the NTM stabilization dynamics
Chatziantonaki, I.; Tsironis, C.; Isliker, H.; Vlahos, L.
2012-09-01
In the majority of codes that model ECCD-based NTM stabilization, the analysis of the EC propagation and absorption is performed in terms of the axisymmetric magnetic field, ignoring effects due to the island topology. In this paper, we analyze the wave propagation, absorption and current drive in the presence of NTMs, as well as the ECCD-driven island growth, focusing on the effect of the island geometry on the wave de-position. A primary evaluation of the consequences of these effects on the NTM evolution is also made in terms of the modified Rutherford equation.
Intermittent transport in edge plasma with a 3-D magnetic geometry in the Large Helical Device
International Nuclear Information System (INIS)
Tanaka, H.; Masuzaki, S.; Ohno, N.; Morisaki, T.; Tsuji, Y.
2013-01-01
Blobby plasma transport is a universally observed phenomenon in magnetic confinement devices, and it is considered to be closely related to edge plasma physics. We have investigated such an intermittent event observed inside the divertor region of the Large Helical Device by using a fast-scanning Langmuir probe with two electrodes. Ion saturation current fluctuations showed negative spikes in the divertor leg and positive spikes in the private region. Further, the time delay between the two fluctuations followed a unique trajectory in the positive-skewness region. We found common as well as different fluctuation characteristics between the LHD and tokamaks. We discuss the analysis results in relation to the blob-generation and propagation behaviors in the three-dimensional magnetic geometry around the divertor leg. In addition, we quantitatively estimated the blob propagation velocity and size based on a theoretical assumption
Energy Technology Data Exchange (ETDEWEB)
Khatri, Manvendra Singh
2010-07-09
Thin films and nanowires of Co-Pt have been prepared by means of electrodeposition. Composition, structure, microstructure and magnetic properties have been intensively studied using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry and correlated to the deposition parameters such as electrolyte composition, deposition current and/or potential. Co rich Co-Pt films have been deposited at various current densities. A nearly constant composition of Co{sub 70}Pt{sub 30} was achieved for current densities between 18 and 32 mA/cm{sup 2}. Detailed texture measurements confirmed an increasing fraction of the hexagonal phase with its c-axis aligned perpendicular to the film plane with increasing current density. Accordingly, magnetic properties are strongly affected by the magnetocrystalline anisotropy of the hexagonal phase that competes with the shape anisotropy of the thin film geometry. Co-Pt nanowires have been prepared within alumina templates at different deposition potentials between -0.6 and -0.9 V{sub SCE} changing the composition from nearly pure Pt to Co. The composition Co{sub 80}Pt{sub 20} was observed at a deposition potential of -0.7 V{sub SCE}. Co-Pt nanowires are nanocrystalline in the as-deposited state. Magnetic measurements reveal changing fcc and hcp phase fractions within the wires as the effective anisotropy significantly differs from the expected shape anisotropy for nanowires with high aspect ratio. This change in effective anisotropy is attributed to the preferential alignment of the c-axis of hcp Co-Pt phase perpendicular to the nanowires axis. A promising alternative with much smaller feature sizes is the diblock copolymer template. Electrodeposition of Co and Co-Pt into these templates has been carried out. Inhomogeneities in the template thickness as well as a certain substrate roughness have been identified to be the reasons for inhomogeneous template filling. Thus magnetic properties are dominated by large
Structures of peptide families by nuclear magnetic resonance spectroscopy and distance geometry
Energy Technology Data Exchange (ETDEWEB)
Pease, J.H.
1989-12-01
The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometry calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.
THE EFFECTS OF MAGNETIC-FIELD GEOMETRY ON LONGITUDINAL OSCILLATIONS OF SOLAR PROMINENCES
International Nuclear Information System (INIS)
Luna, M.; Díaz, A. J.; Karpen, J.
2012-01-01
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side. We have found the normal modes of the system and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.
The Effects of Magnetic-field Geometry on Longitudinal Oscillaitons of Solar Prominences
Luna, M.; Diaz, A. J.; Karpen, J.
2013-01-01
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side.We have found the normal modes of the system and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.
Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence
International Nuclear Information System (INIS)
Palmero, E. M.; Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.
2014-01-01
Arrays of Ni 100−x Cu x nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.
International Nuclear Information System (INIS)
Forkl, A.; Kronmueller, H.
1995-01-01
The distribution of the critical current density j c (r) in hard type-II superconductors depends strongly on their sample geometry. Rules are given for the construction of j c (r). Samples with homogeneous thickness are divided into cakelike regions with a unique current direction. The spatial magnetic flux density distribution and the magnetic polarization of such a cakelike unit cell with homogeneous current density are calculated analytically. The magnetic polarization and magnetic flux density distribution of a superconductor in the mixed state is then given by an adequate superposition of the unit cell solutions. The theoretical results show good agreement with magneto-optically determined magnetic flux density distributions of a quadratic thin superconducting YBa 2 Cu 3 O 7-x film. The current density distribution is discussed for several sample geometries
International Nuclear Information System (INIS)
Alija, A; Sobrado, I; Rodriguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I; Parrondo, J M R
2010-01-01
Micromagnetic simulations have been performed in uniaxial magnetic films with 2D array of asymmetric arrow shape holes. In order to understand the asymmetric pinning potential created by the holes, different boundary geometries conditions are used on the simulations. The depinning fields for forward and backward domain wall propagation have been calculated by the analysis of the energy landscapes as a function of the domain wall position. Domain wall depinning occurs preferentially at the free ends of the domain wall at the film boundaries. We have found that the domain wall propagation is different at the top/bottom boundaries of the simulated film which can be understood in terms of the magnetostatic energy and the chirality of the domain wall.
Effect of drift-acoustic waves on magnetic island stability in slab geometry
International Nuclear Information System (INIS)
Fitzpatrick, R.; Waelbroeck, F.L.
2005-01-01
A mathematical formalism is developed for calculating the ion polarization term in the Rutherford island width evolution equation in the presence of drift-acoustic waves. The calculation is fully nonlinear, includes both ion and electron diamagnetic effects, as well as ion compressibility, but is performed in slab geometry. Magnetic islands propagating in a certain range of phase velocities are found to emit drift-acoustic waves. Wave emission gives rise to rapid oscillations in the ion polarization term as the island phase velocity varies, and also generates a net electromagnetic force acting on the island region. Increasing ion compressibility is found to extend the range of phase velocities over which drift-acoustic wave emission occurs in the electron diamagnetic direction
International Nuclear Information System (INIS)
McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.
2010-01-01
Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)
Latitude dependence of the solar wind speed: Influence of the coronal magnetic field geometry
International Nuclear Information System (INIS)
Pneuman, G.W.
1976-01-01
The dependence of solar wind speed on latitude as influenced by the magnetic field configuration of the inner corona is studied. It is found that in general, a dipolelike field geometry characteristic of a minimum-type corona tends to produce a solar wind speed distribution which increases with heliographic latitude, in accordance with observations. At very high coronal base densities and temperatures, however, this effect is minimal or even inverted. Physically, the field affects the wind speed through its area divergence, a larger divergence resulting in correspondingly lower speeds. During solar minimum, eclipse photographs suggest that the field divergence increases from pole to equator, a characteristic not apparent during solar maximum. Hence we expect the latitudinal increase in speed to be most pronounced at the minimum phase of solar activity
Energy Technology Data Exchange (ETDEWEB)
Fang, J [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Luo, X M [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Chen, D X [ICREA and Grup Electromagnetisme, Departament de Fisica, Universitat Autonoma Barcelona, 08193 Bellaterra (Spain); Alamgir, A K M [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Collings, E W [MSE, Ohio State University, Columbus, OH 43210 (United States); Lee, E [MSE, Ohio State University, Columbus, OH 43210 (United States); Sumption, M D [MSE, Ohio State University, Columbus, OH 43210 (United States); Fang, J G [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Yi, H P [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Song, X H [Innova Superconductor Technology Co., Ltd, 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing Economic and Technological Development Area, 100176 (China); Guo, S Q [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Liu, M L [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Xin, Y [Innopower Superconductor Cable Co., Ltd, 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing Economic and Technological Development Area, 100176 (China); Han, Z [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)
2004-10-01
On five Bi-2223/Ag tapes with different aspect ratios from 5 to 26, AC losses have been measured at 77 K while a parallel AC magnetic field or a perpendicular AC magnetic field or a longitudinal AC transport current is applied. It has been found that at any frequency the perpendicular magnetic losses per cycle increase, but the parallel magnetic losses per cycle and the transport losses per cycle decrease as the aspect ratio increases. These experimental results are in accord with theoretical results. Meanwhile, we investigated the geometry dependence of the decay time constant of coupling current and that of full penetration field.
International Nuclear Information System (INIS)
Fang, J; Luo, X M; Chen, D X; Alamgir, A K M; Collings, E W; Lee, E; Sumption, M D; Fang, J G; Yi, H P; Song, X H; Guo, S Q; Liu, M L; Xin, Y; Han, Z
2004-01-01
On five Bi-2223/Ag tapes with different aspect ratios from 5 to 26, AC losses have been measured at 77 K while a parallel AC magnetic field or a perpendicular AC magnetic field or a longitudinal AC transport current is applied. It has been found that at any frequency the perpendicular magnetic losses per cycle increase, but the parallel magnetic losses per cycle and the transport losses per cycle decrease as the aspect ratio increases. These experimental results are in accord with theoretical results. Meanwhile, we investigated the geometry dependence of the decay time constant of coupling current and that of full penetration field
On convergence generation in computing the electro-magnetic Casimir force
International Nuclear Information System (INIS)
Schuller, F.
2008-01-01
We tackle the very fundamental problem of zero-point energy divergence in the context of the Casimir effect. We calculate the Casimir force due to field fluctuations by using standard cavity radiation modes. The validity of convergence generation by means of an exponential energy cut-off factor is discussed in detail. (orig.)
Particle Trapping and Dropouts in Magnetic Turbulence in a Spherical Geometry
Tooprakai, P.; Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.
2006-12-01
The observed dropouts of solar energetic particles from impulsive solar events (i.e., the inhomogeneity and sharp gradients in particle density) indicate the partial filamentation of magnetic connection from small regions of the corona to Earth orbit. This can be understood in terms of persistent trapping of field lines due to small- scale topological structures in the solar wind. We further explore how this turbulence structure should be manifest in particle observations, by evaluating particle trajectories obtained from the Newton-Lorentz equations. By adapting a two-component model of turbulence to spherical geometry, we include the adiabatic focusing of particles. The 2D magnetic field is generated by either 1) a 2D fast Fourier transform, a valid approximation over a small angular region, or 2) a spherical harmonic series with ℓ up to 2000. Dropout features at 1 AU are clearly indicated for low-energy particles, but these features are washed out for E >~ 100 MeV. Different time-intensity profiles are found at locations at 1 AU that are distinct with regard to the small-scale topology. Partially supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and NASA Grant NNG05GG83G.
International Nuclear Information System (INIS)
Piskunov, N.E.
1985-01-01
Mathematical formulation of the inverse problem of determination of magnetic field geometry from the polarization profiles of spectral lines is gven. The solving algorithm is proposed. A set of model calculations has shown the effectiveness of the algorithm, the high precision of magnetic star model parameters obtained and also the advantages of the inverse problem method over the commonly used method of interpretation of effective field curves
Energy Technology Data Exchange (ETDEWEB)
Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk [University of Exeter (UK), Department of Physics and Astronomy, Stoker Road, Devon, Exeter, EX4 4QL (United Kingdom)
2017-08-10
Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulations with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.
Energy Technology Data Exchange (ETDEWEB)
Lee, Hwi Joo; Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of); Park, Soon Dong; Jun, Bung Hyack; Kim, Chan Joong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2017-09-15
This study presents that the orientation and the geometry of seed affect on the growth behavior of melt processed single grain REBCO bulk superconductor and its magnetic properties. The effects of seed geometry have been investigated for thin 30mm x 30mm rectangular powder compacts. Single grain REBCO bulk superconductors have been grown successfully by a top seed melt growth method for 8-mm thick vertical thin REBCO slab. Asymmetric structures have been developed at the front surface and at the rear surface of the specimen. Higher magnetic properties have been obtained for the specimen that c-axis is normal to the specimen surface. The relationships between microstructure, grain growth and magnetic properties have been discussed.
Magnetic nanowires and hyperthermia: How geometry and material affect heat production efficiency
Contreras, Maria F.; Zaher, A.; Perez, Jose E.; Ravasi, Timothy; Kosel, Jü rgen
2015-01-01
Magnetic hyperthermia, which refers to the production of heat by magnetic nanostructures under an alternating magnetic field (AMF), has been previously investigated with superparamagnetic nanobeads as a cancer therapy method. Magnetic nanowires (NWs
Functional magnetic resonance imaging of divergent and convergent thinking in Big-C creativity.
Japardi, Kevin; Bookheimer, Susan; Knudsen, Kendra; Ghahremani, Dara G; Bilder, Robert M
2018-02-15
The cognitive and physiological processes underlying creativity remain unclear, and very few studies to date have attempted to identify the behavioral and brain characteristics that distinguish exceptional ("Big-C") from everyday ("little-c") creativity. The Big-C Project examined functional brain responses during tasks demanding divergent and convergent thinking in 35 Big-C Visual Artists (VIS), 41 Big-C Scientists (SCI), and 31 individuals in a "smart comparison group" (SCG) matched to the Big-C groups on parental educational attainment and estimated IQ. Functional MRI (fMRI) scans included two activation paradigms widely used in prior creativity research, the Alternate Uses Task (AUT) and Remote Associates Task (RAT), to assess brain function during divergent and convergent thinking, respectively. Task performance did not differ between groups. Functional MRI activation in Big-C and SCG groups differed during the divergent thinking task. No differences in activation were seen during the convergent thinking task. Big-C groups had less activation than SCG in frontal pole, right frontal operculum, left middle frontal gyrus, and bilaterally in occipital cortex. SCI displayed lower frontal and parietal activation relative to the SCG when generating alternate uses in the AUT, while VIS displayed lower frontal activation than SCI and SCG when generating typical qualities (the control condition in the AUT). VIS showed more activation in right inferior frontal gyrus and left supramarginal gyrus relative to SCI. All groups displayed considerable overlapping activation during the RAT. The results confirm substantial overlap in functional activation across groups, but suggest that exceptionally creative individuals may depend less on task-positive networks during tasks that demand divergent thinking. Published by Elsevier Ltd.
Nadzharyan, T. A.; Makarova, L. A.; Kazimirova, E. G.; Perov, N. S.; Kramarenko, E. Yu
2018-03-01
We study the effects the geometric configuration has on magnetic interactions between a magnetoactive elastomer (MAE) sample and various systems of permanent magnets for problems with both flat and curved geometry. MAEs consist of a silicone polymer matrix and iron filler microparticles embedded in it. Permanent magnets are cylindrical neodymium magnets arranged in a line on a flat or curved solid surfaces. We use computer simulations, namely the finite element method, in order to study the interaction force and magnetic pressure in a system with an MAE sample and permanent magnets. The model is based on classical Maxwell magnetostatics and two factors taking into account field dependence of MAE’s magnetic properties and inhomogeneities caused by local demagnetization. We calculate magnetic pressure dependences on various geometric parameters of the system, namely, the diameter and the height of permanent magnets, the distance between the magnets and dimensions of MAE samples. This research aims to create a set of guidelines for choosing the geometric configuration of a retina fixator based on MAE seals to be used in eye surgery for retinal detachment treatment.
Dayside merging and cusp geometry
International Nuclear Information System (INIS)
Crooker, N.U.
1979-01-01
Geometrical considerations are presented to show that dayside magnetic merging when constrained to act only where the fields are antiparallel results in lines of merging that converge at the polar cusps. An important consequence of this geometry is that no accelerated flows are predicted across the dayside magnetopause. Acceleration owing to merging acts in opposition to the magnetosheath flow at the merging point and produces the variably directed, slower-than-magnetosheath flows observed in the entry layer. Another consequence of the merging geometry is that much of the time closed field lines constitute the subsolar region of the magnetopause. The manner in which the polar cap convection patterns predicted by the proposed geometry change as the interplanetary field is rotated through 360 0 provides a unifying description of how the observed single circular vortex and the crescent-shaped double vortex patterns mutually evolve under the influence of a single operating principle
Filamentation of a converging heavy ion beam
International Nuclear Information System (INIS)
Lee, E.P.; Buchanan, H.L.; Rosenbluth, M.N.
1980-01-01
A major concern in the use of heavy ion beams as igniters in pellet fusion systems is the vulnerability of the beam to the transverse flamentation instability. The undesirable consequence of this mode is the transverse heating of the beam to the extent that convergence on the pellet becomes impossible. This work considers the case of a beam injected into a gas filled reactor vessel, where finite pulse length and propagation distance play an important role in limiting growth. Two geometries are analyzed: a nonconverging case where the radius at injection is nearly equal to the desired radius at the pellet, and a converging case in which the injection radius is large and the beam is pre-focused to converge at the target. It is found that a cold beam will be severely disrupted if the product of the magnetic plasma frequency and the propagation distance is much larger than unity
Energy Technology Data Exchange (ETDEWEB)
Malkov, Victor N.; Rogers, David W.O. [Carleton University (Canada)
2016-08-15
The coupling of MRI and radiation treatment systems for the application of magnetic resonance guided radiation therapy necessitates a reliable magnetic field capable Monte Carlo (MC) code. In addition to the influence of the magnetic field on dose distributions, the question of proper calibration has arisen due to the several percent variation of ion chamber and solid state detector responses in magnetic fields when compared to the 0 T case (Reynolds et al., Med Phys, 2013). In the absence of a magnetic field, EGSnrc has been shown to pass the Fano cavity test (a rigorous benchmarking tool of MC codes) at the 0.1 % level (Kawrakow, Med.Phys, 2000), and similar results should be required of magnetic field capable MC algorithms. To properly test such developing MC codes, the Fano cavity theorem has been adapted to function in a magnetic field (Bouchard et al., PMB, 2015). In this work, the Fano cavity test is applied in a slab and ion-chamber-like geometries to test the transport options of an implemented magnetic field algorithm in EGSnrc. Results show that the deviation of the MC dose from the expected Fano cavity theory value is highly sensitive to the choice of geometry, and the ion chamber geometry appears to pass the test more easily than larger slab geometries. As magnetic field MC codes begin to be used for dose simulations and correction factor calculations, care must be taken to apply the most rigorous Fano test geometries to ensure reliability of such algorithms.
Interfacial Stability of Spherically Converging Plasma Jets for Magnetized Target Fusion
Thio, Y. C. Francis; Cassibry, Jason; Wu, S. T.; Eskridge, Richard; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner to implode a magnetized target to produce the fusion reaction. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The results lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that the maximum temporal growth rate of the perturbed flow at the jet interface is very small in comparison with the time to full compression of the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of the gaseous liner can withstand velocity variation of the order of 10% between the neighboring jets over the density and temperature ranges investigated.
Magnetic nanowires and hyperthermia: How geometry and material affect heat production efficiency
Contreras, Maria F.
2015-05-01
Magnetic hyperthermia, which refers to the production of heat by magnetic nanostructures under an alternating magnetic field (AMF), has been previously investigated with superparamagnetic nanobeads as a cancer therapy method. Magnetic nanowires (NWs) used in hyperthermia can be very promising, as it has been shown that they have a larger magnetic moment per unit of volume compared to the nanobeads. Moreover, Fe NWs proved to have a higher heating efficiency compared to Fe nanobeads, when exposed to an AMF at the same concentration [1].
International Nuclear Information System (INIS)
Guo, Y.; Ding, M. D.; Liu, Y.; Sun, X. D.; DeRosa, M. L.; Wiegelmann, T.
2012-01-01
We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20° × 20°. Additionally, we apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free, and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.
Effects of the divertor tile geometries and magnetic field angles on the heat fluxes to the surface
Energy Technology Data Exchange (ETDEWEB)
Hu, Wanpeng; Sang, Chaofeng; Sun, Zhenyue; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn
2017-03-15
Highlights: • Simulation of the plasma behaviors in the divertor gap region is done by using a 2d3 v Particle-In-Cell code. • Heat fluxes on the wall surface in different gap geometries are studied. • The effect of the magnetic field angle on the heat flux is investigated. - Abstract: A two dimension-in-space and three dimension-in-velocity (2d3v) Particle-In-Cell (PIC) code is applied to investigate the plasma behaviors at the divertor gaps region in this work. Electron and D{sup +} ion fluxes to the tile surface in the poloidal and toroidal gaps for different shaped edges are compared to demonstrate the optimized tile geometry. For poloidal gap, shaped edge in the shadowing side makes more ions penetrate into the gap, while shaped edge in the wetted side can mitigate the peak flux value. For toroidal gap, most ions entering the gap impinge on the side tile mainly due to the E × B drift, and shaped wetted edges also can mitigate the peak heat fluxes. In addition, effects of magnetic field inclination angle from toroidal direction on the plasma behaviors are simulated for poloidal and toroidal gaps, respectively. It is found that the magnetic field angles don’t influence the plasma behaviors in poloidal gap; while significant changes have been observed in the toroidal gap.
A holmium(III)-based single-molecule magnet with pentagonal-bipyramidal geometry
Energy Technology Data Exchange (ETDEWEB)
Kajiwara, Takashi [Department of Chemistry, Faculty of Science, Nara Women' s University (Japan)
2017-09-11
The right environment: The remarkable properties of a recently reported holmium(III)-based single-ion magnet have been ascribed to the hyperfine interactions with the half-integer nuclear spin in combination with the pentagonal-bipyramidal coordination environment. These results provide insight into the complicated magnetic properties of nanosized magnetic materials. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry
Directory of Open Access Journals (Sweden)
Maxim E. Stebliy
2015-03-01
Full Text Available Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto-optical Kerr effect (MOKE magnetometer are supported by the magnetic force microscopy imaging and micromagnetic simulations.
International Nuclear Information System (INIS)
Du, Hailong; Sang, Chaofeng; Wang, Liang; Bonnin, Xavier; Sun, Jizhong; Wang, Dezhen
2016-01-01
Highlights: • The in-out divertor asymmetry is studied using SOLPS. • The discharge operation and the magnetic filed have a great influence on the divertor asymmetry. • The asymmetry is not obvious in low recycling regime as that in high recycling regime. - Abstract: This paper aims to investigate the reason why the divertor in-out asymmetry was not obvious as experimentally observed in EAST only considering the classical drifts from previous simulations (Guo et al., J. Nucl. Mater. 438 (2013) 280; Du et al., J. Nucl. Mater. 463 (2015) 485). With consideration of the classical drifts, a series of different typical discharge scenarios in EAST in different magnetic field geometries were simulated by using the SOLPS5.2 code package. The simulated results reveal that the classical drifts make a major contribution to the in-out divertor asymmetry in the high recycling regime (HRR) and partial detachment (one divertor target begins to detach, while the other divertor remains attached) regime. In comparison, in low recycling regime the classical drifts play a much smaller role in the contributions to the in-out divertor asymmetry, which can explain reasonably the reason for it in Guo et al. (J. Nucl. Mater. 438 (2013) 280). In addition, the magnetic field geometry also has a great impact on the classical drifts inducing the asymmetry; it is found that for lower single-null, upper single-null and connected double-null topologies, in HRR the classical drifts play an dominant role in the contribution to the in-out divertor asymmetry, while for a disconnected double null magnetic field configuration, they play a minor role, which is the reason why the in-out asymmetry was unobvious by considering the drifts in Du et al. (J. Nucl. Mater. 463 (2015) 485).
Energy Technology Data Exchange (ETDEWEB)
Du, Hailong; Sang, Chaofeng [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Liang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Bonnin, Xavier [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France); Sun, Jizhong [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2016-11-01
Highlights: • The in-out divertor asymmetry is studied using SOLPS. • The discharge operation and the magnetic filed have a great influence on the divertor asymmetry. • The asymmetry is not obvious in low recycling regime as that in high recycling regime. - Abstract: This paper aims to investigate the reason why the divertor in-out asymmetry was not obvious as experimentally observed in EAST only considering the classical drifts from previous simulations (Guo et al., J. Nucl. Mater. 438 (2013) 280; Du et al., J. Nucl. Mater. 463 (2015) 485). With consideration of the classical drifts, a series of different typical discharge scenarios in EAST in different magnetic field geometries were simulated by using the SOLPS5.2 code package. The simulated results reveal that the classical drifts make a major contribution to the in-out divertor asymmetry in the high recycling regime (HRR) and partial detachment (one divertor target begins to detach, while the other divertor remains attached) regime. In comparison, in low recycling regime the classical drifts play a much smaller role in the contributions to the in-out divertor asymmetry, which can explain reasonably the reason for it in Guo et al. (J. Nucl. Mater. 438 (2013) 280). In addition, the magnetic field geometry also has a great impact on the classical drifts inducing the asymmetry; it is found that for lower single-null, upper single-null and connected double-null topologies, in HRR the classical drifts play an dominant role in the contribution to the in-out divertor asymmetry, while for a disconnected double null magnetic field configuration, they play a minor role, which is the reason why the in-out asymmetry was unobvious by considering the drifts in Du et al. (J. Nucl. Mater. 463 (2015) 485).
Proposal for the award of a contract to measure the geometry of the LHC cryo-magnets
2003-01-01
This document concerns the award of a contract to measure the geometry of the LHC cryo-magnets. Following a market survey carried out among 43 firms in eleven Member States, a call for tenders (IT-2989/EST/LHC) was sent on 10 March 2003 to one firm and three consortia, in seven Member States. By the closing date, CERN had received three tenders from the three consortia in six Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium SETAT (FR), INTROTECH (NL) and MAP (CH), the lowest bidder, to measure the geometry of the LHC cryo-magnets, for an amount not exceeding 2 097 582 euros (3 173 347 Swiss francs) covering an initial period of three years starting on 1 October 2003, subject to revision for inflation from 1 October 2004. The rate of exchange used is that stipulated in the tender. The contract will include options for two one-year extensions beyond the initial three-year period. The consortium has indicated the following distribution by country of th...
Effects of magnetic core geometry on false detection in residual current sensor
International Nuclear Information System (INIS)
Colin, Bruno; Chillet, Christian; Kedous-Lebouc, Afef; Mas, Patrick
2006-01-01
Under high-supply current, residual circuit breakers are subject to abnormal tripping, caused by false residual currents. Geometric or magnetic anomalies in the circuit breaker ring core seem to be responsible for these abnormal currents. This paper studies a few anomalies (spiral shape effect, conductor eccentricity, lamination effect) and calculates different contributions using the finite element simulations. The results show that the ring core, made of thin wound magnetic tape, is particularly sensitive to primary conductor eccentricity
Random walks on the braid group B3 and magnetic translations in hyperbolic geometry
International Nuclear Information System (INIS)
Voituriez, Raphaeel
2002-01-01
We study random walks on the three-strand braid group B 3 , and in particular compute the drift, or average topological complexity of a random braid, as well as the probability of trivial entanglement. These results involve the study of magnetic random walks on hyperbolic graphs (hyperbolic Harper-Hofstadter problem), what enables to build a faithful representation of B 3 as generalized magnetic translation operators for the problem of a quantum particle on the hyperbolic plane
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Network Convergence. User is interested in application and content - not technical means of distribution. Boundaries between distribution channels fade out. Network convergence leads to seamless application and content solutions.
Magnetic fields, stellar feedback, and the geometry of H II regions
Ferland, Gary J.
2009-04-01
Magnetic pressure has long been known to dominate over gas pressure in atomic and molecular regions of the interstellar medium. Here I review several recent observational studies of the relationships between the H+, H0 and H2 regions in M42 (the Orion complex) and M17. A simple picture results. When stars form they push back surrounding material, mainly through the outward momentum of starlight acting on grains, and field lines are dragged with the gas due to flux freezing. The magnetic field is compressed and the magnetic pressure increases until it is able to resist further expansion and the system comes into approximate magnetostatic equilibrium. Magnetic field lines can be preferentially aligned perpendicular to the long axis of quiescent cloud before stars form. After star formation and pushback occurs ionized gas will be constrained to flow along field lines and escape from the system along directions perpendicular to the long axis. The magnetic field may play other roles in the physics of the H II region and associated PDR. Cosmic rays may be enhanced along with the field and provide additional heating of atomic and molecular material. Wave motions may be associated with the field and contribute a component of turbulence to observed line profiles.
DEFF Research Database (Denmark)
Batra, Tushar; Schaltz, Erik
2014-01-01
Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced. For geo......Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced...... for vertical separation between the coils in range of 100-180 mm. It is observed that lower vertical separation results in higher overlapping of the zones and the coils behave as they are effectively placed close to center of air gap. The analysis in this work provides a better understanding of the space...... profile of magnetic field emissions (with and without ferrite) for wireless power transfer to vehicles....
Punjabi, Alkesh; Ali, Halima
2008-12-01
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.
International Nuclear Information System (INIS)
Punjabi, Alkesh; Ali, Halima
2008-01-01
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.
Geometry optimization of five-phase permanent magnet synchronous motors using Bees algorithm
Directory of Open Access Journals (Sweden)
R Ilka
2015-12-01
Full Text Available Among all types of electrical motors, permanent magnet synchronous motors (PMSMs are reliable and efficient motors in industrial applications. Because of their superiority over other kinds of motors, they are replacing conventional electric motors. On the other hand, high-phase PMSMs are good candidates to be used in certain industrial and military projects such as electric vehicles, spacecrafts, naval systems and etc. In these cases, the motor has to be designed with minimum volume and high torque and efficiency. Design optimization can improve their features noticeably, thus reduce volume and enhance performance of motors. In this paper, a new method for optimum design of a five-phase surface-mounted permanent magnet synchronous motor is presented to achieve minimum permanent magnets (PMs volume with an increased torque and efficiency. Design optimization is performed in search for optimum dimensions of the motor and its permanent magnets using Bees Algorithm (BA. The design optimization results in a motor with great improvement regarding the original motor which is compared with two well-known evolutionary algorithms i.e. GA and PSO. Finally, finite element method simulation is utilized to validate the accuracy of the design.
International Nuclear Information System (INIS)
Sen, P.N.; Andre, A.; Axelrod, S.
1999-01-01
We study the influence of restriction on Carr - Purcell - Meiboom - Gill spin echoes response of magnetization of spins diffusing in a bounded region in the presence of a constant magnetic field gradient. Depending on three main length scales: L S pore size, L G dephasing length and L D diffusion length during half-echo time, three main regimes of decay have been identified: free, localization and motionally averaging regime. In localization regime, the decay exponent depends on a fractional power (2/3) of the gradient, denoting a strong breakdown of the second cumulant or the Gaussian phase approximation (GPA). In the other two regimes, the exponent depends on the gradient squared, and the GPA holds. We find that the transition from the localization to the motionally averaging regime happens when the magnetic field gradients approach special values, corresponding to branch points of the eigenvalues. Transition from one regime to another as a function of echo number for a certain range of parameters is discussed. In this transition region, the signal shows large oscillations with echo number. For large n, asymptotic behavior sets in as a function of n for the decay exponent per echo. This is true for all values of the parameters L S , L G , and L D . copyright 1999 American Institute of Physics
Spinning geometry = Twisted geometry
International Nuclear Information System (INIS)
Freidel, Laurent; Ziprick, Jonathan
2014-01-01
It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)
Solution structure of apamin determined by nuclear magnetic resonance and distance geometry
Energy Technology Data Exchange (ETDEWEB)
Pease, J.H.B.; Wemmer, D.E.
1988-11-01
The solution structure of the bee venom neurotoxin apamin has been determined with a distance geometry program using distance constraints derived from NMR. Twenty embedded structures were generated and refined by using the program DSPACE. After error minimization using both conjugate gradient and dynamics algorithms, six structures had very low residual error. Comparisons of these show that the backbone of the peptide is quite well-defined with the largest rms difference between backbone atoms in these structures of 1.34 /Angstrom/. The side chains have far fewer constraints and show greater variability in their positions. The structure derived here is generally consistent with the qualitative model previously described, with most differences occurring in the loop between the ..beta..-turn (residues 2-5) and the C-terminal ..cap alpha..-helix (residues 9-17). Comparisons are made with previously derived models from NMR data and other methods.
Solution structure of apamin determined by nuclear magnetic resonance and distance geometry
International Nuclear Information System (INIS)
Pease, J.H.B.; Wemmer, D.E.
1988-01-01
The solution structure of the bee venom neurotoxin apamin has been determined with a distance geometry program using distance constraints derived from NMR. Twenty embedded structures were generated and refined by using the program DSPACE. After error minimization using both conjugate gradient and dynamics algorithms, six structures had very low residual error. Comparisons of these show that the backbone of the peptide is quite well-defined with the largest rms difference between backbone atoms in these structures of 1.34 /Angstrom/. The side chains have far fewer constraints and show greater variability in their positions. The structure derived here is generally consistent with the qualitative model previously described, with most differences occurring in the loop between the β-turn (residues 2-5) and the C-terminal α-helix (residues 9-17). Comparisons are made with previously derived models from NMR data and other methods
Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry
International Nuclear Information System (INIS)
Ullom, J.N.; Doriese, W.B.; Hilton, G.C.; Beall, J.A.; Deiker, S.; Irwin, K.D.; Reintsema, C.D.; Vale, L.R.; Xu, Y.
2004-01-01
We report recent progress at NIST on Mo/Cu Transition-Edge Sensors (TESs). While the signal-band noise of our sensors agrees with theory, we observe excess high-frequency noise. We describe this noise and demonstrate that it can be strongly suppressed by a magnetic field perpendicular to the plane of the sensor. Both the excess noise and α=(T/R)(dR/dT) depend strongly on field so our results show that accurate comparisons between devices are only possible when the field is well known or constant. We also present results showing the noise performance of TES designs incorporating parallel and perpendicular normal metal bars, an array of normal metal islands, and in wedge-shaped devices. We demonstrate significant reduction of high-frequency noise with the perpendicular bar devices at the cost of reduced α. Both the bars and the magnetic field are useful noise reduction techniques for bolometers
Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad
2018-04-01
Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.
DEFF Research Database (Denmark)
Petersen, Thomas Frank; Pryds, Nini; Smith, Anders
2007-01-01
We have developed a two-dimensional model of a reciprocating Active Magnetic Regenerator(AMR) with a regenerator made of parallel plates arranged in a stack configuration. The time dependent,two-dimensional model solves the Navier-Stokes equations for the heat transfer fluid and the coupled heat...... transfer equations for the regenerator and the fluid. The model is implemented using the Finite Element Method. The model can be used to study both transient and steady-state phenomena in the AMR for any ratio of regenerator to fluid heat capacity. Results on the AMR performance for different design...
Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin
2018-06-15
We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.
Directory of Open Access Journals (Sweden)
M. A. A. Mohamed
2016-10-01
Full Text Available The focus of this study is to explore the potential use of Polyamide 6 nanocomposite reinforced with nanocrystalline (nc Fe20Ni80 alloy (Fe20Ni80/PA6 PNC in electromagnetic applications and provide understanding of how the alloy particle geometry is controlling the nanocomposite’s physical properties. Thermomechanical rigidity, room-temperature soft magnetic performance and thermal soft magnetic stability of Fe20Ni80/PA6 PNCs based on spherical-sea urchin alloy particles (UMB2-SU and necklace-like alloy chains (UMB2-NC have been investigated. Both PNCs have considerably superior bulk properties compared to neat PA6 and UMB2-SU exhibits the most remarkable overall performance. Morphological observations disclose two relevant phenomena: i improved dispersion and distribution of the SU alloy particles than the NC ones within PA6 matrix, leading to stronger filler-matrix interfacial interactions within the UMB2-SU as compared to the UMB2-NC and ii presence of constraint polymer regions in between alloy segments within the UMB2-SU that provide secondary reinforcing and soft magnetic mechanisms. Such phenomena along with the lower alloy crystallite size and PA6 γ-crystal type content within the UMB2-SU than in the UMB2-NC, are considered the main responsible factors for the distinctive performance of UMB2-SU. Overall, compared to various ferromagnetic nanocrystalline metallic materials, the research proposes the SU nc Fe20Ni80 alloy as a valuable nanofiller in polymers for electromagnetic applications.
Equilibrium geometries, electronic and magnetic properties of small AunNi- (n = 1-9) clusters
Tang, Cui-Ming; Chen, Xiao-Xu; Yang, Xiang-Dong
2014-05-01
Geometrical, electronic and magnetic properties of small AunNi- (n = 1-9) clusters have been investigated based on density functional theory (DFT) at PW91P86 level. An extensive structural search shows that the relative stable structures of AunNi- (n = 1-9) clusters adopt 2D structure for n = 1-5, 7 and 3D structure for n = 6, 8-9. And the substitution of a Ni atom for an Au atom in the Au-n+1 cluster obviously changes the structure of the host cluster. Moreover, an odd-even alternation phenomenon has been found for HOMO-LUMO energy gaps, indicating that the relative stable structures of the AunNi- clusters with odd-numbered gold atoms have a higher relative stability. Finally, the natural population analysis (NPA) and the vertical detachment energies (VDE) are studied, respectively. The theoretical values of VDE are reported for the first time to our best knowledge.
THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE FORMATION OF CLOSE-IN EXOPLANETS
Energy Technology Data Exchange (ETDEWEB)
Simon, Jacob B., E-mail: jbsimon.astro@gmail.com [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States)
2016-08-20
Approximately half of Sun-like stars harbor exoplanets packed within a radius of ∼0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura and Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α , and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving for the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.
... is also found to be weak. If both accommodation and convergence are weak, reading glasses, sometimes with prism added, may be a great option for these patients. It is very difficult to improve accommodation with exercises. Updated 7/2017 Eye Terms & Conditions ...
International Nuclear Information System (INIS)
Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.
2014-01-01
In the recently published paper “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor “quality” is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake “two-null” prescription
Iversen, Birger
1992-01-01
Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics
Energy Technology Data Exchange (ETDEWEB)
Lim-Reinders, S [Sunnybrook Odette Cancer Centre, Toronto (Canada); University of Toronto, Department of Physics (Canada); Keller, B; McCann, C; Sahgal, A; Lee, J; Kim, A [Sunnybrook Odette Cancer Centre, Toronto (Canada); University of Toronto, Department of Radiation Oncology (Canada)
2016-06-15
Purpose: Hypofractionated partial breast irradiation (HPBI) is being used at our clinic to treat inoperable breast cancer patients who have advanced disease. We are investigating how these patients could benefit from being treated in an MRI-linac, where real-time daily MRI tumor imaging and plan adaptation would be possible. As a first step, this study evaluates the dosimetric impact of the magnetic field for different radiation beam geometries on relevant OARs. Methods: Five patients previously treated using HPBI were selected. Six treatment plans were generated for each patient, evaluating three beam geometries (VMAT, IMRT, 3DCRT) with and without B{sub 0}=1.5 T. The Monaco TPS was used with the Elekta MRI-Linac beam model, where the magnetic field is orthogonal to the radiation beam. All plans were re-scaled to the same isocoverage with a prescription of 40Gy/5 to the PTV. Plans were evaluated for the effect of the magnetic field and beam modality on skin V{sub 3} {sub 0}, lung V{sub 2} {sub 0} and mean heart dose. Results: Averaged over all patients, skin V{sub 3} {sub 0}for 3DCRT was higher than VMAT and IMRT (by +22% and +21%, with B{sub 0}-ON). The magnetic field caused larger increases in skin V{sub 3} {sub 0}for 3DCRT (+8%) than VMAT (+3%) and IMRT (+4%) compared with B{sub 0}-OFF. With B{sub 0}-ON, 3DCRT had a markedly lower mean heart dose than VMAT (by 538cGy) and IMRT (by 562cGy); for lung V{sub 2} {sub 0}, 3DCRT had a marginally lower dose than VMAT (by −2.2%) and IMRT (also −2.2%). The magnetic field had minimal effect on the mean heart dose and lung V{sub 2} {sub 0} for all geometries. Conclusion: The decreased skin dose in VMAT and IMRT can potentially mitigate the effects of skin reactions for HPBI in an MRI-linac. This study illustrated that more beam angles may result in lower skin toxicity and better tumor conformality, with the trade-off of elevated heart and lung doses. We are receiving funding support from Elekta.
Enoki, Toshiaki; Kiguchi, Manabu
2018-03-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Nanographenes have important edge geometry dependence in their electronic structures. In armchair edges, electron wave interference works to contribute to energetic stability. Meanwhile, zigzag edges possess an edge-localized and spin-polarized nonbonding edge state, which causes electronic, magnetic, and chemical activities. In addition to the geometry dependence, the electronic structures are seriously affected by edge chemistry details. The edge chemistry dependence together with edge geometries on the electronic structures are discussed with samples of randomly networked nanographenes (microporous activated carbon fibers) in pristine state and under high-temperature annealing. In the pristine sample with the edges oxidized in ambient atmospheric conditions, the edge state, which is otherwise unstable, can be stabilized because of the charge transfer from nanographene to terminating oxygen. Nanographene, whose edges consist of a combination of magnetic zigzag edges and nonmagnetic armchair edges, is found to be ferrimagnetic with a nonzero net magnetic moment created under the interplay between a strong intrazigzag-edge ferromagnetic interaction and intermediate-strength interzigzag-edge antiferromagnetic-ferromagnetic interaction. At heat-treatment temperatures just below the fusion start (approximately 1500 K), the edge-terminating structure is changed from oxygen-containing groups to hydrogen in the nanographene network. Additionally, hydrogen-terminated zigzag edges, which are present as the majority and chemically unstable, play a triggering role in fusion above 1500 K. The fusion start brings about an insulator-to-metal transition at TI -M˜1500 K . Local fusions taking place percolatively between nanographenes work to expand the π -bond network, eventually resulting in the development of antiferromagnetic short-range order toward spin glass in the
van den Broek, P.M.
1984-01-01
The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.
Kan, Jinglan; Wang, Hailong; Sun, Wei; Cao, Wei; Tao, Jun; Jiang, Jianzhuang
2013-08-05
Employment of the raise-by-one step method starting from M(TClPP)(acac) (acac = monoanion of acetylacetone) and [Pc(OPh)8]M'[Pc(OPh)8] led to the isolation and free modulation of the two rare-earth ions in the series of four mixed tetrapyrrole dysprosium sandwich complexes {(TClPP)M[Pc(OPh)8]M'[Pc(OPh)8]} [1-4; TClPP = dianion of meso-tetrakis(4-chlorophenyl)porphyrin; Pc(OPh)8 = dianion of 2,3,9,10,16,17,23,24-octa(phenoxyl)phthalocyanine; M-M' = Dy-Dy, Y-Dy, Dy-Y, and Y-Y]. Single-crystal X-ray diffraction analysis reveals different octacoordination geometries for the two metal ions in terms of the twist angle (defined as the rotation angle of one coordination square away from the eclipsed conformation with the other) between the two neighboring tetrapyrrole rings for the three dysprosium-containing isostructural triple-decker compounds, with the metal ion locating between an inner phthalocyanine ligand and an outer porphyrin ligand with a twist angle of 9.64-9.90° and the one between two phthalocyanine ligands of 25.12-25.30°. Systematic and comparative studies over the magnetic properties reveal magnetic-field-induced single-molecule magnet (SMM), SMM, and non-SMM nature for 1-3, respectively, indicating the dominant effect of the coordination geometry of the spin carrier, instead of the f-f interaction, on the magnetic properties. The present result will be helpful for the future design and synthesis of tetrapyrrole lanthanide SMMs with sandwich molecular structures.
Do convergent developmental mechanisms underlie convergent phenotypes?
Wray, Gregory A.
2002-01-01
Convergence is a pervasive evolutionary process, affecting many aspects of phenotype and even genotype. Relatively little is known about convergence in developmental processes, however, nor about the degree to which convergence in development underlies convergence in anatomy. A switch in the ecology of sea urchins from feeding to nonfeeding larvae illustrates how convergence in development can be associated with convergence in anatomy. Comparisons to more distantly related taxa, however, suggest that this association may be limited to relatively close phylogenetic comparisons. Similarities in gene expression during development provide another window into the association between convergence in developmental processes and convergence in anatomy. Several well-studied transcription factors exhibit likely cases of convergent gene expression in distantly related animal phyla. Convergence in regulatory gene expression domains is probably more common than generally acknowledged, and can arise for several different reasons. Copyright 2002 S. Karger AG, Basel.
International Nuclear Information System (INIS)
Reiter, Gert; Reiter, Ursula; Rienmueller, Rainer; Gagarina, Nina; Ryabikin, Alexander
2004-01-01
Objective: Methodological comparison of ellipsoid model-based approaches and Simpson method to evaluate left ventricular volumetric parameters by magnetic resonance (MR) and electron beam tomography (EBT) and analysis of the origin of possible discrepancies. Methods and material: 100 subjects (87 patients, 13 healthy volunteers) were studied in MR in various cardiac views and EBT long axis view to determine left ventricular volumes and masses by applying (rotational) ellipsoid and Simpson model. Observer variation and method agreement was quantified by means of variance component and Bland-Altman analysis. Results: Simpson approach showed smaller observer variability than all ellipsoid approaches. All geometry-based models gave smaller left ventricular volumes than Simpson approach, the bias in mass determination was minimal. Whereas high correlation coefficients (typically 0.85-0.95) for left ventricular volume and mass measurements indicated satisfying correspondence between methods, large 95% limits of agreement made a transfer of results for single subjects between Simpson and ellipsoid approaches difficult and between different geometry-based models almost impossible. Because 95% limits of agreement and observer variability of geometry-based approaches were of equal order, the latter could be identified as main limiting factor of methodological agreement. Conclusion: MR Simpson approach is superior to all ellipsoid model-based approaches, because observer variability is smaller
International Nuclear Information System (INIS)
Bakshi, P.; Kalman, G.
1976-02-01
A new approach for the solution of the Vlasov equation for complex magnetic field geometries has been developed using operator techniques. The general approach is illustrated by determining the perturbed distribution function and density operator for the problem of shear stabilization of drift waves for transverse and arbitrary directions of propagation. The ensuing corrections to stability criteria of current theories are obtained for certain domains of physical parameters. Preliminary work on the integral equation approach to the dispersion relation has been initiated. As a prelude to the study of particle orbits in complex mirror geometries, the adiabatic and non-adiabatic behavior of a harmonic oscillator has been studied using operator methods. High-β, high shear plasma sheath configurations have been studied with the full ion dynamics taken into account and electrons treated in the zero and first order approximation, in the ratio of the electron Larmor radius to the scale length. The resulting sheath structure equation in the lowest order approximation has been solved for certain entering ion distributions, and prepared for computer analysis for others. In this approximation the electron current parallel to magnetic field lines has to be assumed suppressed or predetermined. Equations in the next order approximation include the finite Larmor radius stress tensor. This equation is under study
Energy Technology Data Exchange (ETDEWEB)
Maruyama, R., E-mail: ryuji.maruyama@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Bigault, T.; Wildes, A.R.; Dewhurst, C.D. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France); Soyama, K. [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Courtois, P. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France)
2016-05-21
The in-plane magnetic structure of a layered system with a polycrystalline grain size less than the ferromagnetic exchange length was investigated using polarized neutron off-specular scattering and grazing incidence small angle scattering measurements to gain insight into the mechanism that controls the magnetic properties which are different from the bulk. These complementary measurements with different length scales and the data analysis based on the distorted wave Born approximation revealed the lateral correlation on a length scale of sub- μm due to the fluctuating orientation of the magnetization in the layer. The obtained in-plane magnetic structure is consistent with the random anisotropy model, i.e. competition between the exchange interactions between neighboring spins and the local magnetocrystalline anisotropy.
International Nuclear Information System (INIS)
Clore, G.M.; Gronenborn, A.M.; Nilges, M.; Ryan, C.A.
1987-01-01
The solution conformation of potato carboxypeptidase inhibitor (CPI) has been investigated by 1 H NMR spectroscopy. The spectrum is assigned in a sequential manner by using two-dimensional NMR techniques to identify through-bond and through-space (<5 A) connectivities. A set of 309 approximate interproton distance restraints is derived from the two-dimensional nuclear Overhauser enhancement spectra and used as the basis of a three-dimensional structure determination by a combination of metric matrix distance geometry and restrained molecular dynamics calculations. A total of 11 converged distance geometry structures were computed and refined by using restrained molecular dynamics. The average atomic root mean square (rms) difference between the final 11 structures and the mean structure obtained by averaging their coordinates is 1.4 +/- 0.3 A for residues 2-39 and 0.9 +/- 0.2 A for residues 5-37. The corresponding values for all atoms are 1.9 +/- 0.3 and 1.4 +/- 0.2 A, respectively. The computed structures are very close to the X-ray structure of CPI in its complex with carboxypeptidase, and the backbone atomic rms difference between the mean of the computed structures and the X-ray structure is only 1.2 A. Nevertheless, there are some real differences present which are evidenced by significant deviations between the experimental upper interproton distance limits and the corresponding interproton distances derived from the X-ray structure. These principally occur in two regions, residues 18-20 and residues 28-30, the latter comprising part of the region of secondary contact between CPI and carboxypeptidase in the X-ray structure
International Nuclear Information System (INIS)
Anderson, D.V.; Breazeal, J.; Finan, C.H.; Johnston, B.M.
1976-01-01
ABCXYZ is a computer code for obtaining the Cartesian components of the vector potential and the magnetic field on an observed grid from an arrangement of current-carrying wires. Arbitrary combinations of straight line segments, arcs, and loops are allowed in the specification of the currents. Arbitrary positions and orientations of the current-carrying elements are also allowed. Specification of the wire diameter permits the computation of well-defined fields, even in the interiors of the conductors. An optical feature generates magnetic field lines. Extensive graphical and printed output is available to the user including contour, grid-line, and field-line plots. 12 figures, 1 table
Rodger, Alison
1995-01-01
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans
Convergence in Multispecies Interactions
Bittleston, Leonora Sophia; Pierce, Naomi E.; Ellison, Aaron M.; Pringle, Anne
2016-01-01
The concepts of convergent evolution and community convergence highlight how selective pressures can shape unrelated organisms or communities in similar ways. We propose a related concept, convergent interactions, to describe the independent evolution of multispecies interactions with similar physiological or ecological functions. A focus on convergent interactions clarifies how natural selection repeatedly favors particular kinds of associations among species. Characterizing convergent inter...
Magnetic tension and gravitational collapse
International Nuclear Information System (INIS)
Tsagas, Christos G
2006-01-01
The gravitational collapse of a magnetized medium is investigated by studying qualitatively the convergence of a timelike family of non-geodesic worldlines in the presence of a magnetic field. Focusing on the field's tension, we illustrate how the winding of the magnetic forcelines due to the fluid's rotation assists the collapse, while shear-like distortions in the distribution of the field's gradients resist contraction. We also show that the relativistic coupling between magnetism and geometry, together with the tension properties of the field, lead to a magneto-curvature stress that opposes the collapse. This tension stress grows stronger with increasing curvature distortion, which means that it could potentially dominate over the gravitational pull of the matter. If this happens, a converging family of non-geodesic worldlines can be prevented from focusing without violating the standard energy conditions
Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.
2016-01-01
Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.
International Nuclear Information System (INIS)
Robinson, I.; Trautman, A.
1988-01-01
The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem
Energy Technology Data Exchange (ETDEWEB)
Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)
2014-06-15
An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.
Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.
2014-06-01
An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.
International Nuclear Information System (INIS)
Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.
2014-01-01
An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label
Rotation, spectral variability, magnetic geometry and magnetosphere of the Of?p star CPD -28° 2561
Wade, G. A.; Barba, R. H.; Grunhut, J.; Martins, F.; Petit, V.; Sundqvist, J. O.; Townsend, R. H. D.; Walborn, N. R.; Alecian, E.; Alfaro, E. J.; Maíz Apellaniz, J; Arias, Julia Ines; Gamen, Roberto Claudio; Morrell, Nidia Irene; Naze, Y.
2017-01-01
We report magnetic and spectroscopic observations and modelling of the Of?p star CPD −28° 2561. Using more than 75 new spectra, we have measured the equivalent width variations and examined the dynamic spectra of photospheric and wind-sensitive spectral lines. A period search results in an unambiguous 73.41 d variability period. High-resolution spectropolarimetric data analysed using least-squares deconvolution yield a Zeeman signature detected in the mean Stokes V profile corresponding to ph...
Energy Technology Data Exchange (ETDEWEB)
Frydrychowicz, Alex [University Hospital Schleswig-Holstein, Clinic for Radiology and Nuclear Medicine, Luebeck (Germany); Berger, Alexander; Russe, Maximilian F.; Bock, Jelena [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Munoz del Rio, Alejandro [University of Wisconsin - Madison, Departments of Radiology and Medical Physics, Madison, WI (United States); Harloff, Andreas [University Hospital Freiburg, Department of Neurology and Clinical Neurophysiology, Freiburg (Germany); Markl, Michael [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Northwestern University, Departments of Radiology and Biomedical Engineering, Chicago, IL (United States)
2012-05-15
It was the aim to analyse the impact of age, aortic arch geometry, and size on secondary flow patterns such as helix and vortex flow derived from flow-sensitive magnetic resonance imaging (4D PC-MRI). 62 subjects (age range = 20-80 years) without circumscribed pathologies of the thoracic aorta (ascending aortic (AAo) diameter: 3.2 {+-} 0.6 cm [range 2.2-5.1]) were examined by 4D PC-MRI after IRB-approval and written informed consent. Blood flow visualisation based on streamlines and time-resolved 3D particle traces was performed. Aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age were correlated with existence and extent of secondary flow patterns (helicity, vortices); statistical modelling was performed. Helical flow was the typical pattern in standard crook-shaped aortic arches. With altered shapes and increasing age, helicity was less common. AAo diameter and age had the highest correlation (r = 0.69 and 0.68, respectively) with number of detected vortices. None of the other arch geometric or demographic variables (for all, P {>=} 0.177) improved statistical modelling. Substantially different secondary flow patterns can be observed in the normal thoracic aorta. Age and the AAo diameter were the parameters correlating best with presence and amount of vortices. Findings underline the importance of age- and geometry-matched control groups for haemodynamic studies. (orig.)
International Nuclear Information System (INIS)
Frydrychowicz, Alex; Berger, Alexander; Russe, Maximilian F.; Bock, Jelena; Munoz del Rio, Alejandro; Harloff, Andreas; Markl, Michael
2012-01-01
It was the aim to analyse the impact of age, aortic arch geometry, and size on secondary flow patterns such as helix and vortex flow derived from flow-sensitive magnetic resonance imaging (4D PC-MRI). 62 subjects (age range = 20-80 years) without circumscribed pathologies of the thoracic aorta (ascending aortic (AAo) diameter: 3.2 ± 0.6 cm [range 2.2-5.1]) were examined by 4D PC-MRI after IRB-approval and written informed consent. Blood flow visualisation based on streamlines and time-resolved 3D particle traces was performed. Aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age were correlated with existence and extent of secondary flow patterns (helicity, vortices); statistical modelling was performed. Helical flow was the typical pattern in standard crook-shaped aortic arches. With altered shapes and increasing age, helicity was less common. AAo diameter and age had the highest correlation (r = 0.69 and 0.68, respectively) with number of detected vortices. None of the other arch geometric or demographic variables (for all, P ≥ 0.177) improved statistical modelling. Substantially different secondary flow patterns can be observed in the normal thoracic aorta. Age and the AAo diameter were the parameters correlating best with presence and amount of vortices. Findings underline the importance of age- and geometry-matched control groups for haemodynamic studies. (orig.)
Directory of Open Access Journals (Sweden)
S. Dubyagin
2013-03-01
Full Text Available We present the results of a coordinated study of the moderate magnetic storm on 22 July 2009. The THEMIS and GOES observations of magnetic field in the inner magnetosphere were complemented by energetic particle observations at low altitude by the six NOAA POES satellites. Observations in the vicinity of geosynchronous orbit revealed a relatively thin (half-thickness of less than 1 RE and intense current sheet in the dusk MLT sector during the main phase of the storm. The total westward current (integrated along the z-direction on the duskside at r ~ 6.6 RE was comparable to that in the midnight sector. Such a configuration cannot be adequately described by existing magnetic field models with predefined current systems (error in B > 60 nT. At the same time, low-altitude isotropic boundaries (IB of > 80 keV protons in the dusk sector were shifted ~ 4° equatorward relative to the IBs in the midnight sector. Both the equatorward IB shift and the current strength on the duskside correlate with the Sym-H* index. These findings imply a close relation between the current intensification and equatorward IB shift in the dusk sector. The analysis of IB dispersion revealed that high-energy IBs (E > 100 keV always exhibit normal dispersion (i.e., that for pitch angle scattering on curved field lines. Anomalous dispersion is sometimes observed in the low-energy channels (~ 30–100 keV. The maximum occurrence rate of anomalous dispersion was observed during the main phase of the storm in the dusk sector.
Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes
2014-01-01
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
International Nuclear Information System (INIS)
Reynolds, J. M.; Lopez-Bruna, D.
2009-01-01
This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs
Maor, Eli
2014-01-01
If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur
Energy Technology Data Exchange (ETDEWEB)
Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm [DLR, Institut fuer Planetenforschung, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Karlsruher Institut fuer Technologie (Germany); Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory [Moscow State Pedagogical University (Russian Federation)
2013-07-01
The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.
Kemnitz, Arnfried
Der Grundgedanke der Analytischen Geometrie besteht darin, dass geometrische Untersuchungen mit rechnerischen Mitteln geführt werden. Geometrische Objekte werden dabei durch Gleichungen beschrieben und mit algebraischen Methoden untersucht.
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz
2017-01-01
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...
Knypiński, Łukasz
2017-12-01
In this paper an algorithm for the optimization of excitation system of line-start permanent magnet synchronous motors will be presented. For the basis of this algorithm, software was developed in the Borland Delphi environment. The software consists of two independent modules: an optimization solver, and a module including the mathematical model of a synchronous motor with a self-start ability. The optimization module contains the bat algorithm procedure. The mathematical model of the motor has been developed in an Ansys Maxwell environment. In order to determine the functional parameters of the motor, additional scripts in Visual Basic language were developed. Selected results of the optimization calculation are presented and compared with results for the particle swarm optimization algorithm.
DEFF Research Database (Denmark)
Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.
2016-01-01
of the filaments and therefore to provide insight into the structure of their magnetic field (B). We present the polarization maps of three nearby (several parsecs long) star-forming filaments of moderate column density (N-H about 1022 cm-2): Musca, B211, and L1506. These three filaments are detected above...... angles in the three filaments (ψfil) are coherent along their lengths and not the same as in their backgrounds (ψbg). The differences between ψfil and ψbg are 12 degrees and 54 degrees for Musca and L1506, respectively, and only 6 degrees in the case of B211. These differences for Musca and L1506...... (by, e. g., radiative torques) and the structure of the B-field in causing variations in p, but we argue that the decrease in p from the backgrounds to the filaments results in part from depolarization associated with the 3D structure of the B-field: both its orientation in the POS and with respect...
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
Berger, Marcel
2010-01-01
Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,
Robinson, Gilbert de B
2011-01-01
This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom
Connes, Alain
1994-01-01
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat
Indian Academy of Sciences (India)
mathematicians are trained to use very precise language, and so find it hard to simplify and state .... thing. If you take a plane on which there are two such triangles which enjoy the above ... within this geometry to simplify things if needed.
Geometry -----------~--------------RESONANCE
Indian Academy of Sciences (India)
Parallel: A pair of lines in a plane is said to be parallel if they do not meet. Mathematicians were at war ... Subsequently, Poincare, Klein, Beltrami and others refined non-. Euclidean geometry. ... plane divides the plane into two half planes and.
Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.
2014-02-01
Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.
CBM RICH geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration
2016-07-01
The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.
Petersen, Peter
2016-01-01
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...
International Nuclear Information System (INIS)
Strominger, A.
1990-01-01
A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)
General Geometry and Geometry of Electromagnetism
Shahverdiyev, Shervgi S.
2002-01-01
It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...
Energy Technology Data Exchange (ETDEWEB)
Lasry, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1967-06-15
An hydrogen plasma puff is injected along the lines of a magnetic field with a double curvature geometry. The plasma is produced by a coaxial gun with an annular preionization system. It is shown theoretically that the electric drift of the plasma can be cancelled if a depolarizing current flows along the field lines towards a region of good transverse conductivity. The experiment shows that in these conditions the curvature drift of the ions of the plasma may be used as a very efficient process to purify the fast component of the plasma puff. The depolarizing electron currents are measured and the mutual cancellation of the electric fields developing into the oppositely curved region is demonstrated to be possible. The current densities agree with the values deduced of the curvature drift of the ions. (author) [French] Un plasma d'hydrogene est injecte le long des lignes de force d'un champ magnetique a double courbure. Le plasma est produit par un canon coaxial a preionisation annulaire. Il est montre theoriquement que la derive electrique du plasma peut etre annulee si un courant de depolarisation circule le long des lignes de force vers une region de conductivite transversale elevee. L'experience montre que dans ces conditions, la derive de courbure des ions peut etre utilisee comme un moyen efficace de purification de la composante rapide du plasma. Les courants electroniques de depolarisation sont mesures et l'annulation mutuelle des champs electriques se developpant dans les regions de courbures opposees est demontree. Les densites de courant sont en accord avec les valeurs deduites de la derive de courbure des ions. (auteur)
Ciarlet, Philippe G
2007-01-01
This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and
Convergence in Multispecies Interactions.
Bittleston, Leonora S; Pierce, Naomi E; Ellison, Aaron M; Pringle, Anne
2016-04-01
The concepts of convergent evolution and community convergence highlight how selective pressures can shape unrelated organisms or communities in similar ways. We propose a related concept, convergent interactions, to describe the independent evolution of multispecies interactions with similar physiological or ecological functions. A focus on convergent interactions clarifies how natural selection repeatedly favors particular kinds of associations among species. Characterizing convergent interactions in a comparative context is likely to facilitate prediction of the ecological roles of organisms (including microbes) in multispecies interactions and selective pressures acting in poorly understood or newly discovered multispecies systems. We illustrate the concept of convergent interactions with examples: vertebrates and their gut bacteria; ectomycorrhizae; insect-fungal-bacterial interactions; pitcher-plant food webs; and ants and ant-plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Converged Registries Solution (CRS)
Department of Veterans Affairs — The Converged Registries platform is a hardware and software architecture designed to host individual patient registries and eliminate duplicative development effort...
de Ruiter, Michiel B.; Reneman, Liesbeth; Boogerd, Willem; Veltman, Dick J.; Caan, Matthan; Douaud, Gwenaëlle; Lavini, Cristina; Linn, Sabine C.; Boven, Epie; van Dam, Frits S. A. M.; Schagen, Sanne B.
2012-01-01
The neural substrate underlying cognitive impairments after chemotherapy is largely unknown. Here, we investigated very late (>9 years) effects of adjuvant high-dose chemotherapy on brain white and gray matter in primary breast cancer survivors (n = 17) with multimodal magnetic resonance imaging
On the role of the magnetic tension during the gravitational collapse of a magnetised fluid
International Nuclear Information System (INIS)
Tsagas, Christos G
2005-01-01
We investigate the physics of magnetised gravitational collapse by studying the behaviour of a timelike congruence of non-geodesic worldlines in the presence of a magnetic field. We show that the general relativistic coupling between magnetism and geometry, and the tension properties of the field, lead to magneto-curvature stresses that resist the collapse. When these tension stresses dominate, they can prevent an initially converging family of non-geodesic worldlines from focusing without violating the standard energy conditions
Convergence of mayer expansions
International Nuclear Information System (INIS)
Brydges, D.C.
1986-01-01
The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained
Linear Analyses of Magnetohydrodynamic Richtmyer-Meshkov Instability in Cylindrical Geometry
Bakhsh, Abeer
2018-05-13
We investigate the Richtmyer-Meshkov instability (RMI) that occurs when an incident shock impulsively accelerates the interface between two different fluids. RMI is important in many technological applications such as Inertial Confinement Fusion (ICF) and astrophysical phenomena such as supernovae. We consider RMI in the presence of the magnetic field in converging geometry through both simulations and analytical means in the framework of ideal magnetohydrodynamics (MHD). In this thesis, we perform linear stability analyses via simulations in the cylindrical geometry, which is of relevance to ICF. In converging geometry, RMI is usually followed by the Rayleigh-Taylor instability (RTI). We show that the presence of a magnetic field suppresses the instabilities. We study the influence of the strength of the magnetic field, perturbation wavenumbers and other relevant parameters on the evolution of the RM and RT instabilities. First, we perform linear stability simulations for a single interface between two different fluids in which the magnetic field is normal to the direction of the average motion of the density interface. The suppression of the instabilities is most evident for large wavenumbers and relatively strong magnetic fields strengths. The mechanism of suppression is the transport of vorticity away from the density interface by two Alfv ́en fronts. Second, we examine the case of an azimuthal magnetic field at the density interface. The most evident suppression of the instability at the interface is for large wavenumbers and relatively strong magnetic fields strengths. After the shock interacts with the interface, the emerging vorticity breaks up into waves traveling parallel and anti-parallel to the magnetic field. The interference as these waves propagate with alternating phase causing the perturbation growth rate of the interface to oscillate in time. Finally, we propose incompressible models for MHD RMI in the presence of normal or azimuthal magnetic
Almost convergence of triple sequences
Ayhan Esi; M.Necdet Catalbas
2013-01-01
In this paper we introduce and study the concepts of almost convergence and almost Cauchy for triple sequences. Weshow that the set of almost convergent triple sequences of 0's and 1's is of the first category and also almost everytriple sequence of 0's and 1's is not almost convergent.Keywords: almost convergence, P-convergent, triple sequence.
Convergence of Nelson diffusions
International Nuclear Information System (INIS)
Dell'Antonio, G.; Posilicano, A.
1991-01-01
Let ψ t , ψ t n , n≥1, be solutions of Schroedinger equations with potentials form-bounded by -1/2 Δ and initial data in H 1 (R d ). Let P, P n , n≥1, be the probability measures on the path space Ω=C(R + , R d ) given by the corresponding Nelson diffusions. We show that if {ψ t n } n≥1 converges to ψ t in H 2 (R d ), uniformly in t over compact intervals, then {P n } n≥1 converges to P in total variation. Moreover, if the potentials are in the Kato class K d , we show that the above result follows from H 1 -convergence of initial data, and K d -convergence of potentials. (orig.)
Fixed mobile convergence handbook
Ahson, Syed A
2010-01-01
From basic concepts to future directions, this handbook provides technical information on all aspects of fixed-mobile convergence (FMC). The book examines such topics as integrated management architecture, business trends and strategic implications for service providers, personal area networks, mobile controlled handover methods, SIP-based session mobility, and supervisory and notification aggregator service. Case studies are used to illustrate technical and systematic implementation of unified and rationalized internet access by fixed-mobile network convergence. The text examines the technolo
Nozzle geometry variations on the discharge coefficient
Directory of Open Access Journals (Sweden)
M.M.A. Alam
2016-03-01
Full Text Available Numerical works have been conducted to investigate the effect of nozzle geometries on the discharge coefficient. Several contoured converging nozzles with finite radius of curvatures, conically converging nozzles and conical divergent orifices have been employed in this investigation. Each nozzle and orifice has a nominal exit diameter of 12.7×10−3 m. A 3rd order MUSCL finite volume method of ANSYS Fluent 13.0 was used to solve the Reynolds-averaged Navier–Stokes equations in simulating turbulent flows through various nozzle inlet geometries. The numerical model was validated through comparison between the numerical results and experimental data. The results obtained show that the nozzle geometry has pronounced effect on the sonic lines and discharge coefficients. The coefficient of discharge was found differ from unity due to the non-uniformity of flow parameters at the nozzle exit and the presence of boundary layer as well.
International Nuclear Information System (INIS)
2012-12-01
This book explains IT-BT convergence technology as the future technology, which includes a prolog, easy IT-BT convergence technology that has infinite potentials for new value, policy of IT-BT convergence technology showing the potential of smart Korea, IT-BT convergence opening happy future, for the new future of IT powerful nation Korea with IT-BT convergence technology and an epilogue. This book reveals the conception, policy, performance and future of IT-BT convergence technology.
Mekki, J; Dusseau, Laurent; Roche, Nicolas Jean-Henri; Saigne, Frederic; Mekki, Julien; Glaser, Maurice
2010-01-01
Aiming at evaluating new options for radiation monitoring sensors in LHC/SLHC experiments, the radiation responses of FZ and MCz custom made silicon detectors of different geometry have been studied up to about 4 x 10(14) n(eq)/cm(2). The radiation response of the devices under investigation is discussed in terms of material type, thickness and active area influence.
An experimental study of passive regenerator geometries
DEFF Research Database (Denmark)
Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Pryds, Nini
2011-01-01
Active magnetic regenerative (AMR) systems are being investigated because they represent a potentially attractive alternative to vapor compression technology. The performance of these systems is dependent on the heat transfer and pressure drop performance of the regenerator geometry. Therefore th...
Silva, Alessandro
1993-01-01
The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.
Eisenhart, Luther Pfahler
2005-01-01
This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.
International Nuclear Information System (INIS)
Gurevich, L.Eh.; Gliner, Eh.B.
1978-01-01
Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding
Costin, Ovidiu; Dunne, Gerald V.
2018-01-01
We show how to convert divergent series, which typically occur in many applications in physics, into rapidly convergent inverse factorial series. This can be interpreted physically as a novel resummation of perturbative series. Being convergent, these new series allow rigorous extrapolation from an asymptotic region with a large parameter, to the opposite region where the parameter is small. We illustrate the method with various physical examples, and discuss how these convergent series relate to standard methods such as Borel summation, and also how they incorporate the physical Stokes phenomenon. We comment on the relation of these results to Dyson’s physical argument for the divergence of perturbation theory. This approach also leads naturally to a wide class of relations between bosonic and fermionic partition functions, and Klein-Gordon and Dirac determinants.
Directory of Open Access Journals (Sweden)
Abdul Hameed Q. A. Al-Tai
2011-01-01
Full Text Available The aim of this paper is to introduce and study the fuzzy neighborhood, the limit fuzzy number, the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence on the base which is adopted by Abdul Hameed (every real number r is replaced by a fuzzy number r¯ (either triangular fuzzy number or singleton fuzzy set (fuzzy point. And then, we will consider that some results respect effect of the upper sequence on the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence.
DEFF Research Database (Denmark)
Prasad, Ramjee; Ruggieri, Marina
2008-01-01
The paper focuses on the revolutionary changes that could characterise the future of networks. Those changes involve many aspects in the conceivement and exploitation of networks: architecture, services, technologies and modeling. The convergence of wired and wireless technologies along...... with the integration of system componennts and the convergence of services (e.g. communications and navigation) are only some of the elements that shape the perpsected mosaic. Authors delineate this vision, highlighting the presence of the space and stratospheric components and the related services as building block...
International Nuclear Information System (INIS)
Young, I.R.
1984-01-01
A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)
Electrodynamics and Spacetime Geometry: Foundations
Cabral, Francisco; Lobo, Francisco S. N.
2017-02-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
DEFF Research Database (Denmark)
Batra, Tushar; Schaltz, Erik; Ahn, Seungyoung
2014-01-01
Magnetic fields emitted by wireless power transfer to vehicles can potentially affect living organisms. As a result, minimizing the magnetic emissions without compromising with the power transferred is one of the most significant challenges in the success of this technology. Active and passive...... and secondary currents from the standard design. Therefore, a part of the secondary magnetic flux comes in phase opposition with the primary flux and the resultant field is reduced. Operation point is shifted with the new design from the maximum power transfer resonance point and hence the reflected resistance...... is reduced. In order to maintain the same power level, the primary current and voltage have to increased and decreased in the same proportion. Also, the primary capacitor needs to be increased for maintaining unity input power factor in the system. The above statements are provided first with help...
Directory of Open Access Journals (Sweden)
Coghetto Roland
2015-09-01
Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.
Branca, Mario
2013-01-01
Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)
Language Convergence Infrastructure
V. Zaytsev (Vadim); J.M. Fernandes; R. Lämmel (Ralf); J.M.W. Visser (Joost); J. Saraiva
2011-01-01
htmlabstractThe process of grammar convergence involves grammar extraction and transformation for structural equivalence and contains a range of technical challenges. These need to be addressed in order for the method to deliver useful results. The paper describes a DSL and the infrastructure behind
Kolodzy, Janet; Grant, August E.; DeMars, Tony R.; Wilkinson, Jeffrey S.
2014-01-01
The emergence of the Internet, social media, and digital technologies in the twenty-first century accelerated an evolution in journalism and communication that fit under the broad term of convergence. That evolution changed the relationship between news producers and consumers. It broke down the geographical boundaries in defining our communities,…
Magnetoelectrostatic thruster physical geometry tests
Ramsey, W. D.
1981-01-01
Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.
Superbanana orbits in stellarator geometries
International Nuclear Information System (INIS)
Derr, J.A.; Shohet, J.L.
1979-04-01
The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron
DEFF Research Database (Denmark)
Batra, Tushar; Schaltz, Erik
2014-01-01
Magnetic fields in surroundings of wireless power transfer system depends upon the two coil currents, distance from the coils and space angle between the two coil fields in steady state conditions. Increase in value of the secondary capacitor leads to a phase shift between the two currents and as...
Computational geometry for reactor applications
International Nuclear Information System (INIS)
Brown, F.B.; Bischoff, F.G.
1988-01-01
Monte Carlo codes for simulating particle transport involve three basic computational sections: a geometry package for locating particles and computing distances to regional boundaries, a physics package for analyzing interactions between particles and problem materials, and an editing package for determining event statistics and overall results. This paper describes the computational geometry methods in RACER, a vectorized Monte Carlo code used for reactor physics analysis, so that comparisons may be made with techniques used in other codes. The principal applications for RACER are eigenvalue calculations and power distributions associated with reactor core physics analysis. Successive batches of neutrons are run until convergence and acceptable confidence intervals are obtained, with typical problems involving >10 6 histories. As such, the development of computational geometry methods has emphasized two basic needs: a flexible but compact geometric representation that permits accurate modeling of reactor core details and efficient geometric computation to permit very large numbers of histories to be run. The current geometric capabilities meet these needs effectively, supporting a variety of very large and demanding applications
International Nuclear Information System (INIS)
Zhang Zhao-Fu; Zhou Tie-Ge; Zhao Hai-Yang; Wei Xiang-Lei
2014-01-01
The geometry, electronic structure and magnetic property of the hexagonal AlN (h-AlN) sheet doped by 5d atoms (Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg) are investigated by first-principles calculations based on the density functional theory. The influence of symmetry and symmetry-breaking is also studied. There are two types of local symmetries of the doped systems: C 3v and D 3h . The symmetry will deviate from exact C 3v and D 3h for some particular dopants after optimization. The total magnetic moments of the doped systems are 0μ B for Lu, Ta and Ir; 1μ B for Hf, W, Pt and Hg; 2μ B for Re and Au; and 3μ B for Os and Al-vacancy. The total densities of state are presented, where impurity energy levels exist. The impurity energy levels and total magnetic moments can be explained by the splitting of 5d orbitals or molecular orbitals under different symmetries. (condensed matter: structural, mechanical, and thermal properties)
Numerical analysis of choked converging nozzle flows with surface ...
Indian Academy of Sciences (India)
Choked converging nozzle ﬂow and heat transfer characteristics are numerically investigated by means of a recent computational model that integrates the axisymmetric continuity, state, momentum and energy equations. To predict the combined effects of nozzle geometry, friction and heat transfer rates, analyses are ...
Summable series and convergence factors
Moore, Charles N
1938-01-01
Fairly early in the development of the theory of summability of divergent series, the concept of convergence factors was recognized as of fundamental importance in the subject. One of the pioneers in this field was C. N. Moore, the author of the book under review.... Moore classifies convergence factors into two types. In type I he places the factors which have only the property that they preserve convergence for a convergent series or produce convergence for a summable series. In type II he places the factors which not only maintain or produce convergence but have the additional property that
Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.
2012-01-01
When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient
DEFF Research Database (Denmark)
Kjeldsen, Lars Peter; Kjærgaard, Hanne Wacher
networks are still more prominently expected by students. Against this backdrop, an action research project has worked with the definition and testing of the hypothesized constituents of the Convergent Learning Space and how it challenges our traditional conceptions of learning spaces. The article...... describes this pilot study involving teachers in conscious, documented reflection on methods, approaches, and procedures conducive to learning processes in this new learning space. As a perspective, the article briefly outlines an intervention study aimed at investigating how students benefit from......The concept of the Convergent Learning Space has been hypothesized and explored in an ongoing action research project carried out at undergraduate level in select bachelor programs at a Danish University College, where classrooms are technology rich and students bring their own devices. The changes...
The Convergent Learning Space:
DEFF Research Database (Denmark)
Kjærgaard, Hanne Wacher; Kjeldsen, Lars Peter; Asmussen, Jørgen Bering
is described as well as the theoretical construct and hypotheses surrounding the emergence of the concept in technology-rich classrooms, where students bring their own devices and involve their personal learning spaces and networks. The need for new ways of approaching concepts like choice, learning resources......This paper describes the concept of “The Convergent Learning Space” as it is being explored in an ongoing action research project carried out at undergraduate level in select bachelor programs at a Danish University College. The background nature, design, and beginning of this work in progress......, trajectories of participation etc. calls for new action and new pedagogies by teachers in order to secure alignment between students’ worlds and expectations and aims and plans of the teacher. Action research methods are being used to define and test the constituents and variables of the convergent learning...
Convergence analysis of spectral element method for electromechanical devices
Curti, M.; Jansen, J.W.; Lomonova, E.A.
2017-01-01
This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with the
Energy Technology Data Exchange (ETDEWEB)
Brumovska, Eva [University of South Bohemia and Biology Centre AS CR v.v.i., Faculty of Science (Czech Republic); Sychrovsky, Vladimir; Vokacova, Zuzana [Institute of Organic Chemistry and Biochemistry, AS CR v.v.i. (Czech Republic); Sponer, Jiri [Institute of Biophysics, AS CR v.v.i. (Czech Republic); Schneider, Bohdan [Biotechnological Institute AS CR (Czech Republic); Trantirek, Lukas [University of South Bohemia and Biology Centre AS CR v.v.i., Faculty of Science (Czech Republic)], E-mail: trant@paru.cas.cz
2008-11-15
Density functional theory was employed to study the dependence of {sup 13}C and {sup 15}N magnetic shielding tensors on the glycosidic torsion angle ({chi}) and conformation of the sugar ring in 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, and 2'-deoxythymidine. In general, the magnetic shielding of the glycosidic nitrogens and the sugar carbons was found to depend on both the conformation of the sugar ring and {chi}. Our calculations indicate that the magnetic shielding anisotropy of the C6 atom in pyrimidine and the C8 atom in purine bases depends strongly on {chi}. The remaining base carbons were found to be insensitive to both sugar pucker and {chi} re-orientation. These results call into question the underlying assumptions of currently established methods for interpreting residual chemical shift anisotropies and {sup 13}C and {sup 15}N auto- and cross-correlated relaxation rates and highlight possible limitations of DNA applications of these methods.
Simpson, Seamus
2015-01-01
The Broadcasting, Information Technology and Telecommunications sectors have in recent years been the subject of notable transformation, one important feature of which is their coming closer together in a number of ways - it is now commonplace to speak of a new hybrid sector, Information and Communications Technologies (ICTs). This convergence is of considerable interest to policy-makers in industry and government at the national and international level, as well as the academic community and,...
Convergence semigroup categories
Directory of Open Access Journals (Sweden)
Gary Richardson
2013-09-01
Full Text Available Properties of the category consisting of all objects of the form (X, S, λ are investigated, where X is a convergence space, S is a commutative semigroup, and λ: X × S → X is a continuous action. A “generalized quotient” of each object is defined without making the usual assumption that for each fixed g ∈ S, λ(., g : X → X is an injection.
Multiplier convergent series and uniform convergence of mapping ...
Indian Academy of Sciences (India)
MS received 14 April 2011; revised 17 November 2012. Abstract. In this paper, we introduce the frame property of complex sequence sets and study the uniform convergence of nonlinear mapping series in β-dual of spaces consisting of multiplier convergent series. Keywords. Multiplier convergent series; mapping series. 1.
Auluck, S. K. H.
2017-11-01
This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the
Theory of Advanced Magnetic Divertors
Kotschenreuther, Michael; Valanju, Prashant; Mahajan, Swadesh; Covele, Brent
2013-10-01
The magnetic field structure in the SOL is the most important determinant of divertor physics. A comprehensive analytical and numerical methodology is developed to investigate SOL magnetic fields in the backdrop of two advanced divertor geometries- the X-divertor (XD) proposed and discussed in 2004, and the snowflake divertor (SFD) of 2007-2010. The analysis shows that XD and SFD represent very distinct and readily distinguishable magnetic geometries, epitomized through a differentiating metric, the Divertor Index (DI). In terms of this simple metric, the XD (DI > 1) and the SFD (DI XD flux surfaces are less convergent, in fact, divergent (flaring). These different SOL magnetics imply different physics, particularly with respect to detachment dynamics. It is also shown that some experiments on NSTX and DIII-D match both the prescription and the predictions of the 2004 XD paper. Work supported under US-DOE projects DE-FG02-04ER54742 and DE-FG02-04ER54754.
Convergence semigroup actions: generalized quotients
Directory of Open Access Journals (Sweden)
H. Boustique
2009-10-01
Full Text Available Continuous actions of a convergence semigroup are investigated in the category of convergence spaces. Invariance properties of actions as well as properties of a generalized quotient space are presented
IT Convergence and Security 2012
Chung, Kyung-Yong
2013-01-01
The proceedings approaches the subject matter with problems in technical convergence and convergences of security technology. This approach is new because we look at new issues that arise from techniques converging. The general scope of the proceedings content is convergence security and the latest information technology. The intended readership are societies, enterprises, and research institutes, and intended content level is mid- to highly educated personals. The most important features and benefits of the proceedings are the introduction of the most recent information technology and its related ideas, applications and problems related to technology convergence, and its case studies and finally an introduction of converging existing security techniques through convergence security. Overall, through the proceedings, authors will be able to understand the most state of the art information strategies and technologies of convergence security.
Directory of Open Access Journals (Sweden)
Rogério Christofoletti
2008-12-01
Full Text Available Three ideas would suffice for the reading of “Cultura da Convergência” (Culture of Convergence by Henry Jenkins to be of interest to journalists and researchers in the area: media convergence as a cultural process; the strengthening of an emotional economy which guides consumers of symbolic goods and media creators; the expansion of trans-media narrative forms.
Directory of Open Access Journals (Sweden)
Rogério Christofoletti
2011-02-01
Full Text Available Three ideas would suffice for the reading of “Cultura da Convergência” (Culture of Convergence by Henry Jenkins to be of interest to journalists and researchers in the area: media convergence as a cultural process; the strengthening of an emotional economy which guides consumers of symbolic goods and media creators; the expansion of trans-media narrative forms.
Czech Academy of Sciences Publication Activity Database
Cahyna, Pavel; Nardon, E.
2011-01-01
Roč. 415, č. 1 (2011), S927-S931 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Device/19th./. San Diego, 24.05.2010-28.05.2010] R&D Projects: GA MŠk 7G09042; GA MŠk LA08048 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamaks * ELM control * resonant magnetic perturbations * divertor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.052, year: 2011 http://dx.doi.org/10.1016/j.jnucmat.2011.01.117
Meyer, Walter J
2006-01-01
Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...
Indian Academy of Sciences (India)
algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.
International Nuclear Information System (INIS)
Sloane, Peter
2007-01-01
We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)
Energy Technology Data Exchange (ETDEWEB)
Sloane, Peter [Department of Mathematics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)
2007-09-15
We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)
by B. Curé
2011-01-01
The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...
Geometry essentials for dummies
Ryan, Mark
2011-01-01
Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque
Geometric Monte Carlo and black Janus geometries
Energy Technology Data Exchange (ETDEWEB)
Bak, Dongsu, E-mail: dsbak@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); B.W. Lee Center for Fields, Gravity & Strings, Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Kim, Chanju, E-mail: cjkim@ewha.ac.kr [Department of Physics, Ewha Womans University, Seoul 03760 (Korea, Republic of); Kim, Kyung Kiu, E-mail: kimkyungkiu@gmail.com [Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Department of Physics, College of Science, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Hyunsoo, E-mail: hsmin@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); Song, Jeong-Pil, E-mail: jeong_pil_song@brown.edu [Department of Chemistry, Brown University, Providence, RI 02912 (United States)
2017-04-10
We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.
Arithmetic noncommutative geometry
Marcolli, Matilde
2005-01-01
Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...
The flux-coordinate independent approach applied to X-point geometries
International Nuclear Information System (INIS)
Hariri, F.; Hill, P.; Ottaviani, M.; Sarazin, Y.
2014-01-01
A Flux-Coordinate Independent (FCI) approach for anisotropic systems, not based on magnetic flux coordinates, has been introduced in Hariri and Ottaviani [Comput. Phys. Commun. 184, 2419 (2013)]. In this paper, we show that the approach can tackle magnetic configurations including X-points. Using the code FENICIA, an equilibrium with a magnetic island has been used to show the robustness of the FCI approach to cases in which a magnetic separatrix is present in the system, either by design or as a consequence of instabilities. Numerical results are in good agreement with the analytic solutions of the sound-wave propagation problem. Conservation properties are verified. Finally, the critical gain of the FCI approach in situations including the magnetic separatrix with an X-point is demonstrated by a fast convergence of the code with the numerical resolution in the direction of symmetry. The results highlighted in this paper show that the FCI approach can efficiently deal with X-point geometries
Figueroa, R G; Valente, M
2015-09-21
upon the spherical cap. The first results that were achieved show in-depth dose peaks, having shapes qualitatively similar to those from hadrontherapy techniques. The obtained results demonstrate that in-depth dose peaks are generated at the focus point or isocenter. These results are consistent with those obtained with Monte Carlo codes. The peak-focus is independent of the energy of the photon beam, though its intensity is not. The realistic results achieved with the Monte Carlo code show that the Bremsstrahlung generated on the thin cap is mainly directed towards the focus point. The aperture angle at each impact point depends primarily on the energy beam, the atomic number Z and the thickness of the target. There is also a poly-collimator coaxial to the cap or ring with many holes, permitting a clean convergent-exit x-ray beam with a dose distribution that is similar to the ideal case. The electric and magnetic fields needed to control the deflection of the electron beams in the CBRT geometry are highly feasible using specially designed electric and/or magnetic devices that, respectively, have voltage and current values that are technically achievable. However, it was found that magnetic devices represent a more suitable option for electron beam control, especially at high energies. The main conclusion is that the development of such a device is feasible. Due to its features, this technology might be considered a powerful new tool for external radiotherapy with photons.
On the convergence of multigroup discrete-ordinates approximations
International Nuclear Information System (INIS)
Victory, H.D. Jr.; Allen, E.J.; Ganguly, K.
1987-01-01
Our analysis is divided into two distinct parts which we label for convenience as Part A and Part B. In Part A, we demonstrate that the multigroup discrete-ordinates approximations are well-defined and converge to the exact transport solution in any subcritical setting. For the most part, we focus on transport in two-dimensional Cartesian geometry. A Nystroem technique is used to extend the discrete ordinates multigroup approximates to all values of the angular and energy variables. Such an extension enables us to employ collectively compact operator theory to deduce stability and convergence of the approximates. In Part B, we perform a thorough convergence analysis for the multigroup discrete-ordinates method for an anisotropically-scattering subcritical medium in slab geometry. The diamond-difference and step-characteristic spatial approximation methods are each studied. The multigroup neutron fluxes are shown to converge in a Banach space setting under realistic smoothness conditions on the solution. This is the first thorough convergence analysis for the fully-discretized multigroup neutron transport equations
Energy Technology Data Exchange (ETDEWEB)
Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au [School of Physics, The University of Western Australia, Crawley 6009 (Australia)
2016-01-07
We constructed a quasi-analytical self-consistent model of the stripline-based broadband ferromagnetic resonance (FMR) measurements of ferromagnetic films. Exchange-free description of magnetization dynamics in the films allowed us to obtain simple analytical expressions. They enable quick and efficient numerical simulations of the dynamics. With this model, we studied the contribution of radiation losses to the ferromagnetic resonance linewidth, as measured with the stripline FMR. We found that for films with large conductivity of metals the radiation losses are significantly smaller than for magneto-insulating films. Excitation of microwave eddy currents in these materials contributes to the total microwave impedance of the system. This leads to impedance mismatch with the film environment resulting in decoupling of the film from the environment and, ultimately, to smaller radiation losses. We also show that the radiation losses drop with an increase in the stripline width and when the sample is lifted up from the stripline surface. Hence, in order to eliminate this measurement artefact, one needs to use wide striplines and introduce a spacer between the film and the sample surface. The radiation losses contribution is larger for thicker films.
Local Convergence and Radius of Convergence for Modified Newton Method
Directory of Open Access Journals (Sweden)
Măruşter Ştefan
2017-12-01
Full Text Available We investigate the local convergence of modified Newton method, i.e., the classical Newton method in which the derivative is periodically re-evaluated. Based on the convergence properties of Picard iteration for demicontractive mappings, we give an algorithm to estimate the local radius of convergence for considered method. Numerical experiments show that the proposed algorithm gives estimated radii which are very close to or even equal with the best ones.
Benoit Curé
2010-01-01
Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...
B. Curé
2012-01-01
The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...
B. Curé
2012-01-01
Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...
Medialogy - convergence and transdisciplinarity
DEFF Research Database (Denmark)
Nordahl, Rolf
2007-01-01
Art and design have many qualities which intuitively by society are appreciated. But on daily basis they are also assessed and evaluated. Some communities also share common understandings that norms, standards, conventions evolve, both from artistic desire as well as from more physical needs...... for changes in society, developments in taste etc. However, it certainly seems fair to say, that available technology makes a great difference to the development of any art form or practice. With the up rise of new educations such as Medialogy, new aspects of convergence and different forms...... of interdisciplinarity and transdisciplinarity is a pre-requisite for both researchers and students. In this talk we will demonstrate our approach through concrete examples of student productions and projects. We will also display the pedagogical method (problem based learning), that enables students to bridge gaps...
Directory of Open Access Journals (Sweden)
Notermans Ton
2015-02-01
Full Text Available As economic stagnation continues to mark the EU in the fifth year of the euro zone crisis, political support for integration is waning. The European Parliament elections of 2014 returned a hitherto unparalleled number of Eurosceptic MEPs, with EU-critical parties becoming the largest ones in several Member States. Much of this Euroscepticism is driven by economic polarisation between core and peripheral countries. While an increasing number of voters in the northwestern creditor countries resent having to foot the bill for what they consider economic mismanagement in the periphery, voters in peripheral countries increasingly rebel against what they deem to be an economically catastrophic Diktat from Germany and its allies. Continued political support for European integration will hinge on successful income convergence in the EU but the current dilemma is that such policies might not be politically feasible. Periods of rapid convergence would seem to suggest that success depends on two main policy strategies. First, a monetary policy that promotes credit for productive purposes, leaves inflation control to other instruments, and employs selective credit rationing to prevent asset booms. Second, a vertical industrial policy prioritising selected industrial sectors. The first policy conflicts with the present framework of euro zone monetary policy, but that framework was only installed in the first place because many peripheral countries were desperately in search of an external constraint on domestic distributional conflict. Industrial policies, in turn, require a sufficient degree of state autonomy from business elites in order to be effective, but it is highly questionable whether most states in the EU possess such autonomy. Though there are, as yet hesitant, signs of a reorientation of both monetary and cohesion policy in the EU, the question of the institutional and political preconditions for their successful implementation has been largely
Bárány, Imre; Vilcu, Costin
2016-01-01
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
O'Leary, Michael
2010-01-01
Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull
Fundamental concepts of geometry
Meserve, Bruce E
1983-01-01
Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.
Developments in special geometry
International Nuclear Information System (INIS)
Mohaupt, Thomas; Vaughan, Owen
2012-01-01
We review the special geometry of N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we discuss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.
B. Curé
2012-01-01
The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...
B. Curé
2013-01-01
The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...
Benoit Curé
2010-01-01
The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...
B. Curé
2011-01-01
The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...
International Nuclear Information System (INIS)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh
2014-01-01
Relying on coil positions relative to the plasma, the “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)], emphasizes a criterion for divertor characterization that was critiqued to be ill posed [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)]. We find that no substantive physical differences flow from this criteria. However, using these criteria, the successful NSTX experiment by Ryutov et al. [Phys. Plasmas 21, 054701 (2014)] has the coil configuration of an X-divertor (XD), rather than a snowflake (SF). On completing the divertor index (DI) versus distance graph for this NSTX shot (which had an inexplicably missing region), we find that the DI is like an XD for most of the outboard wetted divertor plate. Further, the “proximity condition,” used to define an SF [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)], does not have a substantive physics basis to override metrics based on flux expansion and line length. Finally, if the criteria of the comment are important, then the results of NSTX-like experiments could have questionable applicability to reactors
Energy Technology Data Exchange (ETDEWEB)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)
2014-05-15
Relying on coil positions relative to the plasma, the “Comment on ‘Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake’ ” [Phys. Plasmas 21, 054701 (2014)], emphasizes a criterion for divertor characterization that was critiqued to be ill posed [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)]. We find that no substantive physical differences flow from this criteria. However, using these criteria, the successful NSTX experiment by Ryutov et al. [Phys. Plasmas 21, 054701 (2014)] has the coil configuration of an X-divertor (XD), rather than a snowflake (SF). On completing the divertor index (DI) versus distance graph for this NSTX shot (which had an inexplicably missing region), we find that the DI is like an XD for most of the outboard wetted divertor plate. Further, the “proximity condition,” used to define an SF [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)], does not have a substantive physics basis to override metrics based on flux expansion and line length. Finally, if the criteria of the comment are important, then the results of NSTX-like experiments could have questionable applicability to reactors.
Geometry of multihadron production
Energy Technology Data Exchange (ETDEWEB)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Geometry of multihadron production
International Nuclear Information System (INIS)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions
Morris, Barbara H.
2004-01-01
This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…
B. Curé
2011-01-01
The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....
Energy Technology Data Exchange (ETDEWEB)
Grotz, Andreas
2011-10-07
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
Methods of information geometry
Amari, Shun-Ichi
2000-01-01
Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the \\alpha-connections. The duality between the \\alpha-connection and the (-\\alpha)-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability d...
International Nuclear Information System (INIS)
Grotz, Andreas
2011-01-01
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
Convergent systems vs. incremental stability
Rüffer, B.S.; Wouw, van de N.; Mueller, M.
2013-01-01
Two similar stability notions are considered; one is the long established notion of convergent systems, the other is the younger notion of incremental stability. Both notions require that any two solutions of a system converge to each other. Yet these stability concepts are different, in the sense
Giant lobelias exemplify convergent evolution
Directory of Open Access Journals (Sweden)
Givnish Thomas J
2010-01-01
Full Text Available Abstract Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.
Geometry on the space of geometries
International Nuclear Information System (INIS)
Christodoulakis, T.; Zanelli, J.
1988-06-01
We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs
Converging cylindrical shocks in ideal magnetohydrodynamics
International Nuclear Information System (INIS)
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-01-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi
2014-01-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Converging cylindrical shocks in ideal magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
2014-09-15
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The
Directory of Open Access Journals (Sweden)
R. Siriram
2012-01-01
Full Text Available
ENGLISH ABSTRACT: Technology is a catalyst for competitive advantage. However, it is how technology is used that leads to a firm’s improved performance. In this article, an investigative framework is constructed to understand better what strategically drives new technology adoption. The strategic drivers include technology and business strategy alignment, better technology planning and selection of new technologies, the effects on a firm’s culture and climate, links to a firm’s organisational and environmental evolution, and benefits through convergence and collaboration. Using an investigative framework, it is shown how the strategic drivers link to improve a firm’s performance, producing competitive advantage. The investigative framework is tested using structural equation modelling. Various hypotheses are formed, and recommendations for further research are made.
AFRIKAANSE OPSOMMING: Tegnologie is ‘n katalisator vir mededingende voordeel. Dit is egter hoe tegnologie aangewend word wat aanleiding gee tot ‘n onderneming se verbeterde prestasie. In hierdie artikel word ‘n ondersoekende raamwerk gekonstrueer om insig te kry in dit wat die aanvaarding van nuwe tegnologie strategies dryf. Die strategiese dryfvere sluit in die belyning van tegnologie en ondernemingstrategie, beter tegnologiebeplanning en seleksie van nuwe tegnologieë, die effek op ‘n onderneming se kultuur en klimaat, koppeling na ‘n onderneming se organisatoriese en omgewingsevolusie, en voordele verkry deur konvergensie en samewerking. Deur ‘n ondersoekende raamwerk te gebruik, word daar getoon dat die strategiese dryfvere koppel om ‘n onderneming se prestasie te verbeter en sodoende ‘n mededingende voordeel te skep. Die raamwerk word getoets en hipoteses geformuleer waarna aanbevelings oor verdere navorsing aan die hand gedoen word.
SELF-CONVERGENCE OF RADIATIVELY COOLING CLUMPS IN THE INTERSTELLAR MEDIUM
International Nuclear Information System (INIS)
Yirak, Kristopher; Frank, Adam; Cunningham, Andrew J.
2010-01-01
Isolated regions of higher density populate the interstellar medium (ISM) on all scales-from molecular clouds, to the star-forming regions known as cores, to heterogeneous ejecta found near planetary nebulae and supernova remnants. These clumps interact with winds and shocks from nearby energetic sources. Understanding the interactions of shocked clumps is vital to our understanding of the composition, morphology, and evolution of the ISM. The evolution of shocked clumps is well understood in the limiting 'adiabatic' case where physical processes such as self-gravity, heat conduction, radiative cooling, and magnetic fields are ignored. In this paper, we address the issue of evolution and convergence when one of these processes-radiative cooling-is included. Numeric convergence studies demonstrate that the evolution of an adiabatic clump is well captured by roughly 100 cells per clump radius. The presence of radiative cooling, however, imposes limits on the problem due to the removal of thermal energy. Numerical studies which include radiative cooling typically adopt the 100-200 cells per clump radius resolution. In this paper, we present the results of a convergence study for radiatively cooling clumps undertaken over a broad range of resolutions, from 12 to 1536 cells per clump radius, employing adaptive mesh refinement (AMR) in a two-dimensional axisymmetric geometry (2.5 dimensions). We also provide a fully three-dimensional simulation, at 192 cells per clump radius, which supports our 2.5 dimensional results. We find no appreciable self-convergence at ∼100 cells per clump radius as small-scale differences owing to increasingly resolving the cooling length have global effects. We therefore conclude that self-convergence is an insufficient criterion to apply on its own when addressing the question of sufficient resolution for radiatively cooled shocked clump simulations. We suggest the adoption of alternate criteria to support a statement of sufficient
Benoit Curé
2010-01-01
The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...
B. Curé
MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...
Benoit Curé.
The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...
B. Curé
2013-01-01
The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...
Complex and symplectic geometry
Medori, Costantino; Tomassini, Adriano
2017-01-01
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Kulczycki, Stefan
2008-01-01
This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff
The Convergence in Spatial Tasks
Directory of Open Access Journals (Sweden)
Vladimir P. Kulagin
2013-01-01
Full Text Available The article reveals the problem of convergence of direct and inverse problems in Earth Sciences, describes the features and application of these problems, discloses analytical features of direct and inverse problems. The convergence criteria and conditions for convergence were presented. This work is supported by the Grant of the Government of the Russian Federation for support of scientific research, implemented under the supervision of leading scientists in Russian institutions of higher education in the field "Space Research and Technologies" in 2011–2013.
Roe, John
2003-01-01
Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...
Lectures on Symplectic Geometry
Silva, Ana Cannas
2001-01-01
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2002-01-01
The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...
Busemann, Herbert
2005-01-01
A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
Tabachnikov, Serge
2005-01-01
Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisit...
Introduction to tropical geometry
Maclagan, Diane
2015-01-01
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Implosions and hypertoric geometry
DEFF Research Database (Denmark)
Dancer, A.; Kirwan, F.; Swann, A.
2013-01-01
The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio
2013-01-01
We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.
Converging shocks in elastic-plastic solids.
Ortega, A López; Lombardini, M; Hill, D J
2011-11-01
We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the
International Nuclear Information System (INIS)
Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J
2014-01-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Software Geometry in Simulations
Alion, Tyler; Viren, Brett; Junk, Tom
2015-04-01
The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).
Introduction to combinatorial geometry
International Nuclear Information System (INIS)
Gabriel, T.A.; Emmett, M.B.
1985-01-01
The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity
Ecomorphological convergence in planktivorous surgeonfishes
Friedman, S. T.; Price, S. A.; Hoey, Andrew; Wainwright, P. C.
2016-01-01
two diet regimes: zooplanktivores and nonzooplanktivorous grazers. Accounting for phylogenetic relationships, the best-fitting model indicates that zooplanktivorous species are converging on a separate adaptive peak from their grazing relatives
Benoit Curé
The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...
B. Curé
During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...
Weak entropy inequalities and entropic convergence
Institute of Scientific and Technical Information of China (English)
2008-01-01
A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved. A weak entropy inequality is considered and its relationship to entropic convergence is discussed.
Directory of Open Access Journals (Sweden)
Rogério Christofoletti
2008-12-01
Full Text Available Três idéias já seriam suficientes para que a leitura de “Culturada Convergência”, de Henry Jenkins, interessasse a jornalistas epesquisadores da área: a convergência midiática como um processo cultural; o fortalecimento de uma economia afetiva que orienta consumidores de bens simbólicos e criadores midiáticos; a expansão de formas narrativas transmidiáticas.
Global aspects of complex geometry
Catanese, Fabrizio; Huckleberry, Alan T
2006-01-01
Present an overview of developments in Complex Geometry. This book covers topics that range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kahler geometry, and group actions to Hodge theory and characteristic p-geometry.
International Nuclear Information System (INIS)
Nishida, Y.; Hirose, A.
1977-01-01
The refraction and convergence of ion acoustic waves are experimentally investigated in a magnetized plasma with an electron temperature gradient. When ion acoustic waves are launched parallel to the field lines the waves converge toward the interior of the plasma column where the electron temperature is lower, in good agreement with theoretical prediction. Wave interference is also observed. (author)
Globalization and Contemporary Fertility Convergence.
Hendi, Arun S
2017-09-01
The rise of the global network of nation-states has precipitated social transformations throughout the world. This article examines the role of political and economic globalization in driving fertility convergence across countries between 1965 and 2009. While past research has typically conceptualized fertility change as a country-level process, this study instead employs a theoretical and methodological framework that examines differences in fertility between pairs of countries over time. Convergence in fertility between pairs of countries is hypothesized to result from increased cross-country connectedness and cross-national transmission of fertility-related schemas. I investigate the impact of various cross-country ties, including ties through bilateral trade, intergovernmental organizations, and regional trade blocs, on fertility convergence. I find that globalization acts as a form of social interaction to produce fertility convergence. There is significant heterogeneity in the effects of different cross-country ties. In particular, trade with rich model countries, joint participation in the UN and UNESCO, and joining a free trade agreement all contribute to fertility convergence between countries. Whereas the prevailing focus in fertility research has been on factors producing fertility declines, this analysis highlights specific mechanisms-trade and connectedness through organizations-leading to greater similarity in fertility across countries. Globalization is a process that propels the spread of culturally laden goods and schemas impinging on fertility, which in turn produces fertility convergence.
Computer aided design of solonoid magnets
Energy Technology Data Exchange (ETDEWEB)
DeOlivares, J.M.
1978-06-01
Computer programs utilizing Legendre functions and elliptic integral functions have been written to aid in the design of solenoid magnets. The field inside an axisymmetric magnet can be expanded in a converging power series of Legendre functions. The Legendre function approach is very useful for designing solenoid magnets with a high degree of field uniformity. This approach has been programed on the LBL CDC 7600 computer so that one can design an axisymmetric magnet which meets any desired field structure. Two examples of computer designed solenoids are presented. A computer program utilizing elliptic integral functions was also written for the LBL CDC 7600 computer. This method was used in a computer program to verify the results obtained from the Legendre approach and for field calculations within the conductor. The elliptic integral field calculations within the conductor showed that thin solenoids produce field peaking at the ends of the magnet. Computer data is generated for various magnet geometries and compared with theoretical predictions. Computer results and theoretical prediction both show that field peaking is reduced for longer coils, increased for thinner coils and field peaking is a logarithmic function of length, thickness and radius.
Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current
Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.
2016-01-01
We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done
Sources of hyperbolic geometry
Stillwell, John
1996-01-01
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...
International Nuclear Information System (INIS)
Jonsson, Rickard; Westman, Hans
2006-01-01
We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz M A and Lasota J-P 1997 Class. Quantum Grav. A 14 23-30). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson R 2006 Class. Quantum Grav. 23 1)) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity
Computational synthetic geometry
Bokowski, Jürgen
1989-01-01
Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...
Discrete and computational geometry
Devadoss, Satyan L
2011-01-01
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Zheng, Fangyang
2002-01-01
The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...
Trophic convergence drives morphological convergence in marine tetrapods.
Kelley, Neil P; Motani, Ryosuke
2015-01-01
Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of extant marine tetrapods and identify patterns in skull and tooth morphology that discriminate trophic groups across clades. Mapping these patterns onto phylogeny reveals coordinated evolutionary shifts in diet and morphology in different marine tetrapod lineages. Similarities in morphology between species with similar diets-even across large phylogenetic distances-are consistent with previous hypotheses that shared functional constraints drive convergent evolution in marine tetrapods.
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.
2015-06-01
The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.
Benoit Curé
The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...
B. Curé
The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...
Benoit Curé
2013-01-01
Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...
Digital Convergence and Content Regulation
Directory of Open Access Journals (Sweden)
Michael John Starks
2014-12-01
Full Text Available Broadcasting, Press and Internet journalism systems of distribution are converging: the same infrastructure can deliver all three historically separate services. Reception devices mirror this: the Connected TV, the tablet and the smart phone overlap in their functionality. Service overlaps are evident too, with broadcasters providing online and on-demand services and newspapers developing electronic versions. Does this mean that media regulation policies must converge too?My argument is that they should, though only where historically different communications are now fulfilling a similar function, e.g. broadcaster online services and electronic versions of newspapers. Convergence requires a degree of harmonisation and, to this end, I advocate a review of UK broadcasting's 'due impartiality' requirement and of the UK's application of the public service concept. I also argue for independent self-regulation (rather than state-based regulation of non-public-service broadcasting journalism.
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Multiplicity in difference geometry
Tomasic, Ivan
2011-01-01
We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \\sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.
Spacetime and Euclidean geometry
Brill, Dieter; Jacobson, Ted
2006-04-01
Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.
International Nuclear Information System (INIS)
Konopleva, N.P.
2009-01-01
The basic ideas of description methods of physical fields and elementary particle interactions are discussed. One of such ideas is the conception of space-time geometry. In this connection experimental measurement methods are analyzed. It is shown that measure procedures are the origin of geometrical axioms. The connection between space symmetry properties and the conservation laws is considered
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elabo...
Diophantine geometry an introduction
Hindry, Marc
2000-01-01
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
Boyer, Carl B
2012-01-01
Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.
Coxeter, HSM
1965-01-01
This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.
International Nuclear Information System (INIS)
Ezin, J.P.
1988-08-01
The lectures given at the ''5th Symposium of Mathematics in Abidjan: Differential Geometry and Mechanics'' are presented. They are divided into four chapters: Riemannian metric on a differential manifold, curvature tensor fields on a Riemannian manifold, some classical functionals on Riemannian manifolds and questions. 11 refs
Hartshorne, Robin
2000-01-01
In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...
Directory of Open Access Journals (Sweden)
Rogério Christofoletti
2008-12-01
Full Text Available Três idéias já seriam suficientes para que a leitura de “Cultura da Convergência”, de Henry Jenkins, interessasse a jornalistas e pesquisadores da área: a convergência midiática como um processo cultural; o fortalecimento de uma economia afetiva que orienta consumidores de bens simbólicos e criadores midiáticos; a expansão de formas narrativas transmidiáticas.
Current neutralization of converging ion beams
International Nuclear Information System (INIS)
Mosher, D.
1978-01-01
It is desired to consider the problem of current neutralization of heavy ion beams traversing gas backgrounds in which the conductivity changes due to beam heating and beam convergence. The procedure is to determine Green's-function solutions to the magnetic-diffusion equation derived from Maxwell's equations and an assumed scaler-plasma conductivity sigma for the background-electron current density j/sub e/. The present calculation is more general than some previously carried out in that arbitrary time variations for the beam current j/sub b/ and conductivity are allowed and the calculation is valid for both weak and strong neutralization. Results presented here must be combined with an appropriate energy-balance equation for the heated background in order to obtain the neutralization self-consistently
Convergence accommodation to convergence CA/C ratio: convergence versus divergence.
Simmons, Joshua M; Firth, Alison Y
2014-09-01
To determine whether the convergence accommodation to convergence (CA/C) ratio during divergence with base-in (BI) prisms is of a similar or different magnitude to that measured during convergence with base-out (BO) prisms. Eighteen participants with normal binocular single vision were recruited. The participants viewed a pseudo-Gaussian target, which consisted of a light emitting diode (LED) behind a diffusing screen at 40 cm. After 5 minutes of dark adaptation, the refractive status of the eye was measured without any prism using a Shin-Nippon SRW-5000 autorefractor. The participant held the selected prism (5Δ or 10Δ BO or BI, counterbalanced) in front of their right eye and obtained a single, fused image of the target while refractive measures were taken with each. A 30-second rest period was given between measurements. The mean age of the participants was 20.6±3.22 years. The mean CA/C ratios for the 5Δ BO, 10Δ BO, 5Δ BI, and 10Δ BI were 0.108 (±0.074) D/Δ, 0.110 (±0.056) D/Δ, 0.100 (±0.090) D/Δ, and 0.089 (±0.055) D/Δ, respectively. A 2-factor repeated measures ANOVA found that the CA/C ratio did not significantly change with differing levels of prism-induced convergence and divergence (p=0.649). Change in accommodation induced by manipulating vergence is similar whether convergence or divergence are induced. The CA/C ratio did not show any change with differing levels of prism-induced convergence and divergence.
Simulations of Converging Shock Collisions for Shock Ignition
Sauppe, Joshua; Dodd, Evan; Loomis, Eric
2016-10-01
Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.
Design of convergent switched systems
Berg, van den R.A.; Pogromsky, A.Y.; Leonov, G.A.; Rooda, J.E.; Pettersen, K.Y.; Gravdahl, J.T.; Nijmeijer, H.
2006-01-01
In this paper we deal with the problem of rendering hybrid/nonlinear systems into convergent closed-loop systems by means of a feedback law or switching rules. We illustrate our approach to this problem by means of two examples: the anti-windup design for a marginally stable system with input
Convergence Patterns in Latin America
DEFF Research Database (Denmark)
Quiroga, Paola Andrea Barrientos
characteristics, and external shocks in the region. I study three important phases, following Thorp (1998): from 1900 to 1930, the exporting phase, from 1931 to 1974, the industrialization phase, and from 1975 to 2007, the globalization phase. During the last two phases, I find strong evidence of convergence...
Convergence of a Catalan Series
Koshy, Thomas; Gao, Zhenguang
2012-01-01
This article studies the convergence of the infinite series of the reciprocals of the Catalan numbers. We extract the sum of the series as well as some related ones, illustrating the power of the calculus in the study of the Catalan numbers.
Digital Convergence and Content Regulation
Starks, Michael John
2014-01-01
abstractBroadcasting, Press and Internet journalism systems of distribution are converging: the same infrastructure can deliver all three historically separate services. Reception devices mirror this: the Connected TV, the tablet and the smart phone overlap in their functionality. Service overlaps
Convergence and migration among provinces.
Helliwell, J F
1996-04-01
"Have regional disparities in Canada changed over the past thirty years? This paper assesses the robustness of earlier findings of convergence in the levels and growth rates of provincial per capita GDP, and then estimates the extent to which interprovincial and international migration is being influenced by regional differences in incomes and employment." excerpt
Revisiting convergence: A research note.
Clark, Rob
2015-09-01
A number of recent studies show that income inequality is declining between countries. In this research note, I question the significance of this trend by examining the role of initial conditions in producing convergence. An important (but neglected) property of inequality dynamics is the tendency for extreme distributions to become more moderate. When income disparities are large, the subsequent trend is biased toward convergence. Conversely, when initial conditions approach parity, divergence becomes the more likely long-term outcome. I apply this principle to trends in GDP PC across 127 countries during the 1980-2010 period. Using counterfactual analysis, I manipulate the initial level of inequality in GDP PC while holding constant each country's observed growth rate during the sample period. I find that the growth dynamics of GDP PC produce either convergence or divergence based simply on the initial distribution of income. The point of transition occurs at a moderate level of inequality, whether using population weights (Gini=.365) or not (Gini=.377). I conclude that the recent convergence observed in GDP PC is primarily a function of large income gaps between countries and would not have materialized at more moderate levels of initial inequality. By contrast, an examination of the pre-1950 period reveals divergent growth patterns that are not sensitive to initial conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Industrial Evolution Through Complementary Convergence
DEFF Research Database (Denmark)
Frøslev Christensen, Jens
2011-01-01
The article addresses the dynamics through which product markets become derailed from early product life cycle (PLC)-tracks and engaged in complementary convergence with other product markets or industries. We compare and contrast the theories that can explain, respectively, the PLC...
Privatization, convergence, and institutional autonomy
Rooijen, van M.
2011-01-01
Some of the trends incoming for 2011 – greater institutional autonomy, public/private convergence, entrepreneurial management, civic engagement – suggest innovation for hard times, with socio-economic and political rationales increasingly driving borderless developments. Others – open learning and
Converging Information and Communication Systems
DEFF Research Database (Denmark)
Øst, Alexander
2003-01-01
in the future to have - significant importance to the process and consequences of the convergence. The project focuses on the appliances, i.e. the TV sets, the computers and their peripheral equipment. It also takes into account the infrastructure and signals, which contain and deliver the information...
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Transformational plane geometry
Umble, Ronald N
2014-01-01
Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...
Multilevel geometry optimization
Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.
2000-02-01
Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.
Multilevel geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Rodgers, Jocelyn M. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Fast, Patton L. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Truhlar, Donald G. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)
2000-02-15
Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol. (c) 2000 American Institute of Physics.
Evolution and convergence in telecommunications
Energy Technology Data Exchange (ETDEWEB)
Radicella, S; Grilli, D [Abdus Salam ICTP, Trieste (Italy)
2002-12-15
These lectures throw a spotlight on different aspects of the evolution of telecommunications networks, namely on the various facets of service and network convergence. The last years progress in data and telecommunications technologies, such as P-based networks, and the enormous potential of mobile communication systems and users' demands for comprehensive and network-independent have led to a convergence of data and telecommunications infrastructures in many aspects. In order to help the reader to an easier understanding of the phenomenon convergence, in the first two parts of this volume the evolution of the basic technologies is described one by one. This is done briefly and is focused on the principle topics, just to build a basis for the third part devoted to problems of convergence in telecommunications. These notes are addressed to those readers, who in a quick overview want to be informed on the future service and network landscape. The notes are equally suited for professionals with the desire to extend their horizon as well as for students looking for an introduction into telecommunications under more general aspects. The authors clearly understand the difficulties in writing a book devoted to the evolution in telecommunications. Today, telecom landscape varies at very high speed. Every few months new network technologies, new products and new services are developed. Attempts to present them in time can be accessible only for magazine publications or contributions to conferences. Therefore, in a number of areas, such as Voice over IP and new switching technologies not much more than the starting point of new paradigms is described. However, the content is up-to-date to a degree, that the phenomenon convergence can be fully understood. Partially, these notes are based on a number of lecture courses that were delivered during recent ICTP winter schools devoted to multimedia and digital communications.
Evolution and convergence in telecommunications
International Nuclear Information System (INIS)
Radicella, S.; Grilli, D.
2002-01-01
These lectures throw a spotlight on different aspects of the evolution of telecommunications networks, namely on the various facets of service and network convergence. The last years progress in data and telecommunications technologies, such as P-based networks, and the enormous potential of mobile communication systems and users' demands for comprehensive and network-independent have led to a convergence of data and telecommunications infrastructures in many aspects. In order to help the reader to an easier understanding of the phenomenon convergence, in the first two parts of this volume the evolution of the basic technologies is described one by one. This is done briefly and is focused on the principle topics, just to build a basis for the third part devoted to problems of convergence in telecommunications. These notes are addressed to those readers, who in a quick overview want to be informed on the future service and network landscape. The notes are equally suited for professionals with the desire to extend their horizon as well as for students looking for an introduction into telecommunications under more general aspects. The authors clearly understand the difficulties in writing a book devoted to the evolution in telecommunications. Today, telecom landscape varies at very high speed. Every few months new network technologies, new products and new services are developed. Attempts to present them in time can be accessible only for magazine publications or contributions to conferences. Therefore, in a number of areas, such as Voice over IP and new switching technologies not much more than the starting point of new paradigms is described. However, the content is up-to-date to a degree, that the phenomenon convergence can be fully understood. Partially, these notes are based on a number of lecture courses that were delivered during recent ICTP winter schools devoted to multimedia and digital communications
Krauss, Lawrence M.; Turner, Michael S.
1999-01-01
The recognition that the cosmological constant may be non-zero forces us to re-evaluate standard notions about the connection between geometry and the fate of our Universe. An open Universe can recollapse, and a closed Universe can expand forever. As a corollary, we point out that there is no set of cosmological observations we can perform that will unambiguously allow us to determine what the ultimate destiny of the Universe will be.
DEFF Research Database (Denmark)
Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob
2009-01-01
The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....
International Nuclear Information System (INIS)
Lepora, N.; Kibble, T.
1999-01-01
We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)
International Nuclear Information System (INIS)
Hull, C.M.
1993-01-01
The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of W ∝ -gravity is analysed in detail. While the gauge group for gravity in d dimensions is the diffeomorphism group of the space-time, the gauge group for a certain W-gravity theory (which is W ∝ -gravity in the case d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for W-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising √detg μν ) only if d=1 or d=2, so that only for d=1,2 can actions be constructed. These two cases and the corresponding W-gravity actions are considered in detail. In d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphisms group. Some of the constraints that arise for d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of W-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform. (orig.)
Integral geometry and valuations
Solanes, Gil
2014-01-01
Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...
Flexible intuitions of Euclidean geometry in an Amazonian indigene group
Izard, Véronique; Pica, Pierre; Spelke, Elizabeth S.; Dehaene, Stanislas
2011-01-01
Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ∼180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics. PMID:21606377
Introducing geometry concept based on history of Islamic geometry
Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.
2018-01-01
Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.
Convergence problems associated with the iteration of adjoint equations in nuclear reactor theory
International Nuclear Information System (INIS)
Ngcobo, E.
2003-01-01
Convergence problems associated with the iteration of adjoint equations based on two-group neutron diffusion theory approximations in slab geometry are considered. For this purpose first-order variational techniques are adopted to minimise numerical errors involved. The importance of deriving the adjoint source from a breeding ratio is illustrated. The results obtained are consistent with the expected improvement in accuracy
An error bound estimate and convergence of the Nodal-LTS N solution in a rectangle
International Nuclear Information System (INIS)
Hauser, Eliete Biasotto; Pazos, Ruben Panta; Tullio de Vilhena, Marco
2005-01-01
In this work, we report the mathematical analysis concerning error bound estimate and convergence of the Nodal-LTS N solution in a rectangle. For such we present an efficient algorithm, called LTS N 2D-Diag solution for Cartesian geometry
International Nuclear Information System (INIS)
Glashow, S.L.
1976-01-01
These are scattered remarks concerning what is happening to (not in) elementary particle physics. New developments are unfolding with unprecedented speed, so that one does not even attempt to give a comprehensive review at this time. Mostly charm is discussed, both its phenomenology and its impact on belief in quarks, chromodynamics, and unified theories. Beneath the newsworthy experimental discoveries of the last two years lies a quieter and more profound theoretical development: the emergence of a theory of particle physics
Two lectures on D-geometry and noncommutative geometry
International Nuclear Information System (INIS)
Douglas, M.R.
1999-01-01
This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)
Quantifying convergence in the sciences
Directory of Open Access Journals (Sweden)
Sara Lumbreras
2016-02-01
Full Text Available Traditional epistemological models classify knowledge into separate disciplines with different objects of study and specific techniques, with some frameworks even proposing hierarchies (such as Comte’s. According to thinkers such as John Holland or Teilhard de Chardin, the advancement of science involves the convergence of disciplines. This proposed convergence can be studied in a number of ways, such as how works impact research outside a specific area (citation networks or how authors collaborate with other researchers in different fields (collaboration networks. While these studies are delivering significant new insights, they cannot easily show the convergence of different topics within a body of knowledge. This paper attempts to address this question in a quantitative manner, searching for evidence that supports the idea of convergence in the content of the sciences themselves (that is, whether the sciences are dealing with increasingly the same topics. We use Latent Dirichlet Analysis (LDA, a technique that is able to analyze texts and estimate the relative contributions of the topics that were used to generate them. We apply this tool to the corpus of the Santa Fe Institute (SFI working papers, which spans research on Complexity Science from 1989 to 2015. We then analyze the relatedness of the different research areas, the rise and demise of these sub-disciplines over time and, more broadly, the convergence of the research body as a whole. Combining the topic structure obtained from the collected publication history of the SFI community with techniques to infer hierarchy and clustering, we reconstruct a picture of a dynamic community which experiences trends, periodically recurring topics, and shifts in the closeness of scholarship over time. We find that there is support for convergence, and that the application of quantitative methods such as LDA to the study of knowledge can provide valuable insights that can help
Economic convergence and climate policy
International Nuclear Information System (INIS)
Ciscar, J.C.; Soria, A.
2000-01-01
This paper addresses the relevance of the economic convergence hypotheses between the developing and the developed world in international greenhouse gas (GHG) emissions negotiations. The results are based on a two-region (the OECD and the rest of the world, ROW) neo-classical growth model with exogenous technical progress, different technological diffusion patterns, and a set of geophysical relationships that consider an environmental externality linked to GHG emissions. A game framework is taken into account in the model to capture the strategic interactions between agents. The outcome of the negotiations seems indeed to depend on the economic convergence hypotheses. Faster economic growth of the ROW countries would encourage them to further mitigate carbon emissions. (Author)
International Nuclear Information System (INIS)
Hook, D W
2008-01-01
A geometric framework for quantum mechanics arose during the mid 1970s when authors such as Cantoni explored the notion of generalized transition probabilities, and Kibble promoted the idea that the space of pure quantum states provides a natural quantum mechanical analogue for classical phase space. This central idea can be seen easily since the projection of Schroedinger's equation from a Hilbert space into the space of pure spaces is a set of Hamilton's equations. Over the intervening years considerable work has been carried out by a variety of authors and a mature description of quantum mechanics in geometric terms has emerged with many applications. This current offering would seem ideally placed to review the last thirty years of progress and relate this to the most recent work in quantum entanglement. Bengtsson and Zyczkowski's beautifully illustrated volume, Geometry of Quantum States (referred to as GQS from now on) attempts to cover considerable ground in its 466 pages. Its topics range from colour theory in Chapter 1 to quantum entanglement in Chapter 15-to say that this is a whirlwind tour is, perhaps, no understatement. The use of the work 'introduction' in the subtitle of GQS, might suggest to the reader that this work be viewed as a textbook and I think that this interpretation would be incorrect. The authors have chosen to present a survey of different topics with the specific aim to introduce entanglement in geometric terms-the book is not intended as a pedagogical introduction to the geometric approach to quantum mechanics. Each of the fifteen chapters is a short, and mostly self-contained, essay on a particular aspect or application of geometry in the context of quantum mechanics with entanglement being addressed specifically in the final chapter. The chapters fall into three classifications: those concerned with the mathematical background, those which discuss quantum theory and the foundational aspects of the geometric framework, and
Converging-barrel plasma accelerator
International Nuclear Information System (INIS)
Paine, T.O.
1971-01-01
The invention comprises a device for generating and accelerating plasma to extremely high velocity, while focusing the plasma to a decreasing cross section for attaining a very dense high-velocity plasma burst capable of causing nuclear fusion reactions. A converging coaxial accelerator-electrode configuration is employed with ''high-pressure'' gas injection in controlled amounts to achieve acceleration by deflagration and focusing by the shaped electromagnetic fields. (U.S.)
Functional integration over geometries
International Nuclear Information System (INIS)
Mottola, E.
1995-01-01
The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted
In-situ magnetization of NdFeB magnets for permanent magnet machines
International Nuclear Information System (INIS)
Chang, L.; Eastham, T.R.; Dawson, G.E.
1991-01-01
In-situ magnetizers are needed to facilitate the assembly of permanent magnet machines and to remagnetize the magnets after weakening due to a fault condition. The air-core magnetizer in association with the silicon steel lamination structure of the rotor has advantages over its iron-core counterpart. This novel method has been used to magnetize the NdFeB magnets in a 30-hp permanent magnet synchronous motor. The magnetizing capability for different magnetizer geometries was investigated for the magnetization of NdFeB material. The design, testing, and operation of this magnetizer are reported in this paper
Super magnets for interaction regions
International Nuclear Information System (INIS)
Biallas, G.; Fowler, W.; Diebold, R.
1977-01-01
The feasibility of using superconducting magnets in the beam interaction regions of particle accelerators is discussed. These higher field magnets can be shorter, leaving more room for detectors, but also must have a large aperture and magnetic shielding. The ''kissing geometry'' was investigated, and design and scaling considerations are given. A rough estimate of the cost of such superconducting magnets is given as an aid to the selection of interaction geometry
Dooner, David B
2012-01-01
Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat
Flegg, H Graham
2001-01-01
This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.
Torsional heterotic geometries
International Nuclear Information System (INIS)
Becker, Katrin; Sethi, Savdeep
2009-01-01
We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.
Geometrie verstehen: statisch - kinematisch
Kroll, Ekkehard
Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Abhyankar, Shreeram Shankar
1964-01-01
This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from
Akopyan, A V
2007-01-01
The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca
2015-01-01
This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric
Surface meshing with curvature convergence
Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid
2014-01-01
Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.
Surface meshing with curvature convergence
Li, Huibin
2014-06-01
Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.
Natural gas and electricity convergence
International Nuclear Information System (INIS)
Calger, C.
1998-01-01
Convergence between the gas and electricity industries was described as a means for creating an increasingly more efficient energy market where prices and fundamental relationships exist between gas and electricity. Convergence creates new opportunities for producers and consumers. Convergence will likely lead to the disaggregation of the electricity and gas industry into segments such as: (1) power generation and production, (2) transmission wires and pipelines, (3) wholesale merchants, (4) distribution wires and pipelines, and (5) retail marketing, services and administration. The de-integration of integrated utilities has already begun in the U.S. energy markets and retail open access is accelerating. This retail competition will create very demanding customers and the changing risk profile will create new issues for stakeholders. The pace of reform for the telecommunications, airlines, natural gas and electricity industries was graphically illustrated to serve as an example of what to expect. The different paths that the industry might take to deregulation (aggressively embrace reform, or defensively blocking it), and the likely consequences of each reaction were also described. A map indicating where U.S. electric and natural gas utility merger and acquisition activities have taken place between 1994-1997, was included. Another map showing the physical asset positions of the Enron grid, one of the largest independent oil and gas companies in the U.S., with increasing international operations, including an electric power transmission and distribution arm, was also provided as an illustration of a fully integrated energy market company of the future. 9 figs
Graded geometry and Poisson reduction
Cattaneo, A S; Zambon, M
2009-01-01
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics
a globally convergent hyperpl onvergent hyperplane
African Journals Online (AJOL)
userpc
Bayero Journal of Pure and App. ISSN 2006 – 6996 ... Globally Convergent Hyper plane-BFGS method for solving nonline. The attractive ... Numerical performance on some b rates there liability ..... convergence of a class of quasi methods on ...
Density by Moduli and Lacunary Statistical Convergence
Directory of Open Access Journals (Sweden)
Vinod K. Bhardwaj
2016-01-01
Full Text Available We have introduced and studied a new concept of f-lacunary statistical convergence, where f is an unbounded modulus. It is shown that, under certain conditions on a modulus f, the concepts of lacunary strong convergence with respect to a modulus f and f-lacunary statistical convergence are equivalent on bounded sequences. We further characterize those θ for which Sθf=Sf, where Sθf and Sf denote the sets of all f-lacunary statistically convergent sequences and f-statistically convergent sequences, respectively. A general description of inclusion between two arbitrary lacunary methods of f-statistical convergence is given. Finally, we give an Sθf-analog of the Cauchy criterion for convergence and a Tauberian theorem for Sθf-convergence is also proved.
Stable convergence and stable limit theorems
Häusler, Erich
2015-01-01
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...
Crossing geometry for Main Ring on Doubler collisions
International Nuclear Information System (INIS)
Diebold, R.
1977-01-01
There are two basic methods for bringing about Main Ring on Doubler collisions: the transposed, and kissing geometries. Examples of both are discussed assuming maximum momenta of 250 on 1000 GeV/c. The magnets required to bring the beams into small-angle collision are substantial in both cases. Detailed engineering work will be required to distinguish a substantial cost advantage of one geometry over the other
Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinate
International Nuclear Information System (INIS)
Fivaz, M.; Brunner, S.; Ridder, G. de; Sauter, O.; Tran, T.M.; Vaclavik, J.; Villard, L.; Appert, K.
1997-08-01
We present a fully-global linear gyrokinetic simulation code (GYGLES) aimed at describing the instable spectrum of the ion-temperature-gradient modes in toroidal geometry. We formulate the Particle-In-Cell method with finite elements defined in magnetic coordinates, which provides excellent numerical convergence properties. The poloidal mode structure corresponding to k // =0 is extracted without approximation from the equations, which reduces drastically the numerical resolution needed. The code can simulate routinely modes with both very long and very short toroidal wavelengths, can treat realistic (MHD) equilibria of any size and runs on a massively parallel computer. (author) 10 figs., 28 refs
Technology assessment using NBIC convergence
International Nuclear Information System (INIS)
Vaseashta, Ashok
2009-01-01
Full text: Notwithstanding progress in the areas of nanotechnology/nanoscience, biotechnology, information technology, and cognitive sciences (NBIC), the synergy arising from convergence of these disciplines offers great potential for transformational, revolutionary, and embryonic opportunities with many technological applications. In addition, advances in synthesis and characterization methods have provided the means to study, understand, control, or even manipulate the transitional characteristics between isolated atoms and bulk material. In recent years, newly developed architectures in nanostructures and nanosystems with improved functionality, and ensuing unique characteristics have been developed with applications in chemical and biological sensors, nanobiotechnology, nanophotonics, and analysis of cellular processes. Novel convergence methodologies will integrate and advance next generation solutions to current and future technical challenges. Convergence in research methodologies transform the way research is conducted by overcoming specific barriers or filling existing knowledge gaps. NBIC Convergence and associated research methodologies has exceptionally high potential for transforming the manner in which state-of-the-art information is gathered, analyzed, and leveraged to enable future advances and applications. Examples of synergy of these disciplines include: label free, highly multiplexed over broad dynamic range, and decentralized nanotechnology based sensor platform for detection of biological and chemical agents; nucleic acid layers in conjunction with nanomaterials-based electrochemical or optical transducers as DNA Biosensor; potential targets for the next generation of vaccines, therapeutics and diagnostics to enhance human performance; basis for 'Gene Ontology' to provides an important link between gene function and systems biology to understand a global picture of host-microbe interactions - to name a few. Since the idea of 'Converging
Statistical convergence on intuitionistic fuzzy normed spaces
International Nuclear Information System (INIS)
Karakus, S.; Demirci, K.; Duman, O.
2008-01-01
Saadati and Park [Saadati R, Park JH, Chaos, Solitons and Fractals 2006;27:331-44] has recently introduced the notion of intuitionistic fuzzy normed space. In this paper, we study the concept of statistical convergence on intuitionistic fuzzy normed spaces. Then we give a useful characterization for statistically convergent sequences. Furthermore, we display an example such that our method of convergence is stronger than the usual convergence on intuitionistic fuzzy normed spaces
Convergence of barycentric coordinates to barycentric kernels
Kosinka, Jiří
2016-02-12
We investigate the close correspondence between barycentric coordinates and barycentric kernels from the point of view of the limit process when finer and finer polygons converge to a smooth convex domain. We show that any barycentric kernel is the limit of a set of barycentric coordinates and prove that the convergence rate is quadratic. Our convergence analysis extends naturally to barycentric interpolants and mappings induced by barycentric coordinates and kernels. We verify our theoretical convergence results numerically on several examples.
Convergence of barycentric coordinates to barycentric kernels
Kosinka, Jiří
2016-01-01
We investigate the close correspondence between barycentric coordinates and barycentric kernels from the point of view of the limit process when finer and finer polygons converge to a smooth convex domain. We show that any barycentric kernel is the limit of a set of barycentric coordinates and prove that the convergence rate is quadratic. Our convergence analysis extends naturally to barycentric interpolants and mappings induced by barycentric coordinates and kernels. We verify our theoretical convergence results numerically on several examples.
Semantic Convergence in the Bilingual Lexicon
Ameel, Eef; Malt, Barbara C.; Storms, Gert; Van Assche, Fons
2009-01-01
Bilinguals' lexical mappings for their two languages have been found to converge toward a common naming pattern. The present paper investigates in more detail how semantic convergence is manifested in bilingual lexical knowledge. We examined how semantic convergence affects the centers and boundaries of lexical categories for common household…
"Nanoselves": NBIC and the Culture of Convergence
Venkatesan, Priya
2010-01-01
The subject of this essay is NBIC convergence (nanotechnology, biotechnology, information technology and cognitive science convergence). NBIC convergence is a recurring trope that is dominated by the paradigm of integration of the sciences. It is largely influenced by the considerations of social and economic impact, and it assumes positivism in…
Photogrammetric computer vision statistics, geometry, orientation and reconstruction
Förstner, Wolfgang
2016-01-01
This textbook offers a statistical view on the geometry of multiple view analysis, required for camera calibration and orientation and for geometric scene reconstruction based on geometric image features. The authors have backgrounds in geodesy and also long experience with development and research in computer vision, and this is the first book to present a joint approach from the converging fields of photogrammetry and computer vision. Part I of the book provides an introduction to estimation theory, covering aspects such as Bayesian estimation, variance components, and sequential estimation, with a focus on the statistically sound diagnostics of estimation results essential in vision metrology. Part II provides tools for 2D and 3D geometric reasoning using projective geometry. This includes oriented projective geometry and tools for statistically optimal estimation and test of geometric entities and transformations and their relations, tools that are useful also in the context of uncertain reasoning in po...
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Critique of information geometry
International Nuclear Information System (INIS)
Skilling, John
2014-01-01
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples
International Nuclear Information System (INIS)
Correa, Diego H.; Silva, Guillermo A.
2008-01-01
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents
Emergent geometry of membranes
Energy Technology Data Exchange (ETDEWEB)
Badyn, Mathias Hudoba de; Karczmarek, Joanna L.; Sabella-Garnier, Philippe; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)
2015-11-13
In work http://dx.doi.org/10.1103/PhysRevD.86.086001, a surface embedded in flat ℝ{sup 3} is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in ℝ{sup 3}. Finally, we make remarks about area and find matrix equations for minimal area surfaces.
Ecomorphological convergence in planktivorous surgeonfishes
Friedman, S. T.
2016-01-26
© 2016 European Society For Evolutionary Biology. Morphological convergence plays a central role in the study of evolution. Often induced by shared ecological specialization, homoplasy hints at underlying selective pressures and adaptive constraints that deterministically shape the diversification of life. Although midwater zooplanktivory has arisen in adult surgeonfishes (family Acanthuridae) at least four independent times, it represents a clearly specialized state, requiring the capacity to swiftly swim in midwater locating and sucking small prey items. Whereas this diet has commonly been associated with specific functional adaptations in fishes, acanthurids present an interesting case study as all nonplanktivorous species feed by grazing on benthic algae and detritus, requiring a vastly different functional morphology that emphasizes biting behaviours. We examined the feeding morphology in 30 acanthurid species and, combined with a pre-existing phylogenetic tree, compared the fit of evolutionary models across two diet regimes: zooplanktivores and nonzooplanktivorous grazers. Accounting for phylogenetic relationships, the best-fitting model indicates that zooplanktivorous species are converging on a separate adaptive peak from their grazing relatives. Driving this bimodal landscape, zooplanktivorous acanthurids tend to develop a slender body, reduced facial features, smaller teeth and weakened jaw adductor muscles. However, despite these phenotypic changes, model fitting suggests that lineages have not yet reached the adaptive peak associated with plankton feeding even though some transitions appear to be over 10 million years old. These findings demonstrate that the selective demands of pelagic feeding promote repeated - albeit very gradual - ecomorphological convergence within surgeonfishes, while allowing local divergences between closely related species, contributing to the overall diversity of the clade. Journal of Evolutionary Biology
Ecomorphological convergence in planktivorous surgeonfishes.
Friedman, S T; Price, S A; Hoey, A S; Wainwright, P C
2016-05-01
Morphological convergence plays a central role in the study of evolution. Often induced by shared ecological specialization, homoplasy hints at underlying selective pressures and adaptive constraints that deterministically shape the diversification of life. Although midwater zooplanktivory has arisen in adult surgeonfishes (family Acanthuridae) at least four independent times, it represents a clearly specialized state, requiring the capacity to swiftly swim in midwater locating and sucking small prey items. Whereas this diet has commonly been associated with specific functional adaptations in fishes, acanthurids present an interesting case study as all nonplanktivorous species feed by grazing on benthic algae and detritus, requiring a vastly different functional morphology that emphasizes biting behaviours. We examined the feeding morphology in 30 acanthurid species and, combined with a pre-existing phylogenetic tree, compared the fit of evolutionary models across two diet regimes: zooplanktivores and nonzooplanktivorous grazers. Accounting for phylogenetic relationships, the best-fitting model indicates that zooplanktivorous species are converging on a separate adaptive peak from their grazing relatives. Driving this bimodal landscape, zooplanktivorous acanthurids tend to develop a slender body, reduced facial features, smaller teeth and weakened jaw adductor muscles. However, despite these phenotypic changes, model fitting suggests that lineages have not yet reached the adaptive peak associated with plankton feeding even though some transitions appear to be over 10 million years old. These findings demonstrate that the selective demands of pelagic feeding promote repeated - albeit very gradual - ecomorphological convergence within surgeonfishes, while allowing local divergences between closely related species, contributing to the overall diversity of the clade. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European
Geometry through history Euclidean, hyperbolic, and projective geometries
Dillon, Meighan I
2018-01-01
Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...
Convergence estimates in approximation theory
Gupta, Vijay
2014-01-01
The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.
SCORE DIGITAL TECHNOLOGY: THE CONVERGENCE
Directory of Open Access Journals (Sweden)
Chernyshov Alexander V.
2013-12-01
Full Text Available Explores the role of digital scorewriters in today's culture, education, and music industry and media environment. The main principle of the development of software is not only publishing innovation (relating to the sheet music, and integration into the area of composition, arrangement, education, creative process for works based on digital technology (films, television and radio broadcasting, Internet, audio and video art. Therefore the own convergence of musically-computer technology is a total phenomenon: notation program combined with means MIDI-sequencer, audio and video editor. The article contains the unique interview with the creator of music notation processors.
DEFF Research Database (Denmark)
Henriksen, Lars Skov; Zimmer, Annette; Smith, Steven Rathgeb
. Specifically, we will investigate whether and to what extent social services and health care in these three countries are affected by current changes. With a special focus on nonprofit organizations, we will particularly address the question whether a trend towards convergence of the very different welfare......Due to severe societal, economic and political changes, of which the financial crisis counts prominently, welfare states all over the world are under stress. In our comparative analysis, we will concentrate on specific segments of welfare state activity in Denmark, Germany, and the United States...
Geometry of hyperbolic monopoles
International Nuclear Information System (INIS)
Nash, C.
1986-01-01
The hyperbolic monopoles of Atiyah [M. F. Atiyah, Commun. Math. Phys. 93, 471 (1984); ''Magnetic monopoles in hyperbolic space,'' in Proceedings of the International Colloquium on Vector Bundles (Tata Institute, Bombay, 1984)] and Chakrabarti [A. Chakrabarti, J. Math. Phys. 27, 340 (1986)] are introduced and their geometric properties and relations to instantons and ordinary monopoles clarified. A key tool is the use of the ball model of hyperbolic space to construct and examine solutions
International Nuclear Information System (INIS)
Marks, N.
1994-01-01
The design and construction of conventional, steel-cored, direct-current magnets are discussed. Laplace's equation and the associated cylindrical harmonic solutions in two dimensions are established. The equations are used to define the ideal pole shapes and required excitation for dipole, quadrupole and sextupole magnets. Standard magnet geometries are then considered and criteria determining the coil design are presented. The use of codes for predicting flux density distributions and the iterative techniques used for pole face design are then discussed. This includes a description of the use of two-dimensional codes to generate suitable magnet end geometries. Finally, standard constructional techniques for cores and coils are described. (orig.)
Accommodation and convergence palsy caused by lesions in the bilateral rostral superior colliculus.
Ohtsuka, Kenji; Maeda, Sachie; Oguri, Naomi
2002-03-01
To report a patient who developed accommodation and convergence palsy caused by lesions in the bilateral rostral superior colliculus. Observational case report. A 30-year-old right-handed man experienced sudden onset of diplopia and blurred vision at near vision. The patient showed accommodation and convergence palsy. Magnetic resonance imaging revealed lesions located in the bilateral rostral superior colliculus. These findings suggest that the rostral superior colliculus is involved in the control of accommodation and vergence eye movements.
On organizing principles of discrete differential geometry. Geometry of spheres
International Nuclear Information System (INIS)
Bobenko, Alexander I; Suris, Yury B
2007-01-01
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
Higher geometry an introduction to advanced methods in analytic geometry
Woods, Frederick S
2005-01-01
For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study
Pointwise convergence of Fourier series
Arias de Reyna, Juan
2002-01-01
This book contains a detailed exposition of Carleson-Hunt theorem following the proof of Carleson: to this day this is the only one giving better bounds. It points out the motivation of every step in the proof. Thus the Carleson-Hunt theorem becomes accessible to any analyst.The book also contains the first detailed exposition of the fine results of Hunt, Sjölin, Soria, etc on the convergence of Fourier Series. Its final chapters present original material. With both Fefferman's proof and the recent one of Lacey and Thiele in print, it becomes more important than ever to understand and compare these two related proofs with that of Carleson and Hunt. These alternative proofs do not yield all the results of the Carleson-Hunt proof. The intention of this monograph is to make Carleson's proof accessible to a wider audience, and to explain its consequences for the pointwise convergence of Fourier series for functions in spaces near $äcal Lü^1$, filling a well-known gap in the literature.
Unstable drift eigenmode in slab geometry
International Nuclear Information System (INIS)
Tsotsonis, S.; Hirose, A.
1986-01-01
The unstable Pearlstein-Berk mode of drift waves in plane, sheared slab geometry has later been shown to be stable when electron Landau resonance is rigorously treated. Based on the variational method previously developed the authors have found that in addition to the absolutely stable Pearlstein-Berk mode, there exists an absolutely unstable eigenfunction characterized by ω ≤ ω/sub chemical bonde/, and weak ''radial'' dependence. Also, the growth rate, only weakly depends on the magnetic shear and ion/electron temperature ratio
Directory of Open Access Journals (Sweden)
Jain Nitin
2011-01-01
Full Text Available Synergistic convergence is an ocular motor anomaly where on attempted abduction or on attempted horizontal gaze, both the eyes converge. It has been related to peripheral causes such as congenital fibrosis of extraocular muscles (CFEOM, congenital cranial dysinnervation syndrome, ocular misinnervation or rarely central causes like horizontal gaze palsy with progressive scoliosis, brain stem dysplasia. We hereby report the occurrence of synergistic convergence in two sisters. Both of them also had kyphoscoliosis. Magnetic resonance imaging (MRI brain and spine in both the patients showed signs of brain stem dysplasia (split pons sign differing in degree (younger sister had more marked changes.
International Nuclear Information System (INIS)
Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F.; Noble, Scott C.
2012-01-01
Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 × 96 × 64 to 384 × 384 × 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma β; (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma β decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ( s hearing box ) calculations and with the recent non-relativistic global convergence studies of Hawley et al.
An introduction to incidence geometry
De Bruyn, Bart
2016-01-01
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...
International Nuclear Information System (INIS)
Buescher, R.
2005-01-01
Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the
Planetary Image Geometry Library
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
Initiation to global Finslerian geometry
Akbar-Zadeh, Hassan
2006-01-01
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p
Directory of Open Access Journals (Sweden)
Šárka Nedomová
2013-01-01
Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.
Nonperturbative quantum geometries
International Nuclear Information System (INIS)
Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; California Univ., Santa Barbara
1988-01-01
Using the self-dual representation of quantum general relativity, based on Ashtekar's new phase space variables, we present an infinite dimensional family of quantum states of the gravitational field which are exactly annihilated by the hamiltonian constraint. These states are constructed from Wilson loops for Ashtekar's connection (which is the spatial part of the left handed spin connection). We propose a new regularization procedure which allows us to evaluate the action of the hamiltonian constraint on these states. Infinite linear combinations of these states which are formally annihilated by the diffeomorphism constraints as well are also described. These are explicit examples of physical states of the gravitational field - and for the compact case are exact zero eigenstates of the hamiltonian of quantum general relativity. Several different approaches to constructing diffeomorphism invariant states in the self dual representation are also described. The physical interpretation of the states described here is discussed. However, as we do not yet know the physical inner product, any interpretation is at this stage speculative. Nevertheless, this work suggests that quantum geometry at Planck scales might be much simpler when explored in terms of the parallel transport of left-handed spinors than when explored in terms of the three metric. (orig.)
Bhatia, Rajendra
2013-01-01
This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR). During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.
Convergent Validity of the PUTS
Directory of Open Access Journals (Sweden)
Valerie Cathérine Brandt
2016-04-01
Full Text Available Premonitory urges are a cardinal feature in Gilles de la Tourette syndrome. Severity of premonitory urges can be assessed with the Premonitory Urge for Tic Disorders Scale (PUTS. However, convergent validity of the measure has been difficult to assess due to the lack of other urge measures.We investigated the relationship between average real-time urge intensity assessed by an in-house developed real-time urge monitor, measuring urge intensity continuously for 5mins on a visual analogue scale, and general urge intensity assessed by the PUTS in 22 adult Tourette patients (mean age 29.8+/- 10.3; 19 male. Additionally, underlying factors of premonitory urges assessed by the PUTS were investigated in the adult sample using factor analysis and were replicated in 40 children and adolescents diagnosed with Tourette syndrome (mean age 12.05 +/- 2.83 SD, 31 male.Cronbach’s alpha for the PUTS10 was acceptable (α = .79 in the adult sample. Convergent validity between average real-time urge intensity scores (as assessed with the real-time urge monitor and the 10-item version of the PUTS (r = .64 and the 9-item version of the PUTS (r = .66 was good. A factor analysis including the 10 items of the PUTS and average real-time urge intensity scores revealed three factors. One factor included the average real-time urge intensity score and appeared to measure urge intensity, while the other two factors can be assumed to reflect the (sensory quality of urges and subjective control, respectively. The factor structure of the 10 PUTS items alone was replicated in a sample of children and adolescents.The results indicate that convergent validity between the PUTS and the real-time urge assessment monitor is good. Furthermore, the results suggest that the PUTS might assess more than one dimension of urges and it may be worthwhile developing different sub-scales of the PUTS assessing premonitory urges in terms of intensity and quality, as well as subjectively
Professional convergence in forensic practice.
Mercer, D; Mason, T; Richman, J
2001-06-01
This paper outlines the development and convergence of forensic science and secure psychiatric services in the UK, locating the professionalization of forensic nursing within a complex web of political, economic, and ideological structures. It is suggested that a stagnation of the therapeutic enterprise in high and medium security provision has witnessed an intrusion of medical power into the societal body. Expanding technologies of control and surveillance are discussed in relation to the move from modernity to postmodernity and the ongoing dynamic of medicalized offending. Four aspects of globalization are identified as impacting upon the organization and application of forensic practice: (i) organized capitalism and the exhaustion of the welfare state; (ii) security versus danger and trust versus risk; (iii) science as a meta-language; and (iv) foreclosure as a mechanism of censorship. Finally, as a challenge for the profession, some predictions are offered about the future directions or demise of forensic nursing.
Exponentially-convergent Monte Carlo for the 1-D transport equation
International Nuclear Information System (INIS)
Peterson, J. R.; Morel, J. E.; Ragusa, J. C.
2013-01-01
We define a new exponentially-convergent Monte Carlo method for solving the one-speed 1-D slab-geometry transport equation. This method is based upon the use of a linear discontinuous finite-element trial space in space and direction to represent the transport solution. A space-direction h-adaptive algorithm is employed to restore exponential convergence after stagnation occurs due to inadequate trial-space resolution. This methods uses jumps in the solution at cell interfaces as an error indicator. Computational results are presented demonstrating the efficacy of the new approach. (authors)
Energy Technology Data Exchange (ETDEWEB)
Takahashi, K., E-mail: t2216017@iwate-u.ac.jp [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Ainslie, M.D. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Fujishiro, H.; Naito, T. [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Shi, Y-H.; Cardwell, D.A. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)
2017-05-15
Highlights: • The trapped field characteristics of a standard Y–Ba–Cu–O bulk magnetized by PFM was investigated using a split coil with three kinds of iron yokes inserted in the bores of coil,both experimentally and numerically. • Numerical results encourage better understanding of the role of yoke, including the typical behavior of the magnetic flux, such as a flux jump during PFM. • A higher saturation magnetic flux density of the yoke material was effective to reduce flux flow in the descending stage of the pulsed field. • A conductivity of the yoke material also acts to reduce the velocity of the flux intruding the bulk because of eddy currents that flow in the yoke that oppose the magnetization, which reduces the temperature rise in the bulk. - Abstract: We have investigated, both experimentally and numerically, the trapped field characteristics of a standard Y–Ba–Cu–O bulk of 30 mm in diameter and 14 mm in thickness magnetized by pulsed field magnetization (PFM) using a split coil, in which three kinds of iron yoke are inserted in the bore of the coil: soft iron with a flat surface, soft iron with a taper, and permendur (50Fe + 50Co alloy) with a flat surface. The highest trapped field, B{sub Tmax}, of 2.93 T was achieved at 40 K in the case of the permendur yoke, which was slightly higher than that obtained for the flat soft iron or the tapered soft iron yokes, and was much higher than 2.20 T in the case without the yoke. The insertion effect of the yoke on the trapped field characteristics was also investigated using numerical simulations. The results suggest that the saturation magnetic flux density, B{sub sat}, of the yoke acts to reduce the flux flow due to its hysteretic magnetization curve and the higher electrical conductivity, σ, of the yoke material also acts to suppress the flux increase rate. A flux jump (or flux leap) can be reproduced in the ascending stage of PFM using numerical simulation, using an assumption of relatively
Mosaic convergence of rodent dentitions.
Directory of Open Access Journals (Sweden)
Vincent Lazzari
Full Text Available BACKGROUND: Understanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity. METHODOLOGY/PRINCIPAL FINDINGS: Combined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology. CONCLUSION/SIGNIFICANCE: The reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible
Beyond Brainstorming: Exploring Convergence in Teams
Seeber, Isabella; de Vreede, Gert-Jan; Maier, Ronald; Weber, Barbara
2017-01-01
Abstract Collaborative brainstorming is often followed by a convergence activity where teams extract the most promising ideas on a useful level of detail from the brainstorming results. Contrary to the wealth of research on electronic brainstorming, there is a dearth of research on convergence. We used experimental methods for an in-depth exploration of two facilitation-based interventions in a convergence activity: attention guidance (focusing participants on procedures to execute a convergence task) and discussion encouragement (engaging participants in conversations to combine knowledge on ideas). Our findings show that both attention guidance and discussion encouragement are correlated with higher convergence quality. We argue that attention guidance’s contribution is in its support of coordination, information processing, and goal specification. Similar, we argue that discussion encouragement’s contribution is in its stimulation of idea clarification and idea combination. Contrary to past research, our findings further show that satisfaction was higher after convergence than after brainstorming. PMID:29399005
Vadose zone flow convergence test suite
Energy Technology Data Exchange (ETDEWEB)
Butcher, B. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-06-05
Performance Assessment (PA) simulations for engineered disposal systems at the Savannah River Site involve highly contrasting materials and moisture conditions at and near saturation. These conditions cause severe convergence difficulties that typically result in unacceptable convergence or long simulation times or excessive analyst effort. Adequate convergence is usually achieved in a trial-anderror manner by applying under-relaxation to the Saturation or Pressure variable, in a series of everdecreasing RELAxation values. SRNL would like a more efficient scheme implemented inside PORFLOW to achieve flow convergence in a more reliable and efficient manner. To this end, a suite of test problems that illustrate these convergence problems is provided to facilitate diagnosis and development of an improved convergence strategy. The attached files are being transmitted to you describing the test problem and proposed resolution.
Regional Convergence and Sustainable Development in China
Directory of Open Access Journals (Sweden)
Fang Yang
2016-01-01
Full Text Available Based on the convergence theory of economic growth, this paper extends this concept to the human development index and carries out an empirical analysis of regional development in China between 1997 and 2006. Our research shows that the conditional convergence has been identified. Investment in fixed assets, government expenditure on education, health and infrastructure construction have positive effects on regional convergence of social development. Population weighted analysis of human development index provides support for weak convergence amongst provinces. Analysis of dynamics of regional distribution reveals the club convergence, which indicate two different convergence states. Central China is in the shade and lags behind, giving rise to the so-called “central downfall”. To solve this problem, the “Rise of Central China” Plan is necessary to promote the connection between coastal and inland regions of China and reduce the regional development gap.
GPS: Geometry, Probability, and Statistics
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Surrogate Modeling for Geometry Optimization
DEFF Research Database (Denmark)
Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie
2009-01-01
A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....
Kaehler geometry and SUSY mechanics
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen
2001-01-01
We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed
A prediction for bubbling geometries
Okuda, Takuya
2007-01-01
We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.
Molecular motion in restricted geometries
Indian Academy of Sciences (India)
Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...
convergent methods for calculating thermodynamic Green functions
Bowen, S. P.; Williams, C. D.; Mancini, J. D.
1984-01-01
A convergent method of approximating thermodynamic Green functions is outlined briefly. The method constructs a sequence of approximants which converges independently of the strength of the Hamiltonian's coupling constants. Two new concepts associated with the approximants are introduced: the resolving power of the approximation, and conditional creation (annihilation) operators. These ideas are illustrated on an exactly soluble model and a numerical example. A convergent expression for the s...
On statistical acceleration convergence of double sequences
Directory of Open Access Journals (Sweden)
Bipan Hazarika
2017-04-01
Full Text Available In this article the notion of statistical acceleration convergence of double sequences in Pringsheim's sense has been introduced. We prove the decompostion theorems for statistical acceleration convergence of double sequences and some theorems related to that concept have been established using the four dimensional matrix transformations. We provided some examples, where the results of acceleration convergence fails to hold for the statistical cases.
Parametric excitation of drift waves in a sheared slab geometry
International Nuclear Information System (INIS)
Vranjes, J.; Weiland, J.
1992-01-01
The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)
Using Dance to Deepen Student Understanding of Geometry
Moore, Candice; Linder, Sandra M.
2012-01-01
This article provides an example of a collaborative effort between a dance specialist and four third-grade classroom teachers at an arts magnet school. They developed a dance and geometry integration project including implementation strategies, assessment tools, and reflections completed by both the classroom teacher and the third-grade students.…
Pulsar Emission Geometry and Accelerating Field Strength
DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien
2012-01-01
The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry
Energy Technology Data Exchange (ETDEWEB)
Lusche, Robert
2015-06-24
The aim of this thesis is to a gain deeper understanding of the single photon detection process in superconducting nanowire single-photon detectors (SNSPDs). A detailed knowledge of the physical principles and mechanisms which the detection process is based on helps to improve specific detector parameters and hence the suitability of such detectors for various applications. Several theoretical models of the detection process have been compared to the results of measurements of photon and dark count rates in meander-type TaN- and NbN-SNSPDs with different wire-widths in a broad range of wavelengths, transport currents and magnetic fields. In the first part of the thesis, measurements of the photon and dark count rates of TaN- and NbN-SNSPDs with varying wire width are described. For each meander spectra of the intrinsic detection efficiency (IDE) were derived. The IDE represents the probability that the SNSPD generates a measurable voltage pulse upon absorption of a photon. The recorded IDE spectra have shown a characteristic cut-off wavelength up to which photons were detected with a probability of 100 per cent. Furthermore it was found that the cut-off wavelengths increases linearly with the increase in the inverse wire width. This observation is best explained by the refined hot spot model. The second part of the thesis describes the influence of magnetic field on the photon and dark count rates of NbN-SNSPDs. In order to apply magnetic fields to the meanders a continuous-flow inset for mobile 4He storage dewars was constructed. It was shown for the first time, that the photon count rate exhibits a magnetic field dependence. Furthermore it could be shown that the measured dependence of the photon and dark count rate on the magnetic field is in good agreement with the theoretical model of vortex-assisted photon detection in narrow superconducting lines. Hence, within this thesis it could be confirmed that magnetic vortices are involved in the single photon
Hybrid RHF/MP2 geometry optimizations with the effective fragment molecular orbital method
DEFF Research Database (Denmark)
Christensen, A. S.; Svendsen, Casper Steinmann; Fedorov, D. G.
2014-01-01
while the rest of the system is treated at the RHF level. MP2 geometry optimization is found to lower the barrier by up to 3.5 kcal/mol compared to RHF optimzations and ONIOM energy refinement and leads to a smoother convergence with respect to the basis set for the reaction profile. For double zeta...
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Optical geometry across the horizon
International Nuclear Information System (INIS)
Jonsson, Rickard
2006-01-01
In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework
Increasing dominance of IT in ICT convergence
DEFF Research Database (Denmark)
Henten, Anders; Tadayoni, Reza
The aim of the paper is to examine the increasing dominance of IT companies in the converging ICT industry and, on the basis of this development, to contribute to extending the theoretical understanding of market and industry convergence in the ICT area.......The aim of the paper is to examine the increasing dominance of IT companies in the converging ICT industry and, on the basis of this development, to contribute to extending the theoretical understanding of market and industry convergence in the ICT area....
Convergence as conditionant for Media Regulation
Directory of Open Access Journals (Sweden)
Othon Jambeiro
2011-01-01
Full Text Available Convergence comprises a combination of interlinked and interdependent transformations, of technological, industrial, commercial, cultural and social nature, which affect communication regulation. Customers, at their time, turned also convergent, involved in an intense participative culture, which is too, from the point of view of its social and geographical range, thanks to convergence, more and more extense. Instead of passive consumers of media and information and communication services, we have now active and socially connected consumers, no more readers/spectators/listeners, but noisy activists and publishers. To understand this phenomenon is essential to discern a regulatory frame suitable for it. This paper tries to define convergence and to discuss its consequences.
Quadratically convergent MCSCF scheme using Fock operators
International Nuclear Information System (INIS)
Das, G.
1981-01-01
A quadratically convergent formulation of the MCSCF method using Fock operators is presented. Among its advantages the present formulation is quadratically convergent unlike the earlier ones based on Fock operators. In contrast to other quadratically convergent schemes as well as the one based on generalized Brillouin's theorem, this method leads easily to a hybrid scheme where the weakly coupled orbitals (such as the core) are handled purely by Fock equations, while the rest of the orbitals are treated by a quadratically convergent approach with a truncated virtual space obtained by the use of the corresponding Fock equations
Movable geometry and eigenvalue search capability in the MC21 Monte Carlo code
International Nuclear Information System (INIS)
Gill, D. F.; Nease, B. R.; Griesheimer, D. P.
2013-01-01
A description of a robust and flexible movable geometry implementation in the Monte Carlo code MC21 is described along with a search algorithm that can be used in conjunction with the movable geometry capability to perform eigenvalue searches based on the position of some geometric component. The natural use of the combined movement and search capability is searching to critical through variation of control rod (or control drum) position. The movable geometry discussion provides the mathematical framework for moving surfaces in the MC21 combinatorial solid geometry description. A discussion of the interface between the movable geometry system and the user is also described, particularly the ability to create a hierarchy of movable groups. Combined with the hierarchical geometry description in MC21 the movable group framework provides a very powerful system for inline geometry modification. The eigenvalue search algorithm implemented in MC21 is also described. The foundations of this algorithm are a regula falsi search though several considerations are made in an effort to increase the efficiency of the algorithm for use with Monte Carlo. Specifically, criteria are developed to determine after each batch whether the Monte Carlo calculation should be continued, the search iteration can be rejected, or the search iteration has converged. These criteria seek to minimize the amount of time spent per iteration. Results for the regula falsi method are shown, illustrating that the method as implemented is indeed convergent and that the optimizations made ultimately reduce the total computational expense. (authors)
Movable geometry and eigenvalue search capability in the MC21 Monte Carlo code
Energy Technology Data Exchange (ETDEWEB)
Gill, D. F.; Nease, B. R.; Griesheimer, D. P. [Bettis Atomic Power Laboratory, PO Box 79, West Mifflin, PA 15122 (United States)
2013-07-01
A description of a robust and flexible movable geometry implementation in the Monte Carlo code MC21 is described along with a search algorithm that can be used in conjunction with the movable geometry capability to perform eigenvalue searches based on the position of some geometric component. The natural use of the combined movement and search capability is searching to critical through variation of control rod (or control drum) position. The movable geometry discussion provides the mathematical framework for moving surfaces in the MC21 combinatorial solid geometry description. A discussion of the interface between the movable geometry system and the user is also described, particularly the ability to create a hierarchy of movable groups. Combined with the hierarchical geometry description in MC21 the movable group framework provides a very powerful system for inline geometry modification. The eigenvalue search algorithm implemented in MC21 is also described. The foundations of this algorithm are a regula falsi search though several considerations are made in an effort to increase the efficiency of the algorithm for use with Monte Carlo. Specifically, criteria are developed to determine after each batch whether the Monte Carlo calculation should be continued, the search iteration can be rejected, or the search iteration has converged. These criteria seek to minimize the amount of time spent per iteration. Results for the regula falsi method are shown, illustrating that the method as implemented is indeed convergent and that the optimizations made ultimately reduce the total computational expense. (authors)
Societal response to nanotechnology: converging technologies–converging societal response research?
Ronteltap, A.; Fischer, A.R.H.; Tobi, H.
2011-01-01
Nanotechnology is an emerging technology particularly vulnerable to societal unrest, which may hinder its further development. With the increasing convergence of several technological domains in the field of nanotechnology, so too could convergence of social science methods help to anticipate
Complex analysis and CR geometry
Zampieri, Giuseppe
2008-01-01
Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the \\bar\\partial-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometry requires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting to graduate students who wish to learn it. However, the present book does not aim at introducing all the topics of current interest in CR geometry. Instead, an attempt is made to be friendly to the novice by moving, in a fairly relaxed way, f...
The geometry description markup language
International Nuclear Information System (INIS)
Chytracek, R.
2001-01-01
Currently, a lot of effort is being put on designing complex detectors. A number of simulation and reconstruction frameworks and applications have been developed with the aim to make this job easier. A very important role in this activity is played by the geometry description of the detector apparatus layout and its working environment. However, no real common approach to represent geometry data is available and such data can be found in various forms starting from custom semi-structured text files, source code (C/C++/FORTRAN), to XML and database solutions. The XML (Extensible Markup Language) has proven to provide an interesting approach for describing detector geometries, with several different but incompatible XML-based solutions existing. Therefore, interoperability and geometry data exchange among different frameworks is not possible at present. The author introduces a markup language for geometry descriptions. Its aim is to define a common approach for sharing and exchanging of geometry description data. Its requirements and design have been driven by experience and user feedback from existing projects which have their geometry description in XML
Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry
Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.
Temporal Convergence for Knowledge Management
Directory of Open Access Journals (Sweden)
Christopher Phillip Martin
2008-05-01
Full Text Available Time and knowledge have tended to be conceptualised in conventional knowledge management systems as either ‘timeless’ recordings of procedures, or time-stamped records of past events and states. The concept of temporal convergence was previously developed to help apply knowledge-management theory to complex military processes such as commander’s intent, shared situation awareness, and self-synchronisation. This paper clarifies the concept and introduces several others in forming a framework to assist discussion and exploration of the types of knowledge required for complex endeavours, such as warfighting, characterised by opposition and uncertainty. The approach is grounded in a pragmatist philosophy and constructivist epistemology. Argument proceeds along mathematical lines from a basis that the types of knowledge most valuable to goal-directed agents in uncertain environments can be modelled as directed graph topologies. The framework is shown to be useful in describing and reasoning about the knowledge requirements and prerequisites for distributed decision-making through the sharing of situational knowledge and common intentions, with practical application to the planning and execution of operations. To the designers of knowledge management systems seeking to address this space, it presents a challenge that cannot be addressed merely by construction, storage, search and retrieval of documents and records pertaining to the past.
Escalated convergent artificial bee colony
Jadon, Shimpi Singh; Bansal, Jagdish Chand; Tiwari, Ritu
2016-03-01
Artificial bee colony (ABC) optimisation algorithm is a recent, fast and easy-to-implement population-based meta heuristic for optimisation. ABC has been proved a rival algorithm with some popular swarm intelligence-based algorithms such as particle swarm optimisation, firefly algorithm and ant colony optimisation. The solution search equation of ABC is influenced by a random quantity which helps its search process in exploration at the cost of exploitation. In order to find a fast convergent behaviour of ABC while exploitation capability is maintained, in this paper basic ABC is modified in two ways. First, to improve exploitation capability, two local search strategies, namely classical unidimensional local search and levy flight random walk-based local search are incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic diffusion scout search is proposed and incorporated into the scout bee phase to provide more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is tested on 20 benchmark test functions of different complexities and characteristics. Results are very promising and they prove it to be a competitive algorithm in the field of swarm intelligence-based algorithms.
Europe of energy: convergencies - complexity
International Nuclear Information System (INIS)
Chevalier, J.M. and others
2001-01-01
This issue of 'Economies et Societes' journal comprises 16 articles dealing with the evolution of European energy markets: the security of European petroleum supplies (P.R. Bauquis); the security of European natural gas supplies (J.M. Dauger); an empirical analysis of the power prices convergence in the European union (J.A. Vega-Cervera, A. Jurado-Malaga); the integration of European power markets, from the juxtaposition of national market to the establishment of a regional market (D. Finon); the fusions-acquisitions in the energy sector and the globalization impact (C.A. Michalet); the reorganization of power economics and the share of right (M.A. Frison-Roche); the European industry facing the new economy (J.M. Chevalier); the confidence stake of the traditional power operators (Y. Benamour, A. Bonanni); status and prospects of gas prices in continental Europe (G. Bellec); the gas and power transport challenges and the access charges fixing (L. David, J. Percebois); the strategic challenges of underground storage in the new European gas context (B. Esnault); stranded costs and deregulation of power networks: some questions raised by the US experience (J. Bezzina); natural gas in Europe and the emergence of spot markets and trading hubs (G. Heyvaert); the competitiveness of the power exchange market of the Netherlands (F. Boisseleau); setting up and de-regulated trades in European markets (H. Geman); the Californian power market (P.L. Joskow). (J.S.)
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
Walsh, Edward T
2014-01-01
This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl
Differential geometry curves, surfaces, manifolds
Kohnel, Wolfgang
2002-01-01
This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.
The long road to convergence and back. Convergence and crossmedia journalism at Dutch Newsmedia
Tameling, Klaske; Broersma, Marcel
2012-01-01
KLASKE TAMELING & MARCEL BROERSMA The long road to convergence and back. Convergence and crossmedia journalism at Dutch Newsmedia Since the end of the twentieth century, convergence and cross-media journalism are concepts that are widely used to guide the future of journalism world wide. This study
Frequency response functions for nonlinear convergent systems
Pavlov, A.V.; Wouw, van de N.; Nijmeijer, H.
2007-01-01
Convergent systems constitute a practically important class of nonlinear systems that extends the class of asymptotically stable linear time-invariant systems. In this note, we extend frequency response functions defined for linear systems to nonlinear convergent systems. Such nonlinear frequency
Beyond Brainstorming: Exploring Convergence in Teams
DEFF Research Database (Denmark)
Seeber, Isabella; de Vreede, Gert-Jan; Maier, Ronald
2017-01-01
Collaborative brainstorming is often followed by a convergence activity where teams extract the most promising ideas on a useful level of detail from the brainstorming results. Contrary to the wealth of research on electronic brainstorming, there is a dearth of research on convergence. We used...
Explaining convergence of oecd welfare states
DEFF Research Database (Denmark)
Schmitt, C.; Starke, Peter
2011-01-01
of conditional convergence helps to both better describe and explain the phenomenon. By applying error correction models, we examine conditional convergence of various types of social expenditure in 21 OECD countries between 1980 and 2005. Our empirical findings go beyond the existing literature in two respects...
New concurrent iterative methods with monotonic convergence
Energy Technology Data Exchange (ETDEWEB)
Yao, Qingchuan [Michigan State Univ., East Lansing, MI (United States)
1996-12-31
This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.
International Nuclear Information System (INIS)
Wang, L. F.; He, X. T.; Wu, J. F.; Zhang, W. Y.; Ye, W. H.
2013-01-01
A weakly nonlinear (WN) model has been developed for the incompressible Rayleigh-Taylor instability (RTI) in cylindrical geometry. The transition from linear to nonlinear growth is analytically investigated via a third-order solutions for the cylindrical RTI initiated by a single-mode velocity perturbation. The third-order solutions can depict the early stage of the interface asymmetry due to the bubble-spike formation, as well as the saturation of the linear (exponential) growth of the fundamental mode. The WN results in planar RTI [Wang et al., Phys. Plasmas 19, 112706 (2012)] are recovered in the limit of high-mode number perturbations. The difference between the WN growth of the RTI in cylindrical geometry and in planar geometry is discussed. It is found that the interface of the inward (outward) development spike/bubble is extruded (stretched) by the additional inertial force in cylindrical geometry compared with that in planar geometry. For interfaces with small density ratios, the inward growth bubble can grow fast than the outward growth spike in cylindrical RTI. Moreover, a reduced formula is proposed to describe the WN growth of the RTI in cylindrical geometry with an acceptable precision, especially for small-amplitude perturbations. Using the reduced formula, the nonlinear saturation amplitude of the fundamental mode and the phases of the Fourier harmonics are studied. Thus, it should be included in applications where converging geometry effects play an important role, such as the supernova explosions and inertial confinement fusion implosions.
SLE as a Mating of Trees in Euclidean Geometry
Holden, Nina; Sun, Xin
2018-05-01
The mating of trees approach to Schramm-Loewner evolution (SLE) in the random geometry of Liouville quantum gravity (LQG) has been recently developed by Duplantier et al. (Liouville quantum gravity as a mating of trees, 2014. arXiv:1409.7055). In this paper we consider the mating of trees approach to SLE in Euclidean geometry. Let {η} be a whole-plane space-filling SLE with parameter {κ > 4} , parameterized by Lebesgue measure. The main observable in the mating of trees approach is the contour function, a two-dimensional continuous process describing the evolution of the Minkowski content of the left and right frontier of {η} . We prove regularity properties of the contour function and show that (as in the LQG case) it encodes all the information about the curve {η} . We also prove that the uniform spanning tree on {Z^2} converges to SLE8 in the natural topology associated with the mating of trees approach.
Convergent and invariant object representations for sight, sound, and touch.
Man, Kingson; Damasio, Antonio; Meyer, Kaspar; Kaplan, Jonas T
2015-09-01
We continuously perceive objects in the world through multiple sensory channels. In this study, we investigated the convergence of information from different sensory streams within the cerebral cortex. We presented volunteers with three common objects via three different modalities-sight, sound, and touch-and used multivariate pattern analysis of functional magnetic resonance imaging data to map the cortical regions containing information about the identity of the objects. We could reliably predict which of the three stimuli a subject had seen, heard, or touched from the pattern of neural activity in the corresponding early sensory cortices. Intramodal classification was also successful in large portions of the cerebral cortex beyond the primary areas, with multiple regions showing convergence of information from two or all three modalities. Using crossmodal classification, we also searched for brain regions that would represent objects in a similar fashion across different modalities of presentation. We trained a classifier to distinguish objects presented in one modality and then tested it on the same objects presented in a different modality. We detected audiovisual invariance in the right temporo-occipital junction, audiotactile invariance in the left postcentral gyrus and parietal operculum, and visuotactile invariance in the right postcentral and supramarginal gyri. Our maps of multisensory convergence and crossmodal generalization reveal the underlying organization of the association cortices, and may be related to the neural basis for mental concepts. © 2015 Wiley Periodicals, Inc.
Converging on the Initial Mass Function of Stars
International Nuclear Information System (INIS)
Federrath, Christoph; Krumholz, Mark; Hopkins, Philip F.
2017-01-01
Understanding the origin of stellar masses—the initial mass function (IMF)— remains one of the most challenging problems in astrophysics. The IMF is a key ingredient for simulations of galaxy formation and evolution, and is used to calibrate star formation relations in extra-galactic observations. Modeling the IMF directly in hydrodynamical simulations has been attempted in several previous studies, but the most important processes that control the IMF remain poorly understood. This is because predicting the IMF from direct hydrodynamical simulations involves complex physics such as turbulence, magnetic fields, radiation feedback and mechanical feedback, all of which are difficult to model and the methods used have limitations in terms of accuracy and computational efficiency. Moreover, a physical interpretation of the simulated IMFs requires a numerically converged solution at high resolution, which has so far not been convincingly demonstrated. Here we present a resolution study of star cluster formation aimed at producing a converged IMF. We compare a set of magnetohydrodynamical (MHD) adaptive-mesh-refinement simulations with three different implementations of the thermodynamics of the gas: 1) with an isothermal equation of state (EOS), 2) with a polytropic EOS, and 3) with a simple stellar heating feedback model. We show that in the simulations with an isothermal or polytropic EOS, the number of stars and their mass distributions depend on the numerical resolution. By contrast, the simulations that employ the simple radiative feedback module demonstrate convergence in the number of stars formed and in their IMFs. (paper)
An error bound estimate and convergence of the Nodal-LTS {sub N} solution in a rectangle
Energy Technology Data Exchange (ETDEWEB)
Hauser, Eliete Biasotto [Faculty of Mathematics, PUCRS Av Ipiranga 6681, Building 15, Porto Alegre - RS 90619-900 (Brazil)]. E-mail: eliete@pucrs.br; Pazos, Ruben Panta [Department of Mathematics, UNISC Av Independencia, 2293, room 1301, Santa Cruz do Sul - RS 96815-900 (Brazil)]. E-mail: rpp@impa.br; Tullio de Vilhena, Marco [Graduate Program in Applied Mathematics, UFRGS Av Bento Goncalves 9500, Building 43-111, Porto Alegre - RS 91509-900 (Brazil)]. E-mail: vilhena@mat.ufrgs.br
2005-07-15
In this work, we report the mathematical analysis concerning error bound estimate and convergence of the Nodal-LTS {sub N} solution in a rectangle. For such we present an efficient algorithm, called LTS {sub N} 2D-Diag solution for Cartesian geometry.
Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing
Chu, W. P.
1985-01-01
The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.
On the Convergence in Effective Loop Quantum Cosmology
International Nuclear Information System (INIS)
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose Antonio
2010-01-01
In Loop Quantum Cosmology (LQC) there is a discreteness parameter λ, that has been heuristically associated to a fundamental granularity of quantum geometry. It is also possible to consider λ as a regulator in the same spirit as that used in lattice field theory, where it specifies a regular lattice in the real line. A particular quantization of the k = 0 FLRW loop cosmological model yields a completely solvable model, known as solvable loop quantum cosmology(sLQC). In this contribution, we consider effective classical theories motivated by sLQC and study their λ-dependence, with a special interest on the limit λ→0 and the role of the evolution parameter in the convergence of such limit.
Signal amplification and Pierce's instability in convergent particle beams
International Nuclear Information System (INIS)
Gnavi, G.; Gratton, F.T.
1988-01-01
Relativistic electron beams flowing between cylindrical and spherical electrodes (or solid angles sections of electrodes with these geometries) are studied. The beams are focused through the axis in the cylindrical case or through the center when spherical electrodes are considered. It is assumed that the external electrode is part of a device which accelerates the particles, the inner electrode is passive and removes the beams from the system. Electrons move by inertia in the interelectrode space, neutralized by an ion background. Properties of radial, small amplitude, perturbations are analyzed theoretically. Previous analyses of counterstreaming beams indicated that convergence modifies considerably the oscillations spectrum. Here, results on the amplification of signals when a beam is modulated at the external electrode are reported. Then, conditions for the instability of a beam when it flows through grounded electrodes (Pierce's instability of only one beam) are examined
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Hyperbolic Metamaterials with Complex Geometry
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei
2016-01-01
We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...
An introduction to differential geometry
Willmore, T J
2012-01-01
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Symplectic geometry and Fourier analysis
Wallach, Nolan R
2018-01-01
Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.
Dengg, S; Kneissl, S
2013-01-01
Ferromagnetic material in microchips, used for animal identification, causes local signal increase, signal void or distortion (susceptibility artifact) on MR images. To measure the impact of microchip geometry on the artifact's size, an MRI phantom study was performed. Microchips of the labels Datamars®, Euro-I.D.® and Planet-ID® (n = 15) were placed consecutively in a phantom and examined with respect to the ASTM Standard Test Method F2119-07 using spin echo (TR 500 ms, TE 20 ms), gradient echo (TR 300 ms, TE 15 ms, flip angel 30°) and otherwise constant imaging parameters (slice thickness 3 mm, field of view 250 x 250 mm, acquisition matrix 256 x 256 pixel, bandwidth 32 kHz) at 1.5 Tesla. Image acquisition was undertaken with a microchip positioned in the x- and z-direction and in each case with a phase-encoding direction in the y- and z-direction. The artifact size was determined with a) a measurement according to the test method F2119-07 using a homogeneous point operation, b) signal intensity measurement according to Matsuura et al. and c) pixel counts in the artifact according to Port and Pomper. There was a significant difference in artifact size between the three microchips tested (Wilcoxon p = 0.032). A two- to three-fold increase in microchip volume generated an up to 76% larger artifact, depending on the sequence type, phase-encoding direction and chip position to B0. The smaller the microchip geometry, the less is the susceptibility artifact. Spin echoes (SE) generated smaller artifacts than gradient echoes (GE). In relation to the spatial measurement of the artifact, the switch in phase-encoding direction had less influence on the artifact size in GE- than in SE-sequences. However, the artifact shape and direction of SE-sequences can be changed by altering the phase. The artifact size, caused by the microchip, plays a major clinical role in the evaluation of MRI from the head, shoulder and neck regions.
Topology and geometry for physicists
Nash, Charles
1983-01-01
Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. ""Thoroughly recommended"" by The Physics Bulletin, this volume's physics applications range fr
Data Convergence - An Australian Perspective
Allen, S. S.; Howell, B.
2012-12-01
Coupled numerical physical, biogeochemical and sediment models are increasingly being used as integrators to help understand the cumulative or far field effects of change in the coastal environment. This reliance on modeling has forced observations to be delivered as data streams ingestible by modeling frameworks. This has made it easier to create near real-time or forecasting models than to try to recreate the past, and has lead in turn to the conversion of historical data into data streams to allow them to be ingested by the same frameworks. The model and observation frameworks under development within Australia's Commonwealth and Industrial Research Organisation (CSIRO) are now feeding into the Australian Ocean Data Network's (AODN's) MARine Virtual Laboratory (MARVL) . The sensor, or data stream, brokering solution is centred around the "message" and all data flowing through the gateway is wrapped as a message. Messages consist of a topic and a data object and their routing through the gateway to pre-processors and listeners is determined by the topic. The Sensor Message Gateway (SMG) method is allowing data from different sensors measuring the same thing but with different temporal resolutions, units or spatial coverage to be ingested or visualized seamlessly. At the same time the model output as a virtual sensor is being explored, this again being enabled by the SMG. It is only for two way communications with sensor that rigorous adherence to standards is needed, by accepting existing data in less than ideal formats, but exposing them though the SMG we can move a step closer to the Internet Of Things by creating an Internet of Industries where each vested interest can continue with business as usual, contribute to data convergence and adopt more open standards when investment seems appropriate to that sector or business.Architecture Overview
On the convergence of finite state mean-field games through Γ-convergence
Ferreira, Rita C.; Gomes, Diogo A.
2014-01-01
In this study, we consider the long-term convergence (trend toward an equilibrium) of finite state mean-field games using Γ-convergence. Our techniques are based on the observation that an important class of mean-field games can be viewed as the Euler-Lagrange equation of a suitable functional. Therefore, using a scaling argument, one can convert a long-term convergence problem into a Γ-convergence problem. Our results generalize previous results related to long-term convergence for finite state problems. © 2014 Elsevier Inc.
On the convergence of finite state mean-field games through Γ-convergence
Ferreira, Rita C.
2014-10-01
In this study, we consider the long-term convergence (trend toward an equilibrium) of finite state mean-field games using Γ-convergence. Our techniques are based on the observation that an important class of mean-field games can be viewed as the Euler-Lagrange equation of a suitable functional. Therefore, using a scaling argument, one can convert a long-term convergence problem into a Γ-convergence problem. Our results generalize previous results related to long-term convergence for finite state problems. © 2014 Elsevier Inc.
Institute of Scientific and Technical Information of China (English)
Shen Diao; Lan Ju
2017-01-01
In the process of meida Convergence,many researchers paid excessive attention to media technology,industry and management,and ignored the culture dimensions of media convergence.Therefore,to transcend media convergence technology,industrial thinking and more to the particularity attach importance to cultural media,it is a right way to achieve media convergence.But in the context of China's culture,media convergence should value the cultural uniqueness and the imbalance of the realistic problems,to reach innovation and breakthrough.
Object recognition - Convergence of vision, audition, and touch
DEFF Research Database (Denmark)
Kassuba, Tanja
of object information across audition and touch or across all thee senses. Further, even though object recognition within different senses is to some degree redundant, the different senses differ with respect to their intrinsic efficiency in extracting types of information (Lederman & Klatzky, 2009...... magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and repetitive transcranial magnetic stimulation (rTMS). The following research questions were addressed: 1. Where in the human brain does object recognition converge across vision, audition, and touch? 2. How is audio-haptic object......-match-to-sample task was applied in which participants had to match a target object with a previously presented sample object within and across audition and touch in both directions (auditory─haptic and haptic─auditory). As a coherence in content is an important binding cue (Laurienti et al., 2004), semantic...
Spectral dimension of quantum geometries
International Nuclear Information System (INIS)
Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes
2014-01-01
The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)
Energy Technology Data Exchange (ETDEWEB)
Reynolds, J. M.; Lopez-Bruna, D.
2009-12-11
This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs.
THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY
Energy Technology Data Exchange (ETDEWEB)
Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)
2017-01-20
Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.
Nguyen, Dorothy; Vedamurthy, Indu; Schor, Clifton
2008-03-01
Accommodation and convergence systems are cross-coupled so that stimulation of one system produces responses by both systems. Ideally, the cross-coupled responses of accommodation and convergence match their respective stimuli. When expressed in diopters and meter angles, respectively, stimuli for accommodation and convergence are equal in the mid-sagittal plane when viewed with symmetrical convergence, where historically, the gains of the cross coupling (AC/A and CA/C ratios) have been quantified. However, targets at non-zero azimuth angles, when viewed with asymmetric convergence, present unequal stimuli for accommodation and convergence. Are the cross-links between the two systems calibrated to compensate for stimulus mismatches that increase with gaze-azimuth? We measured the response AC/A and stimulus CA/C ratios at zero azimuth, 17.5 and 30 deg of rightward gaze eccentricities with a Badal Optometer and Wheatstone-mirror haploscope. AC/A ratios were measured under open-loop convergence conditions along the iso-accommodation circle (locus of points that stimulate approximately equal amounts of accommodation to the two eyes at all azimuth angles). CA/C ratios were measured under open-loop accommodation conditions along the iso-vergence circle (locus of points that stimulate constant convergence at all azimuth angles). Our results show that the gain of accommodative-convergence (AC/A ratio) decreased and the bias of convergence-accommodation increased at the 30 deg gaze eccentricity. These changes are in directions that compensate for stimulus mismatches caused by spatial-viewing geometry during asymmetric convergence.
Emergent Braided Matter of Quantum Geometry
Directory of Open Access Journals (Sweden)
Sundance Bilson-Thompson
2012-03-01
Full Text Available We review and present a few new results of the program of emergent matter as braid excitations of quantum geometry that is represented by braided ribbon networks. These networks are a generalisation of the spin networks proposed by Penrose and those in models of background independent quantum gravity theories, such as Loop Quantum Gravity and Spin Foam models. This program has been developed in two parallel but complimentary schemes, namely the trivalent and tetravalent schemes. The former studies the braids on trivalent braided ribbon networks, while the latter investigates the braids on tetravalent braided ribbon networks. Both schemes have been fruitful. The trivalent scheme has been quite successful at establishing a correspondence between braids and Standard Model particles, whereas the tetravalent scheme has naturally substantiated a rich, dynamical theory of interactions and propagation of braids, which is ruled by topological conservation laws. Some recent advances in the program indicate that the two schemes may converge to yield a fundamental theory of matter in quantum spacetime.
Neutron gain for converging guide tubes
International Nuclear Information System (INIS)
Mildner, D.F.R.
1982-01-01
The method of acceptance diagrams is used to obtain analytical expressions for the neutron gain of a one-dimensional converging guide tube. It is found that the results are more easily expressed by analyzing the acceptance diagram at the exit of the funnel. The results are compared with those for the straight guide. When both guides have the same dimensions at the guide exit, the converging guide has higher transmitted intensity but with greater divergence of the beam. This analytical method is useful to assess the performance of a converging guide, though numerical computations may be required for detailed analysis of a guide system. (orig.)
Convergence analysis of canonical genetic algorithms.
Rudolph, G
1994-01-01
This paper analyzes the convergence properties of the canonical genetic algorithm (CGA) with mutation, crossover and proportional reproduction applied to static optimization problems. It is proved by means of homogeneous finite Markov chain analysis that a CGA will never converge to the global optimum regardless of the initialization, crossover, operator and objective function. But variants of CGA's that always maintain the best solution in the population, either before or after selection, are shown to converge to the global optimum due to the irreducibility property of the underlying original nonconvergent CGA. These results are discussed with respect to the schema theorem.
Modelling magnetic islands in the H-1NF heliac with the hint code
International Nuclear Information System (INIS)
Lloyd, S.S.; Gardner, H.J.
1999-01-01
Full text: Recent progress in the theoretical modelling of the effects of plasma pressure on the growth and change in geometry of magnetic islands in the H-1NF Heliac will be reviewed. The HINT magnetohydrodynamic equilibrium code, which has become a standard workhorse in the stellarator community for problems of this type, has been modified to incorporate an interpolation algorithm which significantly accelerates its convergence. This has enabled the critical evaluation of earlier results, and of some conventional wisdom. In many ways the treatment of magnetic islands in low shear fusion reactors, such as H-1NF, is an ideal case study in computational science - the devil is in the details and the devil is important: the existence or otherwise of island self-healing at reactor pressures could significantly affect the design of future experiments. (author)
Convergence analysis of CMADR acceleration for the method of characteristics
International Nuclear Information System (INIS)
Park, Young Ryong; Cho, Nam Zin
2005-01-01
As the nuclear reactor core becomes more complex, heterogeneous, and geometrically irregular, the method of characteristics (MOC) is gaining its wide use in the neutron transport calculations. However, the long computer times require good acceleration methods. In our previous paper, the concept of coarse-mesh angular dependent rebalance (CMADR) acceleration was described and applied to the MOC calculations. The method is based on angular dependent rebalance factors defined on the coarse-mesh boundaries; a coarse-mesh consists of several fine meshes that may be (1) heterogeneous and (2) of mixed geometries with irregular or unstructured mesh shapes. In addition, (3) the coarse-mesh boundaries may not coincide with the structural interfaces of the problem and can be chosen artificially for convenience. The CMADR acceleration method on the MOC scheme that enables the very desirable features (1), (2), and (3) above is new in the neutron transport literature to the best of the authors knowledge. In this paper, we analyze the convergence of CMADR acceleration for MOC calculation in x-y-z (infinite) geometry by using Fourier analysis
Confinement and related transport in Extrap geometry
International Nuclear Information System (INIS)
Tendler, M.
1983-01-01
The properties of the plasma dynamic equilibrium are investigated for the Extrap magnetic confinement geometry. The temperatures achieved so far in the high-#betta# pinches are much lower than the predicted values. Here, it is shown that the particle containment in Extrap may be improved as compared to the other pinches due to the electrostatic confinement. An analytic solution for the profiles of the plasma parameters are found under the assumption that the energy is lost primarily in the radial direction by heat conduction and convection. An estimate of the radial particle confinement time is given, showing favourable scaling with plasma density and temperature. The conventional assumption of a uniform current density is shown to be unjustified in the case of an inhomogeneous electron temperature. An analytical expression is found for the pinch radius at different mechanisms of the heat transport. (orig.)
The analysis and geometry of Hardy's inequality
Balinsky, Alexander A; Lewis, Roger T
2015-01-01
This volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics. Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz’ya inequalities; inequalities of Hardy-type involving magnetic fields; Hardy, Sobolev and Cwikel-Lieb-Rosenbljum inequalities for Pauli operators; the Rellich inequality. The Analysis and Geometry of Hardy’s Inequality provides an up-to-date account of research in areas of contemporary interest and would be suitable for a graduate course in mathematics or physics. A good basic knowledge of real and complex analysis is a prerequisite.
The algebraic geometry of Harper operators
Li, Dan
2011-10-01
Following an approach developed by Gieseker, Knörrer and Trubowitz for discretized Schrödinger operators, we study the spectral theory of Harper operators in dimensions 2 and 1, as a discretized model of magnetic Laplacians, from the point of view of algebraic geometry. We describe the geometry of an associated family of Bloch varieties and compute their density of states. Finally, we also compute some spectral functions based on the density of states. We discuss the difference between the cases with rational or irrational parameters: for the two-dimensional Harper operator, the compactification of the Bloch variety is an ordinary variety in the rational case and an ind-pro-variety in the irrational case. This gives rise, at the algebro-geometric level of Bloch varieties, to a phenomenon similar to the Hofstadter butterfly in the spectral theory. In dimension 2, the density of states can be expressed in terms of period integrals over Fermi curves, where the resulting elliptic integrals are independent of the parameters. In dimension 1, for the almost Mathieu operator, with a similar argument, we find the usual dependence of the spectral density on the parameter, which gives rise to the well-known Hofstadter butterfly picture.
The algebraic geometry of Harper operators
International Nuclear Information System (INIS)
Li, Dan
2011-01-01
Following an approach developed by Gieseker, Knoerrer and Trubowitz for discretized Schroedinger operators, we study the spectral theory of Harper operators in dimensions 2 and 1, as a discretized model of magnetic Laplacians, from the point of view of algebraic geometry. We describe the geometry of an associated family of Bloch varieties and compute their density of states. Finally, we also compute some spectral functions based on the density of states. We discuss the difference between the cases with rational or irrational parameters: for the two-dimensional Harper operator, the compactification of the Bloch variety is an ordinary variety in the rational case and an ind-pro-variety in the irrational case. This gives rise, at the algebro-geometric level of Bloch varieties, to a phenomenon similar to the Hofstadter butterfly in the spectral theory. In dimension 2, the density of states can be expressed in terms of period integrals over Fermi curves, where the resulting elliptic integrals are independent of the parameters. In dimension 1, for the almost Mathieu operator, with a similar argument, we find the usual dependence of the spectral density on the parameter, which gives rise to the well-known Hofstadter butterfly picture. (paper)
Evaluation of magnetic resonance velocimetry for steady flow.
Ku, D N; Biancheri, C L; Pettigrew, R I; Peifer, J W; Markou, C P; Engels, H
1990-11-01
Whole body magnetic resonance (MR) imaging has recently become an important diagnostic tool for cardiovascular diseases. The technique of magnetic resonance phase velocity encoding allows the quantitative measurement of velocity for an arbitrary component direction. A study was initiated to determine the ability and accuracy of MR velocimetry to measure a wide range of flow conditions including flow separation, three-dimensional secondary flow, high velocity gradients, and turbulence. A steady flow system pumped water doped with manganese chloride through a variety of test sections. Images were produced using gradient echo sequences on test sections including a straight tube, a curved tube, a smoothly converging-diverging nozzle, and an orifice. Magnetic resonance measurements of laminar and turbulent flows were depicted as cross-sectional velocity profiles. MR velocity measurements revealed such flow behavior as spatially varying velocity, recirculation and secondary flows over a wide range of conditions. Comparisons made with published experimental laser Doppler anemometry measurements and theoretical calculations for similar flow conditions revealed excellent accuracy and precision levels. The successful measurement of velocity profiles for a variety of flow conditions and geometries indicate that magnetic resonance imaging is an accurate, non-contacting velocimeter.
Strategic business transformation through technology convergence
DEFF Research Database (Denmark)
Agarwal, Nivedita; Brem, Alexander
2015-01-01
-time intelligence. This paper presents the case of General Electric (GE) and studies the various transitional phases and transformation dimensions that GE is experiencing, to manage this technology convergence. The evaluation of GE's experience indicates that convergence-related business transformation is nonlinear......Technology adoption is crucial for an organisation to remain competitive in the marketplace. Traditionally, two technologies - operational technology (OT) and information technology (IT) - have operated independently from one another; however, technological advancements that businesses...... are experiencing have increased the overlap and convergence of these two areas. Industrial organisations are investing heavily in the integration and alignment of these technologies and expect to benefit in several ways from this convergence, such as through increased productivity, reduction in cost, and real...
Convergent Validity of Four Innovativeness Scales.
Goldsmith, Ronald E.
1986-01-01
Four scales of innovativeness were administered to two samples of undergraduate students: the Open Processing Scale, Innovativeness Scale, innovation subscale of the Jackson Personality Inventory, and Kirton Adaption-Innovation Inventory. Intercorrelations indicated the scales generally exhibited convergent validity. (GDC)
A class of convergent neural network dynamics
Fiedler, Bernold; Gedeon, Tomáš
1998-01-01
We consider a class of systems of differential equations in Rn which exhibits convergent dynamics. We find a Lyapunov function and show that every bounded trajectory converges to the set of equilibria. Our result generalizes the results of Cohen and Grossberg (1983) for convergent neural networks. It replaces the symmetry assumption on the matrix of weights by the assumption on the structure of the connections in the neural network. We prove the convergence result also for a large class of Lotka-Volterra systems. These are naturally defined on the closed positive orthant. We show that there are no heteroclinic cycles on the boundary of the positive orthant for the systems in this class.
Divergence and convergence in nutrition science
Penders, Bart; Spruit, Shannon L.; Sikkema, Jan; Maat, Jan; Schuurbiers, Daan
2015-01-01
Nutrigenomics diverged from mainstream nutrition science, ideologically, instrumentally and culturally, due to the establishment of a protective niche. That protection is fading. This article chronicles a case in which convergence between nutrigenomics and nutrition science is pursued. Here we
Advances and Challenges in Convergent Communication Networks
DEFF Research Database (Denmark)
Toral-Cruz, Homero; Mihovska, Albena
2017-01-01
Welcome to this special issue of Wireless Personal Communications on Advances and Challenges in Convergent Communication Networks. The main purpose of this special issue is to present new progresses and challenges in convergent networks. Communication networks play an important role in our daily...... life because they allow communicating and sharing contents between heterogeneous nodes around the globe. The emergence of multiple network architectures and emerging technologies have resulted in new applications and services over a heterogeneous network. This heterogeneous network has undergone...... significant challenges in recent years, such as the evolution to a converged network with the capability to support multiple services, while maintaining a satisfactory level of QoE/QoS, security, efficiency and trust. The special issue on Advances and Challenges in Convergent Communication Networks...
Testing the Conditional Convergence Hypothesis for Pakistan
Directory of Open Access Journals (Sweden)
Sajjad Ahmad Jan (Corresponding Author
2011-09-01
Full Text Available This study investigates for the existence or non-existence of conditional convergence across the provinces of Pakistan. The annual output data from 1973 to 2000 is pooled for the four Pakistani provinces. The cross-sectional specific effects, the time specific effects, the manufacturing output, and the structural variable for aggregate supply or production shocks are used to control the different steady state levels of per capita incomes of thedifferent provinces. The equation for conditional convergence is estimated through generalized least squares (GLS method, after controlling for the different steady states of the provinces. The result shows that the provinces of Pakistan converge to their own respective steady states with a convergence speed of 11% per annum. At the same time manufacturing output is also statistically significant and positively affects the economic growth in the provinces. However the structural variable is not statistically significant.
Convergence of Corporate and Information Security
Syed; Rahman, M.; Donahue, Shannon E.
2010-01-01
As physical and information security boundaries have become increasingly blurry many organizations are experiencing challenges with how to effectively and efficiently manage security within the corporate. There is no current standard or best practice offered by the security community regarding convergence; however many organizations such as the Alliance for Enterprise Security Risk Management (AESRM) offer some excellent suggestions for integrating a converged security program. This paper rep...
Convergence in Global Food Demand and Delivery
Regmi, Anita; Takeshima, Hiroyuki; Unnevehr, Laurian J.
2008-01-01
Using food expenditures and food sales data over 1990-2004, this report examines whether food consumption and delivery trends are converging across 47 high- and middle-income countries. Middle-income countries, such as China and Mexico, appear to be following trends in high-income countries, measured across several dimensions of food system growth and change. Convergence is apparent in most important food expenditure categories and in indicators of food system modernization such as supermarke...
Convergence Science in a Nano World
Cady, Nathaniel
2013-01-01
Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innova...
Global Convergence of a Modified LS Method
Directory of Open Access Journals (Sweden)
Liu JinKui
2012-01-01
Full Text Available The LS method is one of the effective conjugate gradient methods in solving the unconstrained optimization problems. The paper presents a modified LS method on the basis of the famous LS method and proves the strong global convergence for the uniformly convex functions and the global convergence for general functions under the strong Wolfe line search. The numerical experiments show that the modified LS method is very effective in practice.