WorldWideScience

Sample records for magnetic dipole moments

  1. How to introduce the magnetic dipole moment

    International Nuclear Information System (INIS)

    Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)

  2. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  3. On verifying magnetic dipole moment of a magnetic torquer by experiments

    Science.gov (United States)

    Kuyyakanont, Aekjira; Kuntanapreeda, Suwat; Fuengwarodsakul, Nisai H.

    2018-01-01

    Magnetic torquers are used for the attitude control of small satellites, such as CubeSats with Low Earth Orbit (LEO). During the design of magnetic torquers, it is necessary to confirm if its magnetic dipole moment is enough to control the satellite attitude. The magnetic dipole moment can affect the detumbling time and the satellite rotation time. In addition, it is also necessary to understand how to design the magnetic torquer for operation in a CubeSat under the space environment at LEO. This paper reports an investigation of the magnetic dipole moment and the magnetic field generated by a circular air-coil magnetic torquer using experimental measurements. The experiment testbed was built on an air-bearing under a magnetic field generated by a Helmholtz coil. This paper also describes the procedure to determine and verify the magnetic dipole moment value of the designed circular air-core magnetic torquer. The experimental results are compared with the design calculations. According to the comparison results, the designed magnetic torquer reaches the required magnetic dipole moment. This designed magnetic torquer will be applied to the attitude control systems of a 1U CubeSat satellite in the project “KNACKSAT.”

  4. Anomalous Magnetic and Electric Dipole Moments of the $\\tau$

    CERN Document Server

    Taylor, L

    1998-01-01

    This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the e/sup +/e/sup -/ to tau /sup +/ tau /sup -/ gamma process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: a/sub tau /=0.004+or-0.027+or-0.023 and d /sub tau /=(0.0+or-1.5+or-1.3)*10/sup -16/ e.cm. (22 refs). This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the $\\eettg$ process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: $\\atau = 0.004 10^{-16}{e{\\cdot}\\mathrm{cm}}$.

  5. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  6. Electric and magnetic dipole moments of the neutron

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1977-01-01

    Experiments to measure the electric and magnetic dipole moments of the neutron are described. The apparatus used in this experiment is one to measure with high precision the precessional frequency of the neutron spin in a weak magnetic field with a neutron beam magnetic resonance apparatus similar to that used for measuring the magnetic moment of the neutron. Results of the measurement are presented. 52 references

  7. Magnetic dipole moments of the heavy tensor mesons in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, T. M., E-mail: taliev@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T., E-mail: tbarakat@KSU.EDU.SA [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Physics and Astronomy Department, King Saud University, Riyadh (Saudi Arabia); Savcı, M., E-mail: savci@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey)

    2015-11-03

    The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors.

  8. Magnetic dipole moments of the heavy tensor mesons in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, T.M. [Middle East Technical University, Physics Department, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T. [Middle East Technical University, Physics Department, Ankara (Turkey); King Saud University, Physics and Astronomy Department, Riyadh (Saudi Arabia); Savci, M. [Middle East Technical University, Physics Department, Ankara (Turkey)

    2015-11-15

    The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors. (orig.)

  9. On a neutral particle with permanent magnetic dipole moment in a magnetic medium

    Science.gov (United States)

    Bakke, K.; Salvador, C.

    2018-03-01

    We investigate quantum effects that stem from the interaction of a permanent magnetic dipole moment of a neutral particle with an electric field in a magnetic medium. We consider a long non-conductor cylinder that possesses a uniform distribution of electric charges and a non-uniform magnetization. We discuss the possibility of achieving this non-uniform magnetization from the experimental point of view. Besides, due to this non-uniform magnetization, the permanent magnetic dipole moment of the neutral particle also interacts with a non-uniform magnetic field. This interaction gives rise to a linear scalar potential. Then, we show that bound states solutions to the Schrödinger-Pauli equation can be achieved.

  10. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    International Nuclear Information System (INIS)

    Córsico, A.H.; Althaus, L.G.; Bertolami, M.M. Miller; Kepler, S.O.; García-Berro, E.

    2014-01-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ ν ) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ ν  ∼< 10 -11  μ B . This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound

  11. Magnetic dipole moments of odd-odd lanthanides

    International Nuclear Information System (INIS)

    Sharma, S.D.; Gandhi, R.

    1988-01-01

    Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs

  12. Correct use of the Gordon decomposition in the calculation of nucleon magnetic dipole moments

    International Nuclear Information System (INIS)

    Mekhfi, Mustapha

    2008-01-01

    We perform the calculation of the nucleon dipole magnetic moment in full detail using the Gordon decomposition of the free quark current. This calculation has become necessary because of frequent misuse of the Gordon decomposition by some authors in computing the nucleon dipole magnetic moment

  13. Noncommutative QED and anomalous dipole moments

    International Nuclear Information System (INIS)

    Riad, I.F.; Sheikh-Jabbari, M.M.

    2000-09-01

    We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)

  14. Measurement of the electric dipole moment and magnetic moment anomaly of the muon

    NARCIS (Netherlands)

    Onderwater, CJG

    2005-01-01

    The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The

  15. Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders

    DEFF Research Database (Denmark)

    Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...

  16. Magnetic dipole moment of the Δ(1232) in chiral perturbation theory

    International Nuclear Information System (INIS)

    Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.

    2006-01-01

    The magnetic dipole moment of the Δ(1232) is calculated in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory in combination with the extended on-mass-shell renormalization scheme. As in the case of the nucleon, at leading order both isoscalar and isovector anomalous magnetic moments are given in terms of two low-energy constants. In contrast to the nucleon case, at next-to-leading order the isoscalar anomalous magnetic moment receives a (real) loop contribution. Moreover, due to the unstable nature of the Δ(1232), at next-to-leading order the isovector anomalous magnetic moment not only receives a real but also an imaginary loop contribution. (orig.)

  17. Magnetic and electric dipole moments of the H 3Δ1 state in ThO

    International Nuclear Information System (INIS)

    Vutha, A. C.; Kirilov, E.; DeMille, D.; Spaun, B.; Gurevich, Y. V.; Hutzler, N. R.; Doyle, J. M.; Gabrielse, G.

    2011-01-01

    The metastable H 3 Δ 1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μ H and the molecule-fixed electric dipole moment D H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μ H =8.5(5)x10 -3 μ B displays the predicted cancellation of spin and orbital contributions in a 3 Δ 1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.

  18. Dynamically fluctuating electric dipole moments in fullerene-based magnets.

    Science.gov (United States)

    Kambe, Takashi; Oshima, Kokichi

    2014-09-19

    We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed.

  19. Magnetic dipole moments of deformed odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Sharma, S D; Mahesh, P S [Punjabi Univ., Patiala (India). Dept. of Physics

    1976-12-01

    Using an extended version of A S Davydov and G F Filippov's model (1958), B E Chi and J P Davidson have calculated magnetic moments of odd-A nuclei in 2s-ld shell, diagonalizing the state matrices for a set of parameters giving the best fit for nuclear spectra (1966). To study the failure of this model in case of nuclear moments, instead of diagonalizing an attempt has been made to simplify the expression for magnetic dipole moment for single nucleonic states without configuration mixing. The model takes care of the proper sign of spin projections. On replacing the total angular momentum j of odd particle (proton or neutron) by its projection ..cap omega.., the expression reduces to that of Mottelson and Nilsson for spin-up nuclei. The Coriolis coupling calculations also have been performed for those odd-A nuclei with K = 1/2. The results are found in better agreement with experimental report in comparison with those of other models.

  20. Nuclear magnetic and electric dipole moments of neon-19

    International Nuclear Information System (INIS)

    MacArthur, D.W.

    1983-01-01

    This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19 Ne. The 19 Ne is generated in the reaction 19 F(p,n) 19 Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19 Ne measured to be μ( 19 Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19 Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19 Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19 Ne atom was measured to (7.2 +/- 6.2 X 10 -22 e-cm. This experiment and possible improvements are discussed in detail

  1. Dipole moments of the rho meson

    International Nuclear Information System (INIS)

    Hecht, M.B.; McKellar, B.H.P.

    1997-04-01

    The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison

  2. High uniformity magnetic coil for search of neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Perez Galvan, A., E-mail: apg@caltech.edu [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Plaster, B. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY, 40506 (United States); Boissevain, J.; Carr, R.; Filippone, B.W.; Mendenhall, M.P.; Schmid, R. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Alarcon, R.; Balascuta, S. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2011-12-21

    We present in this article a prototype magnetic coil that has been developed for a new search for the electric dipole moment of the neutron at the Spallation Neutron Source at Oak Ridge National Laboratory. The gradients of the magnetic field generated by the coil have been optimized to reduce known systematic effects and to yield long polarization lifetimes of the trapped particles sampling the highly uniform magnetic field. Measurements of the field uniformity of this prototype magnetic coil are also presented.

  3. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    International Nuclear Information System (INIS)

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment

  4. Measurement of dipole-moment in atomic transitions under strong external magnetic field

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Kuwako, Akira; Ikehara, Tadashi; Yoshida, Tadashi; Watanabe, Takasi; Yoguchi, Itaru; Suzuki, Kazuhiro.

    1996-01-01

    Obtaining an accurate value of the electric dipole moment μ is essential in the fields of laser application technologies. A direct way of measuring the electric dipole moment μ is to observe the Rabi-oscillation which manifests itself in the coherent photo-excitation behavior of atoms. In the case of the elements which have large angular momenta, identifying the Rabi-oscillation in their excitation behavior becomes rather difficult. We proposed an accurate and straightforward method of determining the electric-dipole moment μ between multi-fold degenerate levels. The point is to remove the degeneracy by applying an external magnetic field with the aid of the Zeeman effect and, then, to realize a degeneration free coherent excitation. As a result, we can observe the Rabi-oscillations explicitly in the excitation υs. laser-fluence curves. The present method provides a reliable basis of experimental determination of μ. As an example, we applied the present method to a transition to 0-17,362 cm -1 level in uranium and obtained the value μ=0.86±0.06 (Debye). (author)

  5. Weak electric and magnetic dipole moments of the τ lepton from azimuthal asymmetries

    International Nuclear Information System (INIS)

    Sanchez Alvaro, E.

    1997-01-01

    Measurements of the weak electric dipole moment d τ w and, for the first time, the weak magnetic dipole moment a τ w of the τ lepton using L3 detector at LEP are presented. Azimuthal asymmetries for τ→πν and τ→ρν are used to obtain these measurements. Observed asymmetries are consistent with zero, and the limits set on d τ w and a τ w are vertical stroke d τ w vertical stroke -17 e.cm and vertical stroke a τ w vertical stroke <0.014 at 95% C.L. (orig.)

  6. A sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling

    International Nuclear Information System (INIS)

    Kogan, I.I.; Wyler, D.

    1992-01-01

    The neutron electric dipole moment (NEDM) from a quark chromoelectric dipole moment is calculated using a QCD sumrule approach. We demonstrate that leading contributions to the NEDM come from induced condensates (quark and quark-gluon condensate magnetic susceptibilities) which are also determined. Other possible contributions to the NEDM such as a quark electric dipole moment or a triple gluon operator are briefly discussed. (orig.)

  7. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    Energy Technology Data Exchange (ETDEWEB)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk [Department of Physics and Astronomy, University of Tennessee, Knoxville Tennessee 37996 (United States)

    2015-09-15

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.

  8. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Science.gov (United States)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  9. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2011-04-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  10. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2014-02-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  11. On planar quantum dynamics of a magnetic dipole moment in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)

    2014-10-15

    The planar quantum dynamics of a neutral particle with a magnetic dipole moment in the presence of electric and magnetic fields is considered. The criteria to establish the planar dynamics reveal that the resulting nonrelativistic Hamiltonian has a simplified expression without making approximations, and some terms have crucial importance for the system dynamics. (orig.)

  12. Fen (n=1–6) clusters chemisorbed on vacancy defects in graphene: Stability, spin-dipole moment, and magnetic anisotropy

    KAUST Repository

    Haldar, Soumyajyoti

    2014-05-09

    In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.

  13. Corrections for a constant radial magnetic field in the muon g - 2 and electric-dipole-moment experiments in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2017-10-15

    We calculate the corrections for constant radial magnetic field in muon g - 2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of g - 2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab. (orig.)

  14. Molecules with an induced dipole moment in a stochastic electric field.

    Science.gov (United States)

    Band, Y B; Ben-Shimol, Y

    2013-10-01

    The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole moment and the average angular momentum along the deterministic electric field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution, the component of the average electric dipole moment and the average angular momentum in the deterministic electric field direction also decay to zero.

  15. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    NARCIS (Netherlands)

    van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal

  16. Magnetic dipole moments of 58Cu and 59Cu by in-source laser spectroscopy

    International Nuclear Information System (INIS)

    Stone, N. J.; Koester, U.; Stone, J. Rikovska; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Hass, M.; Lakshmi, S.

    2008-01-01

    Online measurements of the magnetic dipole moments and isotope shifts of 58 Cu and 59 Cu by the in-source laser spectroscopy method are reported. The results for the magnetic moments are μ ( 58 Cu) =+0.52(8) μ N ,μ( 59 Cu) =+1.84(3) μ N and for the isotope shifts δν 59,65 =1.72(22) GHz and δν 58,65 =1.99(30) GHz in the transition from the 3d 10 4s 2 S 1/2 ground state to the 3d 10 4p 2 P 1/2 state in Cu I. The magnetic moment of 58 Cu is discussed in the context of the strength of the subshell closure at 56 Ni, additivity rules and large-scale shell model calculations

  17. Corrections for a constant radial magnetic field in the muon \\varvec{g}-2 and electric-dipole-moment experiments in storage rings

    Science.gov (United States)

    Silenko, Alexander J.

    2017-10-01

    We calculate the corrections for constant radial magnetic field in muon {g}-2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of {g}-2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab.

  18. General classical and quantum-mechanical description of magnetic resonance: an application to electric-dipole-moment experiments

    Energy Technology Data Exchange (ETDEWEB)

    Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2017-05-15

    A general theoretical description of a magnetic resonance is presented. This description is necessary for a detailed analysis of spin dynamics in electric-dipole-moment experiments in storage rings. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are obtained for an arbitrary initial polarization. These formulas are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance with allowance for both rotating fields. A general quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is shown. Quasimagnetic resonances for particles and nuclei moving in noncontinuous perturbing fields of accelerators and storage rings are considered. Distinguishing features of quasimagnetic resonances in storage ring electric-dipole-moment experiments are investigated in detail. The exact formulas for the effect caused by the electric dipole moment are derived. The difference between the resonance effects conditioned by the rf electric-field flipper and the rf Wien filter is found and is calculated for the first time. The existence of this difference is crucial for the establishment of a consent between analytical derivations and computer simulations and for checking spin tracking programs. The main systematical errors are considered. (orig.)

  19. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  20. Magnetic and electric dipole constraints on extra dimensions and magnetic fluxes

    International Nuclear Information System (INIS)

    Roy, Aaron J.; Bander, Myron

    2009-01-01

    The propagation of charged particles and gauge fields in a compact extra dimension contributes to g-2 of the charged particles. In addition, a magnetic flux threading this extra dimension generates an electric dipole moment for these particles. We present constraints on the compactification size and on the possible magnetic flux imposed by the comparison of data and theory of the magnetic moment of the muon and from limits on the electric dipole moments of the muon, neutron and electron

  1. Measurement of the Weak Dipole Moments of the $\\tau$ Lepton

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1998-01-01

    Using the data collected by the L3 experiment at LEP from 1991 to 1995 at energies around the $\\Zo$ mass, a measurement of the weak anomalous magnetic dipole moment, $a^w_{\\tau}$,~ and of the weak electric dipole moment, $d^w_{\\tau}$, of the $\\tau$ lepton is performed. These quantities are obtained from angular distributions in $e^{+}e^{-}\\rightarrow\\tau^{+}\\tau^{-} \\rightarrow h^{+} \\bar{\

  2. Magnetic dipole moments of deformed odd-odd nuclei in 2s-1d and 2p-1f shells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A K; Garg, V P; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-01-01

    A simple expression is derived for the computation of the magnetic moments of odd-odd nuclei. The computation of magnetic dipole moments is done with and without quenching factors for the last proton and neutron. The results are found to improve for /sup 22/Na, /sup 24/Na, sup(82m)Rb, /sup 14/N, /sup 68/Gd, /sup 54/Mn and /sup 86/Rb with extreme coupling of angular moments.

  3. Lepton Dipole Moments in Supersymmetric Low-Scale Seesaw Models

    CERN Document Server

    Ilakovac, Amon; Popov, Luka

    2014-01-01

    We study the anomalous magnetic and electric dipole moments of charged leptons in supersymmetric low-scale seesaw models with right-handed neutrino superfields. We consider a minimally extended framework of minimal supergravity, by assuming that CP violation originates from complex soft SUSY-breaking bilinear and trilinear couplings associated with the right-handed sneutrino sector. We present numerical estimates of the muon anomalous magnetic moment and the electron electric dipole moment (EDM), as functions of key model parameters, such as the Majorana mass scale mN and tan(\\beta). In particular, we find that the contributions of the singlet heavy neutrinos and sneutrinos to the electron EDM are naturally small in this model, of order 10^{-27} - 10^{-28} e cm, and can be probed in the present and future experiments.

  4. Electric and Magnetic Dipole Moments

    CERN Document Server

    CERN. Geneva

    2005-01-01

    The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.

  5. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  6. Effective magnetic moment of neutrinos in strong magnetic fields

    International Nuclear Information System (INIS)

    Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  7. Improving sensitivity to magnetic fields and electric dipole moments by using measurements of individual magnetic sublevels

    Science.gov (United States)

    Tang, Cheng; Zhang, Teng; Weiss, David S.

    2018-03-01

    We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.

  8. Anomalous magnetic and weak magnetic dipole moments of the τ lepton in the simplest little Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo-Urena, M.A.; Tavares-Velasco, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Hernandez-Tome, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Departamento de Fisica, Mexico City (Mexico)

    2017-04-15

    We obtain analytical expressions, both in terms of parametric integrals and Passarino-Veltman scalar functions, for the one-loop contributions to the anomalous weak magnetic dipole moment (AWMDM) of a charged lepton in the framework of the simplest little Higgs model (SLHM). Our results are general and can be useful to compute the weak properties of a charged lepton in other extensions of the standard model (SM). As a by-product we obtain generic contributions to the anomalous magnetic dipole moment (AMDM), which agree with previous results. We then study numerically the potential contributions from this model to the τ lepton AMDM and AWMDM for values of the parameter space consistent with current experimental data. It is found that they depend mainly on the energy scale f at which the global symmetry is broken and the t{sub β} parameter, whereas there is little sensitivity to a mild change in the values of other parameters of the model. While the τ AMDM is of the order of 10{sup -9}, the real (imaginary) part of its AWMDM is of the order of 10{sup -9} (10{sup -10}). These values seem to be out of the reach of the expected experimental sensitivity of future experiments. (orig.)

  9. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  10. The dipole moment and magnetic hyperfine properties of the excited A 2Σ+(3sσ) Rydberg state of nitric oxide

    International Nuclear Information System (INIS)

    Glendening, E.D.; Feller, D.; Peterson, K.A.; McCullough, E.A. Jr.; Miller, R.J.

    1995-01-01

    The dipole moment and magnetic hyperfine properties of the A 2 Σ + Rydberg state of nitric oxide have been evaluated at a variety of levels of theory with extended correlation consistent basis sets. Using the finite field approach to compute the dipole moment, restricted coupled cluster RCCSD(T) and complete active space-configuration interaction CAS-CI+Q methods yield values (1.09--1.12 D) that are essentially identical to experiment. In contrast, dipole moments computed as an expectation value of the dipole moment operator typically differ from experiment by 0.1--0.6 D. The rather unfavorable comparisons with experiment reported in previous theoretical studies may stem, in part, from the method chosen to evaluate the dipole moment. Magnetic hyperfine properties were evaluated using a variety of unrestricted and restricted open-shell Hartree--Fock-based methods. We estimated the full CI limiting properties by exploiting the convergence behavior of a sequence of MRCI wave functions. The isotropic component A iso ( 14 N) of 39±1 MHz evaluated in this fashion is in excellent accord with the experimental value of 41.4±1.7 MHz. Highly correlated UHF-based methods [e.g., CCSD(T) and QCISD(T)] yield comparable values of 40--41 MHz that are in good agreement with both experiment and the apparent full CI limit. However, for A iso ( 17 O), the full CI limit (-97±2 MHz) and the UHF-based results (ca.-118 MHz) differ by roughly 20 MHz. It remains unclear how to reconcile this large discrepancy. copyright 1995 American Institute of Physics

  11. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  12. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  13. Introduction to magnetic resonance and its application to dipole magnet testing

    International Nuclear Information System (INIS)

    Clark, W.G.

    1992-01-01

    An introduction to the features of magnetic resonance that are essential for understanding its application to testing accelerator dipole magnets is presented, including the accuracy that can be expected in field measurements and the factors that limit it. The use of an array of coils to measure the multipole moments of dipole magnets is discussed

  14. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  15. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Kirch, K. [Paul Scherrer Institute, Villigen (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen (Switzerland); Bodek, K.; Zejma, J. [Jagellonian University, Cracow (Poland); Grujic, Z.; Kasprzak, M.; Weis, A. [University of Fribourg (Switzerland); Hélaine, V. [Laboratoire de Physique Corpusculaire, Caen (France); Paul Scherrer Institute, Villigen (Switzerland); Koch, H.-C. [Institut für Physik, Johannes-Gutenberg-Universität, Mainz (Germany); University of Fribourg (Switzerland); and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  16. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  17. Search for a neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J [Rutherford Appleton Laboratory, Chilton (U.K.)

    1984-03-01

    To search for evidence of a breakdown of symmetry under the time reversal transformation, a magnetic resonance measurement is made to detect an electric dipole moment (EDM) of ultracold neutrons stored for periods approximately= 60s in the presence of a strong electric field. The measured neutron EDM is (0.3 +- 4.8) x 10/sup -25/ ecm.

  18. Elementary quantum mechanics of the neutron with an electric dipole moment.

    Science.gov (United States)

    Baym, Gordon; Beck, D H

    2016-07-05

    The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, [Formula: see text], is not constrained to lie along the spin operator. Although the expectation value of [Formula: see text] in the neutron is less than [Formula: see text] of the neutron radius, [Formula: see text], the expectation value of [Formula: see text] is of order [Formula: see text] We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.

  19. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  20. Dynamics of a magnetic monopole in matter, Maxwell equations in dyonic matter and detection of electric dipole moments

    International Nuclear Information System (INIS)

    Artru, X.; Fayolle, D.

    2001-01-01

    For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed

  1. Control of polarization and dipole moment in low-dimensional semiconductor nanostructures

    International Nuclear Information System (INIS)

    Li, L. H.; Ridha, P.; Mexis, M.; Smowton, P. M.; Blood, P.; Bozkurt, M.; Koenraad, P. M.; Patriarche, G.; Fiore, A.

    2009-01-01

    We demonstrate the control of polarization and dipole moment in semiconductor nanostructures, through nanoscale engineering of shape and composition. Rodlike nanostructures, elongated along the growth direction, are obtained by molecular beam epitaxial growth. By varying the aspect ratio and compositional contrast between the rod and the surrounding matrix, we rotate the polarization of the dominant interband transition from transverse-electric to transverse-magnetic, and modify the dipole moment producing a radical change in the voltage dependence of absorption spectra. This opens the way to the optimization of quantum dot amplifiers and electro-optical modulators.

  2. Restrictions on the neutrino magnetic dipole moment

    International Nuclear Information System (INIS)

    Duncan, M.J.; Sankar, S.U.; Grifols, J.A.; Mendez, A.

    1987-01-01

    We examine mechanisms for producing neutrino magnetic moments from a wide class of particle theories which are extensions of the standard model. We show that it is difficult to naturally obtain a moment greater than ≅ 10 -2 electron Bohr magnetons. Thus models of phenomena requiring moments of order ≅ 10 -10 magnetons, such as those proposed as a resolution to the solar neutrino puzzle, are in conflict with current perceptions in particle physics. (orig.)

  3. Electromagnetic moments and electric dipole transitions in carbon isotopes

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-01-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12 C, 13 C, and 14 C, both in the low energy region below (ℎ/2π)ω=14 MeV and in the high energy giant resonance region (14 MeV 15 C is found to exhaust about 12-16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50-80 % of the cluster sum rule value

  4. The dipole moments of the linear polycarbon monosulfides

    International Nuclear Information System (INIS)

    Murakami, Akinori

    1989-01-01

    The dipole moments of the linear polycarbon monosulfides, CS, C 2 S and C 3 S molecule (radical)s were calculated by ab initio SCF-CI method. The equilibrium geometries of the C n S molecules were obtained by MP3 method using the 6-31G** basis set. From the split balencetype (MIDI-4) to the Huzinaga's well tempered extended type(WT) were used to evaluate dipole moments. Final results were obtained using the WT+2d basis set and CI calculation. The calculated dipole moment of the CS molecule, 1.96 debye, is in good agreement with experimental one. The dipole moment of the C 2 S radical is calculated to be 2.81 debye and 3.66 debye for C 3 S molecule. The calculated dipole moments of the C n S will be accurate with in 0.1 debye(5%)

  5. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  6. The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.

    2017-12-01

    Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.

  7. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  8. Magnetic dipole excitations of the 163Dy nucleus

    Science.gov (United States)

    Zenginerler, Zemine; Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar; Guliyev, Ekber

    2014-03-01

    In this study some properties of the magnetic dipole excitations of the deformed odd mass 163Dy nucleus were studied by using Quasiparticle-phonon nuclear model (QPNM). The several of the ground-state and low-lying magnetic dipole (M1) mode characteristics were calculated for deformed odd-mass nuclei using a separable Hamiltonian within the QPNM. The M1 excited states, reduced transition probabilities B(M1), the ground-state magnetic properties such as magnetic moment (μ), intrinsic magnetic moment (gK) , effective spin factor (gseff.) are the fundamental characteristics of the odd-mass nucleus and provide key information to understand nuclear structure. The theoretical results were compared with the available experimental data and other theoretical approaches. Calculations show that the spin-spin interaction in this isotopes leads to polarization effect influencing the magnetic moments. Furthermore we found a strong fragmentation of the M1 strength in 163Dy nucleus which was in qualitative agreement with the experimental data. Sakarya University, Project Number: 2012-50-02-007 and Z.Zenginerler acknowledge to TUBITAK-TURKEY 2013, fellowship No: 2219.

  9. Spin precession of a particle with an electric dipole moment: contributions from classical electrodynamics and from the Thomas effect

    International Nuclear Information System (INIS)

    Silenko, Alexander J

    2015-01-01

    The new derivation of the equation of the spin precession is given for a particle possessing electric and magnetic dipole moments. Contributions from classical electrodynamics and from the Thomas effect are explicitly separated. A fully covariant approach is used. The final equation is expressed in a very simple form in terms of the fields in the instantaneously accompanying frame. The Lorentz transformations of the electric and magnetic dipole moments and of the spin are derived from basic equations of classical electrodynamics. For this purpose, the Maxwell equations in matter are used and the result is confirmed by other methods. An antisymmetric four-tensor is correctly constructed from the electric and magnetic dipole moments. (article)

  10. The neutron electric dipole moment and the Weinberg's operator

    International Nuclear Information System (INIS)

    Li Chongsheng; Hu Bingquan

    1992-01-01

    After a summary of the predictions for the neutron electric dipole moment in a number of models of CP violation, the authors review mainly the recent developments associated with Weimberg's purely gluonic CP violation operator. Its implications on the neutron electric dipole moment in various models of CP violation are discussed. Inspired by Weimberg's work, several new mechanisms of generating large electric dipole moments of charged leptons and large electric and chromo-electric dipole moments of light quarks are recently proposed. Brief discussions on these new developments are also given

  11. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  12. Response of trapped particles to a collapsing dipole moment.

    Science.gov (United States)

    Heckman, H. H.; Lindstrom, P. J.

    1972-01-01

    Particle motion in the secularly varying geomagnetic field is investigated in terms of a dipolar magnetic field with decreasing magnetic moment M. For dM/dt equal to the rate of decay of the earth's dipole component, we find there is drift in B-L space, resulting in an inward drift of particles accompanied with increased energy and unidirectional intensity. Secular variation of the geomagnetic field appears to be a dominant mechanism for radial drift in the inner radiation belt.

  13. Progress toward measuring the 6S1/2 5D3/2 magnetic-dipole transition moment in Ba+

    Science.gov (United States)

    Williams, Spencer; Jayakumar, Anupriya; Hoffman, Matthew; Blinov, Boris; Fortson, Norval

    2015-05-01

    We report the latest results from our effort to measure the magnetic-dipole transition moment (M1) between the 6S1 / 2 and 5D3 / 2 manifolds in Ba+. We describe a new technique for calibrating view-port birefringence and how we will use it to enhance the M1 signal. To access the transition moment we use a variation of a previously proposed technique that allows us to isolate the magnetic-dipole coupling from the much larger electric-quadrupole coupling in the transition rates between particular Zeeman sub-levels. Knowledge of M1 is crucial for a parity-nonconservation experiment in the ion where M1 will be a leading source of systematic errors. No measurement of this M1 has been made in Ba+, however, there are three calculations that predict it to be 80 ×10-5μB, 22 ×10-5μB, and 17 ×10-5μB. A precise measurement may help resolve this theoretical discrepancy which originates from their different estimations of many-body effects. Supported by NSF Grant No. 09-06494F.

  14. Electric dipole moment of 3He

    International Nuclear Information System (INIS)

    Avishai, Y.; Fabre de la Ripelle, M.

    1987-01-01

    The contribution of CP violating nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated following a recent proposal for its experimental detection. Two models of CP violating interactions are used, namely, the Kobayashi-Maskawa mechanism and the occurrence of the Θ term in the QCD lagrangian. These CP violating interactions are combined with realistic strong nucleon-nucleon interactions to induce a CP forbidden component of the 3 He wave function. The matrix element of the electric dipole operator is then evaluated between CP allowed and CP forbidden components yielding the observable electric dipole moment. Using the parameters emerging from the penguin terms in the Kobaysashi-Maskawa model we obtain a result much larger than the electric dipole moment of the neutron in the same model. On the other hand, no enhancement is found for the Θ-term mechanism. A possible explanation for this difference is discussed. Numerical estimates can be given only in the Kobayashi-Maskawa model, giving d( 3 He) ≅ 10 30 e . cm. In the second mechanism, the estimate give d ( 3 He) ≅ 10 16 anti Θ. (orig.)

  15. Neutron Electric Dipole Moment from colored scalars⋆

    Directory of Open Access Journals (Sweden)

    Fajfer Svjetlana

    2014-01-01

    Full Text Available We present new contributions to the neutron electric dipole moment induced by a color octet, weak doublet scalar, accommodated within a modified Minimal Flavor Violating framework. These flavor non-diagonal couplings of the color octet scalar might account for an assymmetry of order 3 × 10−3 for aCP(D0 → K−K+ − aCP(D0 → π+π− at tree level. The same couplings constrained by this assymmetry also induce two-loop contributions to the neutron electric dipole moment. We find that the direct CP violating asymmetry in neutral D-meson decays is more constraining on the allowed parameter space than the current experimental bound on neutron electric dipole moment.

  16. Search for electric dipole moments in storage rings

    Directory of Open Access Journals (Sweden)

    Lenisa Paolo

    2016-01-01

    Full Text Available The JEDI collaboration aims at making use of storage ring to provide the most precise measurement of the electric dipole moments of hadrons. The method makes exploits a longitudinal polarized beam. The existence an electric dipole moment would generate a torque slowly twisting the particle spin out of plan of the storage ring into the vertical direction. The observation of non zero electric dipole moment would represent a clear sign of new physics beyond the Standard Model. Feasiblity tests are presently undergoing at the COSY storage ring Forschungszentrum Jülich (Germany, to develop the novel techniques to be implemented in a future dedicated storage ring.

  17. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Braumueller, Jochen; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Sandberg, Martin; Vissers, Michael R.; Pappas, David P. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Ustinov, Alexey V. [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); National University of Science and Technology MISIS, Moscow 119049 (Russian Federation); Weides, Martin [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Johannes Gutenberg University, Mainz, 55128 Mainz (Germany)

    2016-07-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  18. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    Science.gov (United States)

    Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.

    2016-01-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  19. Neutron Electric Dipole Moment from Gauge-String Duality.

    Science.gov (United States)

    Bartolini, Lorenzo; Bigazzi, Francesco; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea

    2017-03-03

    We compute the electric dipole moment of nucleons in the large N_{c} QCD model by Witten, Sakai, and Sugimoto with N_{f}=2 degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological θ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result-a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be d_{n}=1.8×10^{-16}θ e cm. The electric dipole moment of the proton is exactly the opposite.

  20. Polarized electric dipole moment of well-deformed reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    2012-01-01

    The expression for polarized electric dipole moment of well-deformed reflection asymmetric nuclei is obtained in the framework of liquid-drop model in the case of geometrically similar proton and neutron surfaces. The expression for polarized electric dipole moment consists of the first and second orders terms. It is shown that the second-order correction terms of the polarized electric dipole moment are important for well-deformed nuclei

  1. Electron electric dipole moment in Inverse Seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay,91405 Orsay (France)

    2016-08-11

    We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.

  2. Electron electric dipole moment in Inverse Seesaw models

    International Nuclear Information System (INIS)

    Abada, Asmaa; Toma, Takashi

    2016-01-01

    We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.

  3. Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction

    International Nuclear Information System (INIS)

    Parker, G.W.

    1986-01-01

    The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2

  4. Study on the dipole moment of asphaltene molecules through dielectric measuring

    KAUST Repository

    Zhang, Long Li; Yang, Chao He; Wang, Ji Qian; Yang, Guo Hua; Li, Li; Li, Yan Vivian; Cathles, Lawrence

    2015-01-01

    The polarity of asphaltenes influences production, transportation, and refining of heavy oils. However, the dipole moment of asphaltene molecules is difficult to measure due to their complex composition and electromagnetic opaqueness. In this work, we present a convenient and efficient way to determine the dipole moment of asphaltene in solution by dielectric measurements alone without measurement of the refractive index. The dipole moment of n-heptane asphaltenes of Middle East atmospheric residue (MEAR) and Ta-He atmospheric residue (THAR) are measured within the temperature range of -60°C to 20°C. There is one dielectric loss peak in the measured solutions of the two types of asphaltene at the temperatures of -60°C or -40°C, indicating there is one type of dipole in the solution. Furthermore, there are two dielectric loss peaks in the measured solutions of the two kinds of asphaltene when the temperature rises above -5°C, indicating there are two types of dipoles corresponding to the two peaks. This phenomenon indicates that as the temperature increases above -5°C, the asphaltene molecules aggregate and present larger dipole moment values. The dipole moments of MEAR C7-asphaltene aggregates are up to 5 times larger than those before aggregation. On the other hand, the dipole moments of the THAR C7-asphaltene aggregates are only 3 times larger than those before aggregation. It will be demonstrated that this method is capable of simultaneously measuring multi dipoles in one solution, instead of obtaining only the mean dipole moment. In addition, this method can be used with a wide range of concentrations and temperatures.

  5. An effective field theory for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.

    1992-01-01

    We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)

  6. Quasi-adiabatic motion of energetic particles in a dipole magnetic field

    International Nuclear Information System (INIS)

    Il'in, V.D.; Kuznetsov, S.N.; Yushkov, B.Yu.

    1992-01-01

    A moving coordinate system for a dipole magnetic field, in which reversible variations of magnetic moment for the range of obvious violations of adiabatic conditions are absent, and the description of magnetic moment violations is relatively simple, is considered. Constructing of a coordinate system, features of the central trajectory, determining its motion, the application range, the main application field and consequences are discussed. 11 refs.; 3 figs

  7. Changes in earth's dipole.

    Science.gov (United States)

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  8. Ocular dominance affects magnitude of dipole moment: an MEG study.

    Science.gov (United States)

    Shima, Hiroshi; Hasegawa, Mitsuhiro; Tachibana, Osamu; Nomura, Motohiro; Yamashita, Junkoh; Ozaki, Yuzo; Kawai, Jun; Higuchi, Masanori; Kado, Hisashi

    2010-08-23

    To investigate whether the ocular dominance affects laterality in the activity of the primary visual cortex, we examined the relationship between the ocular dominance and latency or dipole moment measured by checkerboard-pattern and magnetoencephalography in 11 right-handed healthy male participants. Participants with left-eye dominance showed a dipole moment of 21.5+/-6.1 nAm with left-eye stimulation and 16.1+/-3.6 nAm with right, whereas those with right-eye dominance showed a dipole moment of 18.0+/-5.2 and 21.5+/-2.7 nAm with left-eye and right-eye stimulation of the infero-medial quadrant visual field, respectively. Thus, the dipole moment was higher when the dominant eye was stimulated, which implies that ocular dominance is regulated by the ipsilateral occipital lobe.

  9. Ocular dominance affects magnitude of dipole moment: An MEG study

    OpenAIRE

    Shima, Hiroshi; Hasegawa, Mitsuhiro; Tachibana, Osamu; Nomura, Motohiro; Yamashita, Junkoh; Ozaki, Yuzo; Kawai, Jun; Higuchi, Masanori; Kado, Hisashi

    2010-01-01

    To investigate whether the ocular dominance affects laterality in the activity of the primary visual cortex, we examined the relationship between the ocular dominance and latency or dipole moment measured by checkerboard-pattern and magnetoencephalography in 11 right-handed healthy male participants. Participants with left-eye dominance showed a dipole moment of 21.5±6.1 nAm with left-eye stimulation and 16.1±3.6 nAm with right, whereas those with right-eye dominance showed a dipole moment of...

  10. Particle electric dipole-moments

    Energy Technology Data Exchange (ETDEWEB)

    Pendlebury, J M [Sussex Univ., Brighton (United Kingdom)

    1997-04-01

    The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.

  11. A multiferroic material to search for the permanent electric dipole moment of the electron

    Czech Academy of Sciences Publication Activity Database

    Rushchanskii, K.Z.; Kamba, Stanislav; Goian, Veronica; Vaněk, Přemysl; Savinov, Maxim; Prokleška, J.; Nuzhnyy, Dmitry; Knížek, Karel; Laufek, F.; Eckel, S.; Lamoreaux, S.K.; Sushkov, A.; Ležaič, M.; Spaldin, N.A.

    2010-01-01

    Roč. 9, č. 8 (2010), s. 649-654 ISSN 1476-1122 R&D Projects: GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : multiferroics * electric dipole moment of the electron * dielectric and magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 29.897, year: 2010

  12. Vibrationally averaged dipole moments of methane and benzene isotopologues

    Energy Technology Data Exchange (ETDEWEB)

    Arapiraca, A. F. C. [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil); Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, CEFET-MG, Campus I, 30.421-169 Belo Horizonte, MG (Brazil); Mohallem, J. R., E-mail: rachid@fisica.ufmg.br [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil)

    2016-04-14

    DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C{sub 6}H{sub 3}D{sub 3} is about twice as large as the measured dipole moment of C{sub 6}H{sub 5}D. Computational progress is advanced concerning applications to larger systems and the choice of appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.

  13. Time reversal violating nuclear polarizability and atomic electric dipole moment

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.

    2000-01-01

    Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation

  14. The dipole moment of a wall-charged void in a bulk dielectric

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1993-01-01

    The dipole moment of a wall-charged void is examined with reference to the spatial extent of the surface charge density σ and the distribution of this charge. The salient factors influencing the void dipole moment are also examined. From a study of spherical voids, it is shown that, although the σ......-distribution influences the dipole moment, the spatial extent of σ has a greater influence. This behavior is not unexpected. For a void of fixed dimensions, the smaller the charged surface area, the greater is the charges, and thus the greater the dipole moment...

  15. The status of the electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Grimus, W.

    1990-01-01

    The electric dipole moment of particles in quantum mechanics and quantum field theory is discussed. Furthermore, calculations of the neutron electric dipole moment in the standard model and several of its low-energy extensions are reviewed. 47 refs., 7 figs. (Author)

  16. Electric dipole moment of the electron and of the neutron

    Science.gov (United States)

    Barr, S. M.; Zee, A.

    1990-01-01

    It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.

  17. Electric dipole moment of magnetoexciton in concentric quantum rings

    Science.gov (United States)

    García, L. F.; Mikhailov, I. D.; Revinova, S. Yu

    2017-12-01

    We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.

  18. Magnetic moment oscillation in ammonium perchlorate in a DC SQUID-based magnetic resonance experiment

    International Nuclear Information System (INIS)

    Montero, V.; Cernicchiaro, G.

    2008-01-01

    In this work we describe experimental results in which a DC SQUID (superconducting quantum interference device) is used as free induction decay detector. Measurements of a solid ammonium perchlorate (NH 4 ClO 4 ) sample were performed, in zero field, at 4.2 K. Unexpected magnetic moment oscillations were detected at 1.5 kHz. The computation of the magnetic fields suggests that the proton nuclear magnetic resonance may explain the measured resonance, considering reorientation of the ammonium group by quantum tunneling of protons and a magnetic proton dipole-dipole intermolecular interaction model

  19. Feeble magnetic fields generated by thermal charge fluctuations in extended metallic conductors: Implications for electric-dipole moment experiments

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.

    1999-01-01

    A simple formulation for calculating the magnetic field external to an extended nonpermeable conducting body due to thermal current fluctuations within the body is developed, and is applied to a recent experimental search for the atomic electric-dipole moment (EDM) of 199 Hg. It is shown that the thermal fluctuation field is only slightly smaller in magnitude than other noise sources in that experiment. The formulation is extended to permeable bodies, and the implications for general EDM experiments are discussed. copyright 1999 The American Physical Society

  20. Continuous millennial decrease of the Earth's magnetic axial dipole

    Science.gov (United States)

    Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe

    2018-01-01

    Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.

  1. Electric dipole moments of elementary particles, nuclei, atoms, and molecules

    International Nuclear Information System (INIS)

    Commins, Eugene D.

    2007-01-01

    The significance of particle and nuclear electric dipole moments is explained in the broader context of elementary particle physics and the charge-parity (CP) violation problem. The present status and future prospects of various experimental searches for electric dipole moments are surveyed. (author)

  2. Effects of an anomalous W-boson weak electric dipole moment in fi- fj → W ± Z0 (γ)

    International Nuclear Information System (INIS)

    Queijeiro, A.; Garcia, J.

    1995-01-01

    We study the high-energy production process f i - f j → W ± Z 0 (γ) allowing for gauge boson compositeness through an anomalous W - -boson weak-electric dipole moment parameter ∼ k z . We give the angular differential and total cross-section for different values of ∼ k z , and compare with the corresponding results coming from an anomalous weak-magnetic dipole moment k z . (Author)

  3. Magnetic monopoles and dipoles in quantum mechanics

    International Nuclear Information System (INIS)

    Lipkin, H.J.; Peshkin, M.

    1986-01-01

    The force on and the energy of a ''di-monopole'', which is the limiting case of a dipole made from two monopoles at zero separation and finite magnetic moment, interacting with an externally fixed magnetic field resulting from an electric current, is considered. A model involving only a monopole is used to illustrate the physical principles involved when magnetic sources move in a solenoidal field whose source is an electric current. The problems encountered in Hamiltonian theory are discussed. 5 refs., 3 figs

  4. Local electric dipole moments for periodic systems via density functional theory embedding.

    Science.gov (United States)

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  5. Local electric dipole moments for periodic systems via density functional theory embedding

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sandra, E-mail: sandra.luber@chem.uzh.ch [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  6. Search for the permanent electric dipole moment of 129Xe

    Science.gov (United States)

    Sachdeva, Natasha; Chupp, Timothy; Gong, Fei; Babcock, Earl; Salhi, Zahir; Burghoff, Martin; Fan, Isaac; Killian, Wolfgang; Knappe-Grüneberg, Silvia; Schabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Degenkolb, Skyler; Fierlinger, Peter; Krägeloh, Eva; Lins, Tobias; Marino, Michael; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Terrano, William; Kuchler, Florian; Singh, Jaideep

    2017-09-01

    CP-violation in Beyond-the-Standard-Model physics, necessary to explain the baryon asymmetry, gives rise to permanent electric dipole moments (EDMs). EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The current limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) and BMSR-2 (Berlin Magnetically Shielded Room) uses a stable magnetic field in a magnetically shielded room and 3He comagnetometer with potential to improve the limit by two orders of magnitude. Polarized 3He and 129Xe free precession is detected with SQUID magnetometers in the presence of applied electric and magnetic fields. Conclusions from recent measurements will be presented.

  7. Electric dipole moments of nanosolvated acid molecules in water clusters.

    Science.gov (United States)

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V

    2015-01-30

    The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  8. The electric dipole moment of cobalt monoxide, CoO.

    Science.gov (United States)

    Zhuang, Xiujuan; Steimle, Timothy C

    2014-03-28

    A number of low-rotational lines of the E(4)Δ7/2 ← X(4)Δ7/2 (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h7/2, and the electron quadrupole parameter, eQq0, for the E(4)Δ7/2(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ(→)(el), for the X(4)Δ7/2 (υ = 0) and E(4)Δ7/2 (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F' = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F' = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  9. Theoretical Expectations for the Muon's Electric Dipole Moment

    CERN Document Server

    Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael

    2001-01-01

    We examine the muon's electric dipole moment $\\dmu$ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's {\\em electric} dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on $\\dmu$ to date. This ambiguity could be definitively resolved by the dedicated search for $\\dmu$ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for $\\dmu$ in supersymmetry fall just below the proposed sensitivity. However, non-degeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to $\\dmu$ of order $10^{-22}$ e cm, two orders of magnitude above the sensitivity of the $\\dmu$ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. ...

  10. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Directory of Open Access Journals (Sweden)

    Andrzej Magiera

    2017-09-01

    Full Text Available Measurements of electric dipole moment (EDM for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle’s magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles’ interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  11. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Science.gov (United States)

    Magiera, Andrzej

    2017-09-01

    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  12. Experimental root mean square charge radii, isotope shifts, ground state magnetic dipole and electric quadrupole moments of 1≤A≤ 239 nuclei

    International Nuclear Information System (INIS)

    Antony, M.S.; Britz, J.

    1986-01-01

    A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison

  13. Local electric dipole moments: A generalized approach.

    Science.gov (United States)

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Higgs-Boson Two-Loop Contributions to Electric Dipole Moments in the MSSM

    CERN Document Server

    Pilaftsis, Apostolos

    1999-01-01

    The complete set of Higgs-boson two-loop contributions to electric dipole moments of the electron and neutron is calculated in the minimal supersymmetric standard model. The electric dipole moments are induced by CP-violating trilinear couplings of the `CP-odd' and charged Higgs bosons to the scalar top and bottom quarks. Numerical estimates of the individual two-loop contributions to electric dipole moments are given.

  15. Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment

    Science.gov (United States)

    Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2018-03-01

    We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

  16. Magnetic field of a dipole and the dipole-dipole interaction

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R 3 law for the magnetic field and the 1/R 4 law for the interaction force between two dipoles, as well as their angular dependences

  17. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Directory of Open Access Journals (Sweden)

    Chia-Feng Chang

    2018-03-01

    Full Text Available The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  18. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Science.gov (United States)

    Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang

    2018-03-01

    The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  19. Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment

    Science.gov (United States)

    Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.

    2017-07-01

    We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.

  20. Electric dipole moments of charged leptons with sterile fermions

    International Nuclear Information System (INIS)

    Abada, Asmaa; Toma, Takashi

    2016-01-01

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  1. Electric dipole moments of charged leptons with sterile fermions

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-02-26

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  2. Novel theory of the HD dipole moment. II. Computations

    International Nuclear Information System (INIS)

    Thorson, W.R.; Choi, J.H.; Knudson, S.K.

    1985-01-01

    In the preceding paper we derived a new theory of the dipole moments of homopolar but isotopically asymmetric molecules (such as HD, HT, and DT) in which the electrical asymmetry appears directly in the electronic Hamiltonian (in an appropriate Born-Oppenheimer separation) and the dipole moment may be computed as a purely electronic property. In the present paper we describe variation-perturbation calculations and convergence studies on the dipole moment for HD, which is found to have the value 8.51 x 10 -4 debye at 1.40 a.u. Using the two alternative formulations of the electronic problem, we can provide a test of basis-set adequacy and convergence of the results, and such convergence studies are reported here. We have also computed vibration-rotation transition matrix elements and these are compared with experimental and other theoretical results

  3. Electric Dipole Moment Results from lattice QCD

    Science.gov (United States)

    Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy

    2018-03-01

    We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  4. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute (Russian Federation); Aleksandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2016-01-15

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  5. Determination of anisotropic dipole moments in self-assembled quantum dots using Rabi oscillations

    Science.gov (United States)

    Muller, Andreas; Wang, Qu-Quan; Bianucci, Pablo; Xue, Qi-Kun; Shih, Chih-Kang

    2004-03-01

    By investigating the polarization-dependent Rabi oscillations using photoluminescence spectroscopy, we determined the respective transition dipole moments of the two excited excitonic states |Ex> and |Ey> of a single self-assembled quantum dot that are nondegenerate due to shape anisotropy. We find that the ratio of the two dipole moments is close to the physical elongation ratio of the quantum dot. We also measured the ground state radiative lifetimes of several quantum dots. The dipole moments calculated from the latter are in reasonable agreement with the dipole moments determined from the periodicity of the Rabi oscillations.

  6. The electric dipole moment of the neutron in low energy supergravity

    International Nuclear Information System (INIS)

    Polchinski, J.; Wise, M.B.

    1983-01-01

    We compute the electric dipole moment of the neutron in models with low energy supergravity or softly broken supersymmetry. The electric dipole moment is typically of order 10sup(-(22-23))e cm times CP-violating phases. We discuss the origin of these phases. (orig.)

  7. The electric dipole moment of cobalt monoxide, CoO

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xiujuan, E-mail: zhuangxj@hnu.edu.cn [College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China); Steimle, Timothy C. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2014-03-28

    A number of low-rotational lines of the E{sup 4}Δ{sub 7/2} ← X{sup 4}Δ{sub 7/2} (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h{sub 7/2}, and the electron quadrupole parameter, eQq{sub 0}, for the E{sup 4}Δ{sub 7/2}(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ{sup -vector}{sub el}, for the X{sup 4}Δ{sub 7/2} (υ = 0) and E{sup 4}Δ{sub 7/2} (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F′ = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F′ = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  8. Possible displacement of mercury's dipole

    International Nuclear Information System (INIS)

    Ng, K.H.; Beard, D.B.

    1979-01-01

    Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/ 3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/ 3 and a dipole tilt angle lambda of only 1.2 0 away from the sun. All other parameters are essentially unchanged

  9. Electric Dipole Moment Results from lattice QCD

    Directory of Open Access Journals (Sweden)

    Dragos Jack

    2018-01-01

    Full Text Available We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  10. Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, E.; Bandiera, L.; Guidi, V.; Mazzolari, A. [Universita di Ferrara, Ferrara (Italy); INFN, Sezione di Ferrara (Italy); Cavoto, G. [' ' Sapienza' ' Universita di Roma, Rome (Italy); INFN, Sezione di Roma (Italy); Henry, L.; Martinez Vidal, F.; Ruiz Vidal, J. [IFIC, Universitat de Valencia-CSIC, Valencia (Spain); Marangotto, D. [Universita di Milano, Milan (Italy); INFN, Sezione di Milano (Italy); Merli, A.; Neri, N. [Universita di Milano, Milan (Italy); CERN, Geneva (Switzerland); INFN, Sezione di Milano (Italy)

    2017-12-15

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector. (orig.)

  11. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr

    Science.gov (United States)

    Knudsen, Mads Faurschou; Riisager, Peter; Donadini, Fabio; Snowball, Ian; Muscheler, Raimund; Korhonen, Kimmo; Pesonen, Lauri J.

    2008-07-01

    All absolute paleointensity data published in peer-reviewed journals were recently compiled in the GEOMAGIA50 database. Based on the information in GEOMAGIA50, we reconstruct variations in the geomagnetic dipole moment over the past 50 kyr, with a focus on the Holocene period. A running-window approach is used to determine the axial dipole moment that provides the optimal least-squares fit to the paleointensity data, whereas associated error estimates are constrained using a bootstrap procedure. We subsequently compare the reconstruction from this study with previous reconstructions of the geomagnetic dipole moment, including those based on cosmogenic radionuclides ( 10Be and 14C). This comparison generally lends support to the axial dipole moments obtained in this study. Our reconstruction shows that the evolution of the dipole moment was highly dynamic, and the recently observed rates of change (5% per century) do not appear unique. We observe no apparent link between the occurrence of archeomagnetic jerks and changes in the geomagnetic dipole moment, suggesting that archeomagnetic jerks most likely represent drastic changes in the orientation of the geomagnetic dipole axis or periods characterized by large secular variation of the non-dipole field. This study also shows that the Holocene geomagnetic dipole moment was high compared to that of the preceding ˜ 40 kyr, and that ˜ 4 · 10 22 Am 2 appears to represent a critical threshold below which geomagnetic excursions and reversals occur.

  12. A search for the electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Lobashev, V.M.

    1982-01-01

    The experimental search for the electric dipole moment of the neutron, a possible manifestation of CP violation is reviewed. The existence of non-vanishing electric dipole moment of the neutron is predicted by different theories but the recent experiments are not sensitive enough to distinguish between the theories. The latest experimental limits and the expected results on limits of new, planned experiments are discussed. (D.Gy.)

  13. Roles of configuration mixing and exchange currents in nuclear magnetic moments and beta decays. Chapter 17

    International Nuclear Information System (INIS)

    Arima, A.; Hyuga, H.

    1979-01-01

    The authors review systematically several important mechanisms which affect magnetic moments, magnetic dipole transitions and allowed beta-decays. They are first order configuration mixing, second order configuration mixing, the Sachs moment and other exchange magnetic moments, the contribution of the Sachs moment and other exchange magnetic moments with first order configuration mixing. It is shown that first order configuration mixing and the Sachs moment are important for heavy nuclei, and that all the effects except first order mixing are important for light nuclei. (Auth.)

  14. Electron Electric Dipole Moment from CP Violation in the Charged Higgs Sector

    International Nuclear Information System (INIS)

    Bowser-Chao, D.; Keung, W.; Chang, D.; Chang, D.

    1997-01-01

    The leading contributions to the electron (or muon) electric dipole moment due to CP violation in the charged Higgs sector are at the two level. A careful model-independent analysis of the heavy fermion contribution is provided. We also consider some specific scenarios to demonstrate how charged Higgs sector CP violation can naturally give rise to large electric dipole moments. Numerical results show that the electron electric dipole moment in such models can lie at the experimentally accessible level. copyright 1997 The American Physical Society

  15. Magnetic moments of light nuclei within the framework of reduced Hamiltonian method

    CERN Document Server

    Deveikis, A

    1998-01-01

    A new procedure for evaluation of magnetic dipole moments of light atomic nuclei has been developed. The procedure presented obeys the principles of antisymmetry and translational invariance and is based on the reduced Hamiltonian method. The theoretical formulation has been illustrated by calculation of magnetic dipole moments for 2 sup H , 3 sup H , 3 sup H e, 4 sup H e, 5 sup H e, 5 sup L i, 11 sup L i, and 6 sup L i nuclei. The calculations were performed in a complete 0(h/2 pi)omega basis. The obtained results are in good agreement with the experimental data. (author)

  16. Magnitude, direction and location of the resultant dipole moment of the pig heart.

    Science.gov (United States)

    Hodgkin, B C; Nelson, C V; Angelakos, E T

    1976-04-01

    Vectorcardiograms were obtained from 50 young domestic pigs using the Nelson lead system. Compensation for body size and shape is achieved and the resultant dipole moment magnitude reflects heart size. A strong relationship was found between heart size and maximum magnitude. Dipole moment magnitude increased as four pigs increased from five to ten weeks of age. The dipole moment during QRS is considered in light of known pig heart excitation pattern. Dipole locations during QRS, calculated by computer solution of the Gabor-Nelson equations, were in agreement with heart location and excitation data.

  17. Electric-dipole-moment enhancement factor for the thallium atom, and a new upper limit on the electric dipole moment of the electron

    International Nuclear Information System (INIS)

    Sandars, P.G.H.; Sternheimer, R.M.

    1975-01-01

    Some time ago, an accurate upper limit on a possible permanent electric dipole moment of the thallium atom in the 6 2 P 1 / 2 ground state was obtained by Gould. The result was D/sub Tl/ = [(1.3 +- 2.4) x 10 -21 cm]e. In connection with this value, a calculation of the electric dipole enhancement factor R/sub Tl/, which is defined as the ratio D/sub Tl//D/sub e/, where D/sub e/is the corresponding upper limit on a possible electric dipole moment of the (valence) electron was carried out. A value R/subTl/ = 700 was obtained, which leads to an upper limit D/sub e/ = [(1.9 +- 3.4) x 10 -24 cm]e. This result is comparable with the value D/sub e/ -24 cm)e previously obtained by Weisskopf et al. from measurements on the cesium atom, and with the result of Player and Sandars of [(0.7 +- 2.2) x 10 -24 cm]e obtained from the search for an electric dipole moment in the 3 P 2 metastable state of xenon. All three results set a stringent upper limit on the amount of a possible violation of T and P invariance in electromagnetic interactions. (U.S.)

  18. Theoretical expectations for the muon's electric dipole moment

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Matchev, Konstantin T.; Shadmi, Yael

    2001-01-01

    We examine the muon's electric dipole moment d μ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's electric dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on d μ to date. This ambiguity could be definitively resolved by the dedicated search for d μ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for d μ in supersymmetry fall just below the proposed sensitivity. However, nondegeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to d μ ∼10 -22 e cm, two orders of magnitude above the sensitivity of the d μ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. We also derive new limits on the amount of flavor violation allowed and demonstrate that approximations previously used to obtain such limits are highly inaccurate in much of parameter space

  19. Chromoelectric dipole moment of the top quark in models with vectorlike multiplets

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2011-01-01

    The chromoelectric dipole moment of the top quark is calculated in a model with a vectorlike multiplet, which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the chromoelectric dipole moment that generates an electric dipole of the top in this class of models is computed. The top chromoelectric dipole moment operator arises from loops involving the exchange of the W, the Z, as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vectorlike multiplet and their superpartners. The analysis of the chromoelectric dipole moment operator of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass, cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the contribution to the top electric dipole moment (EDM) could lie in the range (10 -19 -10 -18 ) ecm, consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size (10 -19 -10 -18 ) ecm could be accessible in collider experiments such as at the LHC and at the International Linear Collider.

  20. Simulation of Light Collection for Neutron Electrical Dipole Moment measurement

    Science.gov (United States)

    Ji, Pan; nEDM Collaboration

    2017-09-01

    nEDM (Neutron Electrical Dipole moment) measurement addresses a critical topic in particle physics and Standard Model, that is CPT violation in neutron electrical dipole moment if detected in which the Time reversal violation is connected to the matter/antimatter imparity of the universe. The neutron electric dipole moment was first measured in 1950 by Smith, Purcell, and Ramsey at the Oak Ridge Reactor - the first intense neutron source. This measurement showed that the neutron was very nearly round (to better than one part in a million). The goal of the nEDM experiment is to further improve the precision of this measurement by another factor of 100. The signal from the experiment is detected by collecting the photons generated when neutron beams were captured by liquid helium 3. The Geant4 simulation project that I participate simulates the process of light collection to improve the design for higher capture efficiency. The simulated geometry includes light source, reflector, wavelength shifting fibers, wavelength shifting TPB and acrylic as in real experiment. The UV photons exiting from Helium go through two wavelength-shifting processes in TPB and fibers to be finally captured. Oak Ridge National Laboratory Neutron Electric Dipole Moment measurement project.

  1. Electron electric dipole moment experiment using electric-fieldquantized slow cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey.

    2007-04-05

    A proof-of-principle electron electric dipole moment (e-EDM)experiment using slow cesium atoms, nulled magnetic fields, and electricfield quantization has been performed. With the ambient magnetic fieldsseen by the atoms reduced to less than 200 pT, an electric field of 6MV/m lifts the degeneracy between states of unequal lbar mF rbar and,along with the low (approximately 3 m/s) velocity, suppresses thesystematic effect from the motional magnetic field. The low velocity andsmall residual magnetic field have made it possible to induce transitionsbetween states and to perform state preparation, analysis, and detectionin regions free of applied static magnetic and electric fields. Thisexperiment demonstrates techniques that may be used to improve the e-EDMlimit by two orders of magnitude, but it is not in itself a sensitivee-EDM search, mostly due to limitations of the laser system.

  2. Consistent calculation of the polarization electric dipole moment by the shell-correction method

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    1992-01-01

    Macroscopic calculations of the polarization electric dipole moment which arises in nuclei with an octupole deformation are discussed in detail. This dipole moment is shown to depend on the position of the center of gravity. The conditions of consistency of the radii of the proton and neutron potentials and the radii of the proton and neutron surfaces, respectively, are discussed. These conditions must be incorporated in a shell-correction calculation of this dipole moment. A correct calculation of this moment by the shell-correction method is carried out. Dipole transitions between (on the one hand) levels belonging to an octupole vibrational band and (on the other) the ground state in rare-earth nuclei with a large quadrupole deformation are studied. 19 refs., 3 figs

  3. Dipole moments of the ground and first excited vibrational states of 35ClO

    International Nuclear Information System (INIS)

    Yaron, D.J.; Peterson, K.I.; Klemperer, W.

    1985-01-01

    The v=0 and v=1 dipole moments of ClO were obtained using the molecular beam electric resonance technique. ClO is formed in a supersonically expanded discharge of 10-20% O 2 and 3-4% Cl 2 in an Ar buffer gas. Transitions within the 2 π/sub 3/2/, J=3/2 state of 35 ClO were monitored as a function of electric field up to 1600 v/cm. At zero field, this state is split into eight levels by the magnetic hyperfine structure and lambda doubling. The dipole moments obtained were 1.2980 (12) D for the v=0 state and 1.2779 (19) for the v=1 state (tentative). The difference between these two measured values is 0.0201 D which is significantly lower than the theoretically predicted result of 0.028 D. 2 references

  4. Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment

    Science.gov (United States)

    Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.

    2017-07-01

    Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.

  5. Electric dipole moment of the neutron in gauge theory

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1983-01-01

    One of the consequences of violation of CP invariance of the physical world is the existence of an electric dipole moment of elementary particles. The renormalization gauge theory of the electroweak and strong interactions developed during the past decade has revealed several possible sources of violation of CP invariance: direct violation of CP invariance in the Lagrangian of the electroweak interactions, spontaneous violation of CP invariance, and violation of CP invariance in the strong interactions described by quantum chromodynamics. The present review is devoted to a discussion of the predictions for the electric dipole moment of the neutron which follow from the various sources of violation of CP invariance in the theory. It includes the theoretical results obtained in the framework of gauge theory during the past decade up to the beginning of 1982. A comparison of the prediction of various gauge models with the experimental measurements of the electric dipole moment will make it possible to gain a better understanding of the nature of violation of CP invariance

  6. Neutron Electric Dipole Moment

    International Nuclear Information System (INIS)

    Mischke, R.E.

    2003-01-01

    The status of experiments to measure the electric dipole moment of the neutron is presented and the planned experiment at Los Alamos is described. The goal of this experiment is an improvement in sensitivity of a factor of 50 to 100 over the current limit. It has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The experiment employs several advances in technique to reach its goals and the feasibility of meeting these technical challenges is currently under study

  7. The isotopic dipole moment of HDO

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)

    2007-03-14

    An adiabatic variational approximation is used to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 {+-} 0.1) x 10{sup -3} Debye, being helpful in the interpretation of experiments. (fast track communication)

  8. Electric dipole moments as a test of supersymmetric unification

    CERN Document Server

    Dimopoulos, Savas K; Dimopoulos, S; Hall, L J

    1995-01-01

    In a class of supersymmetric grand unified theories, including those based on the gauge group SO(10), there are new contributions to the electric dipole moments of the neutron and electron, which arise as a heavy top quark effect. These contributions arise from CKM-like phases, not from phases of the supersymmetry breaking operators, and can be reliably computed in terms of the parameters of the weak scale supersymmetric theory. For the expected ranges of these parameters, the electric dipole moments of the neutron and the electron are predicted to be close to present experimental limits.

  9. On the search for the electric dipole moment of strange and charm baryons at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Botella, F.J.; Garcia Martin, L.M.; Martinez Vidal, F.; Oyanguren, A.; Ruiz Vidal, J. [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Marangotto, D.; Merli, A.; Neri, N. [INFN Sezione di Milano, Milan (Italy); Milano Univ., Milan (Italy)

    2017-03-15

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and anti Λ baryons. For short-lived Λ{sup +}{sub c} and Ξ{sup +}{sub c} baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed. (orig.)

  10. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    Science.gov (United States)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  11. Effect of particle-core-vibration coupling near the double closed $^{132}$Sn nucleus from precise magnetic moment measurements

    CERN Multimedia

    Postma, H; Heyde, K; Walker, P; Grant, I; Veskovic, M; Stone, N; Stone, J

    2002-01-01

    % IS301 \\\\ \\\\ Low temperature nuclear orientation of isotope-separator implanted short-lived radio-isotopes makes possible the measurements of nuclear magnetic dipole moments of oriented ground and excited states with half-lives longer than a few seconds. Coupling schemes characterizing the odd nucleons and ground-state deformations can be extracted from the nuclear moments. \\\\ We thus propose to measure the magnetic dipole moments of $^{127-133}$Sb to high precision using NMR/ON at the NICOLE facility. With (double magic +1) $^{133}$Sb as the reference, the main aim of this experiment is to examine whether the collective component in the 7/2$^+$ Sb ground state magnetic dipole moment varies as expected according to particle-core coupling calculations carried out for the Sb (Z=51) isotopes. Comparison of the 1-proton-particle excitations in Sb to 1-proton-hole states in In nuclei will shed light on differences between particle and hole excitations as understood within the present model. Comparison of ...

  12. New insights into the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Ottnad, K.; Kubis, B.; Meissner, U.-G.; Guo, F.-K.

    2010-01-01

    We analyze the CP-violating electric dipole form factor of the nucleon in the framework of covariant baryon chiral perturbation theory. We give a new upper bound on the vacuum angle, |θ 0 |≤2.5x10 -10 . The quark mass dependence of the electric dipole moment is discussed and compared to lattice QCD data. We also perform the matching between its representations in the three- and two-flavor theories.

  13. Status of the Berkeley search for the electron electric dipole moment in thallium 205

    International Nuclear Information System (INIS)

    Ross, S.B.; Commins, E.D.

    1993-01-01

    This experiment employs two counterpropagating atomic beams in a uniform magnetic field B, laser optical pumping for state selection and analysis, two separated rf fields for magnetic resonance, and an electric field E between the rf regions. The signal is fluorescence in the second optical pumping region, and the signature of a finite electric dipole moment is an asymmetry in the signal proportional to E sm-bullet B. The two counterpropagating atomic beams are used to reduce by orders of magnitude a possible systematic effect due to precession of the atomic magnetic moment in a motional magnetic field Exv/c, and the small residual is dealt with by a variety of auxiliary measurements. Careful analysis of other possible systematics is also carded out. Since publication of our first results in Nov. 1990, we have improved our detection sensitivity, reduced noise, and further isolated a number of possible systematic effects. Now results will be presented

  14. A sensitive search for a muon electric dipole moment

    International Nuclear Information System (INIS)

    Semertzidis, Yannis K.; Carey, R.M.; Miller, J.P.; Rind, O.; Roberts, B.L.; Sulak, L.R.; Brown, H.; Danby, G.T.; Jackson, J.W.; Larsen, R.; Lazarus, D.M.; Meng, W.; Morse, W.M.; Ozben, C.S.; Prigl, R.; Semertzidis, Y.K.; Balakin, V.; Bazhan, A.; Dudnikov, A.; Khazin, B. I.

    2001-01-01

    We are proposing a new method to carry out a dedicated search for a permanent electric dipole moment (EDM) of the muon with a sensitivity at a level of 10 -24 e·cm. The experiment will be sensitive to non-standard physics like SUSY. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring. As a key feature, a novel technique has been invented in which the g-2 precession is compensated with a radial electric field. The EDM signature will be an out of plane muon spin precession as a function of time. The rate of this precession will be proportional to the EDM amplitude of the muon

  15. New insights into the neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Ottnad, K.; Kubis, B. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Meissner, U.-G., E-mail: meissner@hiskp.uni-bonn.d [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institut fuer Kernphysik, Juelich Center for Hadron Physics and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Guo, F.-K. [Institut fuer Kernphysik, Juelich Center for Hadron Physics and Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2010-04-05

    We analyze the CP-violating electric dipole form factor of the nucleon in the framework of covariant baryon chiral perturbation theory. We give a new upper bound on the vacuum angle, |theta{sub 0}|<=2.5x10{sup -10}. The quark mass dependence of the electric dipole moment is discussed and compared to lattice QCD data. We also perform the matching between its representations in the three- and two-flavor theories.

  16. Lepton electric dipole moments, supersymmetric seesaw, and leptogenesis phase

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Mohapatra, R.N.

    2003-01-01

    We calculate the lepton electric dipole moments in a class of supersymmetric seesaw models and explore the possibility that they may provide a way to probe some of the CP violating phases responsible for the origin of matter via leptogenesis. We show that in models where the right handed neutrino masses M R arise from the breaking of local B-L by a Higgs field with B-L=2, some of the leptogenesis phases can lead to enhancement of the lepton dipole moments compared to the prediction of models where M R is either directly put in by hand or is a consequence of a higher dimensional operator

  17. Angle and temperature dependence of the magnetocrystalline anisotropy energy and the microscopic magnetic moments of the ferromagnetic semi-metal CrO{sub 2}; Winkel- und Temperaturabhaengigkeit der magnetokristallinen Anisotropieenergie und der mikroskopischen magnetischen Momente des ferromagnetischen Halbmetalls CrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gold, S.

    2005-07-01

    The aim of this work was to examine, by use of XMCD-effect and additional measurements with SQUID-magnetometer, spin moments and hysteresis loops, but also to clarify the intrinsic properties like magnetocrystalline anisotropy, magnetic dipole term, and the nearly quenched orbital moment. The XMCD-measurements were done at the Cr L{sub 2,3}- and the O K-edge. The results for CrO{sub 2} show a strong dependence of the orbital, the sum of spin moment and magnetic dipole term, and the magnetocrystalline anisotropy energy from the angle between rutile a- and c-axis. Even more than the complete orbital moment, two separable and different spectral features show strong alterations of the different orbital moments. In a second part of this work the temperature dependence was investigated. The aim was to clarify the origin of the orbital moment, dipole term, and MAE in dependence of the spin moment and compare the results to different theoretical models. The extracted orbital moments and the magnetic dipole term show the same temperature dependence as the spin moment. In the following a dependence of the squared measured spin moment could be found for the MAE. For the first time the magnetic dipole term could be identified as the reason of the magnetocrystalline anisotropy energy. A strong Cr-O hybridisation was found, which shows in a similar structure and temperature dependence of the orbital moments for Cr L{sub 2,3} and the XMCD effect at O-K edge. (orig.)

  18. First Measurement of the Atomic Electric Dipole Moment of (225)Ra.

    Science.gov (United States)

    Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T

    2015-06-12

    The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22)  e cm (95% confidence).

  19. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2016-01-01

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B_0. The other antenna is an elongated loop with dipole moment parallel to B_0. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  20. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  1. Electric Dipole Moments of Hadrons

    OpenAIRE

    Wirzba, Andreas

    2016-01-01

    A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron, helion or any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (leading to the case of induced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the rel...

  2. The neutron electric dipole moment in left-right symmetric low energy supergravity

    International Nuclear Information System (INIS)

    Ahn, Y.J.

    1984-01-01

    We compute the neutron electric dipole moment in low energy supergravity based on the gauge group SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L). We find the electric dipole moment dsub(n) -25 e cm x (CP violating phase) provided the left-right symmetry breaking scale > or approx. 10 3 GeV. (orig.)

  3. arXiv Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    CERN Document Server

    Bagli, E.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.

    2017-12-05

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.

  4. On the electric dipole moments of small sodium clusters from different theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andres, E-mail: aguado@metodos.fam.cie.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Largo, Antonio, E-mail: alargo@qf.uva.es [Departamento de Quimica Fisica y Quimica Inorganica, Universidad de Valladolid (Spain); Vega, Andres, E-mail: vega@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Balbas, Luis Carlos, E-mail: balbas@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain)

    2012-05-03

    Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: Black-Right-Pointing-Pointer Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. Black-Right-Pointing-Pointer New van der Waals selfconsistent implementation of non-local dispersion interactions. Black-Right-Pointing-Pointer New starting isomeric geometries from extensive search of global minimum structures. Black-Right-Pointing-Pointer Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na{sub n} clusters in the size range 10 < n < 20, recently measured at very low temperature (20 K), are much smaller than predicted by standard density functional methods. On the other hand, the calculated static dipole polarizabilities in that range of sizes deviate non-systematically from the measured ones, depending on the employed first principles approach. In this work we calculate the dipole moments and polarizabilities of a few isomers of Na{sub n} clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible

  5. Communication: theoretical study of ThO for the electron electric dipole moment search.

    Science.gov (United States)

    Skripnikov, L V; Petrov, A N; Titov, A V

    2013-12-14

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H(3)Δ1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [http://www.electronedm.org]. To interpret the experiment in terms of eEDM and dimensionless constant kT, P characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, Eeff, and a parameter of the T,P-odd pseudoscalar-scalar interaction, WT, P, in ThO is required. We report our results for Eeff (84 GV/cm) and WT, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H(3)Δ1 → X(1)Σ(+) transition energy, which can serve as a measure of reliability of the obtained Eeff and WT, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H(3)Δ1.

  6. Communication: Theoretical study of ThO for the electron electric dipole moment search

    International Nuclear Information System (INIS)

    Skripnikov, L. V.; Petrov, A. N.; Titov, A. V.

    2013-01-01

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H 3 Δ 1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [ http://www.electronedm.org ]. To interpret the experiment in terms of eEDM and dimensionless constant k T, P characterizing the strength of the T,P-odd pseudoscalar–scalar electron–nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, E eff , and a parameter of the T,P-odd pseudoscalar–scalar interaction, W T, P , in ThO is required. We report our results for E eff (84 GV/cm) and W T, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H 3 Δ 1 → X 1 Σ + transition energy, which can serve as a measure of reliability of the obtained E eff and W T, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H 3 Δ 1

  7. Limits on the scaling of nucleon magnetic moments in nuclei

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; State Univ. of New York, Stony Brook; Richter, A.; State Univ. of New York, Stony Brook

    1987-01-01

    In view of the suggestion that nucleon magnetic moments inside nuclei may be modified due to a rescaling of the nucleon size, we investigate empirically how large such an effect can be. The method is based on a nearly model-independent scaling relation between the axial vector matrix element and the main part of the corresponding magnetic dipole matrix element supplemented by a small and well understood contribution from the one-pion exchange current. Taking the mass A = 3 and 12 systems as examples the upper limit, for such a change of the nucleon magnetic moment inside nuclei is found to be about 2%, considerably smaller than previous estimates in the literature. (orig.)

  8. The Muon Electric Dipole Moment

    OpenAIRE

    Barger, Vernon; Kao, Chung; Das, Ashok

    1997-01-01

    The electric dipole moment of the muon ($d_\\mu$) is evaluated in a two Higgs doublet model with a softly broken discrete symmetry. For $\\tan\\beta \\equiv |v_2|/|v_1| \\sim 1$, contributions from two loop diagrams involving the $t$ quark and the $W$ boson dominate; while for $\\tan\\beta \\gsim 10$, contributions from two loop diagrams involving the $b$ quark and the $\\tau$ lepton are dominant. For $8 \\gsim \\tan\\beta \\gsim 4$, significant cancellation occurs among the contributions from two loop di...

  9. The strange quark contribution to the neutron electric dipole moment in multi-Higgs doublet models

    International Nuclear Information System (INIS)

    He, Xiao Gang; McKeller, H.J.; Pakvasa, S.

    1990-09-01

    The strange quark contribution to the neutron electric dipole moment was studied and compared with other contributions in multi-Higgs doublet models. It was found that the strange quark contribution is significant because the strange quark color dipole moment is larger than that of the down (up) quark by a factor m s /m d (m s /m u ). In the case of neutral Higgs it can be the dominant contribution to the neutron electric dipole moment. 18 refs

  10. On the electric dipole moments of small sodium clusters from different theoretical approaches

    International Nuclear Information System (INIS)

    Aguado, Andrés; Largo, Antonio; Vega, Andrés; Balbás, Luis Carlos

    2012-01-01

    Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: ► Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. ► New van der Waals selfconsistent implementation of non-local dispersion interactions. ► New starting isomeric geometries from extensive search of global minimum structures. ► Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na n clusters in the size range 10 n clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible contribution of the core electrons to the electric dipole moments. Our new geometries possess significantly smaller electric dipole moments than previous density functional results, mostly when combined with the van der Waals exchange–correlation functional. However, although the agreement with experiment clearly improves upon previous calculations, the theoretical dipole moments are still about one order of magnitude larger than the experimental values, suggesting that the correct global minimum structures have not been

  11. Photovoltaic response and values of state dipole moments in single-layered pyrazoloquinoline/polymer composites

    Science.gov (United States)

    Gondek, E.; Kityk, I. V.; Danel, A.; Sanetra, J.

    2008-06-01

    We report the photovoltaic response of composite films formed by polymer transport matrices poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (PDT) with incorporated 1 H-pyrazolo[3,4- b]quinoline (PAQ) chromophore (see the first figure). The photovoltage (PV) data were obtained for different substituted PAQ possessing different state dipole moments. The photovoltaic cells were formed between ITO and aluminum electrodes. We found that the PV signal of polymer/PAQ substantially depends on the state dipole moments of the pyrazoloquinoline chromophore. This fact indicates on a possibility of significant enhancement of PV efficiency by appropriate variations of the state dipole moments of chromophore. This results in photoinduced electron transfer from polymer serving as donors to PAQ being the electron acceptor. Despite an efficiency of the PV devices is below 1%, however, it may be substantially enhanced in future varying the chromophore state dipole moments appropriately.

  12. Supersymmetric relations among electromagnetic dipole operators

    International Nuclear Information System (INIS)

    Graesser, Michael; Thomas, Scott

    2002-01-01

    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β

  13. Nucleon electric dipole moments in high-scale supersymmetric models

    International Nuclear Information System (INIS)

    Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi

    2015-01-01

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  14. Nucleon electric dipole moments in high-scale supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Hisano, Junji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Nagoya 464-8602 (Japan); Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8584 (Japan); Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)

    2015-11-12

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  15. Mercury monohalides: suitability for electron electric dipole moment searches.

    Science.gov (United States)

    Prasannaa, V S; Vutha, A C; Abe, M; Das, B P

    2015-05-08

    Heavy polar diatomic molecules are the primary tools for searching for the T-violating permanent electric dipole moment of the electron (eEDM). Valence electrons in some molecules experience extremely large effective electric fields due to relativistic interactions. These large effective electric fields are crucial to the success of polar-molecule-based eEDM search experiments. Here we report on the results of relativistic ab initio calculations of the effective electric fields in a series of molecules that are highly sensitive to an eEDM, the mercury monohalides (HgF, HgCl, HgBr, and HgI). We study the influence of the halide anions on E_{eff}, and identify HgBr and HgI as attractive candidates for future electric dipole moment search experiments.

  16. Permanent Electric Dipole Moment Search in 129Xe

    NARCIS (Netherlands)

    Grasdijk, Jan; Bluemler, P.; Almendinger, F.; Heil, Werner; Jungmann, Klaus-Peter; Karpuk, S.; Krause, Hans-Joachim; Offenhaeuser, Andreas; Repetto, M.; Schmidt, Ulrich; Sobolev, Y.; Willmann, Lorenz; Zimmer, Stefan

    2017-01-01

    A permanent electric dipole moment (EDM) implies breakdown of P (parity) and T (time reversal) symmetries. Provided CPT holds, this implies CP violation. Observation of an EDM at achievable experimental sensitivity would provide unambiguous evidence for physics beyond the Standard Model and limits

  17. Induced magnetic moment in stainless steel components of orthodontic appliances in 1.5 T MRI scanners

    Science.gov (United States)

    Rollins, Nancy K.; Liang, Hui; Park, Yong Jong

    2015-01-01

    Purpose: Most orthodontic appliances are made of stainless steel materials and induce severe magnetic susceptibility artifacts in brain MRI. In an effort for correcting these artifacts, it is important to know the value of induced magnetic moments in all parts of orthodontic appliances. In this study, the induced magnetic moment of stainless steel orthodontic brackets, molar bands, and arch-wires from several vendors is measured. Methods: Individual stainless steel brackets, molar bands, and short segments of arch-wire were positioned in the center of spherical flask filled with water through a thin plastic rod. The induced magnetic moment at 1.5 T was determined by fitting the B0 map to the z-component of the magnetic dipole field using a computer routine. Results: The induced magnetic moment at 1.5 T was dominated by the longitudinal component mz, with a small contribution from the transverse components. The mz was insensitive to the orientation of the metal parts. The orthodontic brackets collectively dominated the magnetic dipole moment in orthodontic appliances. In brackets from six vendors, the total induced mz from 20 brackets for nonmolar teeth ranged from 0.108 to 0.158 (median 0.122) A ⋅ m2. The mz in eight molar bands with bracket attachment from two vendors ranged from 0.0004 to 0.0166 (median 0.0035) A ⋅ m2. Several full length arch wires had induced magnetic moment in the range of 0.006–0.025 (median 0.015) A ⋅ m2. Conclusions: Orthodontic brackets collectively contributed most to the total magnetic moment. Different types of brackets, molar bands, and arch wires all exhibit substantial variability in the induced magnetic moment. PMID:26429261

  18. CP-violation and electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Le Dall, Matthias; Ritz, Adam, E-mail: aritz@uvic.ca [University of Victoria, Department of Physics and Astronomy (Canada)

    2013-03-15

    Searches for intrinsic electric dipole moments of nucleons, atoms and molecules are precision flavour-diagonal probes of new -odd physics. We review and summarise the effective field theory analysis of the observable EDMs in terms of a general set of CP-odd operators at 1 GeV, and the ensuing model-independent constraints on new physics. We also discuss the implications for supersymmetric models, in light of the mass limits emerging from the LHC.

  19. Determination of anisotropic dipole moments in self-assembled quantum dots using Rabi oscillations

    OpenAIRE

    Muller, A.; Wang, Q. Q.; Bianucci, P.; Xue, Q. K.; Shih, C. K.

    2004-01-01

    By investigating the polarization-dependent Rabi oscillations using photoluminescence spectroscopy, we determined the respective transition dipole moments of the two excited excitonic states |Ex> and |Ey> of a single self-assembled quantum dot that are nondegenerate due to shape anisotropy. We find that the ratio of the two dipole moments is close to the physical elongation ratio of the quantum dot.

  20. A SQUID magnetometry system for a cryogenic neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henry, S., E-mail: s.henry@physics.ox.ac.uk; Clarke, C.; Cottle, A.; Lynch, A.; Pipe, M.

    2014-11-01

    Precision magnetometry is an essential component of any neutron electric dipole moment experiment in order to correct shifts in the neutron precession frequency due to changes in the magnetic field. We have developed a magnetometry system using 12 SQUID sensors, designed to operate in 0.5 K superfluid helium. The pick-up loops located near the neutron cell are connected to the SQUID sensors by ∼2 m twisted wire pairs. The SQUID readout cables are run via an intermediate stage at 4.2 K. The system has been installed and tested in the cryoEDM apparatus at the ILL, Grenoble, and used to characterise the magnetic environment. Further tests in a suitable low noise environment confirm it meets our requirements.

  1. Magnetic dipole moments of High-K isomeric states in Hf isotopes

    CERN Multimedia

    Walters, W; Nishimura, K; Bingham, C R

    2007-01-01

    It is proposed to make precision measurements of the magnetic moments of 5 multi-quasi-particle K-isomers in Hf nuclei by the Nuclear Magnetic Resonance of Oriented Nuclei (NMR/ON) technique using the NICOLE on-line nuclear orientation facility and exploiting the unique HfF$_{3}$ beams recently available at ISOLDE. Results will be used to extract single-particle and collective g-factors of the isomeric states and their excitations and to shed new light on their structure.

  2. BERKELEY: Looking for the electron's electric dipole moment; Massive neutrino?

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An elementary particle can act as an electric dipole only if the invariances of left/right reflection (parity - P) and time reversal (T) are violated. So far no such electric dipole moment (EDM) has been found

  3. Electric dipole moments in two-Higgs-doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Martin [Institut für Physik, Technische Universität Dortmund,Otto-Hahn-Str. 4, D-44221 Dortmund (Germany); Pich, Antonio [IFIC, Universitat de València - CSIC,Apt. Correos 22085, E-46071 València (Spain)

    2014-04-10

    Electric dipole moments are extremely sensitive probes for additional sources of CP violation in new physics models. Specifically, they have been argued in the past to exclude new CP-violating phases in two-Higgs-doublet models. Since recently models including such phases have been discussed widely, we revisit the available constraints in the presence of mechanisms which are typically invoked to evade flavour-changing neutral currents. To that aim, we start by assessing the necessary calculations on the hadronic, nuclear and atomic/molecular level, deriving expressions with conservative error estimates. Their phenomenological analysis in the context of two-Higgs-doublet models yields strong constraints, in some cases weakened by a cancellation mechanism among contributions from neutral scalars. While the corresponding parameter combinations do not yet have to be unnaturally small, the constraints are likely to preclude large effects in other CP-violating observables. Nevertheless, the generically expected contributions to electric dipole moments in this class of models lie within the projected sensitivity of the next-generation experiments.

  4. Cosmogenic 10Be signature of geomagnetic dipole moment variations over the last 2 Ma

    Science.gov (United States)

    Simon, Q.; Thouveny, N.; Bourlès, D. L.; Valet, J. P.; Bassinot, F. C.; Savranskaia, T.; Duvivier, A.; Choy, S.; Gacem, L.; Villedieu, A.

    2017-12-01

    Long-term variations of the geomagnetic dipole moment (GDM) during periods of stable polarity and in transitional states (reversals and excursions) provide key information for understanding the geodynamo regime. Authigenic 10Be/9Be ratios (Be-ratio, proxy of atmospheric 10Be production) from marine sedimentary cores give independent and additional insights on the evolution of the geomagnetic intensity, completing information from absolute and relative paleointensity (RPI) records. Here we present new Be-ratio results obtained on several marine cores from the North Atlantic, Indian and Pacific Oceans which permit to extent into the Matuyama chron our previous 10Be-derived GDM reconstructions (Simon et al., 2016 JGR 121). Stratigraphic offsets measured between Be-ratio peaks and the corresponding RPI minima in each studied cores are assigned to (post-) detrital remanent magnetization (pDRM) effects leading to magnetization locking-in delays varying from 0 to 16 cm (up to 12 ka). All these results were compiled in order to obtain a continuous Be-ratio record covering the last 2 Ma. 10Be overproduction episodes triggered by geomagnetic dipole moment lows (GDL) linked to polarity reversals and excursions confirm the global control exerted by the GDM on cosmogenic radionuclides production. A dipole moment reconstruction derived from the Be-ratio stack (BeDiMo2Ma) was calibrated using absolute paleointensity data. This independent record completes the available paleomagnetic RPI records and permits: 1) to confront and increase the robustness and precision of GDM reconstructions; and, 2) to better constrain geomagnetic field instabilities during the mid- to late- Matuyama chron. Our new 10Be derived inventory is fully compatible with the GDL series linked to polarity reversals (Matuyama-Brunhes transition, Jaramillo and Olduvai boundaries), geomagnetic events (Cobb Mountain, Réunion) and Brunhes' excursions (e.g. Laschamp, Blake, Iceland-Basin, Big Lost). It further

  5. Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.

    Science.gov (United States)

    Simmen, Benjamin; Mátyus, Edit; Reiher, Markus

    2014-10-21

    This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.

  6. Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments

    CERN Document Server

    Ellis, John; Pilaftsis, Apostolos

    2011-01-01

    The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.

  7. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  8. Electric dipole moment of the top quark in Higgs-boson-exchange models of CP nonconservation

    International Nuclear Information System (INIS)

    Soni, A.; Xu, R.M.

    1992-01-01

    The leading contribution to the electric and the chromoelectric dipole moments of the top quark is calculated in Higgs-boson-exchange models of CP nonconservation. The dipole moments are typically of the order of 10 -20 e cm and 10 -20 g cm, respectively and arise at one-loop order through neutral-Higgs-boson exchange. Several two-loop contributions are estimated to be smaller by about 2 orders of magnitude for the electric case and about 1 order of magnitude smaller for the chromoelectric case. The q 2 dependence of the dipole moment form factor is given for possible application to experimental searches

  9. Searches for the electron electric dipole moment and nuclear anapole moments in solids

    International Nuclear Information System (INIS)

    Mukhamedjanov, T.N.; Sushkov, O.P.; Cadogan, J.M.; Dzuba, V.A.

    2004-01-01

    Full text: We consider effects caused by the electron electric dipole moment (EDM) in gadolinium garnets. Our estimates show that the experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. It is also possible to probe for nuclear anapole moments in a solid state experiment. We suggest such NMR-type experiment and perform estimates of the expected results

  10. Photophysical characteristics of three novel benzanthrone derivatives: Experimental and theoretical estimation of dipole moments

    International Nuclear Information System (INIS)

    Siddlingeshwar, B.; Hanagodimath, S.M.; Kirilova, E.M.; Kirilov, Georgii K.

    2011-01-01

    The effect of solvents on absorption and fluorescence spectra and dipole moments of novel benzanthrone derivatives such as 3-N-(N',N'-Dimethylformamidino) benzanthrone (1), 3-N-(N',N'-Diethylacetamidino) benzanthrone (2) and 3-morpholinobenzanthrone (3) have been studied in various solvents. The fluorescence lifetime of the dyes (1-3) in chloroform were also recorded. Bathochromic shift observed in the absorption and fluorescence spectra of these molecules with increasing solvent polarity indicates that the transitions involved are π→π * . Using the theory of solvatochromism, the difference in the excited-state (μ e ) and the ground-state (μ e ) dipole moments was estimated from Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet, and McRae equations by using the variation of Stokes shift with the solvent's relative permittivity and refractive index. AM1 and PM6 semiempirical molecular calculations using MOPAC and ab-initio calculations at B3LYP/6-31 G * level of theory using Gaussian 03 software were carried out to estimate the ground-state dipole moments and some other physicochemical properties. Further, the change in dipole moment value (Δμ) was also calculated by using the variation of Stokes shift with the molecular-microscopic empirical solvent polarity parameter (E T N ). The excited-state dipole moments observed are larger than their ground-state counterparts, indicating a substantial redistribution of the π-electron densities in a more polar excited state for all the systems investigated.

  11. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    Science.gov (United States)

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  12. Analyzing the Anomalous Dipole Moment Type Couplings of Heavy Quarks with FCNC Interactions at the CLIC

    International Nuclear Information System (INIS)

    Senol, A.; Tasci, A. T.; Verep, C.

    2014-01-01

    We examine both anomalous magnetic and dipole moment type couplings of a heavy quark via its single production with subsequent dominant standard model decay modes at the compact linear collider (CLIC). The signal and background cross sections are analyzed for heavy quark masses 600 and 700 GeV. We make the analysis to delimitate these couplings as well as to find the attainable integrated luminosities for 3σ observation limit

  13. A cosmological lower bound on the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.V.; Rudaz, S.; Gaillard, M.K.

    1980-10-01

    We argue that in a wide class of grand unified theories diagrams similar to those generating baryon number in the early universe also contribute to renormalization of the CP-violating theta parameter of QCD and hence to the neutron electric dipole moment dsub(n). We then use the apparent baryon-to-photon ratio (nsub(B)/nsub(γ))>=1.3 x 10 -10 to deduce an order-of-magnitude lower bound on the neutron electric dipole moment: dsub(n) > approximately 3 x 10 -28 e-cm. Conversely the present experimental upper limit on dsub(n) implies (nsub(B)/nsub(γ) -7 . We find as a corollary that there is not much scope for entropy generation after the creation of the baryon-antibaryon asymmetry in the very early universe

  14. Rotation Detection Using the Precession of Molecular Electric Dipole Moment

    Science.gov (United States)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2017-11-01

    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  15. A possible role of the dipole moment of the catalyst droplet in nanotube growth, alignment, chirality, and characteristics

    International Nuclear Information System (INIS)

    Mohammad, S Noor

    2012-01-01

    Why vapor species land on the surface of the nanoparticle seed for nanotube synthesis is a vital question. An investigation has been carried out to find an answer to it. For this, a model of the dipole moment has been developed. A bimetallic alloy (non-alloy, solid solution) exhibiting the shape of a cap has been assumed to function as the nanoparticle seed. Various features of the dipole moment have been examined. The influence of the dipole moment on nanotube synthesis, alignment, chirality, and characteristics has also been studied. Available experiments on the synthesis of carbon nanotubes employing bimetallic catalysts have been compared with the results from calculations. Close correspondence between the two demonstrates that the catalysts may exhibit a dipole moment and have a crucial role in nanotube synthesis and characteristics. The dipole moment has also been employed to determine why some nanotubes grow vertically, while others are bent. Calculated results appear to explain the basic causes for this. These results suggest that the electric field resulting from the dipole moment of catalysts may be important for the vertical alignment of nanotubes. They may attest to the validity of the model and to the existence of a dipole moment in seeds. Although considered for nanotube syntheses, the results may be applicable to other nanomaterials (nanotubes, nanowires, nanodots). (paper)

  16. Electric dipole moments of charged leptons in the split fermion scenario in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Iltan, E.O.

    2005-01-01

    We predict the charged lepton electric dipole moments in the split fermion scenario in the framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric dipole moment is of the order of the magnitude of 10 -22 e cm (10 -20 e cm) and there is an enhancement in the case of two extra dimensions, especially for the tau lepton electric dipole moment. (orig.)

  17. Local spin torque induced by electron electric dipole moment in the YbF molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06

    In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.

  18. Electric dipole moment of 3He

    International Nuclear Information System (INIS)

    Avishai, Y.; Fabre de la Ripelle, M.

    1986-01-01

    The contribution of a CP-nonconserving nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated in view of a recent proposal for its experimental detection. We use two models of CP-nonconserving interactions in combination with a Reid soft-core strong nucleon-nucleon interaction. In the Kobayashi-Maskawa model of CP nonconservation the order of magnitude is 10 -30 eX while the presence of the theta term in the QCD Langrangian contributes an order of magnitude 10 -16 theta-bar e cm

  19. The dipole moment of the electron carrier adrenodoxin is not critical for redox partner interaction and electron transfer.

    Science.gov (United States)

    Hannemann, Frank; Guyot, Arnaud; Zöllner, Andy; Müller, Jürgen J; Heinemann, Udo; Bernhardt, Rita

    2009-07-01

    Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.

  20. New two-loop contribution to electric dipole moment in supersymmetric theories

    CERN Document Server

    Chang, Darwin; Pilaftsis, Apostolos; Chang, Darwin; Keung, Wai-Yee; Pilaftsis, Apostolos

    1999-01-01

    We calculate a new type of two-loop contributions to the electric dipole moments of the electron and neutron in supersymmetric theories. The new contributions are originated from the potential CP violation in the trilinear couplings of the Higgs bosons to the scalar-top or the scalar-bottom quarks. These couplings were previously very weakly constrained. The electric dipole moments are induced through a mechanism analogous to that due to Barr and Zee. We find observable effects for a sizeable portion of the parameter space related to the third generation scalar-quarks in the minimal supersymmetric standard model which cannot be excluded by earlier considerations.

  1. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    Science.gov (United States)

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.

  2. Theoretical studies of MHD plasma molecules. I. Potential energy curves and dipole moments of linear KOH

    International Nuclear Information System (INIS)

    England, W.B.

    1978-01-01

    Uncorrelated and correlated potential energy curves and dipole moments are reported for linear KOH. The compound is found to be ionic, K + OH - . Minimum energy bond lengths are R/sub KO/=4.2913 au and R/sub OH/=1.7688 au, with an estimated accuracy of 2%. The corresponding dipole moment is 3.3 au (8.46 D) with a similar accuracy estimate. This is to our knowledge the first value ever reported for the KOH dipole moment, and the large value suggests that KOH will be an effective electron scatterer in MHD plasmas

  3. Dipole moments associated with edge atoms; a comparative study on stepped Pt, Au and W surfaces

    International Nuclear Information System (INIS)

    Besocke, K.; Krahl-Urban, B.; Wagner, H.

    1977-01-01

    Work function measurements have been performed on stepped Pt and Au surfaces with (111) terraces and on W surfaces with (110) terraces. In each case the work function decreases linearly with increasing step density and depends on the step orientation. The work function changes are attributed to dipole moments associated with the step edges. The dipole moments per unit step length are larger for open edge structures than for densely packed ones. The dipole moments for Pt are about twice as large as for Au and W. (Auth.)

  4. Apparatus for measurement of the electric dipole moment of the neutron using a cohabiting atomic-mercury magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.A. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chibane, Y.; Chouder, M. [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Geltenbort, P. [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Green, K. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Harris, P.G., E-mail: p.g.harris@sussex.ac.uk [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Heckel, B.R. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Iaydjiev, P.; Ivanov, S.N.; Kilvington, I. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Lamoreaux, S.K. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); May, D.J.; Pendlebury, J.M.; Richardson, J.D.; Shiers, D.B.; Smith, K.F. [University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Grinten, M. van der [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2014-02-01

    A description is presented of apparatus used to carry out an experimental search for an electric dipole moment of the neutron, at the Institut Laue-Langevin (ILL), Grenoble. The experiment incorporated a cohabiting atomic-mercury magnetometer in order to reduce spurious signals from magnetic field fluctuations. The result has been published in an earlier letter [1]; here, the methods and equipment used are discussed in detail.

  5. A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields

    Science.gov (United States)

    Fradin, Cécile

    2013-01-01

    Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185

  6. Communication: Theoretical study of ThO for the electron electric dipole moment search

    Energy Technology Data Exchange (ETDEWEB)

    Skripnikov, L. V., E-mail: leonidos239@gmail.com; Petrov, A. N.; Titov, A. V. [Federal State Budgetary Institute “Petersburg Nuclear Physics Institute,” Gatchina, Leningrad district 188300 (Russian Federation); Department of Physics, Saint Petersburg State University, Saint Petersburg, Petrodvoretz 198904 (Russian Federation)

    2013-12-14

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H{sup 3}Δ{sub 1} state of ThO molecule was proposed and now prepared by the ACME Collaboration [ http://www.electronedm.org ]. To interpret the experiment in terms of eEDM and dimensionless constant k{sub T,} {sub P} characterizing the strength of the T,P-odd pseudoscalar–scalar electron–nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, E{sub eff}, and a parameter of the T,P-odd pseudoscalar–scalar interaction, W{sub T,} {sub P}, in ThO is required. We report our results for E{sub eff} (84 GV/cm) and W{sub T,} {sub P} (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H{sup 3}Δ{sub 1} → X{sup 1}Σ{sup +} transition energy, which can serve as a measure of reliability of the obtained E{sub eff} and W{sub T,} {sub P} values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H{sup 3}Δ{sub 1}.

  7. Novel applications of Lattice QCD: Parton Distributions, proton charge radius and neutron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Alexandrou Constantia

    2017-01-01

    Full Text Available We briefly discuss the current status of lattice QCD simulations and review selective results on nucleon observables focusing on recent developments in the lattice QCD evaluation of the nucleon form factors and radii, parton distribution functions and their moments, and the neutron electric dipole moment. Nucleon charges and moments of parton distribution functions are presented using simulations generated at physical values of the quark masses, while exploratory studies are performed for the parton distribution functions and the neutron electric dipole moment at heavier than physical value of the pion mass.

  8. Searches for permanent electric dipole moments in Radium isotopes

    NARCIS (Netherlands)

    Willmann, L.; Jungmann, K.; Wilschut, H.W.

    2010-01-01

    Permanent electric dipole moments are uniquely sensitive to sources of T and P violation in fundamental interactions. In particular radium isotopes offer the largest intrinsic sensitivity. We want to explore the prospects for utilizing the high intense beams from HIE-ISOLDE to boost the statistical

  9. Electric Dipole Moments in Split Supersymmetry

    CERN Document Server

    Giudice, Gian Francesco

    2006-01-01

    We perform a quantitative study of the neutron and electron electric dipole moments (EDM) in Supersymmetry, in the limit of heavy scalars. The leading contributions arise at two loops. We give the complete analytic result, including a new contribution associated with Z-Higgs exchange, which plays an important and often leading role in the neutron EDM. The predictions for the EDM are typically within the sensitivities of the next generation experiments. We also analyse the correlation between the electron and neutron EDM, which provides a robust test of Split Supersymmetry.

  10. Search for a permanent Xe-electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Collaboration: MIXed-Collaboration

    2016-07-01

    A permanent electric dipole moment (EDM) of the isotope {sup 129}Xe would imply a breakdown of both parity P and time-reversal symmetry T and, through the CPT theorem, a breakdown in CP, the combined symmetries of charge conjugation C and parity P. Our goal is to improve the present experimental limit (d{sub Xe}<3.10{sup -27} ecm) by about three orders of magnitude. The most precise EDM limit on diamagnetic atoms was measured on {sup 199}Hg (d{sub Hg}<3.1.10{sup -29} ecm). To get more stringent limits, we perform a {sup 3}He/{sup 129}Xe clock comparison experiment with the detection of free spin precession of gaseous, nuclear polarized {sup 3}He or {sup 129}Xe samples with a SQUID as magnetic flux detector. The precession of co-located {sup 3}He/{sup 129}Xe nuclear spins are used as an ultra-sensitive probe for non-magnetic spin interactions of type δν∝ d{sub Xe}.E. With our experimental setup at the research center Juelich we are able to observe spin coherence times T{sub 2}{sup *} of several hours for both species. We report on first experimental results achieved within the MIXed-collaboration.

  11. Corrigendum to ;Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field; [J. Mol. Struct. 1137 (2017) 440-452

    Science.gov (United States)

    Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat

    2017-08-01

    The authors regret to inform that three references in the article titled ;Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field; are not given in the manuscript. This is purely an oversight mistake. The references are as shown in this correction. The authors would like to apologize for any inconvenience caused.

  12. Permanent Magnet Dipole for DIRAC Design Report

    CERN Document Server

    Vorozhtsov, Alexey

    2012-01-01

    Two dipole magnets including one spare unit are needed for the for the DIRAC experiment. The proposed design is a permanent magnet dipole. The design based on Sm2Co17 blocks assembled together with soft ferromagnetic pole tips. The magnet provides integrated field strength of 24.6 10-3 T×m inside the aperture of 60 mm. This Design Report summarizes the main magnetic and mechanic design parameters of the permanent dipole magnets.

  13. Analytical Solutions of Electromagnetic Fields from Current Dipole Moment on Spherical Conductor in a Low-Frequency Approximation

    International Nuclear Information System (INIS)

    Okita, Taishi; Takagi, Toshiyuki

    2010-01-01

    We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequency excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. CONSTRAINT ON LIGHT DIPOLE DARK MATTER FROM HELIOSEISMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Kadota, Kenji [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: kadota.kenji@f.nagoya-u.jp, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France)

    2014-01-10

    We investigate the effects of a magnetic dipole moment of asymmetric dark matter (DM) in the evolution of the Sun. The dipole interaction can lead to a sizable DM scattering cross section even for light DM, and asymmetric DM can lead to a large DM number density in the Sun. We find that solar model precision tests, using as diagnostic the sound speed profile obtained from helioseismology data, exclude dipolar DM particles with a mass larger than 4.3 GeV and magnetic dipole moment larger than 1.6 × 10{sup –17} e cm.

  15. Extreme black hole with an electric dipole moment

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tada, T.

    1996-01-01

    We construct a new extreme black hole solution in a toroidally compactified heterotic string theory. The black hole saturates the Bogomol close-quote nyi bound, has zero angular momentum, but a nonzero electric dipole moment. It is obtained by starting with a higher-dimensional rotating charged black hole, and compactifying one direction in the plane of rotation. copyright 1996 The American Physical Society

  16. Determination of ground and excited state dipole moments of dipolar laser dyes by solvatochromic shift method.

    Science.gov (United States)

    Patil, S K; Wari, M N; Panicker, C Yohannan; Inamdar, S R

    2014-04-05

    The absorption and fluorescence spectra of three medium sized dipolar laser dyes: coumarin 478 (C478), coumarin 519 (C519) and coumarin 523 (C523) have been recorded and studied comprehensively in various solvents at room temperature. The absorption and fluorescence spectra of C478, C519 and C523 show a bathochromic and hypsochromic shifts with increasing solvent polarity indicate that the transitions involved are π→π(∗) and n→π(∗). Onsager radii determined from ab initio calculations were used in the determination of dipole moments. The ground and excited state dipole moments were evaluated by using solvatochromic correlations. It is observed that the dipole moment values of excited states (μe) are higher than corresponding ground state values (μg) for the solvents studied. The ground and excited state dipole moments of these probes computed from ab initio calculations and those determined experimentally are compared and the results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The Collider dipole magnet program

    International Nuclear Information System (INIS)

    Baldi, R.W.; Bailey, R.; Bever, D.; Bogart, L.; Gigg, G.; Packer, M.; Page, L.; Stranberg, N.

    1991-01-01

    The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment

  18. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya Eri

    2015-01-01

    Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.

  19. A Bayesian Approach to Magnetic Moment Determination Using μSR

    Science.gov (United States)

    Blundell, S. J.; Steele, A. J.; Lancaster, T.; Wright, J. D.; Pratt, F. L.

    A significant challenge in zero-field μSR experiments arises from the uncertainty in the muon site. It is possible to calculate the dipole field (and hence precession frequency v) at any particular site given the magnetic moment μ and magnetic structure. One can also evaluate f(v), the probability distribution function of v assuming that the muon site can be anywhere within the unit cell with equal probability, excluding physically forbidden sites. Since v is obtained from experiment, what we would like to know is g(μjv), the probability density function of μ given the observed v. This can be obtained from our calculated f(v/μ) using Bayes' theorem. We describe an approach to this problem which we have used to extract information about real systems including a low-moment osmate compound, a family of molecular magnets, and an iron-arsenide compound.

  20. DETECTION OF NONPOLAR IONS IN 2Π3/2 STATES BY RADIOASTRONOMY VIA MAGNETIC DIPOLE TRANSITIONS

    International Nuclear Information System (INIS)

    Morse, Michael D.; Maier, John P.

    2011-01-01

    The possibility of magnetic dipole-induced pure rotational transitions in the interstellar medium is investi- gated for symmetric Hund's case (a) linear molecules, such as H-C≡C-H + (X-tilde 2 Π 3/2u ), CO 2 + (X-tilde 2 Π 3/2g ), H-C≡C-C≡C-H + (X-tilde 2 Π 3/2g ), and N 3 (X-tilde 2 Π 3/2g ). These species lack an electric dipole moment and therefore cannot undergo pure rotational electric dipole transitions. These species can undergo pure rotational transitions via the parallel component of the magnetic dipole operator, however. The transition moments and Einstein A coefficients for the allowed pure rotational transitions are derived for a general Hund's case (a) linear molecule, and tabulated for the examples of H-C≡C-H + ( 2 Π 3/2u ) and H-C≡C-C≡C-H + ( 2 Π 3/2g ). It is found that the rates of emission are comparable to collision rates in interstellar clouds, suggesting that this decay mechanism may be important in simulating rotational population distributions in diffuse clouds and for detecting these molecules by radioastronomy. Expected line positions for the magnetic dipole-allowed R ef (J) and R fe (J) transitions of H-C≡C-H + ( 2 Π 3/2u ), H-C≡C-C≡C-H + ( 2 Π 3/2g ), CO 2 + ( 2 Π 3/2g ), and N 3 ( 2 Π 3/2g ) are tabulated to assist in their observation by radioastronomy or in the laboratory.

  1. Permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) by the composite approach

    Science.gov (United States)

    Deng, Dan; Lian, Yongqin; Zou, Wenli

    2017-11-01

    Using the FPD composite approach of Peterson et. al. we calculate the permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) at the equilibrium geometries of their ground states. The dipole moment of PtF is estimated to be 3.421 Debye, being very close to the experimental value of 3.42(6) Debye. This research also suggests the ordering of dipole moments of PtX being proportional to the electronegativity of X.

  2. Multipole electromagnetic moments of neutrino in dispersive medium

    International Nuclear Information System (INIS)

    Semikov, V.B.; Smorodinskij, Ya.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow

    1989-01-01

    Four multipole moments for a Dirac and Majorana neutrino in a dispersive medium are calculated viz., the electric monopole (charge), electric dipole, magnetic dipole and anapole dipole moment. For comparison the same quantities are presented in the case of vacuum. The neutrino does not possess an (induced) anapole moment in an isotropic medium; however, in a ferromagnetic such a moment exists and for the Majorana neutrino it is the only electromagnetic cjaracteristic. As an example the cross section for elastic scattering of a Majorana neutrino by nuclei in an isotropic plasma is calculated

  3. A new formulation of the relativistic many-body theory of electric dipole moments of closed shell atoms

    International Nuclear Information System (INIS)

    Latha, K V P; Angom, Dilip; Chaudhuri, Rajat K; Das, B P; Mukherjee, Debashis

    2007-01-01

    The electric dipole moments of closed-shell atoms are sensitive to the parity and time-reversal violating phenomena in the nucleus. The nuclear Schiff moment is one such property, it arises from the parity and time reversal violating quark-quark interactions and the quark-chromo electric dipole moments. We calculate the electric dipole moment of atomic 199 Hg arising from the nuclear Schiff moment using the relativistic coupled-cluster theory. This is the most accurate calculation of the quantity to date. Our calculations in combination with the experiment data provide important insights to the P and T violating coupling constants at the elementary particle level. In addition, a new limit on the tensor-pseudo tensor induced atomic EDM, calculated using the relativistic coupled-cluster theory is also presented

  4. Gravitational effects on measurements of the muon dipole moments

    Directory of Open Access Journals (Sweden)

    Andrew Kobach

    2016-10-01

    Full Text Available If the technology for muon storage rings one day permits sensitivity to precession at the order of 10−8 Hz, the local gravitational field of Earth can be a dominant contribution to the precession of the muon, which, if ignored, can fake the signal for a nonzero muon electric dipole moment (EDM. Specifically, the effects of Earth's gravity on the motion of a muon's spin is indistinguishable from it having a nonzero EDM of magnitude dμ∼10−29 ecm in a storage ring with vertical magnetic field of ∼1 T, which is significantly larger than the expected upper limit in the Standard Model, dμ≲10−36 ecm. As a corollary, measurements of Earth's local gravitational field using stored muons would be a unique test to distinguish classical gravity from general relativity with a bonafide quantum mechanical entity, i.e., an elementary particle's spin.

  5. Magnetic moments and lifetime measurements with a piezoelectrically driven plunger

    International Nuclear Information System (INIS)

    Rutten, A.J.

    1980-01-01

    Experiments are described leading to precise values for magnetic dipole moments of excited nuclear states and their mean lifetimes. A plunger system is described especially developed for g-factor and lifetime measurements with the coincidence time-differential recoil-into-vacuum technique. Measurements of the g-factors and lifetimes for the 2 1 + state of 20 O and the 5/2 1 + state of 13 C are described. (Auth.)

  6. Electric dipole moments of the nucleon and light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wirzba, Andreas

    2014-08-15

    The electric dipole moments of the nucleon and light ions are discussed and strategies for disentangling the underlying sources of CP violation beyond the Kobayashi–Maskawa quark-mixing mechanism of the Standard Model are indicated. Contribution to “45 years of nuclear theory at Stony Brook: a tribute to Gerald E. Brown”.

  7. Enhanced terahertz magnetic dipole response by subwavelength fiber

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Shadrivov, Ilya V.; Miroshnichenko, Andrey E.

    2018-01-01

    Dielectric sub-wavelength particles have opened up a new platform for realization of magnetic light. Recently, we have demonstrated that a dipole emitter by a sub-wavelength fiber leads to an enhanced magnetic response. Here, we experimentally demonstrate an enhanced magnetic dipole source......-fiber system excited by a magnetic source. This coupled magnetic dipole and optical fiber system can be considered a unit cell of metasurfaces for manipulation of terahertz radiation and is a proof-of-concept of a possibility to achieve enhanced radiation of a dipole source in proximity of a sub...

  8. Implications of the strange spin of the nucleon for the neutron electric dipole moment in supersymmetric theories

    CERN Document Server

    Ellis, Jonathan Richard; Ellis, John; Flores, Ricardo A

    1996-01-01

    Supersymmetric model contributions to the neutron electric dipole moment arise via quark electric dipole moment operators, whose matrix elements are usually calculated using the Naive Quark Model (NQM). However, experiments indicate that the NQM does not describe well the quark contributions \\Delta q to the nucleon spin, and so may provide misleading estimates of electric dipole operator matrix elements. Taking the \\Delta q from experiment, we indeed find consistently smaller estimates of the neutron electric dipole moment for given values of the supersymmetric model parameters. This weakens previous constraints on CP violation in supersymmetric models, which we exemplify analytically in the case where the lightest supersymmetric particle (LSP) is a U(1) gaugino \\tilde{B}, and display numerically for other LSP candidates.

  9. GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments.

    Science.gov (United States)

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    Local dipole moments (i.e., dipole moments of atomic or molecular subsystems) are essential for understanding various phenomena in nanoscience, such as solvent effects on the conductance of single molecules in break junctions or the interaction between the tip and the adsorbate in atomic force microscopy. We introduce GenLocDip, a program for calculating and visualizing local dipole moments of molecular subsystems. GenLocDip currently uses the Atoms-In-Molecules (AIM) partitioning scheme and is interfaced to various AIM programs. This enables postprocessing of a variety of electronic structure output formats including cube and wavefunction files, and, in general, output from any other code capable of writing the electron density on a three-dimensional grid. It uses a modified version of Bader's and Laidig's approach for achieving origin-independence of local dipoles by referring to internal reference points which can (but do not need to be) bond critical points (BCPs). Furthermore, the code allows the export of critical points and local dipole moments into a POVray readable input format. It is particularly designed for fragments of large systems, for which no BCPs have been calculated for computational efficiency reasons, because large interfragment distances prevent their identification, or because a local partitioning scheme different from AIM was used. The program requires only minimal user input and is written in the Fortran90 programming language. To demonstrate the capabilities of the program, examples are given for covalently and non-covalently bound systems, in particular molecular adsorbates. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. First on-line $\\beta$-NMR on oriented nuclei magnetic dipole moments of the $\

    CERN Document Server

    Giles, T; Stone, N J; Van Esbroeck, K; White, G; Wöhr, A; Veskovic, M; Towner, I S; Mantica, P F; Prisciandaro, J I; Morrissey, D J; Fedosseev, V; Mishin, V I; Köster, U; Walters, W B

    2000-01-01

    The first fully on-line use of the angular distribution of $\\beta$ - emission in detection of NMR of nuclei oriented at low temperatures is reported. The magnetic moments of the single valence particle, intermediate mass, isotopes $^{67}$Ni($\

  11. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    Science.gov (United States)

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  12. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  13. The effect of the charge density on the dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.; Germano, J.S.E.

    1986-01-01

    The results of the calculation, using the Variational Cellular Method (VCM), of the electric dipole moment of several diatomic molecules are improved. In previous calculations, the electronic charge density was treated like a spherically symmetric function in the inscribed sphere within each cell and as being the same constant value for all intercellular regions. Since the results obtained with such an approximation have not been satisfactory, an improved approximation for the charge density in the intercellular regions is needed. It is considered that the charge density is still constant outside the inscribed sphere but with different values in each intercellular region. A new expression for the dipole moment is obtained, and applied to the diatomic molecules HF, CO, BF and CS. In addition, the corresponding dipole moment curves, potential energy curves and spectroscopic constants are calculated taking into consideration our approximation and the traditional approximation for the charge density. The results of the two models are compared with each other and with experimental results for all the molecules considered. (Author) [pt

  14. Description of magnetic moments of long isotopic chains within the FFS theory

    Energy Technology Data Exchange (ETDEWEB)

    Borzov, I.N. [IPPE, Obninsk (Russian Federation); Saperstein, E.E.; Tolokonnikov, S.V. [Kurchatov Institute, Moscow (Russian Federation); Neyens, G.; Severijns, N. [Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium)

    2010-08-15

    Dipole magnetic moments of several long isotopic chains are analyzed within the self-consistent finite Fermi system theory with exact account for the pairing and quasiparticle continuum. The momentum dependence of the spin-isospin Landau-Migdal amplitude g' is taken into account. This dependence was introduced previously to describe high-energy electron magnetic scattering. New moment data for nuclei far from the {beta} -stability valley are included in the analysis. For a number of semi-magic isotopes of the tin and lead chains a good description of the data is obtained, with an accuracy of 0.1- 0.2{mu}{sub N}. A chain of non-magic isotopes of copper is also analyzed in detail. (orig.)

  15. EDM: Neutron electric dipole moment measurement

    Directory of Open Access Journals (Sweden)

    Peter Fierlinger

    2016-02-01

    Full Text Available An electric dipole moment (EDM of the neutron would be a clear sign of new physics beyond the standard model of particle physics. The search for this phenomenon is considered one of the most important experiments in fundamental physics and could provide key information on the excess of matter versus antimatter in the universe. With high measurement precision, this experiment aims to ultimately achieve a sensitivity of 10-28 ecm, a 100-fold improvement in the sensitivity compared to the state-of-the-art. The EDM instrument is operated by an international collaboration based at the Technische Universität München.

  16. Measurements of lifetimes and magnetic moments in A∼90 nuclei with EUROBALL Cluster detectors

    International Nuclear Information System (INIS)

    Jungclaus, A.; Fischer, V.; Kast, D.

    1998-01-01

    Mass A∼90 nuclei with several valence nucleons outside the doubly-magic 100 Sn core are an ideal testing ground for the validity of the spherical shell model. Electromagnetic decay properties as well as magnetic dipole moments of excited states are the key quantities revealing the structure of the wave functions and the mechanisms responsible for strong dipole sequences. The present article discusses by means of two examples the advantages of employing the most recent developments both concerning detector technology and experimental methods

  17. Characterisation of superconducting capillaries for magnetic shielding of twisted-wire pairs in a neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henry, S., E-mail: s.henry@physics.ox.ac.uk; Pipe, M.; Cottle, A.; Clarke, C.; Divakar, U.; Lynch, A.

    2014-11-01

    The cryoEDM neutron electric dipole moment experiment requires a SQUID magnetometry system with pick-up loops inside a magnetically shielded volume connected to SQUID sensors by long (up to 2 m) twisted-wire pairs (TWPs). These wires run outside the main shield, and therefore must run through superconducting capillaries to screen unwanted magnetic pick-up. We show that the average measured transverse magnetic pick-up of a set of lengths of TWPs is equivalent to a loop area of 5.0×10{sup −6} m{sup 2}/m, or 14 twists per metre. From this we set the requirement that the magnetic shielding factor of the superconducting capillaries used in the cryoEDM system must be greater than 8.0×10{sup 4}. The shielding factor—the ratio of the signal picked-up by an unshielded TWP to that induced in a shielded TWP—was measured for a selection of superconducting capillaries made from solder wire. We conclude the transverse shielding factor of a uniform capillary is greater than 10{sup 7}. The measured pick-up was equal to, or less than that due to direct coupling to the SQUID sensor (measured without any TWP attached). We show that discontinuities in the capillaries substantially impair the magnetic shielding, yet if suitably repaired, this can be restored to the shielding factor of an unbroken capillary. We have constructed shielding assemblies for cryoEDM made from lengths of single core and triple core solder capillaries, joined by a shielded Pb cylinder, incorporating a heater to heat the wires above the superconducting transition as required.

  18. Molecular physics. Production of trilobite Rydberg molecule dimers with kilo-Debye permanent electric dipole moments.

    Science.gov (United States)

    Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P

    2015-04-03

    Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. Copyright © 2015, American Association for the Advancement of Science.

  19. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    International Nuclear Information System (INIS)

    Buckingham, A. David

    2014-01-01

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection

  20. Chromomagnetic dipole moment of the top quark revisited

    International Nuclear Information System (INIS)

    Martinez, R.; Perez, M.A.; Poveda, N.

    2008-01-01

    We study the complete one-loop contributions to the chromagnetic dipole moment Δκ of the top quark in the standard model, two Higgs doublet models, topcolor assisted technicolor models, 331 models and extended models with a single extra dimension. We find that the SM predicts Δκ=-0.056 and the predictions of the other models are also consistent with the constraints imposed on Δκ by low-energy precision measurements. (orig.)

  1. Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

    International Nuclear Information System (INIS)

    Al-Khateeb, H M; Alqadi, M K; Alzoubi, F Y; Albiss, B; Hasan, M K; Ayoub, N Y

    2016-01-01

    The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations. (paper)

  2. Search for the permanent electric dipole moment of {sup 129}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Grasdijk, Olivier; Jungmann, Klaus; Willmann, Lorenz [KVI, University of Groningen (Netherlands); Heil, Werner; Karpuk, Sergei; Scharth, Anja; Sobolev, Yuri; Tullney, Kathlynne [Institut fuer Physik, Universitaet Mainz (Germany); Allmendinger, Fabian; Schmidt, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Burghoff, Martin; Kilian, Wolfgang; Schnabel, Allard; Seifert, Frank; Trahms, Lutz [PTB Berlin (Germany)

    2013-07-01

    Permanent electric dipole moments (EDMs) violate parity and time reversal symmetry at the same time. Assuming CPT invariance a non-zero EDM would also violate CP symmetry, which could provide an explanation for the observed matter-antimatter asymmetry in the universe. An EDM at the present limit of experimental sensitivity would provide unambiguous evidence for physics beyond the Standard Model. Our approach is to observe the coherent spin-precession of co-located {sup 3}He/{sup 129}Xe polarized samples over extended periods of 1 day, typically. Based on results of measurements on Lorentz-invariance, we intend to reach a measurement sensitivity that will improve the present upper limit d{sub Xe} = 3 . 10{sup -27} ecm significantly. Phase I of this experiment will be performed in the magnetically shielded room BMSR-2 of the PTB Berlin using very sensitive SQUID gradiometers as magnetic flux detectors and electric fields of 2 kV/cm. The experimental setup, in particular the implementation of the electric field, and current status of work are presented.

  3. Reduced Limit on the Permanent Electric Dipole Moment of ^{199}Hg.

    Science.gov (United States)

    Graner, B; Chen, Y; Lindahl, E G; Heckel, B R

    2016-04-22

    This Letter describes the results of the most recent measurement of the permanent electric dipole moment (EDM) of neutral ^{199}Hg atoms. Fused silica vapor cells containing enriched ^{199}Hg are arranged in a stack in a common magnetic field. Optical pumping is used to spin polarize the atoms orthogonal to the applied magnetic field, and the Faraday rotation of near-resonant light is observed to determine an electric-field-induced perturbation to the Larmor precession frequency. Our results for this frequency shift are consistent with zero; we find the corresponding ^{199}Hg EDM d_{Hg}=(-2.20±2.75_{stat}±1.48_{syst})×10^{-30}e cm. We use this result to place a new upper limit on the ^{199}Hg EDM |d_{Hg}|<7.4×10^{-30}e cm (95% C.L.), improving our previous limit by a factor of 4. We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model.

  4. Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium

    NARCIS (Netherlands)

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to

  5. New method of measuring electric dipole moments in storage rings

    NARCIS (Netherlands)

    Farley, FJM; Jungmann, K; Miller, JP; Morse, WM; Orlov, YF; Roberts, BL; Semertzidis, YK; Silenko, A; Stephenson, EJ

    2004-01-01

    A new highly sensitive method of looking for electric dipole moments of charged particles in storage rings is described. The major systematic errors inherent in the method are addressed and ways to minimize them are suggested. It seems possible to measure the muon EDM to levels that test speculative

  6. A proposed method of measuring the electric-dipole moment of the neutron by ultracold neutron interferometry

    International Nuclear Information System (INIS)

    Freedman, M.S.; Peshkin, M.; Ringo, G.R.; Dombeck, T.W.

    1989-08-01

    The use of an ultracold neutron interferometer incorporating an electrostatic accelerator having a strong electric field gradient to accelerate neutrons by their possible electric dipole moment is proposed as a method of measuring the neutron electric dipole moment. The method appears to have the possibility of extending the sensitivity of the measurement by several orders of magnitude, perhaps to 10 -30 e-cm. 9 refs., 3 figs

  7. Electric dipole moments of charged leptons and lepton flavor violating interactions in the general two Higgs doublet model

    International Nuclear Information System (INIS)

    Iltan, E. O.

    2001-01-01

    We calculate the electric dipole moment of the electron using the experimental result of the muon electric dipole moment and upper limit of the BR(μ->eγ) in the framework of the general two Higgs doublet model. Our prediction is 10 -32 ecm, which lies in the experimental current limits. Further, we obtain constraints for the Yukawa couplings {bar ξ} N,τe D and {bar ξ} N,τμ D . Finally, we present an expression which connects the BR(τ->μγ) and the electric dipole moment of the τ lepton and study the relation between these physical quantities

  8. Some aspects of an induced electric dipole moment in rotating and non-rotating frames.

    Science.gov (United States)

    Oliveira, Abinael B; Bakke, Knut

    2017-06-01

    Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.

  9. 750 GeV diphoton resonance and electric dipole moments

    Directory of Open Access Journals (Sweden)

    Kiwoon Choi

    2016-09-01

    Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.

  10. Forced flow cooling of ISABELLE dipole magnets

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Aggus, J.; Brown, D.P.; Kassner, D.A.; Sondericker, J.H.; Strobridge, T.R.

    1976-01-01

    The superconducting magnets for ISABELLE will use a forced flow supercritical helium cooling system. In order to evaluate this cooling scheme, two individual dipole magnets were first tested in conventional dewars using pool boiling helium. These magnets were then modified for forced flow cooling and retested with the identical magnet coils. The first evaluation test used a l m-long ISA model dipole magnet whose pool boiling performance had been established. The same magnet was then retested with forced flow cooling, energizing it at various operating temperatures until quench occurred. The magnet performance with forced flow cooling was consistent with data from the previous pool boiling tests. The next step in the program was a full-scale ISABELLE dipole ring magnet, 4.25 m long, whose performance was first evaluated with pool boiling. For the forced flow test the magnet was shrunk-fit into an unsplit laminated core encased in a stainless steel cylinder. The high pressure gas is cooled below 4 K by a helium bath which is pumped below atmospheric pressure with an ejector nozzle. The performance of the full-scale dipole magnet in the new configuration with forced flow cooling, showed a 10 percent increase in the attainable maximum current as compared to the pool boiling data

  11. Insolubility of trapped particle motion in a magnetic dipole field

    International Nuclear Information System (INIS)

    Dragt, A.J.; Finn, J.M.

    1976-01-01

    Topological and numerical techniques are used to show that the problem of trapped charged particle motion in a magnetic dipole field is insoluble. Similar results hold for motion in the earth's magnetic field and are of interest for radiation belt phenomena. Pedagogical discussion is devoted to the subject of how it can happen that a classical mechanics problem is insoluble and in what sense. It is shown that the complete adiabatic magnetic moment series is divergent and that due to the existence of homoclinic points the solutions to the equations of motion are too complicated to be written in closed form. As a consequence, there is currently no rigorous theoretical explanation for the empirical success of adiabatic orbit theory, and a completely satisfactory mathematical justification will be far from easy

  12. Magnetic dipole moment estimation and compensation for an accurate attitude control in nano-satellite missions

    Science.gov (United States)

    Inamori, Takaya; Sako, Nobutada; Nakasuka, Shinichi

    2011-06-01

    Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.

  13. Higgs-Mediated Electric Dipole Moments in the MSSM An Application to Baryogenesis and Higgs Searches

    CERN Document Server

    Pilaftsis, Apostolos

    2002-01-01

    We perform a comprehensive study of the dominant two- and higher-loop contributions to the Tl(205), neutron and muon electric dipole moments induced by Higgs bosons, third-generation quarks and squarks, charginos and gluinos in the Minimal Supersymmetric Standard Model (MSSM). We find that strong correlations exist among the contributing CP-violating operators, for large stop, gluino and chargino phases, and for a wide range of values of \\tan\\beta and charged Higgs-boson masses, giving rise to large suppressions of the Tl(205) and neutron electric dipole moments below their present experimental limits. Based on this observation, we discuss the constraints that the nonobservation of electric dipole moments imposes on the radiatively-generated CP-violating Higgs sector and on the mechanism of electroweak baryogenesis in the MSSM. We improve previously suggested benchmark scenarios of maximal CP violation for analyzing direct searches of CP-violating MSSM Higgs-bosons at high-energy colliders, and stress the imp...

  14. Effective gluon operators and neutron dipole moment

    International Nuclear Information System (INIS)

    Bigi, I.; Ural'tsev, N.G.

    1991-01-01

    The role of the purely gluon CP odd six-dimension effective arising in various CP-breaking models is discussed. This operators of most interest in the nonminimal Higgs sector models, the right W models and supersymmetric theories, where it may induce the neutron dipole moment at the level of the experimental restriction. The method for evaluating the magnitude d n is proposed and the reasons are given in favor that the original Weiberg's estimate based on the naive Dimensional Analysis is overdone significantly. The Peccei -Quinn mechanism, impact on the magnitude of d n , which generally may be very essential, is discussed

  15. Magnetic dipole moment of the doubly closed-shell plus one proton nucleus $^{49}$Sc

    CERN Multimedia

    Gaulard, C V; Walters, W; Nishimura, K; Muto, S; Bingham, C R

    It is proposed to measure the magnetic moment of $^{49}$Sc by the Nuclear Magnetic Resonance on Oriented Nuclei (NMR-ON) method using the NICOLE on-line nuclear orientation facility. $^{49}$Sc is the neutron rich, doubly closed-shell, nucleus $^{48}$Ca plus one proton. Results will be used to deduce the effective g-factors in the $^{48}$Ca region with reference to nuclear structure and meson exchange current effects.

  16. Development of a SQUID-based 3He Co-magnetometer Readout for a Neutron Electric Dipole Moment Experiment

    OpenAIRE

    Kim, Young Jin; Clayton, Steven M.

    2012-01-01

    A discovery of a permanent electric dipole moment (EDM) of the neutron would provide one of the most important low energy tests of the discrete symmetries beyond the Standard Model of particle physics. A new search of neutron EDM, to be conducted at the spallation neutron source (SNS) at ORNL, is designed to improve the present experimental limit of ~10^-26 e-cm by two orders of magnitude. The experiment is based on the magnetic-resonance technique in which polarized neutrons precess at the L...

  17. Ab initio study of the RbSr electronic structure: Potential energy curves, transition dipole moments, and permanent electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Pototschnig, Johann V., E-mail: johann.pototschnig@tugraz.at; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E., E-mail: wolfgang.ernst@tugraz.at [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm{sup −1}. We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) and Rb (5p {sup 2}P°) + Sr (5s{sup 2} {sup 1}S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s {sup 2}S) + Sr (5s4d {sup 3}P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  18. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    Science.gov (United States)

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  19. Current searches for the electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Miranda, P.C.

    1985-01-01

    The two most sensitive experiments currently searching for a neutron electric dipole moment (ILL, France and LNPI. USSR) ared described. The present upper limit on the neutron EDM is /dsub(n)/ -25 e.cm at the 90% confidence level. An improvement on this limit by about one order of magnitude is expected in the near future. 5 refs.

  20. Effects of dipole magnet inhomogeneities on the beam ellipsoid

    International Nuclear Information System (INIS)

    Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.

    1986-01-01

    The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields

  1. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-01

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  2. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-14

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At 2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  3. CO2-laser-microwave double-resonance spectroscopy of D2CO: precise measurement of the dipole moment in the ground state

    International Nuclear Information System (INIS)

    Tanaka, K.; Nakahara, Y.; Yamaguchi, M.; Tanaka, T.

    1987-01-01

    The method of CO 2 -laser-microwave double resonance (LMDR) with an intense electric field was used to measure Stark shifts of ground-state microwave transitions of D 2 CO. Thirty LMDR signals originating from 15 K-doublet transitions were observed, associated with the infrared transitions of the ν 4 and ν 6 bands. Least-squares analysis of the observed LMDR signals yields precise values of the coefficients in the dipole-moment expansion, μ 0 +μ/sub J/ J(J+1)+μ/sub K/ K 2 : μ 0 , 2.347 134(8) D; μ/sub j/, -4.76(10) x 10 -6 D; μ/sub K/, -28.7(18) x 10 -6 D; where one-standard-deviation uncertainties are given in parentheses. The infrared--infrared double-resonance signals of PH 3 , which were calibrated against the OCS dipole moment, were used for the electric-field calibration, allowing us to determine the dipole moment with a precision of 10 parts in 10 6 (ppm). However, the absolute accuracy of the dipole moment obtained is 50 ppm, as limited by the uncertainty of the OCS dipole moment. The effective dipole moment for the 1/sub 1.0/ reverse arrow 1/sub 1.1/ transition measured in the present study agrees well with the effective dipole moment for the 1/sub 1.0/ rotational level from a molecular-beam electric resonance experiment. The μ/sub J/ and μ/sub K/ coefficients calculated from Watson's θ/sub γ//sup α//sup β/ constants agree well with the experimental values

  4. Exotic fermions and electric dipole moments

    International Nuclear Information System (INIS)

    Joshipura, A.S.

    1991-01-01

    The contributions of mirror fermions to the electric dipole moments (EDM's) of leptons and neutrons are studied using the available limits on the mixing of the relevant fermions to their mirror partners. These limits imply EDM's several orders of magnitude larger than the current experimental bounds in the case of the electron and the neutron if the relevant CP-violating phases are not unnaturally small. If these phases are large, then the bounds on the EDM's can be used to improve upon the limits on mixing between the ordinary (f) and the mirror (F) fermions. In the specific case of the latter mixing angle being given by (m f /M F ) 1/2 , one can obtain the electron and the neutron EDM's close to experimental bounds

  5. A large Muon Electric Dipole Moment from Flavor?

    CERN Document Server

    Hiller, Gudrun; Laamanen, Jari; Rüppell, Timo

    2010-01-01

    We study the prospects and opportunities of a large muon electric dipole moment (EDM) of the order (10^{-24} - 10^{-22}) ecm. We investigate how natural such a value is within the general minimal supersymmetric extension of the Standard Model with CP violation from lepton flavor violation in view of the experimental constraints. In models with hybrid gauge-gravity mediated supersymmetry breaking a large muon EDM is indicative for the structure of flavor breaking at the Planck scale, and points towards a high messenger scale.

  6. Properties of the superconductor in accelerator dipole magnets

    Science.gov (United States)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  7. Interaction of counter-streaming plasma flows in dipole magnetic field

    OpenAIRE

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G

    2017-01-01

    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  8. Systematic effects in the HfF+-ion experiment to search for the electron electric dipole moment

    Science.gov (United States)

    Petrov, A. N.

    2018-05-01

    The energy splittings for J =1 , F =3 /2 , | mF|=3 /2 hyperfine levels of the 3Δ1 electronic state of 180Hf+19F ion are calculated as functions of the external variable electric and magnetic fields within two approaches. In the first one, the transition to the rotating frame is performed, whereas in the second approach, the quantization of rotating electromagnetic field is performed. Calculations are required for understanding possible systematic errors in the experiment to search for the electron electric dipole moment (e EDM ) with the 180Hf+19F ion.

  9. The neutron Electric Dipole Moment experiment at the Paul Scherrer Institute

    Directory of Open Access Journals (Sweden)

    Hélaine V.

    2014-06-01

    Full Text Available The neutron Electric Dipole Moment (nEDM is a probe for physics beyond the Standard Model. A report on the nEDM measurement performed at the Paul Scherrer Institute (Switzerland is given. A neutron spin analyzer designed to simultaneously detect both neutron spin states is presented.

  10. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, M.; Leung, K.K.

    1991-01-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described

  11. Neutron Electric Dipole Moment on the Lattice

    Science.gov (United States)

    Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan

    2018-03-01

    For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  12. Neutron Electric Dipole Moment on the Lattice

    Directory of Open Access Journals (Sweden)

    Yoon Boram

    2018-01-01

    Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  13. The neutron electric dipole moment in the cloudy bag model

    International Nuclear Information System (INIS)

    Morgan, M.A.; Miller, G.A.

    1986-01-01

    An evaluation of the neutron electric dipole moment (NEDM), using the cloudy bag model (CBM) shows that two CP-violating effects (a quark mass term and a pion-quark interaction) have contributions that are about equal in magnitude, but opposite in sign. This cancellation allows the upper limit on the θ parameter to increase by about an order of magnitude. (orig.)

  14. Correction of magnetization sextupole in one-meter long dipole magnets using passing superconductor

    International Nuclear Information System (INIS)

    Green, M.A.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Gilbert, W.S.; Green, M.I.; Scanlan, R.M.

    1990-03-01

    The generation of higher multipoles due to the magnetization of the superconductor in the dipoles of the SSC is a problem during injection of the beam into the machine. The use of passive superconductor was proposed some years ago to correct the magnetization sextupole in the dipole magnet. This paper presents the LBL test results in which the magnetization sextupole was greatly reduced in two one-meter long dipole magnets by the use of passive superconductor mounted on the magnet bore tube. The magnetization sextupole was reduced a factor of five on one magnet and a factor of eight on the other magnet using this technique. Magnetization decapole was also reduced by the passive superconductor. The passive superconductor method of correction also reduced the temperature dependence of the magnetization multipoles. In addition, the drift in the magnetization sextupole due to flux creep was also reduced. Passive superconductor correction appears to be a promising method of correcting out the effects of superconductor magnetization in SSC dipoles and quadrupoles. 10 refs., 6 figs

  15. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M.; Leung, K.K.

    1991-05-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs

  16. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  17. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    International Nuclear Information System (INIS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-01-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H 2 O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm −1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band

  18. A new set of qualitative reliability criteria to aid inferences on palaeomagnetic dipole moment variations through geological time

    Directory of Open Access Journals (Sweden)

    Andrew John Biggin

    2014-10-01

    Full Text Available Records of reversal frequency support forcing of the geodynamo over geological timescales but obtaining these for earlier times (e.g. the Precambrian is a major challenge. Changes in the measured virtual (axial dipole moment of the Earth, averaged over several millions of years or longer, also have the potential to constrain core and mantle evolution through deep time. There have been a wealth of recent innovations in palaeointensity methods, but there is, as yet, no comprehensive means for assessing the reliability of new and existing dipole moment data. Here we present a new set of largely qualitative reliability criteria for palaeointensity results at the site mean level, which we term QPI in reference to the long-standing Q criteria used for assessing palaeomagnetic poles. These represent the first attempt to capture the range of biasing agents applicable to palaeointensity measurements and to recognise the various approaches employed to obviate them. A total of 8 criteria are proposed and applied to 312 dipole moment estimates recently incorporated into the PINT global database. The number of these criteria fulfilled by a single dipole moment estimate (the QPI value varies between 1 and 6 in the examined dataset and has a median of 3. Success rates for each of the criteria are highly variable, but each criterion was met by at least a few results. The new criteria will be useful for future studies as a means of gauging the reliability of new and published dipole moment estimates.

  19. Transportation studies: 40-MM collider dipole magnets

    International Nuclear Information System (INIS)

    Daly, E.

    1992-01-01

    Several fully functional 40-mm Collider Dipole Magnets (CDM) were instrumented with accelerometers to monitor shock and vibration loads during transport. The magnets were measured with optical tooling telescopes before and after transport. Changes in mechanical alignment due to shipping and handling were determined. The mechanical stability of the cryogen lines were checked using the same method. Field quality and dipole angle were measured warm before and after transport to determine changes in these parameters. Power spectra were calculated for accelerometers located on the cold mass, vacuum vessel, and trailer bed. Where available, plots of field quality and dipole roll both before and after were created. Shipping loads measured were largest in the vertical direction, where most of the structural deformation of the magnet was evident. It was not clear that magnetic performance was affected by the shipping and handling environment

  20. Analysis and design of short, iron-free dipole magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.

    1981-01-01

    Iron-free, dipole magnets are used extensively as steering magnets to correct for the bending, induced by extraneous magnetic fields, of particle beams that are being transported in vacuum. Generally, the dipoles are long enough that the space occupied by the end conductors is small compared to the overall magnet length. In a recent application, however, this criteria did not apply. This has motivated a reanalysis of the characteristics of a system of small aspect ratio (length/diameter) dipoles that are spaced at relatively large axial distances

  1. Hadronic electric dipole moments in R-parity violating supersymmetry

    International Nuclear Information System (INIS)

    Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Kovalenko, Sergey

    2006-01-01

    We calculate the electric dipole moments (EDM) of the neutral 199 Hg atom, neutron and deuteron within a generic R-parity violating SUSY model (Re p SUSY) on the basis of a one-pion-exchange model with CP-odd pion-nucleon interactions. We consider two types of the Re p SUSY contributions to the above hadronic EDMs: via the quark chromoelectric dipole moments (CEDM) and CP-violating 4-quark interactions. We demonstrate that the former contributes to all the three studied EDMs while the latter appears only in the nuclear EDMs via the CP-odd nuclear forces. We find that the Re p SUSY induced 4-quark interactions arise at tree level through the sneutrino exchange and involve only s and b quarks. Therefore, their effect in hadronic EDMs is determined by the strange and bottom-quark sea of the nucleon. From the null experimental results on the hadronic EDMs we derive the limits on the imaginary parts of certain products Im(λ ' λ ' *) of the trilinear Re p -couplings and show that the currently best limits come from the 199 Hg EDM experiments. We demonstrate that some of these limits are better than those existing in the literature. We argue that future storage ring experiments on the deuteron EDM are able to improve these limits by several orders of magnitude

  2. Development of a {sup 3}He magnetometer for a neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Andreas; Heil, Werner; Lauer, Thorsten; Neumann, Daniel [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); Koch, Hans-Christian [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); University of Fribourg, Physics Department, Fribourg (Switzerland); Daum, Manfred [Paul Scherrer Institute, Villigen (Switzerland); Pazgalev, Anatoly [Ioffe Institute, St Petersburg (Russian Federation); Sobolev, Yuri [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Weis, Antoine [University of Fribourg, Physics Department, Fribourg (Switzerland)

    2014-01-01

    We have developed a highly sensitive {sup 3}He magnetometer for the accurate measurement of the magnetic field in an experiment searching for an electric dipole moment of the neutron. By measuring the Larmor frequency of nuclear spin polarized {sup 3}He atoms a sensitivity on the femto-Tesla scale can be achieved. A {sup 3}He/Cs-test facility was established at the Institute of Physics of the Johannes Gutenberg University in Mainz to investigate the readout of {sup 3}He free induction decay with a lamp-pumped Cs magnetometer. For this we designed and built an ultra-compact and transportable polarizer unit which polarizes {sup 3}He gas up to 55% by metastability exchange optical pumping. The polarized {sup 3}He was successfully transfered from the polarizer into a glass cell mounted in a magnetic shield and the {sup 3}He free induction decay was detected by a lamp-pumped Cs magnetometer. (orig.)

  3. Measurement of the neutron electric dipole moment: simultaneous spin analysis and preliminary data analysis

    International Nuclear Information System (INIS)

    Helaine, Victor

    2014-01-01

    In the framework of the neutron Electric Dipole Moment (nEDM) experiment at the Paul Scherrer Institut (Switzerland), this thesis deals with the development of a new system of spin analysis. The goal here is to simultaneously detect the two spin components of ultracold neutrons in order to increase the number of detected neutrons and therefore lower the nEDM statistical error. Such a system has been designed using Geant4-UCN simulations, built at LPC Caen and then tested as part of the experiment. In parallel to this work, the 2013 nEDM data taken at PSI have been analysed. Finally, methods to recover magnetic observables of first interest to control nEDM systematic errors have been studied and possible improvements are proposed. (author) [fr

  4. Electroabsorption spectra of carotenoid isomers: Conformational modulation of polarizability vs. induced dipole moments

    International Nuclear Information System (INIS)

    Krawczyk, Stanislaw; Jazurek, Beata; Luchowski, Rafal; Wiacek, Dariusz

    2006-01-01

    Electroabsorption spectra of all-trans, 13-cis and 15-cis isomers of carotenoids violaxanthin and β-carotene frozen in organic solvents were analysed in terms of changes in permanent dipole moment, Δμ, and in the linear polarizability, Δα, on electronic excitation. The spectral range investigated covered the two carotenoid absorption bands in the VIS and UV, known to originate from differently oriented transition dipole moments. In contrast with the collinearity of the apparent Δμ with Δα in the lowest-energy allowed (VIS) transition 1A g - ->1B u + , the axis of the largest polarizability change in the UV transition 1A g - ->1A g + (''cis band'') was found to make a large angle with the transition moment, while the direction of Δμ appears to be much closer to it. These data support the view that Δμ's inferred from electrochromic spectra of carotenoids are apparent and are not induced by the local matrix field in the solvent cavity, but merely result from conformational modulation of molecular polarizability

  5. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    Energy Technology Data Exchange (ETDEWEB)

    Geytenbeek, Ben; Rao, Soumya; White, Martin; Williams, Anthony G. [ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, Department of Physics, University of Adelaide, Adelaide, South Australia 5005 (Australia); Scott, Pat; Vincent, Aaron C. [Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Serenelli, Aldo, E-mail: bg364@cam.ac.uk, E-mail: soumya.rao@ncbj.gov.pl, E-mail: p.scott@imperial.ac.uk, E-mail: aldos@ice.csic.es, E-mail: aaron.vincent@imperial.ac.uk, E-mail: martin.white@adelaide.edu.au, E-mail: anthony.williams@adelaide.edu.au [Institute of Space Sciences (IEEC-CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193, Barcelona (Spain)

    2017-03-01

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or an anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ∼ 1 GeV{sup −2} or magnetic dipole moment of ∼ 10{sup −3}μ {sub p} can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.

  6. Magnetic Moment of $^{59}$Cu

    CERN Multimedia

    2002-01-01

    Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.

  7. Search for electric dipole moments at storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Onderwater, C. J. G., E-mail: onderwater@kvi.nl [University of Groningen, KVI (Netherlands)

    2012-05-15

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry. Within the Standard Model (SM) they are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of 'new physics'. Until recently it was believed that only electrically neutral systems could be used for sensitive searches of EDMs. With the introduction of a novel experimental method, high precision for charged systems will be within reach as well. The features of this method and its possibilities are discussed.

  8. Printed board dipole trim magnet design for 20 MeV LIA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengjun; Zhu, Wenjun; Zhang, Kaizhi; Zhang, Wenwei; Yu, Haijun [China Academy of Engineering Physics., Chengdu (China). Inst. of Fluid Physics

    1997-12-31

    The printed board dipole trim magnet design for a 20 MeV LIA is presented. The prototype dipole magnet with the sin/cos distributed windings has demonstrated more than 650 Gs-cm integrated dipole field and 1% integrated dipole field homogeneity within 5 cm in radius, which is about 40% of the magnet radius. Numerical modeling of two prototype magnet designs using the 3D magnetic field code SCMAG is presented as well as data from magnetic field measurements of the two magnets. The agreement between the calculations and measurements is accurate to 2-3%. (author). 3 figs., 4 refs.

  9. Relics of short distance effects for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1982-12-01

    The Feynman diagrams which dominate the estimates of the electric dipole moment of the neutron with Kobayashi-Maskawa CP violation are considered. The extracted long distance contributions and the relics of short distance contributions are shown to be complementary and of the same magnitude, resulting in mod(Dsub(n)/e) approximately = (10 - 31 - 10 - 30 ) cm. (Auth.)

  10. Enhanced terahertz magnetic dipole response by subwavelength fiber

    Directory of Open Access Journals (Sweden)

    Shaghik Atakaramians

    2018-05-01

    Full Text Available Dielectric sub-wavelength particles have opened up a new platform for realization of magnetic light. Recently, we have demonstrated that a dipole emitter by a sub-wavelength fiber leads to an enhanced magnetic response. Here, we experimentally demonstrate an enhanced magnetic dipole source in the terahertz frequency range. By placing the fiber next to the hole in a metal screen, we find that the radiation power can be enhanced more than one order of magnitude. The enhancement is due to the excitation of the Mie-type resonances in the fiber. We demonstrate that such a system is equivalent to a double-fiber system excited by a magnetic source. This coupled magnetic dipole and optical fiber system can be considered a unit cell of metasurfaces for manipulation of terahertz radiation and is a proof-of-concept of a possibility to achieve enhanced radiation of a dipole source in proximity of a sub-wavelength fiber. It can also be scaled down to optical frequencies opening up promising avenues for developing integrated nanophotonic devices such as nanoantennas or lasers on fibers.

  11. Lattice calculation of electric dipole moments and form factors of the nucleon

    Science.gov (United States)

    Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.

    2017-07-01

    We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.

  12. Validation of a triangular quantum well model for GaN-based HEMTs used in pH and dipole moment sensing

    International Nuclear Information System (INIS)

    Rabbaa, S; Stiens, J

    2012-01-01

    Gallium nitride (GaN) is a relatively new semiconductor material that has the potential of replacing gallium arsenide (GaAs) in some of the more recent technological applications, for example chemical sensor applications. In this paper, we introduce a triangular quantum well model for an undoped AlGaN/GaN high electron mobility transistor (HEMT) structure used as a chemical and biological sensor for pH and dipole moment measurements of polar liquids. We have performed theoretical calculations related to the HEMT characteristics and we have compared them with experimental measurements carried out in many previous papers. These calculations include the current-voltage (I-V) characteristics of the device, the surface potential, the change in the drain current with the dipole moment and the drain current as a function of pH. The results exhibit good agreement with experimental measurements for different polar liquids and electrolyte solutions. It is also found that the drain current of the device exhibits a large linear variation with the dipole moment, and that the surface potential and the drain current depend strongly on the pH. Therefore, it can distinguish molecules with slightly different dipole moments and solutions with small variations in pH. The ability of the device to sense biomolecules (such as proteins) with very large dipole moments is investigated.

  13. New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy

    International Nuclear Information System (INIS)

    Rebane, A.; Drobizhev, M.; Makarov, N.S.; Beuerman, E.; Tillo, S.; Hughes, T.

    2010-01-01

    Stark effect, in combination with spectral hole burning and single-molecule spectroscopy, has been a fruitful technique to study permanent electric dipole moment of molecules in condensed phase. However, because measuring Stark shifts relies on external fields and narrow line- or hole-widths, the applicability of this method at ambient conditions required by most biological systems has remained limited. Here we demonstrate a new all-optical method for measuring the molecular dipole moment difference between ground and excited states using two-photon absorption (2PA) spectroscopy. We show that the value and orientation of the static dipole moment difference can be determined from the corresponding absolute 2PA cross-section. We use this new method to determine for the first time the strength of local electric field E loc =0.1-1.0x10 8 V/cm inside beta-barrel of Fruit series of red fluorescent proteins. Because our method does not rely on external field and is applicable in liquid solutions, it is well suited for the study of biological systems.

  14. Unraveling models of CP violation through electric dipole moments of light nuclei

    NARCIS (Netherlands)

    Dekens, W.; Vries, J. de; Bsaisou, J.; Bernreuther, W.; Hanhart, C.; Meißner, Ulf-G; Nogga, A.; Wirzba, A.

    2014-01-01

    We show that the proposed measurements of the electric dipole moments of light nuclei in storage rings would put strong constraints on models of flavor-diagonal CP violation. Our analysis is exemplified by a comparison of the Standard Model including the QCD theta term, the minimal left-right

  15. Electrically Small Magnetic Dipole Antennas with Magnetic Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    This work extends the theory of a spherical magnetic dipole antenna with magnetic core by numerical results for practical antenna configurations that excite higher-order modes besides the main TE10 spherical mode. The multiarm spherical helix (MSH) and the spherical split ring (SSR) antennas...

  16. Analysis of closed orbit deviations for a first direct deuteron electric dipole moment measurement at the cooler synchrotron COSY

    Science.gov (United States)

    Schmidt, V.; Lehrach, A.

    2017-07-01

    The Jülich Electric Dipole moment Investigations (JEDI) collaboration in Julich is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. Ensuring a precise measurement, various beam and spin manipulating effects have to be considered and investigated. A distortion of the closed orbit is one of the major sources for systematic uncertainties. Therefore misalignments of magnets and residual power supply oscillations are simulated using the MAD-X code in order to analyse their effect on the orbit. The underlying model for all simulations includes the dipoles, quadrupoles and sextupoles at COSY as well as the corrector magnets and BPMs (Beam Position Monitors). Since most sextupoles are only used during beam extraction, the sextupole strengths are set to zero resulting in a linear machine. The optics is adjusted in a way that the dispersion is zero in the straight sections. The closed orbit studies are performed for deuterons with a momentum of 970 MeV/c.

  17. The neutron electric dipole moment

    International Nuclear Information System (INIS)

    He, X.G.; McKellar, B.H.J.; Pakvasa, S.

    1989-01-01

    A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs

  18. Transition Dipole Moments and Transition Probabilities of the CN Radical

    Science.gov (United States)

    Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-04-01

    This paper studies the transition probabilities of electric dipole transitions between 10 low-lying states of the CN radical. These states are X2Σ+, A2Π, B2Σ+, a4Σ+, b4Π, 14Σ‑, 24Π, 14Δ, 16Σ+, and 16Π. The potential energy curves are calculated using the CASSCF method, which is followed by the icMRCI approach with the Davidson correction. The transition dipole moments between different states are calculated. To improve the accuracy of potential energy curves, core–valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energies to the complete basis set limit are included. The Franck–Condon factors and Einstein coefficients of emissions are calculated. The radiative lifetimes are determined for the vibrational levels of the A2Π, B2Σ+, b4Π, 14Σ‑, 24Π, 14Δ, and 16Π states. According to the transition probabilities and radiative lifetimes, some guidelines for detecting these states spectroscopically are proposed. The spin–orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The splitting energy in the A2Π state is determined to be 50.99 cm‑1, which compares well with the experimental ones. The potential energy curves, transition dipole moments, spectroscopic parameters, and transition probabilities reported in this paper can be considered to be very reliable. The results obtained here can be used as guidelines for detecting these transitions, in particular those that have not been measured in previous experiments or have not been observed in the Sun, comets, stellar atmospheres, dark interstellar clouds, and diffuse interstellar clouds.

  19. Anomalous moments of quarks and leptons from nonstandard WWγ couplings

    International Nuclear Information System (INIS)

    Boudjema, F.; Hagiwara, K.; Hamzaoui, C.; Numata, K.

    1991-01-01

    Contributions of nonstandard WWγ couplings to the four electromagnetic form factors of light quarks and leptons, magnetic and electric dipole moments, anapole moments, and charge radii, have been reevaluated, with a special emphasis on the effects of the locally SU(2) weak -invariant nonrenormalizable couplings λ and λ. Previous results for the contribution of the dimension-four anomalous couplings Δκ and κ are reproduced. The λ contribution to the charge radius and the anapole moments are found to be logarithmically sensitive to the cutoff scale (Λ), but the contribution of the λ coupling to the anomalous magnetic moments as well as that of the λ coupling to the electric dipole moments are found to be finite. These finite values are, however, found to be regularization-scheme dependent. The origin of the ambiguities is discussed and we argue that the numerical coefficients depend on the details of the underlying physics that gives rise to these nonstandard couplings. Banning an accidental cancellation, we can place an order-of-magnitude upper bound |λ|approx-lt 10 -4 from the experimental limit on the electric dipole moment of the neutron. Some definite predictions for the off-shell form factors are also presented

  20. On the radiation of electric, magnetic and toroidal dipoles

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    2002-01-01

    We consider the radiation of electric, magnetic and toroidal dipoles uniformly moving in unbounded medium (this corresponds to the Tamm-Frank problem). The densities of these dipoles are obtained from the corresponding charge-current densities in an infinitesimal limit. The behaviour of radiation intensities in the neighbourhood of the Cherenkov threshold β = 1/n is investigated. The frequency and velocity regions are defined where radiation intensities are maximal. The comparison with previous attempts is given. We consider also the radiation of electric, magnetic and toroidal dipoles uniformly moving in medium, in a finite space interval (this corresponds to the Tamm problem). The properties of radiation arising from the precession of a magnetic dipole are studied

  1. On the Radiation of Electric, Magnetic and Toroidal Dipoles

    CERN Document Server

    Afanasiev, G N

    2002-01-01

    We consider the radiation of electric, magnetic and toroidal dipoles uniformly moving in unbounded medium (this corresponds to the Tamm-Frank problem). The densities of these dipoles are obtained from the corresponding charge-current densities in an infinitesimal limit. The behaviour of radiation intensities in the neighbourhood of the Cherenkov threshold beta=1/n is investigated. The frequency and velocity regions are defined where radiation intensities are maximal. The comparison with previous attempts is given. We consider also the radiation of electric, magnetic and toroidal dipoles uniformly moving in medium, in a finite space interval (this corresponds to the Tamm problem). The properties of radiation arising from the precession of a magnetic dipole are studied.

  2. Studies of electric dipole moments in the octupole collective regions of heavy Radiums and Bariums

    CERN Multimedia

    Hoff, P; Kaczarowski, R

    2002-01-01

    %IS386 %title\\ \\It is proposed to study the electric dipole moments in the regions of octupole collective Ra-Th and Ba-Ce nuclei by means of Advanced Time-Delayed (ATD) $\\beta\\gamma\\gamma(t)$ method with a primary goal to provide new and critical data on the properties of E1 moments. The proposal focuses on the nuclei of $^{225,226,229}$Ra, $^{229,233}$Th and $^{149,150}$Ba.\\ \\The ATD $\\beta\\gamma\\gamma$(t) method was first tested at ISOLDE as part of the IS322 study of Fr-Ra nuclei at the limits of octupole deformation region. The results have greatly increased the knowledge of electric dipole moments in the region and demonstrated that new and unique research capabilities in this field are now available at ISOLDE. Based on the experience and new systematics, we propose a specialized study with the aim to determine the missing key aspects of the E1 moment systematics. We propose : \\begin{enumerate}[a)] \\item to measure the lifetimes of the 1$_{1}^{-}$ and 3$_{1}^{-}$ states in $^{226}$Ra with $\\sim$15\\% prec...

  3. Field of a dipole in charged black-hole electrostatics

    International Nuclear Information System (INIS)

    Souza, J.A.

    1979-01-01

    By using the solution of Adler and Das for Maxwell's equations in a Reissner-Nordstroem optimally charged background metric, the field of a static electric dipole is found and then, by a duality rotation, the field of a static magnetic dipole is obtained. A generalization of the concept of electric-dipole moment is proposed for static dipoles in curved manifolds, and the behaviour of the fields both for the dipole very near and very far from the singular surface of the Reissner-Nordstroem geometry is studied. (author)

  4. Electric dipole moments as probes of new physics

    CERN Document Server

    Pospelov, M; Pospelov, Maxim; Ritz, Adam

    2005-01-01

    We review several aspects of flavour-diagonal CP violation, focussing on the role played by the electric dipole moments (EDMs) of leptons, nucleons, atoms and molecules, which consitute the source of several stringent constraints on new CP-violating physics. We dwell specifically on the calculational aspects of applying the hadronic EDM constraints, reviewing in detail the application of QCD sum-rules to the calculation of nucleon EDMs and CP-odd pion-nucleon couplings. We also consider the current status of EDMs in the Standard Model, and on the ensuing constraints on the underlying sources of CP-violation in physics beyond the Standard Model, focussing on weak-scale supersymmetry.

  5. Magnetic moment of 33Cl

    International Nuclear Information System (INIS)

    Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    2004-01-01

    The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived

  6. Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle.

    Science.gov (United States)

    Pelloni, S; Provasi, P F; Pagola, G I; Ferraro, M B; Lazzeretti, P

    2017-12-07

    The trace of tensors that account for chiroptical response of the H 2 O 2 molecule is a function of the HO-OH dihedral angle. It vanishes at 0° and 180°, due to the presence of molecular symmetry planes, but also for values in the range 90-100° of this angle, in which the molecule is unquestionably chiral. Such an atypical effect is caused by counterbalancing contributions of diagonal tensor components with nearly maximal magnitude but opposite sign, determined by electron flow in open or closed helical paths, and associated with induced electric and magnetic dipole moments and anapole moments. For values of dihedral angle external to the 90-100° interval, the helical paths become smaller in size, thus reducing the amount of cancellation among diagonal components. Shrinking of helical paths determines the appearance of extremum values of tensor traces approximately at 50° and 140° dihedral angles.

  7. Magnetic moments revisited

    International Nuclear Information System (INIS)

    Towner, I.S.; Khanna, F.C.

    1984-01-01

    Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents

  8. Relativistic Coupled Cluster (RCC) Computation of the Electric Dipole Moment Enhancement Factor of Francium Due to the Violation of Time Reversal Symmetry

    NARCIS (Netherlands)

    Mukherjee, Debashis; Sahoo, B. K.; Nataraj, H. S.; Das, B. P.

    2009-01-01

    A relativistic many-body theory for the electric dipole moment (EDM) of paramagnetic atoms arising from the electric dipole moment of the electron is presented and implemented. The relativistic coupled-cluster method with single and double excitations (RCCSD) using the Dirac-Coulomb Hamiltonian and

  9. Electric dipole moment of diatomic molecules by configuration interaction. IV.

    Science.gov (United States)

    Green, S.

    1972-01-01

    The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.

  10. Relaxed geometries and dipole moments of positron complexes with diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R, E-mail: rachid@fisica.ufmg.b [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)

    2010-01-01

    Relaxed geometries and dipole moments of diatomic molecules interacting with a slow positron are reported as functions of the positron distance to the more electronegative atom. A molecular model for the complex that allows applications to large systems is used. The electron population on the positron is proposed as a weighting function to calculate the average quantities. Results show Self-Consistent-Field quality or better.

  11. Direct detection of light anapole and magnetic dipole DM

    International Nuclear Information System (INIS)

    Nobile, Eugenio Del; Gelmini, Graciela B.; Huh, Ji-Haeng; Gondolo, Paolo

    2014-01-01

    We present comparisons of direct detection data for ''light WIMPs'' with an anapole moment interaction (ADM) and a magnetic dipole moment interaction (MDM), both assuming the Standard Halo Model (SHM) for the dark halo of our galaxy and in a halo-independent manner. In the SHM analysis we find that a combination of the 90% CL LUX and CDMSlite limits or the new 90% CL SuperCDMS limit by itself exclude the parameter space regions allowed by DAMA, CoGeNT and CDMS-II-Si data for both ADM and MDM. In our halo-independent analysis the new LUX bound excludes the same potential signal regions as the previous XENON100 bound. Much of the remaining signal regions is now excluded by SuperCDMS, while the CDMSlite limit is much above them. The situation is of strong tension between the positive and negative search results both for ADM and MDM. We also clarify the confusion in the literature about the ADM scattering cross section

  12. Electric dipole moments and polarizabilities of small Bi{sub n} (n = 2-24, 40, 80) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Song; Yuan, Hong Kuan; Chen, Hong; Wu, Bo [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Kuang, An Long [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); School of Physical Science and Technology, Suzhou University, Suzhou 215006 (China)

    2012-01-15

    The electric dipole moments (EDMs) and polarizabilities of small Bi{sub n} (n = 2-24, 40, 80) clusters are investigated by the finite field method within density functional theory (DFT). The results show that both dipole moments and polarizabilities have even-odd oscillation behaviors, and they strongly depend on geometrical structures and electronic structures. High symmetry structure prohibits the occurrence of EDMs on Bi clusters. The increasing polarizabilities of Bi clusters are attributed to the inherent novel chain-like geometrical evolution, which is significantly different from the characters observed in metal clusters or semiconductor clusters. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Excited state electric dipole moment of 5-hydroxy indole and 5-hydroxy indole 3-acetic acid through solvatochromic shifts

    International Nuclear Information System (INIS)

    Rani, G. Neeraja; Ayachit, Narasimha H.

    2010-01-01

    The determination of excited state electric dipole moment through solvatochromic shifts is one of the easiest approaches to understand the molecular structure in the excited state. These studies have gained importance due to their application in photo science, especially if they are of biological importance. In view of this the excited state electric dipole moments of two substituted indoles which are of biological importance are determined and reported here. The fluorescence shifts have been used and the results found seem to be more consistent in comparison with the one calculated through absorption shifts. The results presented are also discussed. A qualitative estimate of the orientation of the dipole moments in ground and excited state are also presented and discussed. The method proposed by Ayachit and Neeraja Rani is used in view of the several advantages it has.

  14. Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments

    Science.gov (United States)

    Zhang, Mingjia; Leng, Yandan; Huang, Jing; Yu, JiaoJiao; Lan, Zhenggang; Huang, Changshui

    2017-12-01

    We report the modulation of Raman scattering spectrum of chromophore/graphene hybrids by tunning the molecular polarization with different terminal groups (methyl, methoxy, nitrile, and two nitros). Based on the density functional theory, the specific dipole moment values of the chromophore molecules are calculated. An obvious surface-enhanced Raman scattering (SERS) was observed and the scattering intensity of molecule increases with enlarged dipole moment. According to the analysis of G band Raman shifts of graphene, the enhancement of the Raman signal can be attributed to strong electronic coupling between graphene and chromophore, which is closely related with the modulation of graphene Fermi surface by changing the dipole moment of the molecule. Besides, the optimization of the ground state geometry and the binding energy of the hybrids were also calculated with the Density Functional Based Tight Bonding (DFTB) method, which confirms that the enhanced Raman scattering of molecules on graphene arises from the improved energy level matching between graphene Fermi surface and molecular band, further providing a new way to design novel SERS devices.

  15. Determination of the step dipole moment and the step line tension on Ag(0 0 1) electrodes

    International Nuclear Information System (INIS)

    Beltramo, G.L.; Ibach, H.; Linke, U.; Giesen, M.

    2008-01-01

    Using impedance spectroscopy, we determined the step dipole moment and the potential dependence of the step line tension of silver electrodes in contact with an electrolyte: (0 0 1) and vicinal surfaces (1 1 n) with n = 5, 7, 11 in 10 mM ClO 4 - -solutions were investigated. The step dipole moment is determined from the shift of the potential of zero charge (pzc) as a function of the surface step density. The dipole moment per step atom was found to be 3.5 ± 0.5 x 10 -3 e A. From the pzc and the potential dependence of the capacitance curves, the potential dependence of the surface tension of the vicinal surfaces is determined. The line tension of the steps is then calculated from the difference between the surface tensions of stepped (1 1 n) and the nominally step-free (0 0 1) surfaces. The results are compared to a previous study on Au(1 1 n) surfaces. For gold, the step line tension decreases roughly linear with potential, whereas a parabolic shape is observed for silver

  16. Mechanical Design of the SMC (Short Model Coil) Dipole Magnet

    International Nuclear Information System (INIS)

    Regis, F.; Fessia, P.; Bajko, M.; Rijk, G. de; Manil, P.

    2010-01-01

    The Short Model Coil (SMC) working group was set in February 2007 within the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb 3 Sn dipole magnet. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet was originally conceived to reach a peak field of about 13 T on conductor, using a 2500 A/mm 2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb 3 Sn cable, by applying different level of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has to be realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. In this paper we will describe the mechanical optimization of the dipole, starting from a conceptual configuration based on a former magnetic analysis. Two and three-dimensional Finite Element Method (FEM) models have been implemented in ANSYS and in CAST3M, aiming at setting the mechanical parameters of the dipole magnet structure, thus fulfilling the design constraints imposed by the materials. (authors)

  17. Gyre-driven decay of the Earth's magnetic dipole

    Science.gov (United States)

    Finlay, Christopher C.; Aubert, Julien; Gillet, Nicolas

    2016-01-01

    Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades. PMID:26814368

  18. Electric dipole moment of 13C

    Science.gov (United States)

    Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro

    2017-06-01

    We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.

  19. Giant Primeval Magnetic Dipoles

    Science.gov (United States)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  20. Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes

    Science.gov (United States)

    Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.

    2014-06-01

    Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.

  1. Large tau and tau neutrino electric dipole moments in models with vectorlike multiplets

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2010-01-01

    It is shown that the electric dipole moment of the τ lepton several orders of magnitude larger than predicted by the standard model can be generated from mixings in models with vectorlike mutiplets. The electric dipole moment (EDM) of the τ lepton arises from loops involving the exchange of the W, the charginos, the neutralinos, the sleptons, the mirror leptons, and the mirror sleptons. The EDM of the Dirac τ neutrino is also computed from loops involving the exchange of the W, the charginos, the mirror leptons, and the mirror sleptons. A numerical analysis is presented, and it is shown that the EDMs of the τ lepton and the τ neutrino which lie just a couple of orders of magnitude below the sensitivity of the current experiment can be achieved. Thus the predictions of the model are testable in an improved experiment on the EDM of the τ and the τ neutrino.

  2. Pressure profiles of plasmas confined in the field of a magnetic dipole

    International Nuclear Information System (INIS)

    Davis, Matthew S; Mauel, M E; Garnier, Darren T; Kesner, Jay

    2014-01-01

    Equilibrium pressure profiles of plasmas confined in the field of a dipole magnet are reconstructed using magnetic and x-ray measurements on the levitated dipole experiment (LDX). LDX operates in two distinct modes: with the dipole mechanically supported and with the dipole magnetically levitated. When the dipole is mechanically supported, thermal particles are lost along the field to the supports, and the plasma pressure is highly peaked and consists of energetic, mirror-trapped electrons that are created by electron cyclotron resonance heating. By contrast, when the dipole is magnetically levitated losses to the supports are eliminated and particles are lost via slower cross-field transport that results in broader, but still peaked, plasma pressure profiles. (paper)

  3. Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium

    OpenAIRE

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we...

  4. On the baryon magnetic moments

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1976-01-01

    In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given

  5. Many particle magnetic dipole-dipole and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting

    International Nuclear Information System (INIS)

    Cregg, P.J.; Murphy, Kieran; Mardinoglu, Adil; Prina-Mello, Adriele

    2010-01-01

    The implant assisted magnetic targeted drug delivery system of Aviles, Ebner and Ritter is considered both experimentally (in vitro) and theoretically. The results of a 2D mathematical model are compared with 3D experimental results for a magnetizable wire stent. In this experiment a ferromagnetic, coiled wire stent is implanted to aid collection of particles which consist of single domain magnetic nanoparticles (radius ∼10nm). In order to model the agglomeration of particles known to occur in this system, the magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included. Simulations based on this mathematical model were performed using open source C++ code. Different initial positions are considered and the system performance is assessed in terms of collection efficiency. The results of this model show closer agreement with the measured in vitro experimental results and with the literature. The implications in nanotechnology and nanomedicine are based on the prediction of the particle efficiency, in conjunction with the magnetizable stent, for targeted drug delivery.

  6. Electric dipole moment constraints on minimal electroweak baryogenesis

    CERN Document Server

    Huber, S J; Ritz, A; Huber, Stephan J.; Pospelov, Maxim; Ritz, Adam

    2007-01-01

    We study the simplest generic extension of the Standard Model which allows for conventional electroweak baryogenesis, through the addition of dimension six operators in the Higgs sector. At least one such operator is required to be CP-odd, and we study the constraints on such a minimal setup, and related scenarios with minimal flavor violation, from the null results of searches for electric dipole moments (EDMs), utilizing the full set of two-loop contributions to the EDMs. The results indicate that the current bounds are stringent, particularly that of the recently updated neutron EDM, but fall short of ruling out these scenarios. The next generation of EDM experiments should be sufficiently sensitive to provide a conclusive test.

  7. Probing CP Violation with the Deuteron Electric Dipole Moment

    CERN Document Server

    Lebedev, Oleg; Pospelov, Maxim; Ritz, Adam; Lebedev, Oleg; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam

    2004-01-01

    We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.

  8. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  9. Fermion electric dipole moments induced by P- and T-odd WWγ interactions in the minimal supersymmetric standard model and multi-Higgs-boson model

    International Nuclear Information System (INIS)

    West, T.H.

    1994-01-01

    We calculate fermion electric dipole moments generated by P- and T-odd WWγ interactions in the supersymmetry and multi-Higgs-boson models without using an approximation first introduced by Marciano and Queijeiro. In essence, this approximation consists of ignoring the details of the high energy physics responsible for the W electric dipole moment. For the minimal supersymmetry model, our more exact results are roughly three times those obtained from the simplest application of the above-mentioned approximation for gaugino masses larger than m W . However, if the gaugino masses are approx-lt m W , our results are less than would be expected from the Marciano-Queijeiro estimate. In part, because of this suppression, we discover that the experimental bounds on d n place no restrictions on either the allowed values of d W or on the permitted masses of the minimal supersymmetry model. This contradicts the findings of Vendramin who used the Marciano-Queijeiro results to deduce such prohibited regions of parameter space and mildly improves the prospects of observing a nonzero W-boson electric dipole moment in accelerator experiments. In the case of the multi-Higgs-boson model, we again find fermion electric dipole moments that are three times those expected from a simple application of the Marciano-Queijeiro technique. In addition, when this result is combined with a complete two-loop calculation of the W electric dipole moment, we find that the fermion electric dipole moments generated in this way are approximately 30 times those expected from a previous calculation by He and McKellar

  10. Mechanical Design of the SMC (Short Model Coil) Dipole Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Regis, F.; Fessia, P.; Bajko, M.; Rijk, G. de [European Organization for Nuclear Research - CERN, CH-1211, Geneve 23 (Switzerland); Manil, P. [CEA/Saclay, IRFU/SIS, 91191 Gif-sur-Yvette (France)

    2010-06-15

    The Short Model Coil (SMC) working group was set in February 2007 within the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb{sub 3}Sn dipole magnet. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet was originally conceived to reach a peak field of about 13 T on conductor, using a 2500 A/mm{sup 2} Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb{sub 3}Sn cable, by applying different level of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has to be realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. In this paper we will describe the mechanical optimization of the dipole, starting from a conceptual configuration based on a former magnetic analysis. Two and three-dimensional Finite Element Method (FEM) models have been implemented in ANSYS and in CAST3M, aiming at setting the mechanical parameters of the dipole magnet structure, thus fulfilling the design constraints imposed by the materials. (authors)

  11. Mechanical Design of the SMC (Short Model Coil) Dipole Magnet

    CERN Document Server

    Regis, F; Fessia, P; Bajko, M; de Rijk, G

    2010-01-01

    The Short Model Coil (SMC) working group was set in February 2007 within the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb$_{3}$Sn dipole magnet. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet was originally conceived to reach a peak field of about 13 T on conductor, using a 2500 A/mm2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb$_{3}$Sn cable, by applying different level of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has to be realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. In this paper we will describe the mechanical optimization of the dipole, starting from a conceptual configuration based on a former magnetic analysis. Two and three-dimensional Finite Element Method (...

  12. Authigenic 10Be/9Be ratio signatures of the cosmogenic nuclide production linked to geomagnetic dipole moment variation since the Brunhes/Matuyama boundary.

    Science.gov (United States)

    Simon, Quentin; Thouveny, Nicolas; Bourlès, Didier L; Valet, Jean-Pierre; Bassinot, Franck; Ménabréaz, Lucie; Guillou, Valéry; Choy, Sandrine; Beaufort, Luc

    2016-11-01

    Geomagnetic dipole moment variations associated with polarity reversals and excursions are expressed by large changes of the cosmogenic nuclide beryllium-10 ( 10 Be) production rates. Authigenic 10 Be/ 9 Be ratios (proxy of atmospheric 10 Be production) from oceanic cores therefore complete the classical information derived from relative paleointensity (RPI) records. This study presents new authigenic 10 Be/ 9 Be ratio results obtained from cores MD05-2920 and MD05-2930 collected in the west equatorial Pacific Ocean. Be ratios from cores MD05-2920, MD05-2930 and MD90-0961 have been stacked and averaged. Variations of the authigenic 10 Be/ 9 Be ratio are analyzed and compared with the geomagnetic dipole low series reported from global RPI stacks. The largest 10 Be overproduction episodes are related to dipole field collapses (below a threshold of 2 × 10 22  Am 2 ) associated with the Brunhes/Matuyama reversal, the Laschamp (41 ka) excursion, and the Iceland Basin event (190 ka). Other significant 10 Be production peaks are correlated to geomagnetic excursions reported in literature. The record was then calibrated by using absolute dipole moment values drawn from the Geomagia and Pint paleointensity value databases. The 10 Be-derived geomagnetic dipole moment record, independent from sedimentary paleomagnetic data, covers the Brunhes-Matuyama transition and the whole Brunhes Chron. It provides new and complementary data on the amplitude and timing of millennial-scale geomagnetic dipole moment variations and particularly on dipole moment collapses triggering polarity instabilities.

  13. Rotation of a Spherical Particle with Electrical Dipole Moment Induced by Steady Irradiation in a Static Electric Field

    Science.gov (United States)

    Grachev, A. I.

    2018-04-01

    Rotation of a spherical particle in a static electric field and under steady irradiation that induces an electric dipole moment in the particle is studied for the first time. Along with the general treatment of the phenomenon, we analyze possible mechanisms underlying the photoinduction of dipole moment in the particle. Estimations of the angular velocity and the power expended by the rotating particle are provided. The indicated characteristics reach their maximum values if the size of particles is within the range of 10 nm to 10 μm.

  14. Effect of metallic and hyperbolic metamaterial surface on electric and magnetic dipole emission

    DEFF Research Database (Denmark)

    Ni, Xingjie; Naik, Gururaj V.; Kildishev, Alexander V.

    2010-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces.......Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces....

  15. The standard model prediction for the electric dipole moment of the electron

    International Nuclear Information System (INIS)

    Hoogeveen, F.

    1990-01-01

    The electric dipole moment of the electron is calculated within the standard model with three generations of quarks. Depending on the values of some unknown parameters like the top quark mass and the CP-violating phase δ in the Kobayashi-Maskawa matrix, its value is of the order of magnitude of 2x10 -38 vertical strokeevertical stroke cm. (orig.)

  16. Magnetic moment of {sup 48}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)

    2007-11-15

    Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.

  17. Destructive interference between electric and toroidal dipole moments in TiO2 cylinders and frustums with coaxial voids

    Science.gov (United States)

    Terekhov, P. D.; Baryshnikova, K. V.; Evlyukhin, A. B.; Shalin, A. S.

    2017-11-01

    We demonstrate numerically the possibility of multipole interference in the TiO2 (titanium dioxide) microcylinders and microfrustums in the wavelength range 210-300 μm. Resonantly strong destructive interference between toroidal and electric dipole contributions to the scattered field is achieved by a geometry tuning. The toroidal and electric dipole mode overlapping at the resonant wavelength with almost total suppression of the total electric dipole moment is achieved.

  18. Deuterium isotope effects on the dipole moment and polarizability of HCl and NH3

    International Nuclear Information System (INIS)

    Scher, C.; Ravid, B.; Halevi, E.A.

    1982-01-01

    A previously described adaptation of the conventional Debye procedure for the direct determination of small dipole moment and polarizability differences between two polar gases is applied to the isotopic pairs DCl-HCl and ND 3 -NH 3 . The dipole moment difference obtained for the first isotopic pair, by using the Debye-Van Vleck equation for electric susceptibility, μ(DCl) - μ(HCl) = 0.005 5 +/- 0.0002 D, is consistent with published spectroscopically determined values of μ 00 (DCl) and μ 00 (HCl), while that obtained by using the classical Debye equation is not. For the second pair, use of the Debye-Van Vleck equation, along with a correction for thermal population of vibrationally excited levels, is shown to be essential and yields μ(ND) 3 - μ(NH 3 ) = +0.013 5 +/- 0.001 D and α(ND 3 ) - α(NH 3 ) = -(2.2 +/- 1.7) x 10 -26 cm 3

  19. A storage ring experiment to detect a proton electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, V. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Andrianov, S. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3, Canada; Baessler, S. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA; Bai, M. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Benante, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Berz, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Blaskiewicz, M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Bowcock, T. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Brown, K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Casey, B. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Conte, M. [Physics Department and INFN Section of Genoa, 16146 Genoa, Italy; Crnkovic, J. D. [Brookhaven National Laboratory, Upton, New York 11973, USA; D’Imperio, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fanourakis, G. [Institute of Nuclear and Particle Physics NCSR Demokritos, GR-15310 Aghia Paraskevi Athens, Greece; Fedotov, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fierlinger, P. [Technical University München, Physikdepartment and Excellence-Cluster “Universe,” Garching, Germany; Fischer, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Gaisser, M. O. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Giomataris, Y. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex, France; Grosse-Perdekamp, M. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; Guidoboni, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Hacıömeroğlu, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Hoffstaetter, G. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Huang, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Incagli, M. [Physics Department, University and INFN Pisa, Pisa, Italy; Ivanov, A. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Kawall, D. [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA; Kim, Y. I. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; King, B. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Koop, I. A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia; Lazarus, D. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lebedev, V. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Lee, M. J. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, Y. H. [Korea Research Institute of Standards and Science, Daejeon 34141, South Korea; Lehrach, A. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Lenisa, P. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Levi Sandri, P. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Luccio, A. U. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lyapin, A. [Royal Holloway, University of London, Egham, Surrey, United Kingdom; MacKay, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Maier, R. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Makino, K. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Malitsky, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Marciano, W. J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meng, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meot, F. [Brookhaven National Laboratory, Upton, New York 11973, USA; Metodiev, E. M. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Harvard College, Harvard University, Cambridge, Massachusetts 02138, USA; Miceli, L. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Moricciani, D. [Dipartimento di Fisica dell’Univ. di Roma “Tor Vergata” and INFN Sezione di Roma Tor Vergata, Rome, Italy; Morse, W. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Nagaitsev, S. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Nayak, S. K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Orlov, Y. F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Ozben, C. S. [Istanbul Technical University, Istanbul 34469, Turkey; Park, S. T. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pesce, A. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Petrakou, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pile, P. [Brookhaven National Laboratory, Upton, New York 11973, USA; Podobedov, B. [Brookhaven National Laboratory, Upton, New York 11973, USA; Polychronakos, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Pretz, J. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Ptitsyn, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Ramberg, E. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973, USA; Rathmann, F. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Rescia, S. [Brookhaven National Laboratory, Upton, New York 11973, USA; Roser, T. [Brookhaven National Laboratory, Upton, New York 11973, USA; Kamal Sayed, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Semertzidis, Y. K. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; Senichev, Y. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Sidorin, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Silenko, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Research Institute for Nuclear Problems of Belarusian State University, Minsk, Belarus; Simos, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Stahl, A. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Stephenson, E. J. [Indiana University Center for Spacetime Symmetries, Bloomington, Indiana 47405, USA; Ströher, H. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Syphers, M. J. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA; Talman, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Talman, R. M. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Tishchenko, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Touramanis, C. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Tsoupas, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Venanzoni, G. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Vetter, K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; Vlassis, S. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Won, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Physics Department, Korea University, Seoul 02841, South Korea; Zavattini, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Zioutas, K. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}e\\cdot$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.

  20. A storage ring experiment to detect a proton electric dipole moment.

    Science.gov (United States)

    Anastassopoulos, V; Andrianov, S; Baartman, R; Baessler, S; Bai, M; Benante, J; Berz, M; Blaskiewicz, M; Bowcock, T; Brown, K; Casey, B; Conte, M; Crnkovic, J D; D'Imperio, N; Fanourakis, G; Fedotov, A; Fierlinger, P; Fischer, W; Gaisser, M O; Giomataris, Y; Grosse-Perdekamp, M; Guidoboni, G; Hacıömeroğlu, S; Hoffstaetter, G; Huang, H; Incagli, M; Ivanov, A; Kawall, D; Kim, Y I; King, B; Koop, I A; Lazarus, D M; Lebedev, V; Lee, M J; Lee, S; Lee, Y H; Lehrach, A; Lenisa, P; Levi Sandri, P; Luccio, A U; Lyapin, A; MacKay, W; Maier, R; Makino, K; Malitsky, N; Marciano, W J; Meng, W; Meot, F; Metodiev, E M; Miceli, L; Moricciani, D; Morse, W M; Nagaitsev, S; Nayak, S K; Orlov, Y F; Ozben, C S; Park, S T; Pesce, A; Petrakou, E; Pile, P; Podobedov, B; Polychronakos, V; Pretz, J; Ptitsyn, V; Ramberg, E; Raparia, D; Rathmann, F; Rescia, S; Roser, T; Kamal Sayed, H; Semertzidis, Y K; Senichev, Y; Sidorin, A; Silenko, A; Simos, N; Stahl, A; Stephenson, E J; Ströher, H; Syphers, M J; Talman, J; Talman, R M; Tishchenko, V; Touramanis, C; Tsoupas, N; Venanzoni, G; Vetter, K; Vlassis, S; Won, E; Zavattini, G; Zelenski, A; Zioutas, K

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10 -29 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.

  1. Design of a model dipole magnet for the SSC high energy booster

    International Nuclear Information System (INIS)

    Hassan, N.; Couzens, K.; Dwyer, S.; Jaisle, A.; Jayakumar, R.; Krishnamurthy, S.; Mihelic, R.; Phillips, S.; Puri, R.K.; Sarna, K.

    1994-01-01

    A superconducting model dipole magnet has been designed to serve as a vehicle in an R ampersand D program to develop a dipole magnet for potential use in the SSC High Energy Booster. The objective has been to use the Brookhaven National Laboratory (BNL) and Fermi National Accelerator Laboratory (FNAL) 50 mm aperture dipole designs to the maximum possible extent for design of a dipole magnet with the same size aperture and a field intensity of 6.67 T. Objectives of this program have also included an evaluation of magnet cross section designs which provides increased margin and includes a field quality iteration on BNL and FNAL dipole designs. The salient parameters of this magnet are listed. In this paper the 2D magnetic and mechanical design of the cold mass in conceptual and detailed form is presented

  2. High field dipole magnet design concepts

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1988-12-01

    High field dipole magnets will play a crucial role in the development of future accelerators whether at Fermilab or elsewhere. This paper presents conceptual designs for two such dipoles; 6.6 and 8.8 Tesla, with special focus on their suitability for upgrades to the Fermilab Tevatron. Descriptions and cross-sectional views will be presented as will preliminary estimates of heat loads and costs. 3 refs., 2 figs., 2 tabs

  3. Relativistic effects in bonding and dipole moments for the diatomic hydrides of the sixth-row heavy elements

    International Nuclear Information System (INIS)

    Ramos, A.F.; Pyper, N.C.; Malli, G.L.

    1988-01-01

    Ab initio Dirac-Fock (DF) and nonrelativistic-limit (NRL) wave functions and dipole moments are calculated to investigate the bonding characteristics and the relativistic effects in the systems HgH + , TlH, PbH + , and BiH. The dipole moment of AuH is evaluated using the DF self-consistent field and relativistic configuration-interaction wave functions obtained by G. L. Malli and N. C. Pyper [Proc. R. Soc. London, Ser. A 407, 377 (1986)]. Contour plots of relativistic molecular orbital densities and difference density maps are presented to illustrate the arrangement of electronic charge in these systems. It is found that the 5d orbitals are involved in the bonding of HgH + , whereas they do not play a significant role in TlH and PbH + . The relativistic calculations predict HgH + , TlH, and PbH + to be bound. The nonrelativistic-limit wave functions predict HgH + and BiH to be unbound but TlH and PbH + to be bound. It is also found that the calculated dipole moments using the DF and the NRL wave functions for these heavy systems differ significantly in magnitude, and in some cases even in the sign

  4. Neutron electric dipole moment using N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Petschlies, M. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics

    2016-03-15

    We evaluate the neutron electric dipole moment vertical stroke vector d{sub N} vertical stroke using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using N{sub f}=2+1+1 twisted mass fermions at one value of the lattice spacing of a ≅0.082 fm and a light quark mass corresponding to m{sub π}≅373 MeV. Our approach to extract the neutron electric dipole moment is based on the calculation of the CP-odd electromagnetic form factor F{sub 3}(Q{sup 2}) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q{sup 2}. The limit Q{sup 2}→0 is realized either by adopting a parameterization of the momentum dependence of F{sub 3}(Q{sup 2}) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F{sub 3}(Q{sup 2}). The computation in the presence of a CP-violating term requires the evaluation of the topological charge Q. This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of vertical stroke vector d{sub N} vertical stroke =0.045(6)(1) anti θ e.fm for the ensemble with m{sub π}=373 MeV considered.

  5. Taking into account the Earth's rotation in experiments on search for the electric dipole moment of neutron

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2007-01-01

    Analysis of the problem of taking into account the Earth's rotation in a search for the electric dipole moment (EDM) of the neutron in experiments with ultracold neutrons and in a diffractional experiment is fulfilled. Taking into account the Earth's rotation in the diffractional experiment gives an exactly calculated correction which is negligible as compared with the accuracy reached at present time. In the experiments with ultracold neutrons, the correction is greater than the systematical error and the exact calculation of it needs further investigation. In this connection, further developments of diffractional method would considerably promote progress in the search for the electric dipole moment of the neutron

  6. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  7. Variational approach to magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Stringari, S; Traini, M [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy

    1977-11-07

    Magnetic moments in nuclei with a spin unsaturated core plus or minus an extra nucleon have been studied using a restricted Hartree-Fock approach. The method yields simple explicit expressions for the deformed ground state and for magnetic moments. Different projection techniques of the HF scheme have been discussed and compared with perturbation theory.

  8. Stark Interference of Electric and Magnetic Dipole Transitions in the A-X Band of OH.

    Science.gov (United States)

    Schewe, H Christian; Zhang, Dongdong; Meijer, Gerard; Field, Robert W; Sartakov, Boris G; Groenenboom, Gerrit C; van der Avoird, Ad; Vanhaecke, Nicolas

    2016-04-15

    An experimental method is demonstrated that allows determination of the ratio between the electric (E1) and magnetic (M1) transition dipole moments in the A-X band of OH, including their relative sign. Although the transition strengths differ by more than 3 orders of magnitude, the measured M1-to-E1 ratio agrees with the ratio of the ab initio calculated values to within 3%. The relative sign is found to be negative, also in agreement with theory.

  9. Baryon magnetic moments: Symmetries and relations

    Energy Technology Data Exchange (ETDEWEB)

    Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.

  10. Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Megha, A.; Sampoorna, M.; Nagendra, K. N.; Sankarasubramanian, K., E-mail: megha@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sankar@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)

    2017-06-01

    The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions using the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.

  11. Confronting Higgcision with electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Kingman [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Jae Sik [Department of Physics, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757 (Korea, Republic of); Senaha, Eibun [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Tseng, Po-Yan [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-06-26

    Current data on the signal strengths and angular spectrum of the 125.5 GeV Higgs boson still allow a CP-mixed state, namely, the pseudoscalar coupling to the top quark can be as sizable as the scalar coupling: C{sub u}{sup S}≈C{sub u}{sup P}=1/2. CP violation can then arise and manifest in sizable electric dipole moments (EDMs). In the framework of two-Higgs-doublet models, we not only update the Higgs precision (Higgcision) study on the couplings with the most updated Higgs signal strength data, but also compute all the Higgs-mediated contributions from the 125.5 GeV Higgs boson to the EDMs, and confront the allowed parameter space against the existing constraints from the EDM measurements of Thallium, neutron, Mercury, and Thorium monoxide. We found that the combined EDM constraints restrict the pseudoscalar coupling to be less than about 10{sup −2}, unless there are contributions from other Higgs bosons, supersymmetric particles, or other exotic particles that delicately cancel the current Higgs-mediated contributions.

  12. Electric dipole moment searches using the isotope 129-xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  13. A design proposal for high field dipole magnet

    International Nuclear Information System (INIS)

    Hirabayashi, H.; Kobayashi, M.; Shintomi, T.; Tsuchiya, K.; Wake, M.

    1981-06-01

    A design of the high field dipole magnet which is going to be constructed in the KEK-Fermilab collaboration program is proposed. The central field of the magnet is meant to achieve 10 T by the use of ternary alloy conductor in the 1.8 K superfluid environment under atmospheric pressure. Since the electro-magnetic force in such a high field region is strong enough to give a fatal problem, a careful calculation is necessary for the magnet design. The program POISSON and LINDA were used for the magnetic field calculation. The computer code ISAS which is originated from NASTRAN developed at NASA was applied to calculate the stress and the deformation. A horizontal cryostat desigh for the operation of the 10 T dipole magnet is also proposed. (author)

  14. Torque for electron spin induced by electron permanent electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Senami, Masato, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06

    The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.

  15. 3-D metrology applied to superconducting dipole magnets for LHC

    International Nuclear Information System (INIS)

    Dupont, M.; Missiaen, D.; Peguiron, L.

    1999-01-01

    The construction of the Large Hadron Collider (LHC) requires the manufacture of 1232 superconducting dipole magnets containing two beam channels in a common mechanical structure. These dipole magnets, which produce the required magnetic field to deflect the particles along a circular trajectory, have to be bent in their horizontal plane in order to ensure the largest mechanical aperture. Very tight tolerances on the geometry of these magnets have to be imposed during their fabrication in order to minimise, during operation, the possible losses of particles, which circulate in rather small channels and to ensure the alignment of the adjacent magnets in the ring tunnel. This necessitates a thorough metrological inspection of the magnet geometry and an accurate positioning of some of its components. This paper presents the measuring system and the developed methodology to realize these operations. The results on the first 15 m long dipole magnet are shown. (author)

  16. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; /Fermilab

    2007-06-01

    Fermilab is working on the development of Nb{sub 3}Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb{sub 3}Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models.

  17. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    International Nuclear Information System (INIS)

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Fermilab

    2007-01-01

    Fermilab is working on the development of Nb 3 Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb 3 Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models

  18. Magnetic Design and Code Benchmarking of the SMC (Short Model Coil) Dipole Magnet

    CERN Document Server

    Manil, P; Rochford, J; Fessia, P; Canfer, S; Baynham, E; Nunio, F; de Rijk, G; Védrine, P

    2010-01-01

    The Short Model Coil (SMC) working group was set in February 2007 to complement the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb$_{3}$Sn dipole magnet. In 2009, the EuCARD/HFM (High Field Magnets) program took over these programs. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet is designed to reach a peak field of about 13 Tesla (T) on conductor, using a 2500 A/mm2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb$_{3}$Sn cable, by applying different levels of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has been realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. The goal of the magnetic design presented in this paper is to match the high field region with the high stress region, l...

  19. Magnetic moments of hyperons

    International Nuclear Information System (INIS)

    Overseth, O.E.

    1981-01-01

    The Fermilab Neutral Hyperon Beam Collaboration has measured the magnetic moments of Λ 0 , XI-neutral and XI-minus hyperons. With a recently published result for the Σ + hyperon, we now have precision measurements on the magnetic moments of six baryons. This allows a sensitive test of the quark model. The data are in qualitative agreement with the simple additive static quark model. Quantitatively however the data disagree with theoretical predictions by typically 15%. Several theoretical attempts to understand or remedy this discrepancy will be mentioned

  20. Installation of the ALICE dipole magnet

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The large dipole magnet is installed on the ALICE detector at CERN. This magnet, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid (in the background). These muons are heavy electrons that interact less with matter, allowing them to traverse the main section of the detector.

  1. Dipole moments of the τ lepton as a sensitive probe for physics beyond the standard model

    International Nuclear Information System (INIS)

    Mahanta, U.

    1996-01-01

    CP-violating dipole moments of leptons vanish at least to three loop order and are estimated to be (m l /MeV)x1.6x10 -40 ecm in the standard model (SM), where m l is the mass of the lepton. However, they can receive potentially large contributions in some beyond the SM scenarios and this makes them very sensitive probes of new physics. In this article we show that a nonuniversal interaction, involving leptoquarks to the quark-lepton pair of the third generation through helicity-unsuppressed couplings of the order of ordinary gauge couplings, can generate electric and weak dipole moments of the order of 10 -19 ecm for the τ lepton. This is greater than pure supersymmetric (SUSY) and left-right (LR) contributions by almost three orders of magnitude. It is also greater than the mirror fermionic contribution by an order of magnitude. The measurements of d τ z and d τ γ at CERN LEP, SLC, and TCF are expected to reach sensitivities of 10 -18 ecm and 10 -19 ecm, respectively, in the near future. The observation of a nonvanishing dipole moment of τ at these facilities would, therefore, strongly favor superstring-inspired light leptoquark-mediated interactions, over pure SUSY or LR interactions and perhaps also mirror-generated mixings without some sort of quark-lepton unification as its origin. copyright 1996 The American Physical Society

  2. Geomagnetic dipole strength and reversal rate over the past two million years.

    Science.gov (United States)

    Valet, Jean-Pierre; Meynadier, Laure; Guyodo, Yohan

    2005-06-09

    Independent records of relative magnetic palaeointensity from sediment cores in different areas of the world can be stacked together to extract the evolution of the geomagnetic dipole moment and thus provide information regarding the processes governing the geodynamo. So far, this procedure has been limited to the past 800,000 years (800 kyr; ref. 3), which does not include any geomagnetic reversals. Here we present a composite curve that shows the evolution of the dipole moment during the past two million years. This reconstruction is in good agreement with the absolute dipole moments derived from volcanic lavas, which were used for calibration. We show that, at least during this period, the time-averaged field was higher during periods without reversals but the amplitude of the short-term oscillations remained the same. As a consequence, few intervals of very low intensity, and thus fewer instabilities, are expected during periods with a strong average dipole moment, whereas more excursions and reversals are expected during periods of weak field intensity. We also observe that the axial dipole begins to decay 60-80 kyr before reversals, but rebuilds itself in the opposite direction in only a few thousand years.

  3. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  4. Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale.

    Science.gov (United States)

    Aigouy, L; Cazé, A; Gredin, P; Mortier, M; Carminati, R

    2014-08-15

    We report on an experimental technique to quantify the relative importance of electric and magnetic dipole luminescence from a single nanosource in structured environments. By attaching a Eu^{3+}-doped nanocrystal to a near-field scanning optical microscope tip, we map the branching ratios associated with two electric dipole and one magnetic dipole transitions in three dimensions on a gold stripe. The relative weights of the electric and magnetic radiative local density of states can be recovered quantitatively, based on a multilevel model. This paves the way towards the full electric and magnetic characterization of nanostructures for the control of single emitter luminescence.

  5. Technology transfer considerations for the collider dipole magnet

    International Nuclear Information System (INIS)

    Goodzeit, C.; Fischer, R.

    1991-03-01

    The R ampersand D program at the national laboratories has resulted in significant advances in design and fabrication methods for the Collider Dipole Magnets. The status of the transfer of the technology developed by the laboratories is reviewed. The continuation of the technology transfer program is discussed with a description of: (1) the relation of technology transfer activities to collider dipole product development; (2) content of the program relating to key magnet performance issues; and (3) methods to implement the program. 5 refs

  6. A variable-field permanent-magnet dipole for accelerators

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.; Barlow, D.B.; Meyer, R.

    1992-01-01

    A new concept for a variable-field permanent-magnet dipole has been developed and fabricated at Los Alamos. The application requires an extremely uniform dipole field in the magnet aperture and precision variability over a large operating range. An iron-core permanent- magnet design using a shunt that was specially shaped to vary the field in a precise and reproducible fashion with shunt position. The key to this design is in the shape of the shunt. The field as a function of shunt position is very linear from 90% of the maximum field to 20% of the minimum field. The shaped shunt also results in a small maximum magnetic force attracting the shunt to the yoke allowing a simple mechanical design. Calculated and measured results agree well for the magnet

  7. A novel inversion scheme for a magnetic dipole

    International Nuclear Information System (INIS)

    Koka, S.; Valsakumar, M.C.; Janawadkar, M.P.; Radhakrishnan, T.S.

    1997-01-01

    In a number of applications of SQUID devices such as biomagnetism, there is a need to infer the position and strength of the source(s) of the magnetic field on the basis of measurements of magnetic fields H and magnetic field gradients δH j /δx k at suitable observation point(s). It is well known that while a specification of sources uniquely determines the resulting field distribution, the inverse problem, in general, does not admit of a unique solution. However, there exist circumstances under which the source may be modeled reasonably well as a single magnetic dipole m. A novel method, which gives a unique solution to localize such a dipole source by measuring all the magnetic field components and their spatial derivatives at a single arbitrary point in space is reported

  8. Microwave spectrum and dipole moment of methyldifluorophosphine--borane

    International Nuclear Information System (INIS)

    Creswell, R.A.; Elzaro, R.A.; Schwendeman, R.H.

    1975-01-01

    The microwave spectra of CH 3 PF 2 . 11 BH 3 , CH 3 PF 2 . 10 BH 3 , CH 3 PF 2 . 11 BD 3 , and CH 3 PF 2 . 10 BD 3 were assigned. Stark effect measurements gave the following values for the dipole moment and its components: μ/sub a/ = 3.52 (5) D, μ/sub b/ = 1.76 (5) D, μ/sub c/ = 0.0 D, and μ = 3.94 (5) D. The absence of resolvable internal rotation splittings in the ground state yields lower limits of about 2000 cal/mol for the barriers to both CH 3 and BH 3 group internal rotation. By judicious transfer of structural parameters from related molecules r(P--B) was estimated to be 1.84 +- 0.02 A. (auth)

  9. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    International Nuclear Information System (INIS)

    Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S

    2008-01-01

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  10. Theory of nuclear magnetic moments - LT-35

    Energy Technology Data Exchange (ETDEWEB)

    Kerman, A. K.

    1952-09-15

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  11. Design, manufacture and measurements of permanent dipole magnets for DIRAC

    CERN Document Server

    Vorozhtsov, A; Kasaei, S; Solodko, E; Thonet, P A; Tommasini, D

    2013-01-01

    The one of the aim of the DIRAC experiment is the observation of the long-lived π+π- atoms, using the proton beam of the CERN Proton Synchrotron [1]. Two dipole magnets are needed for the for the DIRAC experiment as high resolution spectrometers. The dipole magnet will be used to identify the long-lived atoms on the high level background of π+π- pairs produced simultaneously with π+π- atoms. The proposed design is a permanent magnet dipole with a mechanical aperture of 60 mm. The magnet, of a total physical length of 66 mm, is based on Sm2Co17 blocks and provides an integrated field strength of 24·10-3 T×m. The Sm2Co17 was chosen as a material for the permanent magnet blocks due to its radiation hardness and weaker temperature dependence. The magnetic field quality is determined by 2 ferromagnetic poles, aligned together with the permanent magnets blocks. The paper describes the design, manufacture and magnetic measurements of the magnets.

  12. Test results of the UNK superconducting dipole magnets

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Gridasov, V.I.

    1993-01-01

    Results of studied, training, temperature and velocity dependence of 25 critical current of superconducting magnets (SC), as well as, of dynamic losses of dipole and statical inflows in UNK operating cycle at currents that are higher than critical ones (5250 A), are presented. Service life tests of SC-dipole demonstrated that their design may ensure durable operation of magnets under UNK conditions. Conclusions are made that temperature margin of magnets equal to 0.8 K will enable to ensure their reliable operation under dynamic and radiation heat releases at acceleration and extraction of beam, as well as, under emergency extraction of stored energy. 4 refs.; 5 figs

  13. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    Science.gov (United States)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  14. Electric Dipole Moments in the MSSM Reloaded

    CERN Document Server

    Ellis, Jonathan Richard; Pilaftsis, Apostolos

    2008-01-01

    We present a detailed study of the Thallium, neutron, Mercury and deuteron electric dipole moments (EDMs) in the CP-violating Minimal Supersymmetric extension of the Standard Model (MSSM). We take into account the complete set of one-loop graphs, the dominant Higgs-mediated two-loop diagrams, the complete CP-odd dimension-six Weinberg operator and the Higgs-mediated four-fermion operators. We improve upon earlier calculations by including the resummation effects due to CP-violating Higgs-boson mixing and to threshold corrections to the Yukawa couplings of all up- and down-type quarks and charged leptons. As an application of our study, we analyse the EDM constraints on the CPX, trimixing and Maximally CP- and Minimally Flavour-Violating (MCPMFV) scenarios. Cancellations may occur among the CP-violating contributions to the three measured EDMs arising from the 6 CP-violating phases in the MCPMFV scenario, leaving open the possibility of relatively large contributions to other CP-violating observables. The anal...

  15. Relativistic dynamics of point magnetic moment

    Science.gov (United States)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew

    2018-01-01

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincaré symmetry of space-time. We propose a covariant formulation of the magnetic force based on a `magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g-2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape.

  16. Toroidal Dipole Moment of the Lightest Neutralino in the MSSM

    International Nuclear Information System (INIS)

    Cabral-Rosetti, L G; Mondragon, M; Perez, E Reyes

    2011-01-01

    In order to characterize one of the most favored candidates for dark matter, we calculate the anapole form factor of the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM) at the one-loop level. As a Majorana fermion, this particle only shows one electromagnetic property, the toroidal dipole moment, which is directly related to the anapole form factor. We obtain the result analitically in terms of two- and three-points Passarino-Veltman scalar functions and evaluate it for a given spectrum of supersymmetric masses and matrix elements. This work is part of a broader project still in progress.

  17. T violation in radiative β decay and electric dipole moments

    Directory of Open Access Journals (Sweden)

    W. Dekens

    2015-12-01

    Full Text Available In radiative β decay, T violation can be studied through a spin-independent T-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM sources of T-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs. As a consequence, the manifestations of the T-odd BSM physics in radiative β decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent T-odd correlation in radiative β decay.

  18. T violation in radiative β decay and electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Dekens, W.; Vos, K.K., E-mail: k.k.vos@rug.nl

    2015-12-17

    In radiative β decay, T violation can be studied through a spin-independent T-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM) sources of T-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs). As a consequence, the manifestations of the T-odd BSM physics in radiative β decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent T-odd correlation in radiative β decay.

  19. Even larger contributions to the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Rujula, A. de; Gavela, M.B.; Vegas, F.J.

    1990-01-01

    Constraints on theories of CP-violation, from limits on the neutron electric dipole moment, and mediated by a CP-odd three-gluon operator, are current best sellers. We introduce novel CP-odd operators involving one photon and three gluons. We find that effects mediated by these operators result on bounds on supersymmetry an order of magnitude more stringent than earlier results: they are the tightest known bounds. For left-right models we derive richer limits than previously found. We also recalculate the anomalous dimensions of the three-gluon operator and find them to be minus those originally used; this weakens considerably its strictures on theory, though it still mediates the dominant effect in multi-Higgs models. (orig.)

  20. Comparison of electric dipole and magnetic dipole models for electromagnetic pulse generated by nuclear detonation in space

    International Nuclear Information System (INIS)

    Zhu Meng; Zhou Hui; Cheng Yinhui; Li Baozhong; Wu Wei; Li Jinxi; Ma Liang; Zhao Mo

    2013-01-01

    Electromagnetic pulse can be generated by the nuclear detonation in space via two radiation mechanisms. The electric dipole and magnetic dipole models were analyzed. The electric radiation in the far field generated by two models was calculated as well. Investigations show that in the case of one hundred TNT yield detonations, when electrons are emitted according to the Gaussian shape, two radiation models can give rise to the electric field in great distances with amplitudes of kV/m and tens of V/m, independently. Because the geomagnetic field in space is not strong and the electrons' angular motion is much weaker than the motion in the original direction, radiations from the magnetic dipole model are much weaker than those from the electric dipole model. (authors)

  1. Feasibility study of a sup 3 He-magnetometer for neutron electric dipole moment experiments

    CERN Document Server

    Borisov, Y; Leduc, M; Lobashev, V; Otten, E W; Sobolev, Y

    2000-01-01

    We report on a sup 3 He-magnetometer capable of detecting tiny magnetic field fluctuations of less than 10 sup - sup 1 sup 4 T in experiments for measuring the electric dipole moment (EDM) of the neutron. It is based on the Ramsey technique of separated oscillating fields and uses nuclear spin-polarized sup 3 He gas which is stored in two vessels of V approx =10 l in a sandwich-type arrangement around the storage bottle for ultra-cold neutrons (UCN). The gas is polarized by means of optical pumping in a separate, small discharge cell at pressures around 0.5 mbar and is then expanded into the actual magnetometer volume. To detect the polarization of sup 3 He gas at the end of the storage cycle the gas is pumped out by means of an oil-diffusion pump and compressed again into the discharge cell where optical detection of nuclear polarization is used.

  2. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    Directory of Open Access Journals (Sweden)

    A. C. Vutha

    2018-01-01

    Full Text Available We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the z ^ -direction by an applied electric field, as has recently been demonstrated by Park et al. The trapped molecules are prepared into a state that has its electron spin perpendicular to z ^ , and a magnetic field along z ^ causes precession of this spin. An electron electric dipole moment d e would affect this precession due to the up to 100 GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring d e to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  3. Decreasing the radiation quality factor of magnetic dipole antennas by a magnetic-coated metal core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    To achieve the Chu lower bound for the radiation Q, an electrically small magnetic dipole antenna should not store any magnetic energy internally to the minimum sphere enclosing the antenna. As shown in our previous works, the internal stored magnetic energy can be reduced, although not entirely...... eliminated, by introducing a solid magnetic core inside the antenna. In this paper, using analytical results obtained though the vector spherical wave theory, we show that the internal stored magnetic energy can be further reduced, and the Chu lower bound reached, for a spherical magnetic dipole antenna...

  4. Passive axial magnetic bearing with Halbach magnetized array in magnetically suspended control moment gyro application

    International Nuclear Information System (INIS)

    Sun Jinji; Ren Yuan; Fang Jiancheng

    2011-01-01

    The paper presents a special configuration of passive axial magnetic bearing with segmented Halbach magnetized array in magnetically suspended control moment gyro (MSCMG). Peculiarity of presented passive axial magnetic bearing is its ability to provide angular stiffness so that it can produce gyro moment when it is used in MSCMG. The MSCMG with this passive axial magnetic bearing can efficiently reduce the power loss when it supplies gyro moment compared with the five degrees of freedom (5-DOF) MSCMG. The characteristics of the suspension force and stiffness of the passive axial magnetic bearing are studied using finite element method (FEM). The performance of the presented passive axial magnetic bearing with Halbach magnetized array is verified by a prototyped MSCMG. - Research highlights: → Passive axial magnetic bearing is used to provide angular stiffness. → Passive axial magnetic bearing is based on repulsion. → Layers Halbach magnetized array realizes higher stiffness per bearing volume. → Passive axial magnetic bearing can provide gyro moment in CMG. → Power loss of MSCMG with PMB does not increase when it provides gyro moment.

  5. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    International Nuclear Information System (INIS)

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-01-01

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the 2 Σ + ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  6. Dark matter, muon g -2 , electric dipole moments, and Z →ℓi+ℓj- in a one-loop induced neutrino model

    Science.gov (United States)

    Chiang, Cheng-Wei; Okada, Hiroshi; Senaha, Eibun

    2017-07-01

    We study a simple one-loop induced neutrino mass model that contains both bosonic and fermionic dark matter candidates and has the capacity to explain the muon anomalous magnetic moment anomaly. We perform a comprehensive analysis by taking into account the relevant constraints of charged lepton flavor violation, electric dipole moments, and neutrino oscillation data. We examine the constraints from lepton flavor-changing Z boson decays at the one-loop level, particularly when the involved couplings contribute to the muon g -2 . It is found that BR (Z →μ τ )≃(10-7- 10-6) while BR (τ →μ γ )≲10-11 in the fermionic dark matter scenario. The former can be probed by the precision measurement of the Z boson at future lepton colliders.

  7. Study of a permanent-magnet dipole with variable field strength and polarity

    International Nuclear Information System (INIS)

    Honma, Toshihiro

    1996-01-01

    A proto-type dipole magnet employing permanent-magnet rods has been designed and constructed. The magnet is able to change the magnetic field strength continuously as well as the polarity of the field direction by rotating the rods. The magnet has a special advantage of high-field production within a small open space available. The magnet of this type will be used for beam steering at an extraction channel for a planned negative-ion acceleration in our cyclotron. The first important objective at the exit channel is to steer the beam extracted from the cyclotron by some dipole magnet onto the optical axis of a new beam line to be constructed. This is not a trivial task because available open space is too small to install a coil-type magnet. One of the selections is to use a permanent-magnet dipole because such a magnet is expected to provide a very high field in a small space when compared with a coil-type magnet. A proto-type permanent-magnet dipole (PMD) with variable field strength and polarity has been designed and constructed for such a purpose. (J.P.N.)

  8. Magnetic design of the AC5 dipole magnet

    International Nuclear Information System (INIS)

    Randle, T.C.; Simkin, J.

    1975-11-01

    The design procedures used to obtain almost uniform fields up to 4.5 Tesla in a superconducting dipole magnet with an associated iron yoke are described, including peak field and end winding calculations. The measured fields of the manufactured magnet are compared with the calculations and it is suggested that the differences, of about 0.1% within the usable aperture, may be due to a small systematic variation of the winding uniformity in each layer. (author)

  9. Determination of Local Magnetic Dipole Moment of the Plasma at the PUPR Cusp-Mirror Machine

    International Nuclear Information System (INIS)

    Leal-Quiros, Edbertho; Prelas, Mark

    2006-01-01

    A novel diagnostic that allows measurement of the magnetic moment μ has been designed. The μ-Analyzer consists of a Directional Energy Analyzer and a Magnetic Hall Probe in the same detector miniature case. The Directional Energy Analyzer measures the ion temperature in the perpendicular direction to the magnetic field. On the other side, the Hall Probe measures the magnetic field. The μ-Analyzer is a miniature analyzer to avoid plasma perturbation. This allows the measurement of the ion temperature and the local magnetic field at the same point at the same time, therefore μ, the first adiabatic invariant is found. From the above parameters, the local Larmor radius also will be calculated. From the analysis of the data simultaneously in time and space, the μ of the Local Plasma has been determined. This result is a very important quantity, among other properties that permit one to know the stability of the magnetic confinement device using the MHD Stability Criterium, and also very important in Space Plasma Research. In addition to the above, a direct measurement of the Larmor radius of each position is also possible. The experiments have been made in a Cusp/Mirror Plasma Machine where plasma parameters such as Density and Temperature are relatively easy to change in a very wide range

  10. Magnetic moment of single layer graphene rings

    Science.gov (United States)

    Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.

    2018-01-01

    Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.

  11. Exchange currents for hypernuclear magnetic moments

    International Nuclear Information System (INIS)

    Saito, K.; Oka, M.; Suzuki, T.

    1997-01-01

    The meson (K and π) exchange currents for the hypernuclear magnetic moments are calculated using the effective Lagrangian method. The seagull diagram, the mesonic diagram and the Σ 0 -excitation diagram are considered. The Λ-N exchange magnetic moments for 5 Λ He and A=6 hypernuclei are calculated employing the harmonic oscillator shell model. It is found that the two-body correction is about -9% of the single particle value for 5 Λ He. The π exchange current, induced only in the Σ 0 -excitation diagram, is found to give dominant contribution for the isovector magnetic moments of hypernuclei with A=6. (orig.)

  12. Nonspreading Wave Packets for Rydberg Electrons in Rotating Molecules with Electric Dipole Moments

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Bialynicka-Birula, Z.

    1996-01-01

    Nonspreading wave packets for Rydberg electrons are predicted in rotating molecules with electric dipole moments. We have named them the Trojan wave packets since their stability is due to the same mechanism that governs the motion of the Trojan asteroids in the Sun-Jupiter system. Unlike all previously predicted Trojan wave packets in atoms, molecular Trojan states do not require external fields for their existence

  13. QCD corrections to neutron electric dipole moment from dimension-six four-quark operators

    Energy Technology Data Exchange (ETDEWEB)

    Hisano, Junji, E-mail: hisano@eken.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); IPMU, TODIAS, University of Tokyo, Kashiwa 277-8568 (Japan); Tsumura, Koji, E-mail: ko2@eken.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Yang, Masaki J.S., E-mail: yang@eken.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2012-07-18

    In this Letter, the renormalization-group equations for the (flavor-conserving) CP-violating interaction are derived up to the dimension six, including all the four-quark operators, at one-loop level. We apply them to the models with the neutral scalar boson or the color-octet scalar boson which have CP-violating Yukawa interactions with quarks, and discuss the neutron electric dipole moment in these models.

  14. Electric dipole moments with and beyond flavor invariants

    Science.gov (United States)

    Smith, Christopher; Touati, Selim

    2017-11-01

    In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U (1) phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.

  15. Electric dipole moments with and beyond flavor invariants

    Directory of Open Access Journals (Sweden)

    Christopher Smith

    2017-11-01

    Full Text Available In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U(1 phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.

  16. Electric dipole moment function of the X1 Sigma/+/ state of CO - Vibration-rotation matrix elements for transitions of gas laser and astrophysical interest

    Science.gov (United States)

    Chackerian, C., Jr.

    1976-01-01

    The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.

  17. Mechanical stresses and strains in superconducting dipole magnets for high energy accelerators

    International Nuclear Information System (INIS)

    Greben, L.I.; Mironov, E.S.; Moustafin, H.H.

    1979-01-01

    Stress and strain distributions in superconducting dipole magnets were investigated numerically. A finite element computer program was developed to calculate stresses and displacements due to thermal stress, electromagnetic forces and prestressing of structural elements. Real mechanical and thermal properties of superconducting dipole elements are taken into account. Numerical results of stress and strain patterns in dipole magnets are presented

  18. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Science.gov (United States)

    Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.

    2016-08-01

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1-2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.

  19. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Slim, J. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Gebel, R. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Heberling, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); Hinder, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Hölscher, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Lehrach, A. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Lorentz, B. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Mey, S. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Nass, A.; Rathmann, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); and others

    2016-08-21

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1–2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.

  20. Computational Study of Geometry, Solvation Free Energy, Dipole Moment, Polarizability, Hyperpolarizability and Molecular Properties of 2-Methylimidazole

    Directory of Open Access Journals (Sweden)

    Mohammad Firoz Khan

    2016-12-01

    Full Text Available Ab initio calculations were carried out to study the geometry, solvation free energy, dipole moment, molecular electrostatic potential (MESP, Mulliken and Natural charge distribution, polarizability, hyperpolarizability, Natural Bond Orbital (NBO energetic and different molecular properties like global reactivity descriptors (chemical hardness, softness, chemical potential, electronegativity, electrophilicity index of 2-methylimidazole. B3LYP/6-31G(d,p level of theory was used to optimize the structure both in the gas phase and in solution. The solvation free energy, dipole moment and molecular properties were calculated by applying the Solvation Model on Density (SMD in four solvent systems, namely water, dimethylsulfoxide (DMSO, n-octanol and chloroform. The computed bond distances, bond angles and dihedral angles of 2-methylimidazole agreed reasonably well with the experimental data except for C(2-N(1, C(4-C(5 and N(1-H(7 bond lengths and N(1-C(5-C(4 bond angle. The solvation free energy, dipole moment, polarizability, first order hyperpolarizability, chemical potential, electronegativity and electrophilicity index of 2-methylimidazole increased on going from non-polar to polar solvents. Chemical hardness also increased with increasing polarity of the solvent and the opposite relation was found in the case of softness. These results provide better understanding of the stability and reactivity of 2-methylimidazole in different solvent systems.

  1. Detailed discussion of a linear electric field frequency shift induced in confined gases by a magnetic field gradient: Implications for neutron electric-dipole-moment experiments

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Golub, R.

    2005-01-01

    The search for particle electric dipole moments (EDM's) is one of the best places to look for physics beyond the standard model of electroweak interaction because the size of time reversal violation predicted by the standard model is incompatible with present ideas concerning the creation of the baryon-antibaryon asymmetry. As the sensitivity of these EDM searches increases more subtle systematic effects become important. We develop a general analytical approach to describe a systematic effect recently observed in an electric dipole moment experiment using stored particles [J. M. Pendlebury et al., Phys. Rev. A 70, 032102 (2004)]. Our approach is based on the relationship between the systematic frequency shift and the velocity autocorrelation function of the resonating particles. Our results, when applied to well-known limiting forms of the correlation function, are in good agreement with both the limiting cases studied in recent work that employed a numerical and heuristic analysis. Our general approach explains some of the surprising results observed in that work and displays the rich behavior of the shift for intermediate frequencies, which has not been studied previously

  2. Relativistic dynamics of point magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew [The University of Arizona, Department of Physics, Tucson, AZ (United States)

    2018-01-15

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincare symmetry of space-time. We propose a covariant formulation of the magnetic force based on a 'magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g - 2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape. (orig.)

  3. On the magnitude of electric dipole moment of a neutron in the Weinberg CP-violation model

    International Nuclear Information System (INIS)

    Ansel'm, A.A.; Bunakov, V.E.; Gudkov, V.P.; Ural'tsev, N.G.

    1984-01-01

    It is shown, that the magnitude of the electric dipole moment of an neutron in the Weinberg CP-violation model is determined by the interaction with neutral Higgs bosons and it exceeds the existing experimental limit by two or three orders

  4. Slice of the LHC prototype beam tubes in dipole magnet

    CERN Multimedia

    1995-01-01

    A slice of the LHC accelerator prototype beam tubes surrounded by magnets. The LHC will accelerate two proton beams in opposite directions. The high bending and accelerating fields needed can only be reached using superconductors. At very low temperatures superconductors have no electrical resistance and therefore no power loss. The LHC will be the largest superconducting installation ever built, a unique challenge for CERN and its industrial partners. About dipole magnets: There will be 1232 dipole magnets in the LHC, used to guide the particles around the 27 km ring. Dipole magnets must have an extremely uniform field, which means the current flowing in the coils has to be very precisely controlled. Nowhere before has such precision been achieved at such high currents. The temperature is measured to five thousandths of a degree, the current to one part in a million. The current creating the magnetic field will pass through superconducting wires at up to 12 500 amps, about 30 000 times the current flowing ...

  5. Heavy quark and magnetic moment

    International Nuclear Information System (INIS)

    Mubarak, Ahmad; Jallu, M.S.

    1979-01-01

    The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)

  6. An update on passive correctors for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-05-01

    The concept of correction of the magnetization sextupole became a topic of discussion as soon as it was realized that superconductor magnetization could have a serious effect on the SSC beam during injection. Several methods of correction were proposed. These included (1) correction with active bore tube windings like those on the HERA machine which correct out magnetization sextupole and the sextupole due to iron saturation, (2) correction with persistent sextupole windings mounted on the bore tube (3) correction using passive superconductor (4) correction using ferromagnetic material, and (5) correction using oriented magnetized materials. This report deals with the use of passive superconductor to correct the magnetization sextupole. Two basic methods are explored in this report: (1) One can correct the magnetization sextupole by changing the diameter of the superconductor filaments in one or more blocks of the SSC dipole. (2) One can correct the magnetization sextupole and decapole by mounting passive superconducting wires on the inside of the SSC dipole coil bore. In addition, an assessment of the contribution of each conductor in the dipole to the magnetization sextupole and decapole is shown. 38 refs, 25 figs., 15 tabs

  7. Composite quarks and their magnetic moments

    International Nuclear Information System (INIS)

    Parthasarathy, R.

    1980-08-01

    A composite quark model based on the symmetry group SU(10)sub(flavour) x SU(10)sub(colour) with the assumption of mass non-degenerate sub-quarks is considered. Magnetic moments of quarks and sub-quarks are obtained from the observed nucleon magnetic moments. Using these quark and sub-quark magnetic moments, a satisfactory agreement for the radiative decays of vector mesons (rho,ω) is obtained. The ratio of the masses of the sub-quarks constituting the u,d,s quarks are found to be Msub(p)/Msub(n) = 0.3953 and Msub(p)/Msub(lambda) = 0.596, indicating a mass hierarchy Msub(p) < Msub(n) < Msub(lambda) for the sub-quarks. (author)

  8. New bound on neutrino dipole moments from globular-cluster stars

    Science.gov (United States)

    Raffelt, Georg G.

    1990-01-01

    Neutrino dipole moments mu(nu) would increase the core mass of red giants at the helium flash by delta(Mc) = 0.015 solar mass x mu(nu)/10 to the -12th muB (where muB is the Bohr magneton) because of enhanced neutrino losses. Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters, number counts of horizontal-branch stars and red giants in 15 globular clusters, and statistical parallax determinations of field RR Lyr luminosities yield delta(Mc) = 0.009 + or - 0.012 solar mass, so that conservatively mu(nu) is less than 3 x 10 to the -12th muB.

  9. Magnetic moments of baryons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1983-06-01

    The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)

  10. LHC dipole magnets start to roll off the production line

    CERN Multimedia

    2000-01-01

    The first pre-series LHC dipole magnet has been delivered to CERN, a further 1247 are due to be produced by 2005. Their production is the result of technology transfer from CERN to its suppliers. Fifteen metres long, thirty-tonnes in weight, and using several kilometres of superconducting cable, the magnet that has just arrived in hall 181 is a true colossus. It is the first pre-series dipole that will begin service in 2005 in the future Large Hadron Collider, LHC. Delivered by the French Alstom-Jeumont Industrie consortium, it is the first of 1248 magnets that will be manufactured over the coming five years. Needless to say, lavish attention has been devoted to this magnet by the engineers and technicians who accompanied it to CERN from Belfort in north east France. The task of the dipole magnets will be to steer the LHC's proton beams on a circular trajectory around the LHC's 27 kilometre circumference. A magnetic field of 8.33 Tesla is required to guide the protons, accelerated to an energy of 7 TeV, aroun...

  11. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others

    2015-04-15

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  12. What is the value of the neutron electric dipole moment in the Kobayashi-Maskawa model

    International Nuclear Information System (INIS)

    Khriplovich, I.B.; Zhitnitsky, A.R.

    1982-01-01

    A new mechanism is considered due to which the neutron electric dipole moment Dsub(n) aries in the Kobayashi-Maskawa model. This mechanism leads to the estimate Dsub(n) approx. equal to 2 x 10 -32 e cm, by two orders of magnitude larger than the contributions considered previously. (orig.)

  13. Moment distributions of clusters and molecules in the adiabatic rotor model

    Science.gov (United States)

    Ballentine, G. E.; Bertsch, G. F.; Onishi, N.; Yabana, K.

    2008-01-01

    We present a Fortran program to compute the distribution of dipole moments of free particles for use in analyzing molecular beams experiments that measure moments by deflection in an inhomogeneous field. The theory is the same for magnetic and electric dipole moments, and is based on a thermal ensemble of classical particles that are free to rotate and that have moment vectors aligned along a principal axis of rotation. The theory has two parameters, the ratio of the magnetic (or electric) dipole energy to the thermal energy, and the ratio of moments of inertia of the rotor. Program summaryProgram title:AdiabaticRotor Catalogue identifier:ADZO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZO_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:479 No. of bytes in distributed program, including test data, etc.:4853 Distribution format:tar.gz Programming language:Fortran 90 Computer:Pentium-IV, Macintosh Power PC G4 Operating system:Linux, Mac OS X RAM:600 Kbytes Word size:64 bits Classification:2.3 Nature of problem:The system considered is a thermal ensemble of rotors having a magnetic or electric moment aligned along one of the principal axes. The ensemble is placed in an external field which is turned on adiabatically. The problem is to find the distribution of moments in the presence of the external field. Solution method:There are three adiabatic invariants. The only nontrivial one is the action associated with the polar angle of the rotor axis with respect to external field. It is found by Newton's method. Running time:3 min on a 3 GHz Pentium IV processor.

  14. Locating a buried magnetic dipole

    Energy Technology Data Exchange (ETDEWEB)

    Caffey, T.W.H.

    1977-01-01

    The theoretical basis and required computations for locating a buried magnetic dipole are outlined. The results are compared with measurements made with a tiltable coil lowered to a depth of 20 m in a vertical borehole within a three-layered earth. this work has application to the rescue of trapped miners. 3 figures, 1 table. (RWR)

  15. Modification of electric and magnetic dipole emission in anisotropic plasmonic systems.

    Science.gov (United States)

    Noginova, N; Hussain, R; Noginov, M A; Vella, J; Urbas, A

    2013-10-07

    In order to investigate the effects of plasmonic environments on spontaneous emission of magnetic and electric dipoles, we have studied luminescence of Eu³⁺ ions in close vicinity to gold nanostrip arrays. Significant changes in the emission kinetics, emission polarization, and radiation patterns have been observed in the wavelength range corresponding to the plasmonic resonance. The effect of the plasmonic resonance on the magnetic dipole transition ⁵D₀-->⁷F₁ is found to be very different from its effect on the electric dipole transitions. This makes Eu³⁺₋ containing complexes promising for mapping local distributions of magnetic and electric fields in metamaterials and plasmonic systems.

  16. Alternative dipole magnets for ISABELLE

    Science.gov (United States)

    Taylor, C.; Althaus, R.; Caspi, S.; Gilbert, W.; Hassenzahl, W. V.; Meuser, R.; Rechen, J.; Warren, R.

    1982-05-01

    A dipole magnet, intended as a possible alternative for the ISABELLE main ring magnet, was designed. Three layers of FNAL Doubler/Saver conductor were used. Two 1.3-m-long models were built and tested, both with and without an iron core, and in both helium I and helium II. The training behavior, cyclic energy loss, point of quench initiation, and quench velocity were determined. A central field of 6.5 tesla was obtained in He I (4.4 K), and 7.6 tesla in He II (1.8K).

  17. Zeeman interaction in the Δ31 state of HfF+ to search for the electron electric dipole moment

    Science.gov (United States)

    Petrov, A. N.; Skripnikov, L. V.; Titov, A. V.

    2017-08-01

    A theoretical study devoted to suppression of magnetic systematic effects in HfF+ cation for an experiment to search for the electron electric dipole moment is reported. The g factors for J =1 , F =3 /2 , | MF|=3 /2 hyperfine levels of the Δ31 state are calculated as functions of the external electric field. The minimal value for the difference between the g factors of Ω -doublet levels, Δ g =3 ×10-6 , is attained at the electric field 7 V/cm. The body-fixed g factor, G∥, was obtained both within the ab initio electronic structure calculations and with our fit of the experimental data [H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, and E. A. Cornell, Science 342, 1220 (2013), 10.1126/science.1243683]. For the electronic structure calculations we used a combined scheme to perform correlation calculations of HfF+, which includes both the direct four-component all-electron and generalized relativistic effective core potential approaches. The electron correlation effects were treated using the coupled cluster methods. The calculated value G∥=0.0115 agrees very well with the G∥=0.0118 obtained with our fitting procedure. The calculated ab initio value D∥=-1.53 a.u. for the molecule-frame dipole moment (with the origin in the center of mass) is in agreement with the experimental datum D∥=-1.54 (1 ) a.u. [H. Loh, Ph.D. thesis, Massachusetts Institute of Technology, 2006.].

  18. Determination of the neutron magnetic moment

    International Nuclear Information System (INIS)

    Greene, G.L.; Ramsey, N.F.; Mampe, W.; Pendlebury, J.M.; Smith, K.; Dress, W.B.; Miller, P.D.; Perrin, P.

    1981-01-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H 2 O), we find μ/sub n//μ/sub p/ = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units

  19. Experimental constraint on quark electric dipole moments

    Science.gov (United States)

    Liu, Tianbo; Zhao, Zhiwen; Gao, Haiyan

    2018-04-01

    The electric dipole moments (EDMs) of nucleons are sensitive probes of additional C P violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to C P violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1.27 ×10-24 e .cm for the up quark and 1.17 ×10-24 e .cm for the down quark at the scale of 4 GeV2 . We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about 3 orders of magnitude leading to a much more sensitive probe of new physics models.

  20. Lattice QCD evaluation of baryon magnetic moment sum rules

    International Nuclear Information System (INIS)

    Leinweber, D.B.

    1991-05-01

    Magnetic moment combinations and sum rules are evaluated using recent results for the magnetic moments of octet baryons determined in a numerical simulation of quenched QCD. The model-independent and parameter-free results of the lattice calculations remove some of the confusion and contradiction surrounding past magnetic moment sum rule analyses. The lattice results reveal the underlying quark dynamics investigated by magnetic moment sum rules and indicate the origin of magnetic moment quenching for the non-strange quarks in Σ. In contrast to previous sum rule analyses, the magnetic moments of nonstrange quarks in Ξ are seen to be enhanced in the lattice results. In most cases, the spin-dependent dynamics and center-of-mass effects giving rise to baryon dependence of the quark moments are seen to be sufficient to violate the sum rules in agreement with experimental measurements. In turn, the sum rules are used to further examine the results of the lattice simulation. The Sachs sum rule suggests that quark loop contributions not included in present lattice calculations may play a key role in removing the discrepancies between lattice and experimental ratios of magnetic moments. This is supported by other sum rules sensitive to quark loop contributions. A measure of the isospin symmetry breaking in the effective quark moments due to quark loop contributions is in agreement with model expectations. (Author) 16 refs., 2 figs., 2 tabs

  1. A relation between the rotational g-factor and the electric dipole moment of a diatomic molecule

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.

    1998-01-01

    The relation between the rotational g-factor and the electric dipole moment of a diatomic molecule is investigated. An explicit expression for the irreducible nonadiabatic contribution in terms of excited electronic states is derived. The importance of this expression for the analysis of vibration...

  2. Prototype steel-concrete LEP dipole magnet

    CERN Multimedia

    1981-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. The excitation coils were also very simple: aluminium bars insulated by polyester boxes in this prototype, by glass-epoxy in the final magnets. For details see LEP-Note 118,1978 and LEP-Note 233 1980. See also 8111529,7908528X.

  3. Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Liu Hong

    2006-01-01

    The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points

  4. Superconducting dipole magnet for the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Kurilkin P.

    2017-01-01

    Full Text Available The scientific goal of the CBM (Compressed Baryonic Matter experiment at FAIR (Darmstadt is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. The magnet will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. The results of the development of dipole magnet of the CBM experiment are presented.

  5. System of coefficients for charged-particle beam linear transformation by a magnetic dipole element

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1979-01-01

    A new technique for consideration of dipole magnet ion-optical effect has been developed to study the problems of commutation and monochromatization of a charged particle beam. In a new form obtained are systematized coefficients of linear transformation (CLT) of the charged particle beam for radial and axial motions in a magnetic dipole element (MDE) including a dipole magnet and two gaps without magnetic field. Given is a method of graphic determination of MDE parameters and main CLT. The new form of coefficients and conditions of the transformations feasibility considerably facilitates the choice and calculation of dipole elements

  6. Permanent magnet based dipole magnets for next generation light sources

    Directory of Open Access Journals (Sweden)

    Takahiro Watanabe

    2017-07-01

    Full Text Available We have developed permanent magnet based dipole magnets for the next generation light sources. Permanent magnets are advantageous over electromagnets in that they consume less power, are physically more compact, and there is a less risk of power supply failure. However, experience with electromagnets and permanent magnets in the field of accelerators shows that there are still challenges to replacing main magnets of accelerators for light sources with permanent magnets. These include the adjustability of the magnetic field, the temperature dependence of permanent magnets, and the issue of demagnetization. In this paper, we present a design for magnets for future light sources, supported by experimental and numerical results.

  7. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves t...... towards the injector. Simultaneously with the compression, an increase in the electron temperature and reflection of a small amount of plasma are seen. The amount of plasma transmitted through the dipole field is found to be nearly independent of the field strength.......A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...

  8. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    Science.gov (United States)

    Vutha, A.; Horbatsch, M.; Hessels, E.

    2018-01-01

    We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the $\\hat{\\rm{z}}$ direction by an applied electric field, as has recently been demonstrated by Park, et al. [Angewandte Chemie {\\bf 129}, 1066 (2017)]. The trapped molecules are prepared into a state which has its electron spin perpendicular to $\\hat{\\rm{z}}$, and a magnetic field along $\\hat{\\rm{z}}$ causes precession of this spin. An electron electric dipole moment $d_e$ would affect this precession due to the up to 100~GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring $d_e$ to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  9. Superconducting dipole magnet for the UTSI MHD facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Niemann, R.C.; Turner, L.R.

    1978-01-01

    The Argonne National Laboratory is designing and will build a large superconducting dipole magnet system for use in the Coal Fired Flow MHD Research Facility at the University of Tennessee Space Institute (UTSI). Presented in detail are the conceptual design of the magnet geometry, conductor design, cryostability evaluation, magnetic pressure computation, structural design, cryostat design, the cryogenics system design, and magnet instrumentations and control

  10. Screening of electron electric dipole moment through the Foldy-Wouthuysen representation

    Directory of Open Access Journals (Sweden)

    M M Ettefaghi

    2015-07-01

    Full Text Available The existent of the intrinsic electric dipole moments (EDM lead to CP violation in a physical system. In the non-relativistic and point like limits, the effects of them in atoms are canceled which is well-known as Schiff screening effects. It is why that the energy shift due to the EDM is proportional to the expectation value of which vanishes in non-relativistic limit. In this paper, using Foldy-Wouthuysen representation we remove the odd terms (those terms mix the positive and negative energy solutions up to order and then study the Schiff screening effects.

  11. Dual aperture dipole magnet with second harmonic component

    Science.gov (United States)

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  12. Status Report on the Superconducting Dipole Magnet Production for the LHC

    CERN Document Server

    Bajko, M; Bellesia, B; Fessia, P; Hagen, P; Koutchouk, Jean-Pierre; Miles, J; Modena, M; Pojer,, M; Rossi, L; de Rijk, G; Savary, F; Todesco, E; Tommasini, D; Vlogaert, J; Völlinger, C; Wildner, E

    2007-01-01

    In August 2006, about 95 % of the production of the 1232 LHC superconducting dipole cold masses, whose coils are wound with Cu/Nb-Ti cables, is completed. One of the 3 manufacturers, having produced one third of the required magnets, completed its production in the end of 2005. The acceptance of the magnets takes place after the 1.9 K performance tests and has been issued for more then 1000 magnets so far. More then half of the dipole magnets are already installed in the tunnel. The paper reviews the main features of the dipoles, the most important steps of the manufacturing and the most critical operations. The quality control and the critical nonconformities that have led, for instance, to a swift campaign of investigations and repairs of few subcomponents (diode assembly, cold bore tube to welding flare fillet weld) are discussed. The status of the production and the performance of the tested dipoles will be presented. Finally the expected schedule for the completion of the production will be shown.

  13. Quantum tunneling of the magnetic moment in a free nanoparticle

    International Nuclear Information System (INIS)

    O'Keeffe, M.F.; Chudnovsky, E.M.; Garanin, D.A.

    2012-01-01

    We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: ► We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. ► The quantum phase diagram shows magnetic moment dependence on rotator shape and size. ► Our work explains magnetic properties of free atomic clusters and magnetic molecules.

  14. Electromagnetic radiation of protons in edge fields of synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Smolyakov, N.V.

    1986-01-01

    Effect of the edge shape of magnetic field of a dipole on the short-wave part of electromagnetic radiation spectrum of a proton beam is investigated. In some cases short-wave photons are shown to be shaped in the ranges of largest edge curvature of the magnetic field. Universality of edge radiation spectrum is proved. Spectral characteristics of proton edge radiation in a superconducting magnetic dipole of the storage-accelerator complex are obtained

  15. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: indirect evidence for a permanent dipole moment.

    Science.gov (United States)

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea

    2015-09-28

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  16. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya E.

    2014-03-01

    Full Text Available It is evidence for an extension of the Standard Model in particle physics, if static electric dipole moments (EDMs are measured for any elementary particle. The nuclear EDM arises mainly from two sources: one comes from asymmetric charge distribution in a nucleus and the other is due to the nucleon intrinsic EDM. We estimate the nuclear EDMs from two sources for the 1/21+ states in Xe isotopes by a shell model approach using full orbitals between magic numbers 50 and 82.

  17. Can the magnetic moment contribution explain the Ay puzzle?

    International Nuclear Information System (INIS)

    Stoks, V.G.

    1998-01-01

    We evaluate the full one-photon-exchange Born amplitude for Nd scattering. We include the contributions due to the magnetic moment of the proton or neutron, and the magnetic moment and quadrupole moment of the deuteron. It is found that the inclusion of the magnetic-moment interaction in the theoretical description of the Nd scattering observables cannot resolve the long-standing A y puzzle. copyright 1998 The American Physical Society

  18. Electric dipole moments of light nuclei in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, Jan; Liebig, Susanna; Minossi, David [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Hanhart, Christoph; Nogga, Andreas; Vries, Jordy de; Wirzba, Andreas [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Meissner, UlfG. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Helmholtz-Institut fuer Strahlen und Kernphysik, Universitaet Bonn (Germany)

    2014-07-01

    Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT-theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP-violation from the standard mechanism predicts EDMs that are experimentally inaccessible in the foreseeable future. We calculate within the framework of effective field theory the two-nucleon contributions to the EDMs of the deuteron, helion, and triton induced by P- and T-violating terms that arise from the QCD θ-term or dimension-6 sources of physics beyond the Standard Model (SM). We demonstrate what insights into physics beyond the SM can be gained from a suitable combination of measurements and, if needed, supplementary lattice QCD calculations.

  19. Passive superconductor: A viable method of controlling magnetization multipoles in the SSC dipole

    International Nuclear Information System (INIS)

    Green, M.A.

    1989-02-01

    At injection, the magnetization of the superconductor produces the dominant field error in the SSC dipole magnets. The field generated by magnetization currents in the superconductor is rich in higher symmetric multipoles (normal sextupole, normal decapole, and so on). Pieces of passive superconductor properly located within the bore of the dipole magnet can cancel the higher multipoles generated by the SSC dipole coils. The multipoles generated by the passive superconductor (predominantly sextupole and decapole) are controlled by the angular and radial location of the superconductor, the volume of superconductor, and the size of the superconducting filaments within the passive conductor. This paper will present the tolerances on each of these factors. The paper will show that multipole correction using passive superconductor is in general immune to the effects of temperature and magnetization decay due to flux creep, provided that dipole superconductor and the passive correction superconductor are properly specified. When combined with a lumped correction system, the passive superconductor can be a viable alternative to continuous correction coils within the SSC dipoles. 20 refs., 8 figs., 2 tabs

  20. Passive superconductor a viable method of controlling magnetization multipoles in the SSC dipole

    International Nuclear Information System (INIS)

    Green, M.A.

    1989-01-01

    At injection, the magnetization of the superconductor produces the dominant field error in the SSC dipole magnets. The field generated by magnetization currents in the superconductor is rich in higher symmetric multipoles (normal sextupole, normal decapole, and so on). Pieces of passive superconductor properly located within the bore of the dipole magnet can cancel the higher multipoles generated by the SSC dipole coils. The multipoles generated by the passive superconductor (predominantly sextupole and decapole) are controlled by the angular and radial location of the superconductor, the volume of superconductor, and the size of the superconducting filaments within the passive conductor. This paper will present the tolerances on each of these factors. The paper will show that multipole correction using passive superconductor is in general immune to the effects of temperature and magnetization decay due to flux creep, provided that dipole superconductor and the passive correction superconductor are properly specified. When combined with a lumped correction system, the passive superconductor can be a viable alternative to continuous correction coils within the SSC dipoles. 20 refs., 8 figs., 2 tabs

  1. Late kinetic decoupling of light magnetic dipole dark matter

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Kadota, Kenji

    2016-01-01

    We study the kinetic decoupling of light (≲10 GeV) magnetic dipole dark matter (DM). We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10 −6 solar masses.

  2. Methods for production of UNK SC-dipoles magnetic measurements

    International Nuclear Information System (INIS)

    Smirnov, N.L.

    1991-01-01

    Many SC-dipoles for UNK will require from the chosen magnetic measurement methods high accuracy and efficiency. The brief of using methods, their possibilities and analysis of their errors are given. The measurements results for a full-scale model of SC-dipole SPDM1 are presented. 5 refs.; 4 figs.; 4 tabs

  3. Quantum tunneling of the magnetic moment in a free nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    O' Keeffe, M.F. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Chudnovsky, E.M., E-mail: eugene.chudnovsky@lehman.cuny.edu [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Garanin, D.A. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States)

    2012-09-15

    We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: Black-Right-Pointing-Pointer We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. Black-Right-Pointing-Pointer The quantum phase diagram shows magnetic moment dependence on rotator shape and size. Black-Right-Pointing-Pointer Our work explains magnetic properties of free atomic clusters and magnetic molecules.

  4. CP-odd Phase Correlations and Electric Dipole Moments

    CERN Document Server

    Olive, Keith A; Ritz, A; Santoso, Y; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi

    2005-01-01

    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model (CMSSM), the CP-odd invariant related to the soft trilinear A-phase at the GUT scale, theta_A, induces non-trivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tan beta, and can provide the dominant contribution to the electron EDM induced by theta_A. We perform a detailed analysis of the EDM constraints within the CMSSM, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also i...

  5. Theoretical status of baryon magnetic moments

    Science.gov (United States)

    Franklin, Jerrold

    1989-05-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12-17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article. (AIP)

  6. Theoretical status of baryon magnetic moments

    International Nuclear Information System (INIS)

    Franklin, J.

    1989-01-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12--17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article

  7. Model independent bounds on magnetic moments of Majorana neutrinos

    International Nuclear Information System (INIS)

    Bell, Nicole F.; Gorchtein, Mikhail; Ramsey-Musolf, Michael J.; Vogel, Petr; Wang, Peng

    2006-01-01

    We analyze the implications of neutrino masses for the magnitude of neutrino magnetic moments. By considering electroweak radiative corrections to the neutrino mass, we derive model-independent naturalness upper bounds on neutrino magnetic moments, μ ν , generated by physics above the electroweak scale. For Dirac neutrinos, the bound is several orders of magnitude more stringent than present experimental limits. However, for Majorana neutrinos the magnetic moment contribution to the mass is Yukawa suppressed. The bounds we derive for magnetic moments of Majorana neutrinos are weaker than present experimental limits if μ ν is generated by new physics at ∼1 TeV, and surpass current experimental sensitivity only for new physics scales >10-100 TeV. The discovery of a neutrino magnetic moment near present limits would thus signify that neutrinos are Majorana particles

  8. Large contribution to the neutron electric dipole moment from a dimension six four quark operator

    International Nuclear Information System (INIS)

    He, Xiaogang; McKellar, B.

    1992-01-01

    In this paper the contribution of a dimension six four quark operator (Q q ) to the neutron electric dipole moment was studied. It was found that this contribution dominates over other contributions by at least one order of magnitude in Left-Right symmetric models and two orders of magnitude in di-quark scalar models. 10 refs., 1 fig

  9. Further Development of the Sextupole Dipole Corrector (MSCB) Magnet for the LHC

    CERN Document Server

    Ang, Z; Bajko, M; Bottura, L; Coxill, D; Giloux, C; Ijspeert, Albert; Karppinen, M; Landgrebe, D; Walckiers, L

    2000-01-01

    Combined sextupole-dipole corrector magnets (MSCB) will be mounted in each half cell of the new Large Hadron Collider (LHC) being built at CERN. The dipole part, used for particle orbit corrections, will be powered individually and is designed for low current, originally 30 A but now 55 A. The sextupole part, used for chromaticity corrections, is connected via cold busbars in families of 12 or 13 magnets and is powered with 550 A. Several versions of this corrector magnet were tested as model magnets in order to develop the final design for the series. In the first design the coils are nested, with the dipole coil wound around the sextupole coil to obtain as short a magnet as possible, accepting the slight cross-talk between the coils due to persistent currents, and increased saturation effects. The design has evolved and an alternative design, in which the dipole and sextupole coils are separated, is now favored. Tests at 4.5 K and at 1.9 K were conducted to determine the training behavior, the field qualit...

  10. Electromagnetic Design Study for a Large Bore 15T Superconducting Dipole Magnet

    CERN Document Server

    Schwerg, N; Devred, Arnaud; Henke, H

    2005-01-01

    In the framework of research and development (R&D) activities at CERN the Next European Dipole (NED) program is one which is to the development of a high-field dipole magnet using Nb_3Sn superconductors. Part of the NED activities is a design study of different possible dipole configurations which is shared amongst the collaborating institutes. This thesis covers the electromagnetic design study of an 88 mm large bore superconducting 15 T dipole magnet with a coil cross section in cos-theta-layer design. Based on analytically describable geometries the sources of multipole errors are studied and elementary estimations of the magnet are carried out, e.g., the required amount of superconductors or the influence of the iron yoke thickness on the field quality. The magnet cross section for NED is optimized by means of the CERN field computation program ROXIE. The preliminary NED design serves as starting point for the coil cross section optimization with respect to field quality and a radial positioning of th...

  11. Gyre-driven decay of the Earth’s magnetic dipole

    DEFF Research Database (Denmark)

    Finlay, Christopher C.; Aubert, Julien; Gillet, Nicolas

    2016-01-01

    Direct observations indicate that the magnitude of the Earth’s magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre...

  12. Simple optical measurement of the magnetic moment of magnetically labeled objects

    Energy Technology Data Exchange (ETDEWEB)

    Heidsieck, Alexandra, E-mail: aheidsieck@tum.de [Zentralinstitut für Medizintechnik, Technische Universität München (Germany); Rudigkeit, Sarah [Physics Department, Technische Universität München (Germany); Rümenapp, Christine; Gleich, Bernhard [Zentralinstitut für Medizintechnik, Technische Universität München (Germany)

    2017-04-01

    The magnetic moment of magnetically labeled cells, microbubbles or microspheres is an important optimization parameter for many targeting, delivery or separation applications. The quantification of this property is often difficult, since it depends not only on the type of incorporated nanoparticle, but also on the intake capabilities, surface properties and internal distribution. We describe a method to determine the magnetic moment of those carriers using a microscopic set-up and an image processing algorithm. In contrast to other works, we measure the diversion of superparamagnetic nanoparticles in a static fluid. The set-up is optimized to achieve a homogeneous movement of the magnetic carriers inside the magnetic field. The evaluation is automated with a customized algorithm, utilizing a set of basic algorithms, including blob recognition, feature-based shape recognition and a graph algorithm. We present example measurements for the characteristic properties of different types of carriers in combination with different types of nanoparticles. Those properties include velocity in the magnetic field as well as the magnetic moment. The investigated carriers are adherent and suspension cells, while the used nanoparticles have different sizes and coatings to obtain varying behavior of the carriers. - Highlights: • Determination of the magnetic moment of magnetic carriers. • optimized set-up achieve a homogeneous movement. • Automated evaluation with a customized algorithm. • example measurements for the properties of nanoparticle-loaded cells.

  13. Energy of magnetic moment of superconducting current in magnetic field

    International Nuclear Information System (INIS)

    Gurtovoi, V.L.; Nikulov, A.V.

    2015-01-01

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment

  14. The search for electric dipole moments of light ions in storage rings

    International Nuclear Information System (INIS)

    Rathmann, Frank; Saleev, Artem; Nikolaev, N N

    2013-01-01

    The Standard Model (SM) of Particle Physics is not capable of accounting for the apparent matter-antimatter asymmetry of our universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal (T) and parity (P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and reducing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches for proton and deuteron EDMs bear the potential to reach sensitivities beyond 10 −29 e·cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [1], while the newly founded Jülich-based JEDI collaboration [2] is pursuing an approach using a combined electric-magnetic lattice, which shall provide access to the EDMs of protons, deuterons, and 3 He ions in the same machine. In addition, JEDI has recently proposed making a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters

  15. Spins, charge radii and magnetic moments of neutron-rich Mn isotopes measured with bunched beam Collinear Laser Spectroscopy

    CERN Document Server

    AUTHOR|(CDS)2085887; Heylen, Hanne

    In this work, the odd-even $^{51–63}$Mn isotopes have been analyzed using collinear laser spectroscopy, from which the magnetic dipole moment and the change in change in mean square charge radius can be determined. The magnetic moment is very sensitive to the composition of the total nuclear wave function, while the charge radius gives information about the relative size and degree of deformation of the nucleus. An additional advantage of collinear laser spectroscopy is the possibility of direct measurement of the nuclear spin. The main motivation behind the study of these isotopes is to investigate the change in nuclear structure when approaching neutron number N = 40. This region is of interest due to the apparent doubly magic nature of $^{68}$Ni , which is not seen in the N = 40 isotopes of $^{26}$Fe and $^{24}$Cr. Mn, situated between these elements, offers another perspective due to its uncoupled proton. Based on the observed spectra and extracted moments, spins were assigned to $^{59,61,63}$Mn. The ex...

  16. Point dipole as a magnetic obstacle in liquid metal duct flow

    Science.gov (United States)

    Tympel, Saskia; Boeck, Thomas; Krasnov, Dmitry; Schumacher, Jörg

    2011-11-01

    Lorentz force velocimetry is a new contactless technique to measure the velocities of hot and agressive conductiong liquids. The measurement of the Lorentz force on the magnet is highly sensitive to the velocity profile that is influenced by the magnetic field. Thus the knowlegde of the flow transformation and the influence of an inhomogeneous local magnetic field on liquid metal flow is essential for obtaining velocity information from the measured forces. We consider liquid metal flow in a square duct with electrically insulating walls under the influence of a magnetic point dipole using three-dimensional direct numerical simulations with a finite-difference method. The dipole acts as a magnetic obstacle. A wide range of parameters affects the created wake. In this canonical setting, we study the modification of the flow for different Hartmann and Reynolds numbers. We observe a strong dependence of the magnetic obstacle effect and the corresponding Lorentz force on the orientation of the dipole as well as on its position. The authors acknowledge the support of the Deutsche Forschungsgemeinschaft.

  17. Retraining of the 1232 Main Dipole Magnets in the LHC

    CERN Document Server

    Verweij, A; Bednarek, M; Bottura, L; Charifoulline, Z; Feher, S; Hagen, P; Modena, M; Le Naour, S; Romera, I; Siemko, A; Steckert, J; Tock, J Ph; Todesco, E; Willering, G; Wollmann, D

    2016-01-01

    The Large Hadron Collider (LHC) contains eight main dipole circuits, each of them with 154 dipole magnets powered in series. These 15-m-long magnets are wound from Nb-Ti superconducting Rutherford cables, and have active quench detection triggering heaters to quickly force the transition of the coil to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. During the reception tests in 2002-2007, all these magnets have been trained up to at least 12 kA, corresponding to a beam energy of 7.1 TeV. After installation in the accelerator, the circuits have been operated at reduced currents of up to 6.8 kA, from 2010 to 2013, corresponding to a beam energy of 4 TeV. After the first long shutdown of 2013-2014, the LHC runs at 6.5 TeV, requiring a dipole magnet current of 11.0 kA. A significant number of training quenches were needed to bring the 1232 magnets up to this current. In this paper, the circuit behavior in case of a quench is presented, as well as the quench training as...

  18. A simple stochastic model for dipole moment fluctuations in numerical dynamo simulations

    Directory of Open Access Journals (Sweden)

    Domenico G. eMeduri

    2016-04-01

    Full Text Available Earth's axial dipole field changes in a complex fashion on many differenttime scales ranging from less than a year to tens of million years.Documenting, analysing, and replicating this intricate signalis a challenge for data acquisition, theoretical interpretation,and dynamo modelling alike. Here we explore whether axial dipole variationscan be described by the superposition of a slow deterministic driftand fast stochastic fluctuations, i.e. by a Langevin-type system.The drift term describes the time averaged behaviour of the axial dipole variations,whereas the stochastic part mimics complex flow interactions over convective time scales.The statistical behaviour of the system is described by a Fokker-Planck equation whichallows useful predictions, including the average rates of dipole reversals and excursions.We analyse several numerical dynamo simulations, most of which havebeen integrated particularly long in time, and also the palaeomagneticmodel PADM2M which covers the past 2 Myr.The results show that the Langevin description provides a viable statistical modelof the axial dipole variations on time scales longer than about 1 kyr.For example, the axial dipole probability distribution and the average reversalrate are successfully predicted.The exception is PADM2M where the stochastic model reversal rate seems too low.The dependence of the drift on the axial dipolemoment reveals the nonlinear interactions that establish thedynamo balance. A separate analysis of inductive and diffusive magnetic effectsin three dynamo simulations suggests that the classical quadraticquenching of induction predicted by mean-field theory seems at work.

  19. Results of magnetic field measurements of 40 mm aperture 17-m long SSC model collider dipole magnets

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H.

    1991-01-01

    Magnetic field measurements have been made on twelve 17 m-long, 40 mm-aperture R ampersand D superconducting dipoles. Data on dipole field strength, multipole coefficients, and alignment have been obtained. The data indicate that the magnets as built are generally within the expectations for this design. 7 refs., 5 figs

  20. Retraining of the 1232 Main Dipole Magnets in the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Verweij, A. [CERN; Auchmann, B.; Bednarek, M.; Bottura, L.; Charifoulline, Z.; Feher, S. [Fermilab; Hagen, P.; Modena, M.; Le Naour, S.; Romera, I.; Siemko, A.; Steckert, J.; Tock, J. Ph; Todesco, E.; Willering, G.; Wollmann, D.

    2016-01-05

    The Large Hadron Collider (LHC) contains eight main dipole circuits, each of them with 154 dipole magnets powered in series. These 15-m-long magnets are wound from Nb-Ti superconducting Rutherford cables, and have active quench detection triggering heaters to quickly force the transition of the coil to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. During the reception tests in 2002-2007, all these magnets have been trained up to at least 12 kA, corresponding to a beam energy of 7.1 TeV. After installation in the accelerator, the circuits have been operated at reduced currents of up to 6.8 kA, from 2010 to 2013, corresponding to a beam energy of 4 TeV. After the first long shutdown of 2013-2014, the LHC runs at 6.5 TeV, requiring a dipole magnet current of 11.0 kA. A significant number of training quenches were needed to bring the 1232 magnets up to this current. In this paper, the circuit behavior in case of a quench is presented, as well as the quench training as compared to the initial training during the reception tests of the individual magnets.

  1. Molecular response to a time-independent non-uniform magnetic-field

    International Nuclear Information System (INIS)

    Faglioni, F.; Ligabue, A.; Pelloni, S.; Soncini, A.; Lazzeretti, P.

    2004-01-01

    The response of a molecule to a static inhomogeneous magnetic-field is rationalized via multipole magnetic susceptibilities and induced magnetic multipole and anapole moments. The energy of the molecule interacting with the external field is expressed as a Taylor series in the powers of the field and its gradient at the origin of the coordinate system. It involves magnetic multipole tensors of increasing rank, which can be evaluated via quantum mechanical approaches. An electronic energy shift is caused by the feed-back interaction between the induced magnetic dipole moment and the external magnetic field, and between the induced magnetic quadrupole moment and the gradient of the magnetic field. It is shown that, for a static magnetic field with uniform gradient, the magnetic quadrupole moment is origin-dependent, but the total interaction energy and the induced magnetic dipole are invariant to a translation of the coordinate system. The formal advantages of a Geertsen approach to third- and fourth-rank mixed-multipole susceptibilities are discussed

  2. Electric dipole moment function and line intensities for the ground state of carbon monxide

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Cheng Xin-Lu; Wu Jie; Liu Hao

    2015-01-01

    An accurate electric dipole moment function (EDMF) is obtained for the carbon monoxide (CO) molecule (X 1 Σ + ) by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is found using the highly accurate, multi-reference averaged coupled-pair functional (ACPF) approach with the basis set, aug-cc-pV6Z, and a finite-field with ±0.005 a.u. (The unit a.u. is the abbreviation of atomic unit). This ab initio EDMF is very consistent with the fitted ones. The vibrational transition matrix moments and the Herman–Wallis factors, calculated with the Rydberg–Klein–Rees (RKR) potential and the fitted and ab initio EDMFs, are compared with experimental measurements. The consistency of these line intensities with the high-resolution transmission (HITRAN) molecular database demonstrates the improved accuracy of the fitted and ab initio EDMFs derived in this work. (paper)

  3. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-01-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications

  4. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Practice

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    Practical aspects of applying a magnetic core to approach the Chu lower bound for the radiation Q factor of an electrically small magnetic dipole antenna are considered. It is shown that although a magnetic core does reduce the Q factor, its effect is not as strong as predicted by Wheeler...

  5. Experimental mapping of the absolute magnitude of the transition dipole moment function μe(R) of the Na2 AΣ1u+-XΣ1g+ transition

    Science.gov (United States)

    Ahmed, E. H.; Qi, P.; Beser, B.; Bai, J.; Field, R. W.; Huennekens, J. P.; Lyyra, A. M.

    2008-05-01

    The absolute magnitude of the transition dipole moment function μe(R) of the AΣ1u+-XΣ1g+ band system of Na2 was mapped experimentally over a relatively large range of internuclear distance R . The transition dipole moment matrix element of a set of rovibrational transitions between the AΣ1u+ and XΣ1g+ states was measured using the Autler-Townes effect. By employing the R -centroid approximation, or a fit to a polynomial function involving higher order R centroids, μe as a function of the internuclear distance was obtained. These Autler-Townes effect based measurements yield the absolute magnitude of μe , which can be used to test ab initio theoretical transition dipole moment functions or to “normalize” experimental transition moment functions obtained from intensity measurements, which in general give only the relative behavior of μe(R) .

  6. Can measurements of electric dipole moments determine the seesaw parameters?

    International Nuclear Information System (INIS)

    Demir, Durmus A.; Farzan, Yasaman

    2005-01-01

    In the context of the supersymmetrized seesaw mechanism embedded in the Minimal Supersymmetric Standard Model (MSSM), complex neutrino Yukawa couplings can induce Electric Dipole Moments (EDMs) for the charged leptons, providing an additional route to seesaw parameters. However, the complex neutrino Yukawa matrix is not the only possible source of CP violation. Even in the framework of Constrained MSSM (CMSSM), there are additional sources, usually attributed to the phases of the trilinear soft supersymmetry breaking couplings and the mu-term, which contribute not only to the electron EDM but also to the EDMs of neutron and heavy nuclei. In this work, by combining bounds on various EDMs, we analyze how the sources of CP violation can be discriminated by the present and planned EDM experiments

  7. The permanent electric dipole moment of thorium sulfide, ThS.

    Science.gov (United States)

    Le, Anh; Heaven, Michael C; Steimle, Timothy C

    2014-01-14

    Numerous rotational lines of the {18.26}1-X(1)Σ(+) band system of thorium sulfide, ThS, were recorded near 547.6 nm at a resolution of approximately 30 MHz. Measurements were made under field-free conditions, and in the presence of a static electric field. The field-free spectrum was analyzed to produce rotational and Λ-doubling parameters. The Stark shifts induced by the electric field were analyzed to determine permanent electric dipole moments, μ⃗el, of 4.58(10) D and 6.72(5) D for the X(1)Σ(+) (v = 0) and {18.26}1 states, respectively. The results are compared with the predictions of previous and new electronic structure calculations for ThS, and the properties of isovalent ThO.

  8. The quest for an electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Schmidt-Wellenburg, P.

    2016-01-01

    To date no electric dipole moment of the neutron (nEDM) has been observed. Why it is so vanishing small, escaping detection in the last 50 years, is not easy to explain. In general it is considered as the most sensitive probe for the violation of the combined symmetry of charge and parity (CP). A discovery could shed light on the poorly understood matter/anti-matter asymmetry of the universe. The neutron might one day help to distinguish different sources of CP-violation in combination with measurements of the electron and diamagnetic EDMs. This proceedings article presents an overview of the most important concepts in searches for an nEDM and presents a brief overview of the world wide efforts.

  9. The quest for an electric dipole moment of the neutron

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Wellenburg, P., E-mail: philipp.schmidt-wellenburg@psi.ch [Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2016-07-07

    To date no electric dipole moment of the neutron (nEDM) has been observed. Why it is so vanishing small, escaping detection in the last 50 years, is not easy to explain. In general it is considered as the most sensitive probe for the violation of the combined symmetry of charge and parity (CP). A discovery could shed light on the poorly understood matter/anti-matter asymmetry of the universe. The neutron might one day help to distinguish different sources of CP-violation in combination with measurements of the electron and diamagnetic EDMs. This proceedings article presents an overview of the most important concepts in searches for an nEDM and presents a brief overview of the world wide efforts.

  10. Electric dipole moments in natural supersymmetry

    Science.gov (United States)

    Nakai, Yuichiro; Reece, Matthew

    2017-08-01

    We discuss electric dipole moments (EDMs) in the framework of CP-violating natural supersymmetry (SUSY). Recent experimental results have significantly tightened constraints on the EDMs of electrons and of mercury, and substantial further progress is expected in the near future. We assess how these results constrain the parameter space of natural SUSY. In addition to our discussion of SUSY, we provide a set of general formulas for two-loop fermion EDMs, which can be applied to a wide range of models of new physics. In the SUSY context, the two-loop effects of stops and charginos respectively constrain the phases of A t μ and M 2 μ to be small in the natural part of parameter space. If the Higgs mass is lifted to 125 GeV by a new tree-level superpotential interaction and soft term with CP-violating phases, significant EDMs can arise from the two-loop effects of W bosons and tops. We compare the bounds arising from EDMs to those from other probes of new physics including colliders, b → sγ, and dark matter searches. Importantly, improvements in reach not only constrain higher masses, but require the phases to be significantly smaller in the natural parameter space at low mass. The required smallness of phases sharpens the CP problem of natural SUSY model building.

  11. Physicochemical and catalytic properties of Au nanorods micro-assembled in solvents of varying dipole moment and refractive index

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Rupinder; Pal, Bonamali, E-mail: bpal@thapar.edu

    2015-02-15

    Highlights: • Physicochemical activities of Au nanorods in water largely differ from organic solvents. • Au nanorods agglomeration increased with dipole moments of different polar solvents. • Refractive indexes of Au nanorods dispersion in various polar solvents are enhanced. • Electrokinetics significantly altered depending on agglomerated size of Au nanorods. • Catalysis or co-catalysis activity is varied as per the extent of Au nanorods coagulation. - Abstract: This paper deals with the impact of dipole moment (1.66–3.96 D) and refractive index (1.333–1.422) of the dispersion solvent on the plasmon absorption, surface charge, zeta potential, and adsorption properties of Au nanorods (AuNRs). AuNRs (length ≈ 53 nm and width ≈ 20 nm) undergo agglomeration (size 50–180 nm) with increase in the dipole moment of solvent (iPrOH < MeOH < DMF < DMSO). Whereas, no such coagulation occurs in H{sub 2}O and CCl{sub 4} suspension as confirmed by DLS and TEM size distribution. The electrostatic interaction of AuNRs with its surface adsorbed solvent dipoles leads to alteration of the their ionic state, absolute electronic charge and zeta potential (+49.79 mV in H{sub 2}O, +8.99 mV in DMF and −4.65 mV in MeOH dispersion) to a greater extent. This interaction distinctly modifies the adsorption behavior of polar molecules like p-nitrophenol and salicylic acid on AuNRs surface, as evidenced by the measured changes in their electro-kinetic parameters. As a result, we observe a substantial difference in catalytic and co-catalytic activities of AuNRs dispersed in various solvents as mentioned above because the catalytic properties of AuNRs are strongly dependent on the type of solvent in which they are dispersed.

  12. Doubly and triply linked porphyrin-perylene monoimides as near IR dyes with large dipole moments and high photostability

    KAUST Repository

    Jiao, Chongjun; Huang, Kuo-Wei; Chi, Chunyan; Wu, Jishan

    2011-01-01

    Doubly and triply linked porphyrin-perylene monoimides 3 and 4, with extraordinary stability, large dipole moments, and strong near IR absorption, were prepared by means of one-pot oxidative cyclodehydrogenation promoted by FeCl 3. © 2010 American

  13. Direct evaluation of electrical dipole moment and oxygen density ratio at high-k dielectrics/SiO2 interface by X-ray photoelectron spectroscopy analysis

    Science.gov (United States)

    Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-04-01

    The electrical dipole moment at an ultrathin high-k (HfO2, Al2O3, TiO2, Y2O3, and SrO)/SiO2 interface and its correlation with the oxygen density ratio at the interface have been directly evaluated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. The electrical dipole moment at the high-k/SiO2 interface has been measured from the change in the cut-off energy of secondary photoelectrons. Moreover, the oxygen density ratio at the interface between high-k and SiO2 has been estimated from cation core-line signals, such as Hf 4f, Al 2p, Y 3d, Ti 2p, Sr 3d, and Si 2p. We have experimentally clarified the relationship between the measured electrical dipole moment and the oxygen density ratio at the high-k/SiO2 interface.

  14. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  15. Modeling of magnetic particle orientation in magnetic powder injection molding

    Science.gov (United States)

    Doo Jung, Im; Kang, Tae Gon; Seul Shin, Da; Park, Seong Jin

    2018-03-01

    The magnetic micro powder orientation under viscous shear flow has been analytically understood and characterized into a new analytical orientation model for a powder injection molding process. The effects of hydrodynamic force from the viscous flow, external magnetic force and internal dipole-dipole interaction were considered to predict the orientation under given process conditions. Comparative studies with a finite element method proved the calculation validity with a partial differential form of the model. The angular motion, agglomeration and magnetic chain formation have been simulated, which shows that the effect of dipole-dipole interaction among powders on the orientation state becomes negligible at a high Mason number condition and at a low λ condition (the ratio of external magnetic field strength and internal magnetic moment of powder). Our developed model can be very usefully employed in the process analysis and design of magnetic powder injection molding.

  16. Dipole-sheet multipole magnets for accelerators

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1993-01-01

    The dipole-sheet formalism can be used to describe both cylindrical current-sheet multipole magnets and cylindrical-bore magnets made up of permanent magnet blocks. For current sheets, the formalism provides a natural way of finding a finite set of turns that approximate a continuous distribution. The formalism is especially useful In accelerator applications where large-bore, short, high-field-quality magnets that are dominated by fringe fields are needed. A further advantage of the approach is that in systems with either open or cylindrically symmetric magnetic boundaries, analytical expressions for the three-dimensional fields that are suitable for rapid numerical evaluation can be derived. This development is described in some detail. Also, recent developments in higher-order particle-beam optics codes based on the formalism are described briefly

  17. Dipole-dipole interaction of dust grains in plasmas

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.; Shukla, P.K.

    2005-01-01

    Complete screening of the negative dust grain charge by a cloud of trapped ions in plasmas is investigated. In the external electric field, the compound dust particle - 'dust grain + ion cloud' acquires a dipole moment due to displacement of the centers of positive and negative charges in the opposite directions. By analogy to the Van der Waals potential, the dipole-dipole interaction of the compound dust particles can have an attractive behavior. It is shown that the dipole-dipole attractive force can exceed the shadowing force that is connected with the reciprocal interception of ions by the neighboring dust grains

  18. Electronic dipole moment and tunneling state of hydrogen atom in hydrogen-bond materials revealed by neutron and X-ray structure analyses

    International Nuclear Information System (INIS)

    Kiyanagi, Ryoji; Noda, Yukio; Mochida, Tomoyuki; Sugawara, Tadashi

    2007-01-01

    The isolated hydrogen-bonded materials, 5-methyl-9-hydroxyphenalenone (MeHPLN) and 5-bromo-9-hydroxyphenalenone (Br-HPLN), were studied by means of X-ray and neutron diffraction methods. It was found that the position of the nucleus of the hydrogen atom in the hydrogen-bond region does not agree with the center of mass of the electron cloud of the hydrogen atom. This leads to a local electronic dipole moment in the hydrogen-bond region. Using the experimentally obtained dipole moment, phase transition temperatures for MeHPLN and BrHPLN were calculated based on a tunneling model. Result shows good agreement with the ones obtained by a dielectric measurement. (author)

  19. Quality factor of an electrically small magnetic dipole antenna with magneto-dielectric core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    In this work, we investigate the radiation Q of electrically small magnetic dipole antennas with magneto-dielectric core versus the antenna electrical size, permittivity and permeability of the core. The investigation is based on the exact theory for a spherical magnetic dipole antenna...

  20. Macroscopic quantum tunneling of the magnetic moment

    Science.gov (United States)

    Tejada, J.; Hernandez, J. M.; del Barco, E.

    1999-05-01

    In this paper we review the work done on magnetic relaxation during the last 10 years on both single-domain particles and magnetic molecules and its contribution to the discovery of quantum tunneling of the magnetic moment (Chudnovsky and Tejada, Macroscopic Quantum tunneling of the Magnetic moment, Cambridge University press, Cambridge, 1998). We present first the theoretical expressions and their connection to quantum relaxation and secondly, we show and discuss the experimental results. Finally, we discuss very recent hysteresis data on Mn 12Ac molecules at extremely large sweeping rate for the external magnetic field which suggest the existence of quantum spin—phonon avalanches.

  1. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Novikov, S. M.; Zywietz, U.

    2012-01-01

    Strong resonant light scattering by individual spherical Si nanoparticles is experimentally demonstrated, revealing pronounced resonances associated with the excitation of magnetic and electric modes in these nanoparticles. It is shown that the low-frequency resonance corresponds to the magnetic...... dipole excitation. Due to high permittivity, the magnetic dipole resonance is observed in the visible spectral range for Si nanoparticles with diameters of similar to 200 nm, thereby opening a way to the realization of isotropic optical metamaterials with strong magnetic responses in the visible region....

  2. The electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Tsukuba Univ. (Japan). Graduate School of Pure and Applied Sciences; Horsley, R.; Zanotti, J. [Edinburgh Univ. (United Kingdom). School of Physics; Izubuchi, T. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Kanazawa Univ. (Japan). Inst. for Theoretical Physics; Nakamura, Y.; Pleiter, D.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division. Dept. of Mathematical Sciences

    2008-07-15

    We compute the electric dipole moment of proton and neutron from lattice QCD simulations with N{sub f}=2 flavors of dynamical quarks at imaginary vacuum angle {theta}. The calculation proceeds via the CP odd form factor F{sub 3}. A novel feature of our calculation is that we use partially twisted boundary conditions to extract F{sub 3} at zero momentum transfer. As a byproduct, we test the QCD vacuum at nonvanishing {theta}. (orig.)

  3. Doubly and triply linked porphyrin-perylene monoimides as near IR dyes with large dipole moments and high photostability

    KAUST Repository

    Jiao, Chongjun

    2011-01-21

    Doubly and triply linked porphyrin-perylene monoimides 3 and 4, with extraordinary stability, large dipole moments, and strong near IR absorption, were prepared by means of one-pot oxidative cyclodehydrogenation promoted by FeCl 3. © 2010 American Chemical Society.

  4. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    International Nuclear Information System (INIS)

    Wang, Yimin; Bowman, Joel M.; Kamarchik, Eugene

    2016-01-01

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na + H 2 O, F − H 2 O, and Cl − H 2 O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H 2 O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na + and aVTZ basis for Cl − and F − ), over a large range of distances and H 2 O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  5. submitter Simulation of a quench event in the upgraded High-Luminosity LHC Main dipole circuit including the 11 T Nb$_{3}$Sn dipole magnets

    CERN Document Server

    Fernandez Navarro, Alejandro Manuel; Verweij, Arjan P; Bortot, Lorenzo; Mentink, Matthias; Prioli, Marco; Auchmann, Bernhard; Izquierdo Bermudez, Susana; Ravaioli, Emmanuele; Yammine, Samer

    2018-01-01

    To achieve the goal of increased luminosity, two out of eight main dipole circuits of the accelerator will be reconfigured in the coming LHC upgrade by replacing one standard 14.3-m long, Nb-Ti-based, 8.3 T dipole magnet by two 5.3-m long, Nb$_{3}$Sn-based, 11.2 T magnets (MBH). The modified dipole circuits will contain 153 Nb-Ti magnets and two MBH magnets. The latter will be connected to an additional trim power converter to compensate for the differences in the magnetic transfer functions. These modifications imply a number of challenges from the point of view of the circuit integrity, operation, and quench protection. In order to assess the circuit performance under different scenarios and to validate the circuit quench protection strategy, reliable and accurate numerical transient simulations have to be performed. We present the field/circuit coupling simulation of the reconfigured main dipole magnet chain following the introduction of the MBH magnets. 2-D distributed LEDET models of the MBH's have been ...

  6. Toward verification of electroweak baryogenesis by electric dipole moments

    International Nuclear Information System (INIS)

    Fuyuto, Kaori; Hisano, Junji; Senaha, Eibun

    2016-01-01

    We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.

  7. The electric dipole moment of magnesium deuteride, MgD.

    Science.gov (United States)

    Steimle, Timothy C; Zhang, Ruohan; Wang, Hailing

    2014-06-14

    The (0,0) A(2)Π-X (2)Σ(+) band of a cold molecular beam sample of magnesium monodeuteride, MgD, has been recorded field-free and in the presence of a static electric field of up to 11 kV/cm. The lines associated with the lowest rotational levels are detected for the first time. The field-free spectrum was analyzed to produce an improved set of fine structure parameters for the A(2)Π (v = 0) state. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ(el) of 2.567(10)D and 1.31(8)D for A(2)Π (v = 0) and X(2)Σ(+)(v = 0) states, respectively. The recommended value for μ(el)(X(2)Σ(+) (v = 0)) for MgH, based upon the measured value for MgD, is 1.32(8)D.

  8. Toward verification of electroweak baryogenesis by electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Fuyuto, Kaori, E-mail: fuyuto@th.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Hisano, Junji, E-mail: hisano@eken.phys.nagoya-u.ac.jp [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8584 (Japan); Senaha, Eibun, E-mail: senaha@ncu.edu.tw [Department of Physics and Center for Mathematics and Theoretical Physics, National Central University, Taoyuan, 32001, Taiwan (China)

    2016-04-10

    We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.

  9. Geant4 Developments for the Radon Electric Dipole Moment Search at TRIUMF

    Science.gov (United States)

    Rand, E. T.; Bangay, J. C.; Bianco, L.; Dunlop, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Wong, J.

    2011-09-01

    An experiment is being developed at TRIUMF to search for a time-reversal violating electric dipole moment (EDM) in odd-A isotopes of Rn. Extensive simulations of the experiment are being performed with GEANT4 to study the backgrounds and sensitivity of the proposed measurement technique involving the detection of γ rays emitted following the β decay of polarized Rn nuclei. GEANT4 developments for the RnEDM experiment include both realistic modelling of the detector geometry and full tracking of the radioactive β, γ, internal conversion, and x-ray processes, including the γ-ray angular distributions essential for measuring an atomic EDM.

  10. The electric dipole moment of the deuteron from the QCD {theta}-term

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, J.; Liebig, S. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Hanhart, C.; Nogga, A.; Wirzba, A. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Meissner, U.G. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Universitaet Bonn, Bethe Center for Theoretical Physics, Bonn (Germany)

    2013-03-15

    The two-nucleon contributions to the electric dipole moment (EDM) of the deuteron, induced by the QCD {theta}-term, are calculated in the framework of effective field theory up-to-and-including next-to-next-to-leading order. In particular we find for the difference of the deuteron EDM and the sum of proton and neutron EDM induced by the QCD {theta}-term a value of (- 5.4 {+-}3.9) anti {theta} x 10{sup -} {sup 4} e fm. The by far dominant uncertainty comes from the CP- and isospin-violating {pi}NN coupling constant. (orig.)

  11. Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

    OpenAIRE

    Baron, J.; Campbell, W. C.; DeMille, D.; Doyle, J. M.; Gabrielse, G.; Gurevich, Y. V.; Hess, P. W.; Hutzler, N. R.; Kirilov, E.; Kozyryev, I.; O'Leary, B. R.; Panda, C. D.; Parsons, M. F.; Petrik, E. S.; Spaun, B.

    2014-01-01

    The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d_e, in the range of 10^(−27) to 10^(−30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S) that is also asymmetric under T. Using the p...

  12. The neutron electric dipole moments as a test of the superweak interaction theory

    CERN Document Server

    Wolfenstein, Lincoln

    1974-01-01

    Theoretical calculations of the neutron electric dipole moment D/sub n / are reviewed for various theories of CP violation. It is shown that for the superweak interaction theory D/sub n/ is less than 10/sup -29/ e.cm in contrast to values of 10/sup -23/ to 10/sup -24/ predicted by many but not all milliweak theories. It is concluded that prospective measurements of D/sub n/ may provide decisive evidence against or significant evidence in favour of the superweak theory. (26 refs).

  13. Superconducting super collider second generation dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The Superconducting Super Collider, a planned colliding beam particle physics research facility, requires /approximately/10,000 superconducting devices for the control of high energy particle beams. The /approximately/7,500 collider ring superconducting dipole magnets require cryostats that are functional, cryogenically efficient, mass producible and cost effective. A second generation cryostat design has been developed utilizing the experiences gained during the construction, installation and operation of several full length first generation dipole magnet models. The nature of the cryostat improvements is presented. Considered are the connections between the magnet cold mass and its supports, cryogenic supports, cold mass axial anchor, thermal shields, insulation, vacuum vessel and interconnections. The details of the improvements are enumerated and the abstracted results of available component and system evaluations are presented. 8 refs., 11 figs

  14. Large contribution to the neutron electric dipole moment from a dimension-six four-quark operator

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.

    1993-01-01

    In this paper we study the contribution of a dimension-six four-quark operator to the neutron electric dipole moment. We find that this contribution dominates over the one-loop contributions due to W L- WR mixing by at least one order of magnitude in left-right-symmetric models, and in diquark scalar models this contribution is two orders of magnitude larger than other contributions

  15. Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields

    Science.gov (United States)

    Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.

    2018-01-01

    We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.

  16. Microwave spectrum, dipole moment, and internal dynamics of the methyl fluoride-carbonyl sulfide weakly bound complex.

    Science.gov (United States)

    Serafin, Michal M; Peebles, Sean A

    2008-02-21

    Rotational spectra for the normal and four isotopically substituted species of the 1:1 complex between methyl fluoride (H3CF) and carbonyl sulfide (OCS) have been measured using Fourier-transform microwave spectroscopy in the 5-16 GHz frequency region. The observed spectra fit well to a semirigid Watson Hamiltonian, and an analysis of the rotational constants has allowed a structure to be determined for this complex. The dipole moment vectors of the H3CF and OCS monomers are aligned approximately antiparallel with a C...C separation of 3.75(3) A and with an ab plane of symmetry. The values of the Pcc planar moments were found to be considerably different from the expected rigid values for all isotopologues. An estimate of approximately 14.5(50) cm-1 for the internal rotation barrier of the CH3 group with respect to the framework of the complex has been made using the Pcc values for the H3CF-OCS and D3CF-OCS isotopic species. Two structures, very close in energy and approximately related by a 60 degrees rotation about the C3 axis of the methyl fluoride, were identified by ab initio calculations at the MP2/6-311++G(2d,2p) level and provide reasonable agreement with the experimental rotational constants and dipole moment components.

  17. Manifestation of the cyclo-toroid nuclear moment in anomalous conversion and Lamb shift

    OpenAIRE

    Tkalya, E. V.

    2005-01-01

    We offer the hypothesis that atomic nuclei, nucleons, and atoms possess a new type of electromagnetic moment, that we call a ``cyclo-toroid moment''. In nuclei, this moment arises when the toroid dipole (anapole) moments are arrayed in the form of a ring, or, equivalently, when the magnetic moments of the nucleons are arranged in the form of rings which, in turn, constitute the surface of a torus. We establish theoretically that the cyclo-toroid moment plays a role in the processes of the ato...

  18. Polarization of Magnetic Dipole Emission and Spinning Dust Emission from Magnetic Nanoparticles

    OpenAIRE

    Hoang, Thiem; Lazarian, A.

    2015-01-01

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background (CMB) B-mode signal. To obtain theoretical constraints on the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that, in realistic conditions of the interste...

  19. Analysis of dynamical corrections to baryon magnetic moments

    International Nuclear Information System (INIS)

    Ha, Phuoc; Durand, Loyal

    2003-01-01

    We present and analyze QCD corrections to the baryon magnetic moments in terms of the one-, two-, and three-body operators which appear in the effective field theory developed in our recent papers. The main corrections are extended Thomas-type corrections associated with the confining interactions in the baryon. We investigate the contributions of low-lying angular excitations to the baryon magnetic moments quantitatively and show that they are completely negligible. When the QCD corrections are combined with the nonquark model contributions of the meson loops, we obtain a model which describes the baryon magnetic moments within a mean deviation of 0.04 μ N . The nontrivial interplay of the two types of corrections to the quark-model magnetic moments is analyzed in detail, and explains why the quark model is so successful. In the course of these calculations, we parametrize the general spin structure of the j=(1/2) + baryon wave functions in a form which clearly displays the symmetry properties and the internal angular momentum content of the wave functions, and allows us to use spin-trace methods to calculate the many spin matrix elements which appear in the expressions for the baryon magnetic moments. This representation may be useful elsewhere

  20. Baryon magnetic moments in the quark model and pion cloud contributions

    International Nuclear Information System (INIS)

    Sato, Toshiro; Sawada, Shoji

    1981-01-01

    Baryon magnetic moment is studied paying attention to the effects of pion cloud which is surrounding the 'bare' baryon whose magnetic moment is given by the quark model with broken SU(6) symmetry. The precisely measured nucleon magnetic moments are reproduced by the pion cloud contributions from the distance larger than 1.4 fm. The effects of pion cloud on the hyperon magnetic moments are also discussed. It is shown that the pion cloud contributions largely reduce the discrepancies between the quark model predictions and the recent accurate experimental data on the hyperon magnetic moments. (author)