WorldWideScience

Sample records for magnetic domain structure

  1. Structural and magnetic domains characterization of magnetite nanoparticles

    International Nuclear Information System (INIS)

    Santoyo-Salazar, J.; Castellanos-Roman, M.A.; Beatriz Gomez, L.

    2007-01-01

    Recently, important advances have been achieved in application, reproducibility and response ability of magnetic materials due to the relationships among processing, structure and nanometric size particle. Features like homogeneity of compounds and nanoparticle-sizing have improved some magnetic properties of materials and their field application. Of particular interest is the study of magnetic materials at the atomic and microstuctural level because the orientation and magnetic domains (large numbers of atoms moments coupled together in a preferential direction) can be observed. In this work, magnetite (Fe 3 O 4 ) powders which were obtained by precipitation route in alkaline medium are analyzed to identify the structure and mechanism formation of domains over the core and border of nanoparticles. Results obtained by XRD, atomic force microscopy (AFM) and magnetic force microscopy (MFM) showed a structural phase corresponding to Fe 3 O 4 and nanoparticles in a range of 20-40 nm. Samples scanned by MFM in nanometric resolution and profile images showed orientation of magnetic domains in the border and cores of the material. Finally, an analysis of repulsion and attraction in magnetic field and direction changes of domains formed by magnetite (Fe 3 O 4 ) powders were done

  2. Restoration the domain structure from magnetic force microscopy image

    Science.gov (United States)

    Wu, Dongping; Lou, Yuanfu; Wei, Fulin; Wei, Dan

    2012-04-01

    This contribution gives an approximation method to calculate the stray field of the scanning plane from the magnetic force microscopy (MFM) force gradient image. Before calculation, a Butterworth low-pass filter has been used to remove a part of the noise of the image. The discrete Fourier transform (DFT) method has been used to calculate the magnetic potential of the film surface. It shows that the potential is not correct because the low-frequency noise has been enlarged. The approximation method gives a better result of the potential and proves that the MFM force gradient of the perpendicular component image also gives the perpendicular component of the stray field. Supposing that the distance between the tip and the sample is as small as near zero, the force gradient image also gives the magnetic charge distribution of the film surface. So if the orientation of the film from hysteresis loop is known, then the domain structure of the film can be determined. For perpendicular orientation, the absolution value of the perpendicular component of stray field gives the domain and domain wall position. For in-plane orientation, the absolution value of in-plane component of stray field gives the domain and domain wall position.

  3. Time domain structures in a colliding magnetic flux rope experiment

    Science.gov (United States)

    Tang, Shawn Wenjie; Gekelman, Walter; Dehaas, Timothy; Vincena, Steve; Pribyl, Patrick

    2017-10-01

    Electron phase-space holes, regions of positive potential on the scale of the Debye length, have been observed in auroras as well as in laboratory experiments. These potential structures, also known as Time Domain Structures (TDS), are packets of intense electric field spikes that have significant components parallel to the local magnetic field. In an ongoing investigation at UCLA, TDS were observed on the surface of two magnetized flux ropes produced within the Large Plasma Device (LAPD). A barium oxide (BaO) cathode was used to produce an 18 m long magnetized plasma column and a lanthanum hexaboride (LaB6) source was used to create 11 m long kink unstable flux ropes. Using two probes capable of measuring the local electric and magnetic fields, correlation analysis was performed on tens of thousands of these structures and their propagation velocities, probability distribution function and spatial distribution were determined. The TDS became abundant as the flux ropes collided and appear to emanate from the reconnection region in between them. In addition, a preliminary analysis of the permutation entropy and statistical complexity of the data suggests that the TDS signals may be chaotic in nature. Work done at the Basic Plasma Science Facility (BaPSF) at UCLA which is supported by DOE and NSF.

  4. Phase domain structures in cylindrical magnets under conditions of a first-order magnetic phase transition

    International Nuclear Information System (INIS)

    Dzhezherya, Yu.I.; Klymuk, O.S.

    2011-01-01

    The magnetic and resonance properties of cylindrical magnets at first-order phase transition from paramagnetic to ferromagnetic state were theoretically studied. It has been shown that in the external magnetic field directed perpendicularly to the rotation axis, formation of a specific domain structure of paramagnetic and ferromagnetic layers can be energetically favorable. The parameters of cylindrical phase domains as well as their dependences on temperature, magnetic field and material characteristics have been calculated. Peculiarities of the magnetic resonance spectra appearing as a result of the phase domain formation have been considered. Dependence of the resonance field of the system of ferromagnetic domains on magnetization and temperature has been obtained. - Highlights: → Parameters of the equilibrium system of cylindrical phase domains are calculated. → The range of fields for PM and FM phases coexistence is found. → FMR field of the disk domains is found to be lower than that of the PMR field.→ The resonance field increases with the decrease of temperature lower than T || .

  5. Magnetic domain structure and magnetically-induced reorientation in Ni–Mn–Ga magnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Bradshaw, V.

    2017-01-01

    Roč. 131, č. 4 (2017), s. 1063-1065 ISSN 0587-4246 R&D Projects: GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic shape memory effect * magnetic domain structure * 3D visualization * domain mirroring Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  6. Magnetic domain structure of MnAs thin films as a function of temperature

    International Nuclear Information System (INIS)

    Mizuguchi, Masaki; Manago, Takashi; Akinaga, Hiroyuki; Kuramochi, Hiromi; Okabayashi, Jun

    2003-01-01

    We have investigate magnetic domain structures of MnAs thin films grown on GaAs substrates by a magnetic force microscope. We observed, by an atomic force microscope, rectangular defects along GaAs [110] direction which disperse randomly on the surface of MnAs/GaAs(001). The Curie temperature of MnAs is 45degC, and it is successfully confirmed directly by the variable temperature magnetic force microscope observation. We also investigated magnetic domain structures of MnAs/GaAs(111)B, and no apparent relation was observed between the topographic structure and the magnetic domain structure. (author)

  7. Effects of sub-domain structure on initial magnetization curve and domain size distribution of stacked media

    International Nuclear Information System (INIS)

    Sato, S.; Kumagai, S.; Sugita, R.

    2015-01-01

    In this paper, in order to confirm the sub-domain structure in stacked media demagnetized with in-plane field, initial magnetization curves and magnetic domain size distribution were investigated. Both experimental and simulation results showed that an initial magnetization curve for the medium demagnetized with in-plane field (MDI) initially rose faster than that for the medium demagnetized with perpendicular field (MDP). It is inferred that this is because the MDI has a larger number of domain walls than the MDP due to the existence of the sub-domains, resulting in an increase in the probability of domain wall motion. Dispersion of domain size for the MDI was larger than that for the MDP. This is because sub-domains are formed not only inside the domain but also at the domain boundary region, and they change the position of the domain boundary to affect the domain size. - Highlights: • An initial magnetization curve for MDI initially rose faster than that for MDP. • Dispersion of domain size for the MDI was larger than that for the MDP. • Experimental and simulation results can be explained by existence of sub-domains

  8. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    International Nuclear Information System (INIS)

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-01-01

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field

  9. Domain structures and magnetization reversal in Co/Pd and CoFeB/Pd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sbiaa, R., E-mail: rachid@squ.edu.om [Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123 (Oman); Ranjbar, M. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden)

    2015-05-07

    Domain structures and magnetization reversal of (Co/Pd) and (CoFeB/Pd) multilayers with 7 and 14 repeats were investigated. The Co-based multilayers show much larger coercivities, a better squareness, and a sharper magnetization switching than CoFeB-based multilayers. From magnetic force microscopy observations, both structures show strong reduction in domains size as the number of repeats increases but the magnetic domains for Co-based multilayers are more than one order of magnitude larger than for CoFeB-based multilayers. By imaging domains at different times, breaks in the (CoFeB/Pd) multilayer stripes were observed within only few hours, while no change could be seen for (Co/Pd) multilayers. Although CoFeB single layers are suitable for magnetoresistive devices due to their large spin polarization and low damping constants, their lamination with Pd suffers mainly from thermal instability.

  10. A model for the magnetic domain structure of Gd at 77K

    International Nuclear Information System (INIS)

    Corner, W.D.; Saad, F.M.; Jones, D.W.; Jordan, R.G.

    1978-01-01

    Magnetic domain structures have been observed on planes perpendicular to the c and b axes of Gd crystals at 77K. Various types of domain boundary which might be found in an easy-cone ferromagnet are discussed. A model is presented which is consistent with observations. In this the easy-cone structure is maintained, but it is assumed that owing to the lower basal-plane anisotropy the magnetization component in the basal plane may change in direction within a single domain. (author)

  11. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Jordanovic, J.; Frandsen, C.; Beleggia, M.; Schiøtz, J.

    2015-01-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results

  12. Functional Properties at Domain Walls in BiFeO3: Electrical, Magnetic, and Structural investigations

    Science.gov (United States)

    He, Qing; Yang, C.-H.; Yu, P.; Gajek, M.; Seidel, J.; Ramesh, R.; Wang, F.; Chu, Y.-H.; Martin, L. W.; Spaldin, N.; Rother, A.

    2009-03-01

    BiFeO3 (BFO) is a widely studied robust ferroelectric, antiferromagnetic multiferroic. Conducting-atomic force microscopy studies reveal the presence of enhanced conductivity at certain types of domain walls in BFO. We have completed detailed TEM studies of the physical structure at these domain walls as well as in-depth DFT calculations of the evolution of electronic structure at these domain walls. These studies reveal two major contributions to the observed conduction: the formation of an electrostatic potential at the domain walls as well as a structurally-driven change in the electronic structure (i.e., a lower band gap locally) at the domain walls. We will discuss the use of optical characterization techniques as a way of probing this change in electronic structure at domain walls as well as detailed IV characterization both in atmospheric and UHV environments. Finally, the evolution of magnetism at these domain walls has been studied through the use of photoemission measurements. Initial findings point to a significant change in the magnetic order at these domain walls in BFO.

  13. Structure determination of human Lck unique and SH3 domains by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Willbold Dieter

    2003-05-01

    Full Text Available Abstract Background Protein tyrosine kinases are involved in signal transduction pathways that regulate cell growth, differentiation, activation and transformation. Human lymphocyte specific kinase (Lck is a 56 kDa protein involved in T-cell- and IL2-receptor signaling. Three-dimensional structures are known for SH3, SH2 and kinase domains of Lck as well as for other tyrosine kinases. No structure is known for the unique domain of any Src-type tyrosine kinase. Results Lck(1–120 comprising unique and SH3 domains was structurally investigated by nuclear magnetic resonance spectroscopy. We found the unique domain, in contrast to the SH3 part, to have basically no defined structural elements. The solution structure of the SH3 part could be determined with very high precision. It does not show significant differences to Lck SH3 in the absence of the unique domain. Minor differences were observed to the X-ray structure of Lck SH3. Conclusion The unique domain of Lck does not contain any defined structure elements in the absence of ligands and membranes. Presence of the unique domain is not relevant to the three-dimensional structure of the Lck SH3 domain.

  14. Enhanced magnetostriction derived from magnetic single domain structures in cluster-assembled SmCo films

    Science.gov (United States)

    Bai, Yulong; Yang, Bo; Guo, Fei; Lu, Qingshan; Zhao, Shifeng

    2017-11-01

    Cluster-assembled SmCo alloy films were prepared by low energy cluster beam deposition. The structure, magnetic domain, magnetization, and magnetostriction of the films were characterized. It is shown that the as-prepared films are assembled in compact and uniformly distributed spherical cluster nanoparticles, most of which, after vacuum in situ annealing at 700 K, aggregated to form cluster islands. These cluster islands result in transformations from superparamagnetic states to magnetic single domain (MSD) states in the films. Such MSD structures contribute to the enhanced magnetostrictive behaviors with a saturation magnetostrictive coefficient of 160 × 10-6 in comparison to 105 × 10-6 for the as-prepared films. This work demonstrates candidate materials that could be applied in nano-electro-mechanical systems, low power information storage, and weak magnetic detecting devices.

  15. Influence of domain structure induced coupling on magnetization reversal of Co/Pt/Co film with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Matczak, Michał [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Schäfer, Rudolf [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Metallic Materials, PO 270116, D-01171 Dresden (Germany); Dresden University of Technology, Institute for Materials Science, D-01062 Dresden (Germany); Urbaniak, Maciej; Kuświk, Piotr; Szymański, Bogdan; Schmidt, Marek; Aleksiejew, Jacek [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Stobiecki, Feliks, E-mail: Feliks.Stobiecki@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2017-01-15

    A magnetic multilayer of substrate/Pt-15 nm/Co-0.8 nm/Pt-wedge 0–7 nm/Co-0.6 nm/Pt-2 nm structure is characterized by a perpendicular anisotropy of the Co layers and by graded interlayer coupling between them. Using magnetooptical Kerr microscopy we observed a distinct influence of magnetic domains in one Co layer on the nucleation field and positions of nucleation sites of reversed domains in the second Co layer. For sufficiently strong interlayer coupling a replication of magnetic domains from the magnetically harder layer to the magnetically softer layer is observed. - Highlights: • Co/Pt-wedge/Co layered film is characterized by a gradient of interlayer coupling. • Magnetic field controls propagation of straight domain wall. • Replication of magnetic domains in multilayers with strong ferromagnetic coupling. • Coupling induced by domains influences magnetization reversal of spin valves.

  16. A new scaling approach for the mesoscale simulation of magnetic domain structures using Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, B., E-mail: radhakrishnb@ornl.gov; Eisenbach, M.; Burress, T.A.

    2017-06-15

    Highlights: • Developed new scaling technique for dipole–dipole interaction energy. • Developed new scaling technique for exchange interaction energy. • Used scaling laws to extend atomistic simulations to micrometer length scale. • Demonstrated transition from mono-domain to vortex magnetic structure. • Simulated domain wall width and transition length scale agree with experiments. - Abstract: A new scaling approach has been proposed for the spin exchange and the dipole–dipole interaction energy as a function of the system size. The computed scaling laws are used in atomistic Monte Carlo simulations of magnetic moment evolution to predict the transition from single domain to a vortex structure as the system size increases. The width of a 180° – domain wall extracted from the simulated structures is in close agreement with experimentally values for an F–Si alloy. The transition size from a single domain to a vortex structure is also in close agreement with theoretically predicted and experimentally measured values for Fe.

  17. Temperature-induced transitions between domain structures of ultrathin magnetic films

    International Nuclear Information System (INIS)

    Polyakova, T.; Zablotskii, V.

    2005-01-01

    Full text: Understanding of the influence of temperature on behavior of domain patterns of ultrathin magnetic films is of high significance for the fundamental physics of nanomagnetism as well as for technological applications. A thickness-dependent Curie temperature of ultrathin films may cause many interesting phenomena in the thermal evolution of domain structures (DS): i) nontrivial changes of the anisotropy constants as a function of the film thickness; ii) so-called inverse melting of DSs (processes where a more symmetric domain phase is found at lower temperatures than at higher temperatures - the inverse phase sequence) [1]; iii) temperature-induced transitions between domain structures. The possibility of such transitions is determined by lowering of the potential barriers separating different magnetization states as the film temperature approaches the Curie point. In this case with an increase of temperature, due to a significant decrease of the anisotropy constant, the domain wall energy is low enough and allows the system to reach equilibrium by a change of the domain wall number in the sample. This manifests itself in a transition from a metastable DS to a more stable DS which corresponds to new values of the anisotropy constant and magnetizations saturation. Thus, the temperature-induced transitions are driven by temperature changes of the magnetic parameters of the film. The key parameters controlling the DS geometry and period are the characteristic length, l c =σ/4πM S 2 (the ratio between the domain wall and demagnetization energies), and the quality factor Q =K/2πM S 2 (K is the first anisotropy constant). We show that for films with a pronounced nonmonotonic temperature dependence of l c one can expect a counter thermodynamic behavior: the inverse phase sequence and cooling-induced disordering. On changing temperature the existing domain structure should accommodate itself under new magnitudes of l c and Q. There are the two possible

  18. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films

    Science.gov (United States)

    Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.

    2013-04-01

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  19. Monte Carlo simulation for thermal assisted reversal process of micro-magnetic torus ring with bistable closure domain structure

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Kenichi; Suzuki, Kenji; Yamaguchi, Katsuhiko, E-mail: yama@sss.fukushima-u.ac.jp

    2016-04-01

    Monte Carlo simulations were performed for temperature dependences of closure domain parameter for a magnetic micro-torus ring cluster under magnetic field on limited temperature regions. Simulation results show that magnetic field on tiny limited temperature region can reverse magnetic closure domain structures when the magnetic field is applied at a threshold temperature corresponding to intensity of applied magnetic field. This is one of thermally assisted switching phenomena through a self-organization process. The results show the way to find non-wasteful pairs between intensity of magnetic field and temperature region for reversing closure domain structure by temperature dependence of the fluctuation of closure domain parameter. Monte Carlo method for this simulation is very valuable to optimize the design of thermally assisted switching devices.

  20. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Jordanovic, Jelena; Beleggia, Marco; Schiøtz, Jakob

    2015-01-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the parti......We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices...... taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls...... oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder...

  1. Magnetic domains the analysis of magnetic microstructures

    CERN Document Server

    Hubert, Alex

    1998-01-01

    The book gives a systematic and comprehensive survey of the complete area of magnetic microstructures. It reaches from micromagnetism of nanoparticles to complex structures of extended magnetic materials. The book starts with a comprehensive evaluation of traditional and modern experimental methods for the observation of magnetic domains and continues with the treatment of important methods for the theoretical analysis of magnetic microcstructures. A survey of the necessary techniques in materials characterization is given. The book offers an observation and analysis of magnetic domains in all

  2. Micromagnetic analysis of spin-reorientation transitions. The role of magnetic domain structure

    Energy Technology Data Exchange (ETDEWEB)

    Skokov, Konstantin P., E-mail: skokov_k_p@mail.ru [Tver State University, Tver 170100 (Russian Federation); Physics Department, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); Pastushenkov, Yury G., E-mail: yupast@mail.ru [Tver State University, Tver 170100 (Russian Federation); Taskaev, Sergey V., E-mail: tsv@csu.ru [Physics Department, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); National University of Science and Technology “MISiS”, Moscow 119049 (Russian Federation); Rodionova, Valeria V., E-mail: valeriarodionova@gmail.com [National University of Science and Technology “MISiS”, Moscow 119049 (Russian Federation); Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation)

    2015-12-01

    A method for calculating micromagnetic state of ferro- or ferrimagnetic single-crystals based on the Néel's method of phases is proposed. The standard Néel technique requires different approaches to calculation of micromagnetic state of samples with different anisotropy types. Furthermore, this technique cannot be used to calculate magnetization curves of materials with a complex anisotropy type, in which the first-order magnetization process (FOMP) occurs. On the contrary, the technique proposed in the present work makes it possible to calculate micromagnetic state of a sample within one unified approach. This technique has no limitations in terms of the anisotropy type as well. In case of the FOMP, the simulation methods that we used show results different from conventional calculation methods. The reason is that the conventional methods imply coherent rotation of magnetization in single domain particle (so-called Stoner–Wohlfarth model). We explain this discrepancy by the fact that a magnetic domain structure appears in the region of the FOMP. In the present work we show that magnetization processes do not occur in a jump under the FOMP but gradually pass though nucleation and new high-field phase growing, which substitutes for the low-field phase.

  3. Micromagnetic analysis of spin-reorientation transitions. The role of magnetic domain structure

    International Nuclear Information System (INIS)

    Skokov, Konstantin P.; Pastushenkov, Yury G.; Taskaev, Sergey V.; Rodionova, Valeria V.

    2015-01-01

    A method for calculating micromagnetic state of ferro- or ferrimagnetic single-crystals based on the Néel's method of phases is proposed. The standard Néel technique requires different approaches to calculation of micromagnetic state of samples with different anisotropy types. Furthermore, this technique cannot be used to calculate magnetization curves of materials with a complex anisotropy type, in which the first-order magnetization process (FOMP) occurs. On the contrary, the technique proposed in the present work makes it possible to calculate micromagnetic state of a sample within one unified approach. This technique has no limitations in terms of the anisotropy type as well. In case of the FOMP, the simulation methods that we used show results different from conventional calculation methods. The reason is that the conventional methods imply coherent rotation of magnetization in single domain particle (so-called Stoner–Wohlfarth model). We explain this discrepancy by the fact that a magnetic domain structure appears in the region of the FOMP. In the present work we show that magnetization processes do not occur in a jump under the FOMP but gradually pass though nucleation and new high-field phase growing, which substitutes for the low-field phase.

  4. Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure

    Science.gov (United States)

    Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.

    2016-01-01

    An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated. PMID:26839036

  5. Magnetic domain structure and domain-wall energy in UFe8Ni2Si2 and UFe6Ni4Si2 intermetallic compounds

    International Nuclear Information System (INIS)

    Wyslocki, J.J.; Suski, W.; Wochowski, K.

    1994-01-01

    Magnetic domain structures in the UFe 8 Ni 2 Si 2 and UFe 6 Ni 4 Si 2 compounds were studied using the powder pattern method. The domain structure observed is typical for uniaxial materials. The domain-wall energy density γ was determined from the average surface domain width D s observed on surfaces perpendicular to the easy axis as equal to 16 erg/cm 2 for UFe 8 Ni 2 Si 2 and 10 erg/cm 2 for UFe 6 Ni 4 Si 2 . Moreover, the critical diameter for single domain particle D c was calculated for the studied compounds

  6. Magnetic domain structure investigation of Bi: YIG-thin films by combination of AFM and cantilever-based aperture SNOM

    International Nuclear Information System (INIS)

    Vysokikh, Yu E; Shevyakov, V I; Krasnoborodko, S Yu; Shelaev, A V; Prokopov, A R

    2016-01-01

    We present the results of magnetic domain structure investigation by combination of atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). Special hollow-pyramid AFM cantilevers with aperture was used. This combination allows us use same probe for both topography and domain structure visualization of Bi -substituted ferrite garnet films of micro- and nano-meter thickness. Samples were excited through aperture by tightly focused linearly polarized laser beam. Magneto-optical effect rotates polarization of transmitted light depend on domain orientation. Visualization of magnetic domains was performed by detecting cross polarized component of transmitted light. SNOM allows to obtain high resolution magnetic domain image and prevent sample from any disturbance by magnetic probe. Same area SNOM and MFM images are presented. (paper)

  7. Anti-phase boundaries and magnetic domain structures in Ni{sub 2}MnGa-type Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, S.P. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Nuhfer, N.T. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); De Graef, M. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)]. E-mail: degraef@cmu.edu

    2007-05-15

    The microstructure and magnetic domain structure of austenitic Heusler Ni{sub 2}MnGa are investigated as a function of heat treatment to study the interplay of anti-phase boundaries and magnetic domain walls. Conventional electron microscopy observations on arc-melted polycrystalline samples show that anti-phase boundaries in this system are invisible for standard two-beam imaging conditions, due to the large extinction distance of the Heusler superlattice reflections. Lorentz Fresnel and Foucault observations on quenched samples reveal a wavy magnetic domain morphology, reminiscent of curved anti-phase boundaries. A close inspection of the domain images indicates that the anti-phase boundaries have a magnetization state different from that of the matrix. Fresnel image simulations for a simple magnetization model are in good agreement with the observations. Magnetic coercivity measurements show a decrease in coercivity with annealing, which correlates with the microscopy observations of reduced anti-phase boundary density for annealed samples.

  8. Static and high-frequency magnetic properties of stripe domain structure in a plate of finite sizes

    International Nuclear Information System (INIS)

    Mal'ginova, S.D.; Doroshenko, R.A.; Shul'ga, N.V.

    2006-01-01

    A model that enables to carry out self-consistent calculations of the main parameters of stripe domain structure (DS) and at the same time those of properties of domain walls (DW) of a multiple-axis finite (in all directions) ferromagnet depending on the sizes of a sample, material parameters and intensity of a magnetic field is offered. The calculations of the properties of DS (direction of magnetization in domains, widths, ferromagnetic resonance, etc.) are carried out on a computer for plates (1 1 0), rectangular shapes of a cubic ferromagnet with axes of light magnetization along trigonal directions in a magnetic field [-1 1 0]. It is shown, that in plates of different shapes there can be a structure with Neel DW alongside with DS with Bloch DW. Their features are noticeably exhibited, in particular, in different dependence of the number of domains, and also frequencies of a ferromagnetic resonance from a magnetic field

  9. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures

    Energy Technology Data Exchange (ETDEWEB)

    Zirka, S.E., E-mail: zirka@email.dp.ua [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Moroz, Y.I. [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Schinkelstr. 4, 52056 Aachen (Germany); Chwastek, K. [Faculty of Electrical Engineering, Czestochowa University of Technology, al. AK 17, 42-201 Czestochowa (Poland); Zurek, S. [Megger Instruments Ltd., Archcliffe Road, Dover, Kent, CT17 9EN (United Kingdom); Harrison, R.G. [Department of Electronics, Carleton University, Ottawa, Canada K1S 5B6 (Canada)

    2015-11-15

    We consider dynamic models, both numerical and analytical, that reproduce the magnetization field H(B) and the energy loss in ferromagnetic sheet materials with different domain structures. Conventional non-oriented (NO) and grain-oriented (GO) electrical steels are chosen as typical representatives of fine-domain and coarse-domain materials. The commonly-accepted loss separation procedures in these materials are critically analyzed. The use of a well-known simplified (“classical”) expression for the eddy-current loss is identified as the primary source of mistaken evaluations of excess loss in NO steel, in which the loss components can only be evaluated using the Maxwell (penetration) equation. The situation is quite different in GO steel, in which the loss separation is uncertain, but the total dynamic loss is several times higher than that explained by any version (numerical or analytical) of the classical approach. To illustrate the uncertainty of the loss separation in GO steel, we show that the magnetization field, and thus the total loss, in this material can be represented with equal accuracy using either the existing three-component approach or our proposed two-component technique, which makes no distinction between classical eddy-current and excess fields and losses. - Highlights: • Critical analysis of a ferromagnetic-material loss-separation principle. • This is to warn materials-science engineers about the inaccuracies resulting from this principle. • A transient model having a single dynamic component is proposed.

  10. Magnetic field effect on Gd2(MoO4)3 domain structure formation in the phase transformation range

    International Nuclear Information System (INIS)

    Flerova, S.A.; Tsinman, I.L.

    1987-01-01

    The behaviour of ferroelastic-ferroelectric domain structure of gadolinium molybdate crystal (GMO)during its formation in the magnetic field in the vicinity of phase transformation is studied.It is shown that the formation of domain structure in the presence of a temperature gradient occurs in the field of mechanical stresses whose mainly stretching effect is concentrated near phase boundaries.The magnetic field intensifies summary mechanical stresses where a domain structure in a ferroelectric phase is formed due to interaction with the elements of inhomogeneous and differently oriented currents near phase boundaries

  11. Bulk magnetic domain structures visualized by neutron dark-field imaging

    International Nuclear Information System (INIS)

    Gruenzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kuehne, G.; Schaefer, R.; Pofahl, S.; Roennow, H. M. R.; Pfeiffer, F.

    2008-01-01

    We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs

  12. Bulk magnetic domain structures visualized by neutron dark-field imaging

    Science.gov (United States)

    Grünzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kühne, G.; Schäfer, R.; Pofahl, S.; Rønnow, H. M. R.; Pfeiffer, F.

    2008-09-01

    We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs.

  13. X-ray magnetic microscopy for correlations between magnetic domains and crystal structure

    International Nuclear Information System (INIS)

    Denbeaux, G.; Anderson, E.; Bates, B.; Chao, W.; Liddle, J.A.; Harteneck, B.; Pearson, A.; Salmassi, F.; Schneider, G.; Fischer, P.; Eimuller, T.; Taylor, S.; Chang, H.; Kusinski, G.J.

    2002-01-01

    Accurately determining the resolution of x-ray microscopes has been a challenge because good test patterns for x-ray microscopy have been hard to make. We report on a sputter-deposited multilayer imaged in cross section as a test pattern with small features and high aspect ratios. One application of high-resolution imaging is magnetic materials. Off-axis bend magnet radiation is known to have a component of circular polarization which can be used for x-ray magnetic circular dichroism. We calculate the integrated circular polarization collected by the illumination optics in the XM-1 full-field x-ray microscope. (authors)

  14. The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel

    International Nuclear Information System (INIS)

    Cao, Hongzhi; Hao, Linpo; Yi, Jingwen; Zhang, Xianglin; Luo, Zhonghan; Chen, Shenglin; Li, Rongfeng

    2016-01-01

    The main purpose of this paper is to investigate the influence of punching process on residual stress and magnetic domain structure. The residual stress in non-oriented silicon steel after punching process was measured by nanoindentation. The maximum depth was kept constant as 300 nm during nanoindentation. The material around indentation region exhibited no significant pile-up deformation. The calculation of residual stress was based on the Suresh theoretical model. Our experimental results show that residual compressive stress was generated around the sheared edge after punching. The width of residual stress affected zone by punching was around 0.4–0.5 mm. After annealing treatment, the residual stress was significantly decreased. Magnetic domain structure was observed according to the Bitter method. The un-annealed sample exhibited complicated domain patterns, and the widths of the magnetic domains varied between 3 µm and 8 µm. Most of the domain patterns of the annealed sample were 180°-domains and 90°-domains, and the widths of the domains decreased to 1–3 µm. - Highlights: • The residual stress distribution on sheared edge was measured. • The residual compressive stress was generated around the sheared edge. • The width of residual stress affected zone was about 0.4–0.5 mm. • The shape and width of the domain structure would be changed by annealing.

  15. The sandwich domain structure in a Fe-based amorphous ribbon with uniaxial magnetic anisotropy

    International Nuclear Information System (INIS)

    Zhmetko, D.N.; Matsura, A.V.; Troschenkov, Y.N.; Seidametov, S.V.

    2011-01-01

    The formation and motion of two domain walls parallel to the ribbon surface are discovered during its dynamic magnetic reversal. The domain walls form near by the middle plane of a ribbon and move to its opposite main surfaces with different velocities.

  16. Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM)

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Stipp, S. L. S.; McEnroe, S. A.

    2004-01-01

    ), the internal domain structure was determined for individual grains. In general, the lamellae were pseudo-single-domain grains with open-flux domain magnetisations parallel to their long axes. The domain sizes were, in cross-section, on the order of a micrometer for the longer lamellae and about 300 nm...

  17. Hard-magnetic surface layer effect on the erbium orthoferrite plate domain structure in the region of gradual spin reorientation

    International Nuclear Information System (INIS)

    Belyaeva, A.I.; Vojtsenya, S.V.; Yur'ev, V.P.

    1988-01-01

    Rearrangement of domain structures in the erbium orthoferrite plates with hard-magnetic surface layer is investigated during gradual spin reorientation. This phenomenon is explained by means of the proposed physical models. It is shown that in these plates an approach to the temperature interval of spin reorientation causes a decrease in the density of energy of domain walls separating the internal and surface domains. This decrease results in transition to the domain structure which are close to equilibrium ones inside the crystal. 30 refs.; 4 figs

  18. Thermal-driven evolution of magnetic domain structures in ultrathin films

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Maziewski, A.; Polyakova, T.

    2006-01-01

    Roč. 112, - (2006), s. 101-108 ISSN 1012-0394. [International School on Physics and Chemistry of Condensed Matter /17./ and International Symposium on Physics in Material Science /5./. Bialoweza, 21.06.2005-29.06.2005] EU Projects: European Commission(XE) 3177 - NANOMAG- LAB Grant - others:PSCSR(PL) 4T11B00624 Institutional research plan: CEZ:AV0Z10100520 Keywords : ultrathin magnetic films * magnetic domain * phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.493, year: 2005

  19. Magnetic switching, relaxation, and domain structure of a Co/Si(111) film

    Science.gov (United States)

    Baird, M. J.; Bland, J. A. C.; Gu, E.; Ives, A. J. R.; Schumann, F. O.; Hughes, H. P.

    1993-11-01

    We have used scanning magneto-optic Kerr effect (MOKE) microscopy to investigate the magnetic relaxation of a polycrystalline hcp 125 Å Co/Si(111) film with planar uniaxial anisotropy, on time scales between 10 and 2400 s and with a spatial resolution of 15 μm. In a static magnetic field slightly less than the coercive field and applied along the easy axis direction, domains develop and the magnetization reversal proceeds via displacements of 180° domain walls. Microscopic images of this metastable state allow the 180° domains to be identified by calibration of the MOKE signal with respect to that for the saturated magnetization states. The 180° reversed domains are observed to grow in the direction of the field in the form of narrow fingers, extending via short Barkhausen jumps, randomly spaced in time over the entire time-scale range investigated, with typical distances between pinning sites of the order of microns. This reversal behavior is qualitatively similar to that reported for Au/Co perpendicular anisotropy films a few monolayers thick.

  20. X-ray holographic imaging of magnetic order in meander domain structures

    Directory of Open Access Journals (Sweden)

    Jaouen Nicolas

    2013-01-01

    Full Text Available We performed x-ray holography experiments using synchrotron radiation. By analyzing the scattering of coherent circularly polarized x-rays tuned at the Co-2p resonance, we imaged perpendicular magnetic domains in a Co/Pd multilayer. We compare results obtained for continuous and laterally confined films.

  1. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures.

    Science.gov (United States)

    Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe

    2013-01-01

    The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

  2. Magnetocrystalline anisotropy and magnetic domain structure of ErFe11Ti and HoFe11Ti compounds

    International Nuclear Information System (INIS)

    Pastushenkov, Yury G.; Skokov, Konstantin P.; Skourski, Yury; Lebedeva, Ludmila; Ivanova, Tatyana; Grushichev, Anton; Mueller, Karl-Hartmut

    2006-01-01

    Tetragonal ThMn 12 -type single crystalline ErFe 11 Ti and HoFe 11 Ti samples have been investigated by magnetization measurements and by observations of the magnetic domain structure at various temperatures between 10 and 300K. The magnetic structure of ErFe 11 Ti changes from room temperature 'easy axis' (c-axis) type to conical at spin-reorientation temperature T SR =50K. The HoFe 11 Ti has a metastable anisotropy energy minimum in the a-direction at T<40K. It leads to a first-order magnetization process detected by magnetization measurements along the a-axis in this temperature region

  3. Chiral Domain Structure in Superfluid 3He-A Studied by Magnetic Resonance Imaging

    Science.gov (United States)

    Kasai, J.; Okamoto, Y.; Nishioka, K.; Takagi, T.; Sasaki, Y.

    2018-05-01

    The existence of a spatially varying texture in superfluid 3He is a direct manifestation of the complex macroscopic wave function. The real space shape of the texture, namely, a macroscopic wave function, has been studied extensively with the help of theoretical modeling but has never been directly observed experimentally with spatial resolution. We have succeeded in visualizing the texture by a specialized magnetic resonance imaging. With this new technology, we have discovered that the macroscopic chiral domains, of which sizes are as large as 1 mm, and corresponding chiral domain walls exist rather stably in 3He - A film at temperatures far below the transition temperature.

  4. A micromagnetic study of domain structure modeling

    International Nuclear Information System (INIS)

    Matsuo, Tetsuji; Mimuro, Naoki; Shimasaki, Masaaki

    2008-01-01

    To develop a mesoscopic model for magnetic-domain behavior, a domain structure model (DSM) was examined and compared with a micromagnetic simulation. The domain structure of this model is given by several domains with uniform magnetization vectors and domain walls. The directions of magnetization vectors and the locations of domain walls are determined so as to minimize the magnetic total energy of the magnetic material. The DSM was modified to improve its representation capability for domain behavior. The domain wall energy is multiplied by a vanishing factor to represent the disappearance of magnetic domain. The sequential quadratic programming procedure is divided into two steps to improve an energy minimization process. A comparison with micromagnetic simulation shows that the modified DSM improves the representation accuracy of the magnetization process

  5. Magnetic domain structure in a metamagnetic shape memory alloy Ni45Co5Mn36.7In13.3

    International Nuclear Information System (INIS)

    Murakami, Y.; Yano, T.; Shindo, D.; Kainuma, R.; Oikawa, K.; Ishida, K.

    2006-01-01

    Correlation between the magnetism and the martensitic transformation in Ni 45 Co 5 Mn 36.7 In 13.3 has been revealed by electron holography and Lorentz microscopy. The parent phase exhibits typical closure magnetic domains due to low magnetocrystalline anisotropy. Upon cooling, the magnetic flux density of the parent phase monotonically increases, while the magnetic domain structure remains almost unchanged; in other words, the effect of premartensitic lattice modulation appears to be small in this alloy. The magnetic domains disappear immediately when the martensitic transformation occurs

  6. The magnetic domain structures of Fe thin films on rectangular land-and-groove substrates studied by spin-polarized secondary electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan)]. E-mail: uedas@postman.riken.go.jp; Iwasaki, Y. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Micro Systems Network Company, Sony Corporation, Tagajo, Miyagi 985-0842 (Japan); Ushioda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Research Institute of Electrical Communication, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan)

    2004-10-01

    The magnetic domain structures of Fe thin films on rectangular land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area in the magnetization reversal due to the difference in surface roughness between land and groove areas. The magnetic domain structure and domain wall pinning behavior during the reversal process depended on the direction of the magnetic field relative to the rectangles. These results show that the anisotropy induced by film geometry also contributes to the magnetization reversal process of thin magnetic films on land{sub a}nd{sub g}roove substrates.

  7. In-plane current induced domain wall nucleation and its stochasticity in perpendicular magnetic anisotropy Hall cross structures

    International Nuclear Information System (INIS)

    Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.

    2015-01-01

    Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation

  8. Imaging magnetic domains in Ni nanostructures

    International Nuclear Information System (INIS)

    Asenjo, A.; Jaafar, M.; Gonzalez, E.M.; Martin, J.I.; Vazquez, M.; Vicent, J.L.

    2007-01-01

    The study of nanomagnets is the subject of increasing scientific effort. The size, the thickness and the geometric shape of the elements determine the magnetic properties and then the domain configuration. In this work, we fabricated by electron-beam lithography the three different arrays of Ni nanostructures keeping the size, the thickness and also the distance constant between the elements but varying the geometry: square, triangular and circular. The domain structure of the nanomagnets is studied by magnetic force microscopy

  9. Temperature dependence of domain structure of sintered SmCo5 and Smsub(0,5)Prsub(0,5)Co5 permanent magnets

    International Nuclear Information System (INIS)

    Puzanova, T.Z.; Shur, Ya.S.

    1977-01-01

    The Kerr magneto-optical effect has been used to study the domain structure morphology changes in caked SmCo 5 and Smsub(0,5)Prsub(o,5)So 5 alloy magnets at elevated temperatures in the range from 20 to 180 deg C and after protracted air annealing at temperatures from 130 to 180 deg C. The relation between the domain structure behaviour and temperature-dependent variations of magnetic properties is discussed

  10. Dynamics of sandwich domain structure in Co-based amorphous ribbons with helical magnetic anisotropy: Part I

    International Nuclear Information System (INIS)

    Zhmetko, D.N.; Zhmetko, S.D.

    2009-01-01

    The distribution of axes of easy magnetization close to a homogeneous distribution is revealed in each half-thickness of a ribbon after annealing it in a helical magnetic field. The transition from magnetic reversal of a ribbon by the displacement of two domain walls formed near a middle plane of a ribbon to magnetic reversal of a ribbon by displacement of two domain walls formed near to the main surfaces of a ribbon is found out during each half-period of a magnetic reversal.

  11. Magnetic domain structures of La0.67Sr0.33MnO3 thin films with different morphologies

    International Nuclear Information System (INIS)

    Lecoeur, P.; Trouilloud, P.L.; Xiao, G.; Gupta, A.; Gong, G.Q.; Li, X.W.

    1997-01-01

    Using a wide-field Kerr microscope, we have studied the magnetic domain structures of epitaxial and polycrystalline La 0.67 Sr 0.33 MnO 3 thin films as well as a film having thermally induced left-angle 110 right-angle microcracks. The epitaxial film on a (001) SrTiO 3 substrate has different magnetic domain behaviors for in-plane fields applied along the left-angle 100 right-angle and left-angle 110 right-angle directions. Magnetic domain orientation and contrast suggest a biaxial magnetic anisotropy with left-angle 110 right-angle easy axes. Defects such as microcracks and grain boundaries have a strong perturbing effect on the local magnetization and can lead to an enhanced and controllable spin-dependent scattering. copyright 1997 American Institute of Physics

  12. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization.

    Science.gov (United States)

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-04

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  13. Magnetic domain structure, crystal orientation, and magnetostriction of Tb{sub 0.27}Dy{sub 0.73}Fe{sub 1.95} solidified in various high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pengfei [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Liu, Tie, E-mail: liutie@epm.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Dong, Meng [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Yuan, Yi [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Wang, Qiang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2016-03-01

    In this paper, we studied how applying a high magnetic field during solidification of Tb{sub 0.27}Dy{sub 0.73}Fe{sub 1.95} alloys affected their magnetic domain structure, crystal orientation, and magnetostriction. We observed the morphology of the magnetic domain during solidification, finding it change with the applied field: from fiber like (0 T) to dot like and closure mixed (4.4 T) to fiber like (8.8 T) to fishbone like (11.5 T). The alloy solidified at 4.4 T showed the best contrast of light and dark in its domain image, widest magnetic domain, fastest magnetization, and highest magnetostriction; this alloy is followed in descending order by the alloys solidified at 11.5 T, 8.8 T, and 0 T. The orientation of the (Tb, Dy)Fe{sub 2} phase changed with magnetic field from random (0 T) to 〈111〉 (4.4 T) to 〈113〉 (8.8 T) to 〈110〉 (11.5 T). The improvement in magnetostriction was likely caused by modification of both the magnetization process and the alloy microstructure. - Highlights: • We present how magnetic field affects magnetic domain structure of Tb{sub 0.27}Dy{sub 0.73}Fe{sub 1.95}. • Morphology and width of magnetic domain change with increasing magnetic field. • Magnetization and magnetostriction of alloy change with increasing magnetic field. • A transformation of random–〈111〉–〈113〉–〈110〉 for (Tb, Dy)Fe{sub 2} orientation forms.

  14. Polarized Epithermal Neutron Studies of Magnetic Domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Yu. D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; Roberson, N.R.

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV< En<100eV), which process more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurements at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target

  15. Polarized epithermal neutron studies of magnetic domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Y.D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina; Roberson, N.R.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV n <100eV), which precess more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurement at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59 eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target. copyright 1997 American Institute of Physics

  16. Effects of fatigue-induced changes in microstructure and stress on domain structure and magnetic properties of Fe-C alloys

    International Nuclear Information System (INIS)

    Lo, C. C. H.; Tang, F.; Biner, S. B.; Jiles, D. C.

    2000-01-01

    A study of the effects of microstructural changes on domain structure and magnetic properties as a result of fatigue has been made on Fe-C alloys subjected to either cold work, stress-relief annealing, or heat treatment that produced a ferritic/pearlitic structure. The magnetic properties varied with stress cycling depending on the initial condition of the samples. Variations in coercivity in the initial stage of fatigue were closely related to the changes in dislocation structure. In the intermediate stage of fatigue the observed refinement of domain structures was related to the development of dislocation cell structures and formation of slip bands. In the final stage of fatigue the remanence and maximum permeability decreased dramatically, and this rate of decrease was dependent on the crack propagation rate. (c) 2000 American Institute of Physics

  17. Magnetocrystalline anisotropy and magnetic domain structure of ErFe{sub 11}Ti and HoFe{sub 11}Ti compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pastushenkov, Yury G. [Physics Department of Tver State University, 17000 Tver (Russian Federation); Skokov, Konstantin P. [Physics Department of Tver State University, 17000 Tver (Russian Federation); Skourski, Yury [Leibniz-Institute for Solid State and Material Research, 01171 Dresden (Germany); Lebedeva, Ludmila [Physics Department of Tver State University, 17000 Tver (Russian Federation); Ivanova, Tatyana [Physics Department of Moscow Stae University, 119889 Moscow (Russian Federation); Grushichev, Anton [Physics Department of Tver State University, 17000 Tver (Russian Federation)]. E-mail: yupast@tversu.ru; Mueller, Karl-Hartmut [Leibniz-Institute for Solid State and Material Research, 01171 Dresden (Germany)

    2006-05-15

    Tetragonal ThMn{sub 12}-type single crystalline ErFe{sub 11}Ti and HoFe{sub 11}Ti samples have been investigated by magnetization measurements and by observations of the magnetic domain structure at various temperatures between 10 and 300K. The magnetic structure of ErFe{sub 11}Ti changes from room temperature 'easy axis' (c-axis) type to conical at spin-reorientation temperature T{sub SR}=50K. The HoFe{sub 11}Ti has a metastable anisotropy energy minimum in the a-direction at T<40K. It leads to a first-order magnetization process detected by magnetization measurements along the a-axis in this temperature region.

  18. Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe-3%Si steel

    International Nuclear Information System (INIS)

    Perevertov, O; Schäfer, R

    2012-01-01

    The influence of an applied compressive stress on the hysteresis curve and domain structure in conventional (1 1 0) [0 0 1] Fe-3%Si steel cut transverse to the rolling direction is studied. Quasistatic hysteresis loops under compressive stress up to 75 MPa were measured. The magnetic domains and magnetization processes were observed by longitudinal Kerr microscopy at different levels of stress. It is shown that the bulk hysteresis loop can be described with a good accuracy by the action of an effective field, which is the product of the stress and a function of magnetization. Domain observations have shown that the reasons for the effective field are demagnetizing fields due to the disappearance of supplementary domains along [0 1 0] and [1 0 0] at low fields and different domain systems in different grains at moderate fields. The latter are caused by differences in grain sensitivity to stress depending on the degree of misorientation. A decrease in the effective field above 1 T is connected with a transformation of all grains into the same domain system—the column pattern. (paper)

  19. Magnetic domains in Ni-Mn-Ga martensitic thin films

    International Nuclear Information System (INIS)

    Chernenko, V A; Anton, R Lopez; Kohl, M; Ohtsuka, M; Orue, I; Barandiaran, J M

    2005-01-01

    A series of martensitic Ni 52 Mn 24 Ga 24 thin films deposited on alumina ceramic substrates has been prepared by using RF(radio-frequency) magnetron sputtering. The film thickness, d, varies from 0.1 to 5.0m. Magnetic domain patterns have been imaged by the MFM (magnetic force microscopy) technique. A maze domain structure is found for all studied films. MFM shows a large out-of-plane magnetization component and a rather uniform domain width for each film thickness. The domain width, δ, depends on the film thickness as δ∝√d in the whole studied range of film thickness. This dependence is the expected one for magnetic anisotropy and magnetostatic contributions in a perpendicular magnetic domain configuration. The proportionality coefficient is also consistent with the values of saturation magnetization and magnetic anisotropy determined in the samples

  20. Magnetization process and domains in MTJ

    Energy Technology Data Exchange (ETDEWEB)

    Czapkiewicz, M.; Zoladz, M.; Wrona, J.; Wisniowski, P.; Rak, R.; Stobiecki, T. [Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Kim, C.G.; Kim, C.O. [Department of Materials Engineering, Chungnam National University, 305-764 Daejon (Korea); Takahashi, M.; Tsunoda, M. [Department of Electronic Engineering, Tohoku University, 980-8579 Sendai (Japan)

    2004-06-01

    The magnetization process and domain structure of free layers in as deposited and annealed magnetic tunnel junctions (MTJ) of Si/Ta/Cu/Ta/NiFe/Cu/IrMn(10)/CoFe(2.5)/Al-O(1.5)/CoFe(2.5)/NiFe(t)/Ta, where t=10, 30 and 100 nm, were investigated by Kerr microscopy, R-VSM and MOKE magnetometers. Different types of domain patterns observed in free layers (CoFe(2.5)/NiFe(t)) depending on the mutual relation between interlayer coupling energy and free layer magnetostatic energy. For as deposited samples fuzzy domains with fine irregular ''patches'' pattern, typical for weak interlayer coupling, are observed. Annealed MTJs, however, are characterized by large domains superimposed by crossed stripes, which led to the blocking of coherent rotation of magnetization. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  2. Magnetic force microscopy: advanced technique for the observation of magnetic domains

    International Nuclear Information System (INIS)

    Asenjo, A.; Garcia, J. M.; Vazquez, M.

    2001-01-01

    An overview on the Magnetic Force Microscopy, MFM, as an advanced technique to observe magnetic domains and walls is displayed. Basic concepts are first introduced on the domain structure formation as well as on other techniques to observe magnetic domains. Afterwards, the MFM instrumentation is described making also an emphasis in micro magnetic consideration to interpret the images. Finally, a set of selected advanced magnetic materials with different domain structures is chosen to show the wide possibilities of this techniques to characterise the surface magnetic behaviour. The domain structure of materials as commercial magnetic recording media, thin films and multilayers, amorphous micro tubes, nanocrystalline ribbons, perovskites or magnetic nano wires is shown. (Author) 16 refs

  3. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué , Emilie; Safeer, C.  K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2015-01-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  4. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  5. Constricted nanowire with stabilized magnetic domain wall

    International Nuclear Information System (INIS)

    Sbiaa, R.; Al Bahri, M.

    2016-01-01

    Domain wall (DW)-based magnetic memory offers the possibility for increasing the storage capacity. However, stability of DW remains the major drawback of this scheme. In this letter, we propose a stepped nanowire for pinning DW in a desirable position. From micromagnetic simulation, the proposed design applied to in-plane magnetic anisotropy materials shows that by adjusting the nanowire step size and its width it is possible to stabilize DW for a desirable current density range. In contrast, only a movement of DW could be seen for conventional nanowire. An extension to a multi-stepped nanowire could be used for multi-bit per cell magnetic memory. - Highlights: • A stepped nanowire is proposed to pin domain wall in desired position. • The new structure can be made by a simple off set of two single nanowires. • The critical current for moving domain wall from one state to the other could be tuned by adjusting the geometry of the device. • The device could be used for multi-bit per cell memory by extending the steps in the device.

  6. Domain wall motion in magnetically frustrated nanorings

    Science.gov (United States)

    Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.

    2012-06-01

    We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.

  7. Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO{sub 2} probed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sakhratov, Yu. A. [National High Magnetic Field Laboratory (United States); Svistov, L. E., E-mail: svistov@kapitza.ras.ru [Russian Academy Sciences, Kapitza Institute for Physical Problems (Russian Federation); Kuhns, P. L.; Zhou, H. D.; Reyes, A. P. [National High Magnetic Field Laboratory (United States)

    2014-11-15

    We have carried out {sup 63,65}Cu NMR spectra measurements in a magnetic field up to about 15.5 T on a single crystal of the multiferroic triangular-lattice antiferromagnet CuCrO{sub 2}. The measurements were performed for perpendicular and parallel orientations of the magnetic field with respect to the c axis of the crystal, and the detailed angle dependence of the spectra on the magnetic field direction in the ab plane was studied. The shape of the spectra can be well described in the model of spiral spin structure proposed by recent neutron diffraction experiments. When the field is rotated perpendicular to the crystal c axis, we observed, directly for the first time, a remarkable reorientation of the spin plane simultaneous with rotation of the incommensurate wavevector, by quantitatively deducing the conversion of the energetically less favorable domain to a more favorable one. At high enough fields parallel to the c axis, the data are consistent with either a field-induced commensurate spiral magnetic structure or an incommensurate spiral magnetic structure with a disorder in the c direction, suggesting that high fields may have influence on interplanar ordering.

  8. Magnetic domains and magnetic stability of cohenite from the Morasko iron meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Reznik, B. [Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe (Germany); Kontny, A., E-mail: agnes.kontny@kit.edu [Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe (Germany); Uehara, M.; Gattacceca, J. [CNRS, Aix Marseille Univ, IRD, Coll France, CEREGE, Aix-en-Provence (France); Solheid, P.; Jackson, M. [Institute for Rock Magnetism, University of Minnesota, Minneapolis, MN (United States)

    2017-03-15

    Magnetic properties, texture and microstructure of cohenite grains from Morasko iron meteorite have been investigated using electron backscattered diffraction, Bitter pattern technique, magneto-optical imaging method and magnetic force microscopy. Cohenite shows much stronger magnetic contrast compared to kamacite because it is magnetically harder than the Fe-Ni alloy, and thus causes higher stray fields. A surprising result is the high stability and reversibility of the global stripe-like magnetic domain structure in cohenite when applying high magnetic fields up to 1.5 T, and exposing it to high temperatures above the Curie temperature of about 220 °C. Heating up to 700 °C under atmosphere conditions has shown that cohenite remains stable and that the global magnetic domain structures mainly recover to its preheating state. This observation suggests that magnetic domains are strongly controlled by the crystal anisotropy of cohenite. Branching magnetic domain structures at the grain boundary to kamacite can be annealed, which indicates that they are very sensitive to record deformation. EBSD observations clearly demonstrate that increasing deviation from the easy [010] crystallographic axis and stress localization are the main factors controlling the distortion of Bitter patterns, and suggest a high sensitivity of the cohenite magnetic domain structure to local microstructural heterogeneities. The results of this study substantiate the theory that cohenite can be a good recorder of magnetic fields in planetary core material. - Highlights: • Magnetic domain structure of cohenite from the Morasko iron meteorite was investigated by Bitter pattern method, magneto-optical imaging and magnetic force microscopy. • Strong magnetocrystalline anisotropy explains high magnetic stability. • Magnetic domain structure shows high sensitivity to local microstructural heterogeneities. • Cohenite is probably a good recorder of magnetic fields in planetary core material.

  9. Magnetic domains and magnetic stability of cohenite from the Morasko iron meteorite

    International Nuclear Information System (INIS)

    Reznik, B.; Kontny, A.; Uehara, M.; Gattacceca, J.; Solheid, P.; Jackson, M.

    2017-01-01

    Magnetic properties, texture and microstructure of cohenite grains from Morasko iron meteorite have been investigated using electron backscattered diffraction, Bitter pattern technique, magneto-optical imaging method and magnetic force microscopy. Cohenite shows much stronger magnetic contrast compared to kamacite because it is magnetically harder than the Fe-Ni alloy, and thus causes higher stray fields. A surprising result is the high stability and reversibility of the global stripe-like magnetic domain structure in cohenite when applying high magnetic fields up to 1.5 T, and exposing it to high temperatures above the Curie temperature of about 220 °C. Heating up to 700 °C under atmosphere conditions has shown that cohenite remains stable and that the global magnetic domain structures mainly recover to its preheating state. This observation suggests that magnetic domains are strongly controlled by the crystal anisotropy of cohenite. Branching magnetic domain structures at the grain boundary to kamacite can be annealed, which indicates that they are very sensitive to record deformation. EBSD observations clearly demonstrate that increasing deviation from the easy [010] crystallographic axis and stress localization are the main factors controlling the distortion of Bitter patterns, and suggest a high sensitivity of the cohenite magnetic domain structure to local microstructural heterogeneities. The results of this study substantiate the theory that cohenite can be a good recorder of magnetic fields in planetary core material. - Highlights: • Magnetic domain structure of cohenite from the Morasko iron meteorite was investigated by Bitter pattern method, magneto-optical imaging and magnetic force microscopy. • Strong magnetocrystalline anisotropy explains high magnetic stability. • Magnetic domain structure shows high sensitivity to local microstructural heterogeneities. • Cohenite is probably a good recorder of magnetic fields in planetary core material.

  10. Basic study of magnetic microwires for sensor applications: Variety of magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Chizhik, Alexander, E-mail: oleksandr.chyzhyk@ehu.es [Universidad del Pais Vasco, UPV/EHU, 20080 San Sebastian (Spain); Zhukov, Arcady [Universidad del Pais Vasco, UPV/EHU, 20080 San Sebastian (Spain); IKERBASQUE, 48011 Bilbao (Spain); Gonzalez, Julian [Universidad del Pais Vasco, UPV/EHU, 20080 San Sebastian (Spain); Stupakiewicz, Andrzej [Laboratory of Magnetism, University of Bialystok, 15-245 Bialystok (Poland)

    2017-01-15

    We examine magnetic glass-coated microwires used for magnetic sensors. Images of domain structures and magnetization reversal were obtained with magneto-optical Kerr microscopy. Of particular importance were temperature-induced transformations of surface magnetic structures. Different surface magnetic domains coexist, characterized by various domain periods, magnetization directions, and nobilities of domain walls. - Highlights: • Temperature induced transformation of the domain structure in the microwires. • Co-existence of two magnetic structures differing in period and mobility of domain walls. • Short review of the basic domain structures in microwire.

  11. Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure

    Energy Technology Data Exchange (ETDEWEB)

    Samantaray, B., E-mail: iitg.biswanath@gmail.com; Ranganathan, R.; Mandal, P. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Singh, Akhilesh K.; Perumal, A. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati - 781039 (India)

    2015-06-15

    Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angle variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Landé g-factor, PMA constant, and effective magnetization are found to be 2.1, 2 × 10{sup 5} erg/cm{sup 3} and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α) is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α is found to be 0.006 at 10 GHz and it increases monotonically with decreasing precessional frequency.

  12. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...... walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation....

  13. Domain structure and magnetic properties of epitaxial SrRuO sub 3 films grown on SrTiO sub 3 (100) substrates by ion beam sputtering

    CERN Document Server

    Oh, S H

    2000-01-01

    The domain structure of epitaxial SrRuO sub 3 thin films grown on SrTiO sub 3 (100) substrates by using ion beam sputtering has been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SrRuO sub 3 films grown in the present study revealed a unique cube-on-cube epitaxial relationship, i.e., (100) sub S sub R sub O ll (100) sub S sub T sub O , [010] sub S sub R sub O ll [101] sub S sub T sub O , prevailing with a cubic single-domain structure. The cubic SrRuO sub 3 thin films that were inherently with free from RuO sub 6 octahedron tilting exhibited higher resistivity with suppressed magnetic properties. The Curie temperature of the thin films was suppressed by 60 K from 160 K for the bulk specimen, and the saturation magnetic moment was reduced by a significant amount. The tetragonal distortion of the SrRuO sub 3 thin films due to coherent growth with the substrate seemed to result in a strong magnetic anisotropy.

  14. Nanometer-size magnetic domains and coherent magnetization reversal in a giant exchange-bias system

    DEFF Research Database (Denmark)

    Dufour, C.; Fitzsimmons, M. R.; Borchers, J. A.

    2011-01-01

    The role of magnetic domains and domain walls in exchange bias has stimulated much contemporary deliberation. Here we present compelling evidence obtained with small-angle scattering of unpolarized- and polarized-neutron beams that magnetization reversal occurs via formation of 10-100s nm-sized m...... to that of structural defects at the seed-layer-superlattice interface....

  15. Magnetocrystalline anisotropy constants, rotational hysteresis energy and magnetic domain structure in UFe6Al6, UFe9AlSi2 and ScFe10Si2 intermetallic compounds

    International Nuclear Information System (INIS)

    Wyslocki, J.J.; Pawlik, P.; Wochowski, K.; Kotur, B.; Bodak, O.I.

    1996-01-01

    The magnetic torque, T, was applied to determine the anisotropy constants K 1 and K 2 of the UFe 6 Al 6 , UFe 9 AlSi 2 and ScFe 10 Si 2 compounds. The mechanism of magnetization reversal processes in these compounds was investigated on the basis of the analysis of the rotational hysteresis energy, W r and rotational hysteresis integral, R, calculated from the magnetic torque curves. Applying the powder pattern method, magnetic domain structures were observed. Moreover, the fundamental parameters of the domain structure were determined. (orig.)

  16. Magnetic multilayer structure

    Science.gov (United States)

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  17. Structures composing protein domains.

    Science.gov (United States)

    Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel; Hudeček, Jiří

    2013-08-01

    This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Effect of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented transverse Fe-3%Si steel

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Thielsch, J.; Schäfer, R.

    2015-01-01

    Roč. 385, Jul (2015), 358-367 ISSN 0304-8853 R&D Projects: GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : magnetic domains * magnetization process * magnetoelasticity * hysteresis loops * tension * Kerr microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  19. Domain-wall dynamics in glass-coated magnetic microwires

    International Nuclear Information System (INIS)

    Varga, R.; Zhukov, A.; Usov, N.; Blanco, J.M.; Gonzalez, J.; Zhukova, V.; Vojtanik, P.

    2007-01-01

    Glass-coated magnetic microwires with positive magnetostriction show peculiar domain structure that consists mostly of one large domain with magnetization-oriented axially. It was shown that small closure domains appear at the end of the microwire in order to decrease the stray fields. As a result of such domain structure, the magnetization reversal in axial direction runs through the depinning of one of such closure domains and subsequent propagation of the corresponding domain wall. Quite unusual domain-wall (DW) dynamics of the DW propagation predicted previously from the theory has been found in such amorphous microwires. In this paper, we are dealing with the DW dynamics of glass-coated microwires with small positive magnetostriction. The DW damping coming from the structural relaxation dominates at low temperatures as a result of the decrease of the mobility of the structural atomic-level defects. Negative critical propagation field points to the possible DW propagation without applied magnetic field. Probable explanation could be in terms of the effective mass of the DW

  20. Structural domain walls in polar hexagonal manganites

    Science.gov (United States)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  1. Magneto-optical study of domain wall dynamics and giant Barkhausen jump in magnetic microwires

    International Nuclear Information System (INIS)

    Chizhik, A.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.

    2012-01-01

    Investigation of surface domain walls motion in Co-rich magnetic microwires has been performed in circular and axial magnetic fields. The dc axial magnetic field acceleration of the domain wall motion related to the influence of the axial field on the structure of the moving domain wall has been discovered. Pulsed axial magnetic field induced unidirectional motion of surface domain wall also has been found.

  2. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no 13 C- 13 C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  3. Current induced domain wall motion and tilting in Pt/Co/Ta structures with perpendicular magnetic anisotropy in the presence of the Dyzaloshinskii–Moriya interaction

    Science.gov (United States)

    Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Mao, Jian; Zuo, Yalu; Xi, Li

    2018-04-01

    Current induced domain wall motion (CIDWM) was studied in Pt/Co/Ta structures with perpendicular magnetic anisotropy and the Dyzaloshinskii–Moriya interaction (DMI) by the spin-orbit torque (SOT). We measured the strength of DMI and SOT efficiency in Pt/Co/Ta with the variation of the thickness of Ta using a current induced hysteresis loop shift method. The results indicate that the DMI stabilizes a chiral Néel-type domain wall (DW), and the DW motion can be driven by the enhanced large SOT generated from Pt and Ta with opposite signs of spin Hall angle in Pt/Co/Ta stacks. The CIDWM velocity, which is 104 times larger than the field driven DW velocity, obeys a creep law, and reaches around tens of meters per second with current density of ~106 A cm‑2. We also found that the Joule heating accompanied with current also accelerates the DW motion. Meanwhile, a domain wall tilting was observed, which increases with current density increasing. These results can be explained by the spin Hall effect generated from both heavy metals Pt and Ta, inherent DMI, and the current accompanying Joule heating effect. Our results could provide some new designing prospects to move multiple DWs by SOT for achieving racetrack memories.

  4. Microstructure of precipitates and magnetic domain structure in an annealed Co.sub.38./sub.Ni.sub.33./sub.Al.sub.29./sub. shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Bártová, Barbora; Wiese, N.; Schryvers, D.; Chapman, J. N.; Ignacová, Silvia

    2008-01-01

    Roč. 56, č. 16 (2008), 4470-4476 ISSN 1359-6454 Institutional research plan: CEZ:AV0Z10100520 Keywords : CoNiAl shape memory alloys * microstructure * precipitates * magnetic domains * Lorentz microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.729, year: 2008

  5. Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe–3%Si steel

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Schäfer, R.

    2012-01-01

    Roč. 45, č. 13 (2012), "135001-1"-"135001-11" ISSN 0022-3727 Grant - others:GA AV ČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : hysteresis curve * magnetic domains * compressive stress * goss steel * effective field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.528, year: 2012

  6. Influence of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented Fe–3%Si steel

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Schäfer, R.

    2014-01-01

    Roč. 47, č. 18 (2014), s. 1-10 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GAP107/11/0391 Grant - others:AVČR(CZ) M100100906 Institutional support: RVO:68378271 Keywords : magnetic domains * magnetization process * magnetoelasticity * hysteresis loops * tension * silicon steel * Kerr microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.721, year: 2014

  7. Switchable field-tuned control of magnetic domain wall pinning along Co microwires by 3D e-beam lithographed structures

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Roldán, C., E-mail: c.blanco@cinn.es [Departamento de Física, Universidad de Oviedo, Avenida Calvo Sotelo s/n, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología CINN (CSIC, Universidad de Oviedo), Avenida de la Vega 4-6, 33940 El Entrego (Spain); Quirós, C.; Rodriguez-Rodriguez, G.; Vélez, M.; Martín, J.I.; Alameda, J.M. [Departamento de Física, Universidad de Oviedo, Avenida Calvo Sotelo s/n, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología CINN (CSIC, Universidad de Oviedo), Avenida de la Vega 4-6, 33940 El Entrego (Spain)

    2016-02-15

    Three-dimensional magnetic circuits composed of Co microwires crossed by elevated Co bridges have been patterned on Si substrate by e-beam lithography and lift-off process. The lithographic procedure includes a double resist procedure that optimizes the shape of the bridge, so that 200 nm air gaps can be routinely achieved in between the wire and bridge elements. Microwire magnetization reversal processes have been analyzed by magneto-optical Kerr effect microscopy with different remanent bridge configurations. When the Co bridge is magnetized along the in-plane direction parallel to the wire axis, its stray field induces a marked pinning effect on domain wall propagation along the wire below it, even without being in contact. Changing the sign of the remanent state of the bridge, domain wall pinning can be selected to occur in either the ascending or descending branches of the wire hysteresis loop. Thus, these wire-bridge 3D circuits provide a simple system for tunable domain wall pinning controllable through the pre-recorded bridge remanent state. - Highlights: • Electron beam lithography is used to fabricate a tridimensional magnetic circuit. • Proposed circuit is made of a Co bridge overcrossing a non-contacted Co microwire. • Domain wall propagation can be controlled by previous magnetization of the system. • Domain wall pinning in the wire depends on the applied magnetic field sign.

  8. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3 APS

    CERN Document Server

    Rosenberg, Aaron J.; Kirtley, John R.; Gedik, Nuh; Moodera, Jagadeesh S.; Moler, Kathryn A.

    2017-12-15

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in...

  9. Evaluation of magnetic flux distribution from magnetic domains in [Co/Pd] nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Mitsunobu, E-mail: okuda.m-ky@nhk.or.jp; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Hayashi, Naoto [NHK Science and Technology Research Laboratories, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)

    2014-05-07

    Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the “magnetic domain scope for wide area with nano-order resolution (nano-MDS)” method has been proposed recently that could detect the magnetic flux distribution from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]{sub 21}/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20 μm and 150 nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.

  10. Emergent rotational symmetries in disordered magnetic domain patterns.

    Science.gov (United States)

    Su, Run; Seu, Keoki A; Parks, Daniel; Kan, Jimmy J; Fullerton, Eric E; Roy, Sujoy; Kevan, Stephen D

    2011-12-16

    Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition. © 2011 American Physical Society

  11. Domain walls in single-chain magnets

    Science.gov (United States)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2017-12-01

    The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.

  12. Magnetic domains in martensite of Ni-Mg-Ga alloy

    International Nuclear Information System (INIS)

    Kokorin, V.V.; Babij, O.M.; Dubinko, S.V.; Prokopov, A.R.

    2006-01-01

    The structural changes attendant on intermartensitic transformation in a Ni-Mg-Ga shape memory alloy are considered using magneto-optical visualization with the help of ferrite-garnet monocrystalline films. It is established that on the intermartensitic transformation the complete reorganization of martensite macrostructure fails. Martensite crystals resulted from the basic transformation change somewhat their sizes on intermartensitic transition. The existence of large-scale labyrinth magnetic domain structure is revealed [ru

  13. Theoretical description of the properties of magnetization fluctuations in the vicinity of phase transition from paramagnetic phase to ferromagnetic phase with domain structure

    International Nuclear Information System (INIS)

    Wasilewski, W.

    1983-08-01

    This paper presents a theoretical description of the phase transition from a paramagnetic phase P to the homogeneous and domain structure ferromagnetic phases within the phenomenological theory of phase transitions

  14. Imaging of Magnetic Domain Structure in FeSi/Mn0.8Zn0.2Fe2O4 Composite using Magnetic Force Microscopy

    Czech Academy of Sciences Publication Activity Database

    Strečková, M.; Baťko, I.; Baťková, M.; Bureš, R.; Fáberová, M.; Džunda, R.; Hadraba, Hynek; Kuběna, Ivo

    2017-01-01

    Roč. 131, č. 4 (2017), s. 714-716 ISSN 0587-4246 Institutional support: RVO:68081723 Keywords : Coatings * Ferrite * Magnetic force microscopy * Grain boundaries Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.469, year: 2016

  15. Changes in magnetic domain structure during twin boundary motion in single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Vít; Fekete, Ladislav; Perevertov, Oleksiy; Heczko, Oleg

    2016-01-01

    Roč. 6, č. 5 (2016), 1-6, č. článku 056208. ISSN 2158-3226 R&D Projects: GA ČR GA15-00262S; GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : martensite * alloy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.568, year: 2016

  16. Domain wall propagation tuning in magnetic nanowires through geometric modulation

    Energy Technology Data Exchange (ETDEWEB)

    Arzuza, L.C.C., E-mail: luisarzuza179@gmail.com [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Universidad de la Costa, Departamento de Ciencias Naturales y Exactas, Calle 58 No. 55-66, Barranquilla (Colombia); López-Ruiz, R. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Salazar-Aravena, D. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, 1000007 Arica (Chile); Knobel, M. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Brazilian Nanotechnology National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), 13083-970 Campinas (SP) (Brazil); Béron, F.; Pirota, K.R. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil)

    2017-06-15

    Highlights: • The modulated nanowires dynamics occurs through two reversal modes. • Modulated nanowires show a change in the χ in contrast to homogeneous ones. • The FORC method reveals a non-uniform stray field due to shape modulation. - Abstract: The magnetic behavior of nickel modulated nanowires embedded in porous alumina membranes is investigated. Their diameters exhibit a sharp transition between below (35 nm) and above (52 nm) the theoretical limit for transverse and vortex domain walls. Magnetic hysteresis loops and first-order reversal curves (FORCs) were measured on several ordered nanowire arrays with different wide-narrow segment lengths ratio and compared with those from homogenous nanowires. The experimental magnetic response evidences a rather complex susceptibility behavior for nanowires with modulated diameter. Micromagnetic simulations on isolated and first-neighbors arrays of nanowires show that the domain wall structure, which depends on the segment diameter, suffers a transformation while crossing the diameter modulation, but without any pinning. The experimental array magnetic behavior can be ascribed to a heterogeneous stray field induced by the diameter modulation, yielding a stronger interaction field at the wide extremity than at the narrow one. The results evidence the possibility to control the domain wall propagation and morphology by modulating the lateral aspect of the magnetic entity.

  17. Solution structure of leptospiral LigA4 Big domain

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Song; Zhang, Jiahai [Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Xuecheng [School of Life Sciences, Anhui University, Hefei, Anhui 230039 (China); Tu, Xiaoming, E-mail: xmtu@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-11-13

    Pathogenic Leptospiraspecies express immunoglobulin-like proteins which serve as adhesins to bind to the extracellular matrices of host cells. Leptospiral immunoglobulin-like protein A (LigA), a surface exposed protein containing tandem repeats of bacterial immunoglobulin-like (Big) domains, has been proved to be involved in the interaction of pathogenic Leptospira with mammalian host. In this study, the solution structure of the fourth Big domain of LigA (LigA4 Big domain) from Leptospira interrogans was solved by nuclear magnetic resonance (NMR). The structure of LigA4 Big domain displays a similar bacterial immunoglobulin-like fold compared with other Big domains, implying some common structural aspects of Big domain family. On the other hand, it displays some structural characteristics significantly different from classic Ig-like domain. Furthermore, Stains-all assay and NMR chemical shift perturbation revealed the Ca{sup 2+} binding property of LigA4 Big domain. - Highlights: • Determining the solution structure of a bacterial immunoglobulin-like domain from a surface protein of Leptospira. • The solution structure shows some structural characteristics significantly different from the classic Ig-like domains. • A potential Ca{sup 2+}-binding site was identified by strains-all and NMR chemical shift perturbation.

  18. Solution structure of leptospiral LigA4 Big domain

    International Nuclear Information System (INIS)

    Mei, Song; Zhang, Jiahai; Zhang, Xuecheng; Tu, Xiaoming

    2015-01-01

    Pathogenic Leptospiraspecies express immunoglobulin-like proteins which serve as adhesins to bind to the extracellular matrices of host cells. Leptospiral immunoglobulin-like protein A (LigA), a surface exposed protein containing tandem repeats of bacterial immunoglobulin-like (Big) domains, has been proved to be involved in the interaction of pathogenic Leptospira with mammalian host. In this study, the solution structure of the fourth Big domain of LigA (LigA4 Big domain) from Leptospira interrogans was solved by nuclear magnetic resonance (NMR). The structure of LigA4 Big domain displays a similar bacterial immunoglobulin-like fold compared with other Big domains, implying some common structural aspects of Big domain family. On the other hand, it displays some structural characteristics significantly different from classic Ig-like domain. Furthermore, Stains-all assay and NMR chemical shift perturbation revealed the Ca"2"+ binding property of LigA4 Big domain. - Highlights: • Determining the solution structure of a bacterial immunoglobulin-like domain from a surface protein of Leptospira. • The solution structure shows some structural characteristics significantly different from the classic Ig-like domains. • A potential Ca"2"+-binding site was identified by strains-all and NMR chemical shift perturbation.

  19. Magnetic Structure of Erbium

    DEFF Research Database (Denmark)

    Gibbs, D.; Bohr, Jakob; Axe, J. D.

    1986-01-01

    We present a synchrotron x-ray scattering study of the magnetic phases of erbium. In addition to the magnetic scattering located at the fundamental wave vector τm we also observe scattering from magnetoelastically induced charge modulations at the fundamental wave vector, at twice the fundamental......, and at positions split symmetrically about the fundamental. As the temperature is lowered below 52 K the charge and magnetic scattering display a sequence of lock-in transitions to rational wave vectors. A spin-slip description of the magnetic structure is presented which explains the wave vectors...

  20. Magnetic domains in Co-cluster assembled films deposited by LECBD

    International Nuclear Information System (INIS)

    Dumas-Bouchiat, F.; Nagaraja, H.S.; Rossignol, F.; Champeaux, C.; Catherinot, A.

    2005-01-01

    Cobalt aggregates prepared using a cluster beam generator have been deposited on Si(100) substrate leading to thin films of randomly assembled Co nanoparticles which exhibit a spherical shape with a mono-dispersed diameter distribution centred around 9nm. Films with thickness ranging from 50 to 550nm are investigated using magnetic force microscopy (MFM) and results show the presence of twisted magnetic domains. An in-plane magnetic field applied during the growth of the layer leads to the formation of magnetic stripe domains but we observe a similar behaviour if an in-plane magnetic field is applied after the deposition. This indicates that probably the magnetic field applied during the film growth does not drive its magnetic structure. Finally, the measured variation of magnetic domain width D reveals a t dependence, where t is the film thickness, and is independent of the magnetic history of the films

  1. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories

    KAUST Repository

    Ivanov, Yurii P.; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jü rgen

    2016-01-01

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. © 2016 American Chemical Society.

  2. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories

    KAUST Repository

    Ivanov, Yurii P.

    2016-05-03

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. © 2016 American Chemical Society.

  3. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  4. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  5. Spin motive forces due to magnetic vortices and domain walls

    NARCIS (Netherlands)

    Lucassen, M.E.; Kruis, G.C.F.L.; Lavrijsen, R.; Swagten, H.J.M.; Koopmans, B.; Duine, R.A.

    2011-01-01

    We study spin motive forces, that is, spin-dependent forces and voltages induced by time-dependent magnetization textures, for moving magnetic vortices and domain walls. First, we consider the voltage generated by a one-dimensional field-driven domain wall. Next, we perform detailed calculations on

  6. The micro-magnetic structures of Mn sup + ion-implanted GaSb

    CERN Document Server

    Zhang Fu Qiang; Liu Zhi Kai

    2003-01-01

    The micro-magnetic structures of Mn sup + ion-implanted GaSb are studied using a magnetic force microscope (MFM). MFM images reveal that there are many magnetic domains with different magnetization directions in our samples. The magnetic domain structures and the magnetization direction of typical MFM patterns are analyzed by numeric simulation. (author)

  7. Phase transitions and domain structures in multiferroics

    Science.gov (United States)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  8. Non-volatile polarization switch of magnetic domain wall velocity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Stolichnov, I.; Setter, N. [Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Bernand-Mantel, A.; Schott, Marine; Pizzini, S.; Ranno, L. [University of Grenoble Alpes, Institut Néel, F-38042 Grenoble (France); CNRS, Institut Néel, F-38042 Grenoble (France); Auffret, S.; Gaudin, G. [SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble (France)

    2015-12-21

    Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferroelectric polymer. Polarization domains directly written using conducting atomic force microscope probe locally accelerate/decelerate the magnetic domains in the 0.6 nm thick Co film. The change of the magnetic domain wall velocity is consistent with the magnetic anisotropy energy modulation through the polarization upward/downward orientation. Excellent retention is observed. The demonstrated local non-destructive and reversible change of magnetic properties via rewritable patterning of ferroelectric domains could be attractive for exploring the ultimate limit of miniaturization in devices based on ferromagnetic/ferroelectric bilayers.

  9. On the structure of order domains

    DEFF Research Database (Denmark)

    Geil, Olav; Pellikaan, Ruud

    2002-01-01

    The notion of an order domain is generalized. The behaviour of an order domain by taking a subalgebra, the extension of scalars, and the tensor product is studied. The relation of an order domain with valuation theory, Gröbner algebras, and graded structures is given. The theory of Gröbner bases...... for order domains is developed and used to show that the factor ring theorem and its converse, the presentation theorem, hold. The dimension of an order domain is related to the rank of its value semigroup....

  10. Damping of the domain walls motion in Co-based amorphous ribbons with helical magnetic anisotropy: Part III

    International Nuclear Information System (INIS)

    Zhmetko, D.N.; Zhmetko, S.D.

    2009-01-01

    The damping of the motion of domain walls of a sandwich domain structure by the eddy currents magnetic fields, the stray fields and the hysteresis friction fields is investigated. The blocking of the motion of domain walls by the eddy currents magnetic fields is discovered.

  11. The Effect of a Pulsed Magnetic Field on Domain Wall Resistance in Magnetic Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, R; Tehranchi, M M; Tabrizi, K Ghafoori [Department of Physics, G.C., Shahid Beheshti University, Evin, 19838-63113, Tehran (Iran, Islamic Republic of); Phirouznia, A, E-mail: Teranchi@cc.sbu.ac.ir [Department of Physics, Azarbaijan University of Tarbiat Moallem, 53714-161 Tabriz (Iran, Islamic Republic of)

    2011-04-01

    The effect of a pulsed magnetic field on domain wall magnetoresistance for an ideal one-dimensional magnetic nanowire with a domain wall has been investigated. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The results indicate that the domain wall resistance increase when enhancing the magnetic field. The evaluation of local magnetization has been considered in the presence of a pulsed magnetic field. The time evaluation of the magnetization also has an effect on the domain wall resistance. The resistance depends on the contribution of the Zeeman and exchange interactions.

  12. The Effect of a Pulsed Magnetic Field on Domain Wall Resistance in Magnetic Nanowires

    International Nuclear Information System (INIS)

    Majidi, R; Tehranchi, M M; Tabrizi, K Ghafoori; Phirouznia, A

    2011-01-01

    The effect of a pulsed magnetic field on domain wall magnetoresistance for an ideal one-dimensional magnetic nanowire with a domain wall has been investigated. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The results indicate that the domain wall resistance increase when enhancing the magnetic field. The evaluation of local magnetization has been considered in the presence of a pulsed magnetic field. The time evaluation of the magnetization also has an effect on the domain wall resistance. The resistance depends on the contribution of the Zeeman and exchange interactions.

  13. Jahn-teller domains and magnetic domains in Mn2FeO4

    NARCIS (Netherlands)

    Kub, J.; Brabers, V.A.M.; Novák, P.; Gemperle, R.; Simsova, J.

    2000-01-01

    Elastic (Jahn–Teller) domains and magnetic domains in the tetragonal spinel Mn2FeO4 were studied using X-ray double-crystal topography, X-ray diffractometry and the colloid-SEM method. The Jahn–Teller domains of the measured samples are tetragonal with the [0 0 1] c-axis alternating perpendicularly

  14. Observation of the domain structure in Fe-Au superlattices with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Zoladz, M. E-mail: zoladz@uci.agh.edu.pl; Slezak, T.; Wilgocka-Slezak, D.; Spiridis, N.; Korecki, J.; Stobiecki, T. E-mail: stobieck@uci.agh.edu.pl; Roell, K

    2004-05-01

    Polar Kerr Microscopy was used to visualize characteristic transitions and external magnetic field driven domain structure evolution in a perpendicularly magnetized Fe-Au AF/FM double multilayer structure. Real time imaging performed in the external magnetic field allowed for identification of all sublayers magnetization reversal in accordance with measured PMOKE magnetization curve, showing strong dependence of transition character on the interlayer coupling type and adjacent sublayers magnetization orientation.

  15. Observation of the domain structure in Fe-Au superlattices with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Zoladz, M.; Slezak, T.; Wilgocka-Slezak, D.; Spiridis, N.; Korecki, J.; Stobiecki, T.; Roell, K.

    2004-01-01

    Polar Kerr Microscopy was used to visualize characteristic transitions and external magnetic field driven domain structure evolution in a perpendicularly magnetized Fe-Au AF/FM double multilayer structure. Real time imaging performed in the external magnetic field allowed for identification of all sublayers magnetization reversal in accordance with measured PMOKE magnetization curve, showing strong dependence of transition character on the interlayer coupling type and adjacent sublayers magnetization orientation

  16. Magnetic domain wall motion in notch patterned permalloy nanowire devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting-Chieh; Kuo, Cheng-Yi; Mishra, Amit K.; Das, Bipul; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw

    2015-11-01

    We report a study of magnetization reversal process of notch-patterned permalloy (Py) nanowires (NWs) by using an in-situ magnetic force microscopy (MFM). Three neighboring straight NWs and an individual straight NW with discs connected to the wires ends are fabricated by standard electron beam lithography through a lift-off technique. MFM images are taken in the presence of an in-plane magnetic field applied along the wires length. As a result, the nucleation, pinning and depinning of domain walls (DWs) along the NW are observed. The artificial constraints (notch) in such symmetrical geometry of NWs indeed serve as pinning sites to pin the DWs. The nature of magnetization reversal, pinning field and depinning field for the DWs that are observed in these permalloy NWs, indicate the key roles of notch depth, the terminal connection structure of NW end and the inter-wire interaction among the NWs. The in-situ MFM measurements are examined with the micromagnetic simulations. Consequently, good agreements are obtained for the DW structures and the effect of DWs pining/depinning, however a dissimilarity in experimental and simulation observations for the direction of propagation of DWs in NWs needs further investigation.

  17. Effect of natural homointerfaces on the magnetic properties of pseudomorphic La0.7Sr0.3MnO3 thin film: Phase separation vs split domain structure

    International Nuclear Information System (INIS)

    Congiu, Francesco; Sanna, Carla; Maritato, Luigi; Orgiani, Pasquale; Geddo Lehmann, Alessandra

    2016-01-01

    We studied the effect of naturally formed homointerfaces on the magnetic and electric transport behavior of a heavily twinned, 40 nm thick, pseudomorphic epitaxial film of La 0.7 Sr 0.3 MnO 3 deposited by molecular beam epitaxy on ferroelastic LaAlO 3 (001) substrate. As proved by high resolution X-ray diffraction analysis, the lamellar twin structure of the substrate is imprinted in La 0.7 Sr 0.3 MnO 3 . In spite of the pronounced thermomagnetic irreversibility in the DC low field magnetization, spin-glass-like character, possibly related to the structural complexity, was ruled out, on the base of AC susceptibility results. The magnetic characterization indicates anisotropic ferromagnetism, with a saturation magnetization M s = 3.2 μ B /Mn, slightly reduced with respect to the fully polarized value of 3.7 μ B /Mn. The low field DC magnetization vs temperature is non bulklike, with a two step increase in the field cooled M FC (T) branch and a two peak structure in the zero field cooled M ZFC (T) one. Correspondingly, two peaks are present in the resistivity vs temperature ρ(T) curve. With reference to the behavior of epitaxial manganites deposited on bicrystal substrates, results are discussed in terms of a two phase model, in which each couple of adjacent ferromagnetic twin cores, with bulklike T C = 370 K, is separated by a twin boundary with lower Curie point T C = 150 K, acting as barrier for spin polarized transport. The two phase scenario is compared with the alternative one based on a single ferromagnetic phase with the peculiar ferromagnetic domains structure inherent to twinned manganites films, reported to be split into interconnected and spatially separated regions with in-plane and out-of-plane magnetization, coinciding with twin cores and twin boundaries respectively.

  18. Effect of natural homointerfaces on the magnetic properties of pseudomorphic La0.7Sr0.3MnO3 thin film: Phase separation vs split domain structure

    Science.gov (United States)

    Congiu, Francesco; Sanna, Carla; Maritato, Luigi; Orgiani, Pasquale; Geddo Lehmann, Alessandra

    2016-12-01

    We studied the effect of naturally formed homointerfaces on the magnetic and electric transport behavior of a heavily twinned, 40 nm thick, pseudomorphic epitaxial film of La0.7Sr0.3MnO3 deposited by molecular beam epitaxy on ferroelastic LaAlO3(001) substrate. As proved by high resolution X-ray diffraction analysis, the lamellar twin structure of the substrate is imprinted in La0.7Sr0.3MnO3. In spite of the pronounced thermomagnetic irreversibility in the DC low field magnetization, spin-glass-like character, possibly related to the structural complexity, was ruled out, on the base of AC susceptibility results. The magnetic characterization indicates anisotropic ferromagnetism, with a saturation magnetization Ms = 3.2 μB/Mn, slightly reduced with respect to the fully polarized value of 3.7 μB/Mn. The low field DC magnetization vs temperature is non bulklike, with a two step increase in the field cooled MFC(T) branch and a two peak structure in the zero field cooled MZFC(T) one. Correspondingly, two peaks are present in the resistivity vs temperature ρ(T) curve. With reference to the behavior of epitaxial manganites deposited on bicrystal substrates, results are discussed in terms of a two phase model, in which each couple of adjacent ferromagnetic twin cores, with bulklike TC = 370 K, is separated by a twin boundary with lower Curie point TC = 150 K, acting as barrier for spin polarized transport. The two phase scenario is compared with the alternative one based on a single ferromagnetic phase with the peculiar ferromagnetic domains structure inherent to twinned manganites films, reported to be split into interconnected and spatially separated regions with in-plane and out-of-plane magnetization, coinciding with twin cores and twin boundaries respectively.

  19. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    F. Valdés-Bango

    2017-05-01

    Full Text Available Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  20. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Science.gov (United States)

    Valdés-Bango, F.; Vélez, M.; Alvarez-Prado, L. M.; Alameda, J. M.; Martín, J. I.

    2017-05-01

    Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  1. Structuring very large domain models

    DEFF Research Database (Denmark)

    Störrle, Harald

    2010-01-01

    View/Viewpoint approaches like IEEE 1471-2000, or Kruchten's 4+1-view model are used to structure software architectures at a high level of granularity. While research has focused on architectural languages and with consistency between multiple views, practical questions such as the structuring a...

  2. Magnetization reversal in ferromagnetic spirals via domain wall motion

    Science.gov (United States)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  3. Laser induced local modification of magnetic domain in Co/Pt multilayer

    International Nuclear Information System (INIS)

    Talapatra, A.; Mohanty, J.

    2016-01-01

    Manipulation of magnetic system by the use of laser has drawn the attention of contemporary research. We demonstrate here the modification of magnetic domain in perpendicularly magnetized Co/Pt multilayer by using ultrashort laser pulse. The as-prepared sample shows an out-of-plane saturation magnetic field of 803.4 mT and almost zero remanence with a labyrinth-like domain pattern at room temperature. Atomistic simulation showed that interaction with femto-second laser results in demagnetization of the material in 200 fs followed by a slower recovery. As it indicates a net loss in magnetization, so magnetic force microscopy is carried out to investigate the equilibrium state after the system is relaxed. Demagnetized random domains appeared at the centre of the laser spot with having a rim at the boundary which signifies a deterministic switching with respect to the neighbouring area. Rotation of domains at the central area with the application of small transverse field (100 mT) proves the region to be magnetically weaker. Systematic 3D micromagnetic simulation has been performed to model the laser induced change by selective reduction of anisotropy which is discussed in detail. This shows shrinking of domains to a near circular pattern to minimize the magnetostatic energy. 50% reduction in anisotropy energy is observed with increasing the total energy of the system and a sharp increase in demagnetization energy also takes place simultaneously. This also satisfies the anisotropy in domain rotation with the application of transverse field. - Highlights: • Laser induced magnetization dynamics. • Local manipulation of magnetic domains. • Deterministic switching of domains with laser. • Modeling magnetic domain structure with local anisotropy distribution.

  4. Laser induced local modification of magnetic domain in Co/Pt multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Talapatra, A., E-mail: ph13p1001@iith.ac.in; Mohanty, J., E-mail: jmohanty@iith.ac.in

    2016-11-15

    Manipulation of magnetic system by the use of laser has drawn the attention of contemporary research. We demonstrate here the modification of magnetic domain in perpendicularly magnetized Co/Pt multilayer by using ultrashort laser pulse. The as-prepared sample shows an out-of-plane saturation magnetic field of 803.4 mT and almost zero remanence with a labyrinth-like domain pattern at room temperature. Atomistic simulation showed that interaction with femto-second laser results in demagnetization of the material in 200 fs followed by a slower recovery. As it indicates a net loss in magnetization, so magnetic force microscopy is carried out to investigate the equilibrium state after the system is relaxed. Demagnetized random domains appeared at the centre of the laser spot with having a rim at the boundary which signifies a deterministic switching with respect to the neighbouring area. Rotation of domains at the central area with the application of small transverse field (100 mT) proves the region to be magnetically weaker. Systematic 3D micromagnetic simulation has been performed to model the laser induced change by selective reduction of anisotropy which is discussed in detail. This shows shrinking of domains to a near circular pattern to minimize the magnetostatic energy. 50% reduction in anisotropy energy is observed with increasing the total energy of the system and a sharp increase in demagnetization energy also takes place simultaneously. This also satisfies the anisotropy in domain rotation with the application of transverse field. - Highlights: • Laser induced magnetization dynamics. • Local manipulation of magnetic domains. • Deterministic switching of domains with laser. • Modeling magnetic domain structure with local anisotropy distribution.

  5. Magnetic domain-wall tilting due to domain-wall speed asymmetry

    Science.gov (United States)

    Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Kim, Joo-Sung; Nam, Yoon-Seok; Hwang, Hyun-Seok; Kim, Duck-Ho; Je, Soong-Geun; Min, Byoung-Chul; Choe, Sug-Bong

    2018-04-01

    Broken symmetries in diverse systems generate a number of intriguing phenomena and the analysis on such broken symmetries often provides decisive clues for exploring underlying physics in the systems. Recently, in magnetic thin-film systems, the Dzyaloshinskii-Moriya interaction (DMI)—induced by the broken symmetry of structural inversion—accounts for various chiral phenomena, which are of timely issues in spintronics. Here, we report an experimental observation on unexpected tilting of magnetic domain walls (DWs) due to the broken symmetry under the application of the magnetic field transverse to the magnetic wire systems. It has been predicted that the DMI possibly causes such DW tilting in the direction of the energy minimization. However, very interestingly, experimental observation reveals that the DW tilting does not follow the prediction based on the energy minimization, even for the tilting direction. Instead, the DW tilting is governed by the DW speed asymmetry that is initiated by the DW pinning at wire edges. A simple analytic model is proposed in consideration of the DW speed asymmetry at wire edges, which successfully explains the experimental observation of the DW tilting directions and angles, as confirmed by numerical simulation. The present study manifests the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW configuration and consequently, the dynamics.

  6. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    NARCIS (Netherlands)

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of

  7. X-ray magnetic circular dichroism used to image magnetic domains

    CERN Document Server

    Fischer, P; Kalchgruber, R; Schütz, G M; Schmahl, G; Guttmann, P; Bayreuther, G

    1999-01-01

    A new technique to image magnetic domain structures has been established by the combination of the high resolution transmission X- ray microscope (TXM) at BESSY I based on the zone plate technique with the X-ray magnetic circular $9 dichroism (X-MCD) providing a huge magnetic contrast. A lateral spatial resolution down to 30 nm could be achieved. Basic features of X-MCD are the inherent element- specificity and the potential to gain information on the local spin $9 and orbital moments of the absorbing species applying magneto-optical sum rules. Key results at the Fe L/sub 3,2/ edges of Fe in a layered GdFe system and at the Co L/sub 3/ edge of a PtCo layered system demonstrate the potential of $9 this microscopy. The images can be recorded in varying magnetic fields which allows to study the evolution of magnetic domains within a complete hysteresis loop. (8 refs).

  8. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  9. Structure and conformational dynamics of the domain 5 RNA hairpin of a bacterial group II intron revealed by solution nuclear magnetic resonance and molecular dynamics simulations.

    Science.gov (United States)

    Pechlaner, Maria; Sigel, Roland K O; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-10-08

    Nuclear magnetic resonance (NMR) nuclear Overhauser enhancement (NOE) data obtained for a 35-nucleotide RNA segment of a bacterial group II intron indicate a helical hairpin structure in which three parts, a terminal pentaloop, a bulge, and a G-A mismatch, display no Watson-Crick base pairing. The 668 NOE upper distance bounds for atom pairs are insufficient to uniquely determine the conformation of these segments. Therefore, molecular dynamics simulations including time-averaged distance restraints have been used to obtain a conformational ensemble compatible with the observed NMR data. The ensemble shows alternating hydrogen bonding patterns for the mentioned segments. In particular, in the pentaloop and in the bulge, the hydrogen bonding networks correspond to distinct conformational clusters that could not be captured by using conventional single-structure refinement techniques. This implies that, to obtain a realistic picture of the conformational ensemble of such flexible biomolecules, it is necessary to properly account for the conformational variability in the structure refinement of RNA fragments.

  10. Walker-type velocity oscillations of magnetic domain walls

    International Nuclear Information System (INIS)

    Vella-Coleiro, G.P.

    1976-01-01

    We report stroboscopic observations of the radial motion of a magnetic bubble domain wall in an epitaxial LuGdAl iron garnet film. At high drive fields, initial velocities up to 9500 cm/sec were measured, and the domain wall was observed to move backwards during the field pulse, in agreement with calculations based on the Walker model

  11. Remote teaching experiments on magnetic domains in thin films

    Czech Academy of Sciences Publication Activity Database

    Dobrogowski, W.; Maziewski, A.; Zablotskyy, Vitaliy A.

    2007-01-01

    Roč. 28, - (2007), s. 71-83 ISSN 0143-0807 Grant - others:Marie Curie Felloships Transfer of Knowledge(XE) NANOMAG-LAB, 2004-003177 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic domains * remote experiment * education Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.608, year: 2007

  12. Geometric Control Over the Motion of Magnetic Domain Walls

    International Nuclear Information System (INIS)

    N.A. Sinitsyn; V.V. Dobrovitski; S. urazhdin; Avadh Saxena

    2008-01-01

    We propose a method that enables a precise control of magnetic patterns and relies only on the fundamental properties of the wire as well as on the choice of the path in the controlled parameter space but not on the rate of motion along this path. Possible experimental realizations of this mechanism are discussed. In particular, we show that the domain walls in magnetic nanowires can be translated by rotation of the magnetic easy axis or by applying pulses of magnetic field directed transverse to the magnetic easy axis

  13. Domain wall motion in ferromagnetic systems with perpendicular magnetization

    International Nuclear Information System (INIS)

    Szambolics, H.; Toussaint, J.-Ch.; Marty, A.; Miron, I.M.; Buda-Prejbeanu, L.D.

    2009-01-01

    Although we lack clear experimental evidence, apparently out-of-plane magnetized systems are better suited for spintronic applications than the in-plane magnetized ones, mainly due to the smaller current densities required for achieving domain wall motion. [Co/Pt] multilayers belong to the first category of materials, the out-of-plane magnetization orientation arising from the strong perpendicular magnetocrystalline anisotropy. If the magnetization arranges itself out-of-plane narrow Bloch walls occur. In the present paper, both field and current-driven domain wall motion have been investigated for this system, using micromagnetic simulations. Three types of geometries have been taken into account: bulk, thin film and wire, and for all of them a full comparison is done between the effect of the applied field and injected current. The reduction of the system's dimension induces the decrease of the critical field and the critical current, but it does not influence the domain wall displacement mechanism.

  14. Magnetic domains and frustration in metallic CePdAl

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Stefan; Huesges, Zita; Huang, Chien-Lung; Stockert, Oliver [Max Planck Institute CPfS, Dresden (Germany); Fritsch, Veronika; Sakai, Akito [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Grube, Kai; Taubenheim, Christian; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany)

    2016-07-01

    Magnetic frustration is an exciting topic in condensed matter physics, since it can lead to new ground states of materials, e.g. a spin liquid or spin glass state. Effects of magnetic frustration have been investigated intensively for insulating materials. However, the existence of magnetic frustration in metallic systems is still under debate. CePdAl is a metallic Kondo system, where geometric magnetic frustration arises from the formation of Ce ions on a distorted Kagome lattice. Neutron scattering experiments revealed, that only two thirds of the magnetic Ce moments order antiferromagnetically below T{sub N}=2.7 K, whereas the other third remains mainly disordered. Thermodynamic as well as neutron scattering measurements are presented to verify the existence of partial magnetic frustration in CePdAl. Recently neutron diffraction experiments under magnetic fields applied along two orthogonal directions in the magnetically hard basal plane were performed. They show opposite effects on the magnetic intensity of a selected magnetic domain depending on the field direction with respect to the propagation vector. If this is only an effect of different domain population or also due to a change in magnetic frustration shall be discussed.

  15. Stability of a pinned magnetic domain wall as a function of its internal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M. [Institut Jean Lamour, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre lès Nancy (France); Childress, J. R. [HGST San Jose Research Center, 3403 Yerba Buena Rd, San Jose, California 95135 (United States)

    2015-01-14

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  16. On the study of the magnetic domain pattern via the initial magnetization curve

    International Nuclear Information System (INIS)

    Wu, T.

    1997-01-01

    This study inquires into the relationships between the initial magnetization curve and the magnetic domain pattern in the demagnetized states for amorphous TbFeCo as well as multilayered Co/Pd thin film samples. This was done specifically through an investigation of different demagnetized states of samples demagnetized by a variety of methods. The magnetic domain pattern for the sample demagnetized by an in-plane magnetic field and for the sample demagnetized by a perpendicular magnetic field was found to be quite different even though both states have zero magnetization. The former state has denser and finer domains than the latter. In addition, both states were studied in light of the initial magnetization curves obtained by measurements of the magneto-optic Kerr effect and the extraordinary Hall effect. Moreover, the initial magnetization for the fine domains increases with an increase in magnetic field, while for the coarse domains, the initial magnetization remains at zero for magnetic field below coercivity H c , then rises sharply to saturated magnetization when magnetic field is nearly equal to H c . copyright 1997 American Institute of Physics

  17. Domain structure and magnetotransport in epitaxial colossal magnetoresistance thin films

    OpenAIRE

    Suzuki, Yuri; Wu, Yan; Yu, Jun; Rüdiger, Ulrich; Kent, Andrew D.; Nath, Tapan K.; Eom, Chang-Beom

    2000-01-01

    Our studies of compressively strained La0.7 Sr0.3 MnO7 (LSMO) thin films reveal the importance of domain structure and strain effects in the magnetization reversal and magnetotransport. Normal and grazing incidence x-ray diffraction indicate that the compressive strain on these LSMO thin films on (100) LaAlO3 is not completely relaxed up to thicknesses on the order of 1000 Å. The effect of the compressive strain is evident in the shape of the magnetization loops and the magnetotransport measu...

  18. SMARTer for magnetic structure studies

    Indian Academy of Sciences (India)

    Small angle neutron scattering; magnetic structure; Cu(NiFe); CuCo; ... micromagnetism, magnetic clusters embedded in a solid nonmagnetic matrix, mag- .... project. E G R Putra acknowledges the support from IAEA through the ISNS2008.

  19. Effect of natural homointerfaces on the magnetic properties of pseudomorphic La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin film: Phase separation vs split domain structure

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Francesco [Dipartimento di Fisica e CNISM, Università di Cagliari, S.P. Monserrato-Sestu, km 0.700, I 09042 Monserrato, Cagliari (Italy); Sanna, Carla [Sardegna Ricerche, Laboratorio Energetica Elettrica, VI Strada Ovest - Z.I.Macchiareddu, I 09010 Uta, Cagliari (Italy); Maritato, Luigi [CNR-SPIN, UOS Salerno, I 84084 Fisciano, Salerno (Italy); Dipartimento di Ingegneria dell’Informazione, Ingegneria Elettrica e Matematica Applicata, Università di Salerno, I 84084 Fisciano, Salerno (Italy); Orgiani, Pasquale [CNR-SPIN, UOS Salerno, I 84084 Fisciano, Salerno (Italy); Geddo Lehmann, Alessandra, E-mail: lehmann@dsf.unica.it [Dipartimento di Fisica e CNISM, Università di Cagliari, S.P. Monserrato-Sestu, km 0.700, I 09042 Monserrato, Cagliari (Italy)

    2016-12-15

    We studied the effect of naturally formed homointerfaces on the magnetic and electric transport behavior of a heavily twinned, 40 nm thick, pseudomorphic epitaxial film of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} deposited by molecular beam epitaxy on ferroelastic LaAlO{sub 3}(001) substrate. As proved by high resolution X-ray diffraction analysis, the lamellar twin structure of the substrate is imprinted in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. In spite of the pronounced thermomagnetic irreversibility in the DC low field magnetization, spin-glass-like character, possibly related to the structural complexity, was ruled out, on the base of AC susceptibility results. The magnetic characterization indicates anisotropic ferromagnetism, with a saturation magnetization M{sub s} = 3.2 μ{sub B}/Mn, slightly reduced with respect to the fully polarized value of 3.7 μ{sub B}/Mn. The low field DC magnetization vs temperature is non bulklike, with a two step increase in the field cooled M{sub FC}(T) branch and a two peak structure in the zero field cooled M{sub ZFC}(T) one. Correspondingly, two peaks are present in the resistivity vs temperature ρ(T) curve. With reference to the behavior of epitaxial manganites deposited on bicrystal substrates, results are discussed in terms of a two phase model, in which each couple of adjacent ferromagnetic twin cores, with bulklike T{sub C} = 370 K, is separated by a twin boundary with lower Curie point T{sub C} = 150 K, acting as barrier for spin polarized transport. The two phase scenario is compared with the alternative one based on a single ferromagnetic phase with the peculiar ferromagnetic domains structure inherent to twinned manganites films, reported to be split into interconnected and spatially separated regions with in-plane and out-of-plane magnetization, coinciding with twin cores and twin boundaries respectively.

  20. Vortex magnetic structure in circularly magnetized microwires as deduced from magneto-optical Kerr measurements

    KAUST Repository

    Ivanov, Yurii P.

    2014-02-14

    The magneto-optic Kerr effect has been employed to determine the magnetization process and estimate the domain structure of microwires with circular magnetic anisotropy. The diameter of microwires was 8 μm, and pieces 2 cm long were selected for measurements. The analysis of the local surface longitudinal and transverse hysteresis loops has allowed us to deduce a vortex magnetic structure with axial core and circular external shell. Moreover, a bamboo-like surface domain structure is confirmed with wave length of around 10 to 15 μm and alternating chirality in adjacent circular domains. The width of the domain wall is estimated to be less than 3 μm. Finally, closure domain structures with significant helical magnetization component are observed extending up to around 1000 μm from the end of the microwire.

  1. Vortex magnetic structure in circularly magnetized microwires as deduced from magneto-optical Kerr measurements

    KAUST Repository

    Ivanov, Yurii P.; del Real, R. P.; Chubykalo-Fesenko, O.; Vá zquez, M.

    2014-01-01

    The magneto-optic Kerr effect has been employed to determine the magnetization process and estimate the domain structure of microwires with circular magnetic anisotropy. The diameter of microwires was 8 μm, and pieces 2 cm long were selected for measurements. The analysis of the local surface longitudinal and transverse hysteresis loops has allowed us to deduce a vortex magnetic structure with axial core and circular external shell. Moreover, a bamboo-like surface domain structure is confirmed with wave length of around 10 to 15 μm and alternating chirality in adjacent circular domains. The width of the domain wall is estimated to be less than 3 μm. Finally, closure domain structures with significant helical magnetization component are observed extending up to around 1000 μm from the end of the microwire.

  2. Structural Time Domain Identification Toolbox User's Guide

    DEFF Research Database (Denmark)

    Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune

    This manual describes the Structural Time Domain Identification toolbox for use with MA TLAB. This version of the tool box has been developed using the PC-based MA TLAB version 4.2c, but is compatible with prior versions of MATLAB and UNIX-based versions. The routines of the toolbox are the so...

  3. The internal structure of magnetic nanoparticles determines the magnetic response

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Kubíčková, Simona; Salas, G.; Mantlíková, Alice; Marciello, M.; Morales, M.P.; Nižňanský, D.; Vejpravová, Jana

    2017-01-01

    Roč. 9, č. 16 (2017), s. 5129-5140 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : nanoparticles * single-domain * internal structure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 7.367, year: 2016

  4. Centimeter-order view for magnetic domain imaging with local magnetization direction by longitudinal Kerr effect

    Directory of Open Access Journals (Sweden)

    Sakae Meguro

    2016-05-01

    Full Text Available An observation system of centimeter-order of view of magnetic domain with local magnetization direction was developed by designing a telecentric optical system of finite design through the extension of microscope technology. The field of view realized in the developed system was 1.40 × 1.05 cm as suppressing defocus and distortion. Detection of the local magnetization direction has become possible by longitudinal Kerr observation from the orthogonal two directions. This system can be applied to the domain observation of rough surface samples and time resolved analysis for soft magnetic materials such as amorphous foil strips and soft magnetic thin films.

  5. Domain configuration and magnetization switching in arrays of permalloy nanostripes

    International Nuclear Information System (INIS)

    Iglesias-Freire, Ó.; Jaafar, M.; Pérez, L.; Abril, O. de; Vázquez, M.; Asenjo, A.

    2014-01-01

    The proximity effect in the collective behavior of arrays of magnetic nanostripes is currently a subject of intensive research. The imperative of reducing the size and distances between elements in order to achieve higher storage capacity, faster access to the information as well as low energy consumption, brings consequences about the isolated behavior of the elements and devices. Parallel to each other permalloy nanostripes with high aspect ratio have been prepared by the nanolithography technique. The evolution of the closure domains and the magnetization direction in individual nanostructures has been imaged under applied magnetic fields using Variable Field Magnetic Force Microscopy. Moreover, the magnetostatic interactions between neighboring elements and the proximity effects in arrays of such nanostructures have been quantitatively analyzed by Magnetic Force Microscopy and micromagnetic simulations. The agreement between simulations and the experimental results allows us to conclude the relevance of those interactions depending on the geometry characteristics. In particular, results suggest that the magnetostatic coupling between adjacent nanostripes vanishes for separation distances higher than 500 nm. - Highlights: • A shape anisotropy-induced single domain remanent state is present in the stripes. Closure domains are formed under external fields. • Separation distances between neighboring stripes (500 nm) are enough to overcome the magnetostatic coupling and avoid a multi-stripe character. • Micromagnetic simulations predict critical distances of around 500 nm for the onset of magnetostatic coupling between neighboring elements. • Simulations predict stripes with a small longitudinal separation to behave as single elements, with domain walls “jumping” between them

  6. Domain configuration and magnetization switching in arrays of permalloy nanostripes

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias-Freire, Ó., E-mail: aasenjo@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Madrid 28049 (Spain); Jaafar, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Madrid 28049 (Spain); Dpto. Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049 (Spain); Pérez, L. [Dpto. Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain); Abril, O. de [Dpto. Física e Instalaciones Aplicadas a la Edificación, al Medio Ambiente y al Urbanismo, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Vázquez, M.; Asenjo, A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Madrid 28049 (Spain)

    2014-04-15

    The proximity effect in the collective behavior of arrays of magnetic nanostripes is currently a subject of intensive research. The imperative of reducing the size and distances between elements in order to achieve higher storage capacity, faster access to the information as well as low energy consumption, brings consequences about the isolated behavior of the elements and devices. Parallel to each other permalloy nanostripes with high aspect ratio have been prepared by the nanolithography technique. The evolution of the closure domains and the magnetization direction in individual nanostructures has been imaged under applied magnetic fields using Variable Field Magnetic Force Microscopy. Moreover, the magnetostatic interactions between neighboring elements and the proximity effects in arrays of such nanostructures have been quantitatively analyzed by Magnetic Force Microscopy and micromagnetic simulations. The agreement between simulations and the experimental results allows us to conclude the relevance of those interactions depending on the geometry characteristics. In particular, results suggest that the magnetostatic coupling between adjacent nanostripes vanishes for separation distances higher than 500 nm. - Highlights: • A shape anisotropy-induced single domain remanent state is present in the stripes. Closure domains are formed under external fields. • Separation distances between neighboring stripes (500 nm) are enough to overcome the magnetostatic coupling and avoid a multi-stripe character. • Micromagnetic simulations predict critical distances of around 500 nm for the onset of magnetostatic coupling between neighboring elements. • Simulations predict stripes with a small longitudinal separation to behave as single elements, with domain walls “jumping” between them.

  7. Multilevel domain decomposition for electronic structure calculations

    International Nuclear Information System (INIS)

    Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.

    2007-01-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure

  8. Using Kerr microscopy for direct observation of magnetic domains in Ni–Mn–Ga magnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Perevertov, Oleksiy; Král, D.; Veis, M.; Soldatov, I.V.; Schäfer, R.

    2017-01-01

    Roč. 53, č. 11 (2017), s. 1-5, č. článku 2502605. ISSN 0018-9464 R&D Projects: GA ČR GA16-00043S; GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : ferroelastic domains * Kerr magneto-optical microscopy * magnetic domain structure * martensite Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.243, year: 2016

  9. Resolving the Origin of Pseudo-Single Domain Magnetic Behavior

    Science.gov (United States)

    Roberts, Andrew P.; Almeida, Trevor P.; Church, Nathan S.; Harrison, Richard J.; Heslop, David; Li, Yiliang; Li, Jinhua; Muxworthy, Adrian R.; Williams, Wyn; Zhao, Xiang

    2017-12-01

    The term "pseudo-single domain" (PSD) has been used to describe the transitional state in rock magnetism that spans the particle size range between the single domain (SD) and multidomain (MD) states. The particle size range for the stable SD state in the most commonly occurring terrestrial magnetic mineral, magnetite, is so narrow ( 20-75 nm) that it is widely considered that much of the paleomagnetic record of interest is carried by PSD rather than stable SD particles. The PSD concept has, thus, become the dominant explanation for the magnetization associated with a major fraction of particles that record paleomagnetic signals throughout geological time. In this paper, we argue that in contrast to the SD and MD states, the term PSD does not describe the relevant physical processes, which have been documented extensively using three-dimensional micromagnetic modeling and by parallel research in material science and solid-state physics. We also argue that features attributed to PSD behavior can be explained by nucleation of a single magnetic vortex immediately above the maximum stable SD transition size. With increasing particle size, multiple vortices, antivortices, and domain walls can nucleate, which produce variable cancellation of magnetic moments and a gradual transition into the MD state. Thus, while the term PSD describes a well-known transitional state, it fails to describe adequately the physics of the relevant processes. We recommend that use of this term should be discontinued in favor of "vortex state," which spans a range of behaviors associated with magnetic vortices.

  10. Optimally segmented magnetic structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, Christian; Bjørk, Rasmus

    We present a semi-analytical algorithm for magnet design problems, which calculates the optimal way to subdivide a given design region into uniformly magnetized segments.The availability of powerful rare-earth magnetic materials such as Nd-Fe-B has broadened the range of applications of permanent...... is not available.We will illustrate the results for magnet design problems from different areas, such as electric motors/generators (as the example in the picture), beam focusing for particle accelerators and magnetic refrigeration devices.......We present a semi-analytical algorithm for magnet design problems, which calculates the optimal way to subdivide a given design region into uniformly magnetized segments.The availability of powerful rare-earth magnetic materials such as Nd-Fe-B has broadened the range of applications of permanent...... magnets[1][2]. However, the powerful rare-earth magnets are generally expensive, so both the scientific and industrial communities have devoted a lot of effort into developing suitable design methods. Even so, many magnet optimization algorithms either are based on heuristic approaches[3...

  11. Efficient multiscale magnetic-domain analysis of iron-core material under mechanical stress

    Science.gov (United States)

    Nishikubo, Atsushi; Ito, Shumpei; Mifune, Takeshi; Matsuo, Tetsuji; Kaido, Chikara; Takahashi, Yasuhito; Fujiwara, Koji

    2018-05-01

    For an efficient analysis of magnetization, a partial-implicit solution method is improved using an assembled domain structure model with six-domain mesoscopic particles exhibiting pinning-type hysteresis. The quantitative analysis of non-oriented silicon steel succeeds in predicting the stress dependence of hysteresis loss with computation times greatly reduced by using the improved partial-implicit method. The effect of cell division along the thickness direction is also evaluated.

  12. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films

    International Nuclear Information System (INIS)

    Samardak, Alexander; Sukovatitsina, Ekaterina; Ognev, Alexey; Stebliy, Maksim; Davydenko, Alexander; Chebotkevich, Ludmila; Keun Kim, Young; Nasirpouri, Forough; Janjan, Seyed-Mehdi; Nasirpouri, Farzad

    2014-01-01

    Magnetic states of nickel nanogranular films were studied in two distinct structures of individual and agglomerated granules electrodeposited on n-type Si(1 1 1) surface from a modified Watts bath at a low pH of 2. Magnetic force microscopy and micromagnetic simulations revealed three-dimensional out-of-plane magnetic vortex states in stand-alone hemispherical granules and their arrays, and multi-domain patterns in large agglomerates and integrated films. Once the granules coalesce into small chains or clusters, the coercivity values increased due to the reduction of inter-granular spacing and strengthening of the magnetostatic interaction. Further growth leads to the formation of a continuous granulated film which strongly affected the coercivity and remanence. This was characterized by the domain wall nucleation and propagation leading to a stripe domain pattern. Magnetoresistance measurements as a function of external magnetic field are indicative of anisotropic magnetoresistance (AMR) for the continuous films electrodeposited on Si substrate. - Highlights: • Magnetic states of electrodeposited nickel in isolated spherical and agglomerated nanogranules, and a continuous film. • Preferential magnetization reversal mechanism in isolated granules is vortex state. • Micromagnetic simulations confirm the three-dimensional vortex. • Transition between the vortex state and multi-domain magnetic pattern causes a significant decrease in the coercive force. • Continuous nickel films electrodeposited on silicon substrate exhibit AMR whose magnitude increases with the film thickness

  13. Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation

    International Nuclear Information System (INIS)

    Khlopkov, K.; Gutfleisch, O.; Schaefer, R.; Hinz, D.; Mueller, K.-H.; Schultz, L.

    2004-01-01

    The magnetic domain structure of NdFeB magnets has been studied using high resolution, digitally enhanced Kerr-microscopy. Melt-spun NdFeB powder (MQU-F TM ) was hot pressed into fully dense samples and then hot deformed to axially textured magnets. Various degrees of deformation (height reduction) up to 76% have been realized. Pronounced interaction domains have been observed only in magnets, which were deformed to a degree of deformation of at least 52%. With increasing alignment of the grains the interaction domains become more and more visible and their size increases

  14. Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites

    Science.gov (United States)

    Datar, Ashwini A.; Mathe, Vikas L.

    2017-12-01

    Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.

  15. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation....... Here, we give a short review of anomalous spin structures in nanoparticles....

  16. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization.

    Science.gov (United States)

    Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T

    2012-06-06

    Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.

  17. Stress induced modulation of magnetic domain diffraction of single crystalline yttrium iron garnet

    Science.gov (United States)

    Mito, Shinichiro; Yoshihara, Yuki; Takagi, Hiroyuki; Inoue, Mitsuteru

    2018-05-01

    Stress induced modulation of the diffraction angle and efficiency of the light reflected from a stripe-domain magnetic garnet was demonstrated. The spacing of the magnetic domain was changed using the inverse magnetostriction effect. The sample structure was a piezo actuator/Al reflection layer/magnetic garnet substrate. A diffraction angle between the 0th and 1st ordered light was changed from 9.12 deg. to 10.20 deg. This result indicates that the domain spacing was changed from 3.3 μm to 3.0 μm. The change of the diffraction angle was irreversible for the voltage. However, reversible, linear and continuous change of the diffraction efficiency was observed. These results could be applicable for a voltage-driven optical solid state light deflector with low power consumption and high switching speed.

  18. Magnetic structures: neutron diffraction studies

    International Nuclear Information System (INIS)

    Bouree-Vigneron, F.

    1990-01-01

    Neutron diffraction is often an unequivocal method for determining magnetic structures. Here we present some typical examples, stressing the sequence through experiments, data analysis, interpretation and modelisation. Two series of compounds are chosen: Tb Ni 2 Ge 2 and RBe 13 (R = Gd, Tb, Dy, Ho, Er). Depending on the nature of the elements, the magnetic structures produced can be commensurate, incommensurate or even show a transition between two such phases as a function of temperature. A model, taking magnetic exchange and anisotropy into account, will be presented in the case of commensurate-incommensurate magnetic transitions in RBe 13

  19. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Andrew M Huettner

    Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.

  20. Internal structure of magnetic endosomes

    Science.gov (United States)

    Rivière, C.; Wilhelm, C.; Cousin, F.; Dupuis, V.; Gazeau, F.; Perzynski, R.

    2007-01-01

    The internal structure of biological vesicles filled with magnetic nanoparticles is investigated using the following complementary analyses: electronic transmission microscopy, dynamic probing by magneto-optical birefringence and structural probing by Small Angle Neutron Scattering (SANS). These magnetic vesicles are magnetic endosomes obtained via a non-specific interaction between cells and anionic magnetic iron oxide nanoparticles. Thanks to a magnetic purification process, they are probed at two different stages of their formation within HeLa cells: (i) adsorption of nanoparticles onto the cellular membrane and (ii) their subsequent internalisation within endosomes. Differences in the microenvironment of the magnetic nanoparticles at those two different stages are highlighted here. The dynamics of magnetic nanoparticles adsorbed onto cellular membranes and confined within endosomes is respectively 3 and 5 orders of magnitude slower than for isolated magnetic nanoparticles in aqueous media. Interestingly, SANS experiments show that magnetic endosomes have an internal structure close to decorated vesicles, with magnetic nanoparticles locally decorating the endosome membrane, inside their inner-sphere. These results, important for future biomedical applications, suggest that multiple fusions of decorated vesicles are the biological processes underlying the endocytosis of that kind of nanometric materials.

  1. Domain structure in soft ferrites by the longitudinal Kerr effect

    International Nuclear Information System (INIS)

    Kaczmarek, R.; Dautain, M.; Barradi-Ismail, T.

    1992-01-01

    For the first time, the longitudinal Kerr effect has been used in order to observe magnetic domains and their development in power ferrites. Image subtraction and processing leads to a magnetic contrast being a quasi derivative of the domains. A kind of integration procedure applied to them permits a reconstruction of a local hysteresis which parameters closely approach the global hysteresis data. (orig.)

  2. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Tejerina, L. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Alejos, Ó., E-mail: oscaral@ee.uva.es [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Dpto. Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Muñoz, J.M. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2016-07-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii–Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current. - Highlights: • The asymmetric response of domain walls in bilayer strips with PMA is studied. • Out-of-plane fields and SHE longitudinal currents are applied. • The response is associated to the rotation of the domain wall inner magnetization. • Clockwise and counter-clockwise magnetization rotations are not equivalent. • The asymmetry results in different travelled distances and/or terminal speeds.

  3. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Sánchez-Tejerina, L.; Alejos, Ó.; Martínez, E.; Muñoz, J.M.

    2016-01-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii–Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current. - Highlights: • The asymmetric response of domain walls in bilayer strips with PMA is studied. • Out-of-plane fields and SHE longitudinal currents are applied. • The response is associated to the rotation of the domain wall inner magnetization. • Clockwise and counter-clockwise magnetization rotations are not equivalent. • The asymmetry results in different travelled distances and/or terminal speeds.

  4. Stress induced magnetic-domain evolution in magnetoelectric composites

    Science.gov (United States)

    Trivedi, Harsh; Shvartsman, Vladimir V.; Lupascu, Doru C.; Medeiros, Marco S. A.; Pullar, Robert C.

    2018-06-01

    Local observation of the stress mediated magnetoelectric (ME) effect in composites has gained a great deal of interest over the last decades. However, there is an apparent lack of rigorous methods for a quantitative characterization of the ME effect at the local scale, especially in polycrystalline microstructures. In the present work, we address this issue by locally probing the surface magnetic state of barium titante–hexagonal barium ferrite (BaTiO3–BaFe12O19) ceramic composites using magnetic force microscopy (MFM). The effect of the piezoelectrically induced local stress on the magnetostrictive component (BaFe12O19, BaM) was observed in the form of the evolution of the magnetic domains. The local piezoelectric stress was induced by applying a voltage to the neighboring BaTiO3 grains, using a conductive atomic force microscopy tip. The resulting stochastic evolution of magnetic domains was studied in the context of the induced magnetoelastic anisotropy. In order to overcome the ambiguity in the domain changes observed by MFM, certain generalizations about the observed MFM contrast are put forward, followed by application of an algorithm for extracting the average micromagnetic changes. An average change in domain wall thickness of 50 nm was extracted, giving a lower limit on the corresponding induced magnetoelastic anisotropy energy. Furthermore, we demonstrate that this induced magnetomechanical energy is approximately equal to the K1 magnetocrystalline anisotropy constant of BaM, and compare it with a modeled value of applied elastic energy density. The comparison allowed us to judge the quality of the interfaces in the composite system, by roughly gauging the energy conversion ratio.

  5. Analysis of thermal demagnetization behavior of Nd–Fe–B sintered magnets using magnetic domain observation

    International Nuclear Information System (INIS)

    Takezawa, Masaaki; Ikeda, Soichiro; Morimoto, Yuji; Kabashima, Hisayuki

    2016-01-01

    We used magnetic domain observation to statistically observe the thermal demagnetization behavior of Nd–Fe–B sintered magnets at elevated temperatures up to 150 °C. Simultaneous magnetization reversal in a hundred adjacent grains occurred at 90 °C because of the magnetic interaction among the grains beyond grain boundaries in the Dysprosium (Dy)-free low-coercivity magnet. Conversely, simultaneous magnetization reversal in a hundred grains did not occur in the Dy-added high-coercivity magnets, and the demagnetizing ratio steadily increased with temperature. Furthermore, the addition of Dy induced high thermal stability by eliminating the simultaneous thermal demagnetization, which was caused by the magnetic interaction among the grains.

  6. Analysis of thermal demagnetization behavior of Nd–Fe–B sintered magnets using magnetic domain observation

    Energy Technology Data Exchange (ETDEWEB)

    Takezawa, Masaaki, E-mail: take@ele.kyutech.ac.jp; Ikeda, Soichiro; Morimoto, Yuji [Department of Applied Science for Integrated System Engineering, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550 (Japan); Kabashima, Hisayuki [Mazda Motor Corporation,3-1, Shinchi, Fuchu-cho, Aki-gun Hiroshima 730-8670 (Japan)

    2016-05-15

    We used magnetic domain observation to statistically observe the thermal demagnetization behavior of Nd–Fe–B sintered magnets at elevated temperatures up to 150 °C. Simultaneous magnetization reversal in a hundred adjacent grains occurred at 90 °C because of the magnetic interaction among the grains beyond grain boundaries in the Dysprosium (Dy)-free low-coercivity magnet. Conversely, simultaneous magnetization reversal in a hundred grains did not occur in the Dy-added high-coercivity magnets, and the demagnetizing ratio steadily increased with temperature. Furthermore, the addition of Dy induced high thermal stability by eliminating the simultaneous thermal demagnetization, which was caused by the magnetic interaction among the grains.

  7. Domain walls dynamics in the amorphous ribbon with a helical magnetic anisotropy

    International Nuclear Information System (INIS)

    Zhmetko, D.N.; Savin, V.V.; Lemish, P.V.; Troschenkov, Y.N.

    2006-01-01

    The damping mechanism for motion of domain walls, which form the sandwich structure and move from the middle plane of the ribbon to opposite surfaces during the dynamic magnetization reversal, have been investigated. The difference between the real and ideal sandwich domain structure, the actual distribution of the anisotropy easy directions through the ribbon thickness and the M-bar s deviation from local easy directions under the action of applied magnetic field have been taken into account. It was revealed that the maximum of the total damping coefficient β tot (x) near the half-way of the domain wall run is due to the influence of the magnetic stray fields. These fields have a character of irregular oscillations and are directed approximately perpendicular to the local easy direction of the ribbon layer through which the domain wall propagates. The damping coefficient β e.c. (x) determined by eddy-currents has the maximal value close to the ribbon middle and decreases linearly to zero when the domain wall approaches the ribbon surface

  8. Interaction of moving domain boundaries with a magnetic field in GdΛ2 (MoOΛ4)Λ3

    International Nuclear Information System (INIS)

    Popov, S.A.; Tikhomirova, N.A.; Phlerova, S.A.

    1985-01-01

    Results obtained during the investigation of gadolinium molybdate Gd 2 (MoO 4 ) 3 (GMo) crystal repolarization by the electric field at the background of simultaneous action of permanent magnetic fields with a strength up to 20kOe are presented. The magnetic field is oriented in different directions in respect to crystallographic sample directions. Polarization- optical control of a domain structure was conducted in synchronism with sample repolarization. Study of the effect of magnetic field on integral rate of domain boundaries motion in GMO has shown, that a speed of domain wall motion changes as a function of magnetic field orientation with respect to moving domain wall. So, if the wall is oriented paralled to magnetic field force lines, at H=20kOe speed of its motion increases a 1.2-1.5 times, and decreases a 2-2.5 times in the case of perpendicular orientation

  9. Spontaneous phase transitions in magnetic films with a modulated structure

    International Nuclear Information System (INIS)

    Arzamastseva, G. V.; Evtikhov, M. G.; Lisovskii, F. V.; Mansvetova, E. G.

    2011-01-01

    The influence of monoperiodic and biperiodic bias fields on the nucleation of domain structures in quasi-uniaxial magnetic films near the Curie point has been studied experimentally. The main types of observed nonuniform magnetic moment distributions have been established and chains of a devil’s staircase phase transitions are shown to be realized when the films are slowly cooled.

  10. Insights into function of PSI domains from structure of the Met receptor PSI domain

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Perreault, Audrey; Schrag, Joseph D.; Park, Morag; Cygler, Miroslaw; Gehring, Kalle; Ekiel, Irena

    2004-01-01

    PSI domains are cysteine-rich modules found in extracellular fragments of hundreds of signaling proteins, including plexins, semaphorins, integrins, and attractins. Here, we report the solution structure of the PSI domain from the human Met receptor, a receptor tyrosine kinase critical for proliferation, motility, and differentiation. The structure represents a cysteine knot with short regions of secondary structure including a three-stranded antiparallel β-sheet and two α-helices. All eight cysteines are involved in disulfide bonds with the pattern consistent with that for the PSI domain from Sema4D. Comparison with the Sema4D structure identifies a structurally conserved core comprising the N-terminal half of the PSI domain. Interestingly, this part links adjacent SEMA and immunoglobulin domains in the Sema4D structure, suggesting that the PSI domain serves as a wedge between propeller and immunoglobulin domains and is responsible for the correct positioning of the ligand-binding site of the receptor

  11. Low temperature behavior of magnetic domains observed using a magnetic force microscope

    International Nuclear Information System (INIS)

    Chung, S. H.; Shinde, S. R.; Ogale, S. B.; Venkatesan, T.; Greene, R. L.; Dreyer, M.; Gomez, R. D.

    2001-01-01

    A commercial atomic force microscope/magnetic force microscope (MFM) was modified to cool magnetic samples down to around 100 K under a high vacuum while maintaining its routine imaging functionality. MFM images of a 120 nm thick La 0.7 Ca 0.3 MnO 3 film on a LaAlO 3 substrate at low temperature show the paramagnetic-to-ferromagnetic phase transition. Evolution of magnetic domains and magnetic ripples with decreasing temperature are also observed near the edge of a 20 nm thick patterned Co film on a Si substrate. [copyright] 2001 American Institute of Physics

  12. MAE measurements and studies of magnetic domains by electron microscopy

    International Nuclear Information System (INIS)

    Lo, C.C.H.

    1998-01-01

    There is a pressing need for non-destructive testing (NDT) methods for monitoring steel microstructures as they determine the mechanical properties of steel products. Magnetoacoustic emission (MAE) has potential for this application since it is sensitive to steel microstructure. The aim of this project is to study systematically the dependence of MAE upon steel microstructure, and to apply the technique to examine the industrial steel components which have complicated microstructures. Studies of MAE and Barkhausen emission (BE) were made on several systems including fully pearlitic, fully ferritic, ferritic/pearlitic and spheroidized steels. Results suggest that there is a correlation between the microstructural parameters and the MAE and BE profiles. The study of fully pearlitic steel shows that both MAE and BE are sensitive to the interlamellar spacing of pearlite. Low-carbon ferritic steel samples give different MAE and BE profiles which are dependent on ferrite grain size. Lorentz microscopy reveals that there are differences in domain structures and magnetization processes between fully ferritic and fully pearlitic samples. Study of ferritic/pearlitic samples indicates that both MAE and BE depend on the ferrite content. In the case of spheroidized steel samples MAE and BE profiles were found to be sensitive to the changes in the morphology and size of carbides. Samples of industrial steel products including pearlitic rail steel and decarburized billet were investigated. The MAE profiles obtained from the rail are consistent with those measured from the fully pearlitic rod samples. This suggests that MAE can be used for monitoring the microstructure of large steel components, provided that another technique such as BE is also used to complement the MAE measurements. In the study of the billet samples, MAE and BE were found to be dependent on the decarburization depth. The results are discussed in the context of the change in ferrite content of the surface layer

  13. All-in-all-out magnetic domain size in pyrochlore iridate thin films as probed by local magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T. C.; Uchida, M., E-mail: uchida@ap.t.u-tokyo.ac.jp; Kozuka, Y.; Ogawa, S. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Arima, T. [Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2016-01-11

    Pyrochlore iridates have attracted growing attention because of a theoretical prediction of a possible topological semimetal phase originating from all-in-all-out spin ordering. Related to the topological band structure, recent findings of the magnetic domain wall conduction have stimulated investigations of magnetic domain distribution in this system. Here, we investigate the size of magnetic domains in Eu{sub 2}Ir{sub 2}O{sub 7} single crystalline thin films by magnetoresistance (MR) using microscale Hall bars. Two distinct magnetic domains of the all-in-all-out spin structure are known to exhibit linear MR but with opposite signs, which enables us to estimate the ratio of the two domains in the patterned channel. The linear MR for 80 × 60 μm{sup 2} channel is nearly zero after zero-field cooling, suggesting random distribution of domains smaller than the channel size. In contrast, the wide distribution of the value of the linear MR is detected in 2 × 2 μm{sup 2} channel, reflecting the detectable domain size depending on each cooling-cycle. Compared to simulation results, we estimate the average size of a single all-in-all-out magnetic domain as 1–2 μm.

  14. Plated lamination structures for integrated magnetic devices

    Science.gov (United States)

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  15. Photoinduced domain structures in monocrystalline films of yttrium-iron garnets

    International Nuclear Information System (INIS)

    Doroshenko, R.A.; Vladimirov, I.V.; Setchenkov, M.S.

    1988-01-01

    Results of investigating the domain structure in Y 3 Fe 5 O 12 epitaxial films under polarized light effect are presented. The domain structure was observed using Faraday effect at 80 K, crystallographic directions were determined by X-ray method. The sample structure is shown to consist of macrodomains, which parallel boundaries are oriented on (011), (110), (101) and are reoriented under the light effect, therewith easiest magnetization axes are brought about perpendicular to vector E of the affecting light. When explaining such changes in domain structure elastic stresses and induced anisotropy of elastic nature must be taken accout of

  16. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Dobák, Samuel, E-mail: samuel.dobak@student.upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)

    2017-03-15

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials. - Highlights: • A first decomposition of complex permeability into domain wall and rotation parts in soft magnetic composites. • A pure relaxation nature of dynamic magnetization processes. • A complete loss separation in soft magnetic composites. • The domain walls activity is considerably suppressed in composites with smaller iron particles and higher matrix content. • The demagnetizing field acts as a significant factor at the dynamic magnetization process.

  17. Magnetic hysteresis and domain wall dynamics in single chain magnets with antiferromagnetic interchain coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bukharov, A A; Ovchinnikov, A S; Baranov, N V [Department of Physics, Ural State University, Ekaterinburg, 620083 (Russian Federation); Inoue, K [Institute for Advanced Materials Research, Hiroshima University, Hiroshima (Japan)

    2010-11-03

    Using Monte Carlo simulations we investigate magnetic hysteresis in two- and three-dimensional systems of weakly antiferromagnetically coupled spin chains based on a scenario of domain wall (kink) motion within the chains. By adapting the model of walkers to simulate the domain wall dynamics and using the Ising-like dipole-dipole model, we study the effects of interchain coupling, temperature and anisotropy axis direction on hysteresis curves.

  18. Magnetization reversal in textured NdFeB-Fe composites observed by domain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, Juliane, E-mail: j.thielsch@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Hinz, Dietrich; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, Institute for Metallic Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany)

    2010-10-15

    Textured composite samples consisting of Nd{sub 13.6}Fe{sub 73.6}Ga{sub 0.6}Co{sub 6.6}B{sub 5.6} (MQU-F{sup TM}) and micron-sized Fe particles with weight ratios from 100:0 to 70:30 have been prepared by hot deformation. Microstructure studies revealed a layered structure of both phases with the layer normal parallel to the pressing direction. Magnetic measurements showed single-phase hysteresis curves for all samples when measured along the pressing direction, which is also the easy axis of magnetization. Coercivity decreased drastically from 1.32 T for pure NdFeB samples to 0.154 T for a sample with 30 wt% Fe. Magneto-optical Kerr microscopy with a digitally enhanced imaging technique has been used to examine the evolution of magnetic domains in the hard and soft phase during demagnetizing a sample consisting of 70 wt% NdFeB and 30 wt% Fe. It is shown that demagnetization takes place via domain rearrangements within the soft phase, which lead to and support the nucleation of reversed interaction domains at phase boundaries. Also nucleation of interaction domains within the hard magnetic phase could be revealed.

  19. Magnetization reversal in textured NdFeB-Fe composites observed by domain imaging

    International Nuclear Information System (INIS)

    Thielsch, Juliane; Hinz, Dietrich; Schultz, Ludwig; Gutfleisch, Oliver

    2010-01-01

    Textured composite samples consisting of Nd 13.6 Fe 73.6 Ga 0.6 Co 6.6 B 5.6 (MQU-F TM ) and micron-sized Fe particles with weight ratios from 100:0 to 70:30 have been prepared by hot deformation. Microstructure studies revealed a layered structure of both phases with the layer normal parallel to the pressing direction. Magnetic measurements showed single-phase hysteresis curves for all samples when measured along the pressing direction, which is also the easy axis of magnetization. Coercivity decreased drastically from 1.32 T for pure NdFeB samples to 0.154 T for a sample with 30 wt% Fe. Magneto-optical Kerr microscopy with a digitally enhanced imaging technique has been used to examine the evolution of magnetic domains in the hard and soft phase during demagnetizing a sample consisting of 70 wt% NdFeB and 30 wt% Fe. It is shown that demagnetization takes place via domain rearrangements within the soft phase, which lead to and support the nucleation of reversed interaction domains at phase boundaries. Also nucleation of interaction domains within the hard magnetic phase could be revealed.

  20. High-frequency domain wall excitations in magnetic garnet films with in-plane magnetization

    International Nuclear Information System (INIS)

    Synogach, V.T.; Doetsch, H.

    1996-01-01

    Magnetic garnet films of compositions (YBi) 3 Fe 5 O 12 and (LuBi) 3 Fe 5 O 12 are grown by liquid-phase epitaxy on [110]- and [100]-oriented substrates of gadolinium gallium garnet, respectively. All films have in-plane magnetization. 180 degree and 90 degree domain walls in these films are studied by microwave technique. In addition to the known low-frequency mode of wall translation new multiple resonant modes of both 90 degree and 180 degree domain walls with very small linewidth (4.2 MHz) are observed at frequencies near 1 GHz. Resonances are effectively excited by an rf magnetic field which is parallel or perpendicular to the wall plane. Resonance frequencies are shown to have nonlinear dispersion dependence on the mode number: they decrease with increasing in-plane magnetic field normal to the wall plane. copyright 1996 The American Physical Society

  1. Structural design of DEALS magnet

    International Nuclear Information System (INIS)

    Bezler, P.; Hsieh, S.Y.; Balderes, T.; Brown, T.; Bundy, J.

    1979-01-01

    A design for the extraneous magnet structure to support all the magnet loads was developed. The structure consists of two demountable structural systems designed to support the in-plane and out-of-plane loads, respectively. The in-plane loads are resisted by a cold central bucking cylinder and pin connected, plate-beam structural members following the outer periphery of each coil. The out-of-plane, torsional loads are resisted by the concerted action of the central bucking column and a continuous plate structure interconnecting all the coils. The adequacy of the structures were assessed by application of finite element analysis methods. The design study proved the feasibility of resisting the magnetic loadings with a demountable support structure extraneous to the superconducting coil. The resulting magnet system, although estimated to be higher in cost than a continuous coil, incorporates a means for complete coil replacement in a time scale commensurate with conventional nuclear power plant repairs and without the dismantling of the toroidal blanket and plasma shell systems

  2. Identification of structural domains in proteins by a graph heuristic

    NARCIS (Netherlands)

    Wernisch, Lorenz; Hunting, M.M.G.; Wodak, Shoshana J.

    1999-01-01

    A novel automatic procedure for identifying domains from protein atomic coordinates is presented. The procedure, termed STRUDL (STRUctural Domain Limits), does not take into account information on secondary structures and handles any number of domains made up of contiguous or non-contiguous chain

  3. Domain walls in (Ga,Mn)As diluted magnetic semiconductor

    Czech Academy of Sciences Publication Activity Database

    Sugawara, A.; Kasai, H.; Tonomura, A.; Brown, P.D.; Campion, R. P.; Edmonds, K. W.; Gallagher, B. L.; Zemen, Jan; Jungwirth, Tomáš

    2008-01-01

    Roč. 100, č. 4 (2008), 047202/1-047202/4 ISSN 0031-9007 R&D Projects: GA MŠk LC510; GA ČR GEFON/06/E002; GA ČR GA202/05/0575; GA ČR GA202/04/1519 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521 Keywords : dilute ferromagnetic semiconductor * Néel domain walls * electron holography * Landau-Lifshitz-Gilbert simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  4. Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer

    Science.gov (United States)

    Liu, Yang; Furuta, Masaki; Zhu, Jian-Gang Jimmy

    2018-05-01

    mCell, previously proposed by our group, is a four-terminal magnetoresistive device with isolated write- and read-paths for all-spin logic and memory applications. A mCell requires an electric-insulating magnetic layer to couple the spin Hall driven write-path to the magnetic free layer of the read-path. Both paths are magnetic layers with perpendicular anisotropy and their perpendicularly oriented magnetization needs to be maintained with this insertion layer. We have developed a magnetic oxide (FeOx) insertion layer to serve for these purposes. We show that the FeOx insertion layer provides sufficient magnetic coupling between adjacent perpendicular magnetic layers. Resistance measurement shows that this magnetic oxide layer can act as an electric-insulating layer. In addition, spin Hall driven domain wall motion in magnetic bi-layers coupled by the FeOx insertion layer is significantly enhanced compared to that in magnetic single layer; it also requires low voltage threshold that poses possibility for power-efficient device applications.

  5. Observation of magnetic domains using a reflection-mode scanning near-field optical microscope

    OpenAIRE

    SHVETS, IGOR

    1997-01-01

    PUBLISHED It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in t...

  6. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    OpenAIRE

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in the topography...

  7. Solution structure of the Grb2 SH2 domain complexed with a high-affinity inhibitor

    International Nuclear Information System (INIS)

    Ogura, Kenji; Shiga, Takanori; Yokochi, Masashi; Yuzawa, Satoru; Burke, Terrence R.; Inagaki, Fuyuhiko

    2008-01-01

    The solution structure of the growth factor receptor-bound protein 2 (Grb2) SH2 domain complexed with a high-affinity inhibitor containing a non-phosphorus phosphate mimetic within a macrocyclic platform was determined by nuclear magnetic resonance (NMR) spectroscopy. Unambiguous assignments of the bound inhibitor and intermolecular NOEs between the Grb2 SH2 domain and the inhibitor was accomplished using perdeuterated Grb2 SH2 protein. The well-defined solution structure of the complex was obtained and compared to those by X-ray crystallography. Since the crystal structure of the Grb2 SH2 domain formed a domain-swapped dimer and several inhibitors were bound to a hinge region, there were appreciable differences between the solution and crystal structures. Based on the binding interactions between the inhibitor and the Grb2 SH2 domain in solution, we proposed a design of second-generation inhibitors that could be expected to have higher affinity

  8. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  9. Individual domain wall resistance in submicron ferromagnetic structures.

    Science.gov (United States)

    Danneau, R; Warin, P; Attané, J P; Petej, I; Beigné, C; Fermon, C; Klein, O; Marty, A; Ott, F; Samson, Y; Viret, M

    2002-04-15

    The resistance generated by individual domain walls is measured in a FePd nanostructure. Combining transport and magnetic imaging measurements, the intrinsic domain wall resistance is quantified. It is found positive and of a magnitude consistent with that predicted by models based on spin scattering effects within the walls. This magnetoresistance at a nanometer scale allows a direct counting of the number of walls inside the nanostructure. The effect is then used to measure changes in the magnetic configuration of submicron stripes under application of a magnetic field.

  10. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    DEFF Research Database (Denmark)

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...

  11. Magnetism in structures with ferromagnetic and superconducting layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.

  12. Changing the cubic ferrimagnetic domain structure in temperature region of spin flip transition

    International Nuclear Information System (INIS)

    Djuraev, D.R.; Niyazov, L.N.; Saidov, K.S.; Sokolov, B.Yu.

    2011-01-01

    The transformation of cubic ferrimagnetic Tb 0.2 Y 2.8 Fe 5 O 12 domain structure has been studied by magneto optic method in the temperature region of spontaneous spin flip phase transition (SPT). It has been found that SPT occurs in a finite temperature interval where the coexistence of low- and high- temperature magnetic phase domains has observed. A character of domain structure evolution in temperature region of spin flip essentially depends on the presence of mechanical stresses in crystal. Interpretation of experimental results has been carried out within the framework of SPT theory for a cubic crystal. (authors)

  13. SVD compression for magnetic resonance fingerprinting in the time domain.

    Science.gov (United States)

    McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A

    2014-12-01

    Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.

  14. Light induced kickoff of magnetic domain walls in Ising chains

    Science.gov (United States)

    Bogani, Lapo

    2012-02-01

    Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. Contrary to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiation power is very low, a substantial improvement over present methods of magnetooptical switching: in our experimental demonstration we switched molecular nanowires with light, using powers thousands of times lower than in previous optical switching methods. This manipulation of stochastic dynamic processes is extremely clean, leading to fingerprint signatures and scaling laws. These observations can be used, in material science, to better study domain-wall displacements and solitons in discrete lattices. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to a myriad of fields, ranging from social evolution to neural networks and chemical reactivity. For nanoelectronics and molecular spintronics the kickoff affords external control of molecular spin-valves and a magnetic fingerprint in single molecule measurements. It can also be applied to the dynamics of mechanical switches and the related study of phasons and order-disorder transitions.

  15. Broadening microwave absorption via a multi-domain structure

    Directory of Open Access Journals (Sweden)

    Zhengwang Liu

    2017-04-01

    Full Text Available Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz is a great challenge. Herein, the three-dimensional (3D Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as −55 dB and the bandwidth (<−10 dB spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450–850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.

  16. Domain Wall Motion in Magnetic Nanostrips under the Influence of Rashba Field

    Directory of Open Access Journals (Sweden)

    Vito Puliafito

    2012-01-01

    Full Text Available Spin-orbit Rashba effect applies a torque on the magnetization of a ferromagnetic nanostrip in the case of structural inversion asymmetry, also affecting the steady domain wall motion induced by a spin-polarized current. This influence is here analytically studied in the framework of the extended Landau-Lifshitz-Gilbert equation, including the Rashba effect as an additive term of the effective field. Results of previous micromagnetic simulations and experiments have shown that this field yields an increased value of the Walker breakdown current together with an enlargement of the domain wall width. In order to analytically describe these results, the standard travelling wave ansatz for the steady domain wall motion is here adopted. Results of our investigations reveal the impossibility to reproduce, at the same time, the previous features and suggest the need of a more sophisticated model whose development requires, in turn, additional information to be extracted from ad hoc micromagnetic simulations.

  17. Surface magnetic structures in amorphous ferromagnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)

    2017-05-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  18. Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

    Science.gov (United States)

    Beardsley, R. P.; Parkes, D. E.; Zemen, J.; Bowe, S.; Edmonds, K. W.; Reardon, C.; Maccherozzi, F.; Isakov, I.; Warburton, P. A.; Campion, R. P.; Gallagher, B. L.; Cavill, S. A.; Rushforth, A. W.

    2017-02-01

    We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

  19. Correlation between Crystallographic and Magnetic Domains at Co/NiO(001) Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ohldag, H.; van der Laan, G.; Arenholz, E.

    2008-12-18

    Using soft x-ray spectromicroscopy we show that NiO(001) exhibits a crystallographic and magnetic domain structure near the surface identical to that of the bulk. Upon Co deposition a perpendicular coupling between the Ni and Co moments is observed that persists even after formation of uncompensated Ni spins at the interface through annealing. The chemical composition at the interface alters its crystallographic structure and leads to a reorientation of the Ni moments from the <112> to the <110> direction. We show that this reorientation is driven by changes in the magnetocrystalline anisotropy rather than exchange coupling mediated by residual uncompensated spins.

  20. Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures

    International Nuclear Information System (INIS)

    Miguel, J; Kurde, J; Piantek, M; Kuch, W; Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A; Bayer, D; Aeschlimann, M

    2009-01-01

    We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.

  1. Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, J; Kurde, J; Piantek, M; Kuch, W [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany); Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Bayer, D; Aeschlimann, M, E-mail: jorge.miguel@fu-berlin.d [Fachbereich Physik, Universitaet Kaiserslautern, Erwin-Schroedinger Strasse 46, D-67663 Kaiserslautern (Germany)

    2009-12-02

    We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.

  2. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  3. Observation of ferroelastic domains in layered magnetic compounds using birefringence imaging

    Science.gov (United States)

    Miura, Yoko; Okumura, Kazuya; Manaka, Hirotaka

    2018-03-01

    The two-dimensional Heisenberg antiferromagnet (C2H5NH3)2CuCl4 is a candidate compound for the coexistence of ferroelectricity and ferroelasticity; however, the microscopic observations of multiferroic domains may still be unclear. In-plane birefringence imaging measurements were performed to observe the manner in which the ferroelectric and the ferroelastic domains change during phase transitions between 15 K and 300 K. It was found that 90° ferroelastic domains appeared in the ab-plane at 300 K. As the temperature decreased toward 15 K, each domain inverted at a certain temperature (T a) without structural or magnetic phase transitions. The value of T a was found to be significantly influenced by external stresses; therefore, birefringence imaging techniques are useful for investigating variations in ferroelastic domains with temperature. Furthermore, a structural phase transition from orthorhombic to monoclinic or triclinic occurred at 230 ~ 240 K; however, no spontaneous polarization appeared in the ab-plane over the entire investigated range.

  4. Magnetic Field Control of Cycloidal Domains and Electric Polarization in Multiferroic BiFeO3

    Science.gov (United States)

    Bordács, S.; Farkas, D. G.; White, J. S.; Cubitt, R.; DeBeer-Schmitt, L.; Ito, T.; Kézsmárki, I.

    2018-04-01

    The magnetic field induced rearrangement of the cycloidal spin structure in ferroelectric monodomain single crystals of the room-temperature multiferroic BiFeO3 is studied using small-angle neutron scattering. The cycloid propagation vectors are observed to rotate when magnetic fields applied perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value of ˜5 T . In light of these experimental results, a phenomenological model is proposed that captures the rearrangement of the cycloidal domains, and we revisit the microscopic origin of the magnetoelectric effect. A new coupling between the magnetic anisotropy and the polarization is proposed that explains the recently discovered magnetoelectric polarization perpendicular to the rhombohedral axis.

  5. Magnetization reversal of the transverse domain wall confined between two clusters of magnetic impurities in a ferromagnetic planar nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, D., E-mail: danilotoscano@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Leonel, S.A., E-mail: sidiney@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Coura, P.Z., E-mail: pablo@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Sato, F., E-mail: sjfsato@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Costa, B.V., E-mail: bvc@fisica.ufmg.br [Departamento de Física, Laboratório de Simulação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123–970 (Brazil); Vázquez, M., E-mail: mvazquez@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC. 28049 Madrid (Spain)

    2016-12-01

    Numerical simulations have been used to investigate the polarity reversal of the transverse domain wall in rectangular magnetic nanowires and the stabilization of the domain wall position after occurring the polarity reversal. In order to control the wall position we have considered two clusters of magnetic impurities, identical and equidistant from the nanowire width axis. Traps of pinning and blocking for the transverse domain wall can be originated from magnetic impurities, consisting of a local variation of the exchange constant. Under suitable excitation amplitudes it is possible to switch the polarity of the transverse domain wall by applying a nanosecond axial magnetic field pulse in a fast and controllable way. - Highlights: • Traps for pinning and blocking transverse domain walls are proposed. • The traps consisting of localized modifications of the magnetic properties. • The wall polarity can be reversed in a fast and controllable way.

  6. Magnetic structure and lattice deformation in UO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, V L; Frauenheim, T; Sikora, V [Joint Inst. for Nuclear Research, Dubna (USSR)

    1981-12-21

    The magnetic phase transition in UO/sub 2/ is studied by means of a group theoretical analysis and the admitted symmetry groups in the low temperature phase are determined. With the help of the neutron diffraction data of Faber and Lander a three-arm magnetic and crystallographic structure with two types of translational domains is found and a new interpretation of the experiment of Faber and Lander is given.

  7. Self-assembled domain structures: From micro- to nanoscale

    Directory of Open Access Journals (Sweden)

    Vladimir Shur

    2015-06-01

    Full Text Available The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain–domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  8. Magnetic field control of 90°, 180°, and 360° domain wall resistance

    Science.gov (United States)

    Majidi, Roya

    2012-10-01

    In the present work, we have compared the resistance of the 90°, 180°, and 360° domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Néel-type domain walls between two domains whose magnetization differs by angle of 90°, 180°, and 360° are considered. The results indicate that the resistance of the 360° DW is more considerable than that of the 90° and 180° DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.

  9. Exact diagonalization study of domain structures in integer filling factor quantum Hall ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Rezayi, E. H.; Jungwirth, Tomáš; MacDonald, A. H.; Haldane, F. D. M.

    2003-01-01

    Roč. 67, č. 20 (2003), s. 201305-1 - 201305-4 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : domain structure * integer filling factor * quantum Hall ferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  10. Ferromagnetic domain structures and spin configurations measured in doped manganite

    DEFF Research Database (Denmark)

    He, J.Q.; Volkov, V.V.; Beleggia, Marco

    2010-01-01

    We report on measurements of the spin configuration across ferromagnetic domains in La0.325Pr0.3Ca0.375MnO3 films obtained by means of low-temperature Lorentz electron microscopy with in situ magnetizing capabilities. Due to the particular crystal symmetry of the material, we observe two sets of ...... and the crystal symmetry might affect the magnetoresistivity under an applied magnetic field in a strongly correlated electron system....

  11. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  12. Magnetic domain walls as reconfigurable spin-wave nano-channels

    Science.gov (United States)

    Wagner, Kai

    Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.

  13. Magnetic bubbles and domain evolution in Fe/Gd multilayer nanodots

    Science.gov (United States)

    Wang, T. T.; Liu, W.; Dai, Z. M.; Zhao, X. T.; Zhao, X. G.; Zhang, Z. D.

    2018-04-01

    The formation of magnetic bubbles and the domain-evolution processes, induced by a perpendicular magnetic field in Fe/Gd multilayer films and nanodots, have been investigated. At room temperature, the stripe domains in a continuous film transform into magnetic bubbles in an external field, while bubbles form spontaneously in nanodots due to the existence of shape anisotropy. When the temperature decreases to 20 K, the enhancement of the perpendicular magnetic anisotropy of the samples results in an increase of the domain size in the continuous film and the magnetization-reversal behavior of each nanodot becomes independent, and most reversed dots do not depend on each other, indicating the magnetic characteristics of a single domain. The present research provides further understanding of the evolution of magnetic bubbles in the Fe/Gd system and suggests their promising applications in patterned recording materials.

  14. Structure of an isolated unglycosylated antibody CH2 domain

    International Nuclear Information System (INIS)

    Prabakaran, Ponraj; Vu, Bang K.; Gan, Jianhua; Feng, Yang; Dimitrov, Dimiter S.; Ji, Xinhua

    2008-01-01

    The crystal structure of an isolated unglycosylated antibody C H 2 domain has been determined at 1.7 Å resolution. The C H 2 (C H 3 for IgM and IgE) domain of an antibody plays an important role in mediating effector functions and preserving antibody stability. It is the only domain in human immunoglobulins (Igs) which is involved in weak interchain protein–protein interactions with another C H 2 domain solely through sugar moieties. The N-linked glycosylation at Asn297 is conserved in mammalian IgGs as well as in homologous regions of other antibody isotypes. To examine the structural details of the C H 2 domain in the absence of glycosylation and other antibody domains, the crystal structure of an isolated unglycosylated antibody γ1 C H 2 domain was determined at 1.7 Å resolution and compared with corresponding C H 2 structures from intact Fc, IgG and Fc receptor complexes. Furthermore, the oligomeric state of the protein in solution was studied using size-exclusion chromatography. The results suggested that the unglycosylated human antibody C H 2 domain is a monomer and that its structure is similar to that found in the intact Fc, IgG and Fc receptor complex structures. However, certain structural variations were observed in the Fc receptor-binding sites. Owing to its small size, stability and non-immunogenic Ig template, the C H 2-domain structure could be useful for the development by protein design of antibody domains exerting effector functions and/or antigen specificity and as a robust scaffold in protein-engineering applications

  15. Structural insights into FRS2α PTB domain recognition by neurotrophin receptor TrkB.

    Science.gov (United States)

    Zeng, Lei; Kuti, Miklos; Mujtaba, Shiraz; Zhou, Ming-Ming

    2014-07-01

    The fibroblast growth factor receptor (FGFR) substrate 2 (FRS2) family proteins function as scaffolding adapters for receptor tyrosine kinases (RTKs). The FRS2α proteins interact with RTKs through the phosphotyrosine-binding (PTB) domain and transfer signals from the activated receptors to downstream effector proteins. Here, we report the nuclear magnetic resonance structure of the FRS2α PTB domain bound to phosphorylated TrkB. The structure reveals that the FRS2α-PTB domain is comprised of two distinct but adjacent pockets for its mutually exclusive interaction with either nonphosphorylated juxtamembrane region of the FGFR, or tyrosine phosphorylated peptides TrkA and TrkB. The new structural insights suggest rational design of selective small molecules through targeting of the two conjunct pockets in the FRS2α PTB domain. © 2014 Wiley Periodicals, Inc.

  16. Study of domain structure in segmented polyether polyurethaneureas by PAT

    International Nuclear Information System (INIS)

    Yin Chuanyuan; Xu Weizheng; Gu Qingchao

    1990-01-01

    The domain structure of segmented polyether polyurethaneureas is investigated by means of positron annihilation technique, small angle X-ray scattering and differential scanning calorimetry. The experimental results show that the decrease of domain volume and free volume results from the increase of hard segment contents, and that the increase of domain volume and free volume results from the increase of molecular weight of soft segments

  17. Magnetic structure of molecular magnet Fe[Fe(CN) 6

    Indian Academy of Sciences (India)

    We have studied the magnetic structure of Fe[Fe(CN)6]·4H2O, prepared by precipitation method, using neutron diffraction technique. Temperature dependent DC magnetization study down to 4.2 K shows that the compound undergoes from a high temperature disordered (paramagnetic) to an ordered magnetic phase ...

  18. Effect of the growth conditions on the anisotropy, domain structures and the relaxation in Co thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, Srijani; Mallick, Sougata; Bedanta, Subhankar, E-mail: sbedanta@niser.ac.in

    2017-04-15

    We report a systematic study on the anisotropy symmetry, magnetic domains and magnetic relaxation behavior in Co thin films deposited on MgO (001) substrate by varying (i) the pre-annealing condition and (ii) the speed of substrate rotation during deposition. Substrate annealing prior to deposition leads to the formation of textured thin films. On contrary Co films prepared without substrate pre-annealing exhibit polycrystalline nature. Surface topography imaged by atomic force microscopy (AFM) depicts a profound effect of growth condition on grain size and its distribution. Magnetic hysteresis measurement along with simultaneous domain imaging has been performed by magneto optic Kerr effect (MOKE) based microscope by varying the angle (ϕ) between the easy axis and the direction of applied magnetic field. We observed the existence of cubic and uniaxial anisotropy due to the presence of substrate annealing and oblique angular deposition, respectively. Along the easy axis, magnetization reversal is governed by 180° domain wall motion via branched domains. However, for easy axis<ϕdomains appear in addition to branched domains during the reversal process. We observed that the magnetic relaxation behavior under constant magnetic field strongly depends on the size and distribution of the grains. - Highlights: • This article provides a systematic study of textured growth of Co on MgO(001) substrate. • The structure has clear implication on the magnetic properties. • The magnetic relaxation has been studied for both textured and polycrystalline films.

  19. Structural and functional analysis of multi-interface domains.

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    Full Text Available A multi-interface domain is a domain that can shape multiple and distinctive binding sites to contact with many other domains, forming a hub in domain-domain interaction networks. The functions played by the multiple interfaces are usually different, but there is no strict bijection between the functions and interfaces as some subsets of the interfaces play the same function. This work applies graph theory and algorithms to discover fingerprints for the multiple interfaces of a domain and to establish associations between the interfaces and functions, based on a huge set of multi-interface proteins from PDB. We found that about 40% of proteins have the multi-interface property, however the involved multi-interface domains account for only a tiny fraction (1.8% of the total number of domains. The interfaces of these domains are distinguishable in terms of their fingerprints, indicating the functional specificity of the multiple interfaces in a domain. Furthermore, we observed that both cooperative and distinctive structural patterns, which will be useful for protein engineering, exist in the multiple interfaces of a domain.

  20. Chapter 4: Regional magnetic domains of the Circum-Arctic: A framework for geodynamic interpretation

    Science.gov (United States)

    Saltus, R.W.; Miller, E.L.; Gaina, C.; Brown, P.J.

    2011-01-01

    We identify and discuss 57 magnetic anomaly pattern domains spanning the Circum-Arctic. The domains are based on analysis of a new Circum-Arctic data compilation. The magnetic anomaly patterns can be broadly related to general geodynamic classification of the crust into stable, deformed (magnetic and nonmagnetic), deep magnetic high, oceanic and large igneous province domains. We compare the magnetic domains with topography/bathymetry, regional geology, regional free air gravity anomalies and estimates of the relative magnetic 'thickness' of the crust. Most of the domains and their geodynamic classification assignments are consistent with their topographic/bathymetric and geological expression. A few of the domains are potentially controversial. For example, the extent of the Iceland Faroe large igneous province as identified by magnetic anomalies may disagree with other definitions for this feature. Also the lack of definitive magnetic expression of oceanic crust in Baffin Bay, the Norwegian-Greenland Sea and the Amerasian Basin is at odds with some previous interpretations. The magnetic domains and their boundaries provide clues for tectonic models and boundaries within this poorly understood portion of the globe. ?? 2011 The Geological Society of London.

  1. Structure of synaptophysin: a hexameric MARVEL-domain channel protein.

    Science.gov (United States)

    Arthur, Christopher P; Stowell, Michael H B

    2007-06-01

    Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.

  2. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    Science.gov (United States)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  3. Controlling the anisotropy and domain structure with oblique deposition and substrate rotation

    Directory of Open Access Journals (Sweden)

    N. Chowdhury

    2014-02-01

    Full Text Available Effect of substrate rotation on anisotropy and domain structure for a thin ferromagnetic film has been investigated in this work. For this purpose Co films with 10 nm thickness have been prepared by sputtering with oblique angle of incidence for various substrate rotations. This method of preparation induces a uniaxial anisotropy due to shadow deposition effect. The magnetization reversal is studied by magneto-optic Kerr effect (MOKE based microscope in the longitudinal geometry. The Co films prepared by rotating the substrate with 10 and 20 rpm weakens the anisotropy but does not completely give isotropic films. But this leads to high dispersion in local grain anisotropy resulting in ripple and labyrinth domains. It is observed that the substrate rotation has moderate effect on uniaxial anisotropy but has significant effect on the magnetization reversal process and the domain structure.

  4. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    Directory of Open Access Journals (Sweden)

    Serrano Luis

    2008-10-01

    Full Text Available Abstract Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures.

  5. Electric-field-induced magnetic domain writing in a Co wire

    Science.gov (United States)

    Tanaka, Yuki; Hirai, Takamasa; Koyama, Tomohiro; Chiba, Daichi

    2018-05-01

    We have demonstrated that the local magnetization in a Co microwire can be switched by an application of a gate voltage without using any external magnetic fields. The electric-field-induced reversible ferromagnetic phase transition was used to realize this. An internal stray field from a ferromagnetic gate electrode assisted the local domain reversal in the Co wire. This new concept of electrical domain switching may be useful for dramatically reducing the power consumption of writing information in a magnetic racetrack memory, in which a shift of a magnetic domain by electric current is utilized.

  6. Magneto-optics observation of spontaneous domain structure in ferromagnetic La0.78Ca0.22MnO3 single crystal

    International Nuclear Information System (INIS)

    Jung, G; Indenbom, M; Markovich, V; Beek, C J van der; Mogilyansky, D; Mukovskii, Ya M

    2004-01-01

    Spontaneous ferromagnetic domains in lightly Ca-doped La 1-x Ca x MnO 3 single crystals have been visualized and investigated by means of the magneto-optical technique. In marked difference to the magnetic contrast structures associated with magneto-crystalline anisotropy, which appear only in applied magnetic field, spontaneous ferromagnetic domains show up at low temperatures below the Curie temperature in zero applied field and are characterized by oppositely oriented spontaneous magnetization in adjacent domains. Ferromagnetic domains seen in zero field cooled samples take the form of almost periodic, corrugated stripe-like structures. Application of even a very weak magnetic field during cooling through the magnetic ordering transition changes the stripe domain structures into a bubble domain system

  7. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains.

    Science.gov (United States)

    Vishwanath, Sneha; de Brevern, Alexandre G; Srinivasan, Narayanaswamy

    2018-02-01

    The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in

  8. Effects of the magnetic field on the structure of materials

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo

    1984-02-01

    This is a report of the ''Meeting on the effects of a magnetic field on the structure of materials'' held at KEK, Japan. The purpose of the Meeting was to study the diffraction of SR X-ray in a magnetic field. It was found that the effects of a magnetic field have been seen in various substnaces. The effects are due to the Zeeman effect, the Lamor diamagnetism, the Landau diamagnetism, the Meissner effect and the polarization effect. The topics discussed at the Meeting were the structure study of biological specimens by field orientation, the study of cell structure by field orientation, the phase transition under a strong pulse field, the behavior of high molecular liquid crystal in a magnetic field, the change of the f-electron density of the Tb 3+ ions in Tb IG in a magnetic field at low temperature, an electromagnet loaded on a goniometer and an in-situ observation system for the structure of magnetic domain, the control of structural phase transition by a magnetic field, the use of synchrotron orbit radiation for the structural analysis of random systems, and the field effect on chemical reactions. (Kato, T.)

  9. An Algebro-Topological Description of Protein Domain Structure

    Science.gov (United States)

    Penner, Robert Clark; Knudsen, Michael; Wiuf, Carsten; Andersen, Jørgen Ellegaard

    2011-01-01

    The space of possible protein structures appears vast and continuous, and the relationship between primary, secondary and tertiary structure levels is complex. Protein structure comparison and classification is therefore a difficult but important task since structure is a determinant for molecular interaction and function. We introduce a novel mathematical abstraction based on geometric topology to describe protein domain structure. Using the locations of the backbone atoms and the hydrogen bonds, we build a combinatorial object – a so-called fatgraph. The description is discrete yet gives rise to a 2-dimensional mathematical surface. Thus, each protein domain corresponds to a particular mathematical surface with characteristic topological invariants, such as the genus (number of holes) and the number of boundary components. Both invariants are global fatgraph features reflecting the interconnectivity of the domain by hydrogen bonds. We introduce the notion of robust variables, that is variables that are robust towards minor changes in the structure/fatgraph, and show that the genus and the number of boundary components are robust. Further, we invesigate the distribution of different fatgraph variables and show how only four variables are capable of distinguishing different folds. We use local (secondary) and global (tertiary) fatgraph features to describe domain structures and illustrate that they are useful for classification of domains in CATH. In addition, we combine our method with two other methods thereby using primary, secondary, and tertiary structure information, and show that we can identify a large percentage of new and unclassified structures in CATH. PMID:21629687

  10. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  11. A New Method for Determining Structure Ensemble: Application to a RNA Binding Di-Domain Protein.

    Science.gov (United States)

    Liu, Wei; Zhang, Jingfeng; Fan, Jing-Song; Tria, Giancarlo; Grüber, Gerhard; Yang, Daiwen

    2016-05-10

    Structure ensemble determination is the basis of understanding the structure-function relationship of a multidomain protein with weak domain-domain interactions. Paramagnetic relaxation enhancement has been proven a powerful tool in the study of structure ensembles, but there exist a number of challenges such as spin-label flexibility, domain dynamics, and overfitting. Here we propose a new (to our knowledge) method to describe structure ensembles using a minimal number of conformers. In this method, individual domains are considered rigid; the position of each spin-label conformer and the structure of each protein conformer are defined by three and six orthogonal parameters, respectively. First, the spin-label ensemble is determined by optimizing the positions and populations of spin-label conformers against intradomain paramagnetic relaxation enhancements with a genetic algorithm. Subsequently, the protein structure ensemble is optimized using a more efficient genetic algorithm-based approach and an overfitting indicator, both of which were established in this work. The method was validated using a reference ensemble with a set of conformers whose populations and structures are known. This method was also applied to study the structure ensemble of the tandem di-domain of a poly (U) binding protein. The determined ensemble was supported by small-angle x-ray scattering and nuclear magnetic resonance relaxation data. The ensemble obtained suggests an induced fit mechanism for recognition of target RNA by the protein. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Comparative structural analysis of lipid binding START domains.

    Directory of Open Access Journals (Sweden)

    Ann-Gerd Thorsell

    Full Text Available Steroidogenic acute regulatory (StAR protein related lipid transfer (START domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease.We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains.Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  13. Enhanced functional and structural domain assignments using

    Indian Academy of Sciences (India)

    Unknown

    using remote similarity detection procedures for proteins encoded in the genome of Mycobacterium tuberculosis H37Rv” (J. Biosci. 29 (3) 245–. 259, 2004) by Seema Namboori, Natasha Mhatre, Sentivel Sujatha,. Narayanaswamy Srinivasan and Shashi Bhushan Pandit. The three-dimensional structure and subcellular ...

  14. Magnetic structure of Fe-based amorphous and thermal annealed microwires

    International Nuclear Information System (INIS)

    Olivera, J.; Provencio, M.; Prida, V.M.; Hernando, B.; Santos, J.D.; Perez, M.J.; Gorria, P.; Sanchez, M.L.; Belzunce, F.J.

    2005-01-01

    The magnetic structure of amorphous and thermal annealed glass coated microwires is studied by thermomagnetic, DSC, and Bitter domain pattern techniques. The long-range dipolar interaction between parallel aligned microwires and the appearance of large Barkhausen jumps steps in the axially magnetized loops are discussed in terms of reversal magnetization process

  15. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2017-05-01

    Full Text Available Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, a 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.

  16. Optimally segmented permanent magnet structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    We present an optimization approach which can be employed to calculate the globally optimal segmentation of a two-dimensional magnetic system into uniformly magnetized pieces. For each segment the algorithm calculates the optimal shape and the optimal direction of the remanent flux density vector......, with respect to a linear objective functional. We illustrate the approach with results for magnet design problems from different areas, such as a permanent magnet electric motor, a beam focusing quadrupole magnet for particle accelerators and a rotary device for magnetic refrigeration....

  17. Atomic resolution structure of the E. coli YajR transporter YAM domain

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Daohua [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China); School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao, Yan [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China); School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Fan, Junping; Liu, Xuehui; Wu, Yan; Feng, Wei [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China); Zhang, Xuejun C., E-mail: zhangc@ibp.ac.cn [National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101 (China)

    2014-07-25

    Highlights: • We report the crystal structure of the YAM domain of YajR transporter at 1.07 Å. • The YAM dimerization is related to the halogen-dependent high thermal stability. • A belt of poly-pentagonal water molecules was observed in the dimer interface. - Abstract: YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration.

  18. Structural safety features for superconducting magnets

    International Nuclear Information System (INIS)

    Lehner, J.; Reich, M.; Powell, J.; Bezler, P.; Gardner, D.; Yu, W.; Chang, T.Y.

    1975-01-01

    A survey has been carried out for various potential structural safety problems of superconducting fusion magnets. These areas include: (1) Stresses due to inhomogeneous temperature distributions in magnets where normal regions have been initiated. (2) Stress distributions and yield forces due to cracks and failed regions. (3) Superconducting magnet response due to seismic excitation. These analyses have been carried out using a variety of large capacity finite element computer codes that allow for the evaluation of stresses in elastic or elastic-plastic zones and around singularities in the magnet structure. Thus far, these analyses have been carried out on UWMAK-I type magnet systems

  19. Structure of the first PDZ domain of human PSD-93

    DEFF Research Database (Denmark)

    Fiorentini, Monica; Nielsen, Ann Kallehauge; Kristensen, Ole

    2009-01-01

    The crystal structure of the PDZ1 domain of human PSD-93 has been determined to 2.0 A resolution. The PDZ1 domain forms a crystallographic trimer that is also predicted to be stable in solution. The main contributions to the stabilization of the trimer seem to arise from interactions involving...... the PDZ1-PDZ2 linker region at the extreme C-terminus of PDZ1, implying that the oligomerization that is observed is not of biological significance in full-length PSD-93. Comparison of the structures of the binding cleft of PSD-93 PDZ1 with the previously reported structures of PSD-93 PDZ2 and PDZ3...

  20. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  1. Imaging of Magnetic Domains and Domain Walls in Spherical Fe-Si Powder Using Magnetic Force Microscopy

    Czech Academy of Sciences Publication Activity Database

    Strečková, M.; Baťková, M.; Baťko, I.; Hadraba, Hynek; Bureš, R.

    2014-01-01

    Roč. 126, č. 1 (2014), s. 92-93 ISSN 0587-4246. [CSMAG Czech and Slovak Conference on Magnetism /15./. Košice, 17.06.2013-21.06.2013] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : soft magnetic material * Fe-Si * magnetic force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2014

  2. Magnetic domains and twin microstructure of single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Kopecký, Vít; Fekete, Ladislav; Jurek, Karel; Kopeček, Jaromír; Straka, L.; Seiner, Hanuš

    2015-01-01

    Roč. 51, č. 11 (2015), s. 1-4, č. článku 2505304. ISSN 0018-9464 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magnetic domain * magnetic shape memory * NiMnGa Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.277, year: 2015

  3. Magnetic domains and twin microstructure of single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Kopecký, Vít; Fekete, Ladislav; Jurek, Karel; Kopeček, Jaromír; Straka, L.; Seiner, Hanuš

    2015-01-01

    Roč. 51, č. 11 (2015), s. 7150406 ISSN 0018-9464 R&D Projects: GA ČR GB14-36566G; GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magnetic domain * magnetic shape memory * NiMnGa Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  4. On the mixed discretization of the time domain magnetic field integral equation

    KAUST Repository

    Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan

    2012-01-01

    Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed

  5. Powder Neutron Diffraction and Magnetic structures

    International Nuclear Information System (INIS)

    Vigneron, F.

    1986-01-01

    The determination of the magnetic structures of materials (ferromagnetic, antiferromagnetic, helimagnetic, .) can be achieved only by neutron diffraction. A general survey of the powder technique is given: 2-axis spectrometer and analysis of the magnetic data. For the REBe/sb13/ intermetallic compounds (RE = Rare Earth), commensurate and/or incommensurate magnetic structures are observed and discussed as a function of RE (Gd, Tb, Dy, Ho, Er)

  6. Solution structure of the isolated Pelle death domain.

    Science.gov (United States)

    Moncrieffe, Martin C; Stott, Katherine M; Gay, Nicholas J

    2005-07-18

    The interaction between the death domains (DDs) of Tube and the protein kinase Pelle is an important component of the Toll pathway. Published crystallographic data suggests that the Pelle-Tube DD interface is plastic and implies that in addition to the two predominant Pelle-Tube interfaces, a third interaction is possible. We present the NMR solution structure of the isolated death domain of Pelle and a study of the interaction between the DDs of Pelle and Tube. Our data suggests the solution structure of the isolated Pelle DD is similar to that of Pelle DD in complex with Tube. Additionally, they suggest that the plasticity observed in the crystal structure may not be relevant in the functioning death domain complex.

  7. Transcript structure and domain display: a customizable transcript visualization tool.

    Science.gov (United States)

    Watanabe, Kenneth A; Ma, Kaiwang; Homayouni, Arielle; Rushton, Paul J; Shen, Qingxi J

    2016-07-01

    Transcript Structure and Domain Display (TSDD) is a publicly available, web-based program that provides publication quality images of transcript structures and domains. TSDD is capable of producing transcript structures from GFF/GFF3 and BED files. Alternatively, the GFF files of several model organisms have been pre-loaded so that users only needs to enter the locus IDs of the transcripts to be displayed. Visualization of transcripts provides many benefits to researchers, ranging from evolutionary analysis of DNA-binding domains to predictive function modeling. TSDD is freely available for non-commercial users at http://shenlab.sols.unlv.edu/shenlab/software/TSD/transcript_display.html : jeffery.shen@unlv.nevada.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Altering critical depinning current via domain wall pile-up in magnetic nanowires

    International Nuclear Information System (INIS)

    Geng, Liwei D.; Jin, Yongmei M.

    2015-01-01

    An important role of domain wall pile-up in current-driven domain wall depinning in magnetic nanowires is revealed using micromagnetic simulations. It is found that the critical current for domain wall depinning can be substantially reduced and conveniently tuned by controlling domain wall number in the pile-up at pinning site, in analogy to dislocation pile-up responsible for Hall–Petch effect in mechanical strength. Domain wall pinning and depinning at an s-shape bend is considered, and the effects of curvature and current crowding in magnetic circuit on domain wall behaviors are discussed. - Highlights: • Advance fundamental knowledge of current-driven domain wall phenomena. • Provide a novel approach to drastically reduce the critical depinning current. • Solve an outstanding problem of effective control of domain wall pinning/depinning. • Report appealing new findings of magnetic domain wall pile-up mechanism. • Overcome the limitations of materials properties for domain wall-based devices

  9. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do; Yu, Jiawei; Qiu, Xuepeng; Wang, Yi; Awano, Hiroyuki; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  10. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do

    2016-05-23

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  11. Crystal structure of the Ig1 domain of the neural cell adhesion molecule NCAM2 displays domain swapping

    DEFF Research Database (Denmark)

    Rasmussen, Kim Krighaar; Kulahin, Nikolaj; Kristensen, Ole

    2008-01-01

    The crystal structure of the first immunoglobulin (Ig1) domain of neural cell adhesion molecule 2 (NCAM2/OCAM/RNCAM) is presented at a resolution of 2.7 A. NCAM2 is a member of the immunoglobulin superfamily of cell adhesion molecules (IgCAMs). In the structure, two Ig domains interact by domain...

  12. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Yun, Ji-Hye; Lee, Won Kyung; Kim, Heeyoun; Kim, Eunhee; Cheong, Chaejoon; Cho, Myeon Haeng; Lee, Weontae

    2014-01-01

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2 1–64 ) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2 1–64 and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences

  13. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji-Hye [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Won Kyung [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Heeyoun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Eunhee; Cheong, Chaejoon [Magnetic Resonance Team, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 363-883 (Korea, Republic of); Cho, Myeon Haeng [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-09-26

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.

  14. Structural and Magnetic Behavioral Improvisation of Nanocalcium Hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Sable, Sharad N., E-mail: sharadtz@hotmail.co [Department of Applied Physics, Priyadarshini College of Engineering, Nagpur (India); Rewatkar, Kishor G. [Department of Physics, Dr. Ambedkar College, Dikshabhumi, Nagpur (India); Nanoti, Vivek M. [Priyadarshini College of Engineering, Nagpur (India)

    2010-04-15

    In modern technoscientific era, the industrial application of nanomaterials has grabbed a paramount importance owing to their improved characteristics. Hexagonal ferrites especially M-type ferrites have been proved to be the promising candidates for nanomaterials by virtue of their ease of applicability in high density recording media, microwave absorption devices, magneto-optic recording media, etc. Keeping a bird's view over, the samples of varied combinations of M-type substituted hexaferrites are synthesized using sol-gel combustion route by blending nitrates and chlorides as oxidants accompanied with fuels like urea, glycine, citric acid, etc. as reducing agents. The substitution of Co{sup 2+} and Sn{sup 4+} ions lie essentially in the octahedral and tetrahedral sites. As the Fe{sup 3+} ions are being replaced by Co{sup 2+} and Sn{sup 4+} ions, the probability of having oxygen vacancies in the structure was found to be greatly reduced. The magnetic particles produced by conventional solid state reactions are often larger than those produced by sol-gel combustion route. Larger particles of magnetic oxides generally exhibit multidomain magnetic structure whereas nanosized particles generally exhibit single domain magnetic structure. The simultaneous or coupled divalent and tetravalent substitution of Co{sup 2+} and Sn{sup 4+} for Fe{sup 3+} ions greatly helps to improvise the magnetic parameters such as Curie temperature, coercivity, remanent magnetization, saturation magnetization, etc. The structural comparison is being analyzed through the XRD, TEM. The samples so synthesized are found to be reseasonably homogeneous and the average particle size of the sample synthesized is found to be in the nanorange. The structural and magnetic properties are observed be improved upon those of the samples reported earlier. This confirms the more viability of such samples in the various applications of digital data devices. Further attempts could possibly lead to

  15. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...

  16. Structural Basis for Endosomal Targeting by the Bro1 Domain

    Science.gov (United States)

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  17. Structural peculiarities in magnetic small particles

    International Nuclear Information System (INIS)

    Haneda, K.; Morrish, A.H.

    1993-01-01

    Nanostructured magnetic materials, consisting of nanometer-sized crystallites, are currently a developing subject. Evidence has been accumulating that they possess properties that can differ substantially from those of bulk materials. This paper illustrates how Moessbauer spectroscopy can yield useful information on the structural peculiarities associated with these small particles. As illustrations, metallic iron and iron-oxide systems are considered in detail. The subjects discussed include: (1) Phase stabilities in small particles, (2) deformed or nonsymmetric atomic arrangements in small particles, and (3) peculiar magnetic structures or non-collinear spin arrangements in small magnetic oxide particles that are correlated with lower specific magnetizations as compared to the bulk values. (orig.)

  18. Coaxial magnetic brakes using single-domain YBCO

    International Nuclear Information System (INIS)

    Putman, P.T.; Salama, K.

    2008-01-01

    In coaxial magnetic brakes, the changing field produced by movement of a solenoidal magnet induces a current in the wall of a conductive tube. The interaction of the field and current leads to a repulsive force that slows the motion of the magnet. For brake applications that require high force density, melt-textured YBCO is a clear choice of material for the magnet because it can carry high currents at a given field and temperature, and is inherently capable of operating in persistent current mode. We present calculations of the performance of this type of brake as a function of magnet current density for catch tubes composed of aluminum and titanium. These results are validated with low speed (20 m/s) tests. Calculations indicate that melt-textured magnets can decelerate projectiles with a mass of 1 kg from 2000 m/s to rest in distances on the order of 10 m. This suggests that this type of brake is suitable for use in hypervelocity experiments, which sometimes requires nondestructive deceleration of projectiles for diagnostic purposes

  19. Magnetic Basement Depth Inversion in the Space Domain

    Science.gov (United States)

    Nunes, Tiago Mane; Barbosa, Valéria Cristina F.; Silva, João Batista C.

    2008-10-01

    We present a total-field anomaly inversion method to determine both the basement relief and the magnetization direction (inclination and declination) of a 2D sedimentary basin presuming negligible sediment magnetization. Our method assumes that the magnetic intensity contrast is constant and known. We use a nonspectral approach based on approximating the vertical cross section of the sedimentary basin by a polygon, whose uppermost vertices are forced to coincide with the basin outcrop, which are presumably known. For fixed values of the x coordinates our method estimates the z coordinates of the unknown polygon vertices. To obtain the magnetization direction we assume that besides the total-field anomaly, information about the basement’s outcrops at the basin borders and the basement depths at a few points is available. To obtain stable depth-to-basement estimates we impose overall smoothness and positivity constraints on the parameter estimates. Tests on synthetic data showed that the simultaneous estimation of the irregular basement relief and the magnetization direction yields good estimates for the relief despite the mild instability in the magnetization direction. The inversion of aeromagnetic data from the onshore Almada Basin, Brazil, revealed a shallow, eastward-dipping basement basin.

  20. Descriptipn of giant changes of domain sizes in ultrathin magnetic films

    Czech Academy of Sciences Publication Activity Database

    Kisielewski, M.; Maziewski, A.; Zablotskyy, Vitaliy A.

    2004-01-01

    Roč. 282, - (2004), s. 39-43 ISSN 0304-8853 Grant - others:SCSR(PL) 4T11B 006 24 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetic domains * ultrathin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  1. 3-D branching of magnetic domains on compressed si-fe steel with goss texture

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Schaefer, R.; Stupakov, Oleksandr

    2014-01-01

    Roč. 50, č. 11 (2014), s. 2007804 ISSN 0018-9464 R&D Projects: GA ČR GB14-36566G; GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : grain-oriented silicon steel * Kerr microscopy * magnetic domains * stress Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  2. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    International Nuclear Information System (INIS)

    Ceccarelli, D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment

  3. The α-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel β-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance.

    Science.gov (United States)

    Tycko, Robert; Savtchenko, Regina; Ostapchenko, Valeriy G; Makarava, Natallia; Baskakov, Ilia V

    2010-11-09

    We report the results of solid state nuclear magnetic resonance (NMR) measurements on amyloid fibrils formed by the full-length prion protein PrP (residues 23−231, Syrian hamster sequence). Measurements of intermolecular 13C−13C dipole−dipole couplings in selectively carbonyl-labeled samples indicate that β-sheets in these fibrils have an in-register parallel structure, as previously observed in amyloid fibrils associated with Alzheimer’s disease and type 2 diabetes and in yeast prion fibrils. Two-dimensional 13C−13C and 15N−13C solid state NMR spectra of a uniformly 15N- and 13C-labeled sample indicate that a relatively small fraction of the full sequence, localized to the C-terminal end, forms the structurally ordered, immobilized core. Although unique site-specific assignments of the solid state NMR signals cannot be obtained from these spectra, analysis with a Monte Carlo/simulated annealing algorithm suggests that the core is comprised primarily of residues in the 173−224 range. These results are consistent with earlier electron paramagnetic resonance studies of fibrils formed by residues 90−231 of the human PrP sequence, formed under somewhat different conditions [Cobb, N. J., Sonnichsen, F. D., McHaourab, H., and Surewicz, W. K. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 18946−18951], suggesting that an in-register parallel β-sheet structure formed by the C-terminal end may be a general feature of PrP fibrils prepared in vitro.

  4. Effect of domains configuration on crystal structure in ferroelectric ...

    Indian Academy of Sciences (India)

    2017-09-09

    Sep 9, 2017 ... It is well known that domains and crystal structure control the physical properties of ferroelectrics. ... The as-prepared ceramics were crushed to fine pow- ders. ..... [1] Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H et al 2011.

  5. Parental Provision of Structure: Implementation and Correlates in Three Domains

    Science.gov (United States)

    Grolnick, Wendy S.; Raftery-Helmer, Jacquelyn N.; Marbell, Kristine N; Flamm, Elizabeth S.; Cardemil, Esteban V.

    2014-01-01

    This study examined parents' provision of "structure," defined as the organization of the environment to facilitate competence, and the degree to which it supports versus controls children's autonomy, in the domains of homework and studying, unsupervised time, and responsibilities in a diverse sample of sixth-grade children and their…

  6. Structural Time Domain Identification (STDI) Toolbox for Use with MATLAB

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    1997-01-01

    The Structural Time Domain Identification (STDI) toolbox for use with MATLABTM is developed at Aalborg University, Denmark, based on the system identification research performed during recent years. By now, a reliable set of functions offers a wide spectrum of services for all the important steps...

  7. Structural Time Domain Identification (STDI) Toolbox for Use with MATLAB

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    The Structural Time Domain Identification (STDI) toolbox for use with MATLABTM is developed at Aalborg University, Denmark, based on the system identification research performed during recent years. By now, a reliable set of functions offers a wide spectrum of services for all the important steps...

  8. Structure and magnetic properties of Alnico ribbons

    Science.gov (United States)

    Zhang, Ce; Li, Ying; Han, Xu-Hao; Du, Shuai-long; Sun, Ji-bing; Zhang, Ying

    2018-04-01

    Al-Ni-Co alloy has been widely applied in various industrial fields due to its excellent thermal and magnetic stability. In this paper, new Al-Ni-Co ribbons are prepared by simple processes combining melt-spinning with annealing, and their phase transition, microstructure and magnetic properties are studied. The results show that after as-spun ribbons are annealed, the grain size of ribbons increases from 1.1 ± 0.3 μm to 4.8 ± 0.8 μm, but still much smaller than that of the bulk Al-Ni-Co alloy manufactured by traditional technologies. In addition, some rod-like Al70Co20Ni10-type, Al9Co2-type and Fe2Nb-type phases are precipitated at grain boundaries; simultaneously, the distinct spinodal decomposition microstructure with periodic ingredient variation is thoroughly formed in all grains by the reaction of α → α1 + α2. Furthermore, the α1 and α2 distribute alternately like a maze, the Fe-Co-rich α1 phase holds 35.9-47.3 vol%, while the Al-Ni-rich α2 phase occupies the rest. Finally, the coercivity of annealed ribbons can reach to 485.3 ± 76.6 Oe. If the annealed ribbons are further aged at 560 °C, their Hc even increases to 738.1 ± 81.0 Oe. The coercivity mechanism is discussed by the combination of microstructure and domain structure.

  9. ASH structure alignment package: Sensitivity and selectivity in domain classification

    Directory of Open Access Journals (Sweden)

    Toh Hiroyuki

    2007-04-01

    Full Text Available Abstract Background Structure alignment methods offer the possibility of measuring distant evolutionary relationships between proteins that are not visible by sequence-based analysis. However, the question of how structural differences and similarities ought to be quantified in this regard remains open. In this study we construct a training set of sequence-unique CATH and SCOP domains, from which we develop a scoring function that can reliably identify domains with the same CATH topology and SCOP fold classification. The score is implemented in the ASH structure alignment package, for which the source code and a web service are freely available from the PDBj website http://www.pdbj.org/ASH/. Results The new ASH score shows increased selectivity and sensitivity compared with values reported for several popular programs using the same test set of 4,298,905 structure pairs, yielding an area of .96 under the receiver operating characteristic (ROC curve. In addition, weak sequence homologies between similar domains are revealed that could not be detected by BLAST sequence alignment. Also, a subset of domain pairs is identified that exhibit high similarity, even though their CATH and SCOP classification differs. Finally, we show that the ranking of alignment programs based solely on geometric measures depends on the choice of the quality measure. Conclusion ASH shows high selectivity and sensitivity with regard to domain classification, an important step in defining distantly related protein sequence families. Moreover, the CPU cost per alignment is competitive with the fastest programs, making ASH a practical option for large-scale structure classification studies.

  10. High-field permanent-magnet structures

    International Nuclear Information System (INIS)

    Leupoid, H.A.

    1989-01-01

    This patent describes a permanent magnet structure. It comprises an azimuthally circumscribed section of a hollow hemispherical magnetic flux source, the magnetic orientation in the section with respect to the polar axis being substantially equal to twice the polar angle, a superconducting planar sheet abutting one flat face of the section along a longitudinal meridian, and at least one other planar sheet of selected material abutting another flat face of the section and perpendicular to the first-mentioned sheet

  11. Mapping small molecule binding data to structural domains.

    Science.gov (United States)

    Kruger, Felix A; Rostom, Raghd; Overington, John P

    2012-01-01

    Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a grouping of activity classes

  12. Magnetism and Structure in Functional Materials

    CERN Document Server

    Planes, Antoni; Saxena, Avadh

    2005-01-01

    Magnetism and Structure in Functional Materials addresses three distinct but related topics: (i) magnetoelastic materials such as magnetic martensites and magnetic shape memory alloys, (ii) the magnetocaloric effect related to magnetostructural transitions, and (iii) colossal magnetoresistance (CMR) and related magnanites. The goal is to identify common underlying principles in these classes of materials that are relevant for optimizing various functionalities. The emergence of apparently different magnetic/structural phenomena in disparate classes of materials clearly points to a need for common concepts in order to achieve a broader understanding of the interplay between magnetism and structure in this general class of new functional materials exhibiting ever more complex microstructure and function. The topic is interdisciplinary in nature and the contributors correspondingly include physicists, materials scientists and engineers. Likewise the book will appeal to scientists from all these areas.

  13. Polar and chemical domain structures of lead scandium tantalate (PST)

    International Nuclear Information System (INIS)

    Peng, J.L.; Bursill, L.A.

    1993-01-01

    The local structure of chemical and polar domains and domain walls is determined directly by atomic resolution high-resolution electron microscopy. Thus the Pb, Ta and Sc atomic positions may be located in the images of very thin crystals. Furthermore the Pb cation displacements away from the ideal perovskite A-site have been measured directly for the first time. Local variations in polarization direction may be mapped directly off the images, provided certain electron optical conditions are met. The results are relevant to recent theories of polar-glass behaviour in relaxor-type complex oxide functional ceramics. 17 refs., 9 figs

  14. Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein▿

    Science.gov (United States)

    Assenberg, René; Delmas, Olivier; Ren, Jingshan; Vidalain, Pierre-Olivier; Verma, Anil; Larrous, Florence; Graham, Stephen C.; Tangy, Frédéric; Grimes, Jonathan M.; Bourhy, Hervé

    2010-01-01

    Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae. PMID:19906936

  15. Structure and dynamics of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Clausen, K.N.; Bødker, F.; Hansen, M.F.

    2000-01-01

    In this paper we present X-ray and neutron diffraction data illustrating aspects of crystal and magnetic structures of ferromagnetic alpha-Fe and antiferromagnetic NiO nanoparticles, as well as inelastic neutron scattering studies of the magnetic fluctuations in NiO and in canted antiferromagnetic...

  16. Domain Specific Language for Magnetic Measurements at CERN

    CERN Document Server

    Petrone, C

    2009-01-01

    CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 20 Member States. Its main purpose is fundamental research in partcle physics, namely investigating what the Universe is made of and how it works. At CERN, the design and realization of the new particle accelerator, the Large Hadron Collider (LHC), has required a remarkable technological effort in many areas of engineering. In particular, the tests of LHC superconducting magnets disclosed new horizons to magnetic measurements. At CERN, the objectively large R&D effort of the Technolgy Department/Magnets, Superconductors and Cryostats (TE/MSC) group identified areas where further work is required in order to assist the LHC commissioning and start-up, to provide continuity in the instrumentation for the LHC magnets maintenance,...

  17. Magnetic domains in epitaxial (100) Fe thin films

    International Nuclear Information System (INIS)

    Florczak, J.M.; Dahlberg, E.D.; Ryan, P.J.; White, R.M.; Kuznia, J.N.; Wowchak, A.M.; Cohen, P.I.

    1989-01-01

    This paper discusses the investigation of the domain patterns of thin Fe films (10 nm) grown on In x Ga 1 - x As (0.09< x<0.25)/GaAs substrates by use of Kerr microscopy. For this investigation, two types of InGaAs buffer layers were prepared. One consisted of a single, thick InGaAs layer and the second composed of an InGaAs strained layer superlattice. Both were grown on (100) GaAs substrates. The study showed that many of the domain walls were approximately parallel to the easy axis of Fe for those films grown on the low x alloy, e.g. x = 0.1, InGaAs buffer layers

  18. Direct observation of magnetic domains by Kerr microscopy in a Ni-Mn-Ga magnetic shape-memory alloy

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Heczko, Oleg; Schaefer, R.

    2017-01-01

    Roč. 95, č. 14 (2017), s. 1-5, č. článku 144431. ISSN 2469-9950 R&D Projects: GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : shape memory * magnetic domains * Kerr microscopy * N-Mn-Ga alloy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  19. Magnetic structures of erbium under high pressure

    DEFF Research Database (Denmark)

    Kawano, S.; Lebech, B.; Achiwa, N.

    1993-01-01

    Neutron diffraction studies of the magnetic structures of erbium metal at 4.5 K and 11.5 kbar hydrostatic pressure have revealed that the transition to a conical structure at low temperatures is suppressed and that the cycloidal structure, with modulation vector Q congruent-to (2/7 2pi/c)c persists...

  20. The spin structure of magnetic nanoparticles and in magnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Disch, Sabrina

    2011-09-26

    The present thesis provides an extensive and original contribution to the investigation of magnetic nanoparticles regarding synthesis and structural characterization using advanced scattering methods in all length scales between the atomic and mesoscopic size range. Particular emphasis is on determination of the magnetic structure of single nanoparticles as well as preparation and characterization of higher dimensional assemblies thereof. The unique physical properties arising from the finite size of magnetic nanoparticles are pronounced for very small particle sizes. With the aim of preparing magnetic nanoparticles suitable for investigation of such properties, a micellar synthesis route for very small cobalt nanoparticles is explored. Cobalt nanoparticles with diameters of less than 3 nm are prepared and characterized, and routes for variation of the particle size are developed. The needs and limitations of primary characterization and handling of such small and oxidation-sensitive nanoparticles are highlighted and discussed in detail. Comprehensive structural and magnetic characterization is performed on iron oxide nanoparticles of {proportional_to} 10 nm in diameter. Particle size and narrow size distribution are determined with high precision. Investigation of the long range and local atomic structure reveals a particle size dependent magnetite - maghemite structure type with lattice distortions induced at the particle surface. The spatial magnetization distribution within these nanoparticles is determined to be constant in the particle core with a decrease towards the particle surface, thus indicating a magnetic dead layer or spin canting close to the surface. Magnetically induced arrangements of such nanoparticles into higher dimensional assemblies are investigated in solution and by deposition of long range ordered mesocrystals. Both cases reveal a strong dependence of the found structures on the nanoparticle shape (spheres, cubes, and heavily truncated

  1. Nanoscale thermoelectrical detection of magnetic domain wall propagation

    Czech Academy of Sciences Publication Activity Database

    Krzysteczko, P.; Wells, J.; Scarioni, A.F.; Šobáň, Zbyněk; Janda, Tomáš; Hu, X.; Saidl, Vít; Campion, R. P.; Mansell, R.; Lee, J.H.; Cowburn, R.P.; Němec, P.; Kazakova, O.; Wunderlich, Joerg; Schumacher, H.W.

    2017-01-01

    Roč. 95, č. 22 (2017), s. 1-6, č. článku 220410. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G EU Projects: European Commission(XE) 610115 - SC2 Institutional support: RVO:68378271 Keywords : microscope * driven * wire Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  2. Ultrathin magnetic structures IV applications of nanomagnetism

    CERN Document Server

    Heinrich, Bretislav

    2004-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. Volume III describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. The present volume (IV) deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is de...

  3. Ultrathin magnetic structures III fundamentals of nanomagnetism

    CERN Document Server

    Bland, JAC

    2004-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. This volume describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. Volume IV deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be ...

  4. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    DEFF Research Database (Denmark)

    Lenaerts, Tom; Ferkinghoff-Borg, Jesper; Stricher, Francois

    2008-01-01

    instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how...... distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located......Background: Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism...

  5. Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

    Science.gov (United States)

    Fishman, Randy S.

    2018-01-01

    Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.

  6. Structure and dynamics of the human pleckstrin DEP domain: distinct molecular features of a novel DEP domain subfamily.

    Science.gov (United States)

    Civera, Concepcion; Simon, Bernd; Stier, Gunter; Sattler, Michael; Macias, Maria J

    2005-02-01

    Pleckstrin1 is a major substrate for protein kinase C in platelets and leukocytes, and comprises a central DEP (disheveled, Egl-10, pleckstrin) domain, which is flanked by two PH (pleckstrin homology) domains. DEP domains display a unique alpha/beta fold and have been implicated in membrane binding utilizing different mechanisms. Using multiple sequence alignments and phylogenetic tree reconstructions, we find that 6 subfamilies of the DEP domain exist, of which pleckstrin represents a novel and distinct subfamily. To clarify structural determinants of the DEP fold and to gain further insight into the role of the DEP domain, we determined the three-dimensional structure of the pleckstrin DEP domain using heteronuclear NMR spectroscopy. Pleckstrin DEP shares main structural features with the DEP domains of disheveled and Epac, which belong to different DEP subfamilies. However, the pleckstrin DEP fold is distinct from these structures and contains an additional, short helix alpha4 inserted in the beta4-beta5 loop that exhibits increased backbone mobility as judged by NMR relaxation measurements. Based on sequence conservation, the helix alpha4 may also be present in the DEP domains of regulator of G-protein signaling (RGS) proteins, which are members of the same DEP subfamily. In pleckstrin, the DEP domain is surrounded by two PH domains. Structural analysis and charge complementarity suggest that the DEP domain may interact with the N-terminal PH domain in pleckstrin. Phosphorylation of the PH-DEP linker, which is required for pleckstrin function, could regulate such an intramolecular interaction. This suggests a role of the pleckstrin DEP domain in intramolecular domain interactions, which is distinct from the functions of other DEP domain subfamilies found so far.

  7. Structural alloys for high field superconducting magnets

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4 0 K and by rate effects associated with adiabatic heating during the tests. 46 refs

  8. Influence of boundary geometry in domain wall propagation in magnetic films with asymmetric holes: Micromagnetic calculations

    International Nuclear Information System (INIS)

    Alija, A; Sobrado, I; Rodriguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I; Parrondo, J M R

    2010-01-01

    Micromagnetic simulations have been performed in uniaxial magnetic films with 2D array of asymmetric arrow shape holes. In order to understand the asymmetric pinning potential created by the holes, different boundary geometries conditions are used on the simulations. The depinning fields for forward and backward domain wall propagation have been calculated by the analysis of the energy landscapes as a function of the domain wall position. Domain wall depinning occurs preferentially at the free ends of the domain wall at the film boundaries. We have found that the domain wall propagation is different at the top/bottom boundaries of the simulated film which can be understood in terms of the magnetostatic energy and the chirality of the domain wall.

  9. Magnetic scanning gate microscopy of a domain wall nanosensor using microparticle probe

    Energy Technology Data Exchange (ETDEWEB)

    Corte-León, H., E-mail: hector.corte@npl.co.uk [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Gribkov, B. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Krzysteczko, P. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Marchi, F.; Motte, J.-F. [University of Grenoble Alpes, Inst. NEEL, Grenoble F-38042 (France); CNRS, Inst. NEEL, Grenoble F-38042 (France); Schumacher, H.W. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Antonov, V. [Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Kazakova, O. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom)

    2016-02-15

    We apply the magnetic scanning gate microscopy (SGM) technique to study the interaction between a magnetic bead (MB) and a domain wall (DW) trapped in an L-shaped magnetic nanostructure. Magnetic SGM is performed using a custom-made probe, comprising a hard magnetic NdFeB bead of diameter 1.6 µm attached to a standard silicon tip. The MB–DW interaction is detected by measuring changes in the electrical resistance of the device as a function of the tip position. By scanning at different heights, we create a 3D map of the MB–DW interaction and extract the sensing volume for different widths of the nanostructure's arms. It is shown that for 50 nm wide devices the sensing volume is a cone of 880 nm in diameter by 1.4 µm in height, and reduces down to 800 nm in height for 100 nm devices with almost no change in its diameter. - Highlights: • AFM tips with a magnetic bead attached used to test interaction with domain wall. • Domain wall inside a nanostructure affect the electrical resistance. • Recording electrical resistance while scanning with modified AFM probe. • Change of resistance as a function of the position of the magnetic bead. • This allows comparing different devices in a reproducible and controllable way.

  10. Structure and evolution of N-domains in AAA metalloproteases.

    Science.gov (United States)

    Scharfenberg, Franka; Serek-Heuberger, Justyna; Coles, Murray; Hartmann, Marcus D; Habeck, Michael; Martin, Jörg; Lupas, Andrei N; Alva, Vikram

    2015-02-27

    Metalloproteases of the AAA (ATPases associated with various cellular activities) family play a crucial role in protein quality control within the cytoplasmic membrane of bacteria and the inner membrane of eukaryotic organelles. These membrane-anchored hexameric enzymes are composed of an N-terminal domain with one or two transmembrane helices, a central AAA ATPase module, and a C-terminal Zn(2+)-dependent protease. While the latter two domains have been well studied, so far, little is known about the N-terminal regions. Here, in an extensive bioinformatic and structural analysis, we identified three major, non-homologous groups of N-domains in AAA metalloproteases. By far, the largest one is the FtsH-like group of bacteria and eukaryotic organelles. The other two groups are specific to Yme1: one found in plants, fungi, and basal metazoans and the other one found exclusively in animals. Using NMR and crystallography, we determined the subunit structure and hexameric assembly of Escherichia coli FtsH-N, exhibiting an unusual α+β fold, and the conserved part of fungal Yme1-N from Saccharomyces cerevisiae, revealing a tetratricopeptide repeat fold. Our bioinformatic analysis showed that, uniquely among these proteins, the N-domain of Yme1 from the cnidarian Hydra vulgaris contains both the tetratricopeptide repeat region seen in basal metazoans and a region of homology to the N-domains of animals. Thus, it is a modern-day representative of an intermediate in the evolution of animal Yme1 from basal eukaryotic precursors. Copyright © 2015. Published by Elsevier Ltd.

  11. Direct observation of stochastic domain-wall depinning in magnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Im, Mi-Young; Bocklage, Lars; Fischer, Peter; Meier, Guido

    2008-11-01

    The stochastic field-driven depinning of a domain wall pinned at a notch in a magnetic nanowire is directly observed using magnetic X-ray microscopy with high lateral resolution down to 15 nm. The depinning-field distribution in Ni{sub 80}Fe{sub 20} nanowires considerably depends on the wire width and the notch depth. The difference in the multiplicity of domain-wall types generated in the vicinity of a notch is responsible for the observed dependence of the stochastic nature of the domain wall depinning field on the wire width and the notch depth. Thus the random nature of the domain wall depinning process is controllable by an appropriate design of the nanowire.

  12. Domain wall oscillations induced by spin torque in magnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sbiaa, R., E-mail: rachid@squ.edu.om [Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Chantrell, R. W. [Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2015-02-07

    Using micromagnetic simulations, the effects of the non-adiabatic spin torque (β) and the geometry of nanowires on domain wall (DW) dynamics are investigated. For the case of in-plane anisotropy nanowire, it is observed that the type of DW and its dynamics depends on its dimension. For a fixed length, the critical switching current decreases almost exponentially with the width W, while the DW speed becomes faster for larger W. For the case of perpendicular anisotropy nanowire, it was observed that DW dynamics depends strongly on β. For small values of β, oscillations of DW around the center of nanowire were revealed even after the current is switched off. In addition to nanowire geometry and intrinsic material properties, β could provide a way to control DW dynamics.

  13. Feature extraction for magnetic domain images of magneto-optical recording films using gradient feature segmentation

    International Nuclear Information System (INIS)

    Quanqing, Zhu.; Xinsai, Wang; Xuecheng, Zou; Haihua, Li; Xiaofei, Yang

    2002-01-01

    In this paper, we present a method to realize feature extraction on low contrast magnetic domain images of magneto-optical recording films. The method is based on the following three steps: first, Lee-filtering method is adopted to realize pre-filtering and noise reduction; this is followed by gradient feature segmentation, which separates the object area from the background area; finally the common linking method is adopted and the characteristic parameters of magnetic domain are calculated. We describe these steps with particular emphasis on the gradient feature segmentation. The results show that this method has advantages over other traditional ones for feature extraction of low contrast images

  14. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian, E-mail: n.sun@neu.edu [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Peng, Bin; Liu, Ming, E-mail: mingliu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Xi' an Jiaotong University, Xi' an 710049 (China); Jiao, Jie; Luo, Haosu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Budil, David [Department of Chemistry, Northeastern University, Boston, Massachusetts 02115 (United States); Jones, John G.; Howe, Brandon M.; Brown, Gail J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  15. Magnetic structure of holmium-yttrium superlattices

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Cowley, R.A.

    1993-01-01

    We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show...... that the superlattices have high crystallographic integrity: the structural coherence length parallel to the growth direction is typically almost-equal-to 2000 angstrom, while the interfaces between the two elements are well defined and extend over approximately four lattice planes. The magnetic structures were...... determined using neutron-scattering techniques. The moments on the Ho3+ ions in the superlattices form a basal-plane helix. From an analysis of the superlattice structure factors of the primary magnetic satellites, we are able to determine separately the contributions made by the holmium and yttrium...

  16. Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires

    International Nuclear Information System (INIS)

    Zhukova, V.; Korchuganova, O.A.; Aleev, A.A.; Tcherdyntsev, V.V.; Churyukanova, M.; Medvedeva, E.V.; Seils, S.; Wagner, J.; Ipatov, M.; Blanco, J.M.; Kaloshkin, S.D.; Aronin, A.; Abrosimova, G.; Orlova, N.

    2017-01-01

    Highlights: • High domain wall mobility of Fe-Ni-based microwires. • Enhancement of domain wall velocity and mobility in Fe-rich microwires after annealing. • Observation of areas enriched by Si and depleted by B after annealing. • Phase separation in annealed Fe-Ni based microwires in metallic nucleus and near the interface layer. - Abstract: We studied the magnetic properties and domain wall (DW) dynamics of Fe 47.4 Ni 26.6 Si 11 B 13 C 2 and Fe 77.5 Si 7.5 B 15 microwires. Both samples present rectangular hysteresis loop and fast magnetization switching. Considerable enhancement of DW velocity is observed in Fe 77.5 Si 7.5 B 15 , while DW velocity of samples Fe 47.4 Ni 26.6 Si 11 B 13 C 2 is less affected by annealing. The other difference is the magnetic field range of the linear region on dependence of domain wall velocity upon magnetic field: in Fe 47.4 Ni 26.6 Si 11 B 13 C 2 sample is considerably shorter and drastically decreases after annealing. We discussed the influence of annealing on DW dynamics considering different magnetoelastic anisotropy of studied microwires and defects within the amorphous state in Fe 47.4 Ni 26.6 Si 11 B 13 C 2 . Consequently we studied the structure of Fe 47.4 Ni 26.6 Si 11 B 13 C 2 sample using X-ray diffraction and the atom probe tomography. The results obtained using the atom probe tomography supports the formation of the B-depleted and Si-enriched precipitates in the metallic nucleus of Fe-Ni based microwires.

  17. Crystal Structure of the Marburg Virus VP35 Oligomerization Domain

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Jessica F.; Kirchdoerfer, Robert N.; Urata, Sarah M.; Li, Sheng; Tickle, Ian J.; Bricogne, Gérard; Saphire, Erica Ollmann (Scripps); (Globel Phasing); (UCSD)

    2016-11-09

    ABSTRACT

    Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (generaMarburgvirusandEbolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOV VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV.

    IMPORTANCEMarburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the

  18. Magnetic field control of 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign domain wall resistance

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Roya, E-mail: royamajidi@gmail.com [Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, 16788-15811 Tehran (Iran, Islamic Republic of)

    2012-10-01

    In the present work, we have compared the resistance of the 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Neel-type domain walls between two domains whose magnetization differs by angle of 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign are considered. The results indicate that the resistance of the 360 Degree-Sign DW is more considerable than that of the 90 Degree-Sign and 180 Degree-Sign DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.

  19. Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires

    Science.gov (United States)

    Zhukova, V.; Korchuganova, O. A.; Aleev, A. A.; Tcherdyntsev, V. V.; Churyukanova, M.; Medvedeva, E. V.; Seils, S.; Wagner, J.; Ipatov, M.; Blanco, J. M.; Kaloshkin, S. D.; Aronin, A.; Abrosimova, G.; Orlova, N.; Zhukov, A.

    2017-07-01

    We studied the magnetic properties and domain wall (DW) dynamics of Fe47.4Ni26.6Si11B13C2 and Fe77.5Si7.5B15 microwires. Both samples present rectangular hysteresis loop and fast magnetization switching. Considerable enhancement of DW velocity is observed in Fe77.5Si7.5B15, while DW velocity of samples Fe47.4Ni26.6Si11B13C2 is less affected by annealing. The other difference is the magnetic field range of the linear region on dependence of domain wall velocity upon magnetic field: in Fe47.4Ni26.6Si11B13C2 sample is considerably shorter and drastically decreases after annealing. We discussed the influence of annealing on DW dynamics considering different magnetoelastic anisotropy of studied microwires and defects within the amorphous state in Fe47.4Ni26.6Si11B13C2. Consequently we studied the structure of Fe47.4Ni26.6Si11B13C2 sample using X-ray diffraction and the atom probe tomography. The results obtained using the atom probe tomography supports the formation of the B-depleted and Si-enriched precipitates in the metallic nucleus of Fe-Ni based microwires.

  20. Current-supported domain wall movement to the target spot with a magnetic field

    International Nuclear Information System (INIS)

    Nam, Chunghee; Jang, Y.M.; Lee, K.S.; Lee, S.K.; Kim, T.W.; Cho, B.K.

    2007-01-01

    Current-driven domain wall (DW) motion in a submicron-size magnetic strip, which consists of Cu/IrMn/NiFe/Cu/NiFe/Cu pseudo-spin-valve with natural defects, was investigated by measuring the giant-magnetoresistance signal. The magnetic DW movement was induced by the injection of a high current density of 4x10 7 A/cm 2 . It was also found that a DW can be manipulated in more convenient way by the application of both current and magnetic field at the same time

  1. Study on the coherence degree of magnetization reversal in Permalloy single-domain nano-ellipses

    Energy Technology Data Exchange (ETDEWEB)

    Júnior, D.S. Vieira [Departamento Acadêmico de Matemática, Física, e Estatística, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais – Campus Rio Pomba, Rio Pomba, Minas Gerais 36180-000 (Brazil); Leonel, S.A. [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Toscano, D., E-mail: danilotoscano@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Sato, F.; Coura, P.Z.; Dias, R.A. [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil)

    2017-03-15

    Numerical simulations have been performed to study the magnetization reversal in Permalloy nano-ellipses, under combined in-plane magnetic fields along the longitudinal and the transverse directions. We have considered nano-ellipses with two different aspect ratios and five thicknesses: 220×80×t nm{sup 3} and 70×50×t nm{sup 3}, where t ranging from 5 to 25 nm in steps of 5 nm. We found that the mechanism of magnetization reversal is not only dependent on the parameters of the magnetic field pulse but also related to the ellipse dimensions. It is known that the reversal time is related to the mechanism behind the magnetization reversal. In particular, ultrafast magnetization reversals occur by coherent rotation, when applying a field oriented mainly perpendicular to the initial magnetization. In order to evaluate the degree of coherence of the magnetization reversal we have introduced a quantity called “coherence index”. Besides complementing the previous studies by including the effect of the thickness on the magnetization reversal, our results indicate that it is possible to obtain magnetization reversals with high degree of coherence in small nano-ellipses by adjusting the geometric factors of the ellipse and the parameters of the magnetic field pulse simultaneously. - Highlights: • Magnetization reversals in single-domain nano-ellipses were investigated. • A parameter to evaluate the degree of coherence of the magnetization reversal was proposed. • A higher coherence index indicates a complete, coherent, rotation of the magnetization.

  2. Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator: Fate of Extinct Weyl Electrons

    Directory of Open Access Journals (Sweden)

    Youhei Yamaji

    2014-05-01

    Full Text Available Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show that another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as an ingredient of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host the condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of in-gap states that are pinned at domain walls, theoretically resembling spin or charge solitons in polyacetylene, and protected as the edges of hidden one-dimensional weak Chern insulators characterized by a zero-dimensional class-A topological invariant, solves experimental puzzles observed in R_{2}Ir_{2}O_{7} with rare-earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization that enables magnetic control of electronic interface transports beyond the semiconductor paradigm.

  3. Confinement in F4 Exceptional Gauge Group Using Domain Structures

    Science.gov (United States)

    Rafibakhsh, Shahnoosh; Shahlaei, Amir

    2017-03-01

    We calculate the potential between static quarks in the fundamental representation of the F4 exceptional gauge group using domain structures of the thick center vortex model. As non-trivial center elements are absent, the asymptotic string tension is lost while an intermediate linear potential is observed. SU(2) is a subgroup of F4. Investigating the decomposition of the 26 dimensional representation of F4 to the SU(2) representations, might explain what accounts for the intermediate linear potential, in the exceptional groups with no center element.

  4. The retinal specific CD147 Ig0 domain: from molecular structure to biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Redzic, Jasmina S.; Armstrong, Geoffrey S.; Isern, Nancy G.; Jones, David N.M.; Kieft, Jeffrey S.; Eisenmesser, Elan Z.

    2011-06-18

    CD147 is a type I transmembrane protein that is involved in inflammatory diseases, cancer progression, and multiple human pathogens utilize CD147 for efficient infection. In several cancers, CD147 expression is so high that it is now used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified, differing in their number of immunoglobulin (Ig)-like domains. These include CD147 Ig1-Ig2 that is ubiquitously expressed in most tissues and CD147 Ig0-Ig1-Ig2 that is retinal specific and implicated in retinoblastoma. However, little is known in regard to the retinal specific CD147 Ig0 domain despite its potential role in retinoblastoma. Thus, here we have extensively characterized the CD147 Ig0 domain by elucidating its three-dimensional structure through crystallography and its solution behavior through several biophysical methods that include nuclear magnetic resonance. Furthermore, we have utilized this data together with mutagenesis to probe the biological activity of CD147-containing proteins both with and without the CD147 Ig0 domain within several model cell lines. Our findings reveal that the CD147 Ig0 domain is a potent stimulator of interleukin-6, which is a well-known contributor to retinoblastoma and suggest that the CD147 Ig0 domain has its own receptor distinct from that of the other CD147 Ig-like domains, CD147 Ig1-Ig2. Furthermore, we show that the CD147 Ig0 dimer is the functional unit required for activity and can be disrupted by a single point mutation.

  5. Magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure: Monte Carlo study

    Science.gov (United States)

    Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.

    2017-02-01

    We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.

  6. Study of magnetic domain evolution in an auxetic plane of Galfenol using Kerr microscopy

    Science.gov (United States)

    Raghunath, Ganesh; Flatau, Alison B.

    2015-05-01

    Galfenol (FexGa100-x), a magnetostrictive alloy (3/2λ 110-400 ppm) of Iron and Gallium exhibits an in-plane auxetic response in the ⟨110⟩ crystallographic direction. Negative Poisson's ratios have been observed in response to application of stress fields, where values of as low as -0.7 have been reported for compositions of greater than roughly 20% Ga [Zhang et al., J. Appl. Phys. 108(2), 023513 (2010)] and in response to application of magnetic fields, where values of as low as -2.5 have been reported to be expected for compositions of less than roughly 20% Ga [G. Raghunath and A. B. Flatau, IEEE Trans. Magn. (in press)]. Several models have been proposed to understand these two distinct phenomena. Galfenol samples with less than 20% Ga also exhibit an unusual response to an increasing magnetic field applied along the ⟨110⟩ direction. The longitudinal strain which increases initially with applied field experiences a dip (until ˜10 mT) before increasing again to reach saturation. The transverse strain increases and reaches a maximum value (at the same field of ˜10 mT) and then drops from the maximum by 5%-10% as magnetic saturation is approached [G. Raghunath and A. B. Flatau, IEEE Trans. Magn. (in press)].This work deals with discussing the evolution of magnetic domains in a 16 at. % Ga single crystal Galfenol sample when subjected to magnetic fields in the ⟨110⟩ direction in the (100) plane. The magnetic domains on the surface of mechanically polished Galfenol samples were imaged using Magneto-Optic Kerr Effect microscopy. Simultaneously, the strains along the longitudinal and transverse ⟨110⟩ directions were recorded using a bi-directional strain gauge rosette mounted on the unpolished bottom surface of the planar samples. The energy from the applied magnetic field is expected to grow the ⟨110⟩ oriented domains at the expense of domains oriented along all other directions. But since the plane has an easy ⟨100⟩ axis, we expect the

  7. Current-induced domain wall motion in magnetic nanowires with spatial variation

    International Nuclear Information System (INIS)

    Ieda, Jun'ichi; Sugishita, Hiroki; Maekawa, Sadamichi

    2010-01-01

    We model current-induced domain wall motion in magnetic nanowires with the variable width. Employing the collective coordinate method we trace the wall dynamics. The effect of the width modulation is implemented by spatial dependence of an effective magnetic field. The wall destination in the potential energy landscape due to the magnetic anisotropy and the spatial nonuniformity is obtained as a function of the current density. For a nanowire of a periodically modulated width, we identify three (pinned, nonlinear, and linear) current density regimes for current-induced wall motion. The threshold current densities depend on the pulse duration as well as the magnitude of wire modulation. In the nonlinear regime, application of ns order current pulses results in wall displacement which opposes or exceeds the prediction of the spin transfer mechanism. The finding explains stochastic nature of the domain wall displacement observed in recent experiments.

  8. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    Science.gov (United States)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  9. Collective coordinate models of domain wall motion in perpendicularly magnetized systems under the spin hall effect and longitudinal fields

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, S. Ali, E-mail: ali.nasseri@isi.it [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Politecnico di Torino - Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Moretti, Simone; Martinez, Eduardo [University of Salamanca - Cardenal Plá y Deniel, 22, 37008 Salamanca (Spain); Serpico, Claudio [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); University of Naples Federico II - Via Claudio 21, 80125 Napoli (Italy); Durin, Gianfranco [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Istituto Nazionale di Ricerca Metrologica (INRIM) - Strada delle Cacce 91, 10135 Torino (Italy)

    2017-03-15

    Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work. - Highlights: • Moving DWs in PMA material maintain their structure under longitudinal in-plane fields. • As a result of longitudinal fields, magnetization in the domains becomes canted. • A critical longitudinal field was identified and correlated with the DMI strength. • A canted collective coordinate model was developed for DW motion under in-plane fields.

  10. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  11. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain

    International Nuclear Information System (INIS)

    Yang, Bingxin; Yuan, Min; Ma, Yide; Zhang, Jiuwen; Zhan, Kun

    2015-01-01

    Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images. In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l 1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm. Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods. The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented

  12. Characterization and modeling of magnetic domain wall dynamics using reconstituted hysteresis loops from Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Ducharne, B., E-mail: Benjamin.ducharne@insa-lyon.fr; Le, M.Q.; Sebald, G.; Cottinet, P.J.; Guyomar, D.; Hebrard, Y.

    2017-06-15

    Highlights: • Barkhausen noise energy versus excitation field hysteresis cycles MBN{sub energy}(H). • Difference in the dynamics of the induction field B and of the MBN{sub energy}. • Dynamic behavior of MBN{sub energy}(H) cycles is first-order. • Dynamic behavior of B(H) cycles is non-entire order. - Abstract: By means of a post-processing technique, we succeeded in plotting magnetic Barkhausen noise energy hysteresis cycles MBN{sub energy}(H). These cycles were compared to the usual hysteresis cycles, displaying the evolution of the magnetic induction field B versus the magnetic excitation H. The divergence between these comparisons as the excitation frequency was increased gave rise to the conclusion that there was a difference in the dynamics of the induction field and of the MBN{sub energy} related to the domain wall movements. Indeed, for the MBN{sub energy} hysteresis cycle, merely the domain wall movements were involved. On the other hand, for the usual B(H) cycle, two dynamic contributions were observed: domain wall movements and diffusion of the magnetic field excitation. From a simulation point of view, it was demonstrated that over a large frequency bandwidth a correct dynamic behavior of the domain wall movement MBN{sub energy}(H) cycle could be taken into account using first-order derivation whereas fractional orders were required for the B(H) cycles. The present article also gives a detailed description of how to use the developed process to obtain the MBN{sub energy}(H) hysteresis cycle as well as its evolution as the frequency increases. Moreover, this article provides an interesting explanation of the separation of magnetic loss contributions through a magnetic sample: a wall movement contribution varying according to first-order dynamics and a diffusion contribution which in a lump model can be taken into account using fractional order dynamics.

  13. The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures

    Science.gov (United States)

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influence the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.

  14. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

    Energy Technology Data Exchange (ETDEWEB)

    Graf von der Pahlen, J.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-06-15

    The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.

  15. Solution structure of a DNA mimicking motif of an RNA aptamer against transcription factor AML1 Runt domain.

    Science.gov (United States)

    Nomura, Yusuke; Tanaka, Yoichiro; Fukunaga, Jun-ichi; Fujiwara, Kazuya; Chiba, Manabu; Iibuchi, Hiroaki; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi

    2013-12-01

    AML1/RUNX1 is an essential transcription factor involved in the differentiation of hematopoietic cells. AML1 binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. In a previous study, we obtained RNA aptamers against the AML1 Runt domain by systematic evolution of ligands by exponential enrichment and revealed that RNA aptamers exhibit higher affinity for the Runt domain than that for RDE and possess the 5'-GCGMGNN-3' and 5'-N'N'CCAC-3' conserved motif (M: A or C; N and N' form Watson-Crick base pairs) that is important for Runt domain binding. In this study, to understand the structural basis of recognition of the Runt domain by the aptamer motif, the solution structure of a 22-mer RNA was determined using nuclear magnetic resonance. The motif contains the AH(+)-C mismatch and base triple and adopts an unusual backbone structure. Structural analysis of the aptamer motif indicated that the aptamer binds to the Runt domain by mimicking the RDE sequence and structure. Our data should enhance the understanding of the structural basis of DNA mimicry by RNA molecules.

  16. Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures

    International Nuclear Information System (INIS)

    Gurieva, Tatiana

    2016-05-01

    This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.

  17. Structure and Evolution of Magnetic Cataclysmic Variables

    Science.gov (United States)

    Andronov, I. L.

    2007-06-01

    Theoretical models and observational results are reviewed. The general picture of the structure and evolution of cataclysmic variables (CV) is presented, together with a brief discussion of additional mechanisms of intrinsic variability of the components and magnetic activity of secondaries. Special attention is paid to the accretion structures - flow, disk, column - which are affected by the magnetic field of the white dwarf. The mass and angular momentum transfer in asynchronous MCVs leads to a "propeller" stage of rapid synchronization, after which the "idlings" of the white dwarf are altered to "swingings" with a characteristic time of century(ies). The disk- magnetic field interaction leads to precession of the white dwarf, which causes quasi-periodic changes of the equilibrium rotational period. "Shot noise" in cataclysmic variables is discussed based on one-bandpass and multi-color observations.

  18. Dipolar vortex structures in magnetized rotating plasma

    International Nuclear Information System (INIS)

    Liu Jixing

    1990-01-01

    Dipolar solitary vortices of both electrostatic and electromagnetic character in low-β, in homogeneous rotating plasma confined in a constant external magnetic field were systematically presented. The main stimulus to this investigation is the expectation to apply this coherent structure as a candidate constituent of plasma turbulance to understand the anomalous transport phenomena in confined plasma. The electrostatic vortices have similar structure and properties as the Rossby vortices in rotating fluids, the electromagnetic vortices obtained here have no analogy in hydrodynamics and hence are intrinsic to magnetized plasma. It is valuably remarked that the intrinsic electromagnetic vortices presented here have no discontinuity of perturbed magnetic field δB and parallel current j(parallel) on the border of vortex core. The existence region of the new type of vortex is found much narrower than the Rossby type one. (M.T.)

  19. Structure requirements for magnetic energy storage devices

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Huang, X.

    1993-01-01

    Large variety of large and small magnetic energy storage systems have been designed and analyzed in the last 20 years. Cryoresistive and superconductive energy storage (SMES) magnets have been considered for applications such as load leveling for electric utilities, pulsed storage for electromagnetic launchers and accelerator devices, and space borne superconductive energy storage systems. Large SMES are supported by a combination of cold and warm structure while small SMES are supported only by cold structure. In this article we provide analytical and numerical tools to estimate the structure requirements as function of the stored energy and configuration. Large and small solenoidal and toroidal geometries are used. Considerations for both warm and cold structure are discussed. Latest design concepts for both large and small units are included. (orig.)

  20. Time-resolved imaging of domain pattern destruction and recovery via nonequilibrium magnetization states

    Science.gov (United States)

    Wessels, Philipp; Ewald, Johannes; Wieland, Marek; Nisius, Thomas; Vogel, Andreas; Viefhaus, Jens; Meier, Guido; Wilhein, Thomas; Drescher, Markus

    2014-11-01

    The destruction and formation of equilibrium multidomain patterns in permalloy (Ni80Fe20 ) microsquares has been captured using pump-probe x-ray magnetic circular dichroism (XMCD) spectromicroscopy at a new full-field magnetic transmission soft x-ray microscopy endstation with subnanosecond time resolution. The movie sequences show the dynamic magnetization response to intense Oersted field pulses of approximately 200-ps root mean square (rms) duration and the magnetization reorganization to the ground-state domain configuration. The measurements display how a vortex flux-closure magnetization distribution emerges out of a nonequilibrium uniform single-domain state. During the destruction of the initial vortex pattern, we have traced the motion of the central vortex core that is ejected out of the microsquare at high velocities exceeding 1 km/s. A reproducible recovery into a defined final vortex state with stable chirality and polarity could be achieved. Using an additional external bias field, the transient reversal of the square magnetization direction could be monitored and consistently reproduced by micromagnetic simulations.

  1. Magnetic force microscopy reveals meta-stable magnetic domain states that prevent reliable absolute palaeointensity experiments

    NARCIS (Netherlands)

    de Groot, Lennart; Fabian, Karl; Bakelaar, Iman A.; Dekkers, Mark J.

    2014-01-01

    Obtaining reliable estimates of the absolute palaeointensity of the Earth's magnetic field is notoriously difficult. The heating of samples in most methods induces magnetic alteration-a process that is still poorly understood, but prevents obtaining correct field values. Here we show induced changes

  2. Structural and magnetic characterization of martensitic Ni-Mn-Ga thin films deposited on Mo foil

    International Nuclear Information System (INIS)

    Chernenko, V.A.; Anton, R. Lopez; Kohl, M.; Barandiaran, J.M.; Ohtsuka, M.; Orue, I.; Besseghini, S.

    2006-01-01

    Three martensitic Ni 51.4 Mn 28.3 Ga 20.3 thin films sputter-deposited on a Mo foil were investigated with regard to their crystal and magnetic domain structures, as well as their magnetic and magnetostrain properties. The film thicknesses, d, were 0.1, 0.4 and 1.0μm. X-ray and electron diffraction patterns revealed a tetragonal modulated martensitic phase (10M) in the films. The surface topography and micromagnetic structure were studied by scanning probe microscopy. A maze magnetic domain structure featuring a large out-of-plane magnetization component was found in all films. The domain width, δ, depends on the film thickness as δ∼d. The thickness dependencies of the saturation magnetization, saturation magnetic field and magnetic anisotropy were clarified. Beam cantilever tests on the Ni-Mn-Ga/Mo composite as a function of magnetic field showed reversible strains, which are larger than ordinary magnetostriction

  3. Highly ordered FEPT and FePd magnetic nano-structures: Correlated structural and magnetic studies

    International Nuclear Information System (INIS)

    Lukaszew, Rosa Alejandra; Cebollada, Alfonso; Clavero, Cesar; Garcia-Martin, Jose Miguel

    2006-01-01

    The micro-structure of epitaxial FePt and FePd films grown on MgO (0 0 1) substrates is correlated to their magnetic behavior. The FePd films exhibit high chemical ordering and perpendicular magnetic anisotropy. On the other hand FePt films exhibit low chemical ordering, with nano-grains oriented in two orthogonal directions, forcing the magnetization to remain in the plane of the films

  4. X ray topographic study of defects and magnetic domains in rare earth iron garnets

    International Nuclear Information System (INIS)

    Mathiot, Alain.

    1975-11-01

    X ray topographs allow simultaneous observations of crystalline defects and magnetic domain walls (except 180 deg ones). The easy magnetization directions of rare earth iron garnets are and the equilibrium texture of (110) silices is limited by a rectangular array of 71 deg and 109 deg walls. Since the anisotropy and magnetostriction of the choosen compounds (TbIG and DyIG) increase sharply when the temperature is lowered, the influence of these parameters has been studied between 300K and 4.2K. Because of the increase of spontaneous magnetization and anisotropy, the domain number increases at low temperatures and the texture becomes less sensitive to the crystal imperfections. Besides the 109 deg walls disappear almost completely from the pattern; this has been shown to be due to the respective values of the wall energies, and particularly to the influence of the K 2 anisotropy constant. The contrasts observed on the topographs increase also sharply, because of the high values of the lambda 111 coefficient of spontaneous magnetostriction at low temperatures. A splitting of the Brugg reflection peak into two, below 60K for TbIG, each part corresponding to one family of domains, allowed a direct of lambda 111 . The garnets are materials chosen to study domain walls because of the large range of the anisotropy and magnetostriction values obtained in those compounds [fr

  5. Building and Using Object-Oriented Frameworks for Semi-Structures Domains: The Sales Promotion Domain as Example

    NARCIS (Netherlands)

    A. Dalebout; J. van Hillegersberg (Jos); B. Wierenga (Berend)

    1998-01-01

    textabstractObject-oriented (00) frameworks are considered an important step forward in developing software applications efficiently. Success of frameworks has however predominantly been limited to structured domains.This paper describes a method for developing 00 domainframeworks for

  6. Magnetic domain-wall motion study under an electric field in a Finemet{sup ®} thin film on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ngo Thi [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Mercone, Silvana, E-mail: silvana.mercone@univ-paris13.fr [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Moulin, Johan [Institut d' Electronique Fondamentale, UMR 8622 Université Paris Sud/CNRS, Orsay (France); Bahoui, Anouar El; Faurie, Damien; Zighem, Fatih; Belmeguenai, Mohamed; Haddadi, Halim [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France)

    2015-01-01

    We study the influence of applied in-plane elastic strains on the static magnetic configuration of a 530 nm magnetostrictive FeCuNbSiB (Finemet{sup ®}) thin film. The in-plane strains are induced via the application of a voltage to a piezoelectric actuator on which the film/substrate system was glued. A quantitative characterization of the voltage dependence of the induced-strain at the surface of the film was performed using a digital image correlation technique. Magnetic Force Microscopy (MFM) images at remanence (H=0 Oe and U=0 V) clearly reveal the presence of weak stripe domains. The effect of the voltage-induced strain shows the existence of a voltage threshold value for the strike configuration break. For a maximum strain of ε{sub XX}∼0.5×10{sup −3} we succeed in destabilizing the stripes configuration helping the setting up of a complete homogeneous magnetic pattern. - Highlights: • Elastic strain effect on the magnetic domain structure of a Finemet/Kapton is investigated. • External loading is applied thanks to a piezo-actuator on which the sample is glued. • The amount of strains was measured by the Digital Image Correlation technique. • Magnetic Force Microscopy showed high mobility of magnetic stripes domains. • Bending, curving and branching of domains go into maze-like pattern.

  7. Logic and memory concepts for all-magnetic computing based on transverse domain walls

    International Nuclear Information System (INIS)

    Vandermeulen, J; Van de Wiele, B; Dupré, L; Van Waeyenberge, B

    2015-01-01

    We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation. (paper)

  8. Magnetic structure of deformation-induced shear bands in amorphous Fe{sub 80}B{sub 16}Si{sub 4} observed by magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.W. [Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hawley, M.E. [Materials Science and Technology Division, (MST-8), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Markiewicz, D.J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Spaepen, F.; Barth, E.P. [Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    1999-04-01

    Processing-induced magnetic structures in amorphous metallic alloys are of interest because of their impact on the performance of materials used in electric device applications. Plastic deformation associated with cutting or bending the material to the desired shape occurs through the formation of shear bands. The stress associated with these shear bands induces magnetic domains that can lead to power losses through interaction with the fields and currents involved in normal device operation. These domains have been studied previously using a variety of techniques capable of imaging magnetic domain structures. In an effort to better characterize and understand these issues, we have applied atomic and magnetic force microscopy to these materials to provide three-dimensional nanometer-scale topographic resolution and micrometer-scale magnetic resolution. {copyright} {ital 1999 American Institute of Physics.}

  9. Investigation of ultrasonic wave influence on magnetic alignment in layered structure 20x[Fe(20 Angstroem)/Cr(12 Angstroem)]/MgO

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Proglyado, V.V.; Khajdukov, Yu.N.; Gavrilov, V.N.; Raitman, E.; Bottyan, L.; Nagy, D.L.

    2007-01-01

    The layered structure 20x[Fe(20 Angstroem)/Cr(12 Angstroem)]/MgO, excited by ultrasonic wave, was investigated using polarized neutron reflectometry. Magnetic domains vibrations and reduction of their effective size in magnetic field of small strength were observed. In the magnetic field close to saturation the magnetic lattice is formed in the layered structure. Interplane distance of the lattice changes with increase of the magnetic field strength as well as with ultrasonic excitation of the structure

  10. Domain wall manipulation in magnetic nanotubes induced by electric current pulses

    International Nuclear Information System (INIS)

    Otálora, J A; López-López, J A; Landeros, P; Núñez, A S

    2012-01-01

    We propose that the injection of electric currents can be used to independently manipulate the position and chirality of vortex-like domain walls in metallic ferromagnetic nanotubes. We support this proposal upon theoretical and numerical assessment of the magnetization dynamics driven by such currents. We show that proper interplay between the tube geometry, magnitude of the electric current and the duration of a current pulse, can be used to manipulate the position, velocity and chirality of a vortex domain wall. Our calculations suggest that domain wall velocities greater than 1 km s -1 can be achieved for tube diameters of the order of 30 nm and increasing with it. We also find that the transition from steady to precessional domain wall motion occurs for very high electric current densities, of the order of 10 13 A m -2 . Furthermore, the great stability displayed by such chiral magnetic configurations, and the reduced Ohmic loses provided by the current pulses, lead to highly reproducible and efficient domain wall reversal mechanisms.

  11. Frequency-domain analysis of resonant-type ring magnet power supplies

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Reiniger, K.W.

    1993-01-01

    For fast-cycling synchrotrons, resonant-type ring magnet power supplies are commonly used to provide a dc-biased ac excitation for the ring magnets. Up to the present, this power supply system has been analyzed using simplified analytical approximation, namely assuming the resonant frequency of the ring magnet network is fixed and equal to the accelerator frequency. This paper presents a frequency-domain analysis technique for a more accurate analysis of resonant-type ring magnet power supplies. This approach identifies that, with the variation of the resonant frequency, the operating conditions of the power supply changes quite dramatically because of the high Q value of the resonant network. The analytical results are verified, using both experimental results and simulation results

  12. Structure and hydration of membranes embedded with voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J

    2009-11-26

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.

  13. Structural analysis of suerconducting bending magnets

    International Nuclear Information System (INIS)

    Meuser, R.B.

    1980-05-01

    Mechanical stresses, displacements, and the effects of displacements upon aberrations of the magnetic field in the aperture have been calculated for a class of superconducting bending-magnet configurations. The analytical model employed for the coil is one in which elements are free to slide without restraint upon each other, and upon the surrounding structure. Coil configurations considered range from an idealized one in which the current density varies as cosine theta to more realistic ones consisting of regions of uniform current density. With few exceptions, the results for the more realistic coils closely match those of the cos theta coil

  14. Neutron scattering studies of modulated magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Soerensen, Steen

    1999-08-01

    This report describes investigations of the magnetic systems DyFe{sub 4}Al{sub 8} and MnSi by neutron scattering and in the former case also by X-ray magnetic resonant scattering. The report is divided into three parts: An introduction to the technique of neutron scattering with special emphasis on the relation between the scattering cross section and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering experiments using polarized beam technique is outlined. The second part describes neutron and X-ray scattering investigation of the magnetic structures of DyFe{sub 4}Al{sub 8}. The Fe sublattice of the compound order at 180 K in a cycloidal structure in the basal plane of the bct crystal structure. At 25 K the ordering of the Dy sublattice shows up. By the element specific technique of X-ray resonant magnetic scattering, the basal plane cycloidal structure was also found for the Dy sublattice. The work also includes neutron scattering studies of DyFe{sub 4}Al{sub 8} in magnetic fields up to 5 T applied along a <110> direction. The modulated structure at the Dy sublattice is quenched by a field lower than 1 T, whereas modulation is present at the Fe sublattice even when the 5 T field is applied. In the third part of the report, results from three small angle neutron experiments on MnSi are presented. At ambient pressure, a MnSi is known to form a helical spin density wave at temperature below 29 K. The application of 4.5 kbar pressure intended as hydrostatic decreased the Neel temperature to 25 K and changed the orientation of the modulation vector. To understand this reorientation within the current theoretical framework, anisotropic deformation of the sample crystal must be present. The development of magnetic critical scattering with an isotropic distribution of intensity has been studied at a level of detail higher than that of work found in the literature. Finally the potential of a novel polarization

  15. Method and apparatus for control of a magnetic structure

    Science.gov (United States)

    Challenger, Michael P.; Valla, Arthur S.

    1996-06-18

    A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.

  16. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Science.gov (United States)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  17. Solution structure of the human Grb7-SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2

    International Nuclear Information System (INIS)

    Ivancic, Monika; Daly, Roger J.; Lyons, Barbara A.

    2003-01-01

    The solution structure of the hGrb7-SH2 domain in complex with a ten amino acid phosphorylated peptide ligand representative of the erbB2 receptor tyrosine kinase (pY1139) is presented as determined by nuclear magnetic resonance methods. The hGrb7-SH2 domain structure reveals the Src homology 2 domain topology consisting of a central β-sheet capped at each end by an α-helix. The presence of a four residue insertion in the region between β-strand E and the EF loop and resulting influences on the SH2 domain/peptide complex structure are discussed. The binding conformation of the erbB2 peptide is in a β-turn similar to that found in phosphorylated tyrosine peptides bound to the Grb2-SH2 domain. To our knowledge this is only the second example of an SH2 domain binding its naturally occurring ligands in a turn, instead of extended, conformation. Close contacts between residues responsible for binding specificity in hGrb7-SH2 and the erbB2 peptide are characterized and the potential effect of mutation of these residues on the hGrb7-SH2 domain structure is discussed

  18. Color centers in KCN: a structural analysis of crystalline domains

    International Nuclear Information System (INIS)

    Carmo, L.C.S. do.

    1976-03-01

    Pure singlecrystals of KCN exposed to X-rays showed several color centers detected by EPR. The F center was identified through the correlation of its optical absorption band which satisfies the Ivey law for the KCN lattice parameter and the EPR spectrum typical of a center in an anionic site. Two other color centers were identified: N - 2 and HCN - . Two centers assigned to hydrogen atoms have their models proposed: U 2 and U 3 centers. Two other centers remain unidentified: an anionic and an extrinsic centers. The orthorhombic character of the N - 2 center EPR parameters allowed an structural analysis of the crystal line domains in the orthorhombic phase. The optical absorption spectrum of the HCN - center in KCl matrix was investigated and showed a set of resolved bands with a constant energy splitting; this splitting was associated to a vibrational mode of the excited state of this molecular ion. (author) [pt

  19. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    Science.gov (United States)

    Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng

    2013-01-01

    SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244

  20. Analysis and modelling of engineering structures in frequency domain

    International Nuclear Information System (INIS)

    Ishtev, K.; Bonev, Z.; Petrov, P.; Philipov, P.

    1987-01-01

    This paper deals with some possible applications for modelling and analysis of engineering structures, basing on technique, mentioned above. The governing system of equations is written by using frequency domain approach since elemination technique has computational significance in this field. Modelling is made basing on the well known relationship Y(jw) = W(jw) * X(jw). Here X(jw) is a complex Fourier spectra associated with the imput signals being defined as earthquake, wind, hydrodynamic, control or other type of action. W(jw) is a matrix complex transfer function which reveals the correlation between input X und output Y spectra. Y (ja) represents a complex Fourier spectra of output signals. Input and output signals are both associated with master degrees of freedom, thus matrix transfer function is composed of elements in such a manner that solve unknown parameters are implemented implicitly. It is available an integration algorithm of 'condensed' system of equations. (orig./GL)

  1. Scanning microscopy of magnetic domains using the Fe 3p core level transverse magneto-optical Kerr effect

    Science.gov (United States)

    Friedrich, J.; Rozhko, I.; Voss, J.; Hillebrecht, F. U.; Kisker, E.; Wedemeier, V.

    1999-04-01

    We demonstrate the feasibility of the vacuum ultraviolet analog to visible-light magneto-optical imaging of magnetic structures using the resonantly enhanced transverse magneto-optical Kerr effect at core level thresholds with incident p-polarized radiation. The advantages are element specificity and a variable information depth. We used the scanning x-ray microscope at HASYLAB capable of obtaining about 1 μm resolution by means of its focusing ellipsoidal ring mirror. The p-polarized component of the reflected light was selected using multilayer reflection at an additional plane mirror downstream to the sample. Micrographs of the optical reflectivity were taken in the vicinity of the Fe 3p core level threshold at 53.7 and 56.5 eV photon energy where the magneto-optical effect is of opposite sign. Magnetic domains are visible in the difference of both recorded images.

  2. Structure and function of the Juxta membrane domain of the human epidermal growth factor receptor by NMR spectroscopy

    International Nuclear Information System (INIS)

    Choowongkomon, Kiattawee; Carlin, Cathleen; Sonnichsen, Frank D.

    2005-10-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family involved in the regulation of cellular proliferation and differentiation. Its juxta membrane domain (JX), the region located between the transmembrane and kinase domains, plays important roles in receptor trafficking since both basolateral sorting in polarized epithelial cells and lysosomal sorting signals are identified in this region. In order to understand the regulation of these signals, we characterized the structural properties of recombinant JX domain in dodecyl phosphocholine detergent (DPC) by nuclear magnetic resonance (NMR) spectroscopy. In DPC micelles, structures derived from NMR data showed three amphipathic, helical segments. Two equivalent average structural models on the surface of micelles were obtained that differ only in the relative orientation between the first and second helices. Our data suggests that the activity of sorting signals may be regulated by their membrane association and restricted accessibility in the intact receptor

  3. Solution structure of the first SH3 domain of human vinexin and its interaction with vinculin peptides

    International Nuclear Information System (INIS)

    Zhang, Jiahai; Li, Xiang; Yao, Bo; Shen, Weiqun; Sun, Hongbin; Xu, Chao; Wu, Jihui; Shi, Yunyu

    2007-01-01

    Solution structure of the first Src homology (SH) 3 domain of human vinexin (V S H3 1 ) was determined using nuclear magnetic resonance (NMR) method and revealed that it was a canonical SH3 domain, which has a typical β-β-β-β-α-β fold. Using chemical shift perturbation and surface plasmon resonance experiments, we studied the binding properties of the SH3 domain with two different peptides from vinculin hinge regions: P856 and P868. The observations illustrated slightly different affinities of the two peptides binding to V S H3 1 . The interaction between P868 and V S H3 1 belonged to intermediate exchange with a modest binding affinity, while the interaction between P856 and V S H3 1 had a low binding affinity. The structure and ligand-binding interface of V S H3 1 provide a structural basis for the further functional study of this important molecule

  4. Open magnetic structures on the sun

    International Nuclear Information System (INIS)

    Levine, R.H.; Altschuler, M.D.; Harvey, J.W.; Jackson, B.V.

    1977-01-01

    High-resolution harmonic analysis of the solar magnetic field has been used successfully to calculate the geometry of open magnetic field lines in the solar corona. Comparison of the loci of open field line footpoints with solar X-ray photographs shows that all of the coronal holes during two solar rotations are successfully represented, including details of their evolution. Some open magnetic configurations derived in the calculations precede by up to one solar rotation the manifestation of coincident dark areas on the X-ray photographs. The only other areas that contribute open field lines to the corona are separations between active-region loop systems. By varying the radius at which field lines are forced to be open in the calculation, it is possible to more closely reproduce the surface configuration of particular coronal holes. Comparison of the size of X-ray holes with the fraction of the solar surface covered by open field lines leads to the conclusion that a significant part of the area of coronal holes must contain closed magnetic fields. Comparison of open field lines which lie in the equatorial plane of the Sun with solar wind data indicates that eventual high-speed solar wind streams are associated with those parts of open magnetic structures that diverge the least. Several important questions raised by this study are under investigation using data for the entire Skylab period

  5. Synthesis of nanoparticles using high-pressure sputtering for magnetic domain imaging

    International Nuclear Information System (INIS)

    Shah, Prasanna; Gavrin, A.

    2006-01-01

    We have developed a modified sputtering gun for direct synthesis of metallic nanoparticles, and used this system to produce magnetic domain images using high-resolution Bitter microscopy (HRBM). The nanoparticles are produced at 900 mTorr inside the gun and transported to the main vacuum chamber by the pressure difference between the chamber and the gun interior. Fe particles synthesized using the particle gun have been characterized using X-ray diffraction, atomic force microscopy, and transmission electron microscopy techniques. The particles are 15-30 nm in size with a pure BCC phase. Further, we have deposited these Fe nanoparticles on magnetic recording media and observed the domain patterns using optical microscopy, scanning electron microscopy, and atomic force microscopy. We achieve a spatial resolution of at most 80 nm

  6. A micromagnetic study of the oscillations of pinned domain walls in magnetic ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Alejos, Oscar [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: oscaral@ee.uva.es; Torres, Carlos [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain); Hernandez-Gomez, Pablo [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain); Lopez-Diaz, Luis [Dpto. Fisica Aplicada, Universidad de Salamanca, 37071 Salamanca (Spain); Torres, Luis [Dpto. Fisica Aplicada, Universidad de Salamanca, 37071 Salamanca (Spain); Martinez, Eduardo [Dpto. Ingenieria Electromecanica, Universidad de Burgos, 09001 Burgos (Spain)

    2007-09-15

    The work studies the dynamics of domain walls in magnetic ribbons with thicknesses of the order of magnitude of the permalloy exchange length (5.7 nm) by means of micromagnetic simulations. Two small defects are symmetrically placed on both edges of the ribbon, one on each edge, occupying the whole ribbon thickness. One transverse domain wall is pinned by the defects, in a head-to-head configuration. A free wall oscillation is forced by applying a static external magnetic field in the direction of the large axis until the wall reaches a new equilibrium position (elongation), and then removed. Three dynamic regimes are observed depending on the size of the cross ribbon section.

  7. A micromagnetic study of the oscillations of pinned domain walls in magnetic ribbons

    International Nuclear Information System (INIS)

    Alejos, Oscar; Torres, Carlos; Hernandez-Gomez, Pablo; Lopez-Diaz, Luis; Torres, Luis; Martinez, Eduardo

    2007-01-01

    The work studies the dynamics of domain walls in magnetic ribbons with thicknesses of the order of magnitude of the permalloy exchange length (5.7 nm) by means of micromagnetic simulations. Two small defects are symmetrically placed on both edges of the ribbon, one on each edge, occupying the whole ribbon thickness. One transverse domain wall is pinned by the defects, in a head-to-head configuration. A free wall oscillation is forced by applying a static external magnetic field in the direction of the large axis until the wall reaches a new equilibrium position (elongation), and then removed. Three dynamic regimes are observed depending on the size of the cross ribbon section

  8. Domain structures and temperature-dependent spin reorientation transitions in c-axis oriented Co-Cr thin films

    International Nuclear Information System (INIS)

    Kusinski, Greg J.; Krishnan, Kannan M.; Thomas, Gareth; Nelson, E. C.

    2000-01-01

    Highly c-axis oriented Co 95 Cr 5 films with perpendicular anisotropy were grown epitaxially on Si (111), using an Ag seed layer, by physical vapor deposition. Films were characterized by x-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction, and Lorentz microscopy in a TEM. The following epitaxial relationship was confirmed: (111) Si (parallel sign)(111) Ag (parallel sign)(0001) CoCr ;[2(bar sign)20] Si (parallel sign)[2(bar sign)20] Ag (parallel sign)[1(bar sign)100] CoCr . Magnetic domain structures of these films were observed as a function of thickness; t, in the range, 200 Aa c ≅300 Aa, the magnetization was found to be effectively in-plane of the film, and above t c a regular, stripe-like domain pattern with a significant, alternating in sign, perpendicular component was observed. The spin reorientation transitions of the stripe domains to the in-plane magnetization were studied dynamically by observing the domains as a function of temperature by in situ heating up to 350 degree sign C. The critical transition thickness, t c , which is a function of K u and magnetostatic energy, was found to increase with increasing temperature. The stripe-domain period, L observed at room temperature was found to increase gradually with thickness; L=90 nm at t=300 Aa, and L=110 nm at t=700 Aa. (c) 2000 American Institute of Physics

  9. Structure of the Ebola VP35 interferon inhibitory domain.

    Science.gov (United States)

    Leung, Daisy W; Ginder, Nathaniel D; Fulton, D Bruce; Nix, Jay; Basler, Christopher F; Honzatko, Richard B; Amarasinghe, Gaya K

    2009-01-13

    Ebola viruses (EBOVs) cause rare but highly fatal outbreaks of viral hemorrhagic fever in humans, and approved treatments for these infections are currently lacking. The Ebola VP35 protein is multifunctional, acting as a component of the viral RNA polymerase complex, a viral assembly factor, and an inhibitor of host interferon (IFN) production. Mutation of select basic residues within the C-terminal half of VP35 abrogates its dsRNA-binding activity, impairs VP35-mediated IFN antagonism, and attenuates EBOV growth in vitro and in vivo. Because VP35 contributes to viral escape from host innate immunity and is required for EBOV virulence, understanding the structural basis for VP35 dsRNA binding, which correlates with suppression of IFN activity, is of high importance. Here, we report the structure of the C-terminal VP35 IFN inhibitory domain (IID) solved to a resolution of 1.4 A and show that VP35 IID forms a unique fold. In the structure, we identify 2 basic residue clusters, one of which is important for dsRNA binding. The dsRNA binding cluster is centered on Arg-312, a highly conserved residue required for IFN inhibition. Mutation of residues within this cluster significantly changes the surface electrostatic potential and diminishes dsRNA binding activity. The high-resolution structure and the identification of the conserved dsRNA binding residue cluster provide opportunities for antiviral therapeutic design. Our results suggest a structure-based model for dsRNA-mediated innate immune antagonism by Ebola VP35 and other similarly constructed viral antagonists.

  10. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  11. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric

    2012-01-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  12. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda

    2012-09-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  13. Mapping the structural and dynamical features of kinesin motor domains.

    Directory of Open Access Journals (Sweden)

    Guido Scarabelli

    Full Text Available Kinesin motor proteins drive intracellular transport by coupling ATP hydrolysis to conformational changes that mediate directed movement along microtubules. Characterizing these distinct conformations and their interconversion mechanism is essential to determining an atomic-level model of kinesin action. Here we report a comprehensive principal component analysis of 114 experimental structures along with the results of conventional and accelerated molecular dynamics simulations that together map the structural dynamics of the kinesin motor domain. All experimental structures were found to reside in one of three distinct conformational clusters (ATP-like, ADP-like and Eg5 inhibitor-bound. These groups differ in the orientation of key functional elements, most notably the microtubule binding α4-α5, loop8 subdomain and α2b-β4-β6-β7 motor domain tip. Group membership was found not to correlate with the nature of the bound nucleotide in a given structure. However, groupings were coincident with distinct neck-linker orientations. Accelerated molecular dynamics simulations of ATP, ADP and nucleotide free Eg5 indicate that all three nucleotide states could sample the major crystallographically observed conformations. Differences in the dynamic coupling of distal sites were also evident. In multiple ATP bound simulations, the neck-linker, loop8 and the α4-α5 subdomain display correlated motions that are absent in ADP bound simulations. Further dissection of these couplings provides evidence for a network of dynamic communication between the active site, microtubule-binding interface and neck-linker via loop7 and loop13. Additional simulations indicate that the mutations G325A and G326A in loop13 reduce the flexibility of these regions and disrupt their couplings. Our combined results indicate that the reported ATP and ADP-like conformations of kinesin are intrinsically accessible regardless of nucleotide state and support a model where neck

  14. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design.

    Science.gov (United States)

    Corradi, Hazel R; Schwager, Sylva L U; Nchinda, Aloysius T; Sturrock, Edward D; Acharya, K Ravi

    2006-03-31

    Human somatic angiotensin I-converting enzyme (sACE) is a key regulator of blood pressure and an important drug target for combating cardiovascular and renal disease. sACE comprises two homologous metallopeptidase domains, N and C, joined by an inter-domain linker. Both domains are capable of cleaving the two hemoregulatory peptides angiotensin I and bradykinin, but differ in their affinities for a range of other substrates and inhibitors. Previously we determined the structure of testis ACE (C domain); here we present the crystal structure of the N domain of sACE (both in the presence and absence of the antihypertensive drug lisinopril) in order to aid the understanding of how these two domains differ in specificity and function. In addition, the structure of most of the inter-domain linker allows us to propose relative domain positions for sACE that may contribute to the domain cooperativity. The structure now provides a platform for the design of "domain-specific" second-generation ACE inhibitors.

  15. David Adler Lectureship Award in the Field of Materials Physics: Racetrack Memory - a high-performance, storage class memory using magnetic domain-walls manipulated by current

    Science.gov (United States)

    Parkin, Stuart

    2012-02-01

    Racetrack Memory is a novel high-performance, non-volatile storage-class memory in which magnetic domains are used to store information in a ``magnetic racetrack'' [1]. The magnetic racetrack promises a solid state memory with storage capacities and cost rivaling that of magnetic disk drives but with much improved performance and reliability: a ``hard disk on a chip''. The magnetic racetrack is comprised of a magnetic nanowire in which a series of magnetic domain walls are shifted to and fro along the wire using nanosecond-long pulses of spin polarized current [2]. We have demonstrated the underlying physics that makes Racetrack Memory possible [3,4] and all the basic functions - creation, and manipulation of a train of domain walls and their detection. The physics underlying the current induced dynamics of domain walls will also be discussed. In particular, we show that the domain walls respond as if they have mass, leading to significant inertial driven motion of the domain walls over long times after the current pulses are switched off [3]. We also demonstrate that in perpendicularly magnetized nanowires there are two independent current driving mechanisms: one derived from bulk spin-dependent scattering that drives the domain walls in the direction of electron flow, and a second interfacial mechanism that can drive the domain walls either along or against the electron flow, depending on subtle changes in the nanowire structure. Finally, we demonstrate thermally induced spin currents are large enough that they can be used to manipulate domain walls. [4pt] [1] S.S.P. Parkin, US Patent 6,834,005 (2004); S.S.P. Parkin et al., Science 320, 190 (2008); S.S.P. Parkin, Scientific American (June 2009). [0pt] [2] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 320, 209 (2008). [0pt] [3] L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 330, 1810 (2010). [0pt] [4] X. Jiang et al. Nat. Comm. 1:25 (2010) and Nano Lett. 11, 96 (2011).

  16. A domain-decomposed multi-model plasma simulation of collisionless magnetic reconnection

    Science.gov (United States)

    Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.

    2017-10-01

    Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted into kinetic and thermal energy. Both in natural phenomena such as solar flares and terrestrial aurora as well as in magnetic confinement fusion experiments, the reconnection process is observed on timescales much shorter than those predicted by a resistive MHD model. As a result, this topic is an active area of research in which plasma models with varying fidelity have been tested in order to understand the proper physics explaining the reconnection process. In this research, a hybrid multi-model simulation employing the Hall-MHD and two-fluid plasma models on a decomposed domain is used to study this problem. The simulation is set up using the WARPXM code developed at the University of Washington, which uses a discontinuous Galerkin Runge-Kutta finite element algorithm and implements boundary conditions between models in the domain to couple their variable sets. The goal of the current work is to determine the parameter regimes most appropriate for each model to maintain sufficient physical fidelity over the whole domain while minimizing computational expense. This work is supported by a Grant from US AFOSR.

  17. The vector structure of active magnetic fields

    Science.gov (United States)

    Parker, E. N.

    1985-01-01

    Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.

  18. Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy

    Science.gov (United States)

    Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.

    2012-04-01

    Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.

  19. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  20. Improvement of training set structure in fusion data cleaning using Time-Domain Global Similarity method

    International Nuclear Information System (INIS)

    Liu, J.; Lan, T.; Qin, H.

    2017-01-01

    Traditional data cleaning identifies dirty data by classifying original data sequences, which is a class-imbalanced problem since the proportion of incorrect data is much less than the proportion of correct ones for most diagnostic systems in Magnetic Confinement Fusion (MCF) devices. When using machine learning algorithms to classify diagnostic data based on class-imbalanced training set, most classifiers are biased towards the major class and show very poor classification rates on the minor class. By transforming the direct classification problem about original data sequences into a classification problem about the physical similarity between data sequences, the class-balanced effect of Time-Domain Global Similarity (TDGS) method on training set structure is investigated in this paper. Meanwhile, the impact of improved training set structure on data cleaning performance of TDGS method is demonstrated with an application example in EAST POlarimetry-INTerferometry (POINT) system.

  1. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song [College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Tian, GuiYun, E-mail: tian280@hotmail.com [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); School of Electrical and Electronic Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle NE1 7RU (United Kingdom); Dobmann, Gerd; Wang, Ping [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2017-01-01

    Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness. - Highlights: • The skewness of magnetic Barkhausen noise profile is proposed as a new feature for applied stress determination. • The skewness is sensitive to applied stress and independent to excitation frequency. • Domain wall energy and pinning distance influence the relaxation time of domain wall, which leads to a non-linear behavior of skewness under compressive stress.

  2. Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves

    Science.gov (United States)

    Lucassen, M. E.

    2012-05-01

    So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate thermal fluctuations for rigid domain walls, as shown above. In Chapter 2, we study a different kind of fluctuations: shot noise. This noise is caused by the fact that an electric current consists of electrons, and therefore has fluctuations. In the process, we also compute transmission and reflection coefficients for a rigid domain wall, and from them the linear momentum transfer. More work on fluctuations is done in Chapter 3. Here, we consider a (extrinsically pinned) rigid domain wall under the influence of thermal fluctuations that induces a current via spin motive force. We compute how the resulting noise in the current is related to the β parameter. In Chapter 4 we look into in more detail into the spin motive forces from field driven domain walls. Using micro magnetic simulations, we compute the spin motive force due to vortex domain walls explicitly. As mentioned before, this gives qualitatively different results than for a rigid domain wall. The final subject in Chapter 5 is the application of the general expression for spin motive forces to magnons. Although this might seem to be unrelated to domain-wall motion, this calculation allows us to relate the β parameter to macroscopic transport coefficients. This work was supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC) under the Seventh Framework Program (FP7).

  3. Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: Influence of magnetic layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zsurzsa, S., E-mail: zsurzsa.sandor@wigner.mta.hu; Péter, L.; Kiss, L.F.; Bakonyi, I.

    2017-01-01

    The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (H{sub c}) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation H{sub c}=H{sub co}+a/d{sup n} with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers. - Highlights: • Electrodeposited nanoscale Co films and Co/Cu layered structures. • Co layer thickness (d) dependence of coercivity (H{sub c}) and magnetoresistance. • H{sub c} depends on Co layer thickness according to H{sub c}=H{sub co}+a/d{sup n} with n around 1. • The common n value suggests a similar mechanism of magnetization reversal. • The common n value suggests the absence of coupling between magnetic layers.

  4. Structural characterization of copolymer embedded magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, G.G., E-mail: ggnedelcu@yahoo.com [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania); Nastro, A.; Filippelli, L. [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Cazacu, M.; Iacob, M. [Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi (Romania); Rossi, C. Oliviero [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Popa, A.; Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca 5 (Romania); Dobromir, M.; Iacomi, F. [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania)

    2015-10-15

    Highlights: • The emulsion polymerization method was used to synthesize three samples of poly(methyl methacrylate-co-acrylic acid) coated magnetite obtained before through co-precipitation technique. • Poly(methyl methacrylate-co-acrylic acid) coated magnetite nanoparticles were prepared having spherical shape and dimensions between 13 and 16 nm without agglomerations. • Fourier transform infrared spectra have found that the magnetite was pure and spectral characteristics of PMMA-co-AAc were present. • The electron spin resonance spectra revealed that interactions between nanoparticles are very weak due to the fact that the nanoparticles have been individually embedded in polymer. • The resonance field values as function of temperature demonstrate that the presence of polymer has not modified essentially its magnetic properties, except that at temperatures below 140 K there was a change due to decreasing of the magnetic anisotropy. - Abstract: Small magnetic nanoparticles (Fe{sub 3}O{sub 4}) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  5. Domain wall oscillation in magnetic nanowire with a geometrically confined region

    Science.gov (United States)

    Sbiaa, R.; Bahri, M. Al; Piramanayagam, S. N.

    2018-06-01

    In conventional magnetic devices such as magnetic tunnel junctions, a steady oscillation of a soft layer magnetization could find its application in various electronic systems. However, these devices suffer from their low output signal and large spectral linewidth. A more elegant scheme based on domain wall oscillation could be a solution to these issues if DW dynamics could be controlled precisely in space and time. In fact, in DW devices, the magnetic configuration of domain wall and its position are strongly dependent on the device geometry and material properties. Here we show that in a constricted device with judiciously adjusted dimensions, a DW can be trapped within the central part and keep oscillating with a single frequency f. For 200 nm by 40 nm nanowire, f was found to vary from 2 GHz to 3 GHz for a current density between 4.8 × 1012 A/m2 and 5.6 × 1012 A/m2. More interestingly, the device fabrication is simply based on two long nanowires connected by adjusting the offset in both x and y directions. This new type of devices enables the conversion of dc-current to an ac-voltage in a controllable manner opening thus the possibility of a new nano-oscillators with better performance.

  6. Solution structure and dynamics of C-terminal regulatory domain of Vibrio vulnificus extracellular metalloprotease

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji-Hye; Kim, Heeyoun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Jung Eun [Department of Biotechnology, College of Natural Sciences, Chosun University, Gwangju 501-759 (Korea, Republic of); Lee, Jung Sup, E-mail: jsplee@mail.chosun.ac.kr [Department of Biotechnology, College of Natural Sciences, Chosun University, Gwangju 501-759 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We have determined solution structures of vEP C-terminal regulatory domain. Black-Right-Pointing-Pointer vEP C-ter100 has a compact {beta}-barrel structure with eight anti-parallel {beta}-strands. Black-Right-Pointing-Pointer Solution structure of vEP C-ter100 shares its molecular topology with that of the collagen-binding domain of collagenase. Black-Right-Pointing-Pointer Residues in the {beta}3 region of vEP C-ter100 might be important in putative ligand/receptor binding. Black-Right-Pointing-Pointer vEP C-ter100 interacts strongly with iron ion. -- Abstract: An extracellular metalloprotease (vEP) secreted by Vibrio vulnificus ATCC29307 is a 45-kDa proteolytic enzyme that has prothrombin activation and fibrinolytic activities during bacterial infection. The action of vEP could result in clotting that could serve to protect the bacteria from the host defense machinery. Very recently, we showed that the C-terminal propeptide (C-ter100), which is unique to vEP, is involved in regulation of vEP activity. To understand the structural basis of this function of vEP C-ter100, we have determined the solution structure and backbone dynamics using multidimensional nuclear magnetic resonance spectroscopy. The solution structure shows that vEP C-ter100 is composed of eight anti-parallel {beta}-strands with a unique fold that has a compact {beta}-barrel formation which stabilized by hydrophobic and hydrogen bonding networks. Protein dynamics shows that the overall structure, including loops, is very rigid and stabilized. By structural database analysis, we found that vEP C-ter100 shares its topology with that of the collagen-binding domain of collagenase, despite low sequence homology between the two domains. Fluorescence assay reveals that vEP C-ter100 interacts strongly with iron (Fe{sup 3+}). These findings suggest that vEP protease might recruit substrate molecules, such as collagen, by binding at C-ter100 and that vEP participates

  7. Synthesis of ferrite nanoparticle by milling process for preparation of single domain magnet

    International Nuclear Information System (INIS)

    Suryadi; Hasbiyallah; Agus S W; Nurul TR; Budhy Kurniawan

    2009-01-01

    Study of ferrite nanoparticle synthesis for preparation of single domain magnet by milling of scrap magnet material have been done. Sample preparation were done using disk mill continued with high energy milling (HEM). Some powder were taken after 5, 10 dan 20 hours milling using HEM-E3D. The powder were then characterized using X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). XRF characterization result, confirmed by XRD analysis result, showed that the sample are of Strontium ferrite phase. Microstructure analysis result showed the occurrence of grain refining process of ferrite particle with increasing of milling time. Particle having size of nanometers successfully obtained, although in unhomogeneous distribution. Magnetic properties characterization result showed the increasing of hysteresis curve area of sample for longer milling time and sintering process. (author)

  8. The Magnetic Structure of Filament Barbs

    Science.gov (United States)

    Chae, Jongchul; Moon, Yong-Jae; Park, Young-Deuk

    2005-06-01

    There is a controversy about how features protruding laterally from filaments, called barbs, are magnetically structured. On 2004 August 3, we observed a filament that had well-developed barbs. The observations were performed using the 10 inch refractor of the Big Bear Solar Observatory. A fast camera was employed to capture images at five different wavelengths of the Hα line and successively record them on the basis of frame selection. The terminating points of the barbs were clearly discernable in the Hα images without any ambiguity. The comparison of the Hα images with the magnetograms taken by SOHO MDI revealed that the termination occurred above the minor polarity inversion line dividing the magnetic elements of the major polarity and those of the minor polarity. There is also evidence that the flux cancellation proceeded on the polarity inversion line. Our results together with similar other recent observations support the idea that filament barbs are cool matter suspended in local dips of magnetic field lines, formed by magnetic reconnection in the chromosphere.

  9. Iron nanoparticle assemblies: structures and magnetic behavior

    International Nuclear Information System (INIS)

    Farrell, D; Cheng, Y; Kan, S; Sachan, M; Ding, Y; Majetich, S A; Yang, L

    2005-01-01

    Self-assembly of spherical, surfactant-coated nanoparticles is discussed, an examples are presented to demonstrate the variety of structures that can be formed, and the conditions that lead to them. The effect of the concentration on the magnetic properties is then examined for 8.5 nm Fe nanoparticles. Dilute dispersions, arrays formed by evaporation of the dispersions, and nanoparticle crystals grown by slow diffusion of a poorly coordinating solvent were characterized by zero field-cooled magnetization, remanent hysteresis loop, and magnetic relaxation measurements. The average spacing between the particles was determined from a combination of transmission electron microscopy and small angle x-ray scattering. In the arrays the spacing was 2.5 nm between the edges of the particle cores, while in the nanoparticle crystals the particles were more tightly packed, with a separation of 1.1 nm. The reduced separation increased the magnetostatic interaction strength in the nanoparticle crystals, which showed distinctly different behavior in the rate of approach to saturation in the remanent hysteresis loops, and in the faster rate of time-dependent magnetic relaxation

  10. Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Zhukova, V. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018 San Sebastian (Spain); Dpto. de Física Aplicada, EUPDS, UPV/EHU, 20018 San Sebastian (Spain); Korchuganova, O.A.; Aleev, A.A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation); Tcherdyntsev, V.V.; Churyukanova, M. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Medvedeva, E.V. [Institute of Electrophysics, Ural Branch, Russian Academy of Sciences 620016 Yekaterinburg (Russian Federation); Seils, S.; Wagner, J. [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Ipatov, M. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018 San Sebastian (Spain); Dpto. de Física Aplicada, EUPDS, UPV/EHU, 20018 San Sebastian (Spain); Blanco, J.M. [Dpto. de Física Aplicada, EUPDS, UPV/EHU, 20018 San Sebastian (Spain); Kaloshkin, S.D. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Aronin, A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Insitute of Solid State Physics, Moscow Region, 142432 Chernogolovka (Russian Federation); Abrosimova, G.; Orlova, N. [Insitute of Solid State Physics, Moscow Region, 142432 Chernogolovka (Russian Federation); and others

    2017-07-01

    Highlights: • High domain wall mobility of Fe-Ni-based microwires. • Enhancement of domain wall velocity and mobility in Fe-rich microwires after annealing. • Observation of areas enriched by Si and depleted by B after annealing. • Phase separation in annealed Fe-Ni based microwires in metallic nucleus and near the interface layer. - Abstract: We studied the magnetic properties and domain wall (DW) dynamics of Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2} and Fe{sub 77.5}Si{sub 7.5}B{sub 15} microwires. Both samples present rectangular hysteresis loop and fast magnetization switching. Considerable enhancement of DW velocity is observed in Fe{sub 77.5}Si{sub 7.5}B{sub 15}, while DW velocity of samples Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2} is less affected by annealing. The other difference is the magnetic field range of the linear region on dependence of domain wall velocity upon magnetic field: in Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2} sample is considerably shorter and drastically decreases after annealing. We discussed the influence of annealing on DW dynamics considering different magnetoelastic anisotropy of studied microwires and defects within the amorphous state in Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2}. Consequently we studied the structure of Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2} sample using X-ray diffraction and the atom probe tomography. The results obtained using the atom probe tomography supports the formation of the B-depleted and Si-enriched precipitates in the metallic nucleus of Fe-Ni based microwires.

  11. Structural Characterization of Monomeric/Dimeric State of p59fyn SH2 Domain.

    Science.gov (United States)

    Huculeci, Radu; Kieken, Fabien; Garcia-Pino, Abel; Buts, Lieven; van Nuland, Nico; Lenaerts, Tom

    2017-01-01

    Src homology 2 (SH2) domains are key modulators in various signaling pathways allowing the recognition of phosphotyrosine sites of different proteins. Despite the fact that SH2 domains acquire their biological functions in a monomeric state, a multitude of reports have shown their tendency to dimerize. Here, we provide a technical description on how to isolate and characterize by gel filtration, circular dichroism (CD), and nuclear magnetic resonance (NMR) each conformational state of p59 fyn SH2 domain.

  12. Interrelation between domain structures and polarization switching in hybrid improper ferroelectric Ca3(Mn,Ti)2O7

    Science.gov (United States)

    Gao, Bin; Huang, Fei-Ting; Wang, Yazhong; Kim, Jae-Wook; Wang, Lihai; Lim, Seong-Joon; Cheong, Sang-Wook

    2017-05-01

    Ca3Mn2O7 and Ca3Ti2O7 have been proposed as the prototypical hybrid improper ferroelectrics (HIFs), and a significant magnetoelectric (ME) coupling in magnetic Ca3Mn2O7 is, in fact, reported theoretically and experimentally. Although the switchability of polarization is confirmed in Ca3Ti2O7 and other non-magnetic HIFs, there is no report of switchable polarization in the isostructural Ca3Mn2O7. We constructed the phase diagram of Ca3Mn2-xTixO7 through our systematic study of a series of single crystalline Ca3Mn2-xTixO7 (x = 0, 0.1, 1, 1.5, and 2). Using transmission electron microscopy, we have unveiled the unique domain structure of Ca3Mn2O7: the high-density 90° stacking of a- and b-domains along the c-axis due to the phase transition through an intermediate Acca phase and the in-plane irregular wavy ferroelastic twin domains. The interrelation between domain structures and physical properties is unprecedented: the stacking along the c-axis prevents the switching of polarization and causes the irregular in-plane ferroelastic domain pattern. In addition, we have determined the magnetic phase diagram and found complex magnetism of Ca3Mn2O7 with isotropic canted moments. These results lead to negligible observable ME coupling in Ca3Mn2O7 and guide us to explore multiferroics with large ME coupling.

  13. 1H and 15N NMR assignment and solution structure of the SH3 domain of spectrin: Comparison of unrefined and refined structure sets with the crystal structure

    International Nuclear Information System (INIS)

    Blanco, Francisco J.; Ortiz, Angel R.; Serrano, Luis

    1997-01-01

    The assignment of the 1 H and 15 Nnuclear magnetic resonance spectra of the Src-homology region 3 domain of chicken brain α-spectrin has been obtained. A set of solution structures has been determined from distance and dihedral angle restraints,which provide a reasonable representation of the protein structure in solution, as evaluated by a principal component analysis of the global pairwise root-mean-square deviation (rmsd) in a large set of structures consisting of the refined and unrefined solution structures and the crystal structure. The solution structure is well defined, with a lower degree of convergence between the structures in the loop regions than in the secondary structure elements. The average pairwise rmsd between the 15 refined solution structures is 0.71 ± 0.13 A for the backbone atoms and 1.43 ± 0.14 A for all heavy atoms. The solution structure is basically the same as the crystal structure. The average rmsd between the 15 refined solution structures and the crystal structure is 0.76 A for the backbone atoms and 1.45 ± 0.09 A for all heavy atoms. There are, however, small differences probably caused by intermolecular contacts in the crystal structure

  14. Magnetic anisotropies in epitaxial Fe3O4/GaAs(100) patterned structures

    International Nuclear Information System (INIS)

    Zhang, W.; Zhang, D.; Yuan, S. J.; Huang, Z. C.; Zhai, Y.; Wong, P. K. J.; Wu, J.; Xu, Y. B.

    2014-01-01

    Previous studies on epitaxial Fe 3 O 4 rings in the context of spin-transfer torque effect have revealed complicated and undesirable domain structures, attributed to the intrinsic fourfold magnetocrystalline anisotropy in the ferrite. In this Letter, we report a viable solution to this problem, utilizing a 6-nm-thick epitaxial Fe 3 O 4 thin film on GaAs(100), where the fourfold magnetocrystalline anisotropy is negligible. We demonstrate that in the Fe 3 O 4 planar wires patterned from our thin film, such a unique magnetic anisotropy system has been preserved, and relatively simple magnetic domain configurations compared to those previous reports can be obtained

  15. Direct observation of the thermal demagnetization of magnetic vortex structures in nonideal magnetite recorders

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Kovács, András

    2016-01-01

    The thermal demagnetization of pseudo-single-domain (PSD) magnetite (Fe3O4) particles, which govern the magnetic signal in many igneous rocks, is examined using off-axis electron holography. Visualization of a vortex structure held by an individual Fe3O4 particle (~250nm in diameter) during in situ...

  16. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid

    Science.gov (United States)

    Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.

    2018-05-01

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  17. Auroral electrojets and boundaries of plasma domains in the magnetosphere during magnetically disturbed intervals

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    2006-09-01

    Full Text Available We investigate variations in the location and intensity of the auroral electrojets during magnetic storms and substorms using a numerical method for estimating the equivalent ionospheric currents based on data from meridian chains of magnetic observatories. Special attention was paid to the complex structure of the electrojets and their interrelationship with diffuse and discrete particle precipitation and field-aligned currents in the dusk sector. During magnetospheric substorms the eastward electrojet (EE location in the evening sector changes with local time from cusp latitudes (Φ~77° during early afternoon to latitudes of diffuse auroral precipitation (Φ~65° equatorward of the auroral oval before midnight. During the main phase of an intense magnetic storm the eastward currents in the noon-early evening sector adjoin to the cusp at Φ~65° and in the pre-midnight sector are located at subauroral latitude Φ~57°. The westward electrojet (WE is located along the auroral oval from evening through night to the morning sector and adjoins to the polar electrojet (PE located at cusp latitudes in the dayside sector. The integrated values of the eastward (westward equivalent ionospheric current during the intense substorm are ~0.5 MA (~1.5 MA, whereas they are 0.7 MA (3.0 MA during the storm main phase maximum. The latitudes of auroral particle precipitation in the dusk sector are identical with those of both electrojets. The EE in the evening sector is accompanied by particle precipitation mainly from the Alfvén layer but also from the near-Earth part of the central plasma sheet. In the lower-latitude part of the EE the field-aligned currents (FACs flow into the ionosphere (Region 2 FAC, and at its higher-latitude part the FACs flow out of the ionosphere (Region 1 FAC. During intense disturbances, in addition to the Region 2 FAC and the Region 1 FAC, a Region 3 FAC with the downward current was identified. This FAC is accompanied by diffuse

  18. Facial Image Compression Based on Structured Codebooks in Overcomplete Domain

    Directory of Open Access Journals (Sweden)

    Vila-Forcén JE

    2006-01-01

    Full Text Available We advocate facial image compression technique in the scope of distributed source coding framework. The novelty of the proposed approach is twofold: image compression is considered from the position of source coding with side information and, contrarily to the existing scenarios where the side information is given explicitly; the side information is created based on a deterministic approximation of the local image features. We consider an image in the overcomplete transform domain as a realization of a random source with a structured codebook of symbols where each symbol represents a particular edge shape. Due to the partial availability of the side information at both encoder and decoder, we treat our problem as a modification of the Berger-Flynn-Gray problem and investigate a possible gain over the solutions when side information is either unavailable or available at the decoder. Finally, the paper presents a practical image compression algorithm for facial images based on our concept that demonstrates the superior performance in the very-low-bit-rate regime.

  19. Method of using triaxial magnetic fields for making particle structures

    Science.gov (United States)

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  20. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.

    Science.gov (United States)

    Chaikam, Vijay; Karlson, Dale T

    2010-01-01

    The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs. [BMB reports 2010; 43(1): 1-8].

  1. Chirality dependent pinning and depinning of magnetic vortex domain walls at nano-constrictions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanan P, Vineeth; Kumar, P.S. Anil, E-mail: anil@physics.iisc.ernet.in

    2017-01-15

    The implementation of magnetic domain wall (DW) based memory and logic devices critically depend on the control over DW assisted magnetization reversal processes. Here we investigate the magnetization reversal by DW injection, pinning and depinning at a geometrical constriction in permalloy nanowire (NW) driven by external in-plane magnetic field, using local electrical probes. The observations of two distinct depinning field values are identified with the help of micromagnetic simulations, as being due to vortex DWs of different chiralities. Statistical analysis gave an estimate of chirality dependent pinning probability of DWs at this constriction. The stochastic nature of the DW based reversal driven by magnetic field is revealed here. The asymmetry in the depinning field of the DWs to move to either side of constriction indicates the asymmetric nature of the barrier potential seen by the DWs. The results demonstrate the difficulties in achieving deterministic switching behavior of DW assisted reversal, and provide a platform to understand the main bottlenecks in the technological implementation of DWs.

  2. Effect of maghemization on the magnetic properties of nonstoichiometric pseudo-single-domain magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Kasama, Takeshi

    2015-01-01

    The effect of maghemization on the magnetic properties of magnetite (Fe3O4) grains in the pseudo-single-domain (PSD) size range is investigated as a function of annealing temperature. X-ray diffraction and transmission electron microscopy confirm the precursor grains as Fe3O4 ranging from 150......-energy loss spectroscopy reveal slightly oxidized Fe3O4 grains, heated to 140°C, exhibit higher oxygen content at the surface. Off-axis electron holography allows for construction of magnetic induction maps of individual Fe3O4 and γ-Fe2O3 grains, revealing their PSD (vortex) nature, which is supported...... by magnetic hysteresis measurements, including first-order reversal curve analysis. The coercivity of the grains is shown to increase with reaction temperature up to 1808°C, but subsequently decreases after heating above 200°; this magnetic behavior is attributed to the growth of a γ-Fe2O3 shell with magnetic...

  3. Growth and structure of Co/Au magnetic thin films

    International Nuclear Information System (INIS)

    Marsot, N.

    1999-01-01

    We have studied the growth and the crystallographic structure of magnetic ultra thin cobalt/gold films (Co/Au), in order to investigate the correlations between their magnetic and structural properties. Room temperature (R.T.) Co growth on Au (111) proceeds in three stages. Up to 2 Co monolayers (ML), a bilayer island growth mode is observed. Between 2 and 5 ML, coalescence of the islands occurs, covering the substrate surface and a Co/Au mixing is observed resulting from the de-construction of the Herringbone reconstruction. Finally, beyond 5 ML, the CoAu mixing is buried and the Co growth continues in a 3-D growth. Annealing studies at 600 K on this system show a smoothing effect of the Co film, and at the same time, segregation of Au atoms. The quality of the Co/Au interface (sharpness) is not enhanced by the annealing. The local order was studied by SEXAFS and the long range order by GIXRD showing that the Co film has a hexagonal close packed structure, with an easy magnetization axis perpendicular to the surface. From a local order point of view, the Co grows with an incoherent epitaxy and keeps its own bulk parameters. The GIXRD analysis shows a residual strain in the Co film of 4%. The difference observed between the local order analysis and the long range order results is explained in terms of the low dimensions of the diffracting domains. The evolution of film strains, as a function of the Co coverage, shows a marked deviation from the elastic strain theory. Modification of the strain field in the Co film as a function of the Au coverage is studied by GIXRD analysis. The Au growth study, at R.T., shows no evidence of a Au/Co mixing in the case of the Au/Co interface. The Au overlayer adopts a twinned face centred cubic structure on the rough Co film surface. (author)

  4. Structural, magnetic characterization (dependencies of coercivity and loss with the frequency) of magnetic cores based in Finemet

    Science.gov (United States)

    Osinalde, M.; Infante, P.; Domínguez, L.; Blanco, J. M.; del Val, J. J.; Chizhik, A.; González, J.

    2017-12-01

    We report changes of coercivity, induced magnetic anisotropy, magneto-optical domain structure and frequency dependencies of coercivity and energy loss (up to 10 MHz) associated with the structural modifications produced by thermal treatments under applied magnetic field (field annealing) in toroidal wound cores of Fe73.5Cu1Nb3Si15.5B7 amorphous alloy. The thermal treatment (535 °C, 1 h) leads to the typical nanocrystalline structure of α-Fe(Si) nanograins (60-65% relative volume, 10-20 nm average grain size embedded in a residual amorphous matrix, while the magnetic field with the possibility to be applied in two directions to the toroidal core axis, that is in transverse (which is equivalent to the transverse direction of the ribbon) or longitudinal (equivalent to the longitudinal direction of the ribbon), develops a macroscopic uniaxial magnetic anisotropy in the transverse (around 245 J/m3) or longitudinal (around 85 J/m3) direction of the ribbon, respectively. It is remarkable the quasi-unhysteretic character of the cores with these two kinds of field annealing as comparing with that of the as-quenched one. Magneto-optical study by Kerr-effect of the ribbons provides useful information on the domain structure of the surface in agreement with the direction and intensity of the induced magnetic anisotropy. This induced uniaxial magnetic anisotropy plays a very important role on the Hc(f) and EL(f) curves, (f: frequency), being drastic the presence and direction of the induced magnetic anisotropy. In addition, these frequency dependencies show a significant change at the frequency around 100 Hz.

  5. Birth, growth and death of an antivortex during the propagation of a transverse domain wall in magnetic nanostrips

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, H.Y. [Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); HKUST Shenzhen Research Institute, Shenzhen 518057 (China); Wang, X.R., E-mail: phxwan@ust.hk [Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); HKUST Shenzhen Research Institute, Shenzhen 518057 (China)

    2014-11-15

    Antivortex birth, growth and death accompanying the propagation of a transverse domain wall (DW) in magnetic nanostrips are observed and analyzed. Antivortex formation is an intrinsic process of a strawberry-like transverse DW originated from magnetostatic interaction. Under an external magnetic field, the wider width region of a DW tends to move faster than the narrower one. This speed mismatch tilts and elongates DW center line. As a result, an antivortex with a well-defined polarity is periodically born near the tail of the DW center line. The antivortex either moves along the center line and dies on the other side of the nanostrip, or grows to its maximum size, detaches itself from the DW, and vanishes eventually. The former route reverses the polarity of DW while the later keeps the DW polarity unchanged. The evolution of the DW structures is analyzed using winding numbers assigned to each topological defects. The phase diagram in the field-width plane is obtained and the damping constant's influence on the phase diagram is discussed. - Highlights: • The magnetostatic interaction leads to a strawberry-like domain wall. • Two types of antivortices evolutions are identified. • Antivortex generation can cause decrease of Walker breakdown field. • The phase diagrams on the field-width plane are obtained.

  6. The structure of magnetic materials; La structure des substances magnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Villain, J. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N. Saclay (France)

    1960-07-01

    The paper deals with the prediction of the structure of magnetic materials below the critical point. The molecular field approximation is used: exchange interactions with unlimited range are assumed; the magnetic ions are supposed to form a Bravais lattice. The critical temperature T{sub c} is first calculated (section 1) without assuming any decomposition of the crystal into sublattices, and the magnetic structure at T{sub c} is given. It is next shown (section 2) that the essential features of this structure persist below T{sub c}, and the various possible cases are considered. It is possible that no decomposition into sublattices takes place, i.e. the magnetic structure and the nuclear structure have incommensurable periods. A detailed treatment is then given for the body-centered quadratic lattice (section 3) with interaction between first, second and third neighbours. Reprint of a paper published in Journal of Physical Chemistry, vol. 11, no. 3/4, p. 303-309, 1959 [French] Ce travail a pour objet la prevision systematique de la structure des substances magnetiques au-dessous du point de transition et l'etude des differents cas qui peuvent se presenter lorsque les ions magnetiques forment un reseau de Bravais. On se place dans une approximation de champ moleculaire, mais on ne fait aucune restriction concernant la portee des interactions d'echange. Apres avoir determine (Section 1) la temperature critique et la structure magnetique a cette temperature sans supposer a priori l'existence d'une decomposition en sous-reseaux, on montre (Section 2) que cette structure reste stable en dessous de la temperature critique, et on etudie les divers cas possibles. Il peut arriver en particulier que la structure magnetique ait une periode incommensurable avec celle du reseau cristallin. L'example du reseau quadratique centre avec couplage entre premiers, seconds et troisiemes voisins (Section 3) fournit une bonne illustration de cette etude. Reproduction d'un article publie

  7. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Han, Yiping, E-mail: yphan@xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China); Ai, Xia [National Key Laboratory of Science and Technology on Test physics and Numerical Mathematical, Beijing 100076 (China); Liu, Xiuxiang [Science and Technology on Space Physics Laboratory, Beijing 100076 (China)

    2014-12-15

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  8. Nuclear resonant scattering of synchrotron radiation: Applications in magnetism of layered structures

    International Nuclear Information System (INIS)

    Schlage, Kai; Röhlsberger, Ralf

    2013-01-01

    Highlights: •Depth-resolved determination of magnetic spin structures. •Isotopic probe layers allow for probing selected depths in the sample. •High sensitivity to magnetic domain patterns via diffuse scattering. -- Abstract: Nuclear resonant scattering of synchrotron radiation has become an established tool within condensed-matter research. Synchrotron radiation with its outstanding brilliance, transverse coherence and polarization has opened this field for many unique studies, for fundamental research in the field of light-matter interaction as well as for materials science. This applies in particular for the electronic and magnetic structure of very small sample volumes like micro- and nano-structures and samples under extreme conditions of temperature and pressure. This article is devoted to the application of the technique to nanomagnetic systems such as thin films and multilayers. After a basic introduction into the method, a number of our experiments are presented to illustrate how magnetic spin structures within such layer systems can be revealed

  9. Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases

    Science.gov (United States)

    Liu, Ye; Zheng, Tengfei; Bruner, Steven D.

    2011-01-01

    Summary Phosphopantetheine-modified carrier domains play a central role in the template-directed, biosynthesis of several classes of primary and secondary metabolites. Fatty acids, polyketides and nonribosomal peptides are constructed on multidomain enzyme assemblies using phosphopantetheinyl thioester-linked carrier domains to traffic and activate building blocks. The carrier domain is a dynamic component of the process, shuttling pathway intermediates to sequential enzyme active sites. Here we report an approach to structurally fix carrier domain/enzyme constructs suitable for X-ray crystallographic analysis. The structure of a two-domain construct of E. coli EntF was determined with a conjugated phosphopantetheinyl-based inhibitor. The didomain structure is locked in an active orientation relevant to the chemistry of nonribosomal peptide biosynthesis. This structure provides details into the interaction of phosphopantetheine arm with the carrier domain and the active site of the thioesterase domain. PMID:22118682

  10. Structural magnetic resonance imaging in epilepsy

    International Nuclear Information System (INIS)

    Deblaere, Karel; Achten, Eric

    2008-01-01

    Because of its sensitivity and high tissue contrast, magnetic resonance imaging (MRI) is the technique of choice for structural imaging in epilepsy. In this review the effect of using optimised scanning protocols and the use of high field MR systems on detection sensitivity is discussed. Also, the clinical relevance of adequate imaging in patients with focal epilepsy is highlighted. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics depicted. Imaging focus will be on the diagnosis of hippocampal sclerosis and malformations of cortical development, two major causes of medically intractable focal epilepsy. (orig.)

  11. Structural magnetic resonance imaging in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Deblaere, Karel [Ghent University Hospital, Department of Neuroradiology, Ghent (Belgium); Ghent University Hospital, MR Department - 1K12, Ghent (Belgium); Achten, Eric [Ghent University Hospital, Department of Neuroradiology, Ghent (Belgium)

    2008-01-15

    Because of its sensitivity and high tissue contrast, magnetic resonance imaging (MRI) is the technique of choice for structural imaging in epilepsy. In this review the effect of using optimised scanning protocols and the use of high field MR systems on detection sensitivity is discussed. Also, the clinical relevance of adequate imaging in patients with focal epilepsy is highlighted. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics depicted. Imaging focus will be on the diagnosis of hippocampal sclerosis and malformations of cortical development, two major causes of medically intractable focal epilepsy. (orig.)

  12. Application of modern tensor calculus to engineered domain structures. 2. Tensor distinction of domain states

    Czech Academy of Sciences Publication Activity Database

    Kopský, Vojtěch

    2006-01-01

    Roč. 62, - (2006), s. 65-76 ISSN 0108-7673 R&D Projects: GA ČR GA202/04/0992 Institutional research plan: CEZ:AV0Z10100520 Keywords : tensorial covariants * domain states * stability spaces Subject RIV: BE - Theoretical Physics Impact factor: 1.676, year: 2006

  13. Current bistability in a weakly coupled multi-quantum well structure: a magnetic field induced 'memory effect'

    International Nuclear Information System (INIS)

    Feu, W H M; Villas-Boas, J M; Cury, L A; Guimaraes, P S S; Vieira, G S; Tanaka, R Y; Passaro, A; Pires, M P; Landi, S M; Souza, P L

    2009-01-01

    A study of magnetotunnelling in weakly coupled multi-quantum wells reveals a new phenomenon which constitutes a kind of memory effect in the sense that the electrical resistance of the sample after application of the magnetic field is different from before and contains the information that a magnetic field was applied previously. The change in the electric field domain configuration triggered by the magnetic field was compared for two samples, one strictly periodic and another with a thicker quantum well inserted into the periodic structure. For applied biases at which two electric field domains are present in the sample, as the magnetic field is increased a succession of discontinuous reductions in the electrical resistance is observed due to the magnetic field-induced rearrangement of the electric field domains, i.e. the domain boundary jumps from well to well as the magnetic field is changed. The memory effect is revealed for the aperiodic structure as the electric field domain configuration triggered by the magnetic field remains stable after the field is reduced back to zero. This effect is related to the multi-stability in the current-voltage characteristics observed in some weakly coupled multi-quantum well structures.

  14. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis

    OpenAIRE

    Irina Alexandra Paun; Roxana Cristina Popescu; Bogdan Stefanita Calin; Cosmin Catalin Mustaciosu; Maria Dinescu; Catalin Romeo Luculescu

    2018-01-01

    We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experime...

  15. Molecular structure and motion in zero field magnetic resonance

    International Nuclear Information System (INIS)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed

  16. On the mixed discretization of the time domain magnetic field integral equation

    KAUST Repository

    Ulku, Huseyin Arda

    2012-09-01

    Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed discretization scheme, unlike the classical scheme which uses RWG functions as both basis and testing functions, is proper: Testing functions belong to dual space of the basis functions. Numerical results demonstrate that the marching on-in-time (MOT) solution of the mixed discretized MFIE yields more accurate results than that of classically discretized MFIE. © 2012 IEEE.

  17. Interaction domains in permanent-magnetic rare-earth transition-metal compounds

    International Nuclear Information System (INIS)

    Thielsch, Juliane

    2015-01-01

    In the framework of this dissertation the phenomenon of the interaction domains was studied both experimentally and by means of micromagnetic simulation. Object of the study were one-phase NdFeB magnets, which were fabricated from commercial MQU-F powders of the Magnequench Inc. company by hot pressing and subsequent warm deformation in the IWF Dresden. Additionally via the same fabrication way also composite samples of NdFeB and Fe with different original particle sizes ere obtained and studied. Supported wer the experimental works by simulations with the FEMME software package, which is based on a hybrid finite-element method/boundary-element method.

  18. Time domain-nuclear magnetic resonance study of chars from southern hardwoods

    International Nuclear Information System (INIS)

    Elder, Thomas; Labbe, Nicole; Harper, David; Rials, Timothy

    2006-01-01

    Chars from the thermal degradation of silver maple (Acer saccharinum), red maple (Acer rubrum), sugar maple (Acer saccharum), and white oak (Quercus spp.), performed at temperatures from 250 to 350 o C, were examined using time domain-nuclear magnetic resonance spectroscopy. Prior to analysis, the chars were equilibrated under conditions insuring the presence of bound water only and both bound water and free water. Transverse relaxation times were found to be related to the moisture content of the chars, which varied with temperature. At elevated temperatures the number of signals assigned to free water decreased, indicative of an increase in pore size within the chars

  19. Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets

    Science.gov (United States)

    Liu, RuiYuan; Zuo, JunWei; Li, YanRong; Zhou, YuRong; Wang, YunPing

    2012-07-01

    Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single molecule magnets (SMMs) have been measured at different temperatures, and hence the anisotropic parameters D 2 and D 4 of the spin Hamiltonian hat H = D_2 hat S_z^2 + D_4 hat S_z^4 have been calculated. For Mn12 SMM, D 2=-10.9 GHz and D 4=-2.59×10-2 GHz, while for Mn3 SMM, D 2=-22.0 GHz and D 4 can be considered negligible. This suggests Mn3 SMM can be considered as a simpler and more suitable candidate for magnetic quantum tunneling research.

  20. Magnetic structure at the surface of a FeZrB alloy

    International Nuclear Information System (INIS)

    Pavuk, M.; Miglierini, M.; Sitek, J.

    2013-01-01

    The aim of this work was to examine two structural states of the "5"7Fe_9_0Zr_7B_3 alloy from the point of view of their domain structure. As the method for obtaining the image of a domain structure we used the magnetic force microscopy (MFM). Its advantage is that besides the image of a domain structure, it also records the image of topography. Another advantage is the high spatial resolution. From both of these advantages, one can benefit in the study of nanocrystalline alloys. Nevertheless, the use of MFM in the study of nanocrystalline materials is so far only rare. Additional structural characterization was obtained by the help of Conversion Electron Moessbauer Spectrometry (CEMS). (authors)

  1. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    Directory of Open Access Journals (Sweden)

    Jianyi Liu

    2014-09-01

    Full Text Available This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc. that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads.

  2. Structure function relations in PDZ-domain-containing proteins ...

    Indian Academy of Sciences (India)

    G P Manjunath

    2017-12-30

    Dec 30, 2017 ... Implications for protein networks in cellular signalling ..... However, surface plasmon resonance .... entiate between conformation changes in the PDZ domain or .... NHERF1, through long-range electrostatic and hydrophobic.

  3. Magnetic surface domain imaging of uncapped epitaxial FeRh(001) thin films across the temperature-induced metamagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Matthes, Frank; Bürgler, Daniel E., E-mail: d.buergler@fz-juelich.de; Schneider, Claus M. [Peter Grünberg Institut, Electronic Properties (PGI-6) and Jülich-Aachen Research Alliance, Fundamentals of Future Information Technology (JARA-FIT), Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-01-15

    The surface magnetic domain structure of uncapped epitaxial FeRh/MgO(001) thin films was imaged by in-situ scanning electron microscopy with polarization analysis (SEMPA) at various temperatures between 122 and 450 K. This temperature range covers the temperature-driven antiferromagnetic-to-ferromagnetic phase transition in the body of the films that was observed in-situ by means of the more depth-sensitive magneto-optical Kerr effect. The SEMPA images confirm that the interfacial ferromagnetism coexisting with the antiferromagnetic phase inside the film is an intrinsic property of the FeRh(001) surface. Furthermore, the SEMPA data display a reduction of the in-plane magnetization occuring well above the phase transition temperature which, thus, is not related to the volume expansion at the phase transition. This observation is interpreted as a spin reorientation of the surface magnetization for which we propose a possible mechanism based on temperature-dependent tetragonal distortion due to different thermal expansion coefficients of MgO and FeRh.

  4. Resistivity structures imaging using time-domain electromagnetic data; TDEM ho ni yoru chika hiteiko kozo no imaging

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K [Waseda University, Tokyo (Japan). School of Science and Engineering; Endo, M [Waseda University, Tokyo (Japan)

    1996-10-01

    The kernel function for transient vertical magnetic dipole was defined for semi-infinite uniform medium, and the 1-D imaging algorithm by TDEM (time-domain electromagnetic) method was developed for underground resistivity structure. Electromagnetic migration method directly images sectional resistivity profiles from the data observed by frequency-domain MT method, and determines underground resistivity profiles by integral equation of MT field using the concept of return travel time in reflection seismic exploration. The method reported in this paper is also one of the EM migration methods. The imaging algorithm of 2-D resistivity structure was developed by correcting 1-D imaging in consideration of the effect of 2-D anomaly on 1-D imaging (the resistivity of anomaly can be obtained from the resistivity contrast between anomaly and medium). The conventional methods require enormous forward computation, while this method can obtain underground resistivity structure in extremely short computation time, resulting in superior practicability. 12 refs., 7 figs.

  5. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [Pathology and Microbiology Department, 986495 Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.

  6. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    International Nuclear Information System (INIS)

    Asojo, Oluwatoyin A.

    2011-01-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins

  7. Time domain numerical calculations of the short electron bunch wakefields in resistive structures

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanian, Andranik

    2010-10-15

    The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of

  8. Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate

    DEFF Research Database (Denmark)

    Lee, D; Oh, E S; Woods, A

    1998-01-01

    Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a coreceptor with integrins in cell adhesion. It has been suggested to form a ternary signaling complex with protein kinase Calpha and phosphatidylinositol 4,5-bisphosphate (PIP2). Syndecans each have a unique, central, and variable (V......) region in their cytoplasmic domains, and that of syndecan-4 is critical to its interaction with protein kinase C and PIP2. Two oligopeptides corresponding to the variable region (4V) and whole domain (4L) of syndecan-4 cytoplasmic domain were synthesized for nuclear magnetic resonance (NMR) studies. Data...... and dynamical simulated annealing calculations. The 4V peptide in the presence of PIP2 formed a compact dimer with two twisted strands packed parallel to each other and the exposed surface of the dimer consisted of highly charged and polar residues. The overall three-dimensional structure in solution exhibits...

  9. Cryogenic magnet case and distributed structural materials for high-field superconducting magnets

    International Nuclear Information System (INIS)

    Summers, L.T.; Miller, J.R.; Kerns, J.A.; Myall, J.O.

    1987-01-01

    The superconducting magnets of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) will generate high magnetic fields over large bores. The resulting electromagnetic forces require the use of large volumes of distributed steel and thick magnet case for structural support. Here we review the design allowables, calculated loads and forces, and structural materials selection for TIBER II. 7 refs., 2 figs., 3 tabs

  10. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  11. Fabrication and properties of submicrometer structures of magnetic materials

    International Nuclear Information System (INIS)

    Martin, J.I.; Velez, M.; Nogues, J.; Schuller, I.K.

    1998-01-01

    The method of electron beam lithography is described. This technique allows to fabricate well defined submicrometer structures of magnetic materials, that are suitable to show and study interesting physical properties by transport measurements either in Superconductivity or in Magnetism. In particular, using these structures, we have analyzed pinning effects of the vortex lattice in superconductors and magnetization reversal processes in magnetic materials. (Author) 15 refs

  12. Structural and magnetic stability of Fe2NiSi

    International Nuclear Information System (INIS)

    Gupta, Dinesh C.; Bhat, Idris Hamid; Chauhan, Mamta

    2014-01-01

    Full-potential ab-initio calculations in the stable F-43m phase have been performed to investigate the structural and magnetic properties of Fe 2 NiSi inverse Heusler alloys. The spin magnetic moment distributions show that present material is ferromagnetic in stable F-43m phase. Further, spin resolved electronic structure calculations show that the discrepancy in magnetic moments of Fe-I and Fe-II depend upon the hybridization of Fe with the main group element. It is found that the main group electron concentration is predominantly responsible in establishing the magnetic properties, formation of magnetic moments and the magnetic order for present alloy

  13. The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens.

    Science.gov (United States)

    Geisbrecht, Brian V; Hamaoka, Brent Y; Perman, Benjamin; Zemla, Adam; Leahy, Daniel J

    2005-04-29

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 A resolution, respectively. These structures reveal a core fold that is comprised of an alpha-helix lying diagonally across a five-stranded, mixed beta-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the beta-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  14. Structure of the thioredoxin-fold domain of human phosducin-like protein 2

    International Nuclear Information System (INIS)

    Lou, Xiaochu; Bao, Rui; Zhou, Cong-Zhao; Chen, Yuxing

    2009-01-01

    The X-ray crystal structure of the Trx-fold domain of hPDCL2 was solved at 2.70 Å resolution and resembled the Trx-fold domain of rat phosducin. Human phosducin-like protein 2 (hPDCL2) has been identified as belonging to subgroup II of the phosducin (Pdc) family. The members of this family share an N-terminal helix domain and a C-terminal thioredoxin-fold (Trx-fold) domain. The X-ray crystal structure of the Trx-fold domain of hPDCL2 was solved at 2.70 Å resolution and resembled the Trx-fold domain of rat phosducin. Comparative structural analysis revealed the structural basis of their putative functional divergence

  15. Transport properties of electrons in fractal magnetic-barrier structures

    Science.gov (United States)

    Sun, Lifeng; Fang, Chao; Guo, Yong

    2010-09-01

    Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.

  16. Rearrangement of crystallographic domains driven by magnetic field in ferromagnetic Ni2MnGa and antiferromagnetic CoO

    International Nuclear Information System (INIS)

    Terai, Tomoyuki; Yasui, Motoyoshi; Yamamoto, Masataka; Kakeshita, Tomoyuki

    2009-01-01

    We have investigated the rearrangement of crystallographic domains (martensite variants) in Ni 2 MnGa ferromagnetic shape memory alloy and CoO antiferromagnetic oxide by applying magnetic field up to 8.0 MA/m. From the result of optical microscope observation of Ni 2 MnGa single crystal, when a magnetic field is applied along [001] p (p represents a parent phase), the rearrangement of crystallographic domains occurs and the single domain state is obtained below T Ms = 202 K. The same rearrangement occurs but partially when a magnetic field is applied along [110] p . On the other hand, when a magnetic field is applied along [111] p , the rearrangement does not occur. In case of the CoO single crystal, when a magnetic field is applied along [001] p below T Ms = 293 K, the rearrangement occurs at 170 K ≤ T ≤ 293 K, but does not occur at T p and [111] p , the rearrangement does not occur below T Ms . In order to explain the rearrangement in the alloy and the oxide, we have evaluated the magnetic shear stress, τ mag , which is derived from the difference in magnetic energy among crystallographic domains and have compared it with the shear stress required for the twinning plane movement, τ req . As a result, we have found that the rearrangement occurs when the value of τ mag is larger than or equal to the value of τ req for the present alloy and oxide.

  17. Surface potential domains on lamellar P3OT structures

    Energy Technology Data Exchange (ETDEWEB)

    Perez-GarcIa, B [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Abad, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Urbina, A [Departamento Electronica, TecnologIa de Computadoras y Proyectos, Universidad Politecnica de Cartagena, E-30202 Cartagena (Spain); Colchero, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Palacios-Lidon, E [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain)

    2008-02-13

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place.

  18. Surface potential domains on lamellar P3OT structures

    International Nuclear Information System (INIS)

    Perez-GarcIa, B; Abad, J; Urbina, A; Colchero, J; Palacios-Lidon, E

    2008-01-01

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place

  19. A method of producing garnet materials for use in circular magnetic domain devices

    International Nuclear Information System (INIS)

    Gill, G.P.

    1976-01-01

    A method is described for producing iron garnet materials for use in circular magnetic domain devices. It comprises providing material having complex domain wall behaviour, and implanting ions having an atomic number of at least 15 into the material. The energy and dose of the ions are such that the lattice is expanded and its crystallinity preserved, and the lattice expansion is such that the complex domain wall behaviour is substantially eliminated. The ions should have an energy in the range 100 to 500 keV and the dose should be in the range 10 12 to 10 14 ions/cm 2 . The implanted ions may be Ar, Sm, Te, or Lu. It is thought that the use of rare earth ions allows the magnetostriction constant of the implanted ion to operate in addition to that of the implanted garnet. An advantage of the method is that doses used for implantation using Ar or rare earth ions are less than for implantation using lighter ions, thereby allowing implantations to be performed in a shorter time for the same beam currency density. (UK)

  20. Ordering and thermal excitations in dipolar coupled single domain magnet arrays (Presentation Recording)

    Science.gov (United States)

    Östman, Erik; Arnalds, Unnar; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2015-09-01

    For a small island of a magnetic material the magnetic state of the island is mainly determined by the exchange interaction and the shape anisotropy. Two or more islands placed in close proximity will interact through dipolar interactions. The state of a large system will thus be dictated by interactions at both these length scales. Enabling internal thermal fluctuations, e.g. by the choice of material, of the individual islands allows for the study of thermal ordering in extended nano-patterned magnetic arrays [1,2]. As a result nano-magnetic arrays represent an ideal playground for the study of physical model systems. Here we present three different studies all having used magneto-optical imaging techniques to observe, in real space, the order of the systems. The first study is done on a square lattice of circular islands. The remanent magnetic state of each island is a magnetic vortex structure and we can study the temperature dependence of the vortex nucleation and annihilation fields [3]. The second are long chains of dipolar coupled elongated islands where the magnetization direction in each island only can point in one of two possible directions. This creates a system which in many ways mimics the Ising model [4] and we can relate the correlation length to the temperature. The third one is a spin ice system where elongated islands are placed in a square lattice. Thermal excitations in such systems resemble magnetic monopoles [2] and we can investigate their properties as a function of temperature and lattice parameters. [1] V. Kapaklis et al., New J. Phys. 14, 035009 (2012) [2] V. Kapaklis et al., Nature Nanotech 9, 514(2014) [3] E. Östman et al.,New J. Phys. 16, 053002 (2014) [4] E. Östman et al.,Thermal ordering in mesoscopic Ising chains, In manuscript.

  1. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    Directory of Open Access Journals (Sweden)

    Sanaz Mahmoudpour

    2011-01-01

    Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.

  2. Structural rearrangement of the intracellular domains during AMPA receptor activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Ljudmila; Jensen, Anna Guldvang

    2016-01-01

    -clamp fluorometry of the double- and single-insert constructs showed that both the intracellular C-terminal domain (CTD) and the loop region between the M1 and M2 helices move during activation and the CTD is detached from the membrane. Our time-resolved measurements revealed unexpectedly complex fluorescence...

  3. Inference of domain structure at elevated temperature in fine ...

    African Journals Online (AJOL)

    The thermal variation of the number of domains (nd) for Fe7S8 particles (within the size range 1-30 mm and between 20 and 300°C), has been inferred from the room temperature analytic expression between nd and particle size (L), the temperature dependences of the anisotropy energy constant (K) and the spontaneous ...

  4. Magnetic structures synthesized by controlled oxidative etching: Structural characterization and magnetic behavior

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    Full Text Available A facile strategy for the fabrication Fe3O4 nanostructures at room temperature and with well-defined morphology is proposed. In this methodology, the iron precursors were reduced by sodium borohydride. Subsequently an oxidative etching process promotes the formation of Fe2O3 nanostructures. Magnetic measurements revealed a well-defined superparamagnetic behavior for the material. The Zero-Field-Cooled (ZFC and Field-Cooled (FC magnetization curves reveals that critical and blocking temperature were 24 and 350 °C respectively. The Fe3O4 nanostructures were characterized using aberration-corrected (Cs scanning transmission electron microscopy (STEM and energy dispersive spectroscopy (EDS. Additionally, Raman spectra support the Fe3O4 presence and corroborate the efficiency of the synthesis process to obtain magnetite. Keywords: Chemical synthesis, Fe3O4 nanoparticles, Structural characterization, Magnetic properties

  5. The effects of the structure characteristics on Magnetic Barkhausen noise in commercial steels

    Science.gov (United States)

    Deng, Yu; Li, Zhe; Chen, Juan; Qi, Xin

    2018-04-01

    This study has been done by separately measuring Magnetic Barkhausen noise (MBN) under different structure characteristics, namely the carbon content, hardness, roughness, and elastic modulus in commercial steels. The result of the experiments shows a strong dependence of MBN parameters (peak height, Root mean square (RMS), and average value) on structure characteristics. These effects, according to this study, can be explained by two kinds of source mechanisms of the MBN, domain wall nucleation and wall propagation. The discovery obtained in this paper can provide basic knowledge to understand the existing surface condition problem of Magnetic Barkhausen noise as a non-destructive evaluation technique and bring MBN into wider application.

  6. Thickness dependence of magnetic anisotropy and domains in amorphous Co{sub 40}Fe{sub 40}B{sub 20} thin films grown on PET flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenhua, E-mail: tangzhenhua1988@163.com [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Ni, Hao [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); College of science, China university of petroleum, Qingdao, Shandong 266580 China (China); Lu, Biao [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zheng, Ming [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Huang, Yong-An [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Lu, Sheng-Guo, E-mail: sglu@gdut.edu.cn [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Tang, Minghua [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education (Xiangtan University), Xiangtan, Hunan 411105 (China); Gao, Ju [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2017-03-15

    The amorphous Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) films (5–200 nm in thickness) were grown on flexible polyethylene terephthalate (PET) substrates using the DC magnetron-sputtering method. The thickness dependence of structural and magnetic properties of flexible CoFeB thin films was investigated in detail. The in-plane uniaxial magnetic anisotropy induced by strain as a function of thickness was obtained in flexible CoFeB thin films, and a critical thickness of ~150 nm for in-plane magnetic anisotropy was observed. Moreover, the domains and the uniaxial anisotropy as a function of angular direction of applied magnetic field were characterized. The results show potential for designing CoFeB-based flexible spintronic devices in which the physical parameters could be tailored by controlling the thickness of the thin film. - Graphical abstract: The in-plane uniaxial magnetic anisotropy induced by strain as a function of thickness was obtained in flexible CoFeB thin films, and a critical thickness of ~150 nm for in-plane magnetic anisotropy was observed. Moreover, the domains and the uniaxial anisotropy as a function of angular direction of applied magnetic field were characterized. - Highlights: • The thickness effect on the magnetic properties in amorphous CoFeB thin films grown on flexible substrates was investigated. • The in-plane uniaxial magnetic anisotropy induced by strains was observed. • A critical thickness of ~ 150 nm for the flexible CoFeB thin film on PET substrate was obtained.

  7. Ultrathin magnetic structures II measurement techniques and novel magnetic properties

    CERN Document Server

    Heinrich, Bretislav

    2006-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism, with profound impact in technology and serving as the basis for a revolution in electronics. Our understanding of the physics of magnetic nanostructures has also advanced significantly. This rapid development has generated a need for a comprehensive treatment that can serve as an introduction to the field for those entering it from diverse fields, but which will also serve as a timely overview for those already working in this area. The four-volume work Ultra-Thin Magnetic

  8. Domain wall motions in perpendicularly magnetized CoFe/Pd multilayer nanowire

    DEFF Research Database (Denmark)

    Meng, Zhaoliang; Kumar, Manoj; Qiu, Jinjun

    2014-01-01

    Current-induced domain wall (DW) motion is investigated in a 600nm wide nanowire using multilayer film with a structure of Ta(5nm)/Pd(5nm)/[CoFe(0.4nm)/Pd(1.2nm)]15/Ta(5nm) in terms of anomalous Hall effect measurements. It is found that motion of DWs can be driven by a current density as low as 1...

  9. Purification of SOCS (Suppressor of Cytokine Signaling) SH2 Domains for Structural and Functional Studies.

    Science.gov (United States)

    Liau, Nicholas P D; Laktyushin, Artem; Babon, Jeffrey J

    2017-01-01

    Src Homology 2 (SH2) domains are protein domains which have a high binding affinity for specific amino acid sequences containing a phosphorylated tyrosine residue. The Suppressors of Cytokine Signaling (SOCS) proteins use an SH2 domain to bind to components of certain cytokine signaling pathways to downregulate the signaling cascade. The recombinantly produced SH2 domains of various SOCS proteins have been used to undertake structural and functional studies elucidating the method of how such targeting occurs. Here, we describe the protocol for the recombinant production and purification of SOCS SH2 domains, with an emphasis on SOCS3.

  10. SOLAR MULTIPLE ERUPTIONS FROM A CONFINED MAGNETIC STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongwoo; Chae, Jongchul [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Liu, Chang; Jing, Ju [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-09-20

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open–closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  11. SOLAR MULTIPLE ERUPTIONS FROM A CONFINED MAGNETIC STRUCTURE

    International Nuclear Information System (INIS)

    Lee, Jeongwoo; Chae, Jongchul; Liu, Chang; Jing, Ju

    2016-01-01

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open–closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  12. Structural aspects of superconducting fusion magnets

    International Nuclear Information System (INIS)

    Reich, M.; Lehner, J.; Powell, J.

    1977-01-01

    Some methods for studying various static, dynamic, elastic-plastic, and fracture mechanics problems of superconducting magnets are described. Sample solutions are given for the UWMAK-I magnet. Finite element calculations were used

  13. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2008-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit a sequential stream of observations, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN is gradu...

  14. Introduction and pinning of domain walls in 50 nm NiFe constrictions using local and external magnetic fields

    International Nuclear Information System (INIS)

    Zahnd, G.; Pham, V.T.; Marty, A.; Jamet, M.; Beigné, C.; Notin, L.; Vergnaud, C.; Rortais, F.; Vila, L.; Attané, J.-P.

    2016-01-01

    We study domain wall injection in 100 nm wide NiFe nanowires, followed by domain wall propagation and pinning on 50 nm wide constrictions. The injection is performed using local and external magnetic fields. Using several nucleation pad geometries, we show that at these small dimensions the use of an external field only does not allow obtaining a reproducible injection/pinning process. However, the use of an additional local field, created by an Oersted line, allows to nucleate a reversed domain at zero external applied field. Then, an external field of 5 mT enables the domain wall to propagate far from the Oersted line, and the pinning occurs reproducibly. We also show that notwithstanding the reproducibility of the pinning process, the depinning field is found to be stochastic, following a bimodal distribution. Using micromagnetic simulation we link two different DW configurations, vortex and transverse, to the two typical depinning fields. - Highlights: • Magnetic domain wall introduction and pinning in Permalloy nanowires with 50 nm wide constrictions. • Magnetic domain nucleation at zero external applied field. • Bimodal distribution of the domain wall configuration in the constriction.

  15. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  16. Computer modeling of magnetic structure for IC-35 cyclotron

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.; Morozov, N.A.

    1998-01-01

    An extensive series of calculations has been carried out in order to design the magnetic structure of the IC-35 cyclotron for radioisotope production. The calculations were carried out by 2-D POISCR code. The average magnetic field and its variation were produced with the help of two different calculation models. The parameters of the cyclotron magnetic system are presented

  17. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    International Nuclear Information System (INIS)

    Sun Jinji; Fang Jiancheng

    2011-01-01

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  18. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinji, E-mail: sunjinji@aspe.buaa.edu.c [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China); Fang Jiancheng [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China)

    2011-01-15

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  19. Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet based on synthesis temperature

    Science.gov (United States)

    Anjum, Safia; Sehar, Fatima; Mustafa, Zeeshan; Awan, M. S.

    2018-01-01

    The main purpose of this research work is to develop the single domain magnetic particles of M-type barium hexaferrite (BaFe12O19) using oxide precursors employing conventional powder metallurgy technique. The phase formation and magnetic performance of the powders and magnets will be optimized by adjusting calcination and sintering temperatures. The synthesis of M-type barium hexaferrite was carried out in two sections. A series of four samples have been prepared by initial wet mixed powders calcined at different temperatures, i.e., 750, 850, 950 and 1050 °C. On the basis of structural analysis, the sample calcined at 950 °C has been selected and further divided into four parts to sintered them at 1100, 1150, 1200 and 1250 °C. The structural measurements depict the confirmation of M-type barium hexaferrite structure. SEM micrographs show the hexagonal-shaped grains. The abrupt decrease in coercivity for the sample sintered at 1250 °C has been seen which may be due to high sintering temperature, at which the particles have multi-domain properties.

  20. Structure of magnetic field in Tokamaks

    International Nuclear Information System (INIS)

    Heller, M.V.A.P.; Caldas, I.L.

    1990-01-01

    Magnetic surfaces, necessary to plasma confinement, can be extinguished by resonant helical perturbations with small intensities due to plasma oscillations or external helical currents. The mapping of magnetic field is obtained intergrating numerically the differential equation of its lines. Criteria which evaluate the chaotic distribution of lines between resonant magnetic islands are presented. (M.C.K.) [pt

  1. CATHEDRAL: a fast and effective algorithm to predict folds and domain boundaries from multidomain protein structures.

    Directory of Open Access Journals (Sweden)

    Oliver C Redfern

    2007-11-01

    Full Text Available We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure-based method (using graph theory to locate known folds within a multidomain context and a residue-based, double-dynamic programming algorithm, which is used to align members of the target fold groups against the query protein structure to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with <1% false positives. For nearly 80% of assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and typically 90% or more of these

  2. Aspects of Dzyaloshinskii-Moriya Interaction in Two Dimensional Magnetic Structures

    Science.gov (United States)

    Kundu, Anirban

    Research on topologically protected chiral magnetic structures such as magnetic domain walls (DWs) and skyrmions, have gained extensive interest because of their possible applications in magnetic data storage industries. The recently observed chiral DW structures in ultrathin ferromagnetic lms with perpendicular magnetic anisotropy has been attributed to the presence of a strong Dzyaloshinskii-Moriya interaction (DMI). In this thesis, the DMI mediated by the conduction electrons in two dimensional magnetic systems such as magnetic thin lms or at the interfaces between two magnetic materials has been studied. I calculate the Ruderman-Kittel- Kasuya-Yosida (RKKY) type indirect exchange coupling between two magnetic moments at nite temperature using the free electron band. At high temperature, the coupling strength decays with distance faster than the coupling at zero temperature but the period of oscillation remains same. However, the free electron band alone could not produce DMI. In the next step, I show addition of Rashba spin-orbit coupling (RSOC) with the spin-polarized conduction electron band produces the DMI between two magnetic ions. The essential feature of this DMI is: the coupling strength increases with the strength of RSOC, but decreases signi cantly with the Heisenberg exchange coupling. The DMI calculated with this model well explains the possibility of preferred Neel or Bloch DW structures with specifc chirality. In addition: I study switching of magnetization with ultrafast laser pulse by inverse Faraday e ect (IFE) where an optically induced non-equilibrium orbital momentum generates an e ective magnetic eld via spin-orbit coupling for magnetization switching. I calculate the magnitude of induced orbital moment for the generic itinerant band and show that magnitude is not large enough to make the switching by a single pulse, however, switching could be possible if multiple pulses are applied to the material.

  3. Laser direct writing (LDW of magnetic structures

    Directory of Open Access Journals (Sweden)

    Alaa Alasadi

    2018-05-01

    Full Text Available Laser direct writing (LDW has been used to pattern 90nm thick permalloy (Ni81Fe19 into 1-D and 2-D microstructures with strong shape anisotropy. Sub-nanosecond laser pulses were focused with a 0.75 NA lens to a 1.85μm diameter spot, to achieve a fluence of approximately 350 mJ.cm-2 and ablate the permalloy film. Computer-controlled sample scanning then allowed structures to be defined. Scan speeds were controlled to give 30% overlap between successive laser pulses and reduce the extent of width modulation in the final structures. Continuous magnetic wires that adjoined the rest of the film were fabricated with widths from 650 nm - 6.75μm and magneto-optical measurements showed coercivity reducing across this width range from 47 Oe to 11 Oe. Attempts to fabricate wires narrower than 650nm resulted in discontinuities in the wires and a marked decrease in coercivity. This approach is extremely rapid and was carried out in air, at room temperature and with no chemical processing. The 6-kHz laser pulse repetition rate allowed wire arrays across an area of 4 mm x 0.18 mm to be patterned in 85 s.

  4. Laser direct writing (LDW) of magnetic structures

    Science.gov (United States)

    Alasadi, Alaa; Claeyssens, F.; Allwood, D. A.

    2018-05-01

    Laser direct writing (LDW) has been used to pattern 90nm thick permalloy (Ni81Fe19) into 1-D and 2-D microstructures with strong shape anisotropy. Sub-nanosecond laser pulses were focused with a 0.75 NA lens to a 1.85μm diameter spot, to achieve a fluence of approximately 350 mJ.cm-2 and ablate the permalloy film. Computer-controlled sample scanning then allowed structures to be defined. Scan speeds were controlled to give 30% overlap between successive laser pulses and reduce the extent of width modulation in the final structures. Continuous magnetic wires that adjoined the rest of the film were fabricated with widths from 650 nm - 6.75μm and magneto-optical measurements showed coercivity reducing across this width range from 47 Oe to 11 Oe. Attempts to fabricate wires narrower than 650nm resulted in discontinuities in the wires and a marked decrease in coercivity. This approach is extremely rapid and was carried out in air, at room temperature and with no chemical processing. The 6-kHz laser pulse repetition rate allowed wire arrays across an area of 4 mm x 0.18 mm to be patterned in 85 s.

  5. Structure and Dynamics of the tRNA-like Structure Domain of Brome Mosaic Virus

    Science.gov (United States)

    Vieweger, Mario; Nesbitt, David

    2014-03-01

    Conformational switching is widely accepted as regulatory mechanism in gene expression in bacterial systems. More recently, similar regulation mechanisms are emerging for viral systems. One of the most abundant and best studied systems is the tRNA-like structure domain that is found in a number of plant viruses across eight genera. In this work, the folding dynamics of the tRNA-like structure domain of Brome Mosaic Virus are investigated using single-molecule Fluorescence Resonance Energy Transfer techniques. In particular, Burst fluorescence is applied to observe metal-ion induced folding in freely diffusing RNA constructs resembling the 3'-terminal 169nt of BMV RNA3. Histograms of EFRET probabilities reveal a complex equilibrium of three distinct populations. A step-wise kinetic model for TLS folding is developed in accord with the evolution of conformational populations and structural information in the literature. In this mechanism, formation of functional TLS domains from unfolded RNAs requires two consecutive steps; 1) hybridization of a long-range stem interaction followed by 2) formation of a 3' pseudoknot. This three-state equilibrium is well described by step-wise dissociation constants K1(328(30) μM) and K2(1092(183) μM) for [Mg2+] and K1(74(6) mM) and K2(243(52) mM) for [Na+]-induced folding. The kinetic model is validated by oligo competition with the STEM interaction. Implications of this conformational folding mechanism are discussed in regards to regulation of virus replication.

  6. Microstructural and domain effects in epitaxial CoFe2O4 films on MgO with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Comes, Ryan; Gu Man; Khokhlov, Mikhail; Lu Jiwei; Wolf, Stuart A.

    2012-01-01

    CoFe 2 O 4 (CFO) epitaxial thin films of various thicknesses were grown on MgO substrates using the pulsed electron-beam deposition technique. The films have excellent in-plane coherence with the substrate, exhibit layer-by-layer growth and have well-defined thickness fringes in x-ray diffraction measurements. Atomic force microscopy (AFM) measurements indicate that misfit dislocations form in thicker films and the critical thickness for the dislocation formation is estimated. Perpendicular magnetic anisotropy in CFO due to epitaxial in-plane tensile strain from the substrate was found. A stripe-like domain structure in the demagnetized state is demonstrated using magnetic force microscopy (MFM), in agreement with previous predictions. Coercivity increased in thicker films, which is explained by domain wall pinning due to misfit dislocations at the CFO/MgO interface. - Highlights: → X-ray diffraction and rocking curves indicate films are amongst highest quality in the literature. → Domain structure of CoFe 2 O 4 films on MgO was found to be stripe-like using MFM. → Critical thickness for misfit dislocations estimated and agrees with experiment. → Effect of misfit dislocations on surface morphology explained. → Role of dislocations and antiphase boundaries in domain wall formation and motion explained.

  7. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein.

    Science.gov (United States)

    Gleave, Emma S; Schmidt, Helgo; Carter, Andrew P

    2014-06-01

    Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    International Nuclear Information System (INIS)

    Pariona, N.; Camacho-Aguilar, K.I.; Ramos-González, R.; Martinez, Arturo I.; Herrera-Trejo, M.; Baggio-Saitovitch, E.

    2016-01-01

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a “plum pudding”, where hematite NPs “raisins” are surrounded by ferrihydrite “pudding”. Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere. - Highlights: • Ferrihydrite/hematite nanocomposites were prepared. • The “plum pudding” morphology of the ferrihydrite/hematite nanocomposites was found. • The FORC diagrams of ferrihydrite/hematite nanocomposites have been measured.

  9. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Pariona, N.; Camacho-Aguilar, K.I.; Ramos-González, R. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Martinez, Arturo I., E-mail: mtz.art@gmail.com [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Herrera-Trejo, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Río de Janeiro 22290-180 (Brazil)

    2016-05-15

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a “plum pudding”, where hematite NPs “raisins” are surrounded by ferrihydrite “pudding”. Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere. - Highlights: • Ferrihydrite/hematite nanocomposites were prepared. • The “plum pudding” morphology of the ferrihydrite/hematite nanocomposites was found. • The FORC diagrams of ferrihydrite/hematite nanocomposites have been measured.

  10. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and

  11. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N. (UW)

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  12. Nonequilibrium spin transport in integrable spin chains: Persistent currents and emergence of magnetic domains

    Science.gov (United States)

    De Luca, Andrea; Collura, Mario; De Nardis, Jacopo

    2017-07-01

    We construct exact steady states of unitary nonequilibrium time evolution in the gapless XXZ spin-1/2 chain where integrability preserves ballistic spin transport at long times. We characterize the quasilocal conserved quantities responsible for this feature and introduce a computationally effective way to evaluate their expectation values on generic matrix product initial states. We employ this approach to reproduce the long-time limit of local observables in all quantum quenches which explicitly break particle-hole or time-reversal symmetry. We focus on a class of initial states supporting persistent spin currents and our predictions remarkably agree with numerical simulations at long times. Furthermore, we propose a protocol for this model where interactions, even when antiferromagnetic, are responsible for the unbounded growth of a macroscopic magnetic domain.

  13. Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs

    Science.gov (United States)

    Heintze, Eric; El Hallak, Fadi; Clauß, Conrad; Rettori, Angelo; Pini, Maria Gloria; Totti, Federico; Dressel, Martin; Bogani, Lapo

    2013-03-01

    Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. In contrast to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiance is very low, a substantial improvement over present methods of magneto-optical switching. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to numerous fields, ranging from social evolution to neural networks and chemical reactivity.

  14. Time-Domain Nuclear Magnetic Resonance Investigation of Water Dynamics in Different Ginger Cultivars.

    Science.gov (United States)

    Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang

    2016-01-20

    Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.

  15. Structure of Concatenated HAMP Domains Provides a Mechanism for Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Airola, Michael V.; Watts, Kylie J.; Bilwes, Alexandrine M.; Crane, Brian R. (Cornell); (Lorma Linda U)

    2010-08-23

    HAMP domains are widespread prokaryotic signaling modules found as single domains or poly-HAMP chains in both transmembrane and soluble proteins. The crystal structure of a three-unit poly-HAMP chain from the Pseudomonas aeruginosa soluble receptor Aer2 defines a universal parallel four-helix bundle architecture for diverse HAMP domains. Two contiguous domains integrate to form a concatenated di-HAMP structure. The three HAMP domains display two distinct conformations that differ by changes in helical register, crossing angle, and rotation. These conformations are stabilized by different subsets of conserved residues. Known signals delivered to HAMP would be expected to switch the relative stability of the two conformations and the position of a coiled-coil phase stutter at the junction with downstream helices. We propose that the two conformations represent opposing HAMP signaling states and suggest a signaling mechanism whereby HAMP domains interconvert between the two states, which alternate down a poly-HAMP chain.

  16. C-terminal domains of bacterial proteases: structure, function and the biotechnological applications.

    Science.gov (United States)

    Huang, J; Wu, C; Liu, D; Yang, X; Wu, R; Zhang, J; Ma, C; He, H

    2017-01-01

    C-terminal domains widely exist in the C-terminal region of multidomain proteases. As a β-sandwich domain in multidomain protease, the C-terminal domain plays an important role in proteolysis including regulation of the secretory process, anchoring and swelling the substrate molecule, presenting as an inhibitor for the preprotease and adapting the protein structural flexibility and stability. In this review, the diversity, structural characteristics and biological function of C-terminal protease domains are described. Furthermore, the application prospects of C-terminal domains, including polycystic kidney disease, prepeptidase C-terminal and collagen-binding domain, in the area of medicine and biological artificial materials are also discussed. © 2016 The Society for Applied Microbiology.

  17. Magnetic and thermodynamic properties of Ising model with borophene structure in a longitudinal magnetic field

    Science.gov (United States)

    Shi, Kaile; Jiang, Wei; Guo, Anbang; Wang, Kai; Wu, Chuang

    2018-06-01

    The magnetic and thermodynamic properties of borophene structure have been studied for the first time by Monte Carlo simulation. Two-dimensional borophene structure consisting of seven hexagonal B36 units is described by Ising model. Each B36 basic unit includes three benzene-like with spin-3/2. The general formula for the borophene structure is given. The numerical results of the magnetization, the magnetic susceptibility, the internal energy and the specific heat are studied with various parameters. The possibility to test the predicted magnetism in experiment are illustrated, for instance, the maximum on the magnetization curve. The multiple hysteresis loops and the magnetization plateaus are sensitive to the ferromagnetic or ferrimagnetic exchange coupling in borophene structure. The results show the borophene structure could have applications in spintronics, which deserves further studies in experiments.

  18. Magnetic shielding structure optimization design for wireless power transmission coil

    Science.gov (United States)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  19. Magnetic topology of Co-based inverse opal-like structures

    Science.gov (United States)

    Grigoryeva, N. A.; Mistonov, A. A.; Napolskii, K. S.; Sapoletova, N. A.; Eliseev, A. A.; Bouwman, W.; Byelov, D. V.; Petukhov, A. V.; Chernyshov, D. Yu.; Eckerlebe, H.; Vasilieva, A. V.; Grigoriev, S. V.

    2011-08-01

    The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640±10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction.

  20. Ferroelectric and ferroelastic domain structures in piezoelectric ceramics

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin Peng.

    1990-01-01

    A discussion of the results of conventional and high-resolution high-voltage electron microscopic studies of two ferroelectrics, barium sodium niobate and lead zirconium titanate is presented. It is shown that a rich variety of information such as ferroelectric and/or ferroelastic domains discommensurations versus antiphase boundaries, extended versus localized chemical defects and multiphase versus grain boundaries, become accessible in both single crystal and polycrystalline piezoelectrics, when a combination of high-resolution and conventional electron optical techniques is used. 15 refs., 8 figs

  1. Open H-shaped permanent magnet structure for NMR imaging

    International Nuclear Information System (INIS)

    Nguyen, V.; Delamare, J.; Yonnet, J.P.

    1996-01-01

    Since NMR imaging at low field is now technically possible, permanent magnets can replace resistive coils or superconducting magnets. This paper reviews most of NMR structures that provide an uniform field using only permanent magnets. We propose a new open H-shaped structure that is simple to manufacture. This structure has been calculated thanks to an optimization program and a calculation method we presente here. It enables to determine with a good accuracy the field created by passive systems composed by permanent magnets and ferromagnetic materials. (author)

  2. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases.

    Science.gov (United States)

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements.

  3. Magnetic properties, domain-wall creep motion, and the Dzyaloshinskii-Moriya interaction in Pt/Co/Ir thin films

    Science.gov (United States)

    Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.

    2018-04-01

    We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.

  4. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  5. Ferroelectricity driven magnetism at domain walls in LaAlO3/PbTiO3 superlattices

    Science.gov (United States)

    Zhou, P. X.; Dong, S.; Liu, H. M.; Ma, C. Y.; Yan, Z. B.; Zhong, C. G.; Liu, J. -M.

    2015-01-01

    Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclusion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials and provide more attractive potential to realize the magnetoelectric functions. Here we perform a first-principles study on LaAlO3/PbTiO3 superlattices. Although neither of the components is magnetic, magnetic moments emerge at the ferroelectric domain walls of PbTiO3 in these superlattices. Such a twist between ferroelectric domain and local magnetic moment, not only manifests an interesting type of multiferroicity, but also is possible useful to pursuit the electrical-control of magnetism in nanoscale heterostructures. PMID:26269322

  6. The effect of magnet size on the levitation force and attractive force of single-domain YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Yang, W M; Chao, X X; Bian, X B; Liu, P; Feng, Y; Zhang, P X; Zhou, L

    2003-01-01

    The levitation forces between a single-domain YBCO bulk and several magnets of different sizes have been measured at 77 K to investigate the effect of the magnet size on the levitation force. It is found that the levitation force reaches a largest (peak) value when the size of the magnet approaches that of the superconductor when the other conditions are fixed. The absolute maximum attractive force (in the field-cooled state) increases with the increasing of the magnet size, and is saturated when the magnet size approaches that of the superconductor. The maximum attractive force in the field-cooled (FC) state is much higher than that of the maximum attractive force in the zero field-cooled (ZFC) state. The results indicate that the effects of magnetic field distribution on the levitation force have to be considered during the designing and manufacturing of superconducting devices

  7. Structure and properties of bulk amorphous magnetically soft coatings prepared by plasma spraying

    International Nuclear Information System (INIS)

    Kalita, V.I.; Kekalo, I.B.; Komlev, D.I.; Taranichev, V.E.

    1995-01-01

    Co-Ni-Fe-Si-B composition plasma coatings consisting of amorphous disk-shaped particles forming the bulk of a coating, of crystalline particles and of a threshold space, were studied. Iron and metalloid distribution heterogeneous by the thickness represents a peculiar feature for coating amorphous particles. Structure of coatings and their magnetic properties depend on some technological parameters. Conclusion is made that at annealing the variation of magnetic properties is determined by the processes of directed ordering and stratification of amorphous phase, while the low level of the initial magnetic properties of coatings is caused alongside with structure peculiarities, by occurrence of independent fine-dispersive domain structure in each disk-shaped amorphous phase. 14 refs., 8 figs., 6 tabs

  8. A new approach for bioassays based on frequency- and time-domain measurements of magnetic nanoparticles.

    Science.gov (United States)

    Oisjöen, Fredrik; Schneiderman, Justin F; Astalan, Andrea Prieto; Kalabukhov, Alexey; Johansson, Christer; Winkler, Dag

    2010-01-15

    We demonstrate a one-step wash-free bioassay measurement system capable of tracking biochemical binding events. Our approach combines the high resolution of frequency- and high speed of time-domain measurements in a single device in combination with a fast one-step bioassay. The one-step nature of our magnetic nanoparticle (MNP) based assay reduces the time between sample extraction and quantitative results while mitigating the risks of contamination related to washing steps. Our method also enables tracking of binding events, providing the possibility of, for example, investigation of how chemical/biological environments affect the rate of a binding process or study of the action of certain drugs. We detect specific biological binding events occurring on the surfaces of fluid-suspended MNPs that modify their magnetic relaxation behavior. Herein, we extrapolate a modest sensitivity to analyte of 100 ng/ml with the present setup using our rapid one-step bioassay. More importantly, we determine the size-distributions of the MNP systems with theoretical fits to our data obtained from the two complementary measurement modalities and demonstrate quantitative agreement between them. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Nonlinear dynamics of breathers in the spiral structures of magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, V. V., E-mail: kiselev@imp.uran.ru; Raskovalov, A. A. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-06-15

    The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.

  10. Structural basis of antifreeze activity of a bacterial multi-domain antifreeze protein.

    Directory of Open Access Journals (Sweden)

    Chen Wang

    Full Text Available Antifreeze proteins (AFPs enhance the survival of organisms inhabiting cold environments by affecting the formation and/or structure of ice. We report the crystal structure of the first multi-domain AFP that has been characterized. The two ice binding domains are structurally similar. Each consists of an irregular β-helix with a triangular cross-section and a long α-helix that runs parallel on one side of the β-helix. Both domains are stabilized by hydrophobic interactions. A flat plane on the same face of each domain's β-helix was identified as the ice binding site. Mutating any of the smaller residues on the ice binding site to bulkier ones decreased the antifreeze activity. The bulky side chain of Leu174 in domain A sterically hinders the binding of water molecules to the protein backbone, partially explaining why antifreeze activity by domain A is inferior to that of domain B. Our data provide a molecular basis for understanding differences in antifreeze activity between the two domains of this protein and general insight on how structural differences in the ice-binding sites affect the activity of AFPs.

  11. Symmetry analysis in neutron diffraction studies of magnetic structures. IV

    International Nuclear Information System (INIS)

    Izyumov, Yu.A.; Naish, V.E.; Petrov, S.B.

    1979-01-01

    By analyzing the exchange Hamiltonian, the authors develop the technique of determining the magnetic structures liable to occur in a crystal. The technique rests on Bertaut's idea that the exchange eigenfunction corresponds to some magnetic structure. A technically simple and efficient method of diagonalizing the exchange matrix is worked out using the devices of space group representation theory. A method is presented to find the magnetic structures with equal exchange energy (exchange multiplets). The occcurrence of exchange multiplets results from the additional invariance of the exchange Hamiltonian under rotation of all the spins. The degeneracy within the exchange multiplet may be the reason why some magnetic structures arise not according to one irreducible representation of the space group. The theory is illustrated with reference to an example of the magnetic structure of spinels. (Auth.)

  12. Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

    Directory of Open Access Journals (Sweden)

    V. Fallahi

    2012-06-01

    Full Text Available The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls can be controlled through the domain walls separation. Also, we have represented another alternative way that enables us to handle easily the magnetoresistance of such a system as well as its conductance by utilizing the Rashba-type spin-orbit interaction induced by the external gates.

  13. A structural role for the PHP domain in E. coli DNA polymerase III.

    Science.gov (United States)

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  14. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...... a characteristic broad absorption peak at 0.5 THz corresponding to the dipole moment of THF molecules. The refractive indices of THF and propane hydrates are 1.725 and 1.775 at 1 THz, respectively, and show a slight but clear difference from the refractive index of ice (1.79). THz-TDS is a potentially useful...... technique for the ondestructive inspection of gas hydrates. # 2009 The Japan Society of Applied Physics...

  15. Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and CryoEM modeling.

    Science.gov (United States)

    Rizzo, Alessandro A; Suhanovsky, Margaret M; Baker, Matthew L; Fraser, LaTasha C R; Jones, Lisa M; Rempel, Don L; Gross, Michael L; Chiu, Wah; Alexandrescu, Andrei T; Teschke, Carolyn M

    2014-06-10

    Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded β-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Domain wall motion and magnetization reversal processes in a FeSi picture frame single crystal studied by the time-dependent neutron depolarization technique

    International Nuclear Information System (INIS)

    Schaik, F.J. van.

    1979-01-01

    The three dimensional neutron depolarization technique, which gives detailed information about the static properties of ferromagnetic materials, has been extended to a method by means of which the time dependence of magnetic phenomena can be studied. The measurement of the neutron depolarization against time is made possible by applying a periodical magnetic field on the investigated specimen and by continuous sampling of the transmitted neutron intensity in time channels, which are started synchronously with the applied field. The technique has been used in the study of the magnetic domain structure at room temperature of a (010) [001] picture frame FeSi single crystal (3.5 wt.% Si) with outer dimensions of (15 x 10 x 0.26) mm and a frame width of 2.78 mm. (Auth.)

  17. Structure discrimination for the C-terminal domain of Escherichia coli trigger factor in solution

    International Nuclear Information System (INIS)

    Yao Yong; Bhabha, Gira; Kroon, Gerard; Landes, Mindy; Dyson, H. Jane

    2008-01-01

    NMR measurements can give important information on solution structure, without the necessity for a full-scale solution structure determination. The C-terminal protein binding domain of the ribosome-associated chaperone protein trigger factor is composed of non-contiguous parts of the polypeptide chain, with an interpolated prolyl isomerase domain. A construct of the C-terminal domain of Escherichia coli trigger factor containing residues 113-149 and 247-432, joined by a Gly-Ser-Gly-Ser linker, is well folded and gives excellent NMR spectra in solution. We have used NMR measurements on this construct, and on a longer construct that includes the prolyl isomerase domain, to distinguish between two possible structures for the C-terminal domain of trigger factor, and to assess the behavior of the trigger factor C-terminal domain in solution. Two X-ray crystal structures, of intact trigger factor from E. coli (Ferbitz et al., Nature 431:590-596, 2004), and of a truncated trigger factor from Vibrio cholerae (Ludlam et al., Proc Natl Acad Sci USA 101:13436-13441, 2004) showed significant differences in the structure of the C-terminal domain, such that the two structures could not be superimposed. We show using NMR chemical shifts and long range nuclear Overhauser effects that the secondary and tertiary structure of the E. coli C-terminal domain in solution is consistent with the crystal structure of the E. coli trigger factor and not with the V. cholerae protein. Given the similarity of the amino acid sequences of the E. coli and V. cholerae proteins, it appears likely that the structure of the V. cholerae protein has been distorted as a result of truncation of a 44-amino acid segment at the C-terminus. Analysis of residual dipolar coupling measurements shows that the overall topology of the solution structure is completely inconsistent with both structures. Dynamics analysis of the C-terminal domain using T 1 , T 2 and heteronuclear NOE parameters show that the protein is

  18. Magnetic structure of volcanic neck; Kazangankei no jiki kozo

    Energy Technology Data Exchange (ETDEWEB)

    Makino, M; Okuma, S; Morijiri, R; Nakatsuka, T [Geological Survey of Japan, Tsukuba (Japan)

    1997-05-27

    This paper describes the summary and result of magnetic exploration on the Kabutoyama volcano in the city of Nishinomiya, Hyogo Prefecture, Japan. It also states the interpretation and discussion on magnetic anomaly in the volcanic conduit of the mountain by using a three-dimensional magnetic structure model. Terrain surface magnetic exploration for the Kabutoyama volcano was performed by using six traverse lines each in different azimuths with the triangulation point at the summit as the basic point and by using a proton magnetometer. The exploration results of the six traverse lines around the Kabutoyama volcano may be generalized as follows: magnetic anomaly in the vicinity of the summit is moderate with little change, but it increases to 500 nT to 2,500 nT in the vicinity of the distances of 150 m to 200 m; a peak is formed with a width of a few tens of meters; and the magnetic anomaly showed a trend of rapidly decreasing at outer sides of the peak. The results of the magnetic exploration and the magnetization intensity measurement leads to a belief that such a magnetic anomalous band of an annular form would exist corresponding to the boundary or its vicinity of andesite and granite, and the Rokko granite having magnetization intensity as small as can be neglected would be distributed at outer sides of the boundary. The result of the three-dimensional magnetic structure model calculation, which assumes the internal structure of the magnetic structure to be non-uniformly magnetized, reproduced the magnetic anomaly patterns well as compared with the observation results. 1 ref., 5 figs.

  19. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  20. Radiation-damage-assisted ferroelectric domain structuring in magnesium-doped lithium niobate

    Science.gov (United States)

    Jentjens, L.; Peithmann, K.; Maier, K.; Steigerwald, H.; Jungk, T.

    2009-06-01

    Irradiation of 5% magnesium-doped lithium niobate crystals (LiNbO3:Mg) with high-energy, low-mass 3He ions, which are transmitted through the crystal, changes the domain reversal properties of the material. This enables easier domain engineering compared to non-irradiated material and assists the formation of small-sized periodically poled domains in LiNbO3:Mg. Periodic domain structures exhibiting a width of ≈520 nm are obtained in radiation-damaged sections of the crystals. The ferroelectric poling behavior between irradiated and non-treated material is compared.

  1. Structure and function of the TIR domain from the grape NLR protein RPV1

    Directory of Open Access Journals (Sweden)

    Simon John Williams

    2016-12-01

    Full Text Available The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR domain has been shown to be both necessary and sufficient for defence signalling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signalling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signalling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices (AE interface. This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signalling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signalling.

  2. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    International Nuclear Information System (INIS)

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun; Chun, ChangJu; Im, Young Jun

    2014-01-01

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering

  3. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Junsen; Yang, Huiseon [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Eom, Soo Hyun [School of Life Sciences, Steitz Center for Structural Biology, and Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Chun, ChangJu, E-mail: cchun1130@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Im, Young Jun, E-mail: imyoungjun@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.

  4. Origin and structures of solar eruptions II: Magnetic modeling

    Science.gov (United States)

    Guo, Yang; Cheng, Xin; Ding, MingDe

    2017-07-01

    The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.

  5. SOLAR ENERGETIC PARTICLE MODULATIONS ASSOCIATED WITH COHERENT MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Trenchi, L.; Bruno, R.; D'amicis, R.; Marcucci, M. F.; Telloni, D.; Zurbuchen, T. H.; Weberg, M.

    2013-01-01

    In situ observations of solar energetic particles (SEPs) often show rapid variations of their intensity profile, affecting all energies simultaneously, without time dispersion. A previously proposed interpretation suggests that these modulations are directly related to the presence of magnetic structures with a different magnetic topology. However, no compelling evidence of local changes in magnetic field or in plasma parameters during SEP modulations has been reported. In this paper, we performed a detailed analysis of SEP events and we found several signatures in the local magnetic field and/or plasma parameters associated with SEP modulations. The study of magnetic helicity allowed us to identify magnetic boundaries, associated with variations of plasma parameters, which are thought to represent the borders between adjacent magnetic flux tubes. It is found that SEP dispersionless modulations are generally associated with such magnetic boundaries. Consequently, we support the idea that SEP modulations are observed when the spacecraft passes through magnetic flux tubes, filled or devoid of SEPs, which are alternatively connected and not connected with the flare site. In other cases, we found SEP dropouts associated with large-scale magnetic holes. A possible generation mechanism suggests that these holes are formed in the high solar corona as a consequence of magnetic reconnection. This reconnection process modifies the magnetic field topology, and therefore, these holes can be magnetically isolated from the surrounding plasma and could also explain their association with SEP dropouts.

  6. Magnetic coupling at perovskite and rock-salt structured interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Matvejeff, M., E-mail: mikko.matvejeff@picosun.com [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8581 Chiba (Japan); Department of Chemistry, Aalto University, Kemistintie 1, 02150 Espoo (Finland); Ahvenniemi, E. [Department of Chemistry, Aalto University, Kemistintie 1, 02150 Espoo (Finland); Takahashi, R.; Lippmaa, M. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8581 Chiba (Japan)

    2015-10-05

    We study magnetic coupling between hole-doped manganite layers separated by either a perovskite or a rock-salt barrier of variable thickness. Both the type and the quality of the interface have a strong impact on the minimum critical barrier thickness where the manganite layers become magnetically decoupled. A rock-salt barrier layer only 1 unit cell (0.5 nm) thick remains insulating and is able to magnetically de-couple the electrode layers. The technique can therefore be used for developing high-performance planar oxide electronic devices such as magnetic tunnel junctions and quantum well structures that depend on magnetically and electronically sharp heterointerfaces.

  7. Plane and hemispherical potential structures in magnetically expanding plasmas

    International Nuclear Information System (INIS)

    Takahashi, Kazunori; Igarashi, Yuichi; Fujiwara, Tamiya

    2010-01-01

    Two-dimensional potential structures are measured for different gas pressure in expanding argon plasma using permanent magnets, where the magnetic field is about 100 G in the source and several gauss in the diffusion chamber. The plane potential drop is observed near the source exit for 0.35 mTorr, while the potential structure becomes hemispherical when increasing up to 1 mTorr; the hemispherical structure results in the radial divergence of the ion beam. It is found that the trajectories of the accelerated ions and the electrons overcoming the potential drop are dominated by the potential structure and magnetic-field lines, respectively.

  8. Wake force computation in the time domain for long structures

    International Nuclear Information System (INIS)

    Bane, K.; Weiland, T.

    1983-07-01

    One is often interested in calculating the wake potentials for short bunches in long structures using TBCI. For ultra-relativistic particles it is sufficient to solve for the fields only over a window containing the bunch and moving along with it. This technique reduces both the memory and the running time required by a factor that equals the ratio of the structure length to the window length. For example, for a bunch with sigma/sub z/ of one picosecond traversing a single SLAC cell this improvement factor is 15. It is thus possible to solve for the wakefields in very long structures: for a given problem, increasing the structure length will not change the memory required while only adding linearly to the CPU time needed

  9. The structure of the nucleoprotein binding domain of lyssavirus phosphoprotein reveals a structural relationship between the N-RNA binding domains of Rhabdoviridae and Paramyxoviridae.

    Science.gov (United States)

    Delmas, Olivier; Assenberg, Rene; Grimes, Jonathan M; Bourhy, Hervé

    2010-01-01

    The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.

  10. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    Science.gov (United States)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  11. Structural Studies of the SET Domain from RIZ1 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Briknarova, Klara; Zhou, Xinliang; Satterthwait, Arnold C.; Hoyt, David W.; Ely, Kathryn R.; Huang, Shi

    2008-02-15

    Histone lysine methyltransferases (HKMTs) are involved in regulation of chromatin structure, and, as such, are important for longterm gene activation and repression that is associated with cell memory and establishment of cell-type specific transcriptional programs. Most HKMTs contain a SET domain, which is responsible for their catalytic activity. RIZ1 is a transcription regulator and tumor suppressor that catalyzes methylation of lysine 9 of histone H3 and contains a rather distinct SET domain. Similar SET domains, sometimes refererred to as PR (PRDI-BF1 and RIZ1 homology) domains, are also found in other proteins including Blimp-1/PRDI-BF1, MDS1-EVI1 and Meisetz. We determined the solution structure of the PR domain from RIZ1 and characterized its interaction with S-adenosyl homocysteine (SAH) and a peptide from histone H3. Despite low sequence identity with canonical SET domains, the PR domain displays a typical SET fold including a pseudo-knot at the C-terminus. The N-flanking sequence of RIZ1 PR domain adopts a novel conformation and interacts closely with the SET fold. The C-flanking sequence contains an α-helix that exhibits higher mobility than the SET fold and points away from the protein face that harbors active site in other SET domains. Residues that interact with the methylation cofactor in SET domains are not conserved in RIZ1 or other PR domains, and the SET fold of RIZ1 does not bind SAH. However, the PR domain of RIZ1 interacts specifically with a synthetic peptide comprising residues 1-20 of histone H3.

  12. The structure of the big magnetic storms

    International Nuclear Information System (INIS)

    Mihajlivich, J. Spomenko; Chop, Rudi; Palangio, Paolo

    2010-01-01

    The records of geomagnetic activity during Solar Cycles 22 and 23 (which occurred from 1986 to 2006) indicate several extremely intensive A-class geomagnetic storms. These were storms classified in the category of the Big Magnetic Storms. In a year of maximum solar activity during Solar Cycle 23, or more precisely, during a phase designated as a post-maximum phase in solar activity (PPM - Phase Post maximum), near the autumn equinox, on 29, October 2003, an extremely strong and intensive magnetic storm was recorded. In the first half of November 2004 (7, November 2004) an intensive magnetic storm was recorded (the Class Big Magnetic Storm). The level of geomagnetic field variations which were recorded for the selected Big Magnetic Storms, was ΔD st=350 nT. For the Big Magnetic Storms the indicated three-hour interval indices geomagnetic activity was Kp = 9. This study presents the spectral composition of the Di - variations which were recorded during magnetic storms in October 2003 and November 2004. (Author)

  13. Peculiar long-range supercurrent in superconductor-ferromagnet-superconductor junction containing a noncollinear magnetic domain in the ferromagnetic region

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Hao, E-mail: menghao1982@shu.edu.cn [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Wu, Xiuqiang [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ren, Yajie [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)

    2015-01-14

    We study the supercurrent in clean superconductor-ferromagnet-superconductor heterostructure containing a noncollinear magnetic domain in the ferromagnetic region. It is demonstrated that the magnetic domain can lead to a spin-flip scattering process, which reverses the spin orientations of the singlet Cooper pair and simultaneously changes the sign of the corresponding electronic momentum. If the ferromagnetic layers on both sides of magnetic domain have the same features, the long-range proximity effect will take place. That is because the singlet Cooper pair will create an exact phase-cancellation effect and gets an additional π phase shift as it passes through the entire ferromagnetic region. Then, the equal spin triplet pair only exists in the magnetic domain region and can not diffuse into the other two ferromagnetic layers. So, the supercurrent mostly arises from the singlet Cooper pairs, and the equal spin triplet pairs are not involved. This result can provide a approach for generating the long-range supercurrent.

  14. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain

    DEFF Research Database (Denmark)

    Sükösd, Zsuzsanna; Andersen, Ebbe Sloth; Seemann, Ernst Stefan

    2015-01-01

    of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping...

  15. Solution structure of the dimeric cytoplasmic domain of syndecan-4

    DEFF Research Database (Denmark)

    Shin, J; Lee, W; Lee, D

    2001-01-01

    The syndecans, transmembrane proteoglycans which are involved in the organization of cytoskeleton and/or actin microfilaments, have important roles as cell surface receptors during cell-cell and/or cell-matrix interactions. Since previous studies indicate that the function of the syndecan-4...... between peptides at physiological pH. Commensurately, the NMR structures demonstrate that syndecan-4L is a compact intertwined dimer with a symmetric clamp shape in the central variable V region with a root-mean-square deviation between backbone atom coordinates of 0.95 A for residues Leu(186)-Ala(195...... in the center of the dimeric twist similar to our previously reported 4V structure. The overall topology of the central variable region within the 4L structure is very similar to that of 4V complexed with the phosphatidylinositol 4,5-bisphosphate; however, the intersubunit interaction mode is affected...

  16. Ratchet Effects and Domain Wall Energy Landscapes in Amorphous Magnetic Films with 2D Arrays of Asymmetric Holes

    Science.gov (United States)

    Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.

    2009-03-01

    The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203

  17. Ferromagnetic and twin domains in LCMO manganites

    International Nuclear Information System (INIS)

    Jung, G.; Markovich, V.; Mogilyanski, D.; Beek, C. van der; Mukovskii, Y.M.

    2005-01-01

    Ferromagnetic and twin domains in lightly Ca-doped La 1-x Ca x MnO 3 single crystals have been visualized and investigated by means of the magneto-optical technique. Both types of domains became visible below the Curie temperature. The dominant structures seen in applied magnetic field are associated with magneto-crystalline anisotropy and twin domains. In a marked difference to the twin domains which appear only in applied magnetic field, ferromagnetic domains show up in zero applied field and are characterized by oppositely oriented spontaneous magnetization in adjacent domains. Ferromagnetic domains take form of almost periodic, corrugated strip-like structures. The corrugation of the ferromagnetic domain pattern is enforced by the underlying twin domains

  18. Structure of Pseudoknot PK26 Shows 3D Domain Swapping in an RNA

    Science.gov (United States)

    Lietzke, Susan E; Barnes, Cindy L.

    1998-01-01

    3D domain swapping provides a facile pathway for the evolution of oligomeric proteins and allosteric mechanisms and a means for using monomer-oligomer equilibria to regulate biological activity. The term "3D domain swapping" describes the exchange of identical domains between two protein monomers to create an oligomer. 3D domain swapping has, so far, only been recognized in proteins. In this study, the structure of the pseudoknot PK26 is reported and it is a clear example of 3D domain swapping in RNA. PK26 was chosen for study because RNA pseudoknots are required structures in several biological processes and they arise frequently in in vitro selection experiments directed against protein targets. PK26 specifically inhibits HIV-1 reverse transcriptase with nanomolar affinity. We have now determined the 3.1 A resolution crystal structure of PK26 and find that it forms a 3D domain swapped dimer. PK26 shows extensive base pairing between and within strands. Formation of the dimer requires the linker region between the pseudoknot folds to adopt a unique conformation that allows a base within a helical stem to skip one base in the stacking register. Rearrangement of the linker would permit a monomeric pseudoknot to form. This structure shows how RNA can use 3D domain swapping to build large scale oligomers like the putative hexamer in the packaging RNA of bacteriophage Phi29.

  19. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    OpenAIRE

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the ...

  20. Magnetization reversal and domain correlation for a non-collinear and out-of-plane exchange-coupled system

    International Nuclear Information System (INIS)

    Paul, Amitesh; Paul, N; Mattauch, Stefan

    2011-01-01

    We have investigated the impact of out-of-plane ferromagnetic (FM) anisotropy (which can be coincident with the direction of unidirectional anisotropy), where antiferromagnetic (AF) anisotropy is along the film plane. This provides a platform for non-collinear exchange coupling in an archetypal exchange coupled system in an unconventional way. We probe the in-plane magnetization by the depth-sensitive vector magnetometry technique. The experimental findings reveal a magnetization reversal (i) that is symmetric for both the branches of the hysteresis loop, (ii) that is characterized by vertically correlated domains associated with a strong transverse component of magnetization and (iii) that remains untrained (suppression of trained state) with field cycling. This scenario has been compared with in-plane magnetization reversal for a conventional in-plane unidirectional anisotropic case in the same system that shows usual asymmetric reversal and training for vertically uncorrelated domains. We explain the above observations for the out-of-plane case in terms of inhomogeneous magnetic states due to competing perpendicular anisotropies that result in non-collinear FM-AF coupling. This study provides direct evidence for the vertical correlation of domains mediated by out-of-plane exchange coupling.