WorldWideScience

Sample records for magnetic field measurement

  1. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  2. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  3. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  4. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  5. Measurements of Solar Vector Magnetic Fields

    Science.gov (United States)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  6. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  7. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  8. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  9. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  10. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  11. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  12. Lightning magnetic field measuring system in Bogota

    OpenAIRE

    Escobar Alvarado, Oscar Fernardo

    2013-01-01

    This thesis presents the configuration and performance of a lightning radiated electromagnetic field measuring system in Bogotá Colombia. The system is composed by both magnetic and electric field measuring systems working as separated sensors. The aim of the thesis is the design and construction of a Magnetic Field Measuring System and the implementation of a whole lightning measuring system in Bogotá. The theoretical background, design process, construction and implementation of the system ...

  13. Programming the control of magnetic field measurements

    International Nuclear Information System (INIS)

    David, L.

    1998-01-01

    This paper gives a short review concerning the new NMR probe measurement control system. Then it presents the new program 'CYCLOCHAMP' attached to the magnetic field measurement which also allows to cycle the magnetic field inside the cyclotrons and to equilibrate it among the SSC sectors. (authors)

  14. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  15. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  16. Magnetic field measuring system for remapping the ORIC magnetic field

    International Nuclear Information System (INIS)

    Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.

    1977-01-01

    The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour

  17. Measurement of gradient magnetic field temporal characteristics

    International Nuclear Information System (INIS)

    Bartusek, K.; Jflek, B.

    1994-01-01

    We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters

  18. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  19. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  20. Magnetic field measurements in xi Bootis A

    International Nuclear Information System (INIS)

    Boesgaard, A.M.; Chesley, D.; Preston, G.W.

    1975-01-01

    Four Zeeman spectrograms from Lick Observatory of xi Boo A and two of iota Peg at 2 A mm -1 have been measured to determine if a weak magnetic field is present in xi Boo A. The results indicate that the field is too weak to be measured by this technique on these spectrograms, although remeasurements of spectrograms from Mauna Kea at 3.4 A mm -1 still give a positive field of 170 gauss. (U.S.)

  1. The significance of vector magnetic field measurements

    Science.gov (United States)

    Hagyard, M. J.

    1990-01-01

    Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.

  2. Field measuring probe for SSC magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-01-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage

  3. Field measurement of dipole magnets for TARN

    International Nuclear Information System (INIS)

    Hori, T.; Noda, A.; Hattori, T.; Fujino, T.; Yoshizawa, M.

    1980-05-01

    Eight dipole magnets of window-frame type with zero field gradient have been fabricated for TARN. Various characteristics of the field were examined by a measuring system with a Hall and an NMR probes. The accuracy of the measurement was better than 1 x 10 -4 at the maximum field strength of --9 kG, and the uniformity of the field in the radial direction was better than +-2 x 10 -4 over the whole useful aperture. The deviations both of the field strengths and of the effective lengths among the eight magnets are smaller than +-2 x 10 -3 . The sextupole component of the field and the variation of the effective length over the beam orbits contribute to chromaticities of the ring as the amount of -1.59 and 0.93 in the horizontal and vertical directions, respectively. (author)

  4. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  5. Measurement accuracy in shielded magnetic fields

    International Nuclear Information System (INIS)

    Bottauscio, Oriano; Chiampi, Mario; Crotti, Gabriella; Zucca, Mauro

    2005-01-01

    The measurement error due to both the probe size averaging effect and the coil arrangement is investigated when magnetic field measurements are performed in close proximity to different planar shields. The analysis is carried on through a hybrid FEM/BEM model which employs the 'thin shield' technique. Ferromagnetic, pure conductive and multilayer screens are taken into consideration and an estimation of the errors for concentric and non-concentric coil probes is given. The numerical results are validated by experiments

  6. Field measurement for large bending magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S.

    2008-01-01

    The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms

  7. Measurement of the magnetic field coefficients of particle accelerator magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Ganetis, G.; Hogue, R.; Rogers, E.; Wanderer, P.; Willen, E.

    1989-01-01

    An important aspect in the development of magnets to be used in particle accelerators is the measurement of the magnetic field in the beam aperture. In general it is necessary to measure the harmonic multipoles in the dipole, quadrupole, and sextupole magnets for a series of stationary currents (plateaus). This is the case for the Superconducting Super Collider (SSC) which will be ramped to high field over a long period (/approximately/1000 sec.) and then remain on the flat top for the duration of the particle collision phase. In contrast to this mode of operation, the Booster ring being constructed for the Brookhaven AGS, will have a fast ramp rate of approximately 10 Hz. The multipole fields for these Booster magnets must therefore be determined ''on the ramp.'' In this way the effect of eddy currents will be taken into account. The measurement system which we will describe in this paper is an outgrowth of that used for the SSC dipoles. It has the capability of measuring the field multipoles on both a plateau or during a fast ramp. In addition, the same basic coil assembly is used to obtain the magnetic multipoles in dipole, quadrupole, and sextupole magnets. 2 refs., 3 figs., 1 tab

  8. Measuring the Earth's Magnetic Field in a Laboratory

    Science.gov (United States)

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  9. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  10. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  11. Method and apparatus for measuring weak magnetic fields

    DEFF Research Database (Denmark)

    1995-01-01

    When measuring weak magnetic fields, a container containing a medium, such as a solution containing a stable radical, is placed in a polarising magnetic field, which is essentially at right angles to the field to be measured. The polarising field is interrupted rapidly, the interruption being...

  12. Magnetic Field Measurements of the GOLIATH Magnet in EHN1

    CERN Document Server

    Rosenthal, Marcel; Chatzidaki, Panagiota; Margraf, Rachel; Wilkens, Henric; Bergsma, Felix; Giudici, Pierre-Ange; CERN. Geneva. ATS Department

    2018-01-01

    This note describes the measurement campaign of the magnetic field of the GOLIATH magnet conducted in 2017. It documents the applied measurement procedure and the consecutive analysis of the recorded data. The shape of the magnetic field along the beam axis is discussed and compared with a previous measurement taken in the 1980s. Overall a very good agreement of both data sets is observed. The integrated vertical magnetic field is obtained by analytical descriptions fitted to the data. Additionally, the influence of different configurations of the power converters, as for example in the case of a differ- ent powering scheme of the upper and lower coil of the GOLIATH magnet, on the magnetic field are discussed.

  13. Field measurements for low-aperture magnetic elements

    International Nuclear Information System (INIS)

    Mikhajlichenko, A.A.

    1989-01-01

    The method of the field measurements with help of bismuth wire in low aperture magnetic elements is revised. The quadrupole with permanent magnets was tested. It has aperture diameter about 4 mm and length 40 mm. Gradient about 38 kOe/cm was measured. The accuracy of the magnetic axis position definition is better than 1 μm. This method is a good kandidate for linear colider low aperture magnetic elements measurements. 7 refs.; 6 figs

  14. Magnetic field measurement in the analyzing magnet of NIS spectrometer

    Science.gov (United States)

    Avramenko, S. A.; Afanas'ev, S. V.; Voloshina, I. G.; Dolgii, S. A.; Yusupov, A. Yu.; Kalmykov, A. V.; Makoveev, V. K.; Nikolaevskii, G. P.; Ostrovskii, I. V.; Perepelkin, E. E.; Peresedov, V. F.; Plyashkevich, S. N.; Rossiiskaya, N. S.; Salmin, R. A.; Spodarets, V. K.; Strokovskii, E. A.; Yudin, I. P.

    2006-12-01

    The main goals of the Nucleon Intrinsic Strangeness experiment (NIS) are the search for the effects of hidden polarized strangeness in the nucleon and the exploration and study of exotic baryons (pentaquarks) in NN reactions. The setup is located in the Laboratory of High Energies at the Joint Institute for Nuclear Research in channel 4V of the Nuclotron extracted beam with the energy between 1 and 4 GeV. The 1SP-40-4V electromagnet of the spectrometer has the external dimensions 3.20 × 3.26 × 4.48 m and the aperture 2.74 × 0.68 m. The magnetic field measurement was performed using the three-component Hall magnetometer in the computer-controlled automated mode. The volume of measurements was 1.03 × 0.60 × 3.92 m. The description of the measuring equipment and measurement procedure is given. The results of the measurements are used for the Monte Carlo computer modeling of the experiment. These results will be used in the analysis of physical data after their acquisition.

  15. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magnetic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  16. High speed pulsed magnetic fields measurements, using the Faraday effect

    International Nuclear Information System (INIS)

    Dillet, A.

    1964-12-01

    For these measures, the information used is the light polarization plane rotation induced by the magnetic field in a glass probe. This rotation is detected using a polarizer-analyzer couple. The detector is a photomultiplier used with high-current and pulsed light. In a distributed magnet (gap: 6 x 3 x 3 cm) magnetic fields to measure are 300 gauss, lasting 0.1 μs, with rise times ≤ 35 ns, repetition rate: 1/s. An oscilloscope is used to view the magnetic field from the P.M. plate signal. The value of the field is computed from a previous static calibration. Magnetic fields from 50 to 2000 gauss (with the probe now used) can be measured to about 20 gauss ± 5 per cent, with a frequency range of 30 MHz. (author) [fr

  17. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  18. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  19. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magntic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  20. Magnetic Measurements of the Background Field in the Undulator Hall

    International Nuclear Information System (INIS)

    Fisher, Andrew

    2010-01-01

    The steel present in the construction of the undulator hall facility has the potential for changing the ambient fields present in the undulator hall. This note describes a measurement done to make a comparison between the fields in the hall and in the Magnetic Measurement Facility. In order for the undulators to have the proper tuning, the background magnetic field in the Undulator Hall should agree with the background field in the Magnetic Measurements Facility within .5 gauss. In order to verify that this was the case measurements were taken along the length of the undulator hall, and the point measurements were compared to the mean field which was measured on the MMF test bench.

  1. Magnetic field measurements using the transient internal probe (TIP)

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1995-01-01

    Knowledge of the internal magnetic field profile in hot plasmas is fundamental to understanding the structure and behavior of the current profile. The transient internal probe (TIP) is a novel diagnostic designed to measure internal magnetic fields in hot plasmas. The diagnostic involves shooting a magneto-optic probe through the plasma at high velocities (greater than 2 km/s) using a two stage light gas gun. Local fields are obtained by illuminating the probe with an argon ion laser and measuring the amount of Faraday rotation in the reflected beam. Initial development of the diagnostic is complete. Results of magnetic field measurements conducted at 2 km/s will be presented. Helium muzzle gas introduction to the plasma chamber has been limited to less than 0.4 Torr-ell. Magnetic field resolution of 40 Gauss and spatial resolution of 5 mm have been achieved. System frequency response is 10 MHz

  2. Measuring methods, registration and signal processing for magnetic field research

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1981-01-01

    Some measuring methods and signal processing systems based on analogue and digital technics, which have been applied in magnetic field research using magnetometers with ferromagnetic transducers, are presented. (author)

  3. Advances in the measurement of weak magnetic fields

    International Nuclear Information System (INIS)

    Li Damin; Huang Minzhe.

    1992-01-01

    The state-of-art and general features of instruments for measuring weak magnetic fields (such as the non-directional magnetometer, induced coil magnetometer, proton magnetometer, optical pumping magnetometer, flux-gate magnetometer and superconducting quantum magnetometer) are briefly described. Emphasis is laid on the development of a novel technique used in the flux-gate magnetometer and the liquid nitrogen SQUID. Typical applications of the measuring techniques for weak magnetic fields are given

  4. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1994-01-01

    Several years of experience have been acquired on the operation of probes (open-quotes molesclose quotes) constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device - the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. The authors describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the beam tube of the magnet is also described

  5. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1993-01-01

    Several years of experience have been acquired on the operation of probes (''moles'') constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device-the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. We describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the hewn tube of the magnet is also described

  6. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  7. Calculated and measured fields in superferric wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E.B.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.

  8. Magnetic-Field-Response Measurement-Acquisition System

    Science.gov (United States)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  9. Advanced measurements and techniques in high magnetic fields

    International Nuclear Information System (INIS)

    Campbell, L.J.; Rickel, D.G.; Lacerda, A.H.; Kim, Y.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film

  10. Magnetic field measurement system of the VINCY Cyclotron

    International Nuclear Information System (INIS)

    Dobrosavljevic, A.; Cirkovic, S.; Zdravkovic, A.; Urosevic, Z.; Lucic, M.; Gemaljevic, M.

    1995-01-01

    This paper presents the magnetic field measurement system of the VINCY Cyclotron, main part of the TESLA accelerator installation whose construction has been going on in the Vinca Institute of Nuclear Sciences. Measurement system consists of mechanical structure and control unit for the automatic positioning of the measurement probe in the median plane, between the poles of the magnet, and corresponding measuring instrumentation, based on two digital tesla meters. Concept of the measurement system is defined by the TESLA team, while realisation of the measurement system is performed in co-operation with the LOLA Institute. (author)

  11. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    Science.gov (United States)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  12. Measurement of 50 Hz magnetic fields in some Norwegian households

    International Nuclear Information System (INIS)

    Karlsen, J.; Johnsson, A.

    1987-01-01

    An examination of 50 Hz magnetic fields has been made in ten different Norwegian dwellings. The aim was to measure the general background level of the 50 Hz magnetic fields. The investigation followed a protocol also used in Swedish measurements, and direct comparisons are therefore possible. A portable, commercial coil instrument was used. In september 1986 and January 1987 the magnetic fields in living rooms, sleeping rooms, and kitchens were measured according to the standardized procedure. Current consumption and temperature at the time of the measurements were also recorded. A clear correlation was noted between the magnetic field values and the current consumption. The mean values of the magnetic fields in the living rooms, sleeping rooms and kitchens, were 12 nT, 11 nT and 160 nT, respectively. The living and sleeping room values can be regarded as very low, and they are much lower than corresponding Swedish values. The kitchen values in the two countries seem, however, to be of the same order of magnitude. The report discusses the need for additional measurements in Norwegian houses

  13. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  14. Magnetometer for measuring planetary magnetic fields

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter

    , CHAMP and SAC-C missions. It can produce vector measurements at a rate of 50 Hz and with a precision of more than 21 bits. The thermal and long term stability of the instrument is less than 0.5 nT. The power consumption of the instrument is less than 0.5W for continuous operation. For an orbiting...

  15. Field measuring probe for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-03-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage. Digital voltmeters are used to digitize the voltages from the rotating coil and several custom circuits control motor speeds in the probe. The overall diameter of the probe is approximately 2 cm and its length is 2.4 m; the field sensitive windings are 0.6 m in length

  16. Measurement of the magnetic field errors on TCV

    International Nuclear Information System (INIS)

    Piras, F.; Moret, J.-M.; Rossel, J.X.

    2010-01-01

    A set of 24 saddle loops is used on the Tokamak a Configuration Variable (TCV) to measure the radial magnetic flux at different toroidal and vertical positions. The new system is calibrated together with the standard magnetic diagnostics on TCV. Based on the results of this calibration, the effective current in the poloidal field coils and their position is computed. These corrections are then used to compute the distribution of the error field inside the vacuum vessel for a typical TCV discharge. Since the saddle loops measure the magnetic flux at different toroidal positions, the non-axisymmetric error field is also estimated and correlated to a shift or a tilt of the poloidal field coils.

  17. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  18. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  19. Measurement of spectrometric magnet field of EXCHARM setup

    International Nuclear Information System (INIS)

    Aleev, A.N.; Balandin, V.P.; Bordyukov, A.A.

    1998-01-01

    The EXCHARM spectrometer is used for studying charm, strange and exotic hadrons. It is located at the neutron 5N channel of U-70 accelerator (Protvino). The EXCHARM dipole magnet has external size 4.486 x 3.196 x 3.058 m 3 with aperture 2.74 x 0.489 m 2 . The field measurement was made by three-component Hall magnetometer on-line computer in measurement region 2.40 x 0.32 x 3.78 m 3 . The apparatus and methods of the field measuring are described. The results of the measurements of the magnetic field are presented. The estimation of the measurement precision is given. (author)

  20. Magnetic field measurements and data acquisition of a model magnet for the B-factory

    International Nuclear Information System (INIS)

    Zhou Wenming; Endo, Kuninori

    1994-01-01

    In this paper we describe magnetic field measurements and the field data-acquisition system used to measure the model magnet for the B-factory booster. The results of the measurements indicate that the method adopted here is good for acquiring field data. This type of measurement is highly accurate and involves almost no temperature coefficient. The instrument is used not only for ac, but also dc field measurements. It is especially good for field measurements in the case of simultaneous ac and dc field excitation. (author)

  1. Faraday Rotation Measure Study of Cluster Magnetic Fields

    Science.gov (United States)

    Frankel, M. M.; Clarke, T. E.

    2001-12-01

    Magnetic fields are thought to play an important role in galaxy cluster evolution. To this end in this study, we looked at polarized radio sources viewed at small impact parameters to the cores of non-cooling flow clusters. By looking at non-cooling flow clusters we hoped to establish what magnetic fields of clusters look like in the absence of the compressed central magnetic fields of the cooling-flow cores. Clarke, Kronberg and Boehringer (2001) examined Faraday rotation measures of radio probes at relatively large impact parameters to the cores of galaxy clusters. The current study is an extension of the Clarke et al. analysis to probe the magnetic fields in the cores of galaxy clusters. We looked at the Faraday rotation of electromagnetic waves from background or imbedded radio galaxies, which were observed with the VLA in A&B arrays. Our results are consistent with previous findings and exhibit a trend towards higher rotation measures and in turn higher magnetic fields at small impact parameters to cluster cores. This research was made possible through funding from the National Science Foundation.

  2. Magnetic field measurements of 1.5 meter model SSC collider dipole magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Bleadon, M.; Coulter, K.J.; Delchamps, S.; Hanft, R.; Jaffery, T.S.; Kinney, W.; Koska, W.; Ozelis, J.P.; Strait, J.; Wake, M.; DiMarco, J.

    1991-09-01

    Magnetic field measurements have been performed at Fermilab on 1.5 m magnetic length model dipoles for the Superconducting Supercollider. Harmonic measurements are recorded at room temperature before and after the collared coil is assembled into the yoke and at liquid helium temperature. Measurements are made as a function of longitudinal position and excitation current. High field data are compared with room temperature measurements of both the collared coil and the completed yoked magnet and with the predicted fields for both the body of the magnet and the coil ends

  3. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1% the field map of BEBC, which in itself is uniform to within 3% inside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.7% of the maximum recorded field values at the chamber center. (7 refs).

  4. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1the field map of BEBC, which in itself is uniform to within 3 191332nside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.723420f the maximum recorded field values at the chamber center. (7 refs).

  5. Improving sensitivity to magnetic fields and electric dipole moments by using measurements of individual magnetic sublevels

    Science.gov (United States)

    Tang, Cheng; Zhang, Teng; Weiss, David S.

    2018-03-01

    We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.

  6. Field Measurement of Surface Ship Magnetic Signature Using Multiple AUVs

    Science.gov (United States)

    2009-10-01

    been equipped with a tri-axial fluxgate magnetometer and used to perform preliminary magnetic field measurements. Measurements of this type will be...mounted on the AUVs, shown in Fig. 1, was a three-axis fluxgate type [16] magnetometer with a range of ±100,000 nT and a sensitivity of 100μV/nT. The...surface ship. The system will employ a formation of multiple AUVs, each equipped with a magnetometer . The objective is to measure total magnetic

  7. Magnetic field measurements on board of altitude-research rockets

    International Nuclear Information System (INIS)

    Theile, B.; Luehr, H.

    1976-01-01

    Electric currents within the Earth's magneto- and ionosphere can be probed by measuring their magnetic fields. Different payloads of the national sounding rocket programme will carry magnetometers of high resolution and dynamic range. Thorough test procedures are necessary to evaluate the instrument's properties and possible interference problems. (orig.) [de

  8. Simple System to Measure the Earth's Magnetic Field

    Science.gov (United States)

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib

    2010-01-01

    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…

  9. Triggering for Magnetic Field Measurements of the LCLS Undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-12-13

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  10. Triggering for Magnetic Field Measurements of the LCLS Undulators

    International Nuclear Information System (INIS)

    Hacker, Kirsten

    2010-01-01

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  11. Analysis of magnetic field measurement results for the AGS Booster magnets

    International Nuclear Information System (INIS)

    Bleser, E.; Thern, R.

    1991-01-01

    Magnetic field measurements have been made on nearly 200 conventional magnets that have been installed in the AGS Booster and its associated transfer lines. The measurements were intended to monitor the quality of the magnets being produced and to check the performance of each magnet before installation. The magnetic measurements effort led to certain improvements in the manufacturing process, which ten subsequently produced very good, very uniform magnets. The integrated dipole fields of the 36 booster dipoles are uniform to 1.5 parts in ten thousand. The magnetic measurements indicate that the quadrupoles were manufactured to an accuracy of 3 ten thousandths of an inch, which is better than we can physically measure. 3 refs., 2 figs., 4 tabs

  12. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    Science.gov (United States)

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  13. A new device for production measurements of field integral and field direction of SC dipole magnets

    International Nuclear Information System (INIS)

    Preissner, H.; Bouchard, R.; Luethke, P.; Makulski, A.; Meinke, R.; Nesteruk, K.

    1990-01-01

    The performance of all superconducting magnets for HERA is tested in the DESY magnet test facility and their magnetic field is measured. For dipole magnets the magnitude and the direction of the field is measured point by point along the axis with a mole-type probe which is transported through the beam pipe. The positioning of the probe is done via a toothed belt with an accuracy of 1 mm. The probe houses two Hall probes perpendicular to each other, a gravitational tilt sensor and an NMR probe. The field in the plateau is measured by NMR, the fringe field is measured by the Hall probes and the field direction relative to gravity is obtained from the ratio of the two Hall voltages and the tilt sensor. The field integral is determined with an accuracy of 10 -4 and the average field direction is measured with an accuracy of 0.2 mrad. 4 refs., 4 figs

  14. Application of transient magnetic field to the measurement of nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ribas, R.V.

    1987-01-01

    A review on: the mechanism for producing transient magnetic field; techniques for measuring nuclear gyromagnetic factor; and some examples of recent measurements using this technique is presented. (M.C.K.) [pt

  15. Instrument for the measuring magnetic field characteristics of induction acceleration

    International Nuclear Information System (INIS)

    Novikov, V.M.; Romasheva, P.I.

    1976-01-01

    An instrument for the measuring instantaneous values of variable and pulsed magnetic fields with an amplitide of 0.005-2.0 and duration of 5x10 -6 -2x10 -2 sec is described. Time resolution is not less than 0.5 musec, measuring accuracy is about 1%. Induction coils are used as sensors. A digital voltmeter serves as a secondary recorder

  16. Measuring average angular velocity with a smartphone magnetic field sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  17. Measuring the Earth’s Magnetic Field from Space

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, G.; Sabaka, T. J.

    2010-01-01

    Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space...... coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide...... enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led...

  18. A Method for Eddy Current Field Measurement in Permanent Magnet Magnetic Resonance Imaging Systems

    Directory of Open Access Journals (Sweden)

    SONG Rui

    2018-03-01

    Full Text Available Magnetic resonance imaging (MRI is a widely used medical imaging technique. In MRI system, gradient magnetic fields are used to code spatial information. However, the fast-switching electric currents in the gradients coils used to generate gradient fields also induce vortex electric field, often referred as eddy current, in the surrounding metal conductors. In this paper, a method for eddy current field measurement was proposed. Based on the Faraday law of electromagnetic induction, an eddy current field measuring device was designed. Combining hardware acquisition and software processing, the eddy current field was obtained by subtracting the ideal gradient field from the magnetic field measured experimentally, whose waveform could be displayed in real time. The proposed method was verified by experimental results.

  19. Estimation of magnetic field in a region from measurements of the field at discrete points

    International Nuclear Information System (INIS)

    Alexopoulos, Theodore; Dris, Manolis; Lucas, Demetrios.

    1984-12-01

    A method is given to estimate the magnetic field in a region from measurements of the field in its surface and its interior. The method might be useful in high energy physics and other experiments that use large area magnets. (author)

  20. DOM. A dewar for optical measurements in magnetic field

    International Nuclear Information System (INIS)

    Baldacchini, G.

    1975-01-01

    A cryostat for low helium temperature has been designed and realized with the aim to perform optical investigations at high magnetic fields. The superconductor magnet is also described and the performance of the whole system presented

  1. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  2. Transient finite element magnetic field calculation method in the anisotropic magnetic material based on the measured magnetization curves

    International Nuclear Information System (INIS)

    Jesenik, M.; Gorican, V.; Trlep, M.; Hamler, A.; Stumberger, B.

    2006-01-01

    A lot of magnetic materials are anisotropic. In the 3D finite element method calculation, anisotropy of the material is taken into account. Anisotropic magnetic material is described with magnetization curves for different magnetization directions. The 3D transient calculation of the rotational magnetic field in the sample of the round rotational single sheet tester with circular sample considering eddy currents is made and compared with the measurement to verify the correctness of the method and to analyze the magnetic field in the sample

  3. Magnetic field measurements near stand-alone transformer stations.

    Science.gov (United States)

    Kandel, Shaiela; Hareuveny, Ronen; Yitzhak, Nir-Mordechay; Ruppin, Raphael

    2013-12-01

    Extremely low-frequency (ELF) magnetic field (MF) measurements around and above three stand-alone 22/0.4-kV transformer stations have been performed. The low-voltage (LV) cables between the transformer and the LV switchgear were found to be the major source of strong ELF MFs of limited spatial extent. The strong fields measured above the transformer stations support the assessment method, to be used in future epidemiological studies, of classifying apartments located right above the transformer stations as highly exposed to MFs. The results of the MF measurements above the ground around the transformer stations provide a basis for the assessment of the option of implementing precautionary procedures.

  4. Measurement of positron range in matter in strong magnetic fields

    International Nuclear Information System (INIS)

    Hammer, B.E.; Christensen, N.L.

    1995-01-01

    Positron range is one factor that places a limitation on Positron Emission Tomography (PET) resolution. The distance a positron travels through matter before it annihilates with an electron is a function of its initial energy and the electron density of the medium. A strong magnetic field limits positron range when momentum components are transverse to the field. Measurement of positron range was determined by deconvolving the effects of detector response and radioactive distribution from the measured annihilation spread function. The annihilation spread function for a 0.5 mm bead of 68 Ga was measured with 0.2 and 1.0 mm wide slit collimators. Based on the annihilation spread function FWHM (Full Width at Half Maximum) for a 1.0 mm wide slit the median positron range in tissue equivalent material is 0.87, 0.50, 0.22 mm at 0, 5.0 and 9.4 T, respectively

  5. Measurement of magnetic fields in the Area Metropolitana

    International Nuclear Information System (INIS)

    Masis Mesen, Juan Pablo

    2007-01-01

    The operation and proper handling of equipment for measuring EMR-300 electromagnetic waves are studied and apply that knowledge to determine which areas of the metropolitan area are mostly affected by exposure to the emission of radiation. This team is able to measure magnetic field strength, electric field strength and power density, also can measure the most important parameters in a simple manner. International standards provide maximum values for these parameters that limit human exposure to such radiation. These standards are based on epidemiological several and laboratory that have been carried out in order to determine in which circumstances a biological entity is exposed to a level of radiation that can cause harm to their health. It focuses on measuring the level of radiation in certain areas of interest, which were chosen because are areas with high population density and also in proximity to antennas that emit electromagnetic waves. Before carrying out the data collection was performed a detailed study of which are the recommendations to measure and avoid as far as possible sources of error, once that those recommendations are implemented the making data was started. Data obtained show that these areas do not present any health risk and that levels of magnetic field strength and power density are well below the limits set by both the International Commission on Non-Ionizing Radiation Protection and the Institute of Electrical and Electronics Engineers. On the other hand, based on the obtained results and the study already done before by the Instituto Costarricense de Electricidad, it was concluded that the power density conditions for plane wave is the parameter most effective to quantize the associated risk with different levels of radiation of radio frequency electromagnetic fields. (author) [es

  6. MVAC Submarine cable, magnetic fields measurements and analysis

    DEFF Research Database (Denmark)

    Arentsen, Martin Trolle; Expethit, Adrian; Pedersen, Morten Virklund

    2017-01-01

    Standard 60287. Researchers believe that the wire armour of three phased submarine cables is the reason for the inaccurate calculations by the standard. Studies show that the magnetic behaviour of these cables are changed due to the wire armour. In order to investigate this hypothesis, this paper intends...... to supply the theoretical research with data from magnetic field measurements on a wire armoured 3-phase submarine cable, together with an investigation of the induced currents in the different cable components. The influence of the physical arrangement of the armour wires on the electric behaviour is also...... investigated, since several researchers believe that the twisting of the armour wires result in zero net induced voltage over one helix length. This is shown to be valid for the tested cable. Finally a replica of the armour has been built with just a single conductor in the centre. This setup was used...

  7. Magnetic field measurements of superconducting magnets for the colliding beam accelerator

    International Nuclear Information System (INIS)

    Herrera, J.; Kirk, H.; Prodell, A.; Willen, E.

    1983-01-01

    An important aspect of the development and production of superconducting magnets for the Colliding Beam Accelerator is the measurement of the magnetic field in the aperture of these magnets. The measurements have the three-fold purpose of determining the field quality as compared to the lattice requirements of the CBA, of obtaining the survey data necessary to position the magnets in the CBA tunnel, and lastly, of characterizing the magnetic fields for use in initial and future orbit studies of the CBA proton beams. Since for a superconducting storage accelerator it is necessary to carry out these detailed measurements on many (approx. 1000) magnets and at many current values (approx. 1000), we have chosen, in agreement with previous experience, to develop a system which Fourier analyses the voltages induced in a number of rotating windings and thereby obtains the multipole field components. The important point is that such a measuring system can be fast and precise. It has been used for horizontal measurements of the CBA ring dipoles

  8. Dual-stage trapped-flux magnet cryostat for measurements at high magnetic fields

    Science.gov (United States)

    Islam, Zahirul; Das, Ritesh K.; Weinstein, Roy

    2015-04-14

    A method and a dual-stage trapped-flux magnet cryostat apparatus are provided for implementing enhanced measurements at high magnetic fields. The dual-stage trapped-flux magnet cryostat system includes a trapped-flux magnet (TFM). A sample, for example, a single crystal, is adjustably positioned proximate to the surface of the TFM, using a translation stage such that the distance between the sample and the surface is selectively adjusted. A cryostat is provided with a first separate thermal stage provided for cooling the TFM and with a second separate thermal stage provided for cooling sample.

  9. Measurements of flux pumping activation of trapped field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad [Texas Center for Superconductivity, 202 Houston Science Center, University of Houston, Houston, TX 77204-5002 (United States); Davey, Kent [Physics Department, 617 Science and Research Building I, University of Houston, Houston, TX 77204-5005 (United States)

    2010-11-15

    Large grains of high temperature superconducting (HTS) material can be utilized as trapped field magnets (TFMs). Persistent currents are set up in the HTS when it is cooled in a magnetic field, or exposed to a magnetic field after cooling. TFMs have been improved over the past two decades by the efforts of a large number of worldwide research groups. However, applications using TFMs have lagged, in part due to the problem of high fields needed for activation. We describe herein experiments designed to observe the behaviour of TFM activation using repeated applications of low fields (called 'pumping'). Significant partial activation is obtained using a non-uniform pumping field (e.g., a small permanent magnet) which is higher in the centre of the HTS than at the periphery. Cooling in zero field followed by pumping with such a field results in trapping the full applied field, in comparison to half of the applied field being trapped by cooling in zero field followed by application of a uniform field. We find that for partial activation by cooling in a field and subsequent activation by pumping, the resulting fields are additive. We also conclude that for activation by fluxoid pumping, creep assists the process.

  10. Sliding bearing diagnosis with magnetic field measuring; Gleitlagerdiagnose mittels Magnetfeldmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, H. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik; Kluth, T. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik

    1995-09-01

    Account of their properties sliding bearings are in high demanded and important aggregats. The destruction of a bearing will be almost followed by the destruction of the aggregate. Various methods are existing for sliding bearing diagnosis. This methods often not permit the condition recognition. A new electromagnetical method will be developed. This method permits the condition recognition during working time of the aggregate. It also permits the recognition of wear. The method bases on a measuring of leak current over measuring the generated magnetic fields with Rogowski-coils. (orig.) [Deutsch] Gleitlager befinden sich wegen ihrer Eigenschaften in hoch beanspruchten und exponierten Aggregaten. Die Zerstoerung eines Gleitlagers fuehrt meist auch zur Zerstoerung des gefuehrten Aggregats. Zur Gleitlagerdiagnose existiert eine Reihe Verfahren. Ihnen wird ein elektromagnetisches Verfahren gegenuebergestellt. Damit koennen Gleitlagerzustaende waehrend des Aggregatebetriebs identifiziert werden. Das Verfahren erlaubt gleichermassen die Bestimmung des Lagerverschleisses. Es basiert auf der Ableitstrommessung, bei der sich ausbildende Magnetfelder durch Rogowskispulen ausgemessen werden. (orig.)

  11. Measurement of the hyperfine magnetic field on rhodium in chromium

    International Nuclear Information System (INIS)

    Peretto, P.; Teisseron, G.; Berthier, J.

    1978-01-01

    Hyperfine magnetic field of rhodium in a chromium matrix is studied. Anisotropy of rhodium 100 is + 0.17. Time dependence of angular correlation is given with a sample containing 145 ppm of rhodium despite the short life [fr

  12. Magnetic field measurement and correction of VECC K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Dey, M.K.; Debnath, J.; Bhunia, U.; Pradhan, J.; Rashid, H.; Paul, S.; Dutta, A.; Naser, Z.A.; Singh, V.; Pal, G.; Nandi, C.; Dasgupta, S.; Bhattacharya, S.; Pal, S.; Roy, A.; Bhattacharya, T.; Bhole, R.B.; Bhale, D.; Chatterjee, M.; Prasad, R.; Nabhiraj, P.Y.; Hazra, D.P.; Mallik, C.; Bhandari, R.K.

    2006-01-01

    The VECC K500 superconducting cyclotron magnet is commissioned and magnetic field measurement and correction program was successfully completed in March 2006. Here we report the analysis of the measured field data and subsequent correction of the magnet to improve the field quality. (author)

  13. Precise measurements and shimming of magnetic field gradients in the low field regime

    Energy Technology Data Exchange (ETDEWEB)

    Allmendinger, Fabian; Schmidt, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Grasdijk, Olivier; Jungmann, Klaus; Willmann, Lorenz [University of Groningen (Netherlands); Heil, Werner; Karpuk, Sergei; Repetto, Maricel; Sobolev, Yuri; Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Krause, Hans-Joachim; Offenhaeuser, Andreas [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); Collaboration: MIXed-Collaboration

    2016-07-01

    For many experiments at the precision frontier of fundamental physics, the accurate measurement and knowledge of magnetic field gradients in particular in the low field regime (<μT) is a necessity: On the one hand, in the search for an Electric Dipole Moment (EDM) of free neutrons or atoms, field gradients contribute to geometric-phase-induced false EDM signals for particles in traps. On the other hand, clock comparison experiments like the {sup 3}He/{sup 129}Xe spin clock experiment suffer from gradients, since the coherent T{sub 2}*-time of free spin precession, and thus the measurement sensitivity, scales ∝ ∇ vector B{sup -2}. Here we report on a new and very effective method, to shim and to measure tiny magnetic field gradients in the range of pT/cm by using effective T{sub 2}*-measurement sequences in varying the currents of trim coils of known geometry.

  14. Measurement of the 60 GHz ECR ion source using megawatt magnets - SEISM magnetic field map

    International Nuclear Information System (INIS)

    Marie-Jeanne, M.; Jacob, J.; Lamy, T.; Latrasse, L.; Debray, F.; Matera, J.; Pfister, R.; Trophine, C.

    2012-01-01

    LPSC has developed a 60 GHz Electron Cyclotron Resonance (ECR) Ion Source prototype called SEISM. The magnetic structure uses resistive poly-helix coils designed in collaboration with the French National High Magnetic Fields Facility (LNCMI) to produce a CUSP magnetic configuration. A dedicated test bench and appropriate electrical and water cooling environments were built to study the validity of the mechanics, the thermal behaviour and magnetic field characteristics obtained at various current intensities. During the last months, measurements were performed for several magnetic configurations, with up to 7000 A applied on the injection and extraction coils sets. The magnetic field achieved at 13000 A is expected to allow 28 GHz ECR condition, so by extrapolation 60 GHz should be possible at about 28000 A. However, cavitation issues that appeared around 7000 A are to be solved before carrying on with the tests. This contribution will recall some of the crucial steps in the prototype fabrication, and show preliminary results from the measurements at 7000 A. Possible explanations for the differences observed between the results and the simulation will be given. The paper is followed by the slides of the presentation. (authors)

  15. Measurement of the terrestrial magnetic field and its anomalies

    International Nuclear Information System (INIS)

    Duret, D.

    1994-01-01

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs

  16. Multiple coil pulsed magnetic resonance method for measuring cold SSC dipole magnet field quality

    International Nuclear Information System (INIS)

    Clark, W.G.; Moore, J.M.; Wong, W.H.

    1990-01-01

    The operating principles and system architecture for a method to measure the magnetic field multipole expansion coefficients are described in the context of the needs of SSC dipole magnets. The operation of an 8-coil prototype system is discussed. Several of the most important technological issues that influence the design are identified and the basis of their resolution is explained. The new features of a 32-coil system presently under construction are described, along with estimates of its requirements for measurement time and data storage capacity

  17. Comparison of magnetic field meters used for Elf exposure measurement

    International Nuclear Information System (INIS)

    Magne, I.; Azoulay, A.; Lambrozo, J.; Souques, M.

    2006-01-01

    Objective The question of the biological effects of E.L.F. electromagnetic fields (50/60 Hz) has lead to many experimental and epidemiological works, in occupational exposure and in residential exposure. One of the main difficulties is to integrate the maximum of information about the environmental exposures during the everyday life without limitation to the exposure of the home. The objective of this study is to analyse experimentally the metrology associated with human exposure to 50 Hz magnetic field, in the optic of a study of the French population exposure. Method 4 meters were tested: the E.M.D.E.X. II, currently used in epidemiological studies, the E.M.D.E.X. L.I.T.E., which is more recent, the H.T.300, an Italian meter, and the F.D.3, which is made by Combinova A calibration was performed with an Helmoltz coil. The immunity of these meters to GSM signal was also tested. The influence of the sample rate was evaluated. Results and conclusion The meter chosen for performing the measurements of the exposure study will be selected in function of the following criteria: - easiness of use - precision - low sample rate - memory size and reliability of data stocking - immunity to GSM perturbations. (authors)

  18. Determination of microturbulence enhanced electron collisionality in magnetized coaxial accelerator channels by direct magnetic field measurement

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Caress, R.W.

    1997-01-01

    A miniature magnetic probe array, consisting of 10 spatially separated coils, has been used to obtain profile information on the time varying magnetic field within the 2.54 cm wide flow channel of the coaxial plasma source experiment (CPS-1) [R. M. Mayo et al., Plasma Sources Sci. Technol. 4, 47 (1995)]. The magnetic field data have been used, together with a resistive, Hall magnetohydrodynamic (MHD) model of applied field distortion by the flowing plasma, to obtain estimates of the microturbulent enhancement to electron collisionality within the CPS-1 flow channel. These measurements provide direct experimental evidence of anomalous electron collisionality, a previously predicted effect in these devices. The anomaly parameter, a=ν an /ν cl , determined both from the distortion of contours of constant magnetic flux, and from local B θ and B z measurements scales with the classical electron magnetization parameter (Ω cl =ω ce /ν e cl ), indicating that collisionality plays a strong role in determining the level of anomalous transport in the plasma. When this anomaly parameter scaling is cast in terms of the ratio ν e cl /ω lh , it is found that the resistivity enhancement scales with ν e cl /ω lh , and becomes significant at ν e cl /ω lh ≤1, suggesting that a lower hybrid drift instability may be the responsible mechanism for enhanced transport. copyright 1997 American Institute of Physics

  19. Magnetic field measurements on the perpendicular biased RF booster cavity for the proposed TRIUMF KAON Factory

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Poirier, R.L.

    1992-08-01

    The successful operation of the full scale KAON Factory Ferrite tuned Booster Accelerating Cavity Prototype allowed us to do ac magnetic field measurements in the tuner. The field measured is close to that calculated. The measured data are discussed. They may be used for reliable computation of the perturbation of the beam dynamics due to the ferrite biasing magnetic field. Methods to compensate the disturbing magnetic fields are discussed. 7 refs., 7 figs

  20. Internal magnetic field measurement in tokamak plasmas using a ...

    Indian Academy of Sciences (India)

    vice [1], laser-light scattering [2], parametric interaction of microwave ... As we know that, each level of an atom in a weak magnetic field is split into 2В + 1 .... signal detection channel consists of two channels, one is the signal which is the sum ...

  1. Technical Note: Response measurement for select radiation detectors in magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M., E-mail: michaelreynolds@ualberta.net [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Rathee, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, Medical Physics Division,University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  2. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  3. Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT)

    DEFF Research Database (Denmark)

    Göksu, Cihan; Scheffler, Klaus; Ehses, Philipp

    2017-01-01

    Purpose: Clinical use of magnetic resonance electrical impedance tomography (MREIT) still requires significant sensitivity improvements. Here, the measurement of the current-induced magnetic field (DBz,c) is improved using systematic efficiency analyses and optimization of multi-echo spin echo...... (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. Theory and Methods: Considering T1, T2, and T 2 relaxation in the signal-to-noise ratios (SNRs) of the MR magnitude images, the efficiency of MESE and SSFP-FID MREIT experiments, and its dependence on the sequence...

  4. Internal Magnetic Field, Temperature and Density Measurements on Magnetized HED plasmas using Pulsed Polarimetry

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2016-01-01

    The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high-beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.

  5. Internal Magnetic Field, Temperature and Density Measurements on Magnetized HED plasmas using Pulsed Polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Roger J. [Univ. of Washington, Seattle, WA (United States)

    2016-10-20

    The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high-beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.

  6. Measurement of magnetic field gradients using Raman spectroscopy in a fountain

    Science.gov (United States)

    Srinivasan, Arvind; Zimmermann, Matthias; Efremov, Maxim A.; Davis, Jon P.; Narducci, Frank A.

    2017-02-01

    In many experiments involving cold atoms, it is crucial to know the strength of the magnetic field and/or the magnetic field gradient at the precise location of a measurement. While auxiliary sensors can provide some of this information, the sensors are usually not perfectly co-located with the atoms and so can only provide an approximation to the magnetic field strength. In this article, we describe a technique to measure the magnetic field, based on Raman spectroscopy, using the same atomic fountain source that will be used in future magnetically sensitive measurements.

  7. The magnetic field for the ZEUS central detector - analysis and correction of the field measurement

    International Nuclear Information System (INIS)

    Mengel, S.

    1992-06-01

    The magnetic field in the central tracking region of the ZEUS-detector - a facility to investigate highly energetic electron-proton-collisions at the HERA-collider at DESY Hamburg - is generated by a superconducting coil and reaches 18 kG (1.8 T). Some of the tracking devices particularly the drift chambers in the proton forward and rear direction (FTD1-3 and RTD) are not fully contained within the coil and therefore situated in a highly inhomogeneous magnetic field: The radial component B r is up to 6.6 kG, maximum gradients are found to be 300 G/cm for δB r /δr. Evaluating the space drifttime relation necessitates a detailed knowledge of the magnetic field. To reach this goal we analysed the field measurements and corrected them for systematic errors. The corrected data were compared with the field calculations (TOSCA-maps). Measurements and calculations are confirmed by studying consistency with Maxwell's equations. The accuracy reached is better than 100 G throughout the forward and central drift chambers (FTD1-3, CTD) and better than 150 G in the RTD. (orig.) [de

  8. Feasibility study of steady state magnetic field measurement

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Fujita, Junji; Matsuura, Kiyokata; Sakata, Masataka; Fujiwaka, Setsuya; Matoba, Tohru.

    1995-08-01

    A rotating magnetic probe testing system has been designed and constructed for the purpose of establishing a technique of the plasma current measurement on a steady state tokamak. An air turbine is employed to drive the rotating magnetic coil from the viewpoint of avoiding the use of an electric motor in the vicinity of the tokamak device. The signal induced on the rotating probe is transmitted to the amplifier through a transformer coupling. A long term testing on mechanical as well as electrical characteristics has been carried out to find key technical issues on this system. A continuous operation for more than one week has successfully been achieved. (author)

  9. Measurement of time series variation of thermal diffusivity of magnetic fluid under magnetic field by forced Rayleigh scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)

    2017-04-15

    It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.

  10. A levitation force and magnetic field distribution measurement system in three dimensions

    International Nuclear Information System (INIS)

    Yang, W.M.; Chao, X.X.; Shu, Z.B.; Zhu, S.H.; Wu, X.L.; Bian, X.B.; Liu, P.

    2006-01-01

    A levitation force and magnetic field distribution measurement system in three dimension has been designed and constructed, which can be used for the levitation force measurement between a superconductor and a magnet, or magnet to magnet in three dimensions; and for the measurement of magnetic field distribution in three dimensions according to your need in space. It can also give out the dynamical changing result of magnetic field density with time during levitation force measurement. If we change the sensor of the detector of the measurement system, it also can be used for other kinds of measurement of physical properties. It is a good device for the measurement of magnetic properties of materials. In addition the device can also be used to work at carving in three dimensions

  11. Measurement of magnetic fields in the direct proximity of power line conductors

    International Nuclear Information System (INIS)

    Mamishev, A.V.; Russell, B.D.

    1995-01-01

    Modeling and managing of power frequency magnetic fields requires verification of theory with actual measurements. Measurements only at ground level are not always sufficient for comprehensive studies. The technique and the results of three-dimensional mapping of the power frequency magnetic fields high above ground level are presented in this paper. Comparative calculations illustrate relevance and approximations of the existing theoretical approach to field modeling. The influence of harmonics on the elliptical rotation of the magnetic field vector is illustrated. The possibility of use of the magnetic fields for the power line proximity detection is discussed

  12. Method and means for measuring the anisotropy of a plasma in a magnetic field

    Science.gov (United States)

    Shohet, J.L.; Greene, D.G.S.

    1973-10-23

    Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)

  13. Magnetic Field Measurements of the Spotted Yellow Dwarf DE Boo During 2001-2004

    Science.gov (United States)

    Plachinda, S.; Baklanova, D.; Butkovskaya, V.; Pankov, N.

    2017-06-01

    Spectropolarimetric observations of DE Boo have been performed at Crimean astrophysical observatory during 18 nights in 2001-2004. We present the result of the longitudinal magnetic field measurements on this star. The magnetic field varies from +44 G to -36 G with mean Standard Error (SE) of 8.2 G. For full array of the magnetic field measurements the difference between experimental errors and Monte Carlo errors is not statistically significant.

  14. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  15. Measurement of 3-Axis Magnetic Fields Induced by Current Wires Using a Smartphone in Magnetostatics Experiments

    Science.gov (United States)

    Setiawan, B.; Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper describes the use of an inexpensive smartphone's magnetic sensor to measure magnetic field components (B[subscript x], B[subscript y] and B[subscript z]) induced by current wires in magnetostatic experiments. The variable parameters used to measure the magnetic sensor's capabilities were: the geometrical shapes of the wire, current…

  16. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    Science.gov (United States)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  17. The magnetic flux leakage measurement by the hall sensor in the longitudinal magnetic field

    International Nuclear Information System (INIS)

    Joo, Gwang Tae; Son, Dae Rok; Han, Jung Hee; Park, Jae Hyung

    1998-01-01

    This paper is concerned with magnetic leakage flux measurement using by the hall sensor in the longitudinal magnetic field of the feromagnetic specimen. For detection sensitivity by the hall probe according to various depth of the subsurface defects, the specimen are prepared by six drilled holes of 0.5 mm φ from 1 mm depth to 4 mm depth in the carbon steel plate(10 x 35 x 265 mm). When the specimen applied by various frequency(2 - 9 Hz) of the AC through synthesizer and power amplifier in the yoke, the signals of the magnetic flux leakage using lack-in amplifier and synthesizer are decreased linearly with defect depth at 2 Hz, but these signals are decreased suddenly with defect depth from the surface and obscured with increasing frequency. And, when the specimen applied range of 1 Amp. to 5 Amp. by DC power supply in the yoke, the signals of the magnetic flux leakage through DVM decreased linearly with defect depth up to 2.5 mm depth and change slightly defect depth above 2.5 mm depth from the surface, but its signals appeared predominately.

  18. A.c. magnetic-field measurements using the fluxgate

    DEFF Research Database (Denmark)

    Ripka, Pavel; Primdahl, Fritz; Nielsen, Otto V

    1995-01-01

    Fluxgate sensors are mostly used in closed-loop d.c. magnetometer systems; they can also measure alternating fields up to severalkilohertz, either in open-loop mode or from an error signal in the slow-feedback loop as in the Thunderstorm rocket magnetometer, which has 0.1 nT resolution up to 3 k...

  19. Measurements of weak localization of graphene in inhomogeneous magnetic fields

    DEFF Research Database (Denmark)

    Lindvall, N.; Shivayogimath, Abhay; Yurgens, A.

    2015-01-01

    attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements...

  20. Magnetic field measurements of the harmonic generation FEL superconducting undulator at BNL-NSLS

    International Nuclear Information System (INIS)

    Solomon, L.; Graves, W.S.; Lehrman, I.

    1994-01-01

    A three stage superconducting undulator (modulator, dispersive section, and radiator) is under construction at Brookhaven National Laboratory. Sections of the radiator, consisting of 25cm long steel yokes, each with 18mm period, 0.54 Tesla field, and 8.6mm gap are under test. The magnetic measurements and operational characteristics of the magnet are discussed. Measurement results and analysis are presented, with emphasis on the integrated field quality. The magnet winding and the effects of the various trims are discussed

  1. Results of magnetic field measurements of 40 mm aperture 17-m long SSC model collider dipole magnets

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H.

    1991-01-01

    Magnetic field measurements have been made on twelve 17 m-long, 40 mm-aperture R ampersand D superconducting dipoles. Data on dipole field strength, multipole coefficients, and alignment have been obtained. The data indicate that the magnets as built are generally within the expectations for this design. 7 refs., 5 figs

  2. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by 55Mn-NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2003-01-01

    The longitudinal (H Z ) and transverse (H T ) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H T is shown to be due mainly to the reduction of the energy barrier

  3. Internal magnetic field measurements in a translating field-reversed configuration

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1984-01-01

    Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translational velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a low-field (5 kG), 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.04. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Two translation conditions are studied: (1) translation into a 4 kG guide field (matched guide-field case), resulting in similar plasma parameters but with x/sub s/ approx. .45, and (2) translation into a 1 kG guide field (reduced guide-field case), resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 , external field B 0 approx. 2 kG and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed in both cases. However, the field measurements indicate a possible sideways offset of the FRC from the machine axis in the matched case. There is also evidence of island structure in the reduced guide-field case. Fluctuating levels of B/sub theta/ are ovserved with amplitudes less than or equal to B 0 /3 in both cases. Field measurements on the FRC symmetry axis in the reduced guide-field case indicate β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) has been achieved. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement

  4. A New Approach to Isolating External Magnetic Field Components in Spacecraft Measurements of the Earth's Magnetic Field Using Global Positioning System observables

    Science.gov (United States)

    Raymond, C.; Hajj, G.

    1994-01-01

    We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.

  5. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    Energy Technology Data Exchange (ETDEWEB)

    Jedlovszky-Hajdu, Angela, E-mail: angela.hajdu@net.sote.hu [Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad Sq 4, H-1089 Budapest (Hungary); Tombacz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Material Science, University of Szeged, Aradi Vt. Sq 1, Szeged 6720 (Hungary); Banyai, Istvan, E-mail: banyai.istvan@science.unideb.hu [Department of Colloid and Environmental Chemistry, University of Debrecen (Hungary); Babos, Magor, E-mail: babosmagor@yahoo.com [Euromedic Diagnostics Szeged Ltd., Semmelweis St 6, Szeged 6720 (Hungary); Palko, Andras, E-mail: palko@radio.szote.u-szeged.hu [Faculty of Medicine, Department of Radiology, University of Szeged (Hungary)

    2012-09-15

    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide. - Highlights: Black-Right-Pointing-Pointer Magnetic resonance relaxation measurements were done at different field strengths. Black-Right-Pointing-Pointer Results show characteristic differences between the tested carboxylated MFs. Black-Right-Pointing-Pointer r1 and r2 relaxivities depend on the thickness of the protecting layer. Black-Right-Pointing-Pointer MFs have high r2/r1 ratios at each magnetic field.

  6. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  7. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co [Programa de Física, Universidad del Quindo (Colombia); Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  8. Exposure estimates based on broadband elf magnetic field measurements versus the ICNIRP multiple frequency rule

    International Nuclear Information System (INIS)

    Paniagua, Jesus M.; Rufo, Montana; Jimenez, Antonio; Pachon, Fernando T.; Carrero, Julian

    2015-01-01

    The evaluation of exposure to extremely low-frequency (ELF) magnetic fields using broadband measurement techniques gives satisfactory results when the field has essentially a single frequency. Nevertheless, magnetic fields are in most cases distorted by harmonic components. This work analyses the harmonic components of the ELF magnetic field in an outdoor urban context and compares the evaluation of the exposure based on broadband measurements with that based on spectral analysis. The multiple frequency rule of the International Commission on Non-ionizing Radiation Protection (ICNIRP) regulatory guidelines was applied. With the 1998 ICNIRP guideline, harmonics dominated the exposure with a 55 % contribution. With the 2010 ICNIRP guideline, however, the primary frequency dominated the exposure with a 78 % contribution. Values of the exposure based on spectral analysis were significantly higher than those based on broadband measurements. Hence, it is clearly necessary to determine the harmonic components of the ELF magnetic field to assess exposure in urban contexts. (authors)

  9. Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field

    Science.gov (United States)

    Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng

    2017-12-01

    A hybrid fiber-optic sensor consisting of a micro extrinsic Fabry-Perot Interferometer (MEFPI) and an etched fiber Bragg grating (FBG) is proposed, which can measure strain and magnetic field simultaneously. The etched FBG is sealed in a capillary with ferrofluids to detect the surrounding magnetic field. FBG with small diameter will be more sensitive to magnetic field is confirmed by simulation results. The MEFPI sensor that is prepared through welding a short section of hollow-core fiber (HCF) with single-mode fiber (SMF) is effective for strain detection. The experiment shows that strain and magnetic field can be successfully simultaneously detected based on hybrid MEFPI/FBG sensor. The sensitivities of the strain and magnetic field intensity are measured to be up to 1.41 pm/με and 5.11 pm/mT respectively. There is a negligible effect on each other, hence simultaneously measuring strain and magnetic field is feasible. It is anticipated that such easy preparation, compact and low-cost fiber-optic sensors for simultaneous measurement of strain and magnetic field could find important applications in practice.

  10. Magnetic field gradients inferred from multi-point measurements of Cluster FGM and EDI

    Science.gov (United States)

    Teubenbacher, Robert; Nakamura, Rumi; Giner, Lukas; Plaschke, Ferdinand; Baumjohann, Wolfgang; Magnes, Werner; Eichelberger, Hans; Steller, Manfred; Torbert, Roy

    2013-04-01

    We use Cluster data from fluxgate magnetometer (FGM) and electron drift instrument (EDI) to determine the magnetic field gradients in the near-Earth magnetotail. Here we use the magnetic field data from FGM measurements as well as the gyro-time data of electrons determined from the time of flight measurements of EDI. The results are compared with the values estimated from empirical magnetic field models for different magnetospheric conditions. We also estimated the spin axis offset of FGM based on comparison between EDI and FGM data and discuss the possible effect in determining the current sheet characteristics.

  11. Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners

    Energy Technology Data Exchange (ETDEWEB)

    Kaennaelae, Sami; Toivo, Tim; Jokela, Kari [STUK-Radiation and Nuclear Safety Authority, PO Box 14, 00881 Helsinki (Finland); Alanko, Tommi [Finnish Institute of Occupational Health, New Technologies and Risks, Topeliuksenkatu 41a A, 00250 Helsinki (Finland)], E-mail: sami.kannala@stuk.fi

    2009-04-07

    Recent advances in magnetic resonance imaging (MRI) have increased occupational exposure to magnetic fields. In this study, we examined the assessment of occupational exposure to gradient magnetic fields and time-varying magnetic fields generated by motion in non-homogeneous static magnetic fields of MRI scanners. These magnetic field components can be measured simultaneously with an induction coil setup that detects the time rate of change of magnetic flux density (dB/dt). The setup developed was used to measure the field components around two MRI units (1 T open and 3 T conventional). The measured values can be compared with dB/dt reference levels derived from magnetic flux density reference levels given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The measured motion-induced dB/dt values were above the dB/dt reference levels for both MRI units. The measured values for the gradient fields (echo planar imaging (EPI) and fast field echo (FFE) sequences) also exceeded the dB/dt reference levels in positions where the medical staff may have access during interventional procedures. The highest motion-induced dB/dt values were 0.7 T s{sup -1} for the 1 T scanner and 3 T s{sup -1} for the 3 T scanner when only the static field was present. Even higher values (6.5 T s{sup -1}) were measured for simultaneous exposure to motion-induced and gradient fields in the vicinity of the 3 T scanner.

  12. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    Science.gov (United States)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  13. A hybrid two-component Bose–Einstein condensate interferometer for measuring magnetic field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China); Huang, Jiahao, E-mail: hjiahao@mail2.sysu.edu.cn [TianQin Research Center & School of Physics and Astronomy, Sun Yat-Sen University, SYSU Zhuhai Campus, Zhuhai 519082 (China); Liu, Quan [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)

    2017-03-03

    Highlights: • A scheme for detecting magnetic field gradients via a double-well two-component Bose–Einstein condensate interferometer. • The magnetic field gradient can be extracted by either the spin population or the external state. • Our proposal is potentially sensitive to weak magnetic field inhomogeneity due to its small sensor size. - Abstract: We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose–Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  14. Simultaneous measurement of magnetic field and temperature based on an etched TCFMI cascaded with an FBG

    Science.gov (United States)

    Yan, Guofeng; Zhang, Liang; He, Sailing

    2016-04-01

    In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic field and temperature responses of the packaged TCFMI were first investigated, which showed that the magnetic field sensitivity could be highly enhanced by decreasing of the TCF diameter and the temperature-cross sensitivities were up to 3-7 Oe/°C at 1550 nm. Then, the theoretical analysis and experimental demonstration of the proposed dual-parameter sensing scheme were conducted. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/°C, respectively, while the Bragg wavelength of the FBG is insensitive to magnetic field and has a temperature sensitivity of 13.23 pm/°C. Thus by using the sensing matrix method, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. In the on-off time response test, the fabricated sensor exhibited high repeatability and short response time of ∼19.4 s. Meanwhile the reflective sensing probe type is more compact and practical for applications in hard-to-reach conditions.

  15. Precise measurement of remanent magnetism of rocks under non-magnetic fields; Mujikaika deno ganseki zanryu jiki no seimitsu sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y; Nakatsuka, K [Tohoku University, Sendai (Japan)

    1997-10-22

    Various magnetic information data from solidification or deposition up to date are contained in rocks. For the analysis of remanent magnetism, in general, the stable thermal remanent magnetization and the secondary magnetization are separately evaluated using vector variations determined by the location changes of magnetic pole from ac demagnetization or thermal demagnetization. Especially, in geothermal fields, the remanent magnetism in rocks is complicated due to the predominant alteration. When the remanent magnetism of rocks can be precisely measured and the primary and secondary magnetization can be evaluated, important data can be obtained, which represent oriented core samples required for evaluating the geothermal reservoirs. A rock remanent magnetism measuring system using superconductive magnetic shield has been developed, to evaluate the location of magnetic pole. This system can distinguish the remanent magnetization in rocks, and can be applied to the remanent magnetism in rocks in which the location of dipole model is shifted from the center of core. Important basic data of orientation information in rocks can be provided. 6 figs.

  16. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    International Nuclear Information System (INIS)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P; Najera, Alberto; Beléndez, Augusto

    2015-01-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x –3 , in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error. (paper)

  17. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    Science.gov (United States)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

  18. New performance in harmonic analysis device generation used for magnetic fields measurements

    International Nuclear Information System (INIS)

    Evesque, C.; Tkatchenko, M.

    1996-01-01

    In particle accelerator, correcting high multipole components of magnets are of high importance for quality magnet: to get a pure quadrupole to within 10 -4 , we have to know the field quality to 10 -5 through the 30. order. Our laboratory needed such a very sharp device to find small harmonic components of magnetic field. For harmonic analysis of magnetic field, we adopted the standard method, i.e. a rotating coil connected to a flux integrator. Nowadays, coils measuring azimuthal component of magnetic field are used. In order to obtain correct and accurate measurements, we were guided by two imperatives: first, optimisation of construction constraints and second, comparison of azimuthal and radial component measurements. With this background, this article describes both new technological solutions adopted and new performance obtained. We also discuss the most suitable geometric structure for the coils. We obtained a noiseless signal, a repeatability of 10 -5 and a sensitivity up to 10 -8 Weber for both types of coils. Our device is able to find and measure main component, normal and skew multipole components up to the 32. order, when simulating local defects. The magnetic axis is located within 5 μm. The central gradient is also measured and magnetic length deduced. Complementary functions of two types of coils were noticed in detecting local defects of magnetic structure. (authors)

  19. New performance in harmonic analysis device generation used for magnetic fields measurements

    Energy Technology Data Exchange (ETDEWEB)

    Evesque, C.; Tkatchenko, M.

    1996-12-31

    In particle accelerator, correcting high multipole components of magnets are of high importance for quality magnet: to get a pure quadrupole to within 10{sup -4}, we have to know the field quality to 10{sup -5} through the 30. order. Our laboratory needed such a very sharp device to find small harmonic components of magnetic field. For harmonic analysis of magnetic field, we adopted the standard method, i.e. a rotating coil connected to a flux integrator. Nowadays, coils measuring azimuthal component of magnetic field are used. In order to obtain correct and accurate measurements, we were guided by two imperatives: first, optimisation of construction constraints and second, comparison of azimuthal and radial component measurements. With this background, this article describes both new technological solutions adopted and new performance obtained. We also discuss the most suitable geometric structure for the coils. We obtained a noiseless signal, a repeatability of 10{sup -5} and a sensitivity up to 10{sup -8} Weber for both types of coils. Our device is able to find and measure main component, normal and skew multipole components up to the 32. order, when simulating local defects. The magnetic axis is located within 5 {mu}m. The central gradient is also measured and magnetic length deduced. Complementary functions of two types of coils were noticed in detecting local defects of magnetic structure. (authors).

  20. Magnetorheological measurements with consideration for the internal magnetic field in samples

    Energy Technology Data Exchange (ETDEWEB)

    Kordonski, W; Gorodkin, S [QED Technologies International, 1040 University Ave., Rochester, NY 14607 (United States)], E-mail: kordonski@qedmrf.com

    2009-02-01

    The magnetically induced yield stress in a sample of suspension of magnetic particles is associated with formation of a field-oriented structure, the strength of which depends on the degree of particles magnetization. This factor is largely defined by the actual magnetic field strength in the sample. At the same time it is common practice to present and analyze magnetorheological characteristics as a function of the applied magnetic field. Uncertainty of an influence function in magnetorheology hampers interpretation of data obtained with different measurement configurations. It was shown in this paper that rheological response of magnetorheological fluid to the applied magnetic field is defined by the sample's actual (internal) magnetic field intensity, which, in turn, depends on sample geometry and field orientation all other factors being equal. Utilization of the sample's actual field as an influence function in magnetorheology allows proper interpretation of data obtained with different measuring system configurations. Optimization of the actual internal field is a promising approach in designing of energy efficient magnetorheological devices.

  1. Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, J.C. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Diefenbach, J. [Hampton University, Hampton, VA (United States); Elbakian, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Gavrilov, G. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Goerrissen, N. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Hasell, D.K.; Henderson, B.S. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Holler, Y. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Karyan, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Ludwig, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Marukyan, H. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Naryshkin, Y. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); O' Connor, C.; Russell, R.L.; Schmidt, A. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Schneekloth, U. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Suvorov, K.; Veretennikov, D. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    2016-07-01

    The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme (Lekien and Marsden, 2005 [1]). This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroidal axis.

  2. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    Science.gov (United States)

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  3. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, A.K.M. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Fang, J. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Gu, C. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)

    2005-08-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported.

  4. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    International Nuclear Information System (INIS)

    Alamgir, A.K.M.; Fang, J.; Gu, C.; Han, Z.

    2005-01-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported

  5. Techniques for Ultra-high Magnetic Field Gradient NMR Diffusion Measurements

    Science.gov (United States)

    Sigmund, Eric E.; Mitrovic, Vesna F.; Calder, Edward S.; Will Thomas, G.; Halperin, William P.; Reyes, Arneil P.; Kuhns, Philip L.; Moulton, William G.

    2001-03-01

    We report on development and application of techniques for ultraslow diffusion coefficient measurements through nuclear magnetic resonance (NMR) in high magnetic field gradients. We have performed NMR experiments in a steady fringe field gradient of 175 T/m from a 23 T resistive Bitter magnet, as well as in a gradient of 42 T/m from an 8 T superconducting magnet. New techniques to provide optimum sensitivity in these experiments are described. To eliminate parasitic effects of the temporal instability of the resistive magnet, we have introduced a passive filter: a highly conductive cryogen-cooled inductive shield. We show experimental demonstration of such a shield’s effect on NMR performed in the Bitter magnet. For enhanced efficiency, we have employed “frequency jumping” in our spectrometer system. Application of these methods has made possible measurements of diffusion coefficients as low as 10-10 cm^2/s, probing motion on a 250 nm length scale.

  6. TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES

    Directory of Open Access Journals (Sweden)

    Alberto Gallina

    2018-03-01

    Full Text Available The paper presents a test bed designed to simulate magnetic environment experienced by a spacecraft on low Earth orbit. It consists of a spherical air bearing located inside a Helmholtz cage. The spherical air bearing is used for simulating microgravity conditions of orbiting bodies while the Helmholtz cage generates a controllable magnetic field resembling the one surrounding a satellite during its motion. Dedicated computer software is used to initially calculate the magnetic field on an established orbit. The magnetic field data is then translated into current values and transmitted to programmable power supplies energizing the cage. The magnetic field within the cage is finally measured by a test article mounted on the air bearing. The paper provides a description of the test bed and the test article design. An experimental test proves the good performance of the entire system.

  7. Measurements of magnetic fields generated in underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Najmudin, Z.; Walton, B. R.; Mangles, S. P. D.; Dangor, A. E.; Krushelnick, K.; Fritzler, S.; Malka, V.; Faure, J.; Tatarakis, M.

    2006-01-01

    Measurements have been made of the magnetic field generated by the passage of high intensity short laser pulses through underdense plasmas. For a 30 fs, 1 J, 800 nm linearly-polarised laser pulse, an azimuthal magnetic field is observed at a radial extent of approximately 200 μm. The field is found to exceed 2.8 MG. For a 1 ps, 40 J, 1054 nm circularly-polarised laser pulse, a solenoidal field is observed that can exceed 7 MG. This solenoidal field is absent with linear polarised light, and hence can be considered as an Inverse Faraday effect. Both types of field are found to decay on the picosecond timescale. For both the azimuthal and solenoidal fields produced by such intense lasers, the production of energetic electrons by the interaction is thought to be vital for magnetic field generation

  8. Uncertainty analysis of the magnetic field measurement by the translating coil method in axisymmetric magnets

    International Nuclear Information System (INIS)

    Arpaia, Pasquale; De Vito, Luca; Kazazi, Mario

    2016-01-01

    In the uncertainty assessment of magnetic flux measurements in axially symmetric magnets by the translating coil method, the Guide to the Uncertainty in Measurement and its supplement cannot be applied: the voltage variation at the coil terminals, which is the actual measured quantity, affects the flux estimate and its uncertainty. In this paper, a particle filter, implementing a sequential Monte-Carlo method based on Bayesian inference, is applied. At this aim, the main uncertainty sources are analyzed and a model of the measurement process is defined. The results of the experimental validation point out the transport system and the acquisition system as the main contributions to the uncertainty budget. (authors)

  9. Characterization of magnetic phase transitions in PrMn2Ge2 compound investigated by magnetization and hyperfine field measurements

    Directory of Open Access Journals (Sweden)

    B. Bosch-Santos

    2017-05-01

    Full Text Available The magnetic properties of PrMn2Ge2 compound have been investigated by perturbed γ−γ angular correlation (PAC spectroscopy using 111In(111Cd as probe nuclei as well as by magnetization measurements. This ternary intermetallic compound exhibits different magnetic structures depending on the temperature. The magnetic ordering is mainly associated with the magnetic moment of 3d-Mn sublattice but at low temperatures a magnetic contribution due to ordering of the magnetic moment from 4f-Pr sublattice appears. PAC results with 111Cd probe nuclei at Mn sites show that the temperature dependence of hyperfine field Bhf(T follows the expected behavior for the host magnetization, which could be fitted by two Brillouin functions, one for antiferromagnetic phase and the other for ferromagnetic phase, associated with the magnetic ordering of Mn ions. Magnetization measurements showed the magnetic behavior due to Mn ions highlighting the antiferromagnetic to ferromagnetic transition around 326 K and an increase in the magnetization around 36 K, which is ascribed to Pr ions ordering.

  10. Measurement of the surface field on open magnetic samples by the extrapolation method

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2005-01-01

    Roč. 76, - (2005), 104701/1-104701/7 ISSN 0034-6748 R&D Projects: GA ČR(CZ) GP202/04/P010; GA AV ČR(CZ) 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic field measurement * extrapolation * air gaps * magnetic permeability Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.235, year: 2005

  11. Proton probe measurement of fast advection of magnetic fields by hot electrons

    International Nuclear Information System (INIS)

    Willingale, L; Thomas, A G R; Nilson, P M; Kaluza, M C; Dangor, A E; Evans, R G; Fernandes, P; Haines, M G; Kamperidis, C; Kingham, R J; Ridgers, C P; Sherlock, M; Wei, M S; Najmudin, Z; Krushelnick, K; Bandyopadhyay, S; Notley, M; Minardi, S; Rozmus, W; Tatarakis, M

    2011-01-01

    A laser generated proton beam was used to measure the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target. At intensities of 10 15 W cm −2 , the significant hot electron production and strong heat fluxes result in non-local transport becoming important to describe the magnetic field dynamics. Two-dimensional implicit Vlasov–Fokker–Planck modeling shows that fast advection of the magnetic field from the focal region occurs via the Nernst effect at significantly higher velocities than the sound speed, v N /c s ≈ 10.

  12. Magnetic and electrostatic fluctuation measurements on the ZT-40M reversed field pinch

    International Nuclear Information System (INIS)

    Miller, G.; Ingraham, J.C.; Munson, C.P.; Schoenberg, K.F.; Weber, P.G.; Tsui, H.Y.; Ritz, C.P.

    1990-01-01

    It is presently unknown whether anomalous transport in toroidal, magnetically confined plasma systems, if fluctuation induced, is dominated by electrostatic or magnetic turbulence. We are participating in a joint study of the edge plasmas of tokamak, stellarator, and RFP in an attempt to elucidate this issue. We measure magnetic and electrostatic fields using probes inserted into the edge of the ZT-40M RFP. Using the present technique, with stationary probes, these measurements can be done without damaging the probes only for low current discharges (60 kA). In this initial study, we find that both turbulent magnetic and electrostatic transport are of importance. (author) 10 refs., 2 figs., 1 tab

  13. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  14. Drift chamber performance in the field of a superconducting magnet: measurement of the drift angle

    International Nuclear Information System (INIS)

    Sanders, G.H.; Sherman, S.; McDonald, K.T.; Smith, A.J.S.; Thaler, J.J.

    1977-01-01

    Results are presented of the first measurements in a study of drift chamber performance in magnetic fields up to 6 tesla. The angle of the electron drift was measured as a function of electric and magnetic field intensity. It appears that even at the high fields of superconducting magnets (3 to 6 tesla) the drift angle induced by the Lorentz force can be corrected for with tilted electric drift fields and/or the use of Xenon gas. At 3 tesla a drift field tilted at 45 0 with a magnitude of 3.5 kV/cm should restore normal operating conditions. At 4 tesla, a 45 0 tilt field would have a magnitude 5 kV/cm

  15. Influence of mechanical vibrations on the field quality measurements of LHC interaction region quadrupole magnets

    CERN Document Server

    Di Marco, J; Schlabach, P; Sylvester, C D; Tompkins, J C; Krzywinski, J

    2000-01-01

    The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. (3 refs).

  16. Measurement of internal magnetic field pitch using Li pellet injection on TFTR (invited)

    International Nuclear Information System (INIS)

    Terry, J.L.; Marmar, E.S.; Howell, R.B.; Bell, M.; Cavallo, A.; Fredrickson, E.; Ramsey, A.; Schmidt, G.L.; Stratton, B.; Taylor, G.; Mauel, M.E.

    1990-01-01

    A diagnostic technique which measures the direction of the internal magnetic field pitch angle has been used successfully on TFTR. The technique requires the injection of high-speed Li pellets. The magnetic field direction is measured by observing the polarization direction of the intense visible line emission from Li + (λ∼5485 A, 1s2p 3 P 0,1,2 →1s2s 3 S 0 ) in the pellet ablation cloud. The presence of the large (primarily toroidal) magnetic field causes the line to be split due to the Zeeman effect, and the unshifted π component is polarized with its polarization direction parallel to the local magnetic field. In devices with sufficiently strong fields (B approx-gt 4.5 T), the Zeeman splitting of the line is large enough, relative to the linewidth of each Zeeman component, that enough residual polarization remains. Because the pellet moves about 1 cm before the Li + is ionized (τ ionization approx-lt 10 μs), the time history of the polarization direction (as the pellet penetrates from the outside toward the plasma center) yields the local magnetic field direction. In the TFTR experiment, spatial resolution of the measurement is typically ∼7 cm, limited by the requirement that a large number of photons must be collected in order to make the measurement of the polarization angle. Typically, the pitch of the field is measured with an accuracy of ±0.01 rad, limited by the photon statistics. The measurements of the internal field pitch angle, combined with external magnetic measurements, have been used in a code which finds the solution of the Grad--Shafranov equation, yielding the equilibrium which is the best fit to the measured inputs

  17. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...... with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated...... biosensor based on the detection of the dynamic response of magnetic beads....

  18. Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-01-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…

  19. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  20. Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor

    Science.gov (United States)

    Lousberg, Gregory P.; Fagnard, Jean-François; Noudem, Jacques G.; Ausloos, Marcel; Vanderheyden, Benoit; Vanderbemden, Philippe

    2009-04-01

    We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30 to 130 mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.

  1. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  2. Magnetic measurements of suspended functionalised ferromagnetic beads under DC applied fields

    International Nuclear Information System (INIS)

    De Los Santos V, Luis; Llandro, Justin; Lee, Dongwook; Mitrelias, Thanos; Palfreyman, Justin J.; Hayward, Thomas J.; Cooper, Jos; Bland, J.A.C.; Barnes, Crispin H.W.; Arroyo C, Juan L.; Lees, Martin

    2009-01-01

    In this work, a simple technique to obtain the hysteresis loops of magnetic beads (Spherotech Inc.) in liquid suspension is presented. The magnetic measurements were taken in a DC Magnetic Property Measurement System (MPMS-SQUID sensor). Samples were based on ferromagnetic beads (surface-functionalized NH 2 , mean diameter 4.32 μm) prepared in three conditions: dry, suspended in sucrose solution and in suspension after functionalization with fluorophore. Special small containers (1.3 cm long) made of non magnetic plastic were designed to hold the beads in liquid. The results indicate that the bead's remnant magnetization is half of the value at maximum applied field in all cases. However, due to the additional degrees of rotational freedom, beads suspended in a liquid do not present coercivity. The use of ferromagnetic beads and magnetic elements of different architectures for applications in bioassays is also discussed.

  3. VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS

    International Nuclear Information System (INIS)

    Kramar, M.; Inhester, B.; Lin, H.; Davila, J.

    2013-01-01

    In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field

  4. Magnetic field `flyby' measurement using a smartphone's magnetometer and accelerometer simultaneously

    Science.gov (United States)

    Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2017-12-01

    The spatial dependence of magnetic fields in simple configurations is a common topic in introductory electromagnetism lessons, both in high school and in university courses. In typical experiments, magnetic fields and distances are obtained taking point-by-point values using a Hall sensor and a ruler, respectively. Here, we show how to take advantage of the smartphone capabilities to get simultaneous measures with the built-in accelerometer and magnetometer and to obtain the spatial dependence of magnetic fields. We consider a simple setup consisting of a smartphone mounted on a track whose direction coincides with the axis of a coil. While the smartphone is moving on the track, both the magnetic field and the distance from the center of the coil (integrated numerically from the acceleration values) are simultaneously obtained. This methodology can easily be extended to more complicated setups.

  5. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-12-01

    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  6. Measurement and analysis of electromagnetic fields of pulsed magnetic field therapy systems for private use

    International Nuclear Information System (INIS)

    Jaermann, Thomas; Suter, Fabian; Osterwalder, Diego; Luechinger, Roger

    2011-01-01

    Recently, pulsed magnetic field therapy (PMFT) systems have become available for private use. Although they may be applied without medical supervision, only a little is known about their field quantities. In this study, the spatial distribution and the temporal characteristics of the magnetic flux densities of three PMFT systems, available in Europe, were analysed. In close proximity to the surface, the maxima of the peak magnetic flux densities were 461 μT, 170 μT and 133 μT, respectively. At a distance of 30 cm above the whole body mat, the peak magnetic flux density was 77 μT. The excitation patterns consisted of repeating bursts with carrier frequencies between 210 and 1667 Hz. In conclusion, magnetic flux densities were far above International Commission on Non-Ionizing Radiation Protection reference levels. Since these systems are supposed to be medical devices as well as wellness devices, risk analysis of PMFT systems and the effectiveness of these devices need to be investigated in future studies.

  7. Measurement of weak magnetic field of corrosion current of isolated corrosion center

    Directory of Open Access Journals (Sweden)

    I. V. Bardin

    2015-01-01

    Full Text Available A very small magnetic field of corrosion current, of the order of 10−4 Oe, generated by isolated zinc inclusion in a copper platelet placed in electrolyte has been measured for the first time with a highly sensitive giant magneto-impedance magnetometer. The total corrosion current of the inclusion is estimated comparing the measured magnetic field distribution with corresponding theoretical calculation. The estimated value of the total corrosion current turns out to be in reasonable agreement with that one obtained in the standard gravimetric measurement.

  8. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    International Nuclear Information System (INIS)

    Park, Byeolteo; Myung, Hyun

    2014-01-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments. (paper)

  9. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    Science.gov (United States)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  10. Interlaboratory comparison of measuring results of magnetic field near 400 kV overhead power line

    Directory of Open Access Journals (Sweden)

    Grbić Maja

    2012-01-01

    Full Text Available The paper presents a comparison of measured results of magnetic field near 400 kV overhead power lines obtained by three laboratories. This interlaboratory comparison was performed to ensure confidence in the quality of the test results. The measured results were analyzed with standard methods, using En number, based on which the evaluation of the laboratories was performed.

  11. Crystal fields of dilute Tb, Dy, Ho, or Er in Lu obtained by magnetization measurements

    International Nuclear Information System (INIS)

    Touborg, P.; Hog, J.

    1975-01-01

    Magnetization measurements are reported on single crystals of dilute Tb, Dy, Ho, or Er in Lu. These measurements were performed in the temperature range 1.5--100 K and field range 0--6 T and include measurements of initial susceptibility, isothermal and isofield magnetization, and basal-plane anisotropy. The results show features similar to the corresponding Y-R alloys, where R is a rare earth. Crystal-field and molecular-field parameters could be unabiguously deduced from the experimental data. The effects of crystal-field level broadening were investigated and demonstrated for Ho. Comparison of the Y-R and Lu-R results makes possible an estimate of the crystal-field parameters in the pure-rare-earth metals

  12. Measurement and modeling of magnetic hysteresis under field and stress application in iron–gallium alloys

    International Nuclear Information System (INIS)

    Evans, Phillip G.; Dapino, Marcelo J.

    2013-01-01

    Measurements are performed to characterize the hysteresis in magnetomechanical coupling of iron–gallium (Galfenol) alloys. Magnetization and strain of production and research grade Galfenol are measured under applied stress at constant field, applied field at constant stress, and alternately applied field and stress. A high degree of reversibility in the magnetomechanical coupling is demonstrated by comparing a series of applied field at constant stress measurements with a single applied stress at constant field measurement. Accommodation is not evident and magnetic hysteresis for applied field and stress is shown to be coupled. A thermodynamic model is formulated for 3-D magnetization and strain. It employs a stress, field, and direction dependent hysteron that has an instantaneous loss mechanism, similar to Coulomb-friction or Preisach-type models. Stochastic homogenization is utilized to account for the smoothing effect that material inhomogeneities have on bulk processes. - Highlights: ► We conduct coupled experiments and develop nonlinear thermodynamic models for magnetostrictive iron–gallium (Galfenol) alloys. ► The measurements show unexpected kinematic reversibility in the magnetomechanical coupling. ► This is in contrast with the magnetomechanical coupling in steel which is both thermodynamically and kinematically irreversible. ► The model accurately describes the measurements and provides a framework for understanding hysteresis in ferromagnetic materials which exhibit kinematically reversible magnetomechanical coupling.

  13. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  14. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab

  15. MAGNETIC FIELD MEASUREMENTS OF T TAURI STARS IN THE ORION NEBULA CLUSTER

    International Nuclear Information System (INIS)

    Hao Yang; Johns-Krull, Christopher M.

    2011-01-01

    We present an analysis of high-resolution (R ∼ 50, 000) infrared K-band echelle spectra of 14 T Tauri stars (TTSs) in the Orion Nebula Cluster. We model Zeeman broadening in three magnetically sensitive Ti I lines near 2.2 μm and consistently detect kilogauss-level magnetic fields in the stellar photospheres. The data are consistent in each case with the entire stellar surface being covered with magnetic fields, suggesting that magnetic pressure likely dominates over gas pressure in the photospheres of these stars. These very strong magnetic fields might themselves be responsible for the underproduction of X-ray emission of TTSs relative to what is expected based on main-sequence star calibrations. We combine these results with previous measurements of 14 stars in Taurus and 5 stars in the TW Hydrae association to study the potential variation of magnetic field properties during the first 10 million years of stellar evolution, finding a steady decline in total magnetic flux with age.

  16. Determination of Intrinsic Magnetic Response from Local Measurements of Fringing Fields

    OpenAIRE

    Wen, Bo; Millis, Andrew J.; Pardo, Enric; Subedi, Pradeep; Kent, Andrew D.; Yeshurun, Yosi; Sarachik, Myriam P.

    2014-01-01

    Micron-sized Hall bars and micro-SQUIDs are now used routinely to measure the local static and dynamic magnetic response with micron-scale spatial resolution. While this provides a powerful new tool, determining the intrinsic magnetization presents new challenges, as it requires correcting for demagnetization fields that vary widely with position on a sample. In this paper we develop a method to correct for the demagnetization effect at local points of a rectangular prism shaped sample using ...

  17. Preliminary study of an integral harmonic analysis magnetic field measurement system for long SSC magnets

    International Nuclear Information System (INIS)

    Green, M.I.

    1991-04-01

    We described the research and development required to design and build a prototype system capable of making integrated magnetic multipole measurements of warm and cryogenic 50 mm bore SSC dipole and quadrupole magnets utilizing a warm probe in a warm finger. Our experience and some preliminary studies indicate that it is highly unlikely that a 16 meter long probe can be fabricated that will have a twist below several milliradians at any temperature. Consequently we describe a segmented 16 meter long probe for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system are described. The duration of an integral measurement at one current is less than ten seconds, which is three orders of magnitude shorter than that required by the mole technique presently being used. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1 meter models of SSC magnets with a cryogenic probe. 3 refs., 3 figs

  18. Notes on the measurement of stress by resistance gauges in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Armand, G.; Lapujoulade, J.

    1961-01-01

    The technique of stress measurement by resistance gauges is well known. Although it is not yet perfect it possesses many advantages and shows great possibilities. In the presence of a magnetic field the measurement is perturbed by certain phenomena, and we have undertaken to calculate their order of magnitude with a view to establishing the error involved in the measurement. Our problem was to measure the stresses on the various parts of the magnet in the synchrotron Saturne. It is known that the induction passes from a value of about nil to 15000 gauss in 0.8 second, and returns to zero in the same time interval; this cycle recurs every 3.2 seconds. In order to isolate the effects the problem of measurements in a static field will be examined first, after which the results obtained will be extended to the case of dynamic fields. (author) [fr

  19. Measurement of magnetic and electric field inhomogenities in a time projection chamber using laser tracks

    International Nuclear Information System (INIS)

    Benetta, M.; Froberger, J.P.; Lehraus, I.; Mathewson, R.; May, J.; Price, M.; Schlater, D.; Tejessi, W.; Witzeling, W.

    1985-01-01

    The large time projection chambers (TPC) for particle track measurements have their electric drift field parallel to the magnetic field which is needed for the momentum measurement of the particles. Small field inhomogeneities of the order of epsilon times the main field cause large track distortions (coordinate displacements) of the order of epsilon times the driftlength. It is therefore important for every TPC to know the inhomogeneities very well. Laser rays have proven to be useful to study them. We report here on our experience with a TPC having a maximum drift length of 1.3 m

  20. A dynamic method for continuously measuring magnetic field profiles in planar micropole undulators with submillimeter gaps

    International Nuclear Information System (INIS)

    Tatchyn, R.; Oregon Univ., Eugene

    1989-01-01

    Conventional techniques for measuring magnetic field profiles in ordinary undulators rely predominantly on Hall probes for making point-by-point static measurements. As undulators with submillimeter periods and gaps become available, such techniques will start becoming untenable, due to the relative largeness of conventional Hall probe heads and the rapidly increasing number of periods in devices of fixed length. In this paper a method is presented which can rapidly map out field profiles in undulators with periods and gaps extending down to the 100 μm range and beyond. The method, which samples the magnetic field continuously, has been used successfully in profiling a recently constructed 726 μm period undulator, and seems to offer some potential advantages over conventional Hall probe techniques in measuring large-scale undulator fields as well. (orig.)

  1. Local probe (170Yb3+) measurements of magnetic fields in YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Hodges, J.A.; Bonville, P.; Vincent, E.

    1989-01-01

    We introduce the technique of studying the field dependence of the electro-nuclear energy levels of a rare earth to measure the magnetic field present at the rare earth/yttrium site in YBa 2 Cu 3 O x . Measurements were made by 170 Yb spectroscopy. The hyperfine spectrum of the ground state Kramers doublet for Yb 3+ ions diluted into this matrix is sensitive to fields in the range 100 to 2000G. Flux penetration and trapping at the local site level have been measured in superconducting samples. A molecular field exists on the rare earth site in non superconducting samples suggesting that the ordered Cu2 magnetic moments are intrinsically non colinear

  2. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  3. Field Quality Measurements of LARP Nb$_{3}$Sn Magnet HQ02

    CERN Document Server

    DiMarco, J; Buehler, M; Chlachidze, G; Orris, D; Sylvester, C; Tartaglia, M; Velev, G; Yu, M; Zlobin, A; Ghosh, A; Schmalzle, J; Wanderer, P; Borgnolutti, F; Cheng, D; Dietderich, D; Felice, H; Godeke, A; Hafalia, R; Joseph, J; Lizarazo, J; Marchevsky, M; Prestemon, S O; Sabbi, G L; Salehi, A,; Wang, X; Ferracin, P; Todesco, E

    2014-01-01

    Large-aperture, high-field, Nb$_{3}$Sn quadrupoles are being developed by the US LHC accelerator research program (LARP) for the High luminosity upgrade of the Large Hadron Collider (HiLumi-LHC). The first 1 m long, 120 mm aperture prototype, HQ01, was assembled with various sets of coils and tested at LBNL and CERN. Based on these results, several design modifications have been introduced to improve the performance for HQ02, the latest model. From the field quality perspective, the most relevant improvements are a cored cable for reduction of eddy current effects, and more uniform coil components and fabrication processes. This paper reports on the magnetic measurements of HQ02 during recent testing at the Vertical Magnet Test Facility at Fermilab. Results of baseline measurements performed with a new multi-layer circuit board probe are compared with the earlier magnet. An analysis of probe and measurement system performance is also presented.

  4. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field.

    Science.gov (United States)

    Jeppesen, S; Linderoth, S; Pryds, N; Kuhn, L Theil; Jensen, J Buch

    2008-08-01

    A simple and high-sensitivity differential scanning calorimeter (DSC) unit operating under magnetic field has been built for indirect determination of the magnetocaloric effect. The principle of the measuring unit in the calorimeter is based on Peltier elements as heat flow sensors. The high sensitivity of the apparatus combined with a suitable calibration procedure allows very fast and accurate heat capacity measurements under magnetic field to be made. The device was validated from heat capacity measurements for the typical DSC reference material gallium (Ga) and a La(0.67)Ca(0.33)MnO(3) manganite system and the results were highly consistent with previous reported data for these materials. The DSC has a working range from 200 to 340 K and has been tested in magnetic fields reaching 1.8 T. The signal-to-noise ratio is in the range of 10(2)-10(3) for the described experiments. Finally the results have been compared to results from a Quantum Design(R) physical properties measuring system. The configuration of the system also has the advantage of being able to operate with other types of magnets, e.g., permanent magnets or superconducting coils, as well as the ability to be expanded to a wider temperature range.

  5. First Spectropolarimetric Measurement of a Brown Dwarf Magnetic Field in Molecular Bands

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmychov, Oleksii; Berdyugina, Svetlana V. [Kiepenheuer-Institut für Sonnenphysik Schöneckstr, 6 D-79104 Freiburg (Germany); Harrington, David M., E-mail: oleksii@leibniz-kis.de [National Solar Observatory (Maui), 8 Kiopa’a Street Pukalani, HI 96768 (United States)

    2017-09-20

    We present the first measurements of the surface magnetic field of a late-M dwarf, LSR J1835+3259, with the help of the full-Stokes spectropolarimetry in the bands of diatomic molecules. Our measurements at different rotational phases of a dwarf yielded one 5 σ and two 3 σ magnetic field detections. The observational data have been obtained with the LRISp polarimeter at the Keck observatory on 2012 August 22 and 23. These data have been compared against synthetic full-Stokes spectra in the bands of the molecules CrH, FeH, and TiO, which have been calculated for a range of the stellar parameters and magnetic field strengths. Making use of χ {sup 2}-minimization and maximum likelihood estimation, we determine the net magnetic field strength B (and not flux Bf ) of LSR J1835+3259 to ∼5 kG with the help of the Paschen–Back effect in the CrH lines. Our measurements at different rotational phases suggest that the dwarf’s surface might be covered with strong small-scale magnetic fields. In addition, recent findings of the dwarf’s hydrogen emission and the Stokes V signal from the lower chromosphere indicate that its surface magnetic field might be changing rapidly giving rise to flare activity, similar to young dMe dwarfs. We substantiate the substellar origin of LSR J1835+3259 by making use of our own data as well as the photometric data from the all-sky surveys 2MASS and WISE .

  6. Far-infrared polarimetry/interferometry for poloidal magnetic field measurement on ZT-40M

    International Nuclear Information System (INIS)

    Erickson, R.M.

    1986-06-01

    The measurement of internal magnetic field profiles may be a very important step in the understanding of magnetic confinement physics issues. The measurement of plasma-induced Faraday rotation is one of the more promising internal magnetic field diagnostics. This thesis describes the development of a heterodyne polarimeter/interferometer for internal poloidal magnetic field measurement on ZT-40M. Heterodyne techniques were employed because of the insensitivity to spurious signal amplitude changes that cause errors in other methods. Initial problems in polarimetric sensitivity were observed that were ultimately found to be related to discharge-induced motions of the constrained diagnostic access on ZT-40M. Grazing incidence motions of the constrained diagnostic access on ZT-40M. Grazing incidence reflections on metallic surfaces of the diagnostic ports caused polarization changes that affected the measurement accuracy. Installation of internally threaded sleeves to baffle the reflections eliminated the sensitivity problem, and allowed useful Faraday rotation measurements to be made. Simultaneous polarimetric and interferometric measurements have also been demonstrated. The ability to assemble a working heterodyne polarimeter/interferometer is no longer in question. The extension of the present system to multichord operation requires increased laser power and efficiency

  7. Design and development of a 3 axis magnetic field measurement facility using Hall probe

    International Nuclear Information System (INIS)

    Sahoo, Shantonu; Bhattacharyya, Sumantra; Chaddha, Niraj; Mishra, Santosh Kr.; Nandy, Partha P.; Nandi, Chinmay; Bhole, Rajendra B.; Pal, Sarbajit; Pal, Gautam

    2015-01-01

    A 3-axis drive system has been designed and developed in-house to measure the magnetic field with positional accuracy of 0.2 mm in a volume of 1.5 x 1.3 x 0.15 cubic-meter. Hall sensor based magnetometer is used to measure the magnetic field with a precision of 100 μT(1 Gauss). The drive of each axis has linear guide and zero backlash ball screw combination to achieve accurate movement of the hall probe with positional repeatability of +/- 0.2 micron per 50 mm. The hardware and software, also developed in-house, facilitate precise probe positioning and sophisticated visualization of field map. Dedicated microcontroller based motor controllers and encoder read-out cards for each axis have been developed. The facility is integrated with a rich touch-screen based intelligent GUI for automated scanning and data acquisition. This facility can be used for accurate magnetic field mapping of big dipole magnets, solenoids, etc. The facility has been tested successfully to characterize a Dipole Magnet designed for Radioactive Ion Beam (RIB) facility. (author)

  8. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field

    DEFF Research Database (Denmark)

    Jeppesen, Stinus; Linderoth, Søren; Pryds, Nini

    2008-01-01

    A simple and high-sensitivity differential scanning calorimeter (DSC) unit operating under magnetic field has been built for indirect determination of the magnetocaloric effect. The principle of the measuring unit in the calorimeter is based on Peltier elements as heat flow sensors. The high...

  9. Measuring Earth's Local Magnetic Field Using a Helmholtz Coil

    Science.gov (United States)

    Williams, Jonathan E.

    2014-01-01

    In this paper, I present a low-cost interactive experiment for measuring the strength of Earth's local magnetic field. This activity can be done in most high schools or two-year physics laboratories with limited resources, yet will have a tremendous learning impact. This experiment solidifies the three-dimensional nature of Earth's…

  10. Measurement of asymmetric optical pumping of ions accelerating in a magnetic-field gradient

    International Nuclear Information System (INIS)

    Sun Xuan; Scime, Earl; Miah, Mahmood; Cohen, Samuel; Skiff, Frederick

    2004-01-01

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic-field gradient. The signature is a difference in the laser-induced-fluorescence emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities

  11. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-10-28

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities.

  12. A comparison of contour maps derived from independent methods of measuring lunar magnetic fields

    Science.gov (United States)

    Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.

    1978-01-01

    Computer-generated contour maps of strong lunar remanent magnetic fields are presented and discussed. The maps, obtained by previously described (Eliason and Soderblom, 1977) techniques, are derived from a variety of direct and indirect measurements from Apollo 15 and 16 and Explorer 35 magnetometer and electron reflection data. A common display format is used to facilitate comparison of the maps over regions of overlapping coverage. Most large scale features of either weak or strong magnetic field regions are found to correlate fairly well on all the maps considered.

  13. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    International Nuclear Information System (INIS)

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-01-01

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities

  14. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  15. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2005-05-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  16. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    International Nuclear Information System (INIS)

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.

    2005-01-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented

  17. Measurements of Field Decay and Snapback Effect on Tevatron Dipole and Quadrupole Magnets

    CERN Document Server

    Velev, Gueorgui; Annala, Gerald; Bauer, Pierre; Carcagno, Ruben H; Di Marco, Joseph; Glass, Henry; Hanft, Ray; Kephart, Robert; Lamm, Michael J; Martens, Michael A; Schlabach, Philip; Sylvester, C D; Tartaglia, M; Tompkins, John

    2005-01-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility to understand dynamic effects in the Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field "snapback" during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 20 s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  18. Changes in measured vector magnetic fields when transformed into heliographic coordinates

    Science.gov (United States)

    Hagyard, M. J.

    1987-01-01

    The changes that occur in measured magnetic fields when they are transformed into a heliographic coordinate system are investigated. To carry out this investigation, measurements of the vector magnetic field of an active region that was observed at 1/3 the solar radius from disk center are taken, and the observed field is transformed into heliographic coordinates. Differences in the calculated potential field that occur when the heliographic normal component of the field is used as the boundary condition rather than the observed line-of-sight component are also examined. The results of this analysis show: (1) that the observed fields of sunspots more closely resemble the generally accepted picture of the distribution of umbral fields if they are displayed in heliographic coordinates; (2) that the differences in the potential calculations are less than 200 G in field strength and 20 deg in field azimuth outside sunspots; and (3) that differences in the two potential calculations in the sunspot areas are no more than 400 G in field strength but range from 60 to 80 deg in field azimuth in localized umbral areas.

  19. Measurements of the Magnetic Field of the Upper Chromosphere with Polarimetry

    Science.gov (United States)

    Rachmeler, Laurel; Mckenzie, David; Winebarger, Amy; Kobayashi, Ken; Ishikawa, Ryohko; Kubo, Masahito; Narukage, Noriyuki; Bueno, Trujillo, Javier; Auchere, Frederic

    2017-01-01

    A major remaining challenge for heliophysics is to decipher the magnetic structure of the chromosphere. The chromosphere is the critical interface between the Sun's photosphere and corona: it contains more mass than the entire interplanetary heliosphere, requires a heating rate that is larger than that of the corona, and mediates all the energy driving the solar wind, solar atmospheric heating and solar eruptions. While measurements of the magnetic field in the photosphere are routine, the chromosphere poses several extra challenges. The magnetically sensitive lines formed in the upper chromosphere are in the ultraviolet, so space-based observations are required. The lines are often formed over a range of heights, sampling different plasma which complicates the inversion process. These lines are sensitive to the magnetic field via polarized light that is created or modified through the Hanle and Zeeman effects. There are a few observations of these lines, and a significant challenge remains in extracting the magnetic field from the polarization measurements, as detailed model atmospheres with advanced radiative transfer physics are needed. Real progress is obtained by a simultaneous improvement in both the observational side and the modeling side. We present information on the CLASP (Chromospheric LAyer Spectro-Polarimeter) sounding rocket program, and future prospects for these types of measurements.

  20. What can we learn about Mars from satellite magnetic field measurements?

    Science.gov (United States)

    Morschhauser, A.; Mittelholz, A.; Thomas, P.; Vervelidou, F.; Grott, M.; Johnson, C.; Lesur, V.; Lillis, R. J.

    2017-12-01

    The Mars orbiters MGS and MAVEN provide vector magnetic field data for Mars at a variety of altitudes, locations, and local times. In spite of the abundance of data, there are many open questions concerning the crustal magnetic field of Mars. In this contribution, we present our efforts to estimate the shutdown time of the Martian core dynamo and to estimate Martian paleopole locations, using magnetic field satellite data and models derived from these data [1]. Models are primarily based on MGS data, and we shortly present our recent advances to include MAVEN data. There exists some controversy concerning the timing of the Martian core dynamo shutdown [e.g., 2-5]. We address this question by studying the so-called visible magnetization [6-7] of impact craters larger than 400 km in diameter, and conclude that the dynamo ceased to operate in the Noachian period [8]. Further, paleopole locations have been used to constrain the dynamics of the Martian core dynamo [e.g. 4-5, 9]. However, such estimates are limited by the inherent non-uniqueness of inferring magnetization from magnetic field measurements. Here, we discuss how estimated paleopoles are influenced by this non-uniqueness and the limited signal-to-noise ratio of satellite measurements [6]. Furthermore, we discuss how paleopole locations may still be obtained from satellite magnetic field measurements. In this context, we present some new paleopole estimates for Mars including estimates of uncertainties. References: [1] A. Morschhauser et al. (2014), JGR, doi: 10.1002/2013JE004555 [2] R.J. Lillis et al. (2015), JGR, doi: 10.1002/2014je004774 [3] L.L. Hood et al. (2010), Icarus, doi: 10.1016/j.icarus.2010.01.009 [4] C. Milbury et al. (2012), JGR, doi: 10.1029/2012JE004099 [5] B. Langlais and M. Purucker (2007), PSS, 10.1016/j.pss.2006.03.008 [6] F. Vervelidou et al., On the accuracy of paleopole estimations from magnetic field measurements, GJI, under revision 2017 [7] D. Gubbins et al. (2011), GJI, doi: 10

  1. Global Mapping of Near-Earth Magnetic Fields Measured by KITSAT-1 and KITSAT-2

    Directory of Open Access Journals (Sweden)

    Yoo-Surn Pyo

    1994-06-01

    Full Text Available The magnetic field measurements from the KitSat-1 and KitSat-2 were tested by comparing with the IGRF model. The magnetic data have been collected by a three-axis fluxgate magnetometer on each satellite at an altitude of 1,325km and 820km, respectively. To avoid highly variable magnetic disturbances at the polar region, the field map has been drawn within the limits of 50 degrees in latitude. Each data is averaged over the square of 5x5 degrees in both latitude and longitude. In these results, the relatively quiet periods were selected and the sampling rate was 30 seconds. It is shown that the results from these measurements are consistent with the IGRF map over the global surface map.

  2. Magnetic design and method of a superconducting magnet for muon g - 2/EDM precise measurements in a cylindrical volume with homogeneous magnetic field

    Science.gov (United States)

    Abe, M.; Murata, Y.; Iinuma, H.; Ogitsu, T.; Saito, N.; Sasaki, K.; Mibe, T.; Nakayama, H.

    2018-05-01

    A magnetic field design method of magneto-motive force (coil block (CB) and iron yoke) placements for g - 2/EDM measurements has been developed and a candidate placements were designed under superconducting limitations of current density 125 A/mm2 and maximum magnetic field on CBs less than 5.5 T. Placements of CBs and an iron yoke with poles were determined by tuning SVD (singular value decomposition) eigenmode strengths. The SVD was applied on a response matrix from magneto-motive forces to the magnetic fields in the muon storage region and two-dimensional (2D) placements of magneto-motive forces were designed by tuning the magnetic field eigenmode strengths obtained by the magnetic field. The tuning was performed iteratively. Magnetic field ripples in the azimuthal direction were minimized for the design. The candidate magnetic design had five CBs and an iron yoke with center iron poles. The magnet satisfied specifications of homogeneity (0.2 ppm peak-to-peak in 2D placements (the cylindrical coordinate of the radial position R and axial position Z) and less than 1.0 ppm ripples in the ring muon storage volume (0.318 m 0.0 m) for the spiral muon injection from the iron yoke at top.

  3. Theory and modelling of the magnetic field measurement in LISA PathFinder

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Aguilo, M; Garcia-Berro, E [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, c/Esteve Terrades, 5, 08860 Castelldefels (Spain); Lobo, A, E-mail: marc.diaz.aguilo@fa.upc.ed [Institut d' Estudis Espacials de Catalunya, c/Gran Capita 2-4, Edif. Nexus 104, 08034 Barcelona (Spain)

    2010-02-07

    The magnetic diagnostics subsystem of the LISA Technology Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at their respective positions. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses, and hence an interpolation method must be designed and implemented to obtain the values of the magnetic field at these positions. However, such an interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable while, on the other hand, the number of magnetometer channels do not provide sufficient data to go beyond the linear approximation. We describe an alternative method to address this issue, by means of neural network algorithms. The key point in this approach is the ability of neural networks to learn from suitable training data representing the behaviour of the magnetic field. Despite the relatively large distance between the test masses and the magnetometers, and the insufficient number of data channels, we find that our artificial neural network algorithm is able to reduce the estimation errors of the field and gradient down to levels below 10%, a quite satisfactory result. Learning efficiency can be best improved by making use of data obtained in on-ground measurements prior to mission launch in all relevant satellite locations and in real operation conditions. Reliable information on that appears to be essential for a meaningful assessment of magnetic noise in the LTP.

  4. Theory and modelling of the magnetic field measurement in LISA PathFinder

    International Nuclear Information System (INIS)

    Diaz-Aguilo, M; Garcia-Berro, E; Lobo, A

    2010-01-01

    The magnetic diagnostics subsystem of the LISA Technology Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at their respective positions. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses, and hence an interpolation method must be designed and implemented to obtain the values of the magnetic field at these positions. However, such an interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable while, on the other hand, the number of magnetometer channels do not provide sufficient data to go beyond the linear approximation. We describe an alternative method to address this issue, by means of neural network algorithms. The key point in this approach is the ability of neural networks to learn from suitable training data representing the behaviour of the magnetic field. Despite the relatively large distance between the test masses and the magnetometers, and the insufficient number of data channels, we find that our artificial neural network algorithm is able to reduce the estimation errors of the field and gradient down to levels below 10%, a quite satisfactory result. Learning efficiency can be best improved by making use of data obtained in on-ground measurements prior to mission launch in all relevant satellite locations and in real operation conditions. Reliable information on that appears to be essential for a meaningful assessment of magnetic noise in the LTP.

  5. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  6. Torque density measurements on vortex fluids produced by symmetry-breaking rational magnetic fields.

    Science.gov (United States)

    Solis, Kyle J; Martin, James E

    2014-09-07

    We have recently reported on the discovery that an infinite class of triaxial magnetic fields is capable of producing rotational flows in magnetic particle suspensions. These triaxial fields are created by applying a dc field orthogonally to a rational biaxial field, comprised of orthogonal components whose frequencies form a rational ratio. The vorticity axis can be parallel to any of the three field components and can be predicted by a careful consideration of the symmetry of the dynamic field. In this paper we not only test the field-symmetry predictions, but also quantify fluid vorticity as a function of the field parameters (strength, frequency ratio, phase angle and relative dc field strength) and particle shape. These measurements validate the symmetry predictions and demonstrate that rational fields are as effective as vortex fields for producing strong fluid mixing, yet have the advantage that small changes in the frequency of one of the field components can change the vorticity axis. This approach extends the possibilities for noncontact control of fluid flows and should be useful in areas such as microfluidics, and the manipulation and mixing of microdroplets.

  7. Improved methods for the measurement and analysis of stellar magnetic fields

    Science.gov (United States)

    Saar, Steven H.

    1988-01-01

    The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.

  8. Calorimetric method of ac loss measurement in a rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, P. K. [Oxford Instruments NanoScience, Abingdon, Oxfordshire OX13 5QX (United Kingdom); Coombs, T. A.; Campbell, A. M. [Department of Engineering, Electrical Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  9. Magnetic Measurement and Magnet Tutorial, Part 3

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Jack

    2003-07-15

    Magnetic measurements, like magnet design, is a broad subject. It is the intention of this lecture to cover only a small part of the field, regarding the characterization of the line integral field quality of multipole magnets (dipoles, quadrupoles and sextupoles) using compensated rotating coils. Other areas which are not covered are magnet mapping, AC measurements and sweeping wire measurements.

  10. Magnetic field dosimeter development

    International Nuclear Information System (INIS)

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation

  11. Time-resolved luminescence measurements of the magnetic field effect on paramagnetic photosensitizers in photodynamic reactions

    Science.gov (United States)

    Mermut, O.; Bouchard, J.-P.; Cormier, J.-F.; Desroches, P.; Diamond, K. R.; Fortin, M.; Gallant, P.; Leclair, S.; Marois, J.-S.; Noiseux, I.; Morin, J.-F.; Patterson, M. S.; Vernon, M.

    2008-02-01

    The development of multimodal molecular probes and photosensitizing agents for use in photodynamic therapy (PDT) is vital for optimizing and monitoring cytotoxic responses. We propose a combinatorial approach utilizing photosensitizing molecules that are both paramagnetic and luminescent with multimodal functionality to perturb, control, and monitor molecular-scale reaction pathways in PDT. To this end, a time-domain single photon counting lifetime apparatus with a 400 nm excitation source has been developed and integrated with a variable low field magnet (0- 350mT). The luminescence lifetime decay function was measured in the presence of a sweeping magnetic field for a custom designed photosensitizing molecule in which photoinduced electron transfer was studied The photosensitizer studied was a donor-acceptor complex synthesized using a porphyrin linked to a fullerene molecule. The magneto-optic properties were investigated for the free-base photosensitizer complex as well as those containing either diamagnetic (paired electron) or paramagnetic (unpaired electron) metal centers, Zn(II) and Cu(II). The magnetic field was employed to affect and modify the spin states of radical pairs of the photosensitizing agents via magnetically induced hyperfine and Zeeman effects. Since the Type 1 reaction pathway of an excited triplet state photosensitizer involves the production of radical species, lifetime measurements were conducted at low dissolved oxygen concentration (0.01ppm) to elucidate the dependence of the magnetic perturbation on the photosensitization mechanistic pathway. To optimize the magnetic response, a solvent study was performed examining the dependence of the emission properties on the magnetic field in solutions of varying dielectric constants. Lastly, the cytotoxicity in murine tumor cell suspensions was investigated for the novel porphyrin-fullerene complex by inducing photodynamic treatments and determining the associated cell survival.

  12. Recommendations for Guidelines for Environment-Specific Magnetic-Field Measurements, Rapid Program Engineering Project #2

    Energy Technology Data Exchange (ETDEWEB)

    Electric Research and Management, Inc.; IIT Research Institute; Magnetic Measurements; Survey Research Center, University of California; T. Dan Bracken, Inc.

    1997-03-11

    The purpose of this project was to document widely applicable methods for characterizing the magnetic fields in a given environment, recognizing the many sources co-existing within that space. The guidelines are designed to allow the reader to follow an efficient process to (1) plan the goals and requirements of a magnetic-field study, (2) develop a study structure and protocol, and (3) document and carry out the plan. These guidelines take the reader first through the process of developing a basic study strategy, then through planning and performing the data collection. Last, the critical factors of data management, analysis reporting, and quality assurance are discussed. The guidelines are structured to allow the researcher to develop a protocol that responds to specific site and project needs. The Research and Public Information Dissemination Program (RAPID) is based on exposure to magnetic fields and the potential health effects. Therefore, the most important focus for these magnetic-field measurement guidelines is relevance to exposure. The assumed objective of an environment-specific measurement is to characterize the environment (given a set of occupants and magnetic-field sources) so that information about the exposure of the occupants may be inferred. Ideally, the researcher seeks to obtain complete or "perfect" information about these magnetic fields, so that personal exposure might also be modeled perfectly. However, complete data collection is not feasible. In fact, it has been made more difficult as the research field has moved to expand the list of field parameters measured, increasing the cost and complexity of performing a measurement and analyzing the data. The guidelines address this issue by guiding the user to design a measurement protocol that will gather the most exposure-relevant information based on the locations of people in relation to the sources. We suggest that the "microenvironment" become the base unit of area in a study, with

  13. Measuring Coronal Magnetic Fields with Remote Sensing Observations of Shock Waves

    Energy Technology Data Exchange (ETDEWEB)

    Bemporad, Alessandro; Susino, Roberto; Frassati, Federica; Fineschi, Silvano, E-mail: bemporad@oato.inaf.it [INAF, Turin Astrophysical Observatory, Pino Torinese (Italy)

    2016-05-27

    Our limited knowledge of the magnetic fields structuring in the solar corona represents today the main hurdle in our understanding of its structure and dynamic. Over the last decades significant efforts have been dedicated to measure these fields, by approaching the problem on many different sides and in particular: (i) by improving our theoretical understanding of the modification (via Zeeman and Hanle effects) induced by these fields on the polarization of coronal emission lines, (ii) by developing new instrumentation to measure directly with spectro-polarimeters these modifications, (iii) by improving the reliability of the extrapolated coronal fields starting from photospheric measurements, (iv) by developing new techniques to analyse existing remote sensing data and infer properties of these fields, or by combining all these different approaches (e.g., Chifu et al.,).

  14. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  15. Magnetic field measurements of full length 50 mm aperture SSC dipole magnets at Fermilab

    International Nuclear Information System (INIS)

    Strait, J.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Ozelis, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.; Ogitsu, T.

    1992-09-01

    Thirteen 16 m long, 50 mm aperture SSC dipole magnets, designed jointly by Fermilab, Brookhaven National Laboratory, Lawrence Berkeley Laboratory and the SSC Laboratory, have been built at Fermilab. The first nine magnets have been fully tested to date. The allowed harmonics are systematically shifted from zero by amounts larger than the specification. The unallowed harmonics, with the exception of the skew sextupole, are consistent with zero. The magnet-to-magnet RMS variation of all harmonics is much smaller than the specification

  16. Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes

    Science.gov (United States)

    Manuel, Mario

    2012-10-01

    Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 μm, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.

  17. MEASURING THE MAGNETIC FIELD OF CORONAL MASS EJECTIONS NEAR THE SUN USING PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. A. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Stovall, K.; Dowell, J.; Taylor, G. B. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM (United States); White, S. M., E-mail: howard@boulder.swri.edu [Air Force Research Laboratory, Space Vehicles Directorate, Albuquerque, NM (United States)

    2016-11-10

    The utility of Faraday rotation to measure the magnetic field of the solar corona and large-scale transients within is a small, yet growing field in solar physics. This is largely because it has been recognized as a potentially valuable frontier in space weather studies, because the ability to measure the intrinsic magnetic field within coronal mass ejections (CMEs) when they are close to the Sun is of great interest for understanding a key element of space weather. Such measurements have been attempted over the last few decades using radio signals from artificial sources (i.e., spacecraft on the far side of the Sun), but studies involving natural radio sources are scarce in the literature. We report on a preliminary study involving an attempt to detect the Faraday rotation of a CME that passed in front of a pulsar (PSR B0950+08) in 2015 August. We combine radio measurements with those from a broadband visible light coronagraph, to estimate the upper limit of the magnetic field of the CME when it was in the corona. We find agreement between different approaches for obtaining its density, and values that are consistent with those predicted from prior studies of CME density close to the Sun.

  18. A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Francesco; Scalia, Cesare; Gangi, Manuele; Giarrusso, Marina [Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, I-95123 Catania (Italy); Munari, Matteo; Scuderi, Salvatore; Trigilio, Corrado [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Stift, Martin J. [Armagh Observatory, College Hill, Armagh BT61 9DG. Northern Ireland (United Kingdom)

    2017-10-20

    Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transverse component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.

  19. A fast continuous magnetic field measurement system based on digital signal processors

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; /Fermilab; Maroussov, V.; /Purdue U.; Nehring, R.; Nogiec, J.; Orris, D.; /Fermilab; Poukhov,; Prakoshyn, F.; /Dubna, JINR; Schlabach, P.; Tompkins, J.C.; /Fermilab

    2005-09-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements.

  20. Measured surface magnetic field attenuation of shielded windows and wire mesh over an electrically small enclosure

    International Nuclear Information System (INIS)

    Hoeft, L.O.; Hofstra, J.S.; Karaskiewicz, R.J.; Wiser, G.

    1984-01-01

    The surface magnetic field attenuation of five types of shielded transparency (window) material was measured over the frequency range 10 kHz to 100 MHz by installing them on an .61 m x .61 m x .2 m enclosure, placing the enclosure on the wall of a TEM cell and measuring the surface and interior magnetic fields using a computer-controlled network analyzer system. The samples included two thicknesses of conductive grids on acrylic, hardware, cloth with 1/8 and 1/4-inch mesh, and a fine mesh laminated optical display window. These measurements are indicative of an enclosure with aperture coupling; namely, they become frequency-independent at high frequencies. Coarse mesh samples (1/8-1/4-inch mesh) were able to provide 50 to 60 dB of magnetic field reduction at tens of MHz, whereas the finer mesh did slightly better. This behavior is consistent with magnetic polarizability theory. Material thickness did not have an appreciable effect for frequencies above a MHz

  1. A fast continuous magnetic field measurement system based on digital signal processors

    International Nuclear Information System (INIS)

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Maroussov, V.; Nehring, R.; Nogiec, J.; Orris, D.; Poukhov, O.; Prakoshyn, F.; Schlabach, P.; Tompkins, J.C.

    2005-01-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements

  2. A configurable component-based software system for magnetic field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab

    2005-09-01

    A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.

  3. First results of the magnetic field measurements on the G0 IV η Boo

    Science.gov (United States)

    Butkovskaya, V. V.; Plachinda, S. I.; Baklanova, D.; Pankov, N. F.

    2018-01-01

    Search for a magnetic field on η Boo has been performed over 50 nights in 1999 — 2014. Statistically significant magnetic field has been detected over 5 out of 50 nights. The total range of the longitudinal magnetic field variations is from -15.1±6.4 G to 23.1±9.6 G.

  4. Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Storozhenko, A.M. [Southwest State University, Kursk, 305040 (Russian Federation); Stannarius, R. [Otto von Guericke University Magdeburg, Magdeburg, 39016 Germany (Germany); Tantsyura, A.O.; Shabanova, I.A. [Southwest State University, Kursk, 305040 (Russian Federation)

    2017-06-01

    We study magnetic suspensions with different concentrations of ferromagnetic nanoparticles in a spherical container under the action of a rotating magnetic field. Experimental data on the concentration dependence of the rotational effect, viz. the torque exerted by the magnetic field, are presented. We explain the observed torque characteristics using a model that takes into account field-driven aggregation of the magnetic nanoparticles in stationary or slowly rotating fields. At sufficiently high rotation rates, the rotating magnetic field obviously destroys these aggregates, which results in a decreasing torque with increasing rotation frequency of the field. - Highlights: • The experimental study of the rotational effect in the magnetic fluids is presented. • The torque density non-monotonously depends on the magnetic field frequency. • Experimental data can be explained assuming aggregation of magnetic nanoparticles.

  5. Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields

    International Nuclear Information System (INIS)

    Storozhenko, A.M.; Stannarius, R.; Tantsyura, A.O.; Shabanova, I.A.

    2017-01-01

    We study magnetic suspensions with different concentrations of ferromagnetic nanoparticles in a spherical container under the action of a rotating magnetic field. Experimental data on the concentration dependence of the rotational effect, viz. the torque exerted by the magnetic field, are presented. We explain the observed torque characteristics using a model that takes into account field-driven aggregation of the magnetic nanoparticles in stationary or slowly rotating fields. At sufficiently high rotation rates, the rotating magnetic field obviously destroys these aggregates, which results in a decreasing torque with increasing rotation frequency of the field. - Highlights: • The experimental study of the rotational effect in the magnetic fluids is presented. • The torque density non-monotonously depends on the magnetic field frequency. • Experimental data can be explained assuming aggregation of magnetic nanoparticles.

  6. Detecting the presence of a magnetic field under Gaussian and non-Gaussian noise by adaptive measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Mei; Li, Jun-Gang, E-mail: jungl@bit.edu.cn; Zou, Jian

    2017-06-15

    Highlights: • Adaptive measurement strategy is used to detect the presence of a magnetic field. • Gaussian Ornstein–Uhlenbeck noise and non-Gaussian noise have been considered. • Weaker magnetic fields may be more easily detected than some stronger ones. - Abstract: By using the adaptive measurement method we study how to detect whether a weak magnetic field is actually present or not under Gaussian noise and non-Gaussian noise. We find that the adaptive measurement method can effectively improve the detection accuracy. For the case of Gaussian noise, we find the stronger the magnetic field strength, the easier for us to detect the magnetic field. Counterintuitively, for non-Gaussian noise, some weaker magnetic fields are more likely to be detected rather than some stronger ones. Finally, we give a reasonable physical interpretation.

  7. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  8. Temperature measurements in small holes drilled in superconducting bulk during pulsed field magnetization

    Science.gov (United States)

    Fujishiro, H.; Naito, T.; Furuta, D.; Kakehata, K.

    2010-11-01

    The time dependence of the temperatures T(z, t) has been measured along the thickness direction z in several drilled holes in a superconducting bulk during pulsed field magnetization (PFM) and the heat generation and heat transfer in the bulk have been discussed. In the previous paper [H. Fujishiro, S. Kawaguchi, K. Kakehata, A. Fujiwara, T. Tateiwa, T. Oka, Supercond. Sci. Technol. 19 (2006) S540], we calculated the T(z, t) profiles in the bulk by solving a three-dimensional heat-diffusion equation to reproduce the measured T(t) on the bulk surface; the heat generation took place adiabatically and the calculated T(z, t) was isothermal along the z direction. In this study, the measured T(z, t) at the top surface was higher than that at the bottom surface just after the pulse field application at t < 0.5 s, and then became isothermal with increasing time. These results suggest that the magnetic flux intrudes inhomogeneously into the bulk from the edge of the top surface and the periphery at the early stage. The inhomogeneous magnetic flux intrusion and the flux trap during PFM change depending on the strength of the pulsed field and the pulse number in the successive pulse field application.

  9. Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab

    International Nuclear Information System (INIS)

    Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.

    2006-01-01

    Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest

  10. Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.; /Fermilab

    2006-08-01

    Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest.

  11. The Inner Structure of Collisionless Magnetic Reconnection: The Electron-Frame Dissipation Measure and Hall Fields

    Science.gov (United States)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha

    2011-01-01

    It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron s rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.

  12. The inner structure of collisionless magnetic reconnection: The electron-frame dissipation measure and Hall fields

    International Nuclear Information System (INIS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha

    2011-01-01

    It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.

  13. The inner structure of collisionless magnetic reconnection: The electron-frame dissipation measure and Hall fields

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2011-12-15

    It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.

  14. Electric and magnetic field measurements in an outdoor electric power substation

    Energy Technology Data Exchange (ETDEWEB)

    Safigianni, A.S.; Tsompanidou, C.G. [Democritus Univ. Thrace, Xanthi (Greece). Dept. of Electrical and Computer Engineering

    2006-07-01

    With the ever increasing environmental exposure to man-made electromagnetic fields (EMFs), public concern regarding the potential health hazards of exposure to electric and magnetic fields at extremely low frequencies (ELF) has also increased. This paper examined the ELF fields at a 150/20 kV outdoor electric power substation in Xanthi, Greece. Basic data regarding this substation was provided along with previous relevant research studies. The reference levels for safe general public and occupational exposure according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) was also presented. The instruments used to take the measurements were described and indicative results of the EMFs measurements in the substation were provided. In general, the measured magnetic flux density values were far below the reference level for safe public and occupational exposure. No significant differentiation was noted in these values in relation to body height. However, the levels were found to be in violation in two positions, near the capacitor banks. It was emphasized that these values greatly decreased with distance, and the positions where these high values were measured were not occupied by technicians when the capacitors were under voltage. In addition, it was emphasized that the measured magnetic flux density values were very small in the supervision room, where the supervisor of the substation works and in the ring zone where the public has access. All the measured electric field strength values were below the reference level for safe public and occupational exposure. It was concluded that the measured field values are within recognized guidelines and pose no danger for public or working personnel. 19 refs., 1 tab., 4 figs.

  15. Application of stable, nitroxide free radicals in solution to low magnetic fields measurements

    International Nuclear Information System (INIS)

    Besson, Rene

    1973-01-01

    The first attempts to use the Overhauser-Abragam effect for measuring low magnetic fields date back to 1956. However, the instability of the free radical used, PREMY'S Salt, as well as its virtual insolubility in solvents other than water, hampered the development of the nuclear magnetic resonance magnetometer realized in accordance to this principle: dynamic polarization of protons. New free radicals stable and soluble in many solvents, will enhanced the interest in the device. In particular, the use of 2,2,6,6, tetramethyl- piperidine-4-one-1-oxide (TANO or TANONE) leads to a high sensitivity, low field magnetometer. The methods of measurements, the required apparatus and sample preparation are first described. Next the results of measurements made both in high and low magnetic fields with various free radicals in different solvents are presented in tabular and graphical form. These measurements have determined which radical-solvent couple will yield a high dynamic polarization coefficient. In addition, the improvement obtained by complete deuteration of the free radical has been demonstrated. Problems connected with the application of such radicals in solution to the 'double effect probe' of the magnetometer built by LETI at CEN Grenoble and the solutions reached are discussed. (author) [fr

  16. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2008-01-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B pol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T e , n e , and B || along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n e B || product and higher n e and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  17. A low-cost spectrometer for NMR measurements in the Earth's magnetic field

    International Nuclear Information System (INIS)

    Michal, Carl A

    2010-01-01

    We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US$200. The spectrometer performance is demonstrated with spin-echo and Carr–Purcell–Meiboom–Gill pulse sequences on a water sample

  18. A low-cost spectrometer for NMR measurements in the Earth's magnetic field

    Science.gov (United States)

    Michal, Carl A.

    2010-10-01

    We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US200. The spectrometer performance is demonstrated with spin-echo and Carr-Purcell-Meiboom-Gill pulse sequences on a water sample.

  19. Dynamic regimes in YBCO in applied magnetic field probed by swept frequency microwave measurements

    International Nuclear Information System (INIS)

    Sarti, S; Silva, E; Giura, M; Fastampa, R; Boffa, M; Cucolo, A M

    2004-01-01

    We report measurements of the microwave resistivity in YBa 2 Cu 3 O 7-δ (YBCO), in the presence of an applied magnetic field. Measurements are performed as a function of frequency, over a continuum spectrum between 6 and 20 GHz, by means of a Corbino disc geometry. These data allow for a direct identification of different dynamical regimes in the dissipation of YBCO in the presence of an applied magnetic field. While at high temperatures a frequency independent resistivity is observed, at lower temperatures we find a marked frequency dependence. The line in the (H,T) plane at which this change in the dynamical regime is observed is clearly identified and discussed in terms of vortex motion and fluctuational resistivity

  20. Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields

    Science.gov (United States)

    McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.

    2017-12-01

    The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.

  1. Effects of light guide and magnetic field on the characteristics of the short time measuring system

    International Nuclear Information System (INIS)

    Yamada, Yoshihiro; Ohira, Kyozo

    1977-01-01

    In order to construct the nuclear life-time measurement apparatus with good energy and time resolution, consisting of DuMond type beta-ray spectrometer and plastic scintillator, experimental studies are carried out for the effects of light guide and magnetic field on the time resolution, and for the effects of μ-metal shielding on the energy resolution. It has been found that all these effects could be practically diminished. (auth.)

  2. Measurements of the longitudinal nuclear magnetic resonance in superfluid helium-3 B as a function of magnetic field

    International Nuclear Information System (INIS)

    Sherrill, D.S.

    1987-01-01

    These are the first measurements of the longitudinal NMR mode in a magnetic field large enough to cause an appreciable distortion of the energy gap. Measurements were made at pressures P = 3, 6, 12, 21, and 33 bar; at fields from 2 to 15 MHz; and over temperatures between 0.18 and 0.40 T/sub c/(P), where T/sub c/(P) is the superfluid transition temperature. Therefore, these experiments are in the collisionless regime in which the longitudinal resonance frequency is small compared to the quasiparticle collision frequency. The gap distortion causes a large shift in the longitudinal frequency. As the magnetic field increases from 2 to 15 MHz, the frequency decreases by about 20 kHz at all pressures. Thus, these experiments are a powerful probe of the field distortion of the energy gap. Pulsed NMR is used and, in addition to the resonance frequency, the amplitude and damping of the induced oscillations were obtained. Results are compared for the longitudinal frequency as a function of field, temperature, and pressure to a recent theory, and estimates of the theoretical parameters involved were obtained. At the lowest temperatures a startling behavior was observed, in which the resonance lineshape broadened with decreasing temperature

  3. In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer

    International Nuclear Information System (INIS)

    Fang Jian-Cheng; Wang Tao; Li Yang; Cai Hong-Wei; Zhang Hong

    2015-01-01

    A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam’s direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell’s transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium’s D1 line. Furthermore, the residual magnetic fields are measured with σ + - and σ – -polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm. (paper)

  4. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  5. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.

    Science.gov (United States)

    Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L

    2016-08-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.

  6. Measurement and calculation of magnetic fields associated with rail-gun currents

    International Nuclear Information System (INIS)

    Kerrisk, J.F.; Fowler, C.M.; Peterson, D.R.

    1983-01-01

    The magnetic field associated with current flow in the rails of a rail gun has been measured. The test used a magnetic flux-compression generator and a 1.2-m-long rail gun to accelerate a 4.2-g arc-driven projectile to 3.5 km/s; peak current was 900 kA. Magnetic field probes, consisting of two-turn coils 6.4 mm in diam, were located at two axial locations along the rails. Probe 3, at 0.60 m from the breech, was 28 mm from the center of the bore, and Probe 4, at 0.85 m from the breech, was 19 mm from the center of the bore. Two-dimensional calculations of the field at the probe locations were done assuming that when current starts to flow at an axial location, it is distributed on the rail surface as in the high-frequency limit. When the projectile and arc are two to three times the transverse probe separation beyond the probe, the measured field should be approximately two-dimensional. Probe signals indicate that the projectile was traveling at 3.2 km/s when it passed Probe 4. At this velocity, the projectile should be three transferse probe separations (about 60 mm) from the axial probe location in about 20 μS. Allowing for a 40-mm arc length adds about 15 μS. With these assumptions, the measured field should approach the two-dimensional limit in about 35 μS. However, about 100 μS were required. The results from Probe 3 are similar. The cause of this delay is uncertain at this time; two possibilities that are being investigated are that the arc is much longer than expected or that current flow in the rails at these axial locations is less than that measured at the breech because of spurious arcs

  7. Consideration of magnetic field fluctuation measurements in a torus plasma with heavy ion beam probe

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujisawa, A.; Ohshima, S.; Nakano, H.

    2004-03-01

    The article discusses feasibility of magnetic fluctuation measurement with a heavy ion beam probe (HIBP) in an axisymmetric torus configuration. In the measurements, path integral fluctuation along the probing beam orbit should be considered as is similar to the density fluctuation measurements with HIBP. A calculation, based on an analytic formula, is performed to estimate the path integral effects for fluctuation patterns that have difference in profile, the correlation length, the radial wavelength, and the poloidal mode number. In addition, the large distance between the plasma and the detector is considered to lessen the path integral effect. As a result, it is found that local fluctuation of magnetic field can be properly detected with a heavy ion beam probe. (author)

  8. Construction of a stable and homogeneous magnetic field at 10 milligauss for neutron electric dipole moment measurements: preparatory phase

    Energy Technology Data Exchange (ETDEWEB)

    Gravador, E.; Yoshiki, Hajime; Feizeng, H. [Ibaraki Univ., Mito (Japan)

    1996-08-01

    A superthermal UCN edm measuring machine is currently under construction at KEK. It utilizes a magnetically shielded superconducting solenoid at liquid helium temperature to generate a stable and homogeneous magnetic field at 10 milligauss. The design of the magnetic shield and solenoid and preliminary evaluation of shielding effectiveness is presented. (author)

  9. Validation of the GOES-16 magnetometer using multipoint measurements and magnetic field models

    Science.gov (United States)

    Califf, S.; Loto'aniu, P. T. M.; Redmon, R. J.; Sarris, T. E.; Brito, T.

    2017-12-01

    The Geostationary Operational Environmental Satellites (GOES) have been providing continuous geomagnetic field measurements for over 40 years. While the primary purpose of GOES is operational, the magnetometer data are also widely used in the scientific community. In an effort to validate the recently launched GOES-16 magnetometer, we compare the measurements to existing magnetic field models and other GOES spacecraft currently on orbit. There are four concurrent measurements from GOES-13, 14, 15 and 16 spanning 75W to 135W longitude. Also, GOES-13 is being replaced by GOES-16 in the GOES-East location, and during the transition, GOES-13 and GOES-16 will be parked nearby in order to assist with calibration of the new operational satellite. This work explores techniques to quantify the performance of the GOES-16 magnetometer by comparison to data from nearby spacecraft. We also build on previous work to assimilate in situ measurements with existing magnetic field models to assist in comparing data from different spatial locations. Finally, we use this unique dataset from four simultaneous geosynchronous magnetometer measurements and the close separation between GOES-13 and GOES-16 to study the spatial characteristics of ULF waves and other magnetospheric processes.

  10. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  11. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  12. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  13. Space Technology 5 Multi-point Measurements of Near-Earth Magnetic Fields: Initial Results

    Science.gov (United States)

    Slavin, James A.; Le, G.; Strangeway, R. L.; Wang, Y.; Boardsen, S.A.; Moldwin, M. B.; Spence, H. E.

    2007-01-01

    The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.

  14. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  15. The inference of vector magnetic fields from polarization measurements with limited spectral resolution

    Science.gov (United States)

    Lites, B. W.; Skumanich, A.

    1985-01-01

    A method is presented for recovery of the vector magnetic field and thermodynamic parameters from polarization measurement of photospheric line profiles measured with filtergraphs. The method includes magneto-optic effects and may be utilized on data sampled at arbitrary wavelengths within the line profile. The accuracy of this method is explored through inversion of synthetic Stokes profiles subjected to varying levels of random noise, instrumental wave-length resolution, and line profile sampling. The level of error introduced by the systematic effect of profile sampling over a finite fraction of the 5 minute oscillation cycle is also investigated. The results presented here are intended to guide instrumental design and observational procedure.

  16. Precise measurement of magnetic field gradients from free spin precession signals of He-3 and Xe-129 magnetometers

    NARCIS (Netherlands)

    Allmendinger, Fabian; Blümler, Peter; Doll, Michael; Grasdijk, Oliver; Heil, Werner; Jungmann, Klaus; Karpuk, Sergej; Krause, Hans-Joachim; Offenhäuser, Andreas; Repetto, Maricel; Schmidt, Ulrich; Sobolev, Yuri; Tullney, Kathlyne; Willmann, Lorenz; Zimmer, Stefan

    2017-01-01

    We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized He-3 and (12)9Xe atoms in a spherical cell inside a magnetic guiding field

  17. Low-noise pulse-mode current power supply for magnetic field measurements of magnets for accelerators

    International Nuclear Information System (INIS)

    Omel'yanenko, M.M.; Borisov, V.V.; Donyagin, A.M.; Kostromin, S.A.; Makarov, A.A.; Khodzhibagiyan, G.G.; Shemchuk, A.V.

    2017-01-01

    The described pulse-mode current power supply has been designed and fabricated for the magnetic field measurement system of superconducting magnets for accelerators. The power supply is based on a current regulator with pass transistor bank in linear mode. The output current pulses (0-100 A) are produced by using the energy of preliminary charged capacitor bank (5-40 V), which is charged additionally after each pulse. There is no AC-line frequency and harmonics ripple in the output current, the relative noise level is less than -100 dB (or 10 -5 ) of RMS value (it is defined as the ratio of output RMS noise current to the maximal output current 100 A within the operating bandwidth, expressed in dB).

  18. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    Science.gov (United States)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing

  19. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  20. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  1. Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements

    Science.gov (United States)

    Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli

    2017-12-01

    An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.

  2. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  3. Measurement of the poloidal magnetic field in the PBX-M tokamak using the motional Stark effect

    International Nuclear Information System (INIS)

    Levinton, F.M.; Fonck, R.J.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Powell, E.T.; Roberts, D.W.

    1989-05-01

    Polarimetry measurements of the Doppler-shifted H/sub α/ emission from a hydrogen neutral beam on the PBX-M tokamak have been employed in a novel technique for obtaining q(0) and poloidal magnetic field profiles. The electric field from the beam particle motion across the magnetic field (E = V/sub beam/ /times/ B) causes a wavelength splitting of several angstroms, and polarization of the emitted radiation (Stark effect). Viewed transverse to the fields, the emission is linearly polarized with the angle of polarization related to the direction of the magnetic field. 14 refs., 5 figs

  4. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  5. Magnetic field of mars from data of simultaneous measurements in the planet's magnetosphere and in the solar wind

    International Nuclear Information System (INIS)

    Dolginov, S.S.; Shkol'nikova, S.I.; Zhuzgov, L.N.

    1985-01-01

    This paper examines the parameters of the magnetic dipole of Mars according to measurements by the Mars-2 probe on February 23-24, 1972. In all components there were observed fields of marked intensity in the components; however, at the second pass of the pericenter no field of marked intensity was observed. The passage through zero and change of polarity of the radial component Y /sub m/ of the field was also revealed in the magnetogram. The results of simultaneous measurements of interplanetary magnetic fields near Mars on its day and night sides and data on the dynamic pressure of the solar wind (IMP-6) are compared. The existence of a Martian magnetic field with a magnetic moment that is an effective obstacle to the solar wind is demonstrated. It is estimated that, with the width of the polar cap of Mars ca 45 degrees, the magnetic tail of the Martian magnetosphere can reach as far as 90R /sub M/

  6. Effect of magnetic fields on the Kondo insulator CeRhSb: Magnetoresistance and high-field heat capacity measurements

    International Nuclear Information System (INIS)

    Malik, S.K.; Menon, L.; Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1997-01-01

    The compound CeRhSb is a mixed valent Ce-based compound which shows a gap in the electronic density of states at low temperatures. The gap manifests by a rise in electrical resistivity below about 8 K from which the gap energy is estimated to be about 4 K. We have carried out heat capacity measurements on this compound in various applied fields up to 9.85 T. The magnetic contribution to the heat capacity, ΔC, is found to have a maximum in ΔC/T vs T at 10 K, below which ΔC/T is linear with T. This is attributed to the fact that below this temperature, in the gapped state, the electronic density of states decreases linearly with decreasing temperature. On application of a magnetic field, the electronic specific heat coefficient γ in the gapped state increases by ∼4mJ/molK 2 . The maximum in ΔC/T vs T is observed in all fields, which shifts to lower temperatures ∼1K at 5.32 T and raises again at 9.85 T to about the same values as at H=0T. This suggests that the gap exists for all fields up to 9.85 T. Above 10 K, in the mixed-valent state, ΔC/T vs T decreases with increasing temperature in zero field. There is hardly any effect of application of field in the mixed-valent state. We have also carried out magnetoresistance measurements on CeRhSb up to fields of 5.5 T at 2, 4.5, 10, 20, and 30 K. The magnetoresistance in CeRhSb is positive at temperatures of 4.5 K and above, in applied fields up to 5.5 T. At 5.5 T, the magnetoresistance is maximum at 4.5 K (6%) and decreases with increasing temperature. The observation of the maximum is consistent with the observation of a maximum in ΔC/T vs T and is due to a change in the density of states. At a temperature of 2 K, a negative magnetoresistance is observed for magnetic fields greater than ∼3.5T which suggests reduction in the gap. copyright 1997 The American Physical Society

  7. High magnetic field measurement utilizing Faraday rotation in SF11 glass in simplified diagnostics.

    Science.gov (United States)

    Dey, Premananda; Shukla, Rohit; Venkateswarlu, D

    2017-04-01

    With the commercialization of powerful solid-state lasers as pointer lasers, it is becoming simpler nowadays for the launch and free-space reception of polarized light for polarimetric applications. Additionally, because of the high power of such laser diodes, the alignment of the received light on the small sensor area of a photo-diode with a high bandwidth response is also greatly simplified. A plastic sheet polarizer taken from spectacles of 3D television (commercially available) is simply implemented as an analyzer before the photo-receiver. SF11 glass is used as a magneto-optic modulating medium for the measurement of the magnetic field. A magnetic field of magnitude more than 8 Tesla, generated by a solenoid has been measured using this simple assembly. The measured Verdet constant of 12.46 rad/T-m is obtained at the wavelength of 672 nm for the SF11 glass. The complete measurement system is a cost-effective solution.

  8. The Measurement of Low Frequency Magnetic Field of Two Kinds of GSM900 Mobile Phone

    Directory of Open Access Journals (Sweden)

    Mehri Kaviani Moghadam

    2008-06-01

    Full Text Available Introduction:  The  use  of  mobile  communication  systems  has  dramatically  increased  over  the  past  decade. Although many studies have been performed to determine the effect of radio frequency (RF but  less attention has been paid to the possible biological impact of exposure to extremely low frequency  (ELF components.   The objective of this study is two folds. One is to design the equipments needed for the measurement of  the ELF fields of two types of GSM900 mobile phone. Secondly, use a protocol suitable for an accurate  assessment of the ELF fields.  Materials  and Methods:  First  a  home-made  search  coil  was  provided  and  calibrated precisely  under  several experiments. Using Fast Fourier Transform, the power spectrum density of the induced voltage in  the search coil was analyzed and the amplitudes of 217 Hz and its harmonics were extracted and then the  distribution of magnetic field in the back side of mobile phones was determined.  Results: The values of B-field on the back side of the two kinds of GSM mobile phone were different.  They  were  between  50  to  160  µT in  Nokia  3310  and  14  to  30  µT in  Nokia  8310.  Considering  the  difference between the amplitudes of frequency components at 217 Hz and its harmonics in the two kinds  of mobile phone, a range of magnetic flux density at different times in a five day period was measured.  Discussion and Conclusion: These findings emphasize the need for considering the distribution of low  frequency magnetic field from mobile phone when biological effects of magnetic fields are studied. To  determine  the  intensity  windowing  effect,  one  must  consider  the  physical  characteristics  of  the  fundamental  frequency  component  wave  (217  Hz  and  its  harmonics  produced  by  the  mobile  phone  similar to the one generated under a real situation.

  9. Electrical conductivity of the Earth's mantle after one year of SWARM magnetic field measurements

    Science.gov (United States)

    Civet, François; Thebault, Erwan; Verhoeven, Olivier; Langlais, Benoit; Saturnino, Diana

    2015-04-01

    We present a global EM induction study using L1b Swarm satellite magnetic field measurements data down to a depth of 2000 km. Starting from raw measurements, we first derive a model for the main magnetic field, correct the data for a lithospheric field model, and further select the data to reduce the contributions of the ionospheric field. These computations allowed us to keep a full control on the data processes. We correct residual field from outliers and estimate the spherical harmonic coefficients of the transient field for periods between 2 and 256 days. We used full latitude range and all local times to keep a maximum amount of data. We perform a Bayesian inversion and construct a Markov chain during which model parameters are randomly updated at each iteration. We first consider regular layers of equal thickness and extra layers are added where conductivity contrast between successive layers exceed a threshold value. The mean and maximum likelihood of the electrical conductivity profile is then estimated from the probability density function. The obtained profile particularly shows a conductivity jump in the 600-700 km depth range, consistent with the olivine phase transition at 660 km depth. Our study is the first one to show such a conductivity increase in this depth range without any a priori informations on the internal strucutres. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations in the depth range where the probability density function is the narrowest. We finally obtained a temperature gradient in the lower mantle close to adiabatic.

  10. Magnetic Field "Flyby" Measurement Using a Smartphone's Magnetometer and Accelerometer Simultaneously

    Science.gov (United States)

    Monteiro, Martin; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2017-01-01

    The spatial dependence of magnetic fields in simple configurations is a common topic in introductory electromagnetism lessons, both in high school and in university courses. In typical experiments, magnetic fields and distances are obtained taking point-by-point values using a Hall sensor and a ruler, respectively. Here, we show how to take…

  11. A polarisation modulation scheme for measuring vacuum magnetic birefringence with static fields

    Energy Technology Data Exchange (ETDEWEB)

    Zavattini, G.; Ejlli, A. [Universita di Ferrara, Dipt. di Fisica e Scienze della Terra (Italy); INFN, Sezione di Ferrara (Italy); Della Valle, F. [Universita di Trieste, Dipt. di Fisica, Trieste (Italy); INFN, Sezione di Trieste, TS (Italy); Ruoso, G. [INFN, Lab. Nazionali di Legnaro (Italy)

    2016-05-15

    A novel polarisation modulation scheme for polarimeters based on Fabry-Perot cavities is presented. The application to the measurement of the magnetic birefringence of vacuum with the HERA superconducting magnets in the ALPS-II configuration is discussed. (orig.)

  12. Measurements of intermediate-frequency electric and magnetic fields in households

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, Sam, E-mail: sam.aerts@intec.ugent.be [Department of Information Technology, Ghent University/iMinds, iGent, Technologiepark-Zwijnaarde 15, B-9052 Ghent (Belgium); Calderon, Carolina [Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Valič, Blaž [Institute of Non-Ionizing Radiation (INIS), Pohorskega bataljona 215, Ljubljana 1000 (Slovenia); Maslanyj, Myron; Addison, Darren; Mee, Terry; Goiceanu, Cristian [Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Verloock, Leen; Van den Bossche, Matthias [Department of Information Technology, Ghent University/iMinds, iGent, Technologiepark-Zwijnaarde 15, B-9052 Ghent (Belgium); Gajšek, Peter [Institute of Non-Ionizing Radiation (INIS), Pohorskega bataljona 215, Ljubljana 1000 (Slovenia); Vermeulen, Roel [Institute for Risk Assessment Sciences, Department of Environmental Epidemiology, Utrecht University, Yalelaan 2, 3508 Utrecht (Netherlands); Röösli, Martin [Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, P.O. Box, 4002 Basel (Switzerland); University of Basel, Petersplatz 1, 4003 Basel (Switzerland); Cardis, Elisabeth [Barcelona Institute for Global Health (ISGlobal) and Municipal Institute of Medical Research (IMIM-Hospital del Mar), Doctor Aiguader, 88, 08003 Barcelona (Spain); Martens, Luc; Joseph, Wout [Department of Information Technology, Ghent University/iMinds, iGent, Technologiepark-Zwijnaarde 15, B-9052 Ghent (Belgium)

    2017-04-15

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residences as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ{sub E} 1.0 and {sub E}Q{sub H} 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens. • No

  13. Measurements of intermediate-frequency electric and magnetic fields in households

    International Nuclear Information System (INIS)

    Aerts, Sam; Calderon, Carolina; Valič, Blaž; Maslanyj, Myron; Addison, Darren; Mee, Terry; Goiceanu, Cristian; Verloock, Leen; Van den Bossche, Matthias; Gajšek, Peter; Vermeulen, Roel; Röösli, Martin; Cardis, Elisabeth; Martens, Luc; Joseph, Wout

    2017-01-01

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residences as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ E 1.0 and E Q H 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens. • No emissions exceeded

  14. Differential detection for measurements of Faraday rotation by means of ac magnetic fields

    International Nuclear Information System (INIS)

    Valev, V K; Wouters, J; Verbiest, T

    2008-01-01

    We demonstrate that by using a combination of a Wollaston prism and two photodiodes the accuracy in the measurements of Faraday rotation with ac magnetic fields can be greatly improved. Our experiments were performed on microscope cover glass plates with thicknesses between 0.13 and 0.16 mm. We show that our setup is capable of distinguishing between the Faraday rotation signals of glass plates having a difference in thickness of a few micrometers, corresponding to Faraday rotations of hundreds of microdegrees per Tesla only

  15. Structure of irregular galactic magnetic fields determined on the basis of cosmic ray measurements

    International Nuclear Information System (INIS)

    Somogyi, A.

    1975-02-01

    In the paper a method is described to determine the structural composition of random galactic fields on the basis of cosmic ray measurements, down to structures with characteristic length of the order of 0.001 to 1 pc. Assuming the diffusion mean free path of the particles to be independent of particle energy the spectral index of magnetic irregularities is estimated to be -(1.0+-0.5). The linear size of the confinement volume is found to be almost independent of particle energy. (Sz.Z.)

  16. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  17. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  18. Hazard surveillance for workplace magnetic fields. 1: Walkaround sampling method for measuring ambient field magnitude; 2: Field characteristics from waveform measurements

    Energy Technology Data Exchange (ETDEWEB)

    Methner, M.M.; Bowman, J.D.

    1998-03-01

    Recent epidemiologic research has suggested that exposure to extremely low frequency (ELF) magnetic fields (MF) may be associated with leukemia, brain cancer, spontaneous abortions, and Alzheimer`s disease. A walkaround sampling method for measuring ambient ELF-MF levels was developed for use in conducting occupational hazard surveillance. This survey was designed to determine the range of MF levels at different industrial facilities so they could be categorized by MF levels and identified for possible subsequent personal exposure assessments. Industries were selected based on their annual electric power consumption in accordance with the hypothesis that large power consumers would have higher ambient MFs when compared with lower power consumers. Sixty-two facilities within thirteen 2-digit Standard Industrial Classifications (SIC) were selected based on their willingness to participate. A traditional industrial hygiene walkaround survey was conducted to identify MF sources, with a special emphasis on work stations.

  19. Evidence of magnetic field in plasma focus by means of Faraday rotation measurements

    International Nuclear Information System (INIS)

    Fischfeld, G.

    1982-01-01

    Preliminary results of Faraday rotation measurements on a beam of laser light crossing the plasma column in the axial direction. are repacted. The presence of intense axial magnetic field Bsup(z) in the column both before and during the pinch phase is demonstrated. The experiments were performed on the Mather type Frascati 1 MJ plasma Focus, operated at 250 KJ 3 torr D 2 filling pressure. Is is used in the measurements a Quantel YG 49 YAG laser, frecuency doubled by means of KD*P crystal, which delivers about 60 mJ in 3 ns at = 530 nm. The beam polarization is analized by Wollaston prism. The electronic density is determined by Mach-Zender insterferometry. Two measurements are taken at time close to the end of the radial collapse phase, yielding Faraday rotation angles of 0.25 +- 0.05 rd and 0.56 +- o.05 rd which correspond to values, of axial magnetic fields of b(sup z) = 500 KG and B(sub z) = 400 KG. (Author) [pt

  20. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  1. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by {sup 55}Mn-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D

    2003-05-01

    The longitudinal (H{sub Z}) and transverse (H{sub T}) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H{sub T} is shown to be due mainly to the reduction of the energy barrier.

  2. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  3. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  4. Poloidal magnetic field profile measurements on the microwave tokamak experiment using far-infrared polarimetry

    International Nuclear Information System (INIS)

    Rice, B.W.

    1992-09-01

    The measurement of plasma poloidal magnetic field (B) profiles in tokamaks with good temporal and spatial resolution has proven to be a difficult but important measurement. A large range of toroidal confinement phenomena is expected to depend sensitively on the radial variation of B including the tearing instability, sawtooth oscillations, disruptions, and transport. Experimental confirmation of theoretical models describing these phenomena has been hampered by the lack of detailed B measurements. A fifteen chord far-infrared (FIR) polarimeter has been developed to measure B in the Microwave Tokamak, Experiment (MTX). Polarimetry utilizes the well known Faraday rotation effect, which causes a rotation of the polarization of an FIR beam propagating in the poloidal plane. The rotation angle is proportional to the component of B parallel to the beam. A new technique for determining the Faraday rotation angle is introduced, based on phase measurements of a rotating polarization ellipse. This instrument has been used successfully to measure B profiles for a wide range of experiments on MTX. For ohmic discharges, measurements of the safety factor on axis give q 0 ∼ 0.75 during sawteeth and q 0 > 1 without sawteeth. Large perturbations to the polarimeter signals correlated with the sawtooth crash are observed during some discharges. Measurements in discharges with electron cyclotron heating (ECH) show a transition from a hollow to peaked J profile that is triggered by the ECH pulse. Current-ramp experiments were done to perturb the J profile from the nominal Spitzer conductivity profile. Profiles for initial current ramps and ramps starting from a stable equilibrium have been measured and are compared with a cylindrical diffusion model. Finally, the tearing mode stability equation is solved using measured J profiles. Stability predictions are in good agreement with the existence of oscillations observed on the magnetic loops

  5. Plasma magnetic field measurement by intracavity absorption. Progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Brink, G.O.

    1984-01-01

    Dye laser intracavity absorption (ICA) is being studied as a potential diagnostic for plasma or neutral beam systems. For magnetic field measurements it is necessary to make Zeeman effect measurements on the resonance transition of atomic lithium on a millisecond time scale. To do this it is necessary to sweep the dye laser in wavelength at a rapid rate so that the absorber can be sampled many times during the measurement. Our results indicate that the ICA signal becomes small at high sweep rates limiting the rate at which such sweeping may be carried out. It may be possible to avoid this limitation by chopping the pump laser. The studies of coupled cavity ICA are continuing, and are discussed in detail in an appendix. An ICA system using a dye cell has been designed, and supplementary experiments involving the observation of ICA in a ring dye laser are discussed

  6. Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT)

    DEFF Research Database (Denmark)

    Göksu, Cihan; Scheffler, Klaus; Ehses, Philipp

    2017-01-01

    parameters, are analytically analyzed and simulated. The theoretical results are experimentally validated in a saline-filled homogenous spherical phantom with relaxation parameters similar to brain tissue. Measurement of DBz,c is also performed in a cylindrical phantom with saline and chicken meat. Results...

  7. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  8. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  9. New measurements of sextupole field decay and snapback effect on Tevatron dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Bauer, P.; Carcagno, R.; DiMarco, J.; Lamm, M.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2006-07-01

    To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system, the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent ''snapback'' during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spare pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provide additional information on a scaling law for predicting snapback duration. The information presented here can be used for an optimization of the Tevatron and for future LHC operations.

  10. New measurements of sextupole field decay and snapback effect on Tevatron dipole magnets

    International Nuclear Information System (INIS)

    Velev, G.V.; Bauer, P.; Carcagno, R.; DiMarco, J.; Lamm, M.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; Fermilab

    2006-01-01

    To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system, the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent ''snapback'' during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spare pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provide additional information on a scaling law for predicting snapback duration. The information presented here can be used for an optimization of the Tevatron and for future LHC operations

  11. Measurement of The Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap

    International Nuclear Information System (INIS)

    Jones, B.; Taylor, G.; Efthimion, P.C.; Munsat, T.

    2004-01-01

    Measurement of the magnetic field in a spherical torus by observation of harmonic overlap frequencies in the electron Bernstein wave (EBW) spectrum has been previously suggested [V.F. Shevchenko, Plasma Phys. Reports 26 (2000) 1000]. EBW mode conversion to X-mode radiation has been studied in the Current Drive Experiment-Upgrade spherical torus, [T. Jones, Ph.D. thesis, Princeton University, 1995] with emission measured at blackbody levels [B. Jones et al., Phys. Rev. Lett. 90 (2003) article no. 165001]. Sharp transitions in the thermally emitted EBW spectrum have been observed for the first two harmonic overlaps. These transition frequencies are determined by the magnetic field and electron density at the mode conversion layer in accordance with hot-plasma wave theory. Prospects of extending this measurement to higher harmonics, necessary in order to determine the magnetic field profile, and high beta equilibria are discussed for this proposed magnetic field diagnostic

  12. The development of magnetic field measurement system for drift-tube linac quadrupole

    Science.gov (United States)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  13. Cluster magnetic field observations in the magnetosheath: four-point measurements of mirror structures

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    2001-09-01

    Full Text Available The Cluster spacecraft have returned the first simultaneous four-point measurements of the magnetosheath. We present an analysis of data recorded on 10 November 2000, when the four spacecrafts observed an interval of strong mirrorlike activity. Correlation analysis between spacecraft pairs is used to examine the scale size of the mirror structures in three dimensions. Two examples are presented which suggest that the scale size of mirror structures is ~ 1500–3000 km along the flow direction, and shortest along the magnetopause normal (< 600 km, which, in this case, is approximately perpendicular to both the mean magnetic field and the magnetosheath flow vector. Variations on scales of ~ 750–1000 km are found along the maximum variance direction. The level of correlation in this direction, however, and the time lag observed, are found to be variable. These first results suggest that variations occur on scales of the order of the spacecraft separation ( ~ 1000 km in at least two directions, but analysis of further examples and a statistical survey of structures observed with different magnetic field orientations and tetrahedral configurations will enable us to describe more fully the size and orientation of mirror structures.Key words. Magnetosphenic physics (magnetosheath; plasma waves and instabilities

  14. Cluster magnetic field observations in the magnetosheath: four-point measurements of mirror structures

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    Full Text Available The Cluster spacecraft have returned the first simultaneous four-point measurements of the magnetosheath. We present an analysis of data recorded on 10 November 2000, when the four spacecrafts observed an interval of strong mirrorlike activity. Correlation analysis between spacecraft pairs is used to examine the scale size of the mirror structures in three dimensions. Two examples are presented which suggest that the scale size of mirror structures is ~ 1500–3000 km along the flow direction, and shortest along the magnetopause normal (< 600 km, which, in this case, is approximately perpendicular to both the mean magnetic field and the magnetosheath flow vector. Variations on scales of ~ 750–1000 km are found along the maximum variance direction. The level of correlation in this direction, however, and the time lag observed, are found to be variable. These first results suggest that variations occur on scales of the order of the spacecraft separation ( ~ 1000 km in at least two directions, but analysis of further examples and a statistical survey of structures observed with different magnetic field orientations and tetrahedral configurations will enable us to describe more fully the size and orientation of mirror structures.

    Key words. Magnetosphenic physics (magnetosheath; plasma waves and instabilities

  15. Two-dimensional magnetic field evolution measurements and plasma flow speed estimates from the coaxial thruster experiment

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Gerwin, R.A.; Schoenberg, K.F.; Scheuer, J.T.; Hoyt, R.P.; Henins, I.

    1994-01-01

    Local, time-dependent magnetic field measurements have been made in the Los Alamos coaxial thruster experiment (CTX) [C. W. Barnes et al., Phys. Fluids B 2, 1871 (1990); J. C. Fernandez et al., Nucl. Fusion 28, 1555 (1988)] using a 24 coil magnetic probe array (eight spatial positions, three axis probes). The CTX is a magnetized, coaxial plasma gun presently being used to investigate the viability of high pulsed power plasma thrusters for advanced electric propulsion. Previous efforts on this device have indicated that high pulsed power plasma guns are attractive candidates for advanced propulsion that employ ideal magnetohydrodynamic (MHD) plasma stream flow through self-formed magnetic nozzles. Indirect evidence of magnetic nozzle formation was obtained from plasma gun performance and measurements of directed axial velocities up to v z ∼10 7 cm/s. The purpose of this work is to make direct measurement of the time evolving magnetic field topology. The intent is to both identify that applied magnetic field distortion by the highly conductive plasma is occurring, and to provide insight into the details of discharge evolution. Data from a magnetic fluctuation probe array have been used to investigate the details of applied magnetic field deformation through the reconstruction of time-dependent flux profiles. Experimentally observed magnetic field line distortion has been compared to that predicted by a simple one-dimensional (1-D) model of the discharge channel. Such a comparison is utilized to estimate the axial plasma velocity in the thruster. Velocities determined in this manner are in approximate agreement with the predicted self-field magnetosonic speed and those measured by a time-of-flight spectrometer

  16. Measurement and Analysis of Magnetic Field Radiated from D.C. Tramway: A case study for Tunis’s metro

    Directory of Open Access Journals (Sweden)

    J. Ben Hadj Slama

    2008-06-01

    Full Text Available High-power electrical drives, subsystems, and equipment mounted on board of rolling stock make the internal environment potentially harsh from the point of view of electromagnetic (EM field emissions. In particular, at low frequencies, electronically controlled power drive systems behave as effective emission sources. This paper deals with characterization of electromagnetic field radiated from D.C. railway systems. The D.C. railway system of Tunis’s urban electric metro is described. The magnetic field is measured at different points inside and near the moving D.C. train. Measurement results are presented and analyzed. Analysis of measurement results shows that, within frequency range 100kHz-20MHz, the radiated magnetic field is coming from power electronic systems embedded on the train. In particular, choppers, D.C. motors and their connecting cables represent the most important emitting source of magnetic field in the D.C. tramway.

  17. Children’s Personal Exposure Measurements to Extremely Low Frequency Magnetic Fields in Italy

    Directory of Open Access Journals (Sweden)

    Ilaria Liorni

    2016-05-01

    Full Text Available Extremely low frequency magnetic fields (ELF-MFs exposure is still a topic of concern due to their possible impact on children’s health. Although epidemiological studies claimed an evidence of a possible association between ELF-MF above 0.4 μT and childhood leukemia, biological mechanisms able to support a causal relationship between ELF-MF and this disease were not found yet. To provide further knowledge about children’s ELF-MF exposure correlated to children’s daily activities, a measurement study was conducted in Milan (Italy. Eighty-six children were recruited, 52 of whom were specifically chosen with respect to the distance to power lines and built-in transformers to oversample potentially highly exposed children. Personal and bedroom measurements were performed for each child in two different seasons. The major outcomes of this study are: (1 median values over 24-h personal and bedroom measurements were <3 μT established by the Italian law as the quality target; (2 geometric mean values over 24-h bedroom measurements were mostly <0.4 μT; (3 seasonal variations did not significantly influence personal and bedroom measurements; (4 the highest average MF levels were mostly found at home during the day and outdoors; (5 no significant differences were found in the median and geometric mean values between personal and bedroom measurements, but were found in the arithmetic mean.

  18. Strong Magnetic Field Characterisation

    Science.gov (United States)

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  19. Spatially resolved measurements of the magnetocaloric effect and the local magnetic field using thermography

    DEFF Research Database (Denmark)

    Christensen, Dennis; Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2010-01-01

    The magnetocaloric effect causes a magnetic material to change temperature upon application of a magnetic field. Here, spatially resolved measurements of the adiabatic temperature change are performed on a plate of gadolinium using thermography. The adiabatic temperature change is used to extract...... the corresponding change in the local magnetic field strength. The measured temperature change and local magnetic field strength are compared to results obtained with a numerical model, which takes demagnetization into account and employs experimental data....

  20. SU-F-T-472: Validation of Absolute Dose Measurements for MR-IGRT With and Without Magnetic Field

    International Nuclear Information System (INIS)

    Green, O; Li, H; Goddu, S; Mutic, S; Kawrakow, I

    2016-01-01

    Purpose: To validate absolute dose measurements for a MR-IGRT system without presence of the magnetic field. Methods: The standard method (AAPM’s TG-51) of absolute dose measurement with ionization chambers was tested with and without the presence of the magnetic field for a clinical 0.32-T Co-60 MR-IGRT system. Two ionization chambers were used - the Standard Imaging (Madison, WI) A18 (0.123 cc) and the PTW (Freiburg, Germany). A previously reported Monte Carlo simulation suggested a difference on the order of 0.5% for dose measured with and without the presence of the magnetic field, but testing this was not possible until an engineering solution to allow the radiation system to be used without the nominal magnetic field was found. A previously identified effect of orientation in the magnetic field was also tested by placing the chamber either parallel or perpendicular to the field and irradiating from two opposing angles (90 and 270). Finally, the Imaging and Radiation Oncology Core provided OSLD detectors for five irradiations each with and without the field - with two heads at both 0 and 90 degrees, and one head at 90 degrees only as it doesn’t reach 0 (IEC convention). Results: For the TG-51 comparison, expected dose was obtained by decaying values measured at the time of source installation. The average measured difference was 0.4%±0.12% for A18 and 0.06%±0.15% for Farmer chamber. There was minimal (0.3%) orientation dependence without the magnetic field for the A18 chamber, while previous measurements with the magnetic field had a deviation of 3.2% with chamber perpendicular to magnetic field. Results reported by IROC for the OSLDs with and without the field had a maximum difference of 2%. Conclusion: Accurate absolute dosimetry was verified by measurement under the same conditions with and without the magnetic field for both ionization chambers and independently-verifiable OSLDs.

  1. A theoretical basis of the approach for the magnetic field penetration measurement

    International Nuclear Information System (INIS)

    Bezotosnyi, P I; Gavrilkin, S Yu; Ivanenko, O M; Mitsen, K V; Tsvetkov, A Yu

    2016-01-01

    An approach for the assessment of London penetration depth of superconducting films is proposed. This approach is based on the analysis of linear response of the sample to a local low-frequency alternating magnetic field generated by the measuring coil disposed near the film surface. A visual “electrical engineering” model of induced currents distribution in the superconductor taking into account the kinetic inductance was developed for a description of this response. The possibility of determining of the penetration depth from changing the inductance of the system “coil-sample” is shown in the framework of this model. The sensitivity of the proposed method for the films with different thicknesses is considered. (paper)

  2. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  3. Measurements of intermediate-frequency electric and magnetic fields in households

    NARCIS (Netherlands)

    Aerts, Sam; Calderon, Carolina; Valič, Blaž; Maslanyj, Myron; Addison, Darren; Mee, Terry; Goiceanu, Cristian; Verloock, Leen; Van den Bossche, Matthias; Gajšek, Peter; Vermeulen, Roel; Röösli, Martin; Cardis, Elisabeth; Martens, Luc; Joseph, Wout

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300Hz to 1MHz) as well as potential effects of IF

  4. Non-Contact Circuit for Real-Time Electric and Magnetic Field Measurements

    Science.gov (United States)

    2015-10-01

    response, noise spectral density, and dynamic range. 15. SUBJECT TERMS electric field, magnetic field, 1Wire, low-power microcontroller 16. SECURITY...4 Fig. 4 Altium DesignerTM schematic showing the pin connections of our MSP430 microcontroller ...electrical characteristics of the attached cable. 2. Methods and Procedures The circuit’s primary design consists of a microcontroller , 8-channel digital-to

  5. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  6. Crystal Fields in Dilute Rare-Earth Metals Obtained from Magnetization Measurements on Dilute Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.

    1974-01-01

    Crystal field parameters of Tb, Dy, and Er in Sc, Y, and Lu are summarized. These parameters are obtained from magnetization measurements on dilute single crystals, and successfully checked by a number of different methods. The crystal field parameters vary unpredictably with the rare-earth solute....... B40, B60, and B66 are similar in Y and Lu. Crystal field parameters for the pure metals Tb, Dy, and Er are estimated from the crystal fields in Y and Lu....

  7. Fermi surface study of organic conductors using a magneto-optical measurement under high magnetic fields

    International Nuclear Information System (INIS)

    Kimata, M; Ohta, H; Koyama, K; Motokawa, M; Kondo, R; Kagoshima, S; Tanaka, H; Tokumoto, M; Kobayashi, H; Kobayashi, A

    2006-01-01

    Magneto-optical measurements have been performed in organic conductors β''-(BEDT-TTF) 2 CsCd(SCN) 4 and λ-(BETS) 2 FeCl 4 . Although the zero magnetic field ground state of β''-(BEDT-TTF) 2 CsCd(SCN) 4 is considered as the density wave state, periodic orbit resonances (POR's) attributed to quasi-one-dimensional (Q1D) and quasi-two-dimensional (Q2D) Fermi surfaces (FS's) have been observed above 6 T. The existence of these FS's are predicted by the band calculation based on room temperature lattice parameters. This result may suggest the destruction of the density wave state at 6 T, and the primal metallic state revives in the high field phase above 6 T. In the case of λ-(BETS) 2 FeCl 4 , large changes of the transmission intensity of electromagnetic waves around 10 T, which correspond to the insulator-metal transition, have been observed. However, no POR-like resonance has been observed. This may be due to the restriction of the observed frequency-field region

  8. Development of instrumentation with application to sounding rocket electric and magnetic field measurements above thunderstorms

    Science.gov (United States)

    Baker, Steven D.

    1999-06-01

    The thunderstorm campaigns led by Cornell University in 1981 and 1988 both measured large-amplitude (10 to 40 mV/m), long duration (1 ms) electric-field pulses parallel to the earth's magnetic field. To investigate the mechanism responsible for these pulses, the instrumentation bandwidth was increased from the VLF range to MF frequencies. The design for a Helmholtz coil developed to calibrate magnetometers from DC to 10 MHz is given in Chapter 3. This coil generates a spatially uniform field with for frequencies up to at least 10 MHz with amplitudes of up to 1.1 mA/m. Coincident with the need for higher bandwidth sensors, a burst-memory data acquisition system was developed to intelligently select the 1.25% of the available data to send to the telemetry encoder. This system uses the optical flash of the lightning as a trigger and has a back-up mode to ensure data is transmitted in the event no triggers occur. The higher-frequency instruments allowed the first rocket-borne measurement of nose- whistlers caused by the plasma frequency resonance (as opposed to the more common electron cyclotron frequency resonance), and what may have been the first observation of a TIPP at MF frequencies. Triggered emission from the second campaign, Thunderstorm-II, are identified as lower hybrid emissions. These emissions enhanced the whistler by several decibels in the lower hybrid frequency band and in bands above the emission. No emissions seen above the lower hybrid frequency. The Thunderstorm-III payloads also measured triggered emissions and long-duration pulses. The former were found in several altitude-independent frequency bands for which the source could not be identified. The long duration pulses, while of interest, have not been studied in sufficient depth for inclusion in this work.

  9. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb3Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb3Sn magnets with different heater geometries. ...

  10. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb$_{3}$Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb$_{3}$Sn magnets with different heater ge...

  11. Design and Development of a Magneto-Optic Sensor for Magnetic Field Measurements

    Directory of Open Access Journals (Sweden)

    Sarbani CHAKRABORTY

    2015-01-01

    Full Text Available A magneto-optic sensor is developed using a Terbium Doped Glass (TDG element as a Faraday rotation sensor and optical fiber as light transmitting and receiving medium. Online LabView based application software is developed to process the sensor output. The system is used to sense the magnetic field of a DC motor field winding in industrial environment. The sensor output is compared with the magnetic flux density variation obtained with a calibrated Hall Magnetic sensor (Gauss Meter. A linear variation of sensor output over wide range of current passing through the field winding is obtained. Further the results show an improved sensitivity of magneto-optic sensor over the Hall sensor.

  12. Rates of change of the earth's magnetic field measured by recent analyses

    Science.gov (United States)

    Harrison, C. G. A.; Huang, Qilin

    1990-01-01

    Typical rates of change of the earth's magnetic field are presented as a function of the earth's spherical harmonics. Harmonics up to the eight degree are analyzed. With the increase in the degree of the harmonics an increase in the relative rate of change can be observed. For higher degrees, the rate of change can be predicted. This enables a differentiation between harmonics originating in the core and harmonics caused by crustal magnetization. The westward drift of the magnetic field depends on the longitudinal gradient of the field. In order to determine the longitudinal motions, harmonics up to degree 20 can be utilized. The average rate of secular acceleration increases with the degree of harmonics from 0.001 deg/sq yr for a dipole term to an average of 0.05 deg/sq yr for degree eight harmonics.

  13. Density and magnetic field measurements in the Tormac IV-c plasma

    International Nuclear Information System (INIS)

    Coonrod, J.W. Jr.

    1978-01-01

    Tormac is a concept for magnetically confining a high-β fusion plasma in a toroidal, stuffed line cusp. A Tormac plasma has two regions: an interior confined on the closed toroidal field lines of the stuffing field, and an exterior sheath on open, cusped field lines. The interior plasma gives the device a longer confinement time than a standard mirror, while the favorable curvature of the cusp fields allow the plasma to be stable at higher values of β (the ratio of the plasma pressure to magnetic pressure) than a totally closed configuration like Tokamak. This thesis describes the design, construction and operation of Tormac IV-c, and reports on the results, with emphasis on describing the behavior of the density compression and field penetration

  14. Extremely low frequency magnetic field measurements in buildings with transformer stations in Switzerland.

    Science.gov (United States)

    Röösli, Martin; Jenni, Daniela; Kheifets, Leeka; Mezei, Gabor

    2011-08-15

    The aim of this study was to evaluate an exposure assessment method that classifies apartments in three exposure categories of extremely low frequency magnetic fields (ELF-MF) based on the location of the apartment relative to the transformer room. We completed measurements in 39 apartments in 18 buildings. In each room of the apartments ELF-MF was concurrently measured with 5 to 6 EMDEX II meters for 10 min. Measured arithmetic mean ELF-MF was 0.59 μT in 8 apartments that were fully adjacent to a transformer room, either directly above the transformer or touching the transformer room wall-to-wall. In apartments that only partly touched the transformer room at corners or edges, average ELF-MF level was 0.14 μT. Average exposure in the remaining apartments was 0.10 μT. Kappa coefficient for exposure classification was 0.64 (95%-CI: 0.45-0.82) if only fully adjacent apartments were considered as highly exposed (>0.4 μT). We found a distinct ELF-MF exposure gradient in buildings with transformer. Exposure classification based on the location of the apartment relative to the transformer room appears feasible. Such an approach considerably reduces effort for exposure assessment and may be used to eliminate selection bias in future epidemiologic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Characterization of magnetic field profiles at RFX-mod by Faraday rotation measurements

    Science.gov (United States)

    Auriemma, Fulvio; Brombin, Matteo; Canton, Alessandra; Giudicotti, Leonardo; Innocente, Paolo; Zilli, Enrico

    2009-11-01

    A multichannel far-infrared (FIR, λ=118.8 μm) polarimeter has been recently upgraded and re-installed on RFX-mod to measure the Faraday rotation angle along five vertical chords. Polarimetric data, associated with electron density profile, allow the reconstruction of the poloidal magnetic field profile. In this work the setup of the diagnostic is presented and the first Faraday rotation measurements are analyzed. The measurements have been performed at plasma current above 1.2 MA and electron density between 2 and 6x10^19 m-3. The actual S/N ratio is slightly lower than the expected one, due to electromagnetic coupling of the detectors with the saddle coils close to the polarimeter position. Due to this limit, only average information in the flat-top phase of the discharge could be so far obtained. The experimental data have been compared with the result of the μ&p equilibrium model [1], showing a good agreement between experiment and model, whereas the main differences are in the external region of the plasma. A different parameterization of the μ=μ0 J.B/B^2 profile has been proposed to enhance the agreement between model and experiment. [0pt] [1] Ortolani and Snack, World Scientific (1993) Singapore

  16. Imaging and measurement of T1 value by NMR of low magnetic field

    International Nuclear Information System (INIS)

    Asai, Hideaki; Izawa, Akira; Furuse, Kazuhiro; Saoi, Katsuyoshi; Nagai, Masahiko.

    1983-01-01

    FONAR QED-80α having two operating mode: the anatomy mode to obtain an image of proton densities and the chemistry mode to measure T 1 value at a region of intenst, was used clinically. The strength of static magnetic field is 0.041T. 32 cases, 18 healthy volunteers and 14 patients were studied. In proton density imaging, high proton density organs such as skin were imaged bright, and low proton density organs such as bones and flowing blood were imaged dark. The merits of NMR imaging are no artifacts caused by bones and air. However, NMR image is required long time for measurement and the image of NMR is unsharp than that of X-ray CT. Concerning with T 1 value, cerebral and cerebellar gray matter had longer T 1 's than that of white matter. Pathological lesions, such as tumor and/or infarct, had also longer T 1 values than these of normal tissue. The value of T 1 was thought to be applicable clinically except for some problems, such as measuring T 1 value of large extent. No side effects were found during and after examinations. (author)

  17. The magnetic field near power lines in the Moscow region: the results of measurements and their analyze

    Directory of Open Access Journals (Sweden)

    Prokofyeva A.S.

    2014-12-01

    Full Text Available The aim: to analyze the real power frequency magnetic field (50 Hz values near power lines. The material. Long-term measurements of the power frequency magnetic field (50 Hz near power lines of 110 kV, 220 kVand 500 kVin the Moscow region. Methods. Measurements were made by tracks which were perpendicular to the wires. Length of tracks was up to 40 m. Sensor of measurer was located on 1.8 m under the ground. General quantity of measurement points were 1103. The results. Was obtained general characteristics of real values of strength of electric field and values of magnetic flux density depending to distance to the projection last wire near power lines. Conclusion. Analysis of the results has the values of the magnetic field of power lines correspond to the Russian rules in all cases. Using additional World Health Organization safety criteria for magnetic fields (the class of carcinogenic risks 2B requires the expansion of the health safety zone 2-3 times.

  18. Field measurement of a Fermilab-built full scale prototype quadrupole magnet for the LHC interaction regions

    CERN Document Server

    Bossert, R; Di Marco, J; Fehér, S; Glass, H; Kerby, J S; Lamm, M J; Nobrega, A; Nicol, T H; Ogitsu, T; Orris, D; Page, T; Rabehl, Roger Jon; Sabbi, G L; Schlabach, P; Strait, J B; Sylvester, C D; Tartaglia, M; Tompkins, J C; Velev, G V; Zlobin, A V

    2002-01-01

    Superconducting low-beta quadrupole magnets for the interaction regions of the Large Hadron Collider have been developed by the US- LHC Accelerator Project. These 70 mm bore 5.5 m long quadrupoles are intended to operate in superfluid helium at 1.9 K with a nominal field gradient of 215 T/m. Following a series of 2 m long models, a full scale cryostated cold mass has been fabricated and cold tested at Fermilab. Magnetic field measurements of the prototype, including determination of the field axis using a single stretched wire, have been performed. These measurements and comparisons with results from the model magnets as well as field quality and alignment requirements are reported in this paper. (8 refs).

  19. Measurement of dipole-moment in atomic transitions under strong external magnetic field

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Kuwako, Akira; Ikehara, Tadashi; Yoshida, Tadashi; Watanabe, Takasi; Yoguchi, Itaru; Suzuki, Kazuhiro.

    1996-01-01

    Obtaining an accurate value of the electric dipole moment μ is essential in the fields of laser application technologies. A direct way of measuring the electric dipole moment μ is to observe the Rabi-oscillation which manifests itself in the coherent photo-excitation behavior of atoms. In the case of the elements which have large angular momenta, identifying the Rabi-oscillation in their excitation behavior becomes rather difficult. We proposed an accurate and straightforward method of determining the electric-dipole moment μ between multi-fold degenerate levels. The point is to remove the degeneracy by applying an external magnetic field with the aid of the Zeeman effect and, then, to realize a degeneration free coherent excitation. As a result, we can observe the Rabi-oscillations explicitly in the excitation υs. laser-fluence curves. The present method provides a reliable basis of experimental determination of μ. As an example, we applied the present method to a transition to 0-17,362 cm -1 level in uranium and obtained the value μ=0.86±0.06 (Debye). (author)

  20. Software development based on high speed PC oscilloscope for automated pulsed magnetic field measurement system

    International Nuclear Information System (INIS)

    Sun Yuxiang; Shang Lei; Li Ji; Ge Lei

    2011-01-01

    It introduces a method of a software development which is based on high speed PC oscilloscope for pulsed magnetic field measurement system. The previous design has been improved by this design, high-speed virtual oscilloscope has been used in the field for the first time. In the design, the automatic data acquisition, data process, data analysis and storage have been realized. Automated point checking reduces the workload. The use of precise motion bench increases the positioning accuracy. The software gets the data from PC oscilloscope by calling DLLs and includes the function of oscilloscope, such as trigger, ranges, and sample rate setting etc. Spline Interpolation and Bandstop Filter are used to denoise the signals. The core of the software is the state machine which controls the motion of stepper motors and data acquisition and stores the data automatically. NI Vision Acquisition Software and Database Connectivity Toolkit make the video surveillance of laboratory and MySQL database connectivity available. The raw signal and processed signal have been compared in this paper. The waveform has been greatly improved by the signal processing. (authors)

  1. Magnetic field on board

    International Nuclear Information System (INIS)

    Estevez Radio, H.; Fernandez Arenal, C.A.

    1995-01-01

    Here, the calculation of the magnetic field on board ships is performed, using matrix calculus, in a similar way as when the magnetic field in matter is studied. Thus the final formulas are written in a more compact form and they are obtained through a simpler way, more suitable for the university education. (Author)

  2. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  3. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1979-04-01

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  4. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  5. Self-propelled in-tube shuttle and control system for automated measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Pidcoe, S.V.

    1990-03-01

    A magnetic field alignment gauge is used to measure the field angle as a function of axial position in each of the magnets for the Superconducting Super Collider (SSC). Present measurements are made by manually pushing the through the magnet bore tube and stopping at intervals to record field measurements. Gauge location is controlled through graduation marks and alignment pins on the push rods. Field measurements are recorded on a logging multimeter with tape output. Described is a computerized control system being developed to replace the manual procedure for field alignment measurements. The automated system employs a pneumatic walking device to move the measurement gauge through the bore tube. Movement of the device, called the Self-Propelled In-Tube Shuttle (SPITS), is accomplished through an integral, gas driven, double-acting cylinder. The motion of the SPITS is transferred to the bore tube by means of a pair of controlled, retractable support feet. Control of the SPITS is accomplished through an RS-422 interface from an IBM-compatible computer to a series of solenoid-actuated air valves. Direction of SPITS travel is determined by the air-valve sequence, and is managed through the control software. Precise axial position of the gauge within the magnet is returned to the control system through an optically-encoded digital position transducer attached to the shuttle. Discussed is the performance of the transport device and control system during preliminary testing of the first prototype shuttle. 1 ref., 7 figs

  6. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  7. Upper Critical Field and de Haas-van Alphen Oscillations in KOs2O6 Measured in a Hybrid Magnet

    Science.gov (United States)

    Taichi Terashima,; Nobuyuki Kurita,; Atsushi Harada,; Kota Kodama,; Jun-ichi Yamaura,; Zenji Hiroi,; Hisatomo Harima,; Shinya Uji,

    2010-08-01

    Magnetic torque measurements have been performed on a KOs2O6 single crystal in magnetic fields up to 35.3 T and at temperatures down to 0.6 K. The upper critical field is determined to be ˜30 T. De Haas-van Alphen oscillations are observed. A large mass enhancement of (1+λ) = m* / mband = 7.6 is found. It is suggested that, for the large upper critical field to be reconciled with Pauli paramagnetic limiting, the observed mass enhancement must be of electron-phonon origin, including electron-rattling-mode interactions, for the most part.

  8. A kinetic model of retarding field analyser measurements in strongly magnetized, flowing, collisional plasmas

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Fuchs, Vladimír; Kočan, M.

    2013-01-01

    Roč. 55, č. 4 (2013), 045012-045012 ISSN 0741-3335 R&D Projects: GA MŠk 7G10072 Institutional support: RVO:61389021 Keywords : plasma * collisions * magnetic field * retarding field analyzer Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.386, year: 2013 http://iopscience.iop.org/0741-3335/55/4/045012/pdf/0741-3335_55_4_045012.pdf

  9. Comparison of two fiber-optical temperature measurement systems in magnetic fields up to 9.4 Tesla.

    Science.gov (United States)

    Buchenberg, Waltraud B; Dadakova, Tetiana; Groebner, Jens; Bock, Michael; Jung, Bernd

    2015-05-01

    Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0  = 9.4T, and water temperatures were changed between 25°C and 65°C. The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0. © 2014 Wiley Periodicals, Inc.

  10. Direct measurement of the field from a magnetic recording head using an InAs Hall sensor on a contact write/read tester

    International Nuclear Information System (INIS)

    Gokemeijer, N.J.; Clinton, T.W.; Crawford, T.M.; Johnson, Mark

    2005-01-01

    At 1 Tbit/in 2 areal density magnetic recording dimensions, reliable magnetic field metrology does not exist. One technique to map the spatial profile of the magnetic field of a write head is to use a contact read/write tester. A magnetic recording head is brought into contact with a Hall sensor, and is subsequently scanned with nm resolution. For a 300 nm track width longitudinal recording head, the magnetic field of the head was mapped. Measurements include the down track field gradient and cross-track field profile and the current-field transfer curve. These results suggest this technique offers a viable write field metrology

  11. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  12. MR Measurement Technique of Rapidly Switched Gradient Magnetic Fields in MR Tomography

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Gescheidtová, E.

    2005-01-01

    Roč. 29, č. 4 (2005), s. 675-686 ISSN 0937-9347 Institutional research plan: CEZ:AV0Z20650511 Keywords : MR tomography * gradiernt magnet ic field * IF method * IFSE method * IFSES method * spin echo Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.743, year: 2005

  13. Measurement of the magnetic hyperfine field at the 181 Ta site in nickel matrix

    International Nuclear Information System (INIS)

    Saxena, R.N.; Carbonari, A.W.; Pendl Junior, W.; Attili, R.N.; Kenchian, G.; Soares, J.C.A.C.R.; Moreno, M.S.

    1990-01-01

    The hyperfine magnetic field on the Ta 181 nucleus were determined using the gamma-gamma perturbed angular correlation method, on a nickel matrix, with a 133-482 KeV cascade from the Hf- 181 beta minus decay. (L.C.J.A.)

  14. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.

    2006-01-01

    of the lithospheric field down to an altitude of about 50 km at lower latitudes, with reduced accuracy in the polar regions. Crustal features come out significantly sharper than in previous models. In particular, bands of magnetic anomalies along subduction zones become visible by satellite for the first time....

  15. Magnetic moment measurement of 140Ba nuclei using transient field technique

    International Nuclear Information System (INIS)

    Saxena, Mansi; Mandal, S.; Siwal, Davinder; Rainovski, G.; Danchev, M.; Damyanova, A.; Gladnishki, K.; Leske, J.; Bauer, C.; Bloch, T.; John, P.; Pietralla, N.; Wollersheim, H.J.; Kojouharov, I.; Pietri, S.; Schaffner, H.

    2011-01-01

    Mixed symmetry states have been identified in the neutron proton version of the Interacting Boson Model. The motivation of this experiment is to identify uniquely one phonon mixed symmetry states in 140 Ba nuclei by g factor measurement of the states. Magnetic moments measurements provide substantial information on the microscopic structure of the nuclei as the magnetic moment of a nuclei is described by the wave function of one state only. In this present paper we report the preliminary results of the g factor measurement of the first 2 + state of 140 Ba

  16. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  17. Measurements of crossed-field demagnetisation rate of trapped field magnets at high frequencies and below 77 K

    Science.gov (United States)

    Baskys, A.; Patel, A.; Glowacki, B. A.

    2018-06-01

    Design requirements of the next generation of electric aircraft place stringent requirements on the power density required from electric motors. A future prototype planned in the scope of the European project ‘Advanced Superconducting Motor Experimental Demonstrator’ (ASuMED) considers a permanent magnet synchronous motor, where the conventional ferromagnets are replaced with superconducting trapped field magnets, which promise higher flux densities and thus higher output power without adding weight. Previous work has indicated that stacks of tape show lower cross-field demagnetisation rates to bulk (RE)BCO whilst retaining similar performance for their size, however the crossed-field demagnetisation rate has not been studied in the temperature, the magnetic field and frequency range that are relevant for the operational prototype motor. This work investigates crossed-field demagnetisation in 2G high temperature superconducting stacks at temperatures below 77 K and a frequency range above 10 Hz. This information is crucial in developing designs and determining operational time before re-magnetisation could be required.

  18. Magnetic and magnetoelastic properties of UCo2Si2 as studied by high-field magnetization and ultrasound measurements

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Yasin, S.; Skourski, Y.; Zvyagin, A.A.; Zherlitsyn, S.; Wosnitza, J.

    2013-01-01

    Roč. 87, č. 21 (2013), "214409-1"-"214409-8" ISSN 1098-0121 R&D Projects: GA ČR GAP204/12/0150 Grant - others:EU EuroMagNET(XE) 228043 Institutional support: RVO:68378271 Keywords : uranium intermetallics * single crystals * antiferromagnetism * high fields * acoustics * magnetoelasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  19. Magnetically modulated microwave absorption (MMMA) measurements at low magnetic fields on the ferromagnetic state of [TDAE]C60

    International Nuclear Information System (INIS)

    Bele, P.; Brunner, H.

    1997-01-01

    The ferromagnetic state and reported superconductivity of [TDAE]C 60 (where TDAE is tetrakis(dimethylamino)ethylene) are investigated by magnetically modulated microwave absorption (MMMA). The results are compared with those reported using alternative physical measurement techniques, and a hypothesis proposed to explain the observed behavior. No evidence for superconductivity is found. (orig.)

  20. Magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  1. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  2. 3D field calculation of the GEM prototype magnet and comparison with measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lari, R.J.

    1983-10-28

    The proposed 4 GeV Electron Microtron (GEM) is designed to fill the existing buildings left vacant by the demise of the Zero Gradient Synchrotron (ZGS) accelerator. One of the six large dipole magnets is shown as well as the first 10 electron orbits. A 3-orbit prototype magnet has been built. The stepped edge of the magnet is to keep the beam exiting perpendicular to the pole. The end guards that wrap around the main coils are joined together by the 3 shield plates. The auxiliary coils are needed to keep the end guards and shield plates from saturating. A 0.3 cm Purcell filter air gap exists between the pole and the yoke. Can anyone question this being a truly three-dimensional magnetostatic problem. The computer program TOSCA, developed at the Rutherford Appleton Laboratory by the Computing Applications Group, was used to calculate this magnet and the results have been compared with measurements.

  3. 3D field calculation of the GEM prototype magnet and comparison with measurements

    International Nuclear Information System (INIS)

    Lari, R.J.

    1983-01-01

    The proposed 4 GeV Electron Microtron (GEM) is designed to fill the existing buildings left vacant by the demise of the Zero Gradient Synchrotron (ZGS) accelerator. One of the six large dipole magnets is shown as well as the first 10 electron orbits. A 3-orbit prototype magnet has been built. The stepped edge of the magnet is to keep the beam exiting perpendicular to the pole. The end guards that wrap around the main coils are joined together by the 3 shield plates. The auxiliary coils are needed to keep the end guards and shield plates from saturating. A 0.3 cm Purcell filter air gap exists between the pole and the yoke. Can anyone question this being a truly three-dimensional magnetostatic problem. The computer program TOSCA, developed at the Rutherford Appleton Laboratory by the Computing Applications Group, was used to calculate this magnet and the results have been compared with measurements

  4. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    Science.gov (United States)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  5. Reply to Comment on 'Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses'

    OpenAIRE

    Arribas Garde, Enrique; Escobar García, Isabel; Suárez, Carmen P.; Nájera López, Alberto; Beléndez Vázquez, Augusto

    2015-01-01

    This is a reply to the comment by Iqbal and Anwar on our recently published work. First of all, the authors of ‘Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses’ greatly appreciate the comments of Iqbal and Anwar. One of us (AB) is very grateful to the Vicerectorship of Information Technologies of the University of Alicante (Spain) the help of GITE-09006-UA and to the Generalitat Valenciana (Spain),...

  6. Future space missions and ground observatory for measurements of coronal magnetic fields

    Science.gov (United States)

    Fineschi, Silvano; Gibson, Sarah; Bemporad, Alessandro; Zhukov, Andrei; Damé, Luc; Susino, Roberto; Larruquert, Juan

    2016-07-01

    This presentation gives an overview of the near-future perspectives for probing coronal magnetism from space missions (i.e., SCORE and ASPIICS) and ground-based observatory (ESCAPE). Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter. The CorMag filter is part of the ESCAPE experiment to be based at the French-Italian Concordia base in Antarctica. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include new generation, high-efficiency UV polarizer with the capability of imaging polarimetry of the HI Lyman-α, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. The second lauch is scheduled in 2016. Proba-3 is the other future solar mission that would provide the opportunity of diagnosing the coronal magnetic field. Proba-3 is the first precision formation-flying mission to launched in 2019). A pair of satellites will fly together maintaining a fixed configuration as a 'large rigid

  7. A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields

    Science.gov (United States)

    Fradin, Cécile

    2013-01-01

    Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185

  8. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    International Nuclear Information System (INIS)

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-01-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV

  9. Temperature measurement error due to the effects of time varying magnetic fields on thermocouples with ferromagnetic thermoelements

    International Nuclear Information System (INIS)

    McDonald, D.W.

    1977-01-01

    Thermocouples with ferromagnetic thermoelements (iron, Alumel, Nisil) are used extensively in industry. We have observed the generation of voltage spikes within ferromagnetic wires when the wires are placed in an alternating magnetic field. This effect has implications for thermocouple thermometry, where it was first observed. For example, the voltage generated by this phenomenon will contaminate the thermocouple thermal emf, resulting in temperature measurement error

  10. Feasibility of a Constellation of Miniature Satellites for Performing Measurements of the Magnetic Field of the Earth

    DEFF Research Database (Denmark)

    Thomsen, Michael; Merayo, José M.G.; Brauer, Peter

    2008-01-01

    This paper studies the requirements for a small constellation of satellites to perform measurements of the magnetic field of the Earth and a payload and boom design for such a mission is discussed. After studying communication, power and mass requirements it is found that it is feasible to develop...

  11. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    Science.gov (United States)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  12. Measurement system for the determination of the individual exposure of low frequency electric and magnetic fields on humans (personal dosimeter)

    International Nuclear Information System (INIS)

    Huber, E.

    1998-07-01

    The current doctorate introduces a free body electronic personal dosimeter for measuring the vector components of ELF-fields. In contrast to a conventional field strength meter not the undisturbed fields are used as a measure, but the inhomogeneous fields near the human body, measured over a long time (dosimetric concept). Based on an analytical and numerical 'dosimetric' model, the field signal together with the frequency information can be transformed for further evaluation in the average inner body current density. Here the current density is considered as a dose relevant measure. According to demands in industrial safety, requirements for a dosimeter are derived and developmental goals defined. These goals are realized by investigations and proficiency testings of electric and magnetic highly sensitive field sensors, the development of low-power electronics with good performance and the implementation of digital data processing on different platforms. The characterization of the influence of possible environmental variables on the realized prototype, the determination of the technical characteristics under various boundary conditions and an error analysis are further important parts of this work. The calibration of the INPEDO (individual personal dosimeter) measurement system in special calibration facilities (three axis Helmholtz coils for the magnetic and parallel plates according to the IEEE833-standard for the electric field) as well as first measurements taken under real operating conditions conclude this report. (orig.) [de

  13. Characteristics of the Taylor microscale in the solar wind/foreshock. Magnetic field and electron velocity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gurgiolo, C. [Bitterroot Basic Research, Hamilton, MT (United States); Goldstein, M.L.; Vinas, A. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Heliospheric Physics Lab.; Matthaeus, W.H. [Delaware Univ., Newark, DE (United States). Bartol Research Foundation; Fazakerley, A.N. [University College London, Dorking (United Kingdom). Mullard Space Science Lab.

    2013-07-01

    The Taylor microscale is one of the fundamental turbulence scales. Not easily estimated in the interplanetary medium employing single spacecraft data, it has generally been studied through two point correlations. In this paper we present an alternative, albeit mathematically equivalent, method for estimating the Taylor microscale ({lambda}{sub T}). We make two independent determinations employing multi-spacecraft data sets from the Cluster mission, one using magnetic field data and a second using electron velocity data. Our results using the magnetic field data set yields a scale length of 1538{+-}550 km, slightly less than, but within the same range as, values found in previous magnetic-field-based studies. During time periods where both magnetic field and electron velocity data can be used, the two values can be compared. Relative comparisons show {lambda}{sub T} computed from the velocity is often significantly smaller than that from the magnetic field data. Due to a lack of events where both measurements are available, the absolute {lambda}{sub T} based on the electron fluid velocity is not able to be determined.

  14. Characteristics of the Taylor microscale in the solar wind/foreshock: magnetic field and electron velocity measurements

    Directory of Open Access Journals (Sweden)

    C. Gurgiolo

    2013-11-01

    Full Text Available The Taylor microscale is one of the fundamental turbulence scales. Not easily estimated in the interplanetary medium employing single spacecraft data, it has generally been studied through two point correlations. In this paper we present an alternative, albeit mathematically equivalent, method for estimating the Taylor microscale (λT. We make two independent determinations employing multi-spacecraft data sets from the Cluster mission, one using magnetic field data and a second using electron velocity data. Our results using the magnetic field data set yields a scale length of 1538 ± 550 km, slightly less than, but within the same range as, values found in previous magnetic-field-based studies. During time periods where both magnetic field and electron velocity data can be used, the two values can be compared. Relative comparisons show λT computed from the velocity is often significantly smaller than that from the magnetic field data. Due to a lack of events where both measurements are available, the absolute λT based on the electron fluid velocity is not able to be determined.

  15. Characteristics of the Taylor microscale in the solar wind/foreshock. Magnetic field and electron velocity measurements

    International Nuclear Information System (INIS)

    Gurgiolo, C.; Goldstein, M.L.; Vinas, A.; Matthaeus, W.H.; Fazakerley, A.N.

    2013-01-01

    The Taylor microscale is one of the fundamental turbulence scales. Not easily estimated in the interplanetary medium employing single spacecraft data, it has generally been studied through two point correlations. In this paper we present an alternative, albeit mathematically equivalent, method for estimating the Taylor microscale (λ T ). We make two independent determinations employing multi-spacecraft data sets from the Cluster mission, one using magnetic field data and a second using electron velocity data. Our results using the magnetic field data set yields a scale length of 1538±550 km, slightly less than, but within the same range as, values found in previous magnetic-field-based studies. During time periods where both magnetic field and electron velocity data can be used, the two values can be compared. Relative comparisons show λ T computed from the velocity is often significantly smaller than that from the magnetic field data. Due to a lack of events where both measurements are available, the absolute λ T based on the electron fluid velocity is not able to be determined.

  16. In situ magnetic field measurements during AMPTE solar wind Li+ releases

    International Nuclear Information System (INIS)

    Luehr, H.; Southwood, D.J.; Kloecker, N.; Acuna, M.; Haeusler, B.; Dunlop, M.W.; Mier-Jedrzejowicz, W.A.C.; Rijnbeek, R.P.; Six, M.

    1986-01-01

    Data recorded by the magnetometers on the German (IRM) and British (UKS) spacecraft of the Active Magnetospheric Particle Tracer Explorers (AMPTE) spacecraft mission are described during the immediate period following the two releases of lithium from the IRM during September. Ions created in the first seconds of the release form a coherent obstacle to solar wind flow. A cavity from which the interplanetary magnetic field is excluded is detected. Outside the cavity the field is compressed, and subsequently the cavity is convected downstream. We compare what is observed with other relevant natural interactions but also emphasize the unique features of this experiment

  17. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2013-04-15

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  18. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2013-04-01

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  19. Conversion of the magnetic field measured in three components on the magnetic sensor body's random coordinate system into three components on geographical coordinate system through quaternion rotation.

    Science.gov (United States)

    LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.

    2017-12-01

    To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for

  20. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  1. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques

    Directory of Open Access Journals (Sweden)

    Shaffer Jean M

    2010-05-01

    Full Text Available Abstract Background The assessment of arterial stiffness is increasingly used for evaluating patients with different cardiovascular diseases as the mechanical properties of major arteries are often altered. Aortic stiffness can be noninvasively estimated by measuring pulse wave velocity (PWV. Several methods have been proposed for measuring PWV using velocity-encoded cardiovascular magnetic resonance (CMR, including transit-time (TT, flow-area (QA, and cross-correlation (XC methods. However, assessment and comparison of these techniques at high field strength has not yet been performed. In this work, the TT, QA, and XC techniques were clinically tested at 3 Tesla and compared to each other. Methods Fifty cardiovascular patients and six volunteers were scanned to acquire the necessary images. The six volunteer scans were performed twice to test inter-scan reproducibility. Patient images were analyzed using the TT, XC, and QA methods to determine PWV. Two observers analyzed the images to determine inter-observer and intra-observer variabilities. The PWV measurements by the three methods were compared to each other to test inter-method variability. To illustrate the importance of PWV using CMR, the degree of aortic stiffness was assessed using PWV and related to LV dysfunction in five patients with diastolic heart failure patients and five matched volunteers. Results The inter-observer and intra-observer variability results showed no bias between the different techniques. The TT and XC results were more reproducible than the QA; the mean (SD inter-observer/intra-observer PWV differences were -0.12(1.3/-0.04(0.4 for TT, 0.2(1.3/0.09(0.9 for XC, and 0.6(1.6/0.2(1.4 m/s for QA methods, respectively. The correlation coefficients (r for the inter-observer/intra-observer comparisons were 0.94/0.99, 0.88/0.94, and 0.83/0.92 for the TT, XC, and QA methods, respectively. The inter-scan reproducibility results showed low variability between the repeated

  2. Electric field measurement of two commercial active/sham coils for transcranial magnetic stimulation.

    Science.gov (United States)

    Smith, James Evan; Peterchev, Angel V

    2018-06-22

    Sham TMS coils isolate the ancillary effects of their active counterparts, but typically induce low-strength electric fields (E-fields) in the brain, which could be biologically active. We measured the E-fields induced by two pairs of commonly-used commercial active/sham coils. Approach: E-field distributions of the active and sham configurations of the Magstim 70 mm AFC and MagVenture Cool-B65 A/P coils were measured over a 7-cm-radius, hemispherical grid approximating the cortical surface. Peak E-field strength was recorded over a range of pulse amplitudes. Main results: The Magstim and MagVenture shams induce peak E-fields corresponding to 25.3% and 7.72% of their respective active values. The MagVenture sham has an E-field distribution shaped like its active counterpart. The Magstim sham induces nearly zero E-field under the coil's center, and its peak E-field forms a diffuse oval 3-7 cm from the center. Electrical scalp stimulation paired with the MagVenture sham is estimated to increase the sham E-field in the brain up to 10%. Significance: Different commercial shams induce different E-field strengths and distributions in the brain, which should be considered in interpreting outcomes of sham stimulation. © 2018 IOP Publishing Ltd.

  3. Systematic optimization of exterior measurement locations for the determination of interior magnetic field vector components in inaccessible regions

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, N.; Plaster, B.

    2014-12-11

    An experiment may face the challenge of real-time determination of the magnetic field vector components present within some interior region of the experimental apparatus over which it is impossible to directly measure the field components during the operation of the experiment. As a solution to this problem, we propose a general concept which provides for a unique determination of the field components within such an interior region solely from exterior measurements at fixed discrete locations. The method is general and does not require the field to possess any type of symmetry. We describe our systematic approach for optimizing the locations of these exterior measurements which maximizes their sensitivity to successive terms in a multipole expansion of the field.

  4. Measured static hyperfine magnetic fields following implantation of Pt into Fe interpreted as evidence for pre-equilibrium effects

    International Nuclear Information System (INIS)

    Anderssen, S.S.; Stuchberry, A.E.

    1994-06-01

    The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is ∼ 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction (∼ 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs

  5. Measured static hyperfine magnetic fields following implantation of Pt into Fe interpreted as evidence for pre-equilibrium effects

    Energy Technology Data Exchange (ETDEWEB)

    Anderssen, S S; Stuchberry, A E

    1994-06-01

    The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is {approx} 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction ({approx} 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs.

  6. Measurements of electron drift and diffusion properties in a large cylindrical drift chamber (TPC) with parallel electric and magnetic fields

    International Nuclear Information System (INIS)

    Richstein, J.

    1986-01-01

    This work describes measurements on the drift of electrons in gases, using the TPC90, the prototype of the ALEPH Time Projection Chamber. Tracks which were created by UV-Laser ionization have been drifted over distances of up to 1.3 m in parallel electric and magnetic fields. Electron drift properties have been systematically measured as a function of these, in several gas mixtures. (orig./HSI)

  7. Magnetic fluctuation induced transport and edge dynamo measurements in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Hokin, S.; Fiksel, G.; Ji, H.

    1994-09-01

    Probe measurements in MST indicate that RFP particle and energy loss is governed by magnetic fluctuations inside r/a = 0.8, with energy carried out convectively by superthermal electrons. The radial loss rate is lower than the Rechester-Rosenbluth level, presumably due to the establishment of a restraining ambipolar potential. Several aspects of these measurements contradict the Kinetic Dynamo Theory, while the MHD dynamo EMF is measured to be large enough to drive the edge current carried by these superthermal electrons

  8. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    International Nuclear Information System (INIS)

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-01-01

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100°-117°, within 30° of the Galactic plane. For |b| –2 and –62 ± 5 rad m –2 in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 μG (7 μG) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  9. Uncertainty Reduction Via Parameter Design of A Fast Digital Integrator for Magnetic Field Measurement

    CERN Document Server

    Arpaia, P; Lucariello, G; Spiezia, G

    2007-01-01

    At European Centre of Nuclear Research (CERN), within the new Large Hadron Collider (LHC) project, measurements of magnetic flux with uncertainty of 10 ppm at a few of decades of Hz for several minutes are required. With this aim, a new Fast Digital Integrator (FDI) has been developed in cooperation with University of Sannio, Italy [1]. This paper deals with the final design tuning for achieving target uncertainty by means of experimental statistical parameter design.

  10. Ultra low frequency magnetic field measurements during earthquake activity in Italy (September-October 1997)

    Energy Technology Data Exchange (ETDEWEB)

    Villante, U.; Vellante, M.; Piancatelli, A. [L' Aquila Univ., L' Aquila (Italy). Dipt. di Fisica e Astrogeofisica

    2001-04-01

    Different methods with different results have been proposed in the scientific literature to identify the possible occurrence of weak seismo-magnetic ULF emissions. In September-October, 1997 Central Italy was struck by repeated seismic activity (M{sub L} < 5.8). A simple amplitude analysis of the geomagnetic field variations (horizontal components, in the frequency range 4-100 mHz) at a geomagnetic facility located = 65-85 km from epicenters of major earthquakes does not reveal in this case any clear evidence for possible ULF emissions.

  11. Effects of resistive magnetic field on fast electron divergence measured in experiment

    Czech Academy of Sciences Publication Activity Database

    Yang, H.X.; Zhuo, H.B.; Ma, Y.Y.; Xu, H.; Yu, T.P.; Zou, D.B.; Ge, Z.Y.; Xu, B.B.; Zhu, Q.J.; Shao, F.Q.; Borghesi, Marco

    2015-01-01

    Roč. 57, č. 2 (2015), s. 025011 ISSN 0741-3335 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : fast electron * divergence measument * resistive magnetic field * laser-plasma interactions * short-pulse * acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.404, year: 2015

  12. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  13. Study on the dynamic behavior of a current in cable-in-conduit conductors by using self magnetic field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki 509-5292, Gifu (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Imagawa, Shinsaku; Mito, Toshiyuki [National Institute for Fusion Science, 322-6 Oroshi, Toki 509-5292, Gifu (Japan); Kizu, Kaname; Murakami, Haruyuki; Yoshida, Kiyoshi [Japan Atomic Energy Agency, Ibaraki (Japan)

    2011-10-15

    In order to understand the current behavior inside a cable-in-conduit conductor (CICC), self magnetic field measurements on the CICC were conducted. A prototype NbTi CICC, the configuration of which is a racket shape, for JT-60SA EF coil was used as a short conductor sample. By using Hall sensors arranged around the short conductor sample, the variation in the self magnetic field was measured. Taking into account the measurements, the current behavior inside the CICC was analyzed by using analytical models consisting of line currents. The analytical results indicate that the current distribution in the cross-section of the CICC would be non-uniform before a normal propagation, and the current distribution would be improved after the normal propagation.

  14. Differential measurement of the earth's magnetic field by nuclear magnetic resonance; Mesure differentielle du champ magnetique terrestre par resonance magnetique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Robach, F [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    MNR transducers using proton dynamic polarisation allows to convert into a phase measurement any variation of the earth magnetic field. There exist several versions of the instrument corresponding to various models of MNR transducers, which the author analyses in detail, devoting an important place to influence of their alignment with respect to the earth's magnetic field. The sensibility obtained is of one hundredth of a gamma over a bandwidth of (0-0,1 Hz). - This instrument is designed for measuring field gradients in airborne magnetic surveying, for detecting nearly magnetic anomalies, and for distinguishing between nearly and distant magnetic phenomena. (author) [French] L'emploi de capteurs, bases sur la resonance magnetique nucleaire des protons en presence de polarisation dynamique, permet de traduire une difference de champ magnetique terrestre en une mesure de phase. L'appareil existe sous plusieurs versions avec des capteurs de modeles differents dont l'auteur fait une analyse detaillee en accordant une part importante a l'influence de l'orientation des capteurs par rapport au champ magnetique terrestre. La sensibilite est de 1/100 {gamma} pour une bande passante de (0 - 0,1 Hz). Cet appareil s'applique a la mesure du gradient en prospection magnetique aeroportee, a la detection d'anomalies magnetiques proches, a la differentiation d'effets magnetiques proches et lointains. (auteur)

  15. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  16. The measurement of power losses at high magnetic field densities or at small cross-section of test specimen using the averaging

    CERN Document Server

    Gorican, V; Hamler, A; Nakata, T

    2000-01-01

    It is difficult to achieve sufficient accuracy of power loss measurement at high magnetic field densities where the magnetic field strength gets more and more distorted, or in cases where the influence of noise increases (small specimen cross section). The influence of averaging on the accuracy of power loss measurement was studied on the cast amorphous magnetic material Metglas 2605-TCA. The results show that the accuracy of power loss measurements can be improved by using the averaging of data acquisition points.

  17. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst.

    Science.gov (United States)

    Ravi, V; Shannon, R M; Bailes, M; Bannister, K; Bhandari, S; Bhat, N D R; Burke-Spolaor, S; Caleb, M; Flynn, C; Jameson, A; Johnston, S; Keane, E F; Kerr, M; Tiburzi, C; Tuntsov, A V; Vedantham, H K

    2016-12-09

    Fast radio bursts (FRBs) are millisecond-duration events thought to originate beyond the Milky Way galaxy. Uncertainty surrounding the burst sources, and their propagation through intervening plasma, has limited their use as cosmological probes. We report on a mildly dispersed (dispersion measure 266.5 ± 0.1 parsecs per cubic centimeter), exceptionally intense (120 ± 30 janskys), linearly polarized, scintillating burst (FRB 150807) that we directly localize to 9 square arc minutes. On the basis of a low Faraday rotation (12.0 ± 0.7 radians per square meter), we infer negligible magnetization in the circum-burst plasma and constrain the net magnetization of the cosmic web along this sightline to burst scintillation suggests weak turbulence in the ionized intergalactic medium. Copyright © 2016, American Association for the Advancement of Science.

  18. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling

    Science.gov (United States)

    Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter

    2018-04-01

    The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.

  19. Muon-Spin Rotation Measurements of the Magnetic Field Dependence of the Vortex-Core Radius and Magnetic Penetration Depth in NbSe2

    International Nuclear Information System (INIS)

    Sonier, J.E.; Kiefl, R.F.; Brewer, J.H.; Chakhalian, J.; Dunsiger, S.R.; MacFarlane, W.A.; Miller, R.I.; Wong, A.; Luke, G.M.; Brill, J.W.

    1997-01-01

    Muon-spin rotation spectroscopy (μSR) has been used to measure the internal magnetic field distribution in NbSe 2 for H c1 c2 . The deduced profiles of the supercurrent density J s indicate that the vortex-core radius ρ 0 in the bulk decreases sharply with increasing magnetic field. This effect, which is attributed to increased vortex-vortex interactions, does not agree with the dirty-limit microscopic theory. A simple phenomenological equation in which ρ 0 depends on the intervortex spacing is used to model this behavior. In addition, we find for the first time that the in-plane magnetic penetration depth λ ab increases linearly with H in the vortex state of a conventional superconductor. copyright 1997 The American Physical Society

  20. Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements

    Science.gov (United States)

    Ishikawa, R.; Bando, T.; Hara, H.; Ishikawa, S.; Kano, R.; Kubo, M.; Katsukawa, Y.; Kobiki, T.; Narukage, N.; Suematsu, Y.; Tsuneta, S.; Aoki, K.; Miyagawa, K.; Ichimoto, K.; Kobayashi, K.; Auchère, F.; Clasp Team

    2014-10-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectro-polarimeter optimized for measuring the linear polarization of the Lyman-α line (121.6 nm) to be launched in 2015 with NASA's sounding rocket (Ishikawa et al. 2011; Narukage et al. 2011; Kano et al. 2012; Kobayashi et al. 2012). With this experiment, we aim to (1) observe the scattering polarization in the Lyman-α line, (2) detect the Hanle effect, and (3) assess the magnetic fields in the upper chromosphere and transition region for the first time. The polarization measurement error consists of scale error δ a (error in amplitude of linear polarization), azimuth error Δφ (error in the direction of linear polarization), and spurious polarization ɛ (false linear polarization signals). The error ɛ should be suppressed below 0.1% in the Lyman-α core (121.567 nm ±0.02 nm), and 0.5% in the Lyman-α wing (121.567 nm ±0.05 nm), based on our scientific requirements shown in Table 2 of Kubo et al. (2014). From scientific justification, we adopt Δ φspectro-polarimeter features a continuously rotating MgF2 waveplate (Ishikawa et al. 2013), a dual-beam spectrograph with a spherical grating working also as a beam splitter, and two polarization analyzers (Bridou et al. 2011), which are mounted at 90 degree from each other to measure two orthogonal polarization simultaneously. For the optical layout of the CLASP instrument, see Figure 3 in Kubo et al. (2014). Considering the continuous rotation of the half-waveplate, the modulation efficiency is 0.64 both for Stokes Q and U. All the raw data are returned and demodulation (successive addition or subtraction of images) is done on the ground. We control the CLASP polarization performance in the following three steps. First, we evaluate the throughput and polarization properties of each optical component in the Lyman-α line, using the Ultraviolet Synchrotron ORbital Radiation Facility (UVSOR) at the Institute for Molecular Science. The second step

  1. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D.

    Science.gov (United States)

    Chen, J; Ding, W X; Brower, D L; Finkenthal, D; Muscatello, C; Taussig, D; Boivin, R

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  2. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    International Nuclear Information System (INIS)

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-01-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  3. Towards Motion-Insensitive Magnetic Resonance Imaging Using Dynamic Field Measurements

    DEFF Research Database (Denmark)

    Andersen, Mads

    motion during scanning and update the MRI scanner in real-time such that the imaging volume follows the head motion (prospective motion correction). In this thesis, prospective motion correction is presented where head motion is determined from signals measured with an electroencephalography (EEG) cap......Magnetic resonance imaging (MRI) of the brain is frequently used for both clinical diagnosis and brain research. This is due to the great versatility of the technique and the excellent ability to distinguish different types of soft tissue. The image quality is, however, heavily degraded when...

  4. Development of a Polarimeter for Magnetic Field Measurements in the Ultraviolet

    Science.gov (United States)

    West, Edward; Porter, Jason; Davis, John; Gary, Allen; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the polarizing optics that are being developed for an ultraviolet magnetograph (SUMI) which will be flown on a sounding rocket payload. With a limited observing program, the polarizing optics were optimized to make simultaneous observation at two magnetic lines CIV (155nm) and MgII (280). This paper will give a brief overview of the SUMI instrument, will describe the polarimeter that will be used in the sounding rocket program and will present some of the measurements that have been made on the (SUMI) polarization optics.

  5. Experimental measurement of magnetic field null in the vacuum chamber of KTM tokamak based on matrix of 2D Hall sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, G.; Chektybayev, B., E-mail: chektybaev@nnc.kz; Sadykov, A.; Skakov, M.; Kupishev, E.

    2016-11-15

    Experimental technique of measurement of magnetic field null region inside of the KTM tokamak vacuum chamber has been developed. Square matrix of 36 2D Hall sensors, which used in the technique, allows carrying out direct measurements of poloidal magnetic field dynamics in the vacuum chamber. To better measuring accuracy, Hall sensor’s matrix was calibrated with commercial Helmholtz coils and in situ measurement of defined magnetic field from poloidal and toroidal coils. Standard KTM Data-Acquisition System has been used to collect data from Hall sensors. Experimental results of measurement of magnetic field null in the vacuum chamber of KTM are shown in the paper. Additionally results of the magnetic field null reconstruction from signals of inductive total flux loops are shown in the paper.

  6. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  7. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  8. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  9. Evidence for the field line reconnection process in the particle and magnetic field measurements obtained during the Giotto-Halley encounter

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, E.; Daly, P.; Korth, A.; McKenna-Lawlor, S.; Neubauer, F.M.; O' Sullivan, D.; Thompson, A.; Wenzel, K.P.

    1989-04-01

    Measurements of low (E = 250-1000 eV) and high (E = 60 to > 300 keV) energy particles as well as the magnetic field obtained by 3 different instruments (Reme Plasma Analyser, Energetic Particle Analyser, MAGnetometer) during the Giotto-Halley encounter on 13/14 March 1986 are used to study the field line merging process. Spikes of 5-15 min duration in the high energy particle flux which are superimposed on the general intensity time profile are correlated with minima in the low energy particle flux and time periods of oppositely directed magnetic field lines. Strong changes in the pitch angle distribution of energetic ions are observed simultaneously. The observations are considered as evidence for sporadic field line merging processes in the front side of Halley's cometosheath which can accelerate ions and electrons up to E /similar to/ 300 keV.

  10. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Pisarczyk, T.; Gus’kov, S.Yu.; Dudžák, Roman; Chodukowski, T.; Dostál, Jan; Demchenko, N. N.; Korneev, Ph.; Kalinowska, Z.; Kalal, M.; Renner, Oldřich; Šmíd, Michal; Borodziuk, S.; Krouský, Eduard; Ullschmied, Jiří; Hřebíček, Jan; Medřík, Tomáš; Golasowski, Jiří; Pfeifer, Miroslav; Skála, Jiří; Pisarczyk, P.

    2015-01-01

    Roč. 22, č. 10 (2015), č. článku 102706. ISSN 1070-664X R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LD14089; GA ČR GPP205/11/P712 Grant - others:FP7(XE) 284464 Program:FP7 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : space-time resolved spontaneous magnetic field (SMF) * Laser System Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 2.207, year: 2015 http://scitation.aip.org/content/aip/journal/pop/22/10/10.1063/1.4933364

  11. Far-infrared imaging arrays for fusion plasma density and magnetic field measurements

    International Nuclear Information System (INIS)

    Neikirk, D.P.; Rutledge, D.B.

    1982-01-01

    Far-infrared imaging detector arrays are required for the determination of density and local magnetic field in fusion plasmas. Analytic calculations point out the difficulties with simple printed slot and dipole antennas on ungrounded substrates for use in submillimeter wave imaging arrays because of trapped surface waves. This is followed by a discussion of the use of substrate-lens coupling to eliminate the associated trapped surface modes responsible for their poor performance. This integrates well with a modified bow-tie antenna and permits diffraction-limited imaging. Arrays using bismuth microbolometers have been successfully fabricated and tested at 1222μm and 119μm. A 100 channel pilot experiment designed for the UCLA Microtor tokamak is described. (author)

  12. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  13. Electrolytic tiltmeters inside magnetic fields: Some observations

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Calderon, A.; Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A.L.

    2007-01-01

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths

  14. Electrolytic tiltmeters inside magnetic fields: Some observations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Garcia-Moral, L.A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gomez, G. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gonzalez-Sanchez, F.J. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Ruiz-Arbol, P. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Scodellaro, L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain)

    2007-04-21

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths.

  15. Real time magnetic field and flux measurements for tokamak control using a multi-core PCI Express system

    International Nuclear Information System (INIS)

    Giannone, L.; Schneider, W.; McCarthy, P.J.; Sips, A.C.C.; Treutterer, W.; Behler, K.; Eich, T.; Fuchs, J.C.; Hicks, N.; Kallenbach, A.; Maraschek, M.; Mlynek, A.; Neu, G.; Pautasso, G.; Raupp, G.; Reich, M.; Schuhbeck, K.H.; Stober, J.; Volpe, F.; Zehetbauer, T.

    2009-01-01

    The existing real time system for the position and shape control in ASDEX Upgrade has been extended to calculate magnetic flux surfaces in real time using a multi-core PCI Express system running LabVIEW RT. The availability of reflective memory for LabVIEW RT will allow this system to be connected to the control system and other diagnostics in a multi-platform real time network. The measured response of each magnetic probe to the individual poloidal field coil currents in the absence of plasma current is compared to the calculated value. Prior to a tokamak discharge this comparison can be used to check for failure of the magnetic probe, flux loop or integrator.

  16. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    Science.gov (United States)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  17. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  18. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  19. Magnetic field line reconnection experiments

    International Nuclear Information System (INIS)

    Gekelman, W.; Stenzel, R.L.; Wild, N.

    1982-01-01

    A laboratory experiment concerned with the basic physics of magnetic field line reconnection is discussed. Stimulated by important processes in space plasmas and anomalous transport in fusion plasmas the work addresses the following topics: Dynamic magnetic fields in a high beta plasma, magnetic turbulence, plasma dynamics and energy transport. First, the formation of magnetic neutral sheets, tearing and island coalescence are shown. Nonstationary magnetic fluctuations are statistically evaluated displaying the correlation tensor in the #betta#-k domain for mode identification. Then, the plasma properties are analyzed with particular emphasis on transport processes. Although the classical fluid flow across the separatrix can be observed, the fluctuation processes strongly modify the plasma dynamics. Direct measurements of the fluid force density and ion acceleration indicate the presence of an anomalous scattering process characterized by an effective scattering tensor. Turbulence also enhances the plasma resistivity by one to two orders of magnitude. Measurements of the three-dimensional electron distribution function using a novel energy analyzer exhibit the formation of runaway electrons in the current sheet. Associated micro-instabilities are observed. Finally, a macroscopic disruptive instability of the current sheet is observed. Excess magnetic field energy is converted at a double layer into particle kinetic energy and randomized through beam-plasma instabilities. These laboratory results are compared with related observations in space and fusion plasmas. (Auth.)

  20. Development of high-resolution two-dimensional magnetic field measurement system by use of printed-circuit technology

    Science.gov (United States)

    Akimitsu, Moe; Qinghong, Cao; Sawada, Asuka; Hatano, Hironori; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team

    2017-10-01

    We have developed a new-types of high-resolution magnetic probe array for our new magnetic reconnection experiments: TS-3U (ST, FRC: R =0.2m, 2017-) and TS-4U (ST, FRC: R =0.5m, 2018-), using the advanced printed-circuit technology. They are equipped with all three-components of magnetic pick-up coils whose size is 1-5mm x 3mm. Each coil is composed of two-sided coil pattern with line width of 0.05mm. We can install two or three printed arrays in a single glass (ceramic) tube for two or three component measurements. Based on this new probe technique, we started high-resolution and high-accuracy measurement of the current sheet thickness and studied its plasma parameter dependence. We found that the thickness of current sheet increases inversely with the guide toroidal field. It is probably determined by the ion gyroradius in agreement with the particle simulation by Horiuchi etc. While the reconnection speed is steady under low guide field condition, it is observed to oscillate in the specific range of guide field, suggesting transition from the quasi-steady reconnection to the intermittent reconnection. Cause and mechanism for intermittent reconnection will be discussed using the current sheet dissipation and dynamic balance between plasma inflow and outflow. This work supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  1. The 6 April 2009 earthquake at L'Aquila: a preliminary analysis of magnetic field measurements

    Directory of Open Access Journals (Sweden)

    U. Villante

    2010-02-01

    Full Text Available Several investigations reported the possible identification of anomalous geomagnetic field signals prior to earthquake occurrence. In the ULF frequency range, candidates for precursory signatures have been proposed in the increase in the noise background and polarization parameter (i.e. the ratio between the amplitude/power of the vertical component and that one of the horizontal component, in the changing characteristics of the slope of the power spectrum and fractal dimension, in the possible occurrence of short duration pulses. We conducted, with conventional techniques of data processing, a preliminary analysis of the magnetic field observations performed at L'Aquila during three months preceding the 6 April 2009 earthquake, focusing attention on the possible occurrence of features similar to those identified in previous events. Within the limits of this analysis, we do not find compelling evidence for any of the features which have been proposed as earthquake precursors: indeed, most of aspects of our observations (which, in some cases, appear consistent with previous findings might be interpreted in terms of the general magnetospheric conditions and/or of different sources.

  2. The earth's magnetic field

    International Nuclear Information System (INIS)

    Merrill, R.T.

    1983-01-01

    After a historical introduction in Chapter 1, the more traditional aspects of geomagnetism relating to the present field and historical observations are presented in Chapter 2. The various methods and techniques and theoretical background of palaeomagnetism are given in Chapter 3. Chapters 4, 5 and 6 present the results of palaeomagnetic and archaeomagnetic studies in three topics. Chapter 4 relates to studies of the geomagnetic field roughly back to about 50,000 years ago. Chapter 5 is about reversals of the geomagnetic field and Chapter 6 presents studies of the field for times older than 50,000 years and on the geological time scale of millions or hundreds of millions of years. Chapters 7, 8 and 9 provide insight into dynamo theory. Chapter 7 is essentially a non-mathematical attempt to explain the physical basis of dynamo theories to palaeomagnetists. This is followed in Chapter 8 by a more advanced theoretical treatment. Chapter 9 explains theoretical aspects of secular variation and the origin of reversals of the geomagnetic field. Chapter 10 is our attempt to relate theory to experiment and vice versa. The final two chapters consider the magnetic fields of the moon, sun, planets and meteorites, in an attempt to determine the necessary and sufficient conditions for magnetic field generation in large solar system bodies. (author)

  3. The discrepancy between human peripheral nerve chronaxie times as measured using magnetic and electric field stimuli: the relevance to MRI gradient coil safety

    International Nuclear Information System (INIS)

    Recoskie, Bryan J; Chronik, Blaine A; Scholl, Timothy J

    2009-01-01

    Peripheral nerve stimulation (PNS) resulting from electric fields induced from the rapidly changing magnetic fields of gradient coils is a concern in MRI. Nerves exposed to either electric fields or changing magnetic fields would be expected to display consistent threshold characteristics, motivating the direct application of electric field exposure criteria from the literature to guide the development of gradient magnetic field exposure criteria for MRI. The consistency of electric and magnetic field exposures was tested by comparing chronaxie times for electric and magnetic PNS curves for 22 healthy human subjects. Electric and magnetic stimulation thresholds were measured for exposure of the forearm using both surface electrodes and a figure-eight magnetic coil, respectively. The average chronaxie times for the electric and magnetic field conditions were 109 ± 11 μs and 651 ± 53 μs (±SE), respectively. We do not propose that these results call into question the basic mechanism, namely that rapidly switched gradient magnetic fields induce electric fields in human tissues, resulting in PNS. However, this result does motivate us to suggest that special care must be taken when using electric field exposure data from the literature to set gradient coil PNS safety standards in MRI.

  4. Magnetic field screens

    International Nuclear Information System (INIS)

    Mansfield, P.; Turner, R.; Chapman, B.L.W.; Bowley, R.M.

    1990-01-01

    A screen for a magnetic coil, for producing, for example, a homogeneous, gradient or RF field in nuclear magnetic resonance imaging, is described. It is provided by surround the coil with a set of electrical conductors. The currents within the conductors are controlled in such a manner that the field is neutralised in a specific region of space. The current distribution within the conductors is determined by calculating the current within a hypothetical superconductive shield which would have the effect of neutralising the field, the current through the conductors thereby being a substitute for the superconductive shield. The conductors may be evenly spaced and connected in parallel, their resistances being determined by thickness or composition to provide the desired current, or they may carry equal currents but be differently spaced. A further set or sets of controlled conductors outside the first set may ensure that the first set does not upset the field from the NMR coil. The shield may selectively reflect certain fields while transmitting others and may prevent acoustic vibration e.g. when switching gradient fields. An RF coil arrangement may consist of two orthogonal coils, one coil within the other for use as a transmit/receive set or as a double resonance transmitter; a shield between the coils is in series with, and formed from the same winding as, the inner coil. (author)

  5. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  6. Pulsed critical current measurements of NbTi in perpendicular and parallel pulsed magnetic fields using the new Cryo-BI-Pulse System

    International Nuclear Information System (INIS)

    Stehr, V; Tan, K S; Hopkins, S C; Glowacki, B A; Keyser, A De; Bockstal, L Van; Deschagt, J

    2006-01-01

    Rapid transport current versus high magnetic field characterisation of high-irreversibility type II superconductors is important to maximise their critical parameters. HTS conductors are already used to produce insert coils that increase the fields of conventional magnets made from NbTi (Nb, Ta) 3 Sn and Nb 3 Al wires. There is fundamental interest in the study of HTS tapes and wires in magnetic fields higher than 21T, the current limit of superconducting magnets producing a DC field. Such fields can be obtained by using pulse techniques. High critical currents cannot be routinely measured with a continuous current applied at liquid helium, hydrogen or neon temperatures because of thermal and mechanical effects. A newly developed pulsed magnetic field and pulsed current system which allows rapid J c (B, T) measurements of the whole range of superconducting materials was tested with a multifilamentary NbTi wire in perpendicular and parallel orientations

  7. A.c. susceptibility measurements in the presence of d.c. magnetic fields for Nd-Ba-Cu-O superconductors

    International Nuclear Information System (INIS)

    Watahiki, M.; Murakami, M.; Yoo, S.I.

    1997-01-01

    We report the temperature and magnetic field dependence of the complex a.c. susceptibility with bias d.c. magnetic fields for melt-processed Nd-Ba-Cu-O superconductor. The onset temperature (T onset ) of the real part of a.c. susceptibility shifted to a lower temperature with increasing d.c. magnetic field. The superconducting transition temperature (T c ) determined by d.c. magnetization measurements did not shift appreciably to a lower-temperature region with increasing d.c. magnetic field. The distinction between T onset and T c indicates that the a.c. susceptibility measurements detect the energy dissipation generated by the motion of flux lines. We have also measured flux profiles and found that there was no appreciable change in flux penetration below and above the peak field, which suggests that the peak effect in Nd-Ba-Cu-O is not due to the phase transition in the flux line lattice. (author)

  8. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  9. MR-based measurements and simulations of the magnetic field created by a realistic transcranial magnetic stimulation (TMS) coil and stimulator.

    Science.gov (United States)

    Mandija, Stefano; Petrov, Petar I; Neggers, Sebastian F W; Luijten, Peter R; van den Berg, Cornelis A T

    2016-11-01

    Transcranial magnetic stimulation (TMS) is an emerging technique that allows non-invasive neurostimulation. However, the correct validation of electromagnetic models of typical TMS coils and the correct assessment of the incident TMS field (B TMS ) produced by standard TMS stimulators are still lacking. Such a validation can be performed by mapping B TMS produced by a realistic TMS setup. In this study, we show that MRI can provide precise quantification of the magnetic field produced by a realistic TMS coil and a clinically used TMS stimulator in the region in which neurostimulation occurs. Measurements of the phase accumulation created by TMS pulses applied during a tailored MR sequence were performed in a phantom. Dedicated hardware was developed to synchronize a typical, clinically used, TMS setup with a 3-T MR scanner. For comparison purposes, electromagnetic simulations of B TMS were performed. MR-based measurements allow the mapping and quantification of B TMS starting 2.5 cm from the TMS coil. For closer regions, the intra-voxel dephasing induced by B TMS prohibits TMS field measurements. For 1% TMS output, the maximum measured value was ~0.1 mT. Simulations reflect quantitatively the experimental data. These measurements can be used to validate electromagnetic models of TMS coils, to guide TMS coil positioning, and for dosimetry and quality assessment of concurrent TMS-MRI studies without the need for crude methods, such as motor threshold, for stimulation dose determination. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...... research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and space observations, and on state-of-the-art empirical models and physics-based simulations. Thus, it provides an in-depth overview over recent achievements, current limitations and challenges, and future opportunities in the field of geomagnetism and space sciences....

  11. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  12. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    International Nuclear Information System (INIS)

    Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S

    2008-01-01

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  13. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  14. Motions and solar magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Krat, V A [AN SSSR, Leningrad. Glavnaya Astronomicheskaya Observatoriya

    1977-02-01

    Fine structure of magnetic fields in the Sun has been investigated. The data of the Soviet solar stratospheric observatory (SSO) with the telescope with a mirror first of 50 and then 100 cm in diameter obtained for the period of 1970-1973 served as material for research. The experiments give evidence of the presence of photospheric granulation with the characteristic dimension of granules below 150 km. The angular resolution of instruments does not make it possible to realize direct measurements of magnetic fields of such sizes. The indirect estimates indicate the fact that the magnetic fields of photosphere cannot be less than 10/sup 2/ Oe. A comparison of Hsub(..cap alpha..) lines with lines of metals and with the continuous spectrum shows that the least dimensions of chromosphere elements account for 500 km. Since in chromosphere density decreases drastically, than in order to suppress hydrodynamic flows fields should be of the order of 10/sup 3/ Oe. It has been concluded that the problem of the origin and evolution of the magnetic field of the Sun should be also solved by applying data on other stars.

  15. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  16. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  17. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    Science.gov (United States)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  18. Normal spectral emissivity measurement of molten copper using an electromagnetic levitator superimposed with a static magnetic field

    International Nuclear Information System (INIS)

    Kurosawa, Ryo; Inoue, Takamitsu; Baba, Yuya; Sugioka, Ken-ichi; Kubo, Masaki; Tsukada, Takao; Fukuyama, Hiroyuki

    2013-01-01

    The normal spectral emissivity of molten copper was determined in the wavelength range of 780–920 nm and in the temperature range of 1288–1678 K, by directly measuring the radiance emitted by an electromagnetically levitated molten copper droplet under a static magnetic field of 1.5 T. The spectrometer for radiance measurement was calibrated using the relation between the theoretical blackbody radiance from Planck's law and the light intensity of a quasi-blackbody radiation source measured using a spectrometer at a given temperature. As a result, the normal spectral emissivity of molten copper was determined as 0.075 ± 0.011 at a wavelength of 807 nm, and it was found that its temperature dependence is negligible in the entire measurement temperature range tested. In addition, the results of the normal spectral emissivity and its wavelength dependence were discussed, in comparison with those obtained using the Drude free-electron model. (paper)

  19. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  20. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    Science.gov (United States)

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  1. The Evolution of the Earth's Magnetic Field.

    Science.gov (United States)

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  2. Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements

    International Nuclear Information System (INIS)

    Crooker, N.U.; Siscoe, G.L.; Russell, C.T.; Smith, E.J.

    1982-01-01

    The degree of correlation between ISEE 1 and ISEE 3 IMF measurements is highly variable. Approximately 200 two-hour periods when the correlation was good and 200 more when the correlation was poor are used to determine the relative control of several factors over the degree of correlation. Both IMF variance and spacecraft separation distance in the plane perpendicular to the earth-sun line exert substantial control. Good correlations are associated with high variance and distances less than 90 R/sub E/. During periods of highest variance, good correlations occur at distances beyond 90 R/sub E/ up to 120 R/sub E/, the maximum range of ISEE 1-ISEE 3 separation. Thus it appears that the scale size of magnetic features is larger when the variance is high. Abrupt changes in the correlation coefficient from poor to good or good to poor in adjacent two-hour intervals appear to be governed by the sense of change of IMF variance: changes in correlation from poor to good correspond to increasing variance and vice versa. The IMF orientation also exerts control over the degree of correlation. During periods of low variance, good correlations are most likely to occur when the distance between ISEE 1 and ISEE 3 perpendicular to the IMF is less than 20 R/sub E/. This scale size expands to approx.50 R/sub E/ during periods of high variance. Solar wind speed shows little control over the degree of correlation in the speed range 300--500 km/s

  3. Measuring the Earth’s magnetic field dip angle using a smartphone-aided setup: a simple experiment for introductory physics laboratories

    International Nuclear Information System (INIS)

    Arabasi, Sameer; Al-Taani, Hussein

    2017-01-01

    Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor. (paper)

  4. Measuring the Earth’s magnetic field dip angle using a smartphone-aided setup: a simple experiment for introductory physics laboratories

    Science.gov (United States)

    Arabasi, Sameer; Al-Taani, Hussein

    2017-03-01

    Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor.

  5. Magnetic measurements of the injector synchrotron magnets for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Kim, S.H.; Carnegie, D.W.; Doose, C.L.; Hogrefe, R.; Kim, K.; Merl, R.; Turner, L.R.

    1993-01-01

    The magnetic measurement data of the dipole, quadrupole, and sextupole magnets for the Advanced Photon Source injector synchrotron are summarized. Magnet design and magnetic measurements of the field strength, field shape, and multipole coefficients are described

  6. Magnetic measurements of the injector synchrotron magnets for the advanced photon source

    Science.gov (United States)

    Kim, S. H.; Carnegie, D. W.; Doose, C. L.; Hogrefe, R.; Kim, K.; Merl, R.; Turner, L. R.

    1994-07-01

    The magnetic measurement data of the dipole, quadrupole, and sextupole magnets for the Advanced Photon Source injector synchrotron are summarized. Magnet design and magnetic measurements of the field strength, field shape, and multipole coefficients are described.

  7. Warm measurements of CBA superconducting magnets

    International Nuclear Information System (INIS)

    Engelmann, R.; Herrera, J.; Kahn, S.; Kirk, H.; Willen, E.; Yamin, P.

    1983-01-01

    We present results on magnetic field measurements of CBA dipole magnets in the warm (normal conductor) and cryogenic (superconducting) states. We apply two methods for the warm measurements, a dc and ac method. We find a good correlation between warm and cryogenic measurements which lends itself to a reliable diagnosis of magnet field errors using warm measurements early in the magnet assembly process. We further find good agreement between the two warm measurement methods, both done at low currents

  8. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  9. Minimizing magnetic fields for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S., E-mail: stefan.stuiber@ph.tum.de; Sturm, M.; Taggart Singh, J.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Rohrer, H. K. [Rohrer GmbH, D-80667 München (Germany); Schläpfer, U. [IMEDCO AG, CH-4614 Hägendorf (Switzerland)

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  10. Minimizing magnetic fields for precision experiments

    International Nuclear Information System (INIS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application

  11. Magnetic vector field tag and seal

    Science.gov (United States)

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  12. Design of integral magnetic field sensor

    International Nuclear Information System (INIS)

    Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng

    2010-01-01

    Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)

  13. ZZ di-boson measurements with the ATLAS detector at the LHC and study of the toroidal magnetic field sensors

    International Nuclear Information System (INIS)

    Protopapadaki, Eftychia-Sofia

    2014-01-01

    Elementary particles and their interactions are described by the Standard Model. Even successful, there are still some unanswered questions which need to be addressed. In this work, the ZZ Standard Model process was studied in the leptonic decay channel. The data used were collected by the ATLAS detector during 2012 and correspond to an integrated luminosity of 20 fb -1 . The center of mass energy was 8 TeV. All the analysis elements, such as the signal selection and efficiencies, the background estimation, the measurement uncertainties and the statistical method employed for the cross section extraction, are discussed in this document. The total ZZ on-shell cross section is measured to be 6.98±0.41(stat.)±0.36(syst.)±0.20(lumi) pb. A measurement of the on-shell 'fiducial' cross section, defined in a volume close to the reconstructed one, was also performed for each decay channel. Both total and fiducial measurements are in agreement, within uncertainties, with the SM predictions. The neutral boson-self interactions are forbidden in the SM. Therefore, if triple gauge boson couplings are observed, they will indirectly point to the existence of new physics. Observables sensitive to the presence of anomalous triple gauge couplings, along with the optimal binning were investigated. The traverse momentum of the most energetic boson was among the most sensitive observables, and it was thus used in order to extract 95% CL limits on the anomalous coupling parameters. All observed limits are found to be compatible with the SM expectations. In the framework of this thesis a performance study was conducted. In order to increase particles mass measurement precision, the accurate knowledge of the toroidal magnetic field inside the detector is essential. The sensors used for the production of the ATLAS toroidal magnetic field map were studied, and it was found that more than 97% of these sensors are reliable. The existing magnetic field map was probed, and even

  14. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    Science.gov (United States)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  15. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  16. Measurements of the temporal onset of mega-Gauss magnetic fields in a laser-driven solenoid

    Science.gov (United States)

    Goyon, Clement; Polllock, B. B.; Turnbull, D. T.; Hazi, A.; Ross, J. S.; Mariscal, D. A.; Patankar, S.; Williams, G. J.; Farmer, W. A.; Moody, J. D.; Fujioka, S.; Law, K. F. F.

    2016-10-01

    We report on experimental results obtained at Omega EP showing a nearly linear increase of the B-field up to about 2 mega-Gauss in 0.75 ns in a 1 mm3 region. The field is generated using 1 TW of 351 nm laser power ( 8*1015 W/cm2) incident on a laser-driven solenoid target. The coil target converts about 1% of the laser energy into the B-field measured both inside and outside the coil using proton deflectometry with a grid and Faraday rotation of probe beam through SiO2 glass. Proton data indicates a current rise up to hundreds of kA with a spatial distribution in the Au solenoid conductor evolving in time. These results give insight into the generating mechanism of the current between the plates and the time behavior of the field. These experiments are motivated by recent efforts to understand and utilize High Energy Density (HED) plasmas in the presence of external magnetic fields in areas of research from Astrophysics to Inertial Confinement Fusion. We will describe the experimental results and scale them to a NIF hohlraum size. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  17. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  18. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    Science.gov (United States)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  19. A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni.

    Science.gov (United States)

    Dallilar, Yigit; Eikenberry, Stephen S; Garner, Alan; Stelter, Richard D; Gottlieb, Amy; Gandhi, Poshak; Casella, Piergiorgio; Dhillon, Vik S; Marsh, Tom R; Littlefair, Stuart P; Hardy, Liam; Fender, Rob; Mooley, Kunal; Walton, Dominic J; Fuerst, Felix; Bachetti, Matteo; Castro-Tirado, A J; Charcos, Miguel; Edwards, Michelle L; Lasso-Cabrera, Nestor M; Marin-Franch, Antonio; Raines, S Nicholas; Ackley, Kendall; Bennett, John G; Cenarro, A Javier; Chinn, Brian; Donoso, H Veronica; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H; Packham, Chris; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, A N; Burse, Mahesh; Punnadi, Sujit; Chordia, Pravin; Gerarts, Andreas; de Paz Martín, Héctor; Calero, María Martín; Scarpa, Riccardo; Acosta, Sergio Fernandez; Hernández Sánchez, William Miguel; Siegel, Benjamin; Pérez, Francisco Francisco; Viera Martín, Himar D; Rodríguez Losada, José A; Nuñez, Agustín; Tejero, Álvaro; Martín González, Carlos E; Rodríguez, César Cabrera; Molgó, Jordi; Rodriguez, J Esteban; Cáceres, J Israel Fernández; Rodríguez García, Luis A; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Lavers, Antonio Cabrera; Geier, Stefan; Pessev, Peter; Sarajedini, Ata

    2017-12-08

    Observations of binary stars containing an accreting black hole or neutron star often show x-ray emission extending to high energies (>10 kilo--electron volts), which is ascribed to an accretion disk corona of energetic particles akin to those seen in the solar corona. Despite their ubiquity, the physical conditions in accretion disk coronae remain poorly constrained. Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Measurement of the exposure of the Swiss population to magnetic fields of 50 Hz power frequency and 16 2/3 Hz in railways

    International Nuclear Information System (INIS)

    Stratmann, M.; Wernli, C.

    1996-01-01

    All installations that generate, transmit, or use electric power cause electric and magnetic fields. Common to all types of sources is a strong dependence of the magnetic flux density on the distance to the source. However, this information is not sufficient to know to what degree various parts of the population are exposed to magnetic fields during the different periods of the day. For this reason a study was carried out to assess the typical exposure of the Swiss population to the magnetic fields of 50 Hz power frequency and to 16 2/3 Hz magnetic fields in railways. A method of data reduction that allows for the determination of frequency distribution and percentiles for any selection of measurements was applied. (author)

  1. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    Science.gov (United States)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  2. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  3. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  4. On the absorbing force of magnetic fields acting on magnetic particle under magnetic particle examination

    International Nuclear Information System (INIS)

    Maeda, N.

    1988-01-01

    During the magnetic particle examination, magnetic particles near defects are deposited by an absorbing force of magnetic fields acting on the magnetic particles. Therefore, a quantitative determination of this absorbing force is a theoretical and experimental basis for solving various problems associated with magnetic particle examinations. The absorbing force is formulated based on a magnetic dipole model, and a measuring method of the absorbing force using magnetic fields formed around linear current is proposed. Measurements according to this method produced appropriate results, verifying the validation of the concept and the measuring method

  5. Results of stretched wire field integral measurements on the mini-undulator magnet - comparison of results obtained from circular and translational motion of the integrating wire

    International Nuclear Information System (INIS)

    Solomon, L.

    1998-05-01

    Measurements of the multipole content of the Mini-Undulator magnet have been made with two different integrating wire techniques. Both measurements used 43 strand Litz wire stretched along the length of the magnet within the magnet gap. In the first technique, the wire motion was purely translational, while in the second technique the wire was moved along a circular path. The induced voltage in the Litz wire was input into a Walker integrator, and the integrator output was analyzed as a function of wire position for determination of the multipole content of the magnetic field. The mini-undulator magnet is a 10 period, 80 mm per period hybrid insertion device. For all the data contained herein the magnet gap was set at 49 mm. In the mini-undulator magnet, the iron poles are 18mm x 32mm x 86 mm, and the Samarium Cobalt permanent magnet blocks are 22mm x 21mm x 110mm. For this magnet, which is a shortened prototype for the NSLS Soft X-Ray Undulator Magnet, the undulator parameter K = 0.934 B (Tesla)λ(cm), and B(tesla) = 0.534/sinh(πGap/λ). At a gap of 49 mm, the magnetic field is 1590 Gauss

  6. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  7. Comparison of Achievable Magnetic Fields with Superconducting and Cryogenic Permanent Magnet Undulators – A Comprehensive Study of Computed and Measured Values

    Energy Technology Data Exchange (ETDEWEB)

    Moog, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Dejus, R. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sasaki, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Magnetic modeling was performed to estimate achievable magnetic field strengths of superconducting undulators (SCUs) and to compare them with those of cryogenically cooled permanent magnet undulators (CPMUs). Starting with vacuum (beam stay-clear) gaps of 4.0 and 6.0 mm, realistic allowances for beam chambers (in the SCU case) and beam liners (in the CPMU case) were added. (A 6.0-mm vacuum gap is planned for the upgraded APS). The CPMU magnetic models consider both CPMUs that use NdFeB magnets at ~150 K and PrFeB magnets at 77 K. Parameters of the magnetic models are presented along with fitted coefficients of a Halbach-type expression for the field dependence on the gap-to-period ratio. Field strengths for SCUs are estimated using a scaling law for planar SCUs; an equation for that is given. The SCUs provide higher magnetic fields than the highest-field CPMUs – those using PrFeB at 77 K – for period lengths longer than ~14 mm for NbTi-based SCUs and ~10 mm for Nb3Sn-based SCUs. To show that the model calculations and scaling law results are realistic, they are compared to CPMUs that have been built and NbTi-based SCUs that have been built. Brightness tuning curves of CPMUs (PrFeB) and SCUs (NbTi) for the upgraded APS lattice are also provided for realistic period lengths.

  8. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  9. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  10. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  11. Measurements of the ripple effect and geometric distribution of switched gradient fields inside a magnetic resonance scanner.

    Science.gov (United States)

    Sundström, Henrik; Mild, Kjell Hansson; Wilén, Jonna

    2015-02-01

    Knowledge of patient exposure during magnetic resonance imaging (MRI) procedures is limited, and the need for such knowledge has been demonstrated in recent in vitro and in vivo studies of the genotoxic effects of MRI. This study focuses on the dB/dt of the switched gradient field (SGF) and its geometric distribution. These values were characterized by measuring the peak dB/dt generated by a programmed gradient current of alternating triangles inside a 1.5T MR scanner. The maximum dB/dt exposure to the gradient field was 6-14 T/s, and this occurred at the edges of the field of view (FOV) 20-25 cm from the isocenter in the longitudinal direction. The dB/dt exposure dropped off to roughly half the maximum (3-7 T/s) at the edge of the bore. It was found that the dB/dt of the SGF was distorted by a 200 kHz ripple arising from the amplifier. The ripple is small in terms of B-field, but the high frequency content contributes to a peak dB/dt up to 18 times larger than that predicted by the slew rate (4 T/s m) and the distance from the isocenter. Measurements on a 3 T MRI scanner, however, revealed a much smaller filtered ripple of 100 kHz in dB/dt. These findings suggest that the gradient current to each coil together with information on the geometrical distribution of the gradient field and ripple effects could be used to assess the SGF exposure within an MRI bore. © 2014 Wiley Periodicals, Inc.

  12. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited)

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N. A. [University of California-San Diego, La Jolla, California 92093 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holcomb, C. T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2010-10-15

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D{sub {alpha}} emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B{sub {theta}}/B{sub T} and |B| over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0x10{sup 19} m{sup -3}, and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  13. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited).

    Science.gov (United States)

    Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H

    2010-10-01

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  14. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  15. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    International Nuclear Information System (INIS)

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya; Matsuki, Hidetoshi; Yamada, Syogo; Sato, Tadakuni

    2009-01-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal

  16. Composite Match Index with Application of Interior Deformation Field Measurement from Magnetic Resonance Volumetric Images of Human Tissues

    Directory of Open Access Journals (Sweden)

    Penglin Zhang

    2012-01-01

    Full Text Available Whereas a variety of different feature-point matching approaches have been reported in computer vision, few feature-point matching approaches employed in images from nonrigid, nonuniform human tissues have been reported. The present work is concerned with interior deformation field measurement of complex human tissues from three-dimensional magnetic resonance (MR volumetric images. To improve the reliability of matching results, this paper proposes composite match index (CMI as the foundation of multimethod fusion methods to increase the reliability of these various methods. Thereinto, we discuss the definition, components, and weight determination of CMI. To test the validity of the proposed approach, it is applied to actual MR volumetric images obtained from a volunteer’s calf. The main result is consistent with the actual condition.

  17. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  18. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  19. Spectropolarimetry with PEPSI at the LBT: accuracy vs. precision in magnetic field measurements

    Science.gov (United States)

    Ilyin, Ilya; Strassmeier, Klaus G.; Woche, Manfred; Hofmann, Axel

    2009-04-01

    We present the design of the new PEPSI spectropolarimeter to be installed at the Large Binocular Telescope (LBT) in Arizona to measure the full set of Stokes parameters in spectral lines and outline its precision and the accuracy limiting factors.

  20. R&D ERL: Magnetic measurements of the ERL magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A.

    2010-08-01

    The magnet system of ERL consists of G5 solenoids, 6Q12 quadrupoles with 0.58 T/m gradient, 3D60 dipoles with 0.4 T central field, 15 and 30 degree Z-bend injection line dipole/quadrupole combined function magnets, and extraction line magnets. More details about the magnets can be found in a report by G. Mahler. Field quality in all the 6Q12 quadrupoles, 3D60 dipoles and the injection line magnets has been measured with either a rotating coil, or a Hall probe mapper. This report presents the results of these magnetic measurements.

  1. 100 MHz high-speed strain monitor using fiber Bragg grating and optical filter applied for magnetostriction measurements of cobaltite at magnetic fields beyond 100 T

    Science.gov (United States)

    Ikeda, Akihiko; Nomura, Toshihiro; Matsuda, Yasuhiro H.; Tani, Shuntaro; Kobayashi, Yohei; Watanabe, Hiroshi; Sato, Keisuke

    2018-05-01

    High-speed 100 MHz strain monitor using fiber Bragg grating (FBG) and an optical filter has been devised for the magnetostriction measurements under ultrahigh magnetic fields. The longitudinal magnetostriction of LaCoO 3 has been measured at room temperature, 115, 7 and 4.2 K up to the maximum magnetic field of 150 T. The field-induced lattice elongations are observed, which are attributed to the spin-state crossover from the low-spin ground state to excited spin-states.

  2. Measurement system for SSRF pulsed magnets

    International Nuclear Information System (INIS)

    Peng Chengcheng; Gu Ming; Liu Bo; Ouyang Lianhua

    2007-01-01

    This paper describes the magnetic field measurement system for pulsed magnets in SSRF. The system consists of magnetic probes, analog active integrator, oscilloscope, stepper motor and a controller. An application program based on LabVIEW has been developed as main control unit. After the magnetic field mapping of a septum magnet prototype, it is verified that the test results accord with the results of theoretical calculation and computer simulation. (authors)

  3. Magnetization measurement of single La0.67Ca0.33MnO3 nanotubes in perpendicular magnetic fields using a micromechanical torsional oscillator

    International Nuclear Information System (INIS)

    Antonio, D.; Dolz, M.I.; Pastoriza, H.

    2010-01-01

    Using a silicon micromechanical resonator as a sensitive magnetometer, the authors have studied both experimentally and theoretically the magnetic behavior of two isolated ferromagnetic nanotubes of perovskite La 0.67 Ca 0.33 MnO 3 . The article investigates the specific configuration where a magnetic field H is applied perpendicular to the magnetic easy axis of an isolated nanotube characterized by an uniaxial anisotropy constant K. In this situation, the magnetization M reduces the effective elastic constant k M of the resonator. This softening of the mechanical system is opposed to the hardening effect of M observed in a previous work, where H was applied parallel to the easy axis. Moreover, in this magnetic field configuration two distinct magnetization regimes are manifested, depending on the magnitude of H. For H>>2K/M the magnetization is almost parallel to the applied magnetic field and for H<<2K/M it is almost parallel to the easy axis of the nanotube. At a certain value of H there is a sharp transition from one regime to the other, accompanied by a peak in the energy dissipation.

  4. Measurements of the internal magnetic field on DIII-D using intensity and spacing of the motional Stark multiplet.

    Science.gov (United States)

    Pablant, N A; Burrell, K H; Groebner, R J; Kaplan, D H; Holcomb, C T

    2008-10-01

    We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D(alpha) emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the pi(3) and sigma(1) lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6 degrees from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the D(alpha) transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

  5. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  6. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    Science.gov (United States)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  7. Measurement of the terrestrial magnetic field and its anomalies; Mesures du champ magnetique terrestre et de ses anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Duret, D.

    1994-12-31

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs.

  8. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  9. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  10. Efficiency Analysis of Magnetic Field Measurement for MR Electrical Impedance Tomography (MREIT)

    DEFF Research Database (Denmark)

    Göksu, Cihan; Hanson, Lars G.; Ehses, Philipp

    MREIT is an emerging method to measure the ohmic tissue conductivities, with several potential biomedical applications. Its sensitivity depends on the magnitude of the applied current, which is limited to 1-2 mA in the human brain [1, 2]. This renders in-vivo applications challenging. Here, we ai...... to analyze and optimize the efficiency of two MREIT pulse sequences for in-vivo brain imaging....

  11. Field simulations for large dipole magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Khouaja, A.; Orrigo, S.E.A.; Winfield, J.S.

    2007-01-01

    The problem of the description of magnetic field for large bending magnets is addressed in relation to the requirements of modern techniques of trajectory reconstruction. The crucial question of the interpolation and extrapolation of fields known at a discrete number of points is analysed. For this purpose a realistic field model of the large dipole of the MAGNEX spectrometer, obtained with finite elements three dimensional simulations, is used. The influence of the uncertainties in the measured field to the quality of the trajectory reconstruction is treated in detail. General constraints for field measurements in terms of required resolutions, step sizes and precisions are thus extracted

  12. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst

    OpenAIRE

    Ravi, Vikram; Shannon, R. M.; Bailes, M.; Bannister, K.; Bhandari, S.; Bhat, N. D. R.; Burke-Spolaor, S.; Caleb, M.; Flynn, C.; Jameson, A.; Johnston, S.; Keane, E. F.; Kerr, M.; Tiburzi, C.; Tuntsov, A. V.

    2016-01-01

    Fast radio bursts (FRBs) are millisecond-duration events thought to originate beyond the Milky Way galaxy. Uncertainty surrounding the burst sources, and their propagation through intervening plasma, has limited their use as cosmological probes. We report on a mildly dispersed (dispersion measure 266.5 ± 0.1 pc cm^(−3)), exceptionally intense (120 ± 30 Jy), linearly polarized, scintillating burst (FRB 150807) that we directly localize to 9 arcmin^2. Based on a low Faraday rotation (12.0 ± 0.7...

  13. Magnetic fields in proton solar flare of X17.2/4B class according to data of simultaneous measurements in a few spectral lines

    Science.gov (United States)

    Lozitsky, V.; Lozitska, N.

    2017-06-01

    Spectral-polarized magnetic field measurements in solar flare of 28 October 2003 of X17.2/4B class are compared in six FeI lines and in Hα line. Observations were carried out on Echelle spectrograph of horizontal solar telescope of Astronomical Observatory of Taras Shevchenko National University of Kyiv. Presented data relate to peak phase of flare and a place of photosphere outside sunspots where effective (average) magnetic field in FeI 6302.5 line was about 100 G and had S polarity. Measured splitting of emissive peaks in cores of strong FeI lines of 15th multiplet correspond to stronger fields, in range 550-700 G and S polarity too. Noticeablre splitting of emissive peaks (11-20 mÅ) were found also in Fe I 5434.527 line with effective Lande factor geff = -0.014. Value of this splitting and its sign indicate the existence of extremely strong fields of 25-50 kG of opposite (N) polarity which had negative Doppler velocities (lifting of plasma) on level of 1.7-2.2 km/sec. Magnetic field according to Hα line was 300 G and N polarity. Presented results indicate the essential inhomogeneity of magnetic field in flare volume which include the opposite polarities along the line of sight and wide range of effective magnetic fields.

  14. Orienting Paramecium with intense static magnetic fields

    Science.gov (United States)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  15. Trends in measurement of solar vector magnetic fields using the Zeeman effect

    International Nuclear Information System (INIS)

    Harvey, J.W.

    1985-01-01

    Trends in spectropolarimetry as applied to the problem of Zeeman effect measurement are discussed. The use of detector arrays to improve observing efficiency is obtained. Which required new polarization modulation schemes that match the time required to read detector arrays. Another significant trend is narrowband filters, to improve angular and temporal coverage, and to Fourier transform spectrometers, to improve spectral coverage and precision. Low-polarization designs and improved methods for compensating instrumental polarization were developed. A requirement for high angular resolution suggests using adaptive optical devices to subdue the effects of bad seeing. The ultimate strategy to beat the seeing is to loft the telescope above the atmosphere such as is planned with a 30-cm telescope in 1985 and a 1250-cm telescope in 1990

  16. Trends in measurement of solar vector magnetic fields using the Zeeman effect

    Science.gov (United States)

    Harvey, J. W.

    1985-01-01

    Trends in spectropolarimetry as applied to the problem of Zeeman effect measurement are discussed. The use of detector arrays to improve observing efficiency is obtained. Which required new polarization modulation schemes that match the time required to read detector arrays. Another significant trend is narrowband filters, to improve angular and temporal coverage, and to Fourier transform spectrometers, to improve spectral coverage and precision. Low-polarization designs and improved methods for compensating instrumental polarization were developed. A requirement for high angular resolution suggests using adaptive optical devices to subdue the effects of bad seeing. The ultimate strategy to beat the seeing is to loft the telescope above the atmosphere such as is planned with a 30-cm telescope in 1985 and a 1250-cm telescope in 1990.

  17. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  18. Line formation in microturbulent magnetic fields

    International Nuclear Information System (INIS)

    Domke, H.; Pavlov, G.G.

    1979-01-01

    The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Eddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength eta 0 < approx. 2. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurements only in combination with further spectroscopic data or physical reasoning. (orig.)

  19. On-line measurement of magnetic fields at GANIL; Mesures en ligne du champ magnetique du G.A.N.I.L

    Energy Technology Data Exchange (ETDEWEB)

    Lemarie, A

    2008-03-15

    On-line measurement of the magnetic fields of electromagnets at GANIL (France) was studied and developed. This type of measurement is necessary for it allows the adjustment and the monitoring of the parameters which control the transport of particle beams from the accelerators to the experimental vaults. The developments were based on nuclear magnetic resonance (NMR) magnetometers and Hall-effect magnetometers. The limitations of operating NMR probes in inhomogeneous fields required particular solutions. Techniques of positioning and appropriate compensation for field gradients were put in place. NMR probes and Hall-effect probes are integrated into the electronics for monitoring and control according to the defined standards at GANIL. The unit comprises instrumentation which perfectly meets the needs, particularly from the point of view of the measurement and the monitoring of the magnetic parameters. (author)

  20. Development of a nano-tesla magnetic field shielded chamber and highly precise AC-susceptibility measurement coil at μK temperatures

    Science.gov (United States)

    Kumar, Anil; Prakash, Om; Ramakrishanan, S.

    2014-04-01

    A special sample measurement chamber has been developed to perform experiments at ultralow temperatures and ultralow magnetic field. A high permeability material known as cryoperm 10 and Pb is used to shield the measurement space consisting of the signal detecting set-up and the sample. The detecting setup consists of a very sensitive susceptibility coil wound on OFHC Cu bobbin.

  1. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  2. Magnetic field aberration induced by cycle stress

    International Nuclear Information System (INIS)

    Yang En; Li Luming; Chen Xing

    2007-01-01

    Magneto-mechanical effect has been causing people's growing interest because of its relevance to several technology problems. One of them is the variation of surface magnetic field induced by stress concentration under the geomagnetic field. It can be used as an innovative, simple and convenient potential NDE method, called as magnetic memory method. However, whether and how this can be used as a quantitative measurement method, is still a virginal research field where nobody sets foot in. In this paper, circle tensile stress within the elastic region was applied to ferromagnetic sample under geomagnetic field. Experiment results on the relation between surface magnetic field and elastic stress were presented, and a simple model was derived. Simulation of the model was reconciled with the experimental results. This can be of great importance for it provides a brighter future for the promising Magnetic Memory NDE method-the potential possibility of quantitative measurement

  3. Tuning permanent magnets with adjustable field clamps

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1987-01-01

    The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius

  4. Boundary plasma heat flux width measurements for poloidal magnetic fields above 1 Tesla in the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, Dan; Labombard, Brian; Kuang, Adam; Terry, Jim; Alcator C-Mod Team

    2017-10-01

    The boundary heat flux width, along with the total power flowing into the boundary, sets the power exhaust challenge for tokamaks. A multi-machine boundary heat flux width database found that the heat flux width in H-modes scaled inversely with poloidal magnetic field (Bp) and was independent of machine size. The maximum Bp in the database was 0.8 T, whereas the ITER 15 MA, Q =10 scenario will be 1.2 T. New measurements of the boundary heat flux width in Alcator C-Mod extend the international database to plasmas with Bp up to 1.3 T. C-Mod was the only experiment able to operate at ITER-level Bp. These new measurements are from over 300 plasma shots in L-, I-, and EDA H-modes spanning essentially the whole operating space in C-Mod. We find that the inverse-Bp dependence of the heat flux width in H-modes continues to ITER-level Bp, further reinforcing the empirical projection of 500 μm heat flux width for ITER. We find 50% scatter around the inverse-Bp scaling and are searching for the `hidden variables' causing this scatter. Supported by USDoE award DE-FC02-99ER54512.

  5. Field quality of LHC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.

    2003-01-01

    The author reports here the main results of field measurements performed so far on the LHC superconducting dipoles at superfluid helium temperature. The main field strength at injection, collision conditions and higher order multipoles are discussed. Superconducting magnets exhibit additional field imperfections due to diamagnetic properties of superconducting cables, apart from geometric error, saturation of iron yoke and eddy currents error. Dynamic effects on field harmonics, such as field decay at injection and subsequent snap back are also discussed. (author)

  6. Searching for magnetic fields in 11 Wolf-Rayet stars: Analysis of circular polarization measurements from ESPaDOnS

    Energy Technology Data Exchange (ETDEWEB)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J. [Centre de Recherche en Astrophysique du Québec (CRAQ), Département de physique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7 (Canada); Collaboration: MiMeS Collaboration

    2014-02-01

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes six WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B {sub wind} ∼ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B{sub wind}{sup max}∼1900 G, ∼1500 G, and ∼1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B{sub wind}{sup max}∼500 G.

  7. Magnetic field reconnexion in a sheared field

    International Nuclear Information System (INIS)

    Ugai, M.

    1981-01-01

    A nonlinear development of the Petschek mode in a sheared magnetic field where there is a field component Bsub(z) along an X line is numerically studied. It is found that finite-amplitude intermediate waves, adjacent to the slow shock, may eventually stand in the quasi-steady configuration; on the other hand, the fundamental characteristics of the Petschek-mode development are scarcely influenced, either qualitatively or quantitatively, by the Bsub(z) field. (author)

  8. Comparison of adjustable permanent magnetic field sources

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod...... and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found....

  9. An MHD Simulation of Solar Active Region 11158 Driven with a Time-dependent Electric Field Determined from HMI Vector Magnetic Field Measurement Data

    Science.gov (United States)

    Hayashi, Keiji; Feng, Xueshang; Xiong, Ming; Jiang, Chaowei

    2018-03-01

    For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare, and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic modeling of AR in the future.

  10. Measures of maximum magnetic field in 3 GHz radio frequency superconducting cavities; Mesures du gradient accelerateur maximum dans des cavites supraconductrices en regime impulsionnel a 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Catherine [Paris-11 Univ., 91 Orsay (France)

    2000-01-19

    Theoretical models have shown that the maximum magnetic field in radio frequency superconducting cavities is the superheating field H{sub sh}. For niobium, H{sub sh} is 25 - 30% higher than the thermodynamical H{sub c} field: H{sub sh} within (240 - 274) mT. However, the maximum magnetic field observed so far is in the range H{sub c,max} = 152 mT for the best 1.3 GHz Nb cavities. This field is lower than the critical field H{sub c1} above which the superconductor breaks up into divided normal and superconducting zones (H{sub c1}{<=}H{sub c}). Thermal instabilities are responsible for this low value. In order to reach H{sub sh} before thermal breakdown, high power short pulses are used. The cavity needs then to be strongly over-coupled. The dedicated test bed has been built from the collaboration between Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Genoa, and the Service d'Etudes et Realisation d'Accelerateurs (SERA) of Laboratoire de l'Accelerateur Lineaire (LAL). The maximum magnetic field, H{sub rf,max}, measurements on INFN cavities give lower results than the theoretical speculations and are in agreement with previous results. The superheating magnetic fields is linked to the magnetic penetration depth. This superconducting characteristic length can be used to determine the quality of niobium through the ratio between the resistivity measured at 300 K and 4.2 K in the normal conducting state (RRR). Results have been compared to previous ones and agree pretty well. They show that the RRR measured on cavities is superficial and lower than the RRR measured on samples which concerns the volume. (author)

  11. Recent developments in magnet measuring techniques

    International Nuclear Information System (INIS)

    Billan, J.; Henrichsen, K.N.; Walckiers, L.

    1985-01-01

    The main problems related to magnetic measurements of particle accelerator components are discussed. Measurements of the properties of magnetic materials as well as the measurements of field distribution in the electromagnets for the Large Electron-Positron Collider (LEP) are illustrated. The fluxmeter method is extensively employed in this work. The impact of recent advances in electronic technology on measurement techniques is explained. Magnetic measurements (including the harmonic coil method) can be performed with improved accuracy applying modern technology to the classical methods. New methods for the non-destructive testing of magnetic materials and for the measurement of magnetic geometry are described. (orig.) [de

  12. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    magnetized in the direction of the Earth’s magnetic field at that time. As seafloor spreading pulls the new oceanic crust apart, stripes of approximately the same size gets carried away from the ridge on each side. The basaltic oceanic crust formed...

  13. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, V.I.; Andreev, V.; Ball, A.; Cure, B.; Herve, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L.I.; Virdee, T.

    2010-04-05

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  14. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    Directory of Open Access Journals (Sweden)

    Bo Zhao

    2015-09-01

    Full Text Available This paper presents the design and realization of a three degrees of freedom (DOFs displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system.

  15. A novel technique to measure interface trap density in a GaAs MOS capacitor using time-varying magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Aditya N. Roy, E-mail: aditya@physics.iisc.ernet.in; Venkataraman, V. [Dept. of Physics, Indian Institute of Science, Bangalore – 560012 (India)

    2016-05-23

    Interface trap density (D{sub it}) in a GaAs metal-oxide-semiconductor (MOS) capacitor can be measured electrically by measuring its impedance, i.e. by exciting it with a small signal voltage source and measuring the resulting current through the circuit. We propose a new method of measuring D{sub it} where the MOS capacitor is subjected to a (time-varying) magnetic field instead, which produces an effect equivalent to a (time-varying) voltage drop across the sample. This happens because the electron chemical potential of GaAs changes with a change in an externally applied magnetic field (unlike that of the gate metal); this is not the voltage induced by Faraday’s law of electromagnetic induction. So, by measuring the current through the MOS, D{sub it} can be found similarly. Energy band diagrams and equivalent circuits of a MOS capacitor are drawn in the presence of a magnetic field, and analyzed. The way in which a magnetic field affects a MOS structure is shown to be fundamentally different compared to an electrical voltage source.

  16. Two-processor automatized system to control fast measurements of the magnetic field index of the JINR 10 GeV proton synchrotron

    International Nuclear Information System (INIS)

    Chernykh, E.V.

    1981-01-01

    A two-processor system comprizing a hard-wired module and ES-1010 computer to control measurements of the magnetic field index of the JINR 10 GeV proton synchrotron is described. The system comprises the control module, a computer interface and a parallel branch driver residing in CAMAC system crate. The control module controls analogue multiplexer and analogue-to-digital converter through their front panels and writes down the information into a buffer memory module through the CAMAC highway. The computer controls the system, reads the information into core memory, writes down it on a magnetic tape, processes it and outputs n=f(r) plots on TV monitor and printer. The system provides the measurement up to 100 points during a magnetic field rise and minimal time of measurement 50 μs [ru

  17. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    International Nuclear Information System (INIS)

    Blackwell, J.J.; O'Grady, K.; Nelson, N.K.; Sharrock, M.P.

    2003-01-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements

  18. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, J.J.; O' Grady, K. E-mail: kog1@york.ac.uk; Nelson, N.K.; Sharrock, M.P

    2003-10-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements.

  19. Conductance of auroral magnetic field lines

    International Nuclear Information System (INIS)

    Weimer, D.R.; Gurnett, D.A.; Goertz, C.K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop. 14 references

  20. High-Field Accelerator Magnets

    International Nuclear Information System (INIS)

    Rijk, G de

    2014-01-01

    In this lecture an overview is given of the present technology for high field accelerator magnets. We indicate how to get high fields and what are the most important parameters. The available conductors and their limitations are presented followed by the most relevant types of coils and support structures. We conclude by showing a number of recent examples of development magnets which are either pure R&D objects or models for the LHC luminosity upgrade